Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Generic pidhash and scalable, time-bounded PID allocator
  4 *
  5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
  6 * (C) 2004 Nadia Yvette Chambers, Oracle
  7 * (C) 2002-2004 Ingo Molnar, Red Hat
  8 *
  9 * pid-structures are backing objects for tasks sharing a given ID to chain
 10 * against. There is very little to them aside from hashing them and
 11 * parking tasks using given ID's on a list.
 12 *
 13 * The hash is always changed with the tasklist_lock write-acquired,
 14 * and the hash is only accessed with the tasklist_lock at least
 15 * read-acquired, so there's no additional SMP locking needed here.
 16 *
 17 * We have a list of bitmap pages, which bitmaps represent the PID space.
 18 * Allocating and freeing PIDs is completely lockless. The worst-case
 19 * allocation scenario when all but one out of 1 million PIDs possible are
 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 22 *
 23 * Pid namespaces:
 24 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 25 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 26 *     Many thanks to Oleg Nesterov for comments and help
 27 *
 28 */
 29
 30#include <linux/mm.h>
 31#include <linux/export.h>
 32#include <linux/slab.h>
 33#include <linux/init.h>
 34#include <linux/rculist.h>
 35#include <linux/memblock.h>
 
 36#include <linux/pid_namespace.h>
 37#include <linux/init_task.h>
 38#include <linux/syscalls.h>
 39#include <linux/proc_ns.h>
 40#include <linux/refcount.h>
 41#include <linux/anon_inodes.h>
 42#include <linux/sched/signal.h>
 43#include <linux/sched/task.h>
 44#include <linux/idr.h>
 45
 46struct pid init_struct_pid = {
 47	.count		= REFCOUNT_INIT(1),
 48	.tasks		= {
 49		{ .first = NULL },
 50		{ .first = NULL },
 51		{ .first = NULL },
 52	},
 53	.level		= 0,
 54	.numbers	= { {
 55		.nr		= 0,
 56		.ns		= &init_pid_ns,
 57	}, }
 58};
 59
 60int pid_max = PID_MAX_DEFAULT;
 61
 62#define RESERVED_PIDS		300
 63
 64int pid_max_min = RESERVED_PIDS + 1;
 65int pid_max_max = PID_MAX_LIMIT;
 66
 67/*
 68 * PID-map pages start out as NULL, they get allocated upon
 69 * first use and are never deallocated. This way a low pid_max
 70 * value does not cause lots of bitmaps to be allocated, but
 71 * the scheme scales to up to 4 million PIDs, runtime.
 72 */
 73struct pid_namespace init_pid_ns = {
 74	.kref = KREF_INIT(2),
 75	.idr = IDR_INIT(init_pid_ns.idr),
 76	.pid_allocated = PIDNS_ADDING,
 77	.level = 0,
 78	.child_reaper = &init_task,
 79	.user_ns = &init_user_ns,
 80	.ns.inum = PROC_PID_INIT_INO,
 81#ifdef CONFIG_PID_NS
 82	.ns.ops = &pidns_operations,
 83#endif
 84};
 85EXPORT_SYMBOL_GPL(init_pid_ns);
 86
 87/*
 88 * Note: disable interrupts while the pidmap_lock is held as an
 89 * interrupt might come in and do read_lock(&tasklist_lock).
 90 *
 91 * If we don't disable interrupts there is a nasty deadlock between
 92 * detach_pid()->free_pid() and another cpu that does
 93 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 94 * read_lock(&tasklist_lock);
 95 *
 96 * After we clean up the tasklist_lock and know there are no
 97 * irq handlers that take it we can leave the interrupts enabled.
 98 * For now it is easier to be safe than to prove it can't happen.
 99 */
100
101static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
102
103void put_pid(struct pid *pid)
104{
105	struct pid_namespace *ns;
106
107	if (!pid)
108		return;
109
110	ns = pid->numbers[pid->level].ns;
111	if (refcount_dec_and_test(&pid->count)) {
 
112		kmem_cache_free(ns->pid_cachep, pid);
113		put_pid_ns(ns);
114	}
115}
116EXPORT_SYMBOL_GPL(put_pid);
117
118static void delayed_put_pid(struct rcu_head *rhp)
119{
120	struct pid *pid = container_of(rhp, struct pid, rcu);
121	put_pid(pid);
122}
123
124void free_pid(struct pid *pid)
125{
126	/* We can be called with write_lock_irq(&tasklist_lock) held */
127	int i;
128	unsigned long flags;
129
130	spin_lock_irqsave(&pidmap_lock, flags);
131	for (i = 0; i <= pid->level; i++) {
132		struct upid *upid = pid->numbers + i;
133		struct pid_namespace *ns = upid->ns;
134		switch (--ns->pid_allocated) {
135		case 2:
136		case 1:
137			/* When all that is left in the pid namespace
138			 * is the reaper wake up the reaper.  The reaper
139			 * may be sleeping in zap_pid_ns_processes().
140			 */
141			wake_up_process(ns->child_reaper);
142			break;
143		case PIDNS_ADDING:
144			/* Handle a fork failure of the first process */
145			WARN_ON(ns->child_reaper);
146			ns->pid_allocated = 0;
147			/* fall through */
148		case 0:
149			schedule_work(&ns->proc_work);
150			break;
151		}
152
153		idr_remove(&ns->idr, upid->nr);
154	}
155	spin_unlock_irqrestore(&pidmap_lock, flags);
156
157	call_rcu(&pid->rcu, delayed_put_pid);
158}
159
160struct pid *alloc_pid(struct pid_namespace *ns)
161{
162	struct pid *pid;
163	enum pid_type type;
164	int i, nr;
165	struct pid_namespace *tmp;
166	struct upid *upid;
167	int retval = -ENOMEM;
168
169	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
170	if (!pid)
171		return ERR_PTR(retval);
172
173	tmp = ns;
174	pid->level = ns->level;
175
176	for (i = ns->level; i >= 0; i--) {
177		int pid_min = 1;
178
179		idr_preload(GFP_KERNEL);
180		spin_lock_irq(&pidmap_lock);
181
182		/*
183		 * init really needs pid 1, but after reaching the maximum
184		 * wrap back to RESERVED_PIDS
185		 */
186		if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
187			pid_min = RESERVED_PIDS;
188
189		/*
190		 * Store a null pointer so find_pid_ns does not find
191		 * a partially initialized PID (see below).
192		 */
193		nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
194				      pid_max, GFP_ATOMIC);
195		spin_unlock_irq(&pidmap_lock);
196		idr_preload_end();
197
198		if (nr < 0) {
199			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
200			goto out_free;
201		}
202
203		pid->numbers[i].nr = nr;
204		pid->numbers[i].ns = tmp;
205		tmp = tmp->parent;
206	}
207
208	if (unlikely(is_child_reaper(pid))) {
209		if (pid_ns_prepare_proc(ns))
210			goto out_free;
211	}
212
213	get_pid_ns(ns);
214	refcount_set(&pid->count, 1);
215	for (type = 0; type < PIDTYPE_MAX; ++type)
216		INIT_HLIST_HEAD(&pid->tasks[type]);
217
218	init_waitqueue_head(&pid->wait_pidfd);
219
220	upid = pid->numbers + ns->level;
221	spin_lock_irq(&pidmap_lock);
222	if (!(ns->pid_allocated & PIDNS_ADDING))
223		goto out_unlock;
224	for ( ; upid >= pid->numbers; --upid) {
225		/* Make the PID visible to find_pid_ns. */
226		idr_replace(&upid->ns->idr, pid, upid->nr);
227		upid->ns->pid_allocated++;
228	}
229	spin_unlock_irq(&pidmap_lock);
230
231	return pid;
232
233out_unlock:
234	spin_unlock_irq(&pidmap_lock);
235	put_pid_ns(ns);
236
237out_free:
238	spin_lock_irq(&pidmap_lock);
239	while (++i <= ns->level) {
240		upid = pid->numbers + i;
241		idr_remove(&upid->ns->idr, upid->nr);
242	}
243
244	/* On failure to allocate the first pid, reset the state */
245	if (ns->pid_allocated == PIDNS_ADDING)
246		idr_set_cursor(&ns->idr, 0);
247
248	spin_unlock_irq(&pidmap_lock);
249
250	kmem_cache_free(ns->pid_cachep, pid);
251	return ERR_PTR(retval);
252}
253
254void disable_pid_allocation(struct pid_namespace *ns)
255{
256	spin_lock_irq(&pidmap_lock);
257	ns->pid_allocated &= ~PIDNS_ADDING;
258	spin_unlock_irq(&pidmap_lock);
259}
260
261struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
262{
263	return idr_find(&ns->idr, nr);
264}
265EXPORT_SYMBOL_GPL(find_pid_ns);
266
267struct pid *find_vpid(int nr)
268{
269	return find_pid_ns(nr, task_active_pid_ns(current));
270}
271EXPORT_SYMBOL_GPL(find_vpid);
272
273static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
274{
275	return (type == PIDTYPE_PID) ?
276		&task->thread_pid :
277		&task->signal->pids[type];
278}
279
280/*
281 * attach_pid() must be called with the tasklist_lock write-held.
282 */
283void attach_pid(struct task_struct *task, enum pid_type type)
284{
285	struct pid *pid = *task_pid_ptr(task, type);
286	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
287}
288
289static void __change_pid(struct task_struct *task, enum pid_type type,
290			struct pid *new)
291{
292	struct pid **pid_ptr = task_pid_ptr(task, type);
293	struct pid *pid;
294	int tmp;
295
296	pid = *pid_ptr;
 
297
298	hlist_del_rcu(&task->pid_links[type]);
299	*pid_ptr = new;
300
301	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
302		if (!hlist_empty(&pid->tasks[tmp]))
303			return;
304
305	free_pid(pid);
306}
307
308void detach_pid(struct task_struct *task, enum pid_type type)
309{
310	__change_pid(task, type, NULL);
311}
312
313void change_pid(struct task_struct *task, enum pid_type type,
314		struct pid *pid)
315{
316	__change_pid(task, type, pid);
317	attach_pid(task, type);
318}
319
320/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
321void transfer_pid(struct task_struct *old, struct task_struct *new,
322			   enum pid_type type)
323{
324	if (type == PIDTYPE_PID)
325		new->thread_pid = old->thread_pid;
326	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
327}
328
329struct task_struct *pid_task(struct pid *pid, enum pid_type type)
330{
331	struct task_struct *result = NULL;
332	if (pid) {
333		struct hlist_node *first;
334		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
335					      lockdep_tasklist_lock_is_held());
336		if (first)
337			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
338	}
339	return result;
340}
341EXPORT_SYMBOL(pid_task);
342
343/*
344 * Must be called under rcu_read_lock().
345 */
346struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
347{
348	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
349			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
350	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
351}
352
353struct task_struct *find_task_by_vpid(pid_t vnr)
354{
355	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
356}
357
358struct task_struct *find_get_task_by_vpid(pid_t nr)
359{
360	struct task_struct *task;
361
362	rcu_read_lock();
363	task = find_task_by_vpid(nr);
364	if (task)
365		get_task_struct(task);
366	rcu_read_unlock();
367
368	return task;
369}
370
371struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
372{
373	struct pid *pid;
374	rcu_read_lock();
375	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
 
 
376	rcu_read_unlock();
377	return pid;
378}
379EXPORT_SYMBOL_GPL(get_task_pid);
380
381struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
382{
383	struct task_struct *result;
384	rcu_read_lock();
385	result = pid_task(pid, type);
386	if (result)
387		get_task_struct(result);
388	rcu_read_unlock();
389	return result;
390}
391EXPORT_SYMBOL_GPL(get_pid_task);
392
393struct pid *find_get_pid(pid_t nr)
394{
395	struct pid *pid;
396
397	rcu_read_lock();
398	pid = get_pid(find_vpid(nr));
399	rcu_read_unlock();
400
401	return pid;
402}
403EXPORT_SYMBOL_GPL(find_get_pid);
404
405pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
406{
407	struct upid *upid;
408	pid_t nr = 0;
409
410	if (pid && ns->level <= pid->level) {
411		upid = &pid->numbers[ns->level];
412		if (upid->ns == ns)
413			nr = upid->nr;
414	}
415	return nr;
416}
417EXPORT_SYMBOL_GPL(pid_nr_ns);
418
419pid_t pid_vnr(struct pid *pid)
420{
421	return pid_nr_ns(pid, task_active_pid_ns(current));
422}
423EXPORT_SYMBOL_GPL(pid_vnr);
424
425pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
426			struct pid_namespace *ns)
427{
428	pid_t nr = 0;
429
430	rcu_read_lock();
431	if (!ns)
432		ns = task_active_pid_ns(current);
433	if (likely(pid_alive(task)))
434		nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
 
 
 
 
 
 
 
435	rcu_read_unlock();
436
437	return nr;
438}
439EXPORT_SYMBOL(__task_pid_nr_ns);
440
441struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
442{
443	return ns_of_pid(task_pid(tsk));
444}
445EXPORT_SYMBOL_GPL(task_active_pid_ns);
446
447/*
448 * Used by proc to find the first pid that is greater than or equal to nr.
449 *
450 * If there is a pid at nr this function is exactly the same as find_pid_ns.
451 */
452struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
453{
454	return idr_get_next(&ns->idr, &nr);
455}
456
457/**
458 * pidfd_create() - Create a new pid file descriptor.
459 *
460 * @pid:  struct pid that the pidfd will reference
461 *
462 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
463 *
464 * Note, that this function can only be called after the fd table has
465 * been unshared to avoid leaking the pidfd to the new process.
466 *
467 * Return: On success, a cloexec pidfd is returned.
468 *         On error, a negative errno number will be returned.
469 */
470static int pidfd_create(struct pid *pid)
471{
472	int fd;
473
474	fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
475			      O_RDWR | O_CLOEXEC);
476	if (fd < 0)
477		put_pid(pid);
478
479	return fd;
480}
481
482/**
483 * pidfd_open() - Open new pid file descriptor.
484 *
485 * @pid:   pid for which to retrieve a pidfd
486 * @flags: flags to pass
487 *
488 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
489 * the process identified by @pid. Currently, the process identified by
490 * @pid must be a thread-group leader. This restriction currently exists
491 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
492 * be used with CLONE_THREAD) and pidfd polling (only supports thread group
493 * leaders).
494 *
495 * Return: On success, a cloexec pidfd is returned.
496 *         On error, a negative errno number will be returned.
497 */
498SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
499{
500	int fd, ret;
501	struct pid *p;
502
503	if (flags)
504		return -EINVAL;
505
506	if (pid <= 0)
507		return -EINVAL;
508
509	p = find_get_pid(pid);
510	if (!p)
511		return -ESRCH;
512
513	ret = 0;
514	rcu_read_lock();
515	if (!pid_task(p, PIDTYPE_TGID))
516		ret = -EINVAL;
517	rcu_read_unlock();
518
519	fd = ret ?: pidfd_create(p);
520	put_pid(p);
521	return fd;
522}
523
524void __init pid_idr_init(void)
525{
526	/* Verify no one has done anything silly: */
527	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
528
529	/* bump default and minimum pid_max based on number of cpus */
530	pid_max = min(pid_max_max, max_t(int, pid_max,
531				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
532	pid_max_min = max_t(int, pid_max_min,
533				PIDS_PER_CPU_MIN * num_possible_cpus());
534	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
535
536	idr_init(&init_pid_ns.idr);
537
538	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
539			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
540}
v4.17
 
  1/*
  2 * Generic pidhash and scalable, time-bounded PID allocator
  3 *
  4 * (C) 2002-2003 Nadia Yvette Chambers, IBM
  5 * (C) 2004 Nadia Yvette Chambers, Oracle
  6 * (C) 2002-2004 Ingo Molnar, Red Hat
  7 *
  8 * pid-structures are backing objects for tasks sharing a given ID to chain
  9 * against. There is very little to them aside from hashing them and
 10 * parking tasks using given ID's on a list.
 11 *
 12 * The hash is always changed with the tasklist_lock write-acquired,
 13 * and the hash is only accessed with the tasklist_lock at least
 14 * read-acquired, so there's no additional SMP locking needed here.
 15 *
 16 * We have a list of bitmap pages, which bitmaps represent the PID space.
 17 * Allocating and freeing PIDs is completely lockless. The worst-case
 18 * allocation scenario when all but one out of 1 million PIDs possible are
 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 21 *
 22 * Pid namespaces:
 23 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 24 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 25 *     Many thanks to Oleg Nesterov for comments and help
 26 *
 27 */
 28
 29#include <linux/mm.h>
 30#include <linux/export.h>
 31#include <linux/slab.h>
 32#include <linux/init.h>
 33#include <linux/rculist.h>
 34#include <linux/bootmem.h>
 35#include <linux/hash.h>
 36#include <linux/pid_namespace.h>
 37#include <linux/init_task.h>
 38#include <linux/syscalls.h>
 39#include <linux/proc_ns.h>
 40#include <linux/proc_fs.h>
 
 
 41#include <linux/sched/task.h>
 42#include <linux/idr.h>
 43
 44struct pid init_struct_pid = {
 45	.count 		= ATOMIC_INIT(1),
 46	.tasks		= {
 47		{ .first = NULL },
 48		{ .first = NULL },
 49		{ .first = NULL },
 50	},
 51	.level		= 0,
 52	.numbers	= { {
 53		.nr		= 0,
 54		.ns		= &init_pid_ns,
 55	}, }
 56};
 57
 58int pid_max = PID_MAX_DEFAULT;
 59
 60#define RESERVED_PIDS		300
 61
 62int pid_max_min = RESERVED_PIDS + 1;
 63int pid_max_max = PID_MAX_LIMIT;
 64
 65/*
 66 * PID-map pages start out as NULL, they get allocated upon
 67 * first use and are never deallocated. This way a low pid_max
 68 * value does not cause lots of bitmaps to be allocated, but
 69 * the scheme scales to up to 4 million PIDs, runtime.
 70 */
 71struct pid_namespace init_pid_ns = {
 72	.kref = KREF_INIT(2),
 73	.idr = IDR_INIT(init_pid_ns.idr),
 74	.pid_allocated = PIDNS_ADDING,
 75	.level = 0,
 76	.child_reaper = &init_task,
 77	.user_ns = &init_user_ns,
 78	.ns.inum = PROC_PID_INIT_INO,
 79#ifdef CONFIG_PID_NS
 80	.ns.ops = &pidns_operations,
 81#endif
 82};
 83EXPORT_SYMBOL_GPL(init_pid_ns);
 84
 85/*
 86 * Note: disable interrupts while the pidmap_lock is held as an
 87 * interrupt might come in and do read_lock(&tasklist_lock).
 88 *
 89 * If we don't disable interrupts there is a nasty deadlock between
 90 * detach_pid()->free_pid() and another cpu that does
 91 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 92 * read_lock(&tasklist_lock);
 93 *
 94 * After we clean up the tasklist_lock and know there are no
 95 * irq handlers that take it we can leave the interrupts enabled.
 96 * For now it is easier to be safe than to prove it can't happen.
 97 */
 98
 99static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
100
101void put_pid(struct pid *pid)
102{
103	struct pid_namespace *ns;
104
105	if (!pid)
106		return;
107
108	ns = pid->numbers[pid->level].ns;
109	if ((atomic_read(&pid->count) == 1) ||
110	     atomic_dec_and_test(&pid->count)) {
111		kmem_cache_free(ns->pid_cachep, pid);
112		put_pid_ns(ns);
113	}
114}
115EXPORT_SYMBOL_GPL(put_pid);
116
117static void delayed_put_pid(struct rcu_head *rhp)
118{
119	struct pid *pid = container_of(rhp, struct pid, rcu);
120	put_pid(pid);
121}
122
123void free_pid(struct pid *pid)
124{
125	/* We can be called with write_lock_irq(&tasklist_lock) held */
126	int i;
127	unsigned long flags;
128
129	spin_lock_irqsave(&pidmap_lock, flags);
130	for (i = 0; i <= pid->level; i++) {
131		struct upid *upid = pid->numbers + i;
132		struct pid_namespace *ns = upid->ns;
133		switch (--ns->pid_allocated) {
134		case 2:
135		case 1:
136			/* When all that is left in the pid namespace
137			 * is the reaper wake up the reaper.  The reaper
138			 * may be sleeping in zap_pid_ns_processes().
139			 */
140			wake_up_process(ns->child_reaper);
141			break;
142		case PIDNS_ADDING:
143			/* Handle a fork failure of the first process */
144			WARN_ON(ns->child_reaper);
145			ns->pid_allocated = 0;
146			/* fall through */
147		case 0:
148			schedule_work(&ns->proc_work);
149			break;
150		}
151
152		idr_remove(&ns->idr, upid->nr);
153	}
154	spin_unlock_irqrestore(&pidmap_lock, flags);
155
156	call_rcu(&pid->rcu, delayed_put_pid);
157}
158
159struct pid *alloc_pid(struct pid_namespace *ns)
160{
161	struct pid *pid;
162	enum pid_type type;
163	int i, nr;
164	struct pid_namespace *tmp;
165	struct upid *upid;
166	int retval = -ENOMEM;
167
168	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
169	if (!pid)
170		return ERR_PTR(retval);
171
172	tmp = ns;
173	pid->level = ns->level;
174
175	for (i = ns->level; i >= 0; i--) {
176		int pid_min = 1;
177
178		idr_preload(GFP_KERNEL);
179		spin_lock_irq(&pidmap_lock);
180
181		/*
182		 * init really needs pid 1, but after reaching the maximum
183		 * wrap back to RESERVED_PIDS
184		 */
185		if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
186			pid_min = RESERVED_PIDS;
187
188		/*
189		 * Store a null pointer so find_pid_ns does not find
190		 * a partially initialized PID (see below).
191		 */
192		nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
193				      pid_max, GFP_ATOMIC);
194		spin_unlock_irq(&pidmap_lock);
195		idr_preload_end();
196
197		if (nr < 0) {
198			retval = nr;
199			goto out_free;
200		}
201
202		pid->numbers[i].nr = nr;
203		pid->numbers[i].ns = tmp;
204		tmp = tmp->parent;
205	}
206
207	if (unlikely(is_child_reaper(pid))) {
208		if (pid_ns_prepare_proc(ns))
209			goto out_free;
210	}
211
212	get_pid_ns(ns);
213	atomic_set(&pid->count, 1);
214	for (type = 0; type < PIDTYPE_MAX; ++type)
215		INIT_HLIST_HEAD(&pid->tasks[type]);
216
 
 
217	upid = pid->numbers + ns->level;
218	spin_lock_irq(&pidmap_lock);
219	if (!(ns->pid_allocated & PIDNS_ADDING))
220		goto out_unlock;
221	for ( ; upid >= pid->numbers; --upid) {
222		/* Make the PID visible to find_pid_ns. */
223		idr_replace(&upid->ns->idr, pid, upid->nr);
224		upid->ns->pid_allocated++;
225	}
226	spin_unlock_irq(&pidmap_lock);
227
228	return pid;
229
230out_unlock:
231	spin_unlock_irq(&pidmap_lock);
232	put_pid_ns(ns);
233
234out_free:
235	spin_lock_irq(&pidmap_lock);
236	while (++i <= ns->level)
237		idr_remove(&ns->idr, (pid->numbers + i)->nr);
 
 
238
239	/* On failure to allocate the first pid, reset the state */
240	if (ns->pid_allocated == PIDNS_ADDING)
241		idr_set_cursor(&ns->idr, 0);
242
243	spin_unlock_irq(&pidmap_lock);
244
245	kmem_cache_free(ns->pid_cachep, pid);
246	return ERR_PTR(retval);
247}
248
249void disable_pid_allocation(struct pid_namespace *ns)
250{
251	spin_lock_irq(&pidmap_lock);
252	ns->pid_allocated &= ~PIDNS_ADDING;
253	spin_unlock_irq(&pidmap_lock);
254}
255
256struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
257{
258	return idr_find(&ns->idr, nr);
259}
260EXPORT_SYMBOL_GPL(find_pid_ns);
261
262struct pid *find_vpid(int nr)
263{
264	return find_pid_ns(nr, task_active_pid_ns(current));
265}
266EXPORT_SYMBOL_GPL(find_vpid);
267
 
 
 
 
 
 
 
268/*
269 * attach_pid() must be called with the tasklist_lock write-held.
270 */
271void attach_pid(struct task_struct *task, enum pid_type type)
272{
273	struct pid_link *link = &task->pids[type];
274	hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
275}
276
277static void __change_pid(struct task_struct *task, enum pid_type type,
278			struct pid *new)
279{
280	struct pid_link *link;
281	struct pid *pid;
282	int tmp;
283
284	link = &task->pids[type];
285	pid = link->pid;
286
287	hlist_del_rcu(&link->node);
288	link->pid = new;
289
290	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
291		if (!hlist_empty(&pid->tasks[tmp]))
292			return;
293
294	free_pid(pid);
295}
296
297void detach_pid(struct task_struct *task, enum pid_type type)
298{
299	__change_pid(task, type, NULL);
300}
301
302void change_pid(struct task_struct *task, enum pid_type type,
303		struct pid *pid)
304{
305	__change_pid(task, type, pid);
306	attach_pid(task, type);
307}
308
309/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
310void transfer_pid(struct task_struct *old, struct task_struct *new,
311			   enum pid_type type)
312{
313	new->pids[type].pid = old->pids[type].pid;
314	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
 
315}
316
317struct task_struct *pid_task(struct pid *pid, enum pid_type type)
318{
319	struct task_struct *result = NULL;
320	if (pid) {
321		struct hlist_node *first;
322		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
323					      lockdep_tasklist_lock_is_held());
324		if (first)
325			result = hlist_entry(first, struct task_struct, pids[(type)].node);
326	}
327	return result;
328}
329EXPORT_SYMBOL(pid_task);
330
331/*
332 * Must be called under rcu_read_lock().
333 */
334struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
335{
336	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
337			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
338	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
339}
340
341struct task_struct *find_task_by_vpid(pid_t vnr)
342{
343	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
344}
345
346struct task_struct *find_get_task_by_vpid(pid_t nr)
347{
348	struct task_struct *task;
349
350	rcu_read_lock();
351	task = find_task_by_vpid(nr);
352	if (task)
353		get_task_struct(task);
354	rcu_read_unlock();
355
356	return task;
357}
358
359struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
360{
361	struct pid *pid;
362	rcu_read_lock();
363	if (type != PIDTYPE_PID)
364		task = task->group_leader;
365	pid = get_pid(rcu_dereference(task->pids[type].pid));
366	rcu_read_unlock();
367	return pid;
368}
369EXPORT_SYMBOL_GPL(get_task_pid);
370
371struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
372{
373	struct task_struct *result;
374	rcu_read_lock();
375	result = pid_task(pid, type);
376	if (result)
377		get_task_struct(result);
378	rcu_read_unlock();
379	return result;
380}
381EXPORT_SYMBOL_GPL(get_pid_task);
382
383struct pid *find_get_pid(pid_t nr)
384{
385	struct pid *pid;
386
387	rcu_read_lock();
388	pid = get_pid(find_vpid(nr));
389	rcu_read_unlock();
390
391	return pid;
392}
393EXPORT_SYMBOL_GPL(find_get_pid);
394
395pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
396{
397	struct upid *upid;
398	pid_t nr = 0;
399
400	if (pid && ns->level <= pid->level) {
401		upid = &pid->numbers[ns->level];
402		if (upid->ns == ns)
403			nr = upid->nr;
404	}
405	return nr;
406}
407EXPORT_SYMBOL_GPL(pid_nr_ns);
408
409pid_t pid_vnr(struct pid *pid)
410{
411	return pid_nr_ns(pid, task_active_pid_ns(current));
412}
413EXPORT_SYMBOL_GPL(pid_vnr);
414
415pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
416			struct pid_namespace *ns)
417{
418	pid_t nr = 0;
419
420	rcu_read_lock();
421	if (!ns)
422		ns = task_active_pid_ns(current);
423	if (likely(pid_alive(task))) {
424		if (type != PIDTYPE_PID) {
425			if (type == __PIDTYPE_TGID)
426				type = PIDTYPE_PID;
427
428			task = task->group_leader;
429		}
430		nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
431	}
432	rcu_read_unlock();
433
434	return nr;
435}
436EXPORT_SYMBOL(__task_pid_nr_ns);
437
438struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
439{
440	return ns_of_pid(task_pid(tsk));
441}
442EXPORT_SYMBOL_GPL(task_active_pid_ns);
443
444/*
445 * Used by proc to find the first pid that is greater than or equal to nr.
446 *
447 * If there is a pid at nr this function is exactly the same as find_pid_ns.
448 */
449struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
450{
451	return idr_get_next(&ns->idr, &nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
452}
453
454void __init pid_idr_init(void)
455{
456	/* Verify no one has done anything silly: */
457	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
458
459	/* bump default and minimum pid_max based on number of cpus */
460	pid_max = min(pid_max_max, max_t(int, pid_max,
461				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
462	pid_max_min = max_t(int, pid_max_min,
463				PIDS_PER_CPU_MIN * num_possible_cpus());
464	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
465
466	idr_init(&init_pid_ns.idr);
467
468	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
469			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
470}