Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Generic pidhash and scalable, time-bounded PID allocator
  4 *
  5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
  6 * (C) 2004 Nadia Yvette Chambers, Oracle
  7 * (C) 2002-2004 Ingo Molnar, Red Hat
  8 *
  9 * pid-structures are backing objects for tasks sharing a given ID to chain
 10 * against. There is very little to them aside from hashing them and
 11 * parking tasks using given ID's on a list.
 12 *
 13 * The hash is always changed with the tasklist_lock write-acquired,
 14 * and the hash is only accessed with the tasklist_lock at least
 15 * read-acquired, so there's no additional SMP locking needed here.
 16 *
 17 * We have a list of bitmap pages, which bitmaps represent the PID space.
 18 * Allocating and freeing PIDs is completely lockless. The worst-case
 19 * allocation scenario when all but one out of 1 million PIDs possible are
 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 22 *
 23 * Pid namespaces:
 24 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 25 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 26 *     Many thanks to Oleg Nesterov for comments and help
 27 *
 28 */
 29
 30#include <linux/mm.h>
 31#include <linux/export.h>
 32#include <linux/slab.h>
 33#include <linux/init.h>
 34#include <linux/rculist.h>
 35#include <linux/memblock.h>
 36#include <linux/pid_namespace.h>
 37#include <linux/init_task.h>
 38#include <linux/syscalls.h>
 39#include <linux/proc_ns.h>
 40#include <linux/refcount.h>
 41#include <linux/anon_inodes.h>
 42#include <linux/sched/signal.h>
 43#include <linux/sched/task.h>
 44#include <linux/idr.h>
 
 45
 46struct pid init_struct_pid = {
 47	.count		= REFCOUNT_INIT(1),
 48	.tasks		= {
 49		{ .first = NULL },
 50		{ .first = NULL },
 51		{ .first = NULL },
 52	},
 53	.level		= 0,
 54	.numbers	= { {
 55		.nr		= 0,
 56		.ns		= &init_pid_ns,
 57	}, }
 58};
 59
 60int pid_max = PID_MAX_DEFAULT;
 61
 62#define RESERVED_PIDS		300
 63
 64int pid_max_min = RESERVED_PIDS + 1;
 65int pid_max_max = PID_MAX_LIMIT;
 66
 67/*
 68 * PID-map pages start out as NULL, they get allocated upon
 69 * first use and are never deallocated. This way a low pid_max
 70 * value does not cause lots of bitmaps to be allocated, but
 71 * the scheme scales to up to 4 million PIDs, runtime.
 72 */
 73struct pid_namespace init_pid_ns = {
 74	.kref = KREF_INIT(2),
 75	.idr = IDR_INIT(init_pid_ns.idr),
 76	.pid_allocated = PIDNS_ADDING,
 77	.level = 0,
 78	.child_reaper = &init_task,
 79	.user_ns = &init_user_ns,
 80	.ns.inum = PROC_PID_INIT_INO,
 81#ifdef CONFIG_PID_NS
 82	.ns.ops = &pidns_operations,
 83#endif
 84};
 85EXPORT_SYMBOL_GPL(init_pid_ns);
 86
 87/*
 88 * Note: disable interrupts while the pidmap_lock is held as an
 89 * interrupt might come in and do read_lock(&tasklist_lock).
 90 *
 91 * If we don't disable interrupts there is a nasty deadlock between
 92 * detach_pid()->free_pid() and another cpu that does
 93 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 94 * read_lock(&tasklist_lock);
 95 *
 96 * After we clean up the tasklist_lock and know there are no
 97 * irq handlers that take it we can leave the interrupts enabled.
 98 * For now it is easier to be safe than to prove it can't happen.
 99 */
100
101static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
102
103void put_pid(struct pid *pid)
104{
105	struct pid_namespace *ns;
106
107	if (!pid)
108		return;
109
110	ns = pid->numbers[pid->level].ns;
111	if (refcount_dec_and_test(&pid->count)) {
112		kmem_cache_free(ns->pid_cachep, pid);
113		put_pid_ns(ns);
114	}
115}
116EXPORT_SYMBOL_GPL(put_pid);
117
118static void delayed_put_pid(struct rcu_head *rhp)
119{
120	struct pid *pid = container_of(rhp, struct pid, rcu);
121	put_pid(pid);
122}
123
124void free_pid(struct pid *pid)
125{
126	/* We can be called with write_lock_irq(&tasklist_lock) held */
127	int i;
128	unsigned long flags;
129
130	spin_lock_irqsave(&pidmap_lock, flags);
131	for (i = 0; i <= pid->level; i++) {
132		struct upid *upid = pid->numbers + i;
133		struct pid_namespace *ns = upid->ns;
134		switch (--ns->pid_allocated) {
135		case 2:
136		case 1:
137			/* When all that is left in the pid namespace
138			 * is the reaper wake up the reaper.  The reaper
139			 * may be sleeping in zap_pid_ns_processes().
140			 */
141			wake_up_process(ns->child_reaper);
142			break;
143		case PIDNS_ADDING:
144			/* Handle a fork failure of the first process */
145			WARN_ON(ns->child_reaper);
146			ns->pid_allocated = 0;
147			/* fall through */
148		case 0:
149			schedule_work(&ns->proc_work);
150			break;
151		}
152
153		idr_remove(&ns->idr, upid->nr);
154	}
155	spin_unlock_irqrestore(&pidmap_lock, flags);
156
157	call_rcu(&pid->rcu, delayed_put_pid);
158}
159
160struct pid *alloc_pid(struct pid_namespace *ns)
 
161{
162	struct pid *pid;
163	enum pid_type type;
164	int i, nr;
165	struct pid_namespace *tmp;
166	struct upid *upid;
167	int retval = -ENOMEM;
168
 
 
 
 
 
 
 
 
 
 
 
169	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
170	if (!pid)
171		return ERR_PTR(retval);
172
173	tmp = ns;
174	pid->level = ns->level;
175
176	for (i = ns->level; i >= 0; i--) {
177		int pid_min = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
179		idr_preload(GFP_KERNEL);
180		spin_lock_irq(&pidmap_lock);
181
182		/*
183		 * init really needs pid 1, but after reaching the maximum
184		 * wrap back to RESERVED_PIDS
185		 */
186		if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
187			pid_min = RESERVED_PIDS;
188
189		/*
190		 * Store a null pointer so find_pid_ns does not find
191		 * a partially initialized PID (see below).
192		 */
193		nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
194				      pid_max, GFP_ATOMIC);
 
 
 
 
 
 
 
 
 
 
 
 
195		spin_unlock_irq(&pidmap_lock);
196		idr_preload_end();
197
198		if (nr < 0) {
199			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
200			goto out_free;
201		}
202
203		pid->numbers[i].nr = nr;
204		pid->numbers[i].ns = tmp;
205		tmp = tmp->parent;
206	}
207
208	if (unlikely(is_child_reaper(pid))) {
209		if (pid_ns_prepare_proc(ns))
210			goto out_free;
211	}
 
 
 
 
 
212
213	get_pid_ns(ns);
214	refcount_set(&pid->count, 1);
 
215	for (type = 0; type < PIDTYPE_MAX; ++type)
216		INIT_HLIST_HEAD(&pid->tasks[type]);
217
218	init_waitqueue_head(&pid->wait_pidfd);
 
219
220	upid = pid->numbers + ns->level;
221	spin_lock_irq(&pidmap_lock);
222	if (!(ns->pid_allocated & PIDNS_ADDING))
223		goto out_unlock;
224	for ( ; upid >= pid->numbers; --upid) {
225		/* Make the PID visible to find_pid_ns. */
226		idr_replace(&upid->ns->idr, pid, upid->nr);
227		upid->ns->pid_allocated++;
228	}
229	spin_unlock_irq(&pidmap_lock);
230
231	return pid;
232
233out_unlock:
234	spin_unlock_irq(&pidmap_lock);
235	put_pid_ns(ns);
236
237out_free:
238	spin_lock_irq(&pidmap_lock);
239	while (++i <= ns->level) {
240		upid = pid->numbers + i;
241		idr_remove(&upid->ns->idr, upid->nr);
242	}
243
244	/* On failure to allocate the first pid, reset the state */
245	if (ns->pid_allocated == PIDNS_ADDING)
246		idr_set_cursor(&ns->idr, 0);
247
248	spin_unlock_irq(&pidmap_lock);
249
250	kmem_cache_free(ns->pid_cachep, pid);
251	return ERR_PTR(retval);
252}
253
254void disable_pid_allocation(struct pid_namespace *ns)
255{
256	spin_lock_irq(&pidmap_lock);
257	ns->pid_allocated &= ~PIDNS_ADDING;
258	spin_unlock_irq(&pidmap_lock);
259}
260
261struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
262{
263	return idr_find(&ns->idr, nr);
264}
265EXPORT_SYMBOL_GPL(find_pid_ns);
266
267struct pid *find_vpid(int nr)
268{
269	return find_pid_ns(nr, task_active_pid_ns(current));
270}
271EXPORT_SYMBOL_GPL(find_vpid);
272
273static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
274{
275	return (type == PIDTYPE_PID) ?
276		&task->thread_pid :
277		&task->signal->pids[type];
278}
279
280/*
281 * attach_pid() must be called with the tasklist_lock write-held.
282 */
283void attach_pid(struct task_struct *task, enum pid_type type)
284{
285	struct pid *pid = *task_pid_ptr(task, type);
286	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
287}
288
289static void __change_pid(struct task_struct *task, enum pid_type type,
290			struct pid *new)
291{
292	struct pid **pid_ptr = task_pid_ptr(task, type);
293	struct pid *pid;
294	int tmp;
295
296	pid = *pid_ptr;
297
298	hlist_del_rcu(&task->pid_links[type]);
299	*pid_ptr = new;
300
301	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
302		if (!hlist_empty(&pid->tasks[tmp]))
303			return;
304
305	free_pid(pid);
306}
307
308void detach_pid(struct task_struct *task, enum pid_type type)
309{
310	__change_pid(task, type, NULL);
311}
312
313void change_pid(struct task_struct *task, enum pid_type type,
314		struct pid *pid)
315{
316	__change_pid(task, type, pid);
317	attach_pid(task, type);
318}
319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
321void transfer_pid(struct task_struct *old, struct task_struct *new,
322			   enum pid_type type)
323{
324	if (type == PIDTYPE_PID)
325		new->thread_pid = old->thread_pid;
326	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
327}
328
329struct task_struct *pid_task(struct pid *pid, enum pid_type type)
330{
331	struct task_struct *result = NULL;
332	if (pid) {
333		struct hlist_node *first;
334		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
335					      lockdep_tasklist_lock_is_held());
336		if (first)
337			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
338	}
339	return result;
340}
341EXPORT_SYMBOL(pid_task);
342
343/*
344 * Must be called under rcu_read_lock().
345 */
346struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
347{
348	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
349			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
350	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
351}
352
353struct task_struct *find_task_by_vpid(pid_t vnr)
354{
355	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
356}
357
358struct task_struct *find_get_task_by_vpid(pid_t nr)
359{
360	struct task_struct *task;
361
362	rcu_read_lock();
363	task = find_task_by_vpid(nr);
364	if (task)
365		get_task_struct(task);
366	rcu_read_unlock();
367
368	return task;
369}
370
371struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
372{
373	struct pid *pid;
374	rcu_read_lock();
375	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
376	rcu_read_unlock();
377	return pid;
378}
379EXPORT_SYMBOL_GPL(get_task_pid);
380
381struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
382{
383	struct task_struct *result;
384	rcu_read_lock();
385	result = pid_task(pid, type);
386	if (result)
387		get_task_struct(result);
388	rcu_read_unlock();
389	return result;
390}
391EXPORT_SYMBOL_GPL(get_pid_task);
392
393struct pid *find_get_pid(pid_t nr)
394{
395	struct pid *pid;
396
397	rcu_read_lock();
398	pid = get_pid(find_vpid(nr));
399	rcu_read_unlock();
400
401	return pid;
402}
403EXPORT_SYMBOL_GPL(find_get_pid);
404
405pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
406{
407	struct upid *upid;
408	pid_t nr = 0;
409
410	if (pid && ns->level <= pid->level) {
411		upid = &pid->numbers[ns->level];
412		if (upid->ns == ns)
413			nr = upid->nr;
414	}
415	return nr;
416}
417EXPORT_SYMBOL_GPL(pid_nr_ns);
418
419pid_t pid_vnr(struct pid *pid)
420{
421	return pid_nr_ns(pid, task_active_pid_ns(current));
422}
423EXPORT_SYMBOL_GPL(pid_vnr);
424
425pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
426			struct pid_namespace *ns)
427{
428	pid_t nr = 0;
429
430	rcu_read_lock();
431	if (!ns)
432		ns = task_active_pid_ns(current);
433	if (likely(pid_alive(task)))
434		nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
435	rcu_read_unlock();
436
437	return nr;
438}
439EXPORT_SYMBOL(__task_pid_nr_ns);
440
441struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
442{
443	return ns_of_pid(task_pid(tsk));
444}
445EXPORT_SYMBOL_GPL(task_active_pid_ns);
446
447/*
448 * Used by proc to find the first pid that is greater than or equal to nr.
449 *
450 * If there is a pid at nr this function is exactly the same as find_pid_ns.
451 */
452struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
453{
454	return idr_get_next(&ns->idr, &nr);
455}
456
457/**
458 * pidfd_create() - Create a new pid file descriptor.
459 *
460 * @pid:  struct pid that the pidfd will reference
461 *
462 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
463 *
464 * Note, that this function can only be called after the fd table has
465 * been unshared to avoid leaking the pidfd to the new process.
466 *
467 * Return: On success, a cloexec pidfd is returned.
468 *         On error, a negative errno number will be returned.
469 */
470static int pidfd_create(struct pid *pid)
471{
472	int fd;
473
474	fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
475			      O_RDWR | O_CLOEXEC);
476	if (fd < 0)
477		put_pid(pid);
478
479	return fd;
480}
481
482/**
483 * pidfd_open() - Open new pid file descriptor.
484 *
485 * @pid:   pid for which to retrieve a pidfd
486 * @flags: flags to pass
487 *
488 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
489 * the process identified by @pid. Currently, the process identified by
490 * @pid must be a thread-group leader. This restriction currently exists
491 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
492 * be used with CLONE_THREAD) and pidfd polling (only supports thread group
493 * leaders).
494 *
495 * Return: On success, a cloexec pidfd is returned.
496 *         On error, a negative errno number will be returned.
497 */
498SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
499{
500	int fd, ret;
501	struct pid *p;
502
503	if (flags)
504		return -EINVAL;
505
506	if (pid <= 0)
507		return -EINVAL;
508
509	p = find_get_pid(pid);
510	if (!p)
511		return -ESRCH;
512
513	ret = 0;
514	rcu_read_lock();
515	if (!pid_task(p, PIDTYPE_TGID))
516		ret = -EINVAL;
517	rcu_read_unlock();
518
519	fd = ret ?: pidfd_create(p);
520	put_pid(p);
521	return fd;
522}
523
524void __init pid_idr_init(void)
525{
526	/* Verify no one has done anything silly: */
527	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
528
529	/* bump default and minimum pid_max based on number of cpus */
530	pid_max = min(pid_max_max, max_t(int, pid_max,
531				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
532	pid_max_min = max_t(int, pid_max_min,
533				PIDS_PER_CPU_MIN * num_possible_cpus());
534	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
535
536	idr_init(&init_pid_ns.idr);
537
538	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
539			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
540}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Generic pidhash and scalable, time-bounded PID allocator
  4 *
  5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
  6 * (C) 2004 Nadia Yvette Chambers, Oracle
  7 * (C) 2002-2004 Ingo Molnar, Red Hat
  8 *
  9 * pid-structures are backing objects for tasks sharing a given ID to chain
 10 * against. There is very little to them aside from hashing them and
 11 * parking tasks using given ID's on a list.
 12 *
 13 * The hash is always changed with the tasklist_lock write-acquired,
 14 * and the hash is only accessed with the tasklist_lock at least
 15 * read-acquired, so there's no additional SMP locking needed here.
 16 *
 17 * We have a list of bitmap pages, which bitmaps represent the PID space.
 18 * Allocating and freeing PIDs is completely lockless. The worst-case
 19 * allocation scenario when all but one out of 1 million PIDs possible are
 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 22 *
 23 * Pid namespaces:
 24 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 25 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 26 *     Many thanks to Oleg Nesterov for comments and help
 27 *
 28 */
 29
 30#include <linux/mm.h>
 31#include <linux/export.h>
 32#include <linux/slab.h>
 33#include <linux/init.h>
 34#include <linux/rculist.h>
 35#include <linux/memblock.h>
 36#include <linux/pid_namespace.h>
 37#include <linux/init_task.h>
 38#include <linux/syscalls.h>
 39#include <linux/proc_ns.h>
 40#include <linux/refcount.h>
 41#include <linux/anon_inodes.h>
 42#include <linux/sched/signal.h>
 43#include <linux/sched/task.h>
 44#include <linux/idr.h>
 45#include <net/sock.h>
 46
 47struct pid init_struct_pid = {
 48	.count		= REFCOUNT_INIT(1),
 49	.tasks		= {
 50		{ .first = NULL },
 51		{ .first = NULL },
 52		{ .first = NULL },
 53	},
 54	.level		= 0,
 55	.numbers	= { {
 56		.nr		= 0,
 57		.ns		= &init_pid_ns,
 58	}, }
 59};
 60
 61int pid_max = PID_MAX_DEFAULT;
 62
 63#define RESERVED_PIDS		300
 64
 65int pid_max_min = RESERVED_PIDS + 1;
 66int pid_max_max = PID_MAX_LIMIT;
 67
 68/*
 69 * PID-map pages start out as NULL, they get allocated upon
 70 * first use and are never deallocated. This way a low pid_max
 71 * value does not cause lots of bitmaps to be allocated, but
 72 * the scheme scales to up to 4 million PIDs, runtime.
 73 */
 74struct pid_namespace init_pid_ns = {
 75	.kref = KREF_INIT(2),
 76	.idr = IDR_INIT(init_pid_ns.idr),
 77	.pid_allocated = PIDNS_ADDING,
 78	.level = 0,
 79	.child_reaper = &init_task,
 80	.user_ns = &init_user_ns,
 81	.ns.inum = PROC_PID_INIT_INO,
 82#ifdef CONFIG_PID_NS
 83	.ns.ops = &pidns_operations,
 84#endif
 85};
 86EXPORT_SYMBOL_GPL(init_pid_ns);
 87
 88/*
 89 * Note: disable interrupts while the pidmap_lock is held as an
 90 * interrupt might come in and do read_lock(&tasklist_lock).
 91 *
 92 * If we don't disable interrupts there is a nasty deadlock between
 93 * detach_pid()->free_pid() and another cpu that does
 94 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 95 * read_lock(&tasklist_lock);
 96 *
 97 * After we clean up the tasklist_lock and know there are no
 98 * irq handlers that take it we can leave the interrupts enabled.
 99 * For now it is easier to be safe than to prove it can't happen.
100 */
101
102static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
103
104void put_pid(struct pid *pid)
105{
106	struct pid_namespace *ns;
107
108	if (!pid)
109		return;
110
111	ns = pid->numbers[pid->level].ns;
112	if (refcount_dec_and_test(&pid->count)) {
113		kmem_cache_free(ns->pid_cachep, pid);
114		put_pid_ns(ns);
115	}
116}
117EXPORT_SYMBOL_GPL(put_pid);
118
119static void delayed_put_pid(struct rcu_head *rhp)
120{
121	struct pid *pid = container_of(rhp, struct pid, rcu);
122	put_pid(pid);
123}
124
125void free_pid(struct pid *pid)
126{
127	/* We can be called with write_lock_irq(&tasklist_lock) held */
128	int i;
129	unsigned long flags;
130
131	spin_lock_irqsave(&pidmap_lock, flags);
132	for (i = 0; i <= pid->level; i++) {
133		struct upid *upid = pid->numbers + i;
134		struct pid_namespace *ns = upid->ns;
135		switch (--ns->pid_allocated) {
136		case 2:
137		case 1:
138			/* When all that is left in the pid namespace
139			 * is the reaper wake up the reaper.  The reaper
140			 * may be sleeping in zap_pid_ns_processes().
141			 */
142			wake_up_process(ns->child_reaper);
143			break;
144		case PIDNS_ADDING:
145			/* Handle a fork failure of the first process */
146			WARN_ON(ns->child_reaper);
147			ns->pid_allocated = 0;
 
 
 
148			break;
149		}
150
151		idr_remove(&ns->idr, upid->nr);
152	}
153	spin_unlock_irqrestore(&pidmap_lock, flags);
154
155	call_rcu(&pid->rcu, delayed_put_pid);
156}
157
158struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
159		      size_t set_tid_size)
160{
161	struct pid *pid;
162	enum pid_type type;
163	int i, nr;
164	struct pid_namespace *tmp;
165	struct upid *upid;
166	int retval = -ENOMEM;
167
168	/*
169	 * set_tid_size contains the size of the set_tid array. Starting at
170	 * the most nested currently active PID namespace it tells alloc_pid()
171	 * which PID to set for a process in that most nested PID namespace
172	 * up to set_tid_size PID namespaces. It does not have to set the PID
173	 * for a process in all nested PID namespaces but set_tid_size must
174	 * never be greater than the current ns->level + 1.
175	 */
176	if (set_tid_size > ns->level + 1)
177		return ERR_PTR(-EINVAL);
178
179	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
180	if (!pid)
181		return ERR_PTR(retval);
182
183	tmp = ns;
184	pid->level = ns->level;
185
186	for (i = ns->level; i >= 0; i--) {
187		int tid = 0;
188
189		if (set_tid_size) {
190			tid = set_tid[ns->level - i];
191
192			retval = -EINVAL;
193			if (tid < 1 || tid >= pid_max)
194				goto out_free;
195			/*
196			 * Also fail if a PID != 1 is requested and
197			 * no PID 1 exists.
198			 */
199			if (tid != 1 && !tmp->child_reaper)
200				goto out_free;
201			retval = -EPERM;
202			if (!checkpoint_restore_ns_capable(tmp->user_ns))
203				goto out_free;
204			set_tid_size--;
205		}
206
207		idr_preload(GFP_KERNEL);
208		spin_lock_irq(&pidmap_lock);
209
210		if (tid) {
211			nr = idr_alloc(&tmp->idr, NULL, tid,
212				       tid + 1, GFP_ATOMIC);
213			/*
214			 * If ENOSPC is returned it means that the PID is
215			 * alreay in use. Return EEXIST in that case.
216			 */
217			if (nr == -ENOSPC)
218				nr = -EEXIST;
219		} else {
220			int pid_min = 1;
221			/*
222			 * init really needs pid 1, but after reaching the
223			 * maximum wrap back to RESERVED_PIDS
224			 */
225			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
226				pid_min = RESERVED_PIDS;
227
228			/*
229			 * Store a null pointer so find_pid_ns does not find
230			 * a partially initialized PID (see below).
231			 */
232			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
233					      pid_max, GFP_ATOMIC);
234		}
235		spin_unlock_irq(&pidmap_lock);
236		idr_preload_end();
237
238		if (nr < 0) {
239			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
240			goto out_free;
241		}
242
243		pid->numbers[i].nr = nr;
244		pid->numbers[i].ns = tmp;
245		tmp = tmp->parent;
246	}
247
248	/*
249	 * ENOMEM is not the most obvious choice especially for the case
250	 * where the child subreaper has already exited and the pid
251	 * namespace denies the creation of any new processes. But ENOMEM
252	 * is what we have exposed to userspace for a long time and it is
253	 * documented behavior for pid namespaces. So we can't easily
254	 * change it even if there were an error code better suited.
255	 */
256	retval = -ENOMEM;
257
258	get_pid_ns(ns);
259	refcount_set(&pid->count, 1);
260	spin_lock_init(&pid->lock);
261	for (type = 0; type < PIDTYPE_MAX; ++type)
262		INIT_HLIST_HEAD(&pid->tasks[type]);
263
264	init_waitqueue_head(&pid->wait_pidfd);
265	INIT_HLIST_HEAD(&pid->inodes);
266
267	upid = pid->numbers + ns->level;
268	spin_lock_irq(&pidmap_lock);
269	if (!(ns->pid_allocated & PIDNS_ADDING))
270		goto out_unlock;
271	for ( ; upid >= pid->numbers; --upid) {
272		/* Make the PID visible to find_pid_ns. */
273		idr_replace(&upid->ns->idr, pid, upid->nr);
274		upid->ns->pid_allocated++;
275	}
276	spin_unlock_irq(&pidmap_lock);
277
278	return pid;
279
280out_unlock:
281	spin_unlock_irq(&pidmap_lock);
282	put_pid_ns(ns);
283
284out_free:
285	spin_lock_irq(&pidmap_lock);
286	while (++i <= ns->level) {
287		upid = pid->numbers + i;
288		idr_remove(&upid->ns->idr, upid->nr);
289	}
290
291	/* On failure to allocate the first pid, reset the state */
292	if (ns->pid_allocated == PIDNS_ADDING)
293		idr_set_cursor(&ns->idr, 0);
294
295	spin_unlock_irq(&pidmap_lock);
296
297	kmem_cache_free(ns->pid_cachep, pid);
298	return ERR_PTR(retval);
299}
300
301void disable_pid_allocation(struct pid_namespace *ns)
302{
303	spin_lock_irq(&pidmap_lock);
304	ns->pid_allocated &= ~PIDNS_ADDING;
305	spin_unlock_irq(&pidmap_lock);
306}
307
308struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
309{
310	return idr_find(&ns->idr, nr);
311}
312EXPORT_SYMBOL_GPL(find_pid_ns);
313
314struct pid *find_vpid(int nr)
315{
316	return find_pid_ns(nr, task_active_pid_ns(current));
317}
318EXPORT_SYMBOL_GPL(find_vpid);
319
320static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
321{
322	return (type == PIDTYPE_PID) ?
323		&task->thread_pid :
324		&task->signal->pids[type];
325}
326
327/*
328 * attach_pid() must be called with the tasklist_lock write-held.
329 */
330void attach_pid(struct task_struct *task, enum pid_type type)
331{
332	struct pid *pid = *task_pid_ptr(task, type);
333	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
334}
335
336static void __change_pid(struct task_struct *task, enum pid_type type,
337			struct pid *new)
338{
339	struct pid **pid_ptr = task_pid_ptr(task, type);
340	struct pid *pid;
341	int tmp;
342
343	pid = *pid_ptr;
344
345	hlist_del_rcu(&task->pid_links[type]);
346	*pid_ptr = new;
347
348	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
349		if (pid_has_task(pid, tmp))
350			return;
351
352	free_pid(pid);
353}
354
355void detach_pid(struct task_struct *task, enum pid_type type)
356{
357	__change_pid(task, type, NULL);
358}
359
360void change_pid(struct task_struct *task, enum pid_type type,
361		struct pid *pid)
362{
363	__change_pid(task, type, pid);
364	attach_pid(task, type);
365}
366
367void exchange_tids(struct task_struct *left, struct task_struct *right)
368{
369	struct pid *pid1 = left->thread_pid;
370	struct pid *pid2 = right->thread_pid;
371	struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
372	struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
373
374	/* Swap the single entry tid lists */
375	hlists_swap_heads_rcu(head1, head2);
376
377	/* Swap the per task_struct pid */
378	rcu_assign_pointer(left->thread_pid, pid2);
379	rcu_assign_pointer(right->thread_pid, pid1);
380
381	/* Swap the cached value */
382	WRITE_ONCE(left->pid, pid_nr(pid2));
383	WRITE_ONCE(right->pid, pid_nr(pid1));
384}
385
386/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
387void transfer_pid(struct task_struct *old, struct task_struct *new,
388			   enum pid_type type)
389{
390	if (type == PIDTYPE_PID)
391		new->thread_pid = old->thread_pid;
392	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
393}
394
395struct task_struct *pid_task(struct pid *pid, enum pid_type type)
396{
397	struct task_struct *result = NULL;
398	if (pid) {
399		struct hlist_node *first;
400		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
401					      lockdep_tasklist_lock_is_held());
402		if (first)
403			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
404	}
405	return result;
406}
407EXPORT_SYMBOL(pid_task);
408
409/*
410 * Must be called under rcu_read_lock().
411 */
412struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
413{
414	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
415			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
416	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
417}
418
419struct task_struct *find_task_by_vpid(pid_t vnr)
420{
421	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
422}
423
424struct task_struct *find_get_task_by_vpid(pid_t nr)
425{
426	struct task_struct *task;
427
428	rcu_read_lock();
429	task = find_task_by_vpid(nr);
430	if (task)
431		get_task_struct(task);
432	rcu_read_unlock();
433
434	return task;
435}
436
437struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
438{
439	struct pid *pid;
440	rcu_read_lock();
441	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
442	rcu_read_unlock();
443	return pid;
444}
445EXPORT_SYMBOL_GPL(get_task_pid);
446
447struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
448{
449	struct task_struct *result;
450	rcu_read_lock();
451	result = pid_task(pid, type);
452	if (result)
453		get_task_struct(result);
454	rcu_read_unlock();
455	return result;
456}
457EXPORT_SYMBOL_GPL(get_pid_task);
458
459struct pid *find_get_pid(pid_t nr)
460{
461	struct pid *pid;
462
463	rcu_read_lock();
464	pid = get_pid(find_vpid(nr));
465	rcu_read_unlock();
466
467	return pid;
468}
469EXPORT_SYMBOL_GPL(find_get_pid);
470
471pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
472{
473	struct upid *upid;
474	pid_t nr = 0;
475
476	if (pid && ns->level <= pid->level) {
477		upid = &pid->numbers[ns->level];
478		if (upid->ns == ns)
479			nr = upid->nr;
480	}
481	return nr;
482}
483EXPORT_SYMBOL_GPL(pid_nr_ns);
484
485pid_t pid_vnr(struct pid *pid)
486{
487	return pid_nr_ns(pid, task_active_pid_ns(current));
488}
489EXPORT_SYMBOL_GPL(pid_vnr);
490
491pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
492			struct pid_namespace *ns)
493{
494	pid_t nr = 0;
495
496	rcu_read_lock();
497	if (!ns)
498		ns = task_active_pid_ns(current);
499	nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
 
500	rcu_read_unlock();
501
502	return nr;
503}
504EXPORT_SYMBOL(__task_pid_nr_ns);
505
506struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
507{
508	return ns_of_pid(task_pid(tsk));
509}
510EXPORT_SYMBOL_GPL(task_active_pid_ns);
511
512/*
513 * Used by proc to find the first pid that is greater than or equal to nr.
514 *
515 * If there is a pid at nr this function is exactly the same as find_pid_ns.
516 */
517struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
518{
519	return idr_get_next(&ns->idr, &nr);
520}
521
522/**
523 * pidfd_create() - Create a new pid file descriptor.
524 *
525 * @pid:  struct pid that the pidfd will reference
526 *
527 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
528 *
529 * Note, that this function can only be called after the fd table has
530 * been unshared to avoid leaking the pidfd to the new process.
531 *
532 * Return: On success, a cloexec pidfd is returned.
533 *         On error, a negative errno number will be returned.
534 */
535static int pidfd_create(struct pid *pid)
536{
537	int fd;
538
539	fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
540			      O_RDWR | O_CLOEXEC);
541	if (fd < 0)
542		put_pid(pid);
543
544	return fd;
545}
546
547/**
548 * pidfd_open() - Open new pid file descriptor.
549 *
550 * @pid:   pid for which to retrieve a pidfd
551 * @flags: flags to pass
552 *
553 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
554 * the process identified by @pid. Currently, the process identified by
555 * @pid must be a thread-group leader. This restriction currently exists
556 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
557 * be used with CLONE_THREAD) and pidfd polling (only supports thread group
558 * leaders).
559 *
560 * Return: On success, a cloexec pidfd is returned.
561 *         On error, a negative errno number will be returned.
562 */
563SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
564{
565	int fd;
566	struct pid *p;
567
568	if (flags)
569		return -EINVAL;
570
571	if (pid <= 0)
572		return -EINVAL;
573
574	p = find_get_pid(pid);
575	if (!p)
576		return -ESRCH;
577
578	if (pid_has_task(p, PIDTYPE_TGID))
579		fd = pidfd_create(p);
580	else
581		fd = -EINVAL;
 
582
 
583	put_pid(p);
584	return fd;
585}
586
587void __init pid_idr_init(void)
588{
589	/* Verify no one has done anything silly: */
590	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
591
592	/* bump default and minimum pid_max based on number of cpus */
593	pid_max = min(pid_max_max, max_t(int, pid_max,
594				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
595	pid_max_min = max_t(int, pid_max_min,
596				PIDS_PER_CPU_MIN * num_possible_cpus());
597	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
598
599	idr_init(&init_pid_ns.idr);
600
601	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
602			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
603}
604
605static struct file *__pidfd_fget(struct task_struct *task, int fd)
606{
607	struct file *file;
608	int ret;
609
610	ret = mutex_lock_killable(&task->signal->exec_update_mutex);
611	if (ret)
612		return ERR_PTR(ret);
613
614	if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
615		file = fget_task(task, fd);
616	else
617		file = ERR_PTR(-EPERM);
618
619	mutex_unlock(&task->signal->exec_update_mutex);
620
621	return file ?: ERR_PTR(-EBADF);
622}
623
624static int pidfd_getfd(struct pid *pid, int fd)
625{
626	struct task_struct *task;
627	struct file *file;
628	int ret;
629
630	task = get_pid_task(pid, PIDTYPE_PID);
631	if (!task)
632		return -ESRCH;
633
634	file = __pidfd_fget(task, fd);
635	put_task_struct(task);
636	if (IS_ERR(file))
637		return PTR_ERR(file);
638
639	ret = receive_fd(file, O_CLOEXEC);
640	fput(file);
641
642	return ret;
643}
644
645/**
646 * sys_pidfd_getfd() - Get a file descriptor from another process
647 *
648 * @pidfd:	the pidfd file descriptor of the process
649 * @fd:		the file descriptor number to get
650 * @flags:	flags on how to get the fd (reserved)
651 *
652 * This syscall gets a copy of a file descriptor from another process
653 * based on the pidfd, and file descriptor number. It requires that
654 * the calling process has the ability to ptrace the process represented
655 * by the pidfd. The process which is having its file descriptor copied
656 * is otherwise unaffected.
657 *
658 * Return: On success, a cloexec file descriptor is returned.
659 *         On error, a negative errno number will be returned.
660 */
661SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
662		unsigned int, flags)
663{
664	struct pid *pid;
665	struct fd f;
666	int ret;
667
668	/* flags is currently unused - make sure it's unset */
669	if (flags)
670		return -EINVAL;
671
672	f = fdget(pidfd);
673	if (!f.file)
674		return -EBADF;
675
676	pid = pidfd_pid(f.file);
677	if (IS_ERR(pid))
678		ret = PTR_ERR(pid);
679	else
680		ret = pidfd_getfd(pid, fd);
681
682	fdput(f);
683	return ret;
684}