Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Fast Userspace Mutexes (which I call "Futexes!").
   4 *  (C) Rusty Russell, IBM 2002
   5 *
   6 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   7 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   8 *
   9 *  Removed page pinning, fix privately mapped COW pages and other cleanups
  10 *  (C) Copyright 2003, 2004 Jamie Lokier
  11 *
  12 *  Robust futex support started by Ingo Molnar
  13 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  14 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  15 *
  16 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  17 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  18 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  19 *
  20 *  PRIVATE futexes by Eric Dumazet
  21 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  22 *
  23 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  24 *  Copyright (C) IBM Corporation, 2009
  25 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  26 *
  27 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  28 *  enough at me, Linus for the original (flawed) idea, Matthew
  29 *  Kirkwood for proof-of-concept implementation.
  30 *
  31 *  "The futexes are also cursed."
  32 *  "But they come in a choice of three flavours!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  33 */
  34#include <linux/compat.h>
  35#include <linux/slab.h>
  36#include <linux/poll.h>
  37#include <linux/fs.h>
  38#include <linux/file.h>
  39#include <linux/jhash.h>
  40#include <linux/init.h>
  41#include <linux/futex.h>
  42#include <linux/mount.h>
  43#include <linux/pagemap.h>
  44#include <linux/syscalls.h>
  45#include <linux/signal.h>
  46#include <linux/export.h>
  47#include <linux/magic.h>
  48#include <linux/pid.h>
  49#include <linux/nsproxy.h>
  50#include <linux/ptrace.h>
  51#include <linux/sched/rt.h>
  52#include <linux/sched/wake_q.h>
  53#include <linux/sched/mm.h>
  54#include <linux/hugetlb.h>
  55#include <linux/freezer.h>
  56#include <linux/memblock.h>
  57#include <linux/fault-inject.h>
  58#include <linux/refcount.h>
  59
  60#include <asm/futex.h>
  61
  62#include "locking/rtmutex_common.h"
  63
  64/*
  65 * READ this before attempting to hack on futexes!
  66 *
  67 * Basic futex operation and ordering guarantees
  68 * =============================================
  69 *
  70 * The waiter reads the futex value in user space and calls
  71 * futex_wait(). This function computes the hash bucket and acquires
  72 * the hash bucket lock. After that it reads the futex user space value
  73 * again and verifies that the data has not changed. If it has not changed
  74 * it enqueues itself into the hash bucket, releases the hash bucket lock
  75 * and schedules.
  76 *
  77 * The waker side modifies the user space value of the futex and calls
  78 * futex_wake(). This function computes the hash bucket and acquires the
  79 * hash bucket lock. Then it looks for waiters on that futex in the hash
  80 * bucket and wakes them.
  81 *
  82 * In futex wake up scenarios where no tasks are blocked on a futex, taking
  83 * the hb spinlock can be avoided and simply return. In order for this
  84 * optimization to work, ordering guarantees must exist so that the waiter
  85 * being added to the list is acknowledged when the list is concurrently being
  86 * checked by the waker, avoiding scenarios like the following:
  87 *
  88 * CPU 0                               CPU 1
  89 * val = *futex;
  90 * sys_futex(WAIT, futex, val);
  91 *   futex_wait(futex, val);
  92 *   uval = *futex;
  93 *                                     *futex = newval;
  94 *                                     sys_futex(WAKE, futex);
  95 *                                       futex_wake(futex);
  96 *                                       if (queue_empty())
  97 *                                         return;
  98 *   if (uval == val)
  99 *      lock(hash_bucket(futex));
 100 *      queue();
 101 *     unlock(hash_bucket(futex));
 102 *     schedule();
 103 *
 104 * This would cause the waiter on CPU 0 to wait forever because it
 105 * missed the transition of the user space value from val to newval
 106 * and the waker did not find the waiter in the hash bucket queue.
 107 *
 108 * The correct serialization ensures that a waiter either observes
 109 * the changed user space value before blocking or is woken by a
 110 * concurrent waker:
 111 *
 112 * CPU 0                                 CPU 1
 113 * val = *futex;
 114 * sys_futex(WAIT, futex, val);
 115 *   futex_wait(futex, val);
 116 *
 117 *   waiters++; (a)
 118 *   smp_mb(); (A) <-- paired with -.
 119 *                                  |
 120 *   lock(hash_bucket(futex));      |
 121 *                                  |
 122 *   uval = *futex;                 |
 123 *                                  |        *futex = newval;
 124 *                                  |        sys_futex(WAKE, futex);
 125 *                                  |          futex_wake(futex);
 126 *                                  |
 127 *                                  `--------> smp_mb(); (B)
 128 *   if (uval == val)
 129 *     queue();
 130 *     unlock(hash_bucket(futex));
 131 *     schedule();                         if (waiters)
 132 *                                           lock(hash_bucket(futex));
 133 *   else                                    wake_waiters(futex);
 134 *     waiters--; (b)                        unlock(hash_bucket(futex));
 135 *
 136 * Where (A) orders the waiters increment and the futex value read through
 137 * atomic operations (see hb_waiters_inc) and where (B) orders the write
 138 * to futex and the waiters read -- this is done by the barriers for both
 139 * shared and private futexes in get_futex_key_refs().
 140 *
 141 * This yields the following case (where X:=waiters, Y:=futex):
 142 *
 143 *	X = Y = 0
 144 *
 145 *	w[X]=1		w[Y]=1
 146 *	MB		MB
 147 *	r[Y]=y		r[X]=x
 148 *
 149 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 150 * the guarantee that we cannot both miss the futex variable change and the
 151 * enqueue.
 152 *
 153 * Note that a new waiter is accounted for in (a) even when it is possible that
 154 * the wait call can return error, in which case we backtrack from it in (b).
 155 * Refer to the comment in queue_lock().
 156 *
 157 * Similarly, in order to account for waiters being requeued on another
 158 * address we always increment the waiters for the destination bucket before
 159 * acquiring the lock. It then decrements them again  after releasing it -
 160 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 161 * will do the additional required waiter count housekeeping. This is done for
 162 * double_lock_hb() and double_unlock_hb(), respectively.
 163 */
 164
 165#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
 166#define futex_cmpxchg_enabled 1
 167#else
 168static int  __read_mostly futex_cmpxchg_enabled;
 169#endif
 170
 171/*
 172 * Futex flags used to encode options to functions and preserve them across
 173 * restarts.
 174 */
 175#ifdef CONFIG_MMU
 176# define FLAGS_SHARED		0x01
 177#else
 178/*
 179 * NOMMU does not have per process address space. Let the compiler optimize
 180 * code away.
 181 */
 182# define FLAGS_SHARED		0x00
 183#endif
 184#define FLAGS_CLOCKRT		0x02
 185#define FLAGS_HAS_TIMEOUT	0x04
 186
 187/*
 188 * Priority Inheritance state:
 189 */
 190struct futex_pi_state {
 191	/*
 192	 * list of 'owned' pi_state instances - these have to be
 193	 * cleaned up in do_exit() if the task exits prematurely:
 194	 */
 195	struct list_head list;
 196
 197	/*
 198	 * The PI object:
 199	 */
 200	struct rt_mutex pi_mutex;
 201
 202	struct task_struct *owner;
 203	refcount_t refcount;
 204
 205	union futex_key key;
 206} __randomize_layout;
 207
 208/**
 209 * struct futex_q - The hashed futex queue entry, one per waiting task
 210 * @list:		priority-sorted list of tasks waiting on this futex
 211 * @task:		the task waiting on the futex
 212 * @lock_ptr:		the hash bucket lock
 213 * @key:		the key the futex is hashed on
 214 * @pi_state:		optional priority inheritance state
 215 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 216 * @requeue_pi_key:	the requeue_pi target futex key
 217 * @bitset:		bitset for the optional bitmasked wakeup
 218 *
 219 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
 220 * we can wake only the relevant ones (hashed queues may be shared).
 221 *
 222 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 223 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 224 * The order of wakeup is always to make the first condition true, then
 225 * the second.
 226 *
 227 * PI futexes are typically woken before they are removed from the hash list via
 228 * the rt_mutex code. See unqueue_me_pi().
 229 */
 230struct futex_q {
 231	struct plist_node list;
 232
 233	struct task_struct *task;
 234	spinlock_t *lock_ptr;
 235	union futex_key key;
 236	struct futex_pi_state *pi_state;
 237	struct rt_mutex_waiter *rt_waiter;
 238	union futex_key *requeue_pi_key;
 239	u32 bitset;
 240} __randomize_layout;
 241
 242static const struct futex_q futex_q_init = {
 243	/* list gets initialized in queue_me()*/
 244	.key = FUTEX_KEY_INIT,
 245	.bitset = FUTEX_BITSET_MATCH_ANY
 246};
 247
 248/*
 249 * Hash buckets are shared by all the futex_keys that hash to the same
 250 * location.  Each key may have multiple futex_q structures, one for each task
 251 * waiting on a futex.
 252 */
 253struct futex_hash_bucket {
 254	atomic_t waiters;
 255	spinlock_t lock;
 256	struct plist_head chain;
 257} ____cacheline_aligned_in_smp;
 258
 259/*
 260 * The base of the bucket array and its size are always used together
 261 * (after initialization only in hash_futex()), so ensure that they
 262 * reside in the same cacheline.
 263 */
 264static struct {
 265	struct futex_hash_bucket *queues;
 266	unsigned long            hashsize;
 267} __futex_data __read_mostly __aligned(2*sizeof(long));
 268#define futex_queues   (__futex_data.queues)
 269#define futex_hashsize (__futex_data.hashsize)
 270
 271
 272/*
 273 * Fault injections for futexes.
 274 */
 275#ifdef CONFIG_FAIL_FUTEX
 276
 277static struct {
 278	struct fault_attr attr;
 279
 280	bool ignore_private;
 281} fail_futex = {
 282	.attr = FAULT_ATTR_INITIALIZER,
 283	.ignore_private = false,
 284};
 285
 286static int __init setup_fail_futex(char *str)
 287{
 288	return setup_fault_attr(&fail_futex.attr, str);
 289}
 290__setup("fail_futex=", setup_fail_futex);
 291
 292static bool should_fail_futex(bool fshared)
 293{
 294	if (fail_futex.ignore_private && !fshared)
 295		return false;
 296
 297	return should_fail(&fail_futex.attr, 1);
 298}
 299
 300#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 301
 302static int __init fail_futex_debugfs(void)
 303{
 304	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
 305	struct dentry *dir;
 306
 307	dir = fault_create_debugfs_attr("fail_futex", NULL,
 308					&fail_futex.attr);
 309	if (IS_ERR(dir))
 310		return PTR_ERR(dir);
 311
 312	debugfs_create_bool("ignore-private", mode, dir,
 313			    &fail_futex.ignore_private);
 
 
 
 
 314	return 0;
 315}
 316
 317late_initcall(fail_futex_debugfs);
 318
 319#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 320
 321#else
 322static inline bool should_fail_futex(bool fshared)
 323{
 324	return false;
 325}
 326#endif /* CONFIG_FAIL_FUTEX */
 327
 328static inline void futex_get_mm(union futex_key *key)
 329{
 330	mmgrab(key->private.mm);
 331	/*
 332	 * Ensure futex_get_mm() implies a full barrier such that
 333	 * get_futex_key() implies a full barrier. This is relied upon
 334	 * as smp_mb(); (B), see the ordering comment above.
 335	 */
 336	smp_mb__after_atomic();
 337}
 338
 339/*
 340 * Reflects a new waiter being added to the waitqueue.
 341 */
 342static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
 343{
 344#ifdef CONFIG_SMP
 345	atomic_inc(&hb->waiters);
 346	/*
 347	 * Full barrier (A), see the ordering comment above.
 348	 */
 349	smp_mb__after_atomic();
 350#endif
 351}
 352
 353/*
 354 * Reflects a waiter being removed from the waitqueue by wakeup
 355 * paths.
 356 */
 357static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
 358{
 359#ifdef CONFIG_SMP
 360	atomic_dec(&hb->waiters);
 361#endif
 362}
 363
 364static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
 365{
 366#ifdef CONFIG_SMP
 367	return atomic_read(&hb->waiters);
 368#else
 369	return 1;
 370#endif
 371}
 372
 373/**
 374 * hash_futex - Return the hash bucket in the global hash
 375 * @key:	Pointer to the futex key for which the hash is calculated
 376 *
 377 * We hash on the keys returned from get_futex_key (see below) and return the
 378 * corresponding hash bucket in the global hash.
 379 */
 380static struct futex_hash_bucket *hash_futex(union futex_key *key)
 381{
 382	u32 hash = jhash2((u32*)&key->both.word,
 383			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 384			  key->both.offset);
 385	return &futex_queues[hash & (futex_hashsize - 1)];
 386}
 387
 388
 389/**
 390 * match_futex - Check whether two futex keys are equal
 391 * @key1:	Pointer to key1
 392 * @key2:	Pointer to key2
 393 *
 394 * Return 1 if two futex_keys are equal, 0 otherwise.
 395 */
 396static inline int match_futex(union futex_key *key1, union futex_key *key2)
 397{
 398	return (key1 && key2
 399		&& key1->both.word == key2->both.word
 400		&& key1->both.ptr == key2->both.ptr
 401		&& key1->both.offset == key2->both.offset);
 402}
 403
 404/*
 405 * Take a reference to the resource addressed by a key.
 406 * Can be called while holding spinlocks.
 407 *
 408 */
 409static void get_futex_key_refs(union futex_key *key)
 410{
 411	if (!key->both.ptr)
 412		return;
 413
 414	/*
 415	 * On MMU less systems futexes are always "private" as there is no per
 416	 * process address space. We need the smp wmb nevertheless - yes,
 417	 * arch/blackfin has MMU less SMP ...
 418	 */
 419	if (!IS_ENABLED(CONFIG_MMU)) {
 420		smp_mb(); /* explicit smp_mb(); (B) */
 421		return;
 422	}
 423
 424	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 425	case FUT_OFF_INODE:
 426		ihold(key->shared.inode); /* implies smp_mb(); (B) */
 427		break;
 428	case FUT_OFF_MMSHARED:
 429		futex_get_mm(key); /* implies smp_mb(); (B) */
 430		break;
 431	default:
 432		/*
 433		 * Private futexes do not hold reference on an inode or
 434		 * mm, therefore the only purpose of calling get_futex_key_refs
 435		 * is because we need the barrier for the lockless waiter check.
 436		 */
 437		smp_mb(); /* explicit smp_mb(); (B) */
 438	}
 439}
 440
 441/*
 442 * Drop a reference to the resource addressed by a key.
 443 * The hash bucket spinlock must not be held. This is
 444 * a no-op for private futexes, see comment in the get
 445 * counterpart.
 446 */
 447static void drop_futex_key_refs(union futex_key *key)
 448{
 449	if (!key->both.ptr) {
 450		/* If we're here then we tried to put a key we failed to get */
 451		WARN_ON_ONCE(1);
 452		return;
 453	}
 454
 455	if (!IS_ENABLED(CONFIG_MMU))
 456		return;
 457
 458	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 459	case FUT_OFF_INODE:
 460		iput(key->shared.inode);
 461		break;
 462	case FUT_OFF_MMSHARED:
 463		mmdrop(key->private.mm);
 464		break;
 465	}
 466}
 467
 468enum futex_access {
 469	FUTEX_READ,
 470	FUTEX_WRITE
 471};
 472
 473/**
 474 * futex_setup_timer - set up the sleeping hrtimer.
 475 * @time:	ptr to the given timeout value
 476 * @timeout:	the hrtimer_sleeper structure to be set up
 477 * @flags:	futex flags
 478 * @range_ns:	optional range in ns
 479 *
 480 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
 481 *	   value given
 482 */
 483static inline struct hrtimer_sleeper *
 484futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
 485		  int flags, u64 range_ns)
 486{
 487	if (!time)
 488		return NULL;
 489
 490	hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
 491				      CLOCK_REALTIME : CLOCK_MONOTONIC,
 492				      HRTIMER_MODE_ABS);
 493	/*
 494	 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
 495	 * effectively the same as calling hrtimer_set_expires().
 496	 */
 497	hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
 498
 499	return timeout;
 500}
 501
 502/**
 503 * get_futex_key() - Get parameters which are the keys for a futex
 504 * @uaddr:	virtual address of the futex
 505 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 506 * @key:	address where result is stored.
 507 * @rw:		mapping needs to be read/write (values: FUTEX_READ,
 508 *              FUTEX_WRITE)
 509 *
 510 * Return: a negative error code or 0
 511 *
 512 * The key words are stored in @key on success.
 513 *
 514 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
 515 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 516 * We can usually work out the index without swapping in the page.
 517 *
 518 * lock_page() might sleep, the caller should not hold a spinlock.
 519 */
 520static int
 521get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
 522{
 523	unsigned long address = (unsigned long)uaddr;
 524	struct mm_struct *mm = current->mm;
 525	struct page *page, *tail;
 526	struct address_space *mapping;
 527	int err, ro = 0;
 528
 529	/*
 530	 * The futex address must be "naturally" aligned.
 531	 */
 532	key->both.offset = address % PAGE_SIZE;
 533	if (unlikely((address % sizeof(u32)) != 0))
 534		return -EINVAL;
 535	address -= key->both.offset;
 536
 537	if (unlikely(!access_ok(uaddr, sizeof(u32))))
 538		return -EFAULT;
 539
 540	if (unlikely(should_fail_futex(fshared)))
 541		return -EFAULT;
 542
 543	/*
 544	 * PROCESS_PRIVATE futexes are fast.
 545	 * As the mm cannot disappear under us and the 'key' only needs
 546	 * virtual address, we dont even have to find the underlying vma.
 547	 * Note : We do have to check 'uaddr' is a valid user address,
 548	 *        but access_ok() should be faster than find_vma()
 549	 */
 550	if (!fshared) {
 551		key->private.mm = mm;
 552		key->private.address = address;
 553		get_futex_key_refs(key);  /* implies smp_mb(); (B) */
 554		return 0;
 555	}
 556
 557again:
 558	/* Ignore any VERIFY_READ mapping (futex common case) */
 559	if (unlikely(should_fail_futex(fshared)))
 560		return -EFAULT;
 561
 562	err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
 563	/*
 564	 * If write access is not required (eg. FUTEX_WAIT), try
 565	 * and get read-only access.
 566	 */
 567	if (err == -EFAULT && rw == FUTEX_READ) {
 568		err = get_user_pages_fast(address, 1, 0, &page);
 569		ro = 1;
 570	}
 571	if (err < 0)
 572		return err;
 573	else
 574		err = 0;
 575
 576	/*
 577	 * The treatment of mapping from this point on is critical. The page
 578	 * lock protects many things but in this context the page lock
 579	 * stabilizes mapping, prevents inode freeing in the shared
 580	 * file-backed region case and guards against movement to swap cache.
 581	 *
 582	 * Strictly speaking the page lock is not needed in all cases being
 583	 * considered here and page lock forces unnecessarily serialization
 584	 * From this point on, mapping will be re-verified if necessary and
 585	 * page lock will be acquired only if it is unavoidable
 586	 *
 587	 * Mapping checks require the head page for any compound page so the
 588	 * head page and mapping is looked up now. For anonymous pages, it
 589	 * does not matter if the page splits in the future as the key is
 590	 * based on the address. For filesystem-backed pages, the tail is
 591	 * required as the index of the page determines the key. For
 592	 * base pages, there is no tail page and tail == page.
 593	 */
 594	tail = page;
 595	page = compound_head(page);
 596	mapping = READ_ONCE(page->mapping);
 597
 598	/*
 599	 * If page->mapping is NULL, then it cannot be a PageAnon
 600	 * page; but it might be the ZERO_PAGE or in the gate area or
 601	 * in a special mapping (all cases which we are happy to fail);
 602	 * or it may have been a good file page when get_user_pages_fast
 603	 * found it, but truncated or holepunched or subjected to
 604	 * invalidate_complete_page2 before we got the page lock (also
 605	 * cases which we are happy to fail).  And we hold a reference,
 606	 * so refcount care in invalidate_complete_page's remove_mapping
 607	 * prevents drop_caches from setting mapping to NULL beneath us.
 608	 *
 609	 * The case we do have to guard against is when memory pressure made
 610	 * shmem_writepage move it from filecache to swapcache beneath us:
 611	 * an unlikely race, but we do need to retry for page->mapping.
 612	 */
 613	if (unlikely(!mapping)) {
 614		int shmem_swizzled;
 615
 616		/*
 617		 * Page lock is required to identify which special case above
 618		 * applies. If this is really a shmem page then the page lock
 619		 * will prevent unexpected transitions.
 620		 */
 621		lock_page(page);
 622		shmem_swizzled = PageSwapCache(page) || page->mapping;
 623		unlock_page(page);
 624		put_page(page);
 625
 626		if (shmem_swizzled)
 627			goto again;
 628
 629		return -EFAULT;
 630	}
 631
 632	/*
 633	 * Private mappings are handled in a simple way.
 634	 *
 635	 * If the futex key is stored on an anonymous page, then the associated
 636	 * object is the mm which is implicitly pinned by the calling process.
 637	 *
 638	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 639	 * it's a read-only handle, it's expected that futexes attach to
 640	 * the object not the particular process.
 641	 */
 642	if (PageAnon(page)) {
 643		/*
 644		 * A RO anonymous page will never change and thus doesn't make
 645		 * sense for futex operations.
 646		 */
 647		if (unlikely(should_fail_futex(fshared)) || ro) {
 648			err = -EFAULT;
 649			goto out;
 650		}
 651
 652		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 653		key->private.mm = mm;
 654		key->private.address = address;
 655
 656		get_futex_key_refs(key); /* implies smp_mb(); (B) */
 657
 658	} else {
 659		struct inode *inode;
 660
 661		/*
 662		 * The associated futex object in this case is the inode and
 663		 * the page->mapping must be traversed. Ordinarily this should
 664		 * be stabilised under page lock but it's not strictly
 665		 * necessary in this case as we just want to pin the inode, not
 666		 * update the radix tree or anything like that.
 667		 *
 668		 * The RCU read lock is taken as the inode is finally freed
 669		 * under RCU. If the mapping still matches expectations then the
 670		 * mapping->host can be safely accessed as being a valid inode.
 671		 */
 672		rcu_read_lock();
 673
 674		if (READ_ONCE(page->mapping) != mapping) {
 675			rcu_read_unlock();
 676			put_page(page);
 677
 678			goto again;
 679		}
 680
 681		inode = READ_ONCE(mapping->host);
 682		if (!inode) {
 683			rcu_read_unlock();
 684			put_page(page);
 685
 686			goto again;
 687		}
 688
 689		/*
 690		 * Take a reference unless it is about to be freed. Previously
 691		 * this reference was taken by ihold under the page lock
 692		 * pinning the inode in place so i_lock was unnecessary. The
 693		 * only way for this check to fail is if the inode was
 694		 * truncated in parallel which is almost certainly an
 695		 * application bug. In such a case, just retry.
 696		 *
 697		 * We are not calling into get_futex_key_refs() in file-backed
 698		 * cases, therefore a successful atomic_inc return below will
 699		 * guarantee that get_futex_key() will still imply smp_mb(); (B).
 700		 */
 701		if (!atomic_inc_not_zero(&inode->i_count)) {
 702			rcu_read_unlock();
 703			put_page(page);
 704
 705			goto again;
 706		}
 707
 708		/* Should be impossible but lets be paranoid for now */
 709		if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
 710			err = -EFAULT;
 711			rcu_read_unlock();
 712			iput(inode);
 713
 714			goto out;
 715		}
 716
 717		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 718		key->shared.inode = inode;
 719		key->shared.pgoff = basepage_index(tail);
 720		rcu_read_unlock();
 721	}
 722
 723out:
 724	put_page(page);
 725	return err;
 726}
 727
 728static inline void put_futex_key(union futex_key *key)
 729{
 730	drop_futex_key_refs(key);
 731}
 732
 733/**
 734 * fault_in_user_writeable() - Fault in user address and verify RW access
 735 * @uaddr:	pointer to faulting user space address
 736 *
 737 * Slow path to fixup the fault we just took in the atomic write
 738 * access to @uaddr.
 739 *
 740 * We have no generic implementation of a non-destructive write to the
 741 * user address. We know that we faulted in the atomic pagefault
 742 * disabled section so we can as well avoid the #PF overhead by
 743 * calling get_user_pages() right away.
 744 */
 745static int fault_in_user_writeable(u32 __user *uaddr)
 746{
 747	struct mm_struct *mm = current->mm;
 748	int ret;
 749
 750	down_read(&mm->mmap_sem);
 751	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 752			       FAULT_FLAG_WRITE, NULL);
 753	up_read(&mm->mmap_sem);
 754
 755	return ret < 0 ? ret : 0;
 756}
 757
 758/**
 759 * futex_top_waiter() - Return the highest priority waiter on a futex
 760 * @hb:		the hash bucket the futex_q's reside in
 761 * @key:	the futex key (to distinguish it from other futex futex_q's)
 762 *
 763 * Must be called with the hb lock held.
 764 */
 765static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 766					union futex_key *key)
 767{
 768	struct futex_q *this;
 769
 770	plist_for_each_entry(this, &hb->chain, list) {
 771		if (match_futex(&this->key, key))
 772			return this;
 773	}
 774	return NULL;
 775}
 776
 777static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 778				      u32 uval, u32 newval)
 779{
 780	int ret;
 781
 782	pagefault_disable();
 783	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 784	pagefault_enable();
 785
 786	return ret;
 787}
 788
 789static int get_futex_value_locked(u32 *dest, u32 __user *from)
 790{
 791	int ret;
 792
 793	pagefault_disable();
 794	ret = __get_user(*dest, from);
 795	pagefault_enable();
 796
 797	return ret ? -EFAULT : 0;
 798}
 799
 800
 801/*
 802 * PI code:
 803 */
 804static int refill_pi_state_cache(void)
 805{
 806	struct futex_pi_state *pi_state;
 807
 808	if (likely(current->pi_state_cache))
 809		return 0;
 810
 811	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 812
 813	if (!pi_state)
 814		return -ENOMEM;
 815
 816	INIT_LIST_HEAD(&pi_state->list);
 817	/* pi_mutex gets initialized later */
 818	pi_state->owner = NULL;
 819	refcount_set(&pi_state->refcount, 1);
 820	pi_state->key = FUTEX_KEY_INIT;
 821
 822	current->pi_state_cache = pi_state;
 823
 824	return 0;
 825}
 826
 827static struct futex_pi_state *alloc_pi_state(void)
 828{
 829	struct futex_pi_state *pi_state = current->pi_state_cache;
 830
 831	WARN_ON(!pi_state);
 832	current->pi_state_cache = NULL;
 833
 834	return pi_state;
 835}
 836
 837static void get_pi_state(struct futex_pi_state *pi_state)
 838{
 839	WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
 840}
 841
 842/*
 843 * Drops a reference to the pi_state object and frees or caches it
 844 * when the last reference is gone.
 845 */
 846static void put_pi_state(struct futex_pi_state *pi_state)
 847{
 848	if (!pi_state)
 849		return;
 850
 851	if (!refcount_dec_and_test(&pi_state->refcount))
 852		return;
 853
 854	/*
 855	 * If pi_state->owner is NULL, the owner is most probably dying
 856	 * and has cleaned up the pi_state already
 857	 */
 858	if (pi_state->owner) {
 859		struct task_struct *owner;
 860
 861		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
 862		owner = pi_state->owner;
 863		if (owner) {
 864			raw_spin_lock(&owner->pi_lock);
 865			list_del_init(&pi_state->list);
 866			raw_spin_unlock(&owner->pi_lock);
 867		}
 868		rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
 869		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 870	}
 871
 872	if (current->pi_state_cache) {
 873		kfree(pi_state);
 874	} else {
 875		/*
 876		 * pi_state->list is already empty.
 877		 * clear pi_state->owner.
 878		 * refcount is at 0 - put it back to 1.
 879		 */
 880		pi_state->owner = NULL;
 881		refcount_set(&pi_state->refcount, 1);
 882		current->pi_state_cache = pi_state;
 883	}
 884}
 885
 886#ifdef CONFIG_FUTEX_PI
 887
 888/*
 889 * This task is holding PI mutexes at exit time => bad.
 890 * Kernel cleans up PI-state, but userspace is likely hosed.
 891 * (Robust-futex cleanup is separate and might save the day for userspace.)
 892 */
 893void exit_pi_state_list(struct task_struct *curr)
 894{
 895	struct list_head *next, *head = &curr->pi_state_list;
 896	struct futex_pi_state *pi_state;
 897	struct futex_hash_bucket *hb;
 898	union futex_key key = FUTEX_KEY_INIT;
 899
 900	if (!futex_cmpxchg_enabled)
 901		return;
 902	/*
 903	 * We are a ZOMBIE and nobody can enqueue itself on
 904	 * pi_state_list anymore, but we have to be careful
 905	 * versus waiters unqueueing themselves:
 906	 */
 907	raw_spin_lock_irq(&curr->pi_lock);
 908	while (!list_empty(head)) {
 909		next = head->next;
 910		pi_state = list_entry(next, struct futex_pi_state, list);
 911		key = pi_state->key;
 912		hb = hash_futex(&key);
 913
 914		/*
 915		 * We can race against put_pi_state() removing itself from the
 916		 * list (a waiter going away). put_pi_state() will first
 917		 * decrement the reference count and then modify the list, so
 918		 * its possible to see the list entry but fail this reference
 919		 * acquire.
 920		 *
 921		 * In that case; drop the locks to let put_pi_state() make
 922		 * progress and retry the loop.
 923		 */
 924		if (!refcount_inc_not_zero(&pi_state->refcount)) {
 925			raw_spin_unlock_irq(&curr->pi_lock);
 926			cpu_relax();
 927			raw_spin_lock_irq(&curr->pi_lock);
 928			continue;
 929		}
 930		raw_spin_unlock_irq(&curr->pi_lock);
 931
 932		spin_lock(&hb->lock);
 933		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
 934		raw_spin_lock(&curr->pi_lock);
 935		/*
 936		 * We dropped the pi-lock, so re-check whether this
 937		 * task still owns the PI-state:
 938		 */
 939		if (head->next != next) {
 940			/* retain curr->pi_lock for the loop invariant */
 941			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 942			spin_unlock(&hb->lock);
 943			put_pi_state(pi_state);
 944			continue;
 945		}
 946
 947		WARN_ON(pi_state->owner != curr);
 948		WARN_ON(list_empty(&pi_state->list));
 949		list_del_init(&pi_state->list);
 950		pi_state->owner = NULL;
 951
 952		raw_spin_unlock(&curr->pi_lock);
 953		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 954		spin_unlock(&hb->lock);
 955
 956		rt_mutex_futex_unlock(&pi_state->pi_mutex);
 957		put_pi_state(pi_state);
 958
 959		raw_spin_lock_irq(&curr->pi_lock);
 960	}
 961	raw_spin_unlock_irq(&curr->pi_lock);
 962}
 963
 964#endif
 965
 966/*
 967 * We need to check the following states:
 968 *
 969 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 970 *
 971 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 972 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 973 *
 974 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 975 *
 976 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 977 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 978 *
 979 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 980 *
 981 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 982 *
 983 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 984 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 985 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 986 *
 987 * [1]	Indicates that the kernel can acquire the futex atomically. We
 988 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 989 *
 990 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 991 *      thread is found then it indicates that the owner TID has died.
 992 *
 993 * [3]	Invalid. The waiter is queued on a non PI futex
 994 *
 995 * [4]	Valid state after exit_robust_list(), which sets the user space
 996 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 997 *
 998 * [5]	The user space value got manipulated between exit_robust_list()
 999 *	and exit_pi_state_list()
1000 *
1001 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
1002 *	the pi_state but cannot access the user space value.
1003 *
1004 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1005 *
1006 * [8]	Owner and user space value match
1007 *
1008 * [9]	There is no transient state which sets the user space TID to 0
1009 *	except exit_robust_list(), but this is indicated by the
1010 *	FUTEX_OWNER_DIED bit. See [4]
1011 *
1012 * [10] There is no transient state which leaves owner and user space
1013 *	TID out of sync.
1014 *
1015 *
1016 * Serialization and lifetime rules:
1017 *
1018 * hb->lock:
1019 *
1020 *	hb -> futex_q, relation
1021 *	futex_q -> pi_state, relation
1022 *
1023 *	(cannot be raw because hb can contain arbitrary amount
1024 *	 of futex_q's)
1025 *
1026 * pi_mutex->wait_lock:
1027 *
1028 *	{uval, pi_state}
1029 *
1030 *	(and pi_mutex 'obviously')
1031 *
1032 * p->pi_lock:
1033 *
1034 *	p->pi_state_list -> pi_state->list, relation
1035 *
1036 * pi_state->refcount:
1037 *
1038 *	pi_state lifetime
1039 *
1040 *
1041 * Lock order:
1042 *
1043 *   hb->lock
1044 *     pi_mutex->wait_lock
1045 *       p->pi_lock
1046 *
1047 */
1048
1049/*
1050 * Validate that the existing waiter has a pi_state and sanity check
1051 * the pi_state against the user space value. If correct, attach to
1052 * it.
1053 */
1054static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1055			      struct futex_pi_state *pi_state,
1056			      struct futex_pi_state **ps)
1057{
1058	pid_t pid = uval & FUTEX_TID_MASK;
1059	u32 uval2;
1060	int ret;
1061
1062	/*
1063	 * Userspace might have messed up non-PI and PI futexes [3]
1064	 */
1065	if (unlikely(!pi_state))
1066		return -EINVAL;
1067
1068	/*
1069	 * We get here with hb->lock held, and having found a
1070	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1071	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1072	 * which in turn means that futex_lock_pi() still has a reference on
1073	 * our pi_state.
1074	 *
1075	 * The waiter holding a reference on @pi_state also protects against
1076	 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1077	 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1078	 * free pi_state before we can take a reference ourselves.
1079	 */
1080	WARN_ON(!refcount_read(&pi_state->refcount));
1081
1082	/*
1083	 * Now that we have a pi_state, we can acquire wait_lock
1084	 * and do the state validation.
1085	 */
1086	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1087
1088	/*
1089	 * Since {uval, pi_state} is serialized by wait_lock, and our current
1090	 * uval was read without holding it, it can have changed. Verify it
1091	 * still is what we expect it to be, otherwise retry the entire
1092	 * operation.
1093	 */
1094	if (get_futex_value_locked(&uval2, uaddr))
1095		goto out_efault;
1096
1097	if (uval != uval2)
1098		goto out_eagain;
1099
1100	/*
1101	 * Handle the owner died case:
1102	 */
1103	if (uval & FUTEX_OWNER_DIED) {
1104		/*
1105		 * exit_pi_state_list sets owner to NULL and wakes the
1106		 * topmost waiter. The task which acquires the
1107		 * pi_state->rt_mutex will fixup owner.
1108		 */
1109		if (!pi_state->owner) {
1110			/*
1111			 * No pi state owner, but the user space TID
1112			 * is not 0. Inconsistent state. [5]
1113			 */
1114			if (pid)
1115				goto out_einval;
1116			/*
1117			 * Take a ref on the state and return success. [4]
1118			 */
1119			goto out_attach;
1120		}
1121
1122		/*
1123		 * If TID is 0, then either the dying owner has not
1124		 * yet executed exit_pi_state_list() or some waiter
1125		 * acquired the rtmutex in the pi state, but did not
1126		 * yet fixup the TID in user space.
1127		 *
1128		 * Take a ref on the state and return success. [6]
1129		 */
1130		if (!pid)
1131			goto out_attach;
1132	} else {
1133		/*
1134		 * If the owner died bit is not set, then the pi_state
1135		 * must have an owner. [7]
1136		 */
1137		if (!pi_state->owner)
1138			goto out_einval;
1139	}
1140
1141	/*
1142	 * Bail out if user space manipulated the futex value. If pi
1143	 * state exists then the owner TID must be the same as the
1144	 * user space TID. [9/10]
1145	 */
1146	if (pid != task_pid_vnr(pi_state->owner))
1147		goto out_einval;
1148
1149out_attach:
1150	get_pi_state(pi_state);
1151	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1152	*ps = pi_state;
1153	return 0;
1154
1155out_einval:
1156	ret = -EINVAL;
1157	goto out_error;
1158
1159out_eagain:
1160	ret = -EAGAIN;
1161	goto out_error;
1162
1163out_efault:
1164	ret = -EFAULT;
1165	goto out_error;
1166
1167out_error:
1168	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1169	return ret;
1170}
1171
1172static int handle_exit_race(u32 __user *uaddr, u32 uval,
1173			    struct task_struct *tsk)
1174{
1175	u32 uval2;
1176
1177	/*
1178	 * If PF_EXITPIDONE is not yet set, then try again.
1179	 */
1180	if (tsk && !(tsk->flags & PF_EXITPIDONE))
1181		return -EAGAIN;
1182
1183	/*
1184	 * Reread the user space value to handle the following situation:
1185	 *
1186	 * CPU0				CPU1
1187	 *
1188	 * sys_exit()			sys_futex()
1189	 *  do_exit()			 futex_lock_pi()
1190	 *                                futex_lock_pi_atomic()
1191	 *   exit_signals(tsk)		    No waiters:
1192	 *    tsk->flags |= PF_EXITING;	    *uaddr == 0x00000PID
1193	 *  mm_release(tsk)		    Set waiter bit
1194	 *   exit_robust_list(tsk) {	    *uaddr = 0x80000PID;
1195	 *      Set owner died		    attach_to_pi_owner() {
1196	 *    *uaddr = 0xC0000000;	     tsk = get_task(PID);
1197	 *   }				     if (!tsk->flags & PF_EXITING) {
1198	 *  ...				       attach();
1199	 *  tsk->flags |= PF_EXITPIDONE;     } else {
1200	 *				       if (!(tsk->flags & PF_EXITPIDONE))
1201	 *				         return -EAGAIN;
1202	 *				       return -ESRCH; <--- FAIL
1203	 *				     }
1204	 *
1205	 * Returning ESRCH unconditionally is wrong here because the
1206	 * user space value has been changed by the exiting task.
1207	 *
1208	 * The same logic applies to the case where the exiting task is
1209	 * already gone.
1210	 */
1211	if (get_futex_value_locked(&uval2, uaddr))
1212		return -EFAULT;
1213
1214	/* If the user space value has changed, try again. */
1215	if (uval2 != uval)
1216		return -EAGAIN;
1217
1218	/*
1219	 * The exiting task did not have a robust list, the robust list was
1220	 * corrupted or the user space value in *uaddr is simply bogus.
1221	 * Give up and tell user space.
1222	 */
1223	return -ESRCH;
1224}
1225
1226/*
1227 * Lookup the task for the TID provided from user space and attach to
1228 * it after doing proper sanity checks.
1229 */
1230static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1231			      struct futex_pi_state **ps)
1232{
1233	pid_t pid = uval & FUTEX_TID_MASK;
1234	struct futex_pi_state *pi_state;
1235	struct task_struct *p;
1236
1237	/*
1238	 * We are the first waiter - try to look up the real owner and attach
1239	 * the new pi_state to it, but bail out when TID = 0 [1]
1240	 *
1241	 * The !pid check is paranoid. None of the call sites should end up
1242	 * with pid == 0, but better safe than sorry. Let the caller retry
1243	 */
1244	if (!pid)
1245		return -EAGAIN;
1246	p = find_get_task_by_vpid(pid);
1247	if (!p)
1248		return handle_exit_race(uaddr, uval, NULL);
1249
1250	if (unlikely(p->flags & PF_KTHREAD)) {
1251		put_task_struct(p);
1252		return -EPERM;
1253	}
1254
1255	/*
1256	 * We need to look at the task state flags to figure out,
1257	 * whether the task is exiting. To protect against the do_exit
1258	 * change of the task flags, we do this protected by
1259	 * p->pi_lock:
1260	 */
1261	raw_spin_lock_irq(&p->pi_lock);
1262	if (unlikely(p->flags & PF_EXITING)) {
1263		/*
1264		 * The task is on the way out. When PF_EXITPIDONE is
1265		 * set, we know that the task has finished the
1266		 * cleanup:
1267		 */
1268		int ret = handle_exit_race(uaddr, uval, p);
1269
1270		raw_spin_unlock_irq(&p->pi_lock);
1271		put_task_struct(p);
1272		return ret;
1273	}
1274
1275	/*
1276	 * No existing pi state. First waiter. [2]
1277	 *
1278	 * This creates pi_state, we have hb->lock held, this means nothing can
1279	 * observe this state, wait_lock is irrelevant.
1280	 */
1281	pi_state = alloc_pi_state();
1282
1283	/*
1284	 * Initialize the pi_mutex in locked state and make @p
1285	 * the owner of it:
1286	 */
1287	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1288
1289	/* Store the key for possible exit cleanups: */
1290	pi_state->key = *key;
1291
1292	WARN_ON(!list_empty(&pi_state->list));
1293	list_add(&pi_state->list, &p->pi_state_list);
1294	/*
1295	 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1296	 * because there is no concurrency as the object is not published yet.
1297	 */
1298	pi_state->owner = p;
1299	raw_spin_unlock_irq(&p->pi_lock);
1300
1301	put_task_struct(p);
1302
1303	*ps = pi_state;
1304
1305	return 0;
1306}
1307
1308static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1309			   struct futex_hash_bucket *hb,
1310			   union futex_key *key, struct futex_pi_state **ps)
1311{
1312	struct futex_q *top_waiter = futex_top_waiter(hb, key);
1313
1314	/*
1315	 * If there is a waiter on that futex, validate it and
1316	 * attach to the pi_state when the validation succeeds.
1317	 */
1318	if (top_waiter)
1319		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1320
1321	/*
1322	 * We are the first waiter - try to look up the owner based on
1323	 * @uval and attach to it.
1324	 */
1325	return attach_to_pi_owner(uaddr, uval, key, ps);
1326}
1327
1328static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1329{
1330	int err;
1331	u32 uninitialized_var(curval);
1332
1333	if (unlikely(should_fail_futex(true)))
1334		return -EFAULT;
1335
1336	err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1337	if (unlikely(err))
1338		return err;
1339
1340	/* If user space value changed, let the caller retry */
1341	return curval != uval ? -EAGAIN : 0;
1342}
1343
1344/**
1345 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1346 * @uaddr:		the pi futex user address
1347 * @hb:			the pi futex hash bucket
1348 * @key:		the futex key associated with uaddr and hb
1349 * @ps:			the pi_state pointer where we store the result of the
1350 *			lookup
1351 * @task:		the task to perform the atomic lock work for.  This will
1352 *			be "current" except in the case of requeue pi.
1353 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1354 *
1355 * Return:
1356 *  -  0 - ready to wait;
1357 *  -  1 - acquired the lock;
1358 *  - <0 - error
1359 *
1360 * The hb->lock and futex_key refs shall be held by the caller.
1361 */
1362static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1363				union futex_key *key,
1364				struct futex_pi_state **ps,
1365				struct task_struct *task, int set_waiters)
1366{
1367	u32 uval, newval, vpid = task_pid_vnr(task);
1368	struct futex_q *top_waiter;
1369	int ret;
1370
1371	/*
1372	 * Read the user space value first so we can validate a few
1373	 * things before proceeding further.
1374	 */
1375	if (get_futex_value_locked(&uval, uaddr))
1376		return -EFAULT;
1377
1378	if (unlikely(should_fail_futex(true)))
1379		return -EFAULT;
1380
1381	/*
1382	 * Detect deadlocks.
1383	 */
1384	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1385		return -EDEADLK;
1386
1387	if ((unlikely(should_fail_futex(true))))
1388		return -EDEADLK;
1389
1390	/*
1391	 * Lookup existing state first. If it exists, try to attach to
1392	 * its pi_state.
1393	 */
1394	top_waiter = futex_top_waiter(hb, key);
1395	if (top_waiter)
1396		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1397
1398	/*
1399	 * No waiter and user TID is 0. We are here because the
1400	 * waiters or the owner died bit is set or called from
1401	 * requeue_cmp_pi or for whatever reason something took the
1402	 * syscall.
1403	 */
1404	if (!(uval & FUTEX_TID_MASK)) {
1405		/*
1406		 * We take over the futex. No other waiters and the user space
1407		 * TID is 0. We preserve the owner died bit.
1408		 */
1409		newval = uval & FUTEX_OWNER_DIED;
1410		newval |= vpid;
1411
1412		/* The futex requeue_pi code can enforce the waiters bit */
1413		if (set_waiters)
1414			newval |= FUTEX_WAITERS;
1415
1416		ret = lock_pi_update_atomic(uaddr, uval, newval);
1417		/* If the take over worked, return 1 */
1418		return ret < 0 ? ret : 1;
1419	}
1420
1421	/*
1422	 * First waiter. Set the waiters bit before attaching ourself to
1423	 * the owner. If owner tries to unlock, it will be forced into
1424	 * the kernel and blocked on hb->lock.
1425	 */
1426	newval = uval | FUTEX_WAITERS;
1427	ret = lock_pi_update_atomic(uaddr, uval, newval);
1428	if (ret)
1429		return ret;
1430	/*
1431	 * If the update of the user space value succeeded, we try to
1432	 * attach to the owner. If that fails, no harm done, we only
1433	 * set the FUTEX_WAITERS bit in the user space variable.
1434	 */
1435	return attach_to_pi_owner(uaddr, newval, key, ps);
1436}
1437
1438/**
1439 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1440 * @q:	The futex_q to unqueue
1441 *
1442 * The q->lock_ptr must not be NULL and must be held by the caller.
1443 */
1444static void __unqueue_futex(struct futex_q *q)
1445{
1446	struct futex_hash_bucket *hb;
1447
1448	if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
 
1449		return;
1450	lockdep_assert_held(q->lock_ptr);
1451
1452	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1453	plist_del(&q->list, &hb->chain);
1454	hb_waiters_dec(hb);
1455}
1456
1457/*
1458 * The hash bucket lock must be held when this is called.
1459 * Afterwards, the futex_q must not be accessed. Callers
1460 * must ensure to later call wake_up_q() for the actual
1461 * wakeups to occur.
1462 */
1463static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1464{
1465	struct task_struct *p = q->task;
1466
1467	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1468		return;
1469
1470	get_task_struct(p);
 
 
 
 
1471	__unqueue_futex(q);
1472	/*
1473	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1474	 * is written, without taking any locks. This is possible in the event
1475	 * of a spurious wakeup, for example. A memory barrier is required here
1476	 * to prevent the following store to lock_ptr from getting ahead of the
1477	 * plist_del in __unqueue_futex().
1478	 */
1479	smp_store_release(&q->lock_ptr, NULL);
1480
1481	/*
1482	 * Queue the task for later wakeup for after we've released
1483	 * the hb->lock. wake_q_add() grabs reference to p.
1484	 */
1485	wake_q_add_safe(wake_q, p);
1486}
1487
1488/*
1489 * Caller must hold a reference on @pi_state.
1490 */
1491static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1492{
1493	u32 uninitialized_var(curval), newval;
1494	struct task_struct *new_owner;
1495	bool postunlock = false;
1496	DEFINE_WAKE_Q(wake_q);
1497	int ret = 0;
1498
1499	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1500	if (WARN_ON_ONCE(!new_owner)) {
1501		/*
1502		 * As per the comment in futex_unlock_pi() this should not happen.
1503		 *
1504		 * When this happens, give up our locks and try again, giving
1505		 * the futex_lock_pi() instance time to complete, either by
1506		 * waiting on the rtmutex or removing itself from the futex
1507		 * queue.
1508		 */
1509		ret = -EAGAIN;
1510		goto out_unlock;
1511	}
1512
1513	/*
1514	 * We pass it to the next owner. The WAITERS bit is always kept
1515	 * enabled while there is PI state around. We cleanup the owner
1516	 * died bit, because we are the owner.
1517	 */
1518	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1519
1520	if (unlikely(should_fail_futex(true)))
1521		ret = -EFAULT;
1522
1523	ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1524	if (!ret && (curval != uval)) {
 
 
1525		/*
1526		 * If a unconditional UNLOCK_PI operation (user space did not
1527		 * try the TID->0 transition) raced with a waiter setting the
1528		 * FUTEX_WAITERS flag between get_user() and locking the hash
1529		 * bucket lock, retry the operation.
1530		 */
1531		if ((FUTEX_TID_MASK & curval) == uval)
1532			ret = -EAGAIN;
1533		else
1534			ret = -EINVAL;
1535	}
1536
1537	if (ret)
1538		goto out_unlock;
1539
1540	/*
1541	 * This is a point of no return; once we modify the uval there is no
1542	 * going back and subsequent operations must not fail.
1543	 */
1544
1545	raw_spin_lock(&pi_state->owner->pi_lock);
1546	WARN_ON(list_empty(&pi_state->list));
1547	list_del_init(&pi_state->list);
1548	raw_spin_unlock(&pi_state->owner->pi_lock);
1549
1550	raw_spin_lock(&new_owner->pi_lock);
1551	WARN_ON(!list_empty(&pi_state->list));
1552	list_add(&pi_state->list, &new_owner->pi_state_list);
1553	pi_state->owner = new_owner;
1554	raw_spin_unlock(&new_owner->pi_lock);
1555
1556	postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1557
1558out_unlock:
1559	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1560
1561	if (postunlock)
1562		rt_mutex_postunlock(&wake_q);
1563
1564	return ret;
1565}
1566
1567/*
1568 * Express the locking dependencies for lockdep:
1569 */
1570static inline void
1571double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1572{
1573	if (hb1 <= hb2) {
1574		spin_lock(&hb1->lock);
1575		if (hb1 < hb2)
1576			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1577	} else { /* hb1 > hb2 */
1578		spin_lock(&hb2->lock);
1579		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1580	}
1581}
1582
1583static inline void
1584double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1585{
1586	spin_unlock(&hb1->lock);
1587	if (hb1 != hb2)
1588		spin_unlock(&hb2->lock);
1589}
1590
1591/*
1592 * Wake up waiters matching bitset queued on this futex (uaddr).
1593 */
1594static int
1595futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1596{
1597	struct futex_hash_bucket *hb;
1598	struct futex_q *this, *next;
1599	union futex_key key = FUTEX_KEY_INIT;
1600	int ret;
1601	DEFINE_WAKE_Q(wake_q);
1602
1603	if (!bitset)
1604		return -EINVAL;
1605
1606	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1607	if (unlikely(ret != 0))
1608		goto out;
1609
1610	hb = hash_futex(&key);
1611
1612	/* Make sure we really have tasks to wakeup */
1613	if (!hb_waiters_pending(hb))
1614		goto out_put_key;
1615
1616	spin_lock(&hb->lock);
1617
1618	plist_for_each_entry_safe(this, next, &hb->chain, list) {
1619		if (match_futex (&this->key, &key)) {
1620			if (this->pi_state || this->rt_waiter) {
1621				ret = -EINVAL;
1622				break;
1623			}
1624
1625			/* Check if one of the bits is set in both bitsets */
1626			if (!(this->bitset & bitset))
1627				continue;
1628
1629			mark_wake_futex(&wake_q, this);
1630			if (++ret >= nr_wake)
1631				break;
1632		}
1633	}
1634
1635	spin_unlock(&hb->lock);
1636	wake_up_q(&wake_q);
1637out_put_key:
1638	put_futex_key(&key);
1639out:
1640	return ret;
1641}
1642
1643static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1644{
1645	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
1646	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
1647	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1648	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1649	int oldval, ret;
1650
1651	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1652		if (oparg < 0 || oparg > 31) {
1653			char comm[sizeof(current->comm)];
1654			/*
1655			 * kill this print and return -EINVAL when userspace
1656			 * is sane again
1657			 */
1658			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1659					get_task_comm(comm, current), oparg);
1660			oparg &= 31;
1661		}
1662		oparg = 1 << oparg;
1663	}
1664
1665	if (!access_ok(uaddr, sizeof(u32)))
1666		return -EFAULT;
1667
1668	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1669	if (ret)
1670		return ret;
1671
1672	switch (cmp) {
1673	case FUTEX_OP_CMP_EQ:
1674		return oldval == cmparg;
1675	case FUTEX_OP_CMP_NE:
1676		return oldval != cmparg;
1677	case FUTEX_OP_CMP_LT:
1678		return oldval < cmparg;
1679	case FUTEX_OP_CMP_GE:
1680		return oldval >= cmparg;
1681	case FUTEX_OP_CMP_LE:
1682		return oldval <= cmparg;
1683	case FUTEX_OP_CMP_GT:
1684		return oldval > cmparg;
1685	default:
1686		return -ENOSYS;
1687	}
1688}
1689
1690/*
1691 * Wake up all waiters hashed on the physical page that is mapped
1692 * to this virtual address:
1693 */
1694static int
1695futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1696	      int nr_wake, int nr_wake2, int op)
1697{
1698	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1699	struct futex_hash_bucket *hb1, *hb2;
1700	struct futex_q *this, *next;
1701	int ret, op_ret;
1702	DEFINE_WAKE_Q(wake_q);
1703
1704retry:
1705	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1706	if (unlikely(ret != 0))
1707		goto out;
1708	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1709	if (unlikely(ret != 0))
1710		goto out_put_key1;
1711
1712	hb1 = hash_futex(&key1);
1713	hb2 = hash_futex(&key2);
1714
1715retry_private:
1716	double_lock_hb(hb1, hb2);
1717	op_ret = futex_atomic_op_inuser(op, uaddr2);
1718	if (unlikely(op_ret < 0)) {
 
1719		double_unlock_hb(hb1, hb2);
1720
1721		if (!IS_ENABLED(CONFIG_MMU) ||
1722		    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1723			/*
1724			 * we don't get EFAULT from MMU faults if we don't have
1725			 * an MMU, but we might get them from range checking
1726			 */
 
 
 
 
1727			ret = op_ret;
1728			goto out_put_keys;
1729		}
1730
1731		if (op_ret == -EFAULT) {
1732			ret = fault_in_user_writeable(uaddr2);
1733			if (ret)
1734				goto out_put_keys;
1735		}
1736
1737		if (!(flags & FLAGS_SHARED)) {
1738			cond_resched();
1739			goto retry_private;
1740		}
1741
1742		put_futex_key(&key2);
1743		put_futex_key(&key1);
1744		cond_resched();
1745		goto retry;
1746	}
1747
1748	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1749		if (match_futex (&this->key, &key1)) {
1750			if (this->pi_state || this->rt_waiter) {
1751				ret = -EINVAL;
1752				goto out_unlock;
1753			}
1754			mark_wake_futex(&wake_q, this);
1755			if (++ret >= nr_wake)
1756				break;
1757		}
1758	}
1759
1760	if (op_ret > 0) {
1761		op_ret = 0;
1762		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1763			if (match_futex (&this->key, &key2)) {
1764				if (this->pi_state || this->rt_waiter) {
1765					ret = -EINVAL;
1766					goto out_unlock;
1767				}
1768				mark_wake_futex(&wake_q, this);
1769				if (++op_ret >= nr_wake2)
1770					break;
1771			}
1772		}
1773		ret += op_ret;
1774	}
1775
1776out_unlock:
1777	double_unlock_hb(hb1, hb2);
1778	wake_up_q(&wake_q);
1779out_put_keys:
1780	put_futex_key(&key2);
1781out_put_key1:
1782	put_futex_key(&key1);
1783out:
1784	return ret;
1785}
1786
1787/**
1788 * requeue_futex() - Requeue a futex_q from one hb to another
1789 * @q:		the futex_q to requeue
1790 * @hb1:	the source hash_bucket
1791 * @hb2:	the target hash_bucket
1792 * @key2:	the new key for the requeued futex_q
1793 */
1794static inline
1795void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1796		   struct futex_hash_bucket *hb2, union futex_key *key2)
1797{
1798
1799	/*
1800	 * If key1 and key2 hash to the same bucket, no need to
1801	 * requeue.
1802	 */
1803	if (likely(&hb1->chain != &hb2->chain)) {
1804		plist_del(&q->list, &hb1->chain);
1805		hb_waiters_dec(hb1);
1806		hb_waiters_inc(hb2);
1807		plist_add(&q->list, &hb2->chain);
1808		q->lock_ptr = &hb2->lock;
1809	}
1810	get_futex_key_refs(key2);
1811	q->key = *key2;
1812}
1813
1814/**
1815 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1816 * @q:		the futex_q
1817 * @key:	the key of the requeue target futex
1818 * @hb:		the hash_bucket of the requeue target futex
1819 *
1820 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1821 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1822 * to the requeue target futex so the waiter can detect the wakeup on the right
1823 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1824 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1825 * to protect access to the pi_state to fixup the owner later.  Must be called
1826 * with both q->lock_ptr and hb->lock held.
1827 */
1828static inline
1829void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1830			   struct futex_hash_bucket *hb)
1831{
1832	get_futex_key_refs(key);
1833	q->key = *key;
1834
1835	__unqueue_futex(q);
1836
1837	WARN_ON(!q->rt_waiter);
1838	q->rt_waiter = NULL;
1839
1840	q->lock_ptr = &hb->lock;
1841
1842	wake_up_state(q->task, TASK_NORMAL);
1843}
1844
1845/**
1846 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1847 * @pifutex:		the user address of the to futex
1848 * @hb1:		the from futex hash bucket, must be locked by the caller
1849 * @hb2:		the to futex hash bucket, must be locked by the caller
1850 * @key1:		the from futex key
1851 * @key2:		the to futex key
1852 * @ps:			address to store the pi_state pointer
1853 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1854 *
1855 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1856 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1857 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1858 * hb1 and hb2 must be held by the caller.
1859 *
1860 * Return:
1861 *  -  0 - failed to acquire the lock atomically;
1862 *  - >0 - acquired the lock, return value is vpid of the top_waiter
1863 *  - <0 - error
1864 */
1865static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1866				 struct futex_hash_bucket *hb1,
1867				 struct futex_hash_bucket *hb2,
1868				 union futex_key *key1, union futex_key *key2,
1869				 struct futex_pi_state **ps, int set_waiters)
1870{
1871	struct futex_q *top_waiter = NULL;
1872	u32 curval;
1873	int ret, vpid;
1874
1875	if (get_futex_value_locked(&curval, pifutex))
1876		return -EFAULT;
1877
1878	if (unlikely(should_fail_futex(true)))
1879		return -EFAULT;
1880
1881	/*
1882	 * Find the top_waiter and determine if there are additional waiters.
1883	 * If the caller intends to requeue more than 1 waiter to pifutex,
1884	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1885	 * as we have means to handle the possible fault.  If not, don't set
1886	 * the bit unecessarily as it will force the subsequent unlock to enter
1887	 * the kernel.
1888	 */
1889	top_waiter = futex_top_waiter(hb1, key1);
1890
1891	/* There are no waiters, nothing for us to do. */
1892	if (!top_waiter)
1893		return 0;
1894
1895	/* Ensure we requeue to the expected futex. */
1896	if (!match_futex(top_waiter->requeue_pi_key, key2))
1897		return -EINVAL;
1898
1899	/*
1900	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1901	 * the contended case or if set_waiters is 1.  The pi_state is returned
1902	 * in ps in contended cases.
1903	 */
1904	vpid = task_pid_vnr(top_waiter->task);
1905	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1906				   set_waiters);
1907	if (ret == 1) {
1908		requeue_pi_wake_futex(top_waiter, key2, hb2);
1909		return vpid;
1910	}
1911	return ret;
1912}
1913
1914/**
1915 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1916 * @uaddr1:	source futex user address
1917 * @flags:	futex flags (FLAGS_SHARED, etc.)
1918 * @uaddr2:	target futex user address
1919 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1920 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1921 * @cmpval:	@uaddr1 expected value (or %NULL)
1922 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1923 *		pi futex (pi to pi requeue is not supported)
1924 *
1925 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1926 * uaddr2 atomically on behalf of the top waiter.
1927 *
1928 * Return:
1929 *  - >=0 - on success, the number of tasks requeued or woken;
1930 *  -  <0 - on error
1931 */
1932static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1933			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1934			 u32 *cmpval, int requeue_pi)
1935{
1936	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1937	int drop_count = 0, task_count = 0, ret;
1938	struct futex_pi_state *pi_state = NULL;
1939	struct futex_hash_bucket *hb1, *hb2;
1940	struct futex_q *this, *next;
1941	DEFINE_WAKE_Q(wake_q);
1942
1943	if (nr_wake < 0 || nr_requeue < 0)
1944		return -EINVAL;
1945
1946	/*
1947	 * When PI not supported: return -ENOSYS if requeue_pi is true,
1948	 * consequently the compiler knows requeue_pi is always false past
1949	 * this point which will optimize away all the conditional code
1950	 * further down.
1951	 */
1952	if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1953		return -ENOSYS;
1954
1955	if (requeue_pi) {
1956		/*
1957		 * Requeue PI only works on two distinct uaddrs. This
1958		 * check is only valid for private futexes. See below.
1959		 */
1960		if (uaddr1 == uaddr2)
1961			return -EINVAL;
1962
1963		/*
1964		 * requeue_pi requires a pi_state, try to allocate it now
1965		 * without any locks in case it fails.
1966		 */
1967		if (refill_pi_state_cache())
1968			return -ENOMEM;
1969		/*
1970		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1971		 * + nr_requeue, since it acquires the rt_mutex prior to
1972		 * returning to userspace, so as to not leave the rt_mutex with
1973		 * waiters and no owner.  However, second and third wake-ups
1974		 * cannot be predicted as they involve race conditions with the
1975		 * first wake and a fault while looking up the pi_state.  Both
1976		 * pthread_cond_signal() and pthread_cond_broadcast() should
1977		 * use nr_wake=1.
1978		 */
1979		if (nr_wake != 1)
1980			return -EINVAL;
1981	}
1982
1983retry:
1984	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1985	if (unlikely(ret != 0))
1986		goto out;
1987	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1988			    requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1989	if (unlikely(ret != 0))
1990		goto out_put_key1;
1991
1992	/*
1993	 * The check above which compares uaddrs is not sufficient for
1994	 * shared futexes. We need to compare the keys:
1995	 */
1996	if (requeue_pi && match_futex(&key1, &key2)) {
1997		ret = -EINVAL;
1998		goto out_put_keys;
1999	}
2000
2001	hb1 = hash_futex(&key1);
2002	hb2 = hash_futex(&key2);
2003
2004retry_private:
2005	hb_waiters_inc(hb2);
2006	double_lock_hb(hb1, hb2);
2007
2008	if (likely(cmpval != NULL)) {
2009		u32 curval;
2010
2011		ret = get_futex_value_locked(&curval, uaddr1);
2012
2013		if (unlikely(ret)) {
2014			double_unlock_hb(hb1, hb2);
2015			hb_waiters_dec(hb2);
2016
2017			ret = get_user(curval, uaddr1);
2018			if (ret)
2019				goto out_put_keys;
2020
2021			if (!(flags & FLAGS_SHARED))
2022				goto retry_private;
2023
2024			put_futex_key(&key2);
2025			put_futex_key(&key1);
2026			goto retry;
2027		}
2028		if (curval != *cmpval) {
2029			ret = -EAGAIN;
2030			goto out_unlock;
2031		}
2032	}
2033
2034	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2035		/*
2036		 * Attempt to acquire uaddr2 and wake the top waiter. If we
2037		 * intend to requeue waiters, force setting the FUTEX_WAITERS
2038		 * bit.  We force this here where we are able to easily handle
2039		 * faults rather in the requeue loop below.
2040		 */
2041		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2042						 &key2, &pi_state, nr_requeue);
2043
2044		/*
2045		 * At this point the top_waiter has either taken uaddr2 or is
2046		 * waiting on it.  If the former, then the pi_state will not
2047		 * exist yet, look it up one more time to ensure we have a
2048		 * reference to it. If the lock was taken, ret contains the
2049		 * vpid of the top waiter task.
2050		 * If the lock was not taken, we have pi_state and an initial
2051		 * refcount on it. In case of an error we have nothing.
2052		 */
2053		if (ret > 0) {
2054			WARN_ON(pi_state);
2055			drop_count++;
2056			task_count++;
2057			/*
2058			 * If we acquired the lock, then the user space value
2059			 * of uaddr2 should be vpid. It cannot be changed by
2060			 * the top waiter as it is blocked on hb2 lock if it
2061			 * tries to do so. If something fiddled with it behind
2062			 * our back the pi state lookup might unearth it. So
2063			 * we rather use the known value than rereading and
2064			 * handing potential crap to lookup_pi_state.
2065			 *
2066			 * If that call succeeds then we have pi_state and an
2067			 * initial refcount on it.
2068			 */
2069			ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2070		}
2071
2072		switch (ret) {
2073		case 0:
2074			/* We hold a reference on the pi state. */
2075			break;
2076
2077			/* If the above failed, then pi_state is NULL */
2078		case -EFAULT:
2079			double_unlock_hb(hb1, hb2);
2080			hb_waiters_dec(hb2);
2081			put_futex_key(&key2);
2082			put_futex_key(&key1);
2083			ret = fault_in_user_writeable(uaddr2);
2084			if (!ret)
2085				goto retry;
2086			goto out;
2087		case -EAGAIN:
2088			/*
2089			 * Two reasons for this:
2090			 * - Owner is exiting and we just wait for the
2091			 *   exit to complete.
2092			 * - The user space value changed.
2093			 */
2094			double_unlock_hb(hb1, hb2);
2095			hb_waiters_dec(hb2);
2096			put_futex_key(&key2);
2097			put_futex_key(&key1);
2098			cond_resched();
2099			goto retry;
2100		default:
2101			goto out_unlock;
2102		}
2103	}
2104
2105	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2106		if (task_count - nr_wake >= nr_requeue)
2107			break;
2108
2109		if (!match_futex(&this->key, &key1))
2110			continue;
2111
2112		/*
2113		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2114		 * be paired with each other and no other futex ops.
2115		 *
2116		 * We should never be requeueing a futex_q with a pi_state,
2117		 * which is awaiting a futex_unlock_pi().
2118		 */
2119		if ((requeue_pi && !this->rt_waiter) ||
2120		    (!requeue_pi && this->rt_waiter) ||
2121		    this->pi_state) {
2122			ret = -EINVAL;
2123			break;
2124		}
2125
2126		/*
2127		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2128		 * lock, we already woke the top_waiter.  If not, it will be
2129		 * woken by futex_unlock_pi().
2130		 */
2131		if (++task_count <= nr_wake && !requeue_pi) {
2132			mark_wake_futex(&wake_q, this);
2133			continue;
2134		}
2135
2136		/* Ensure we requeue to the expected futex for requeue_pi. */
2137		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2138			ret = -EINVAL;
2139			break;
2140		}
2141
2142		/*
2143		 * Requeue nr_requeue waiters and possibly one more in the case
2144		 * of requeue_pi if we couldn't acquire the lock atomically.
2145		 */
2146		if (requeue_pi) {
2147			/*
2148			 * Prepare the waiter to take the rt_mutex. Take a
2149			 * refcount on the pi_state and store the pointer in
2150			 * the futex_q object of the waiter.
2151			 */
2152			get_pi_state(pi_state);
2153			this->pi_state = pi_state;
2154			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2155							this->rt_waiter,
2156							this->task);
2157			if (ret == 1) {
2158				/*
2159				 * We got the lock. We do neither drop the
2160				 * refcount on pi_state nor clear
2161				 * this->pi_state because the waiter needs the
2162				 * pi_state for cleaning up the user space
2163				 * value. It will drop the refcount after
2164				 * doing so.
2165				 */
2166				requeue_pi_wake_futex(this, &key2, hb2);
2167				drop_count++;
2168				continue;
2169			} else if (ret) {
2170				/*
2171				 * rt_mutex_start_proxy_lock() detected a
2172				 * potential deadlock when we tried to queue
2173				 * that waiter. Drop the pi_state reference
2174				 * which we took above and remove the pointer
2175				 * to the state from the waiters futex_q
2176				 * object.
2177				 */
2178				this->pi_state = NULL;
2179				put_pi_state(pi_state);
2180				/*
2181				 * We stop queueing more waiters and let user
2182				 * space deal with the mess.
2183				 */
2184				break;
2185			}
2186		}
2187		requeue_futex(this, hb1, hb2, &key2);
2188		drop_count++;
2189	}
2190
2191	/*
2192	 * We took an extra initial reference to the pi_state either
2193	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2194	 * need to drop it here again.
2195	 */
2196	put_pi_state(pi_state);
2197
2198out_unlock:
2199	double_unlock_hb(hb1, hb2);
2200	wake_up_q(&wake_q);
2201	hb_waiters_dec(hb2);
2202
2203	/*
2204	 * drop_futex_key_refs() must be called outside the spinlocks. During
2205	 * the requeue we moved futex_q's from the hash bucket at key1 to the
2206	 * one at key2 and updated their key pointer.  We no longer need to
2207	 * hold the references to key1.
2208	 */
2209	while (--drop_count >= 0)
2210		drop_futex_key_refs(&key1);
2211
2212out_put_keys:
2213	put_futex_key(&key2);
2214out_put_key1:
2215	put_futex_key(&key1);
2216out:
2217	return ret ? ret : task_count;
2218}
2219
2220/* The key must be already stored in q->key. */
2221static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2222	__acquires(&hb->lock)
2223{
2224	struct futex_hash_bucket *hb;
2225
2226	hb = hash_futex(&q->key);
2227
2228	/*
2229	 * Increment the counter before taking the lock so that
2230	 * a potential waker won't miss a to-be-slept task that is
2231	 * waiting for the spinlock. This is safe as all queue_lock()
2232	 * users end up calling queue_me(). Similarly, for housekeeping,
2233	 * decrement the counter at queue_unlock() when some error has
2234	 * occurred and we don't end up adding the task to the list.
2235	 */
2236	hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2237
2238	q->lock_ptr = &hb->lock;
2239
2240	spin_lock(&hb->lock);
2241	return hb;
2242}
2243
2244static inline void
2245queue_unlock(struct futex_hash_bucket *hb)
2246	__releases(&hb->lock)
2247{
2248	spin_unlock(&hb->lock);
2249	hb_waiters_dec(hb);
2250}
2251
2252static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2253{
2254	int prio;
2255
2256	/*
2257	 * The priority used to register this element is
2258	 * - either the real thread-priority for the real-time threads
2259	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2260	 * - or MAX_RT_PRIO for non-RT threads.
2261	 * Thus, all RT-threads are woken first in priority order, and
2262	 * the others are woken last, in FIFO order.
2263	 */
2264	prio = min(current->normal_prio, MAX_RT_PRIO);
2265
2266	plist_node_init(&q->list, prio);
2267	plist_add(&q->list, &hb->chain);
2268	q->task = current;
2269}
2270
2271/**
2272 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2273 * @q:	The futex_q to enqueue
2274 * @hb:	The destination hash bucket
2275 *
2276 * The hb->lock must be held by the caller, and is released here. A call to
2277 * queue_me() is typically paired with exactly one call to unqueue_me().  The
2278 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2279 * or nothing if the unqueue is done as part of the wake process and the unqueue
2280 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2281 * an example).
2282 */
2283static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2284	__releases(&hb->lock)
2285{
2286	__queue_me(q, hb);
2287	spin_unlock(&hb->lock);
2288}
2289
2290/**
2291 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2292 * @q:	The futex_q to unqueue
2293 *
2294 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2295 * be paired with exactly one earlier call to queue_me().
2296 *
2297 * Return:
2298 *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2299 *  - 0 - if the futex_q was already removed by the waking thread
2300 */
2301static int unqueue_me(struct futex_q *q)
2302{
2303	spinlock_t *lock_ptr;
2304	int ret = 0;
2305
2306	/* In the common case we don't take the spinlock, which is nice. */
2307retry:
2308	/*
2309	 * q->lock_ptr can change between this read and the following spin_lock.
2310	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2311	 * optimizing lock_ptr out of the logic below.
2312	 */
2313	lock_ptr = READ_ONCE(q->lock_ptr);
2314	if (lock_ptr != NULL) {
2315		spin_lock(lock_ptr);
2316		/*
2317		 * q->lock_ptr can change between reading it and
2318		 * spin_lock(), causing us to take the wrong lock.  This
2319		 * corrects the race condition.
2320		 *
2321		 * Reasoning goes like this: if we have the wrong lock,
2322		 * q->lock_ptr must have changed (maybe several times)
2323		 * between reading it and the spin_lock().  It can
2324		 * change again after the spin_lock() but only if it was
2325		 * already changed before the spin_lock().  It cannot,
2326		 * however, change back to the original value.  Therefore
2327		 * we can detect whether we acquired the correct lock.
2328		 */
2329		if (unlikely(lock_ptr != q->lock_ptr)) {
2330			spin_unlock(lock_ptr);
2331			goto retry;
2332		}
2333		__unqueue_futex(q);
2334
2335		BUG_ON(q->pi_state);
2336
2337		spin_unlock(lock_ptr);
2338		ret = 1;
2339	}
2340
2341	drop_futex_key_refs(&q->key);
2342	return ret;
2343}
2344
2345/*
2346 * PI futexes can not be requeued and must remove themself from the
2347 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2348 * and dropped here.
2349 */
2350static void unqueue_me_pi(struct futex_q *q)
2351	__releases(q->lock_ptr)
2352{
2353	__unqueue_futex(q);
2354
2355	BUG_ON(!q->pi_state);
2356	put_pi_state(q->pi_state);
2357	q->pi_state = NULL;
2358
2359	spin_unlock(q->lock_ptr);
2360}
2361
2362static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2363				struct task_struct *argowner)
2364{
2365	struct futex_pi_state *pi_state = q->pi_state;
2366	u32 uval, uninitialized_var(curval), newval;
2367	struct task_struct *oldowner, *newowner;
2368	u32 newtid;
2369	int ret, err = 0;
2370
2371	lockdep_assert_held(q->lock_ptr);
2372
2373	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2374
2375	oldowner = pi_state->owner;
2376
2377	/*
2378	 * We are here because either:
2379	 *
2380	 *  - we stole the lock and pi_state->owner needs updating to reflect
2381	 *    that (@argowner == current),
2382	 *
2383	 * or:
2384	 *
2385	 *  - someone stole our lock and we need to fix things to point to the
2386	 *    new owner (@argowner == NULL).
2387	 *
2388	 * Either way, we have to replace the TID in the user space variable.
2389	 * This must be atomic as we have to preserve the owner died bit here.
2390	 *
2391	 * Note: We write the user space value _before_ changing the pi_state
2392	 * because we can fault here. Imagine swapped out pages or a fork
2393	 * that marked all the anonymous memory readonly for cow.
2394	 *
2395	 * Modifying pi_state _before_ the user space value would leave the
2396	 * pi_state in an inconsistent state when we fault here, because we
2397	 * need to drop the locks to handle the fault. This might be observed
2398	 * in the PID check in lookup_pi_state.
2399	 */
2400retry:
2401	if (!argowner) {
2402		if (oldowner != current) {
2403			/*
2404			 * We raced against a concurrent self; things are
2405			 * already fixed up. Nothing to do.
2406			 */
2407			ret = 0;
2408			goto out_unlock;
2409		}
2410
2411		if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2412			/* We got the lock after all, nothing to fix. */
2413			ret = 0;
2414			goto out_unlock;
2415		}
2416
2417		/*
2418		 * Since we just failed the trylock; there must be an owner.
2419		 */
2420		newowner = rt_mutex_owner(&pi_state->pi_mutex);
2421		BUG_ON(!newowner);
2422	} else {
2423		WARN_ON_ONCE(argowner != current);
2424		if (oldowner == current) {
2425			/*
2426			 * We raced against a concurrent self; things are
2427			 * already fixed up. Nothing to do.
2428			 */
2429			ret = 0;
2430			goto out_unlock;
2431		}
2432		newowner = argowner;
2433	}
2434
2435	newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2436	/* Owner died? */
2437	if (!pi_state->owner)
2438		newtid |= FUTEX_OWNER_DIED;
2439
2440	err = get_futex_value_locked(&uval, uaddr);
2441	if (err)
2442		goto handle_err;
2443
2444	for (;;) {
2445		newval = (uval & FUTEX_OWNER_DIED) | newtid;
2446
2447		err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2448		if (err)
2449			goto handle_err;
2450
2451		if (curval == uval)
2452			break;
2453		uval = curval;
2454	}
2455
2456	/*
2457	 * We fixed up user space. Now we need to fix the pi_state
2458	 * itself.
2459	 */
2460	if (pi_state->owner != NULL) {
2461		raw_spin_lock(&pi_state->owner->pi_lock);
2462		WARN_ON(list_empty(&pi_state->list));
2463		list_del_init(&pi_state->list);
2464		raw_spin_unlock(&pi_state->owner->pi_lock);
2465	}
2466
2467	pi_state->owner = newowner;
2468
2469	raw_spin_lock(&newowner->pi_lock);
2470	WARN_ON(!list_empty(&pi_state->list));
2471	list_add(&pi_state->list, &newowner->pi_state_list);
2472	raw_spin_unlock(&newowner->pi_lock);
2473	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2474
2475	return 0;
2476
2477	/*
2478	 * In order to reschedule or handle a page fault, we need to drop the
2479	 * locks here. In the case of a fault, this gives the other task
2480	 * (either the highest priority waiter itself or the task which stole
2481	 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2482	 * are back from handling the fault we need to check the pi_state after
2483	 * reacquiring the locks and before trying to do another fixup. When
2484	 * the fixup has been done already we simply return.
2485	 *
2486	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2487	 * drop hb->lock since the caller owns the hb -> futex_q relation.
2488	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2489	 */
2490handle_err:
2491	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2492	spin_unlock(q->lock_ptr);
2493
2494	switch (err) {
2495	case -EFAULT:
2496		ret = fault_in_user_writeable(uaddr);
2497		break;
2498
2499	case -EAGAIN:
2500		cond_resched();
2501		ret = 0;
2502		break;
2503
2504	default:
2505		WARN_ON_ONCE(1);
2506		ret = err;
2507		break;
2508	}
2509
2510	spin_lock(q->lock_ptr);
2511	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2512
2513	/*
2514	 * Check if someone else fixed it for us:
2515	 */
2516	if (pi_state->owner != oldowner) {
2517		ret = 0;
2518		goto out_unlock;
2519	}
2520
2521	if (ret)
2522		goto out_unlock;
2523
2524	goto retry;
2525
2526out_unlock:
2527	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2528	return ret;
2529}
2530
2531static long futex_wait_restart(struct restart_block *restart);
2532
2533/**
2534 * fixup_owner() - Post lock pi_state and corner case management
2535 * @uaddr:	user address of the futex
2536 * @q:		futex_q (contains pi_state and access to the rt_mutex)
2537 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
2538 *
2539 * After attempting to lock an rt_mutex, this function is called to cleanup
2540 * the pi_state owner as well as handle race conditions that may allow us to
2541 * acquire the lock. Must be called with the hb lock held.
2542 *
2543 * Return:
2544 *  -  1 - success, lock taken;
2545 *  -  0 - success, lock not taken;
2546 *  - <0 - on error (-EFAULT)
2547 */
2548static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2549{
2550	int ret = 0;
2551
2552	if (locked) {
2553		/*
2554		 * Got the lock. We might not be the anticipated owner if we
2555		 * did a lock-steal - fix up the PI-state in that case:
2556		 *
2557		 * Speculative pi_state->owner read (we don't hold wait_lock);
2558		 * since we own the lock pi_state->owner == current is the
2559		 * stable state, anything else needs more attention.
2560		 */
2561		if (q->pi_state->owner != current)
2562			ret = fixup_pi_state_owner(uaddr, q, current);
2563		goto out;
2564	}
2565
2566	/*
2567	 * If we didn't get the lock; check if anybody stole it from us. In
2568	 * that case, we need to fix up the uval to point to them instead of
2569	 * us, otherwise bad things happen. [10]
2570	 *
2571	 * Another speculative read; pi_state->owner == current is unstable
2572	 * but needs our attention.
2573	 */
2574	if (q->pi_state->owner == current) {
2575		ret = fixup_pi_state_owner(uaddr, q, NULL);
2576		goto out;
2577	}
2578
2579	/*
2580	 * Paranoia check. If we did not take the lock, then we should not be
2581	 * the owner of the rt_mutex.
2582	 */
2583	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2584		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2585				"pi-state %p\n", ret,
2586				q->pi_state->pi_mutex.owner,
2587				q->pi_state->owner);
2588	}
2589
2590out:
2591	return ret ? ret : locked;
2592}
2593
2594/**
2595 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2596 * @hb:		the futex hash bucket, must be locked by the caller
2597 * @q:		the futex_q to queue up on
2598 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
2599 */
2600static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2601				struct hrtimer_sleeper *timeout)
2602{
2603	/*
2604	 * The task state is guaranteed to be set before another task can
2605	 * wake it. set_current_state() is implemented using smp_store_mb() and
2606	 * queue_me() calls spin_unlock() upon completion, both serializing
2607	 * access to the hash list and forcing another memory barrier.
2608	 */
2609	set_current_state(TASK_INTERRUPTIBLE);
2610	queue_me(q, hb);
2611
2612	/* Arm the timer */
2613	if (timeout)
2614		hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2615
2616	/*
2617	 * If we have been removed from the hash list, then another task
2618	 * has tried to wake us, and we can skip the call to schedule().
2619	 */
2620	if (likely(!plist_node_empty(&q->list))) {
2621		/*
2622		 * If the timer has already expired, current will already be
2623		 * flagged for rescheduling. Only call schedule if there
2624		 * is no timeout, or if it has yet to expire.
2625		 */
2626		if (!timeout || timeout->task)
2627			freezable_schedule();
2628	}
2629	__set_current_state(TASK_RUNNING);
2630}
2631
2632/**
2633 * futex_wait_setup() - Prepare to wait on a futex
2634 * @uaddr:	the futex userspace address
2635 * @val:	the expected value
2636 * @flags:	futex flags (FLAGS_SHARED, etc.)
2637 * @q:		the associated futex_q
2638 * @hb:		storage for hash_bucket pointer to be returned to caller
2639 *
2640 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2641 * compare it with the expected value.  Handle atomic faults internally.
2642 * Return with the hb lock held and a q.key reference on success, and unlocked
2643 * with no q.key reference on failure.
2644 *
2645 * Return:
2646 *  -  0 - uaddr contains val and hb has been locked;
2647 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2648 */
2649static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2650			   struct futex_q *q, struct futex_hash_bucket **hb)
2651{
2652	u32 uval;
2653	int ret;
2654
2655	/*
2656	 * Access the page AFTER the hash-bucket is locked.
2657	 * Order is important:
2658	 *
2659	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2660	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2661	 *
2662	 * The basic logical guarantee of a futex is that it blocks ONLY
2663	 * if cond(var) is known to be true at the time of blocking, for
2664	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
2665	 * would open a race condition where we could block indefinitely with
2666	 * cond(var) false, which would violate the guarantee.
2667	 *
2668	 * On the other hand, we insert q and release the hash-bucket only
2669	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
2670	 * absorb a wakeup if *uaddr does not match the desired values
2671	 * while the syscall executes.
2672	 */
2673retry:
2674	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2675	if (unlikely(ret != 0))
2676		return ret;
2677
2678retry_private:
2679	*hb = queue_lock(q);
2680
2681	ret = get_futex_value_locked(&uval, uaddr);
2682
2683	if (ret) {
2684		queue_unlock(*hb);
2685
2686		ret = get_user(uval, uaddr);
2687		if (ret)
2688			goto out;
2689
2690		if (!(flags & FLAGS_SHARED))
2691			goto retry_private;
2692
2693		put_futex_key(&q->key);
2694		goto retry;
2695	}
2696
2697	if (uval != val) {
2698		queue_unlock(*hb);
2699		ret = -EWOULDBLOCK;
2700	}
2701
2702out:
2703	if (ret)
2704		put_futex_key(&q->key);
2705	return ret;
2706}
2707
2708static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2709		      ktime_t *abs_time, u32 bitset)
2710{
2711	struct hrtimer_sleeper timeout, *to;
2712	struct restart_block *restart;
2713	struct futex_hash_bucket *hb;
2714	struct futex_q q = futex_q_init;
2715	int ret;
2716
2717	if (!bitset)
2718		return -EINVAL;
2719	q.bitset = bitset;
2720
2721	to = futex_setup_timer(abs_time, &timeout, flags,
2722			       current->timer_slack_ns);
 
 
 
 
 
 
 
 
 
2723retry:
2724	/*
2725	 * Prepare to wait on uaddr. On success, holds hb lock and increments
2726	 * q.key refs.
2727	 */
2728	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2729	if (ret)
2730		goto out;
2731
2732	/* queue_me and wait for wakeup, timeout, or a signal. */
2733	futex_wait_queue_me(hb, &q, to);
2734
2735	/* If we were woken (and unqueued), we succeeded, whatever. */
2736	ret = 0;
2737	/* unqueue_me() drops q.key ref */
2738	if (!unqueue_me(&q))
2739		goto out;
2740	ret = -ETIMEDOUT;
2741	if (to && !to->task)
2742		goto out;
2743
2744	/*
2745	 * We expect signal_pending(current), but we might be the
2746	 * victim of a spurious wakeup as well.
2747	 */
2748	if (!signal_pending(current))
2749		goto retry;
2750
2751	ret = -ERESTARTSYS;
2752	if (!abs_time)
2753		goto out;
2754
2755	restart = &current->restart_block;
2756	restart->fn = futex_wait_restart;
2757	restart->futex.uaddr = uaddr;
2758	restart->futex.val = val;
2759	restart->futex.time = *abs_time;
2760	restart->futex.bitset = bitset;
2761	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2762
2763	ret = -ERESTART_RESTARTBLOCK;
2764
2765out:
2766	if (to) {
2767		hrtimer_cancel(&to->timer);
2768		destroy_hrtimer_on_stack(&to->timer);
2769	}
2770	return ret;
2771}
2772
2773
2774static long futex_wait_restart(struct restart_block *restart)
2775{
2776	u32 __user *uaddr = restart->futex.uaddr;
2777	ktime_t t, *tp = NULL;
2778
2779	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2780		t = restart->futex.time;
2781		tp = &t;
2782	}
2783	restart->fn = do_no_restart_syscall;
2784
2785	return (long)futex_wait(uaddr, restart->futex.flags,
2786				restart->futex.val, tp, restart->futex.bitset);
2787}
2788
2789
2790/*
2791 * Userspace tried a 0 -> TID atomic transition of the futex value
2792 * and failed. The kernel side here does the whole locking operation:
2793 * if there are waiters then it will block as a consequence of relying
2794 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2795 * a 0 value of the futex too.).
2796 *
2797 * Also serves as futex trylock_pi()'ing, and due semantics.
2798 */
2799static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2800			 ktime_t *time, int trylock)
2801{
2802	struct hrtimer_sleeper timeout, *to;
2803	struct futex_pi_state *pi_state = NULL;
2804	struct rt_mutex_waiter rt_waiter;
2805	struct futex_hash_bucket *hb;
2806	struct futex_q q = futex_q_init;
2807	int res, ret;
2808
2809	if (!IS_ENABLED(CONFIG_FUTEX_PI))
2810		return -ENOSYS;
2811
2812	if (refill_pi_state_cache())
2813		return -ENOMEM;
2814
2815	to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
 
 
 
 
 
 
2816
2817retry:
2818	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2819	if (unlikely(ret != 0))
2820		goto out;
2821
2822retry_private:
2823	hb = queue_lock(&q);
2824
2825	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2826	if (unlikely(ret)) {
2827		/*
2828		 * Atomic work succeeded and we got the lock,
2829		 * or failed. Either way, we do _not_ block.
2830		 */
2831		switch (ret) {
2832		case 1:
2833			/* We got the lock. */
2834			ret = 0;
2835			goto out_unlock_put_key;
2836		case -EFAULT:
2837			goto uaddr_faulted;
2838		case -EAGAIN:
2839			/*
2840			 * Two reasons for this:
2841			 * - Task is exiting and we just wait for the
2842			 *   exit to complete.
2843			 * - The user space value changed.
2844			 */
2845			queue_unlock(hb);
2846			put_futex_key(&q.key);
2847			cond_resched();
2848			goto retry;
2849		default:
2850			goto out_unlock_put_key;
2851		}
2852	}
2853
2854	WARN_ON(!q.pi_state);
2855
2856	/*
2857	 * Only actually queue now that the atomic ops are done:
2858	 */
2859	__queue_me(&q, hb);
2860
2861	if (trylock) {
2862		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2863		/* Fixup the trylock return value: */
2864		ret = ret ? 0 : -EWOULDBLOCK;
2865		goto no_block;
2866	}
2867
2868	rt_mutex_init_waiter(&rt_waiter);
2869
2870	/*
2871	 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2872	 * hold it while doing rt_mutex_start_proxy(), because then it will
2873	 * include hb->lock in the blocking chain, even through we'll not in
2874	 * fact hold it while blocking. This will lead it to report -EDEADLK
2875	 * and BUG when futex_unlock_pi() interleaves with this.
2876	 *
2877	 * Therefore acquire wait_lock while holding hb->lock, but drop the
2878	 * latter before calling __rt_mutex_start_proxy_lock(). This
2879	 * interleaves with futex_unlock_pi() -- which does a similar lock
2880	 * handoff -- such that the latter can observe the futex_q::pi_state
2881	 * before __rt_mutex_start_proxy_lock() is done.
2882	 */
2883	raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2884	spin_unlock(q.lock_ptr);
2885	/*
2886	 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2887	 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2888	 * it sees the futex_q::pi_state.
2889	 */
2890	ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2891	raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2892
2893	if (ret) {
2894		if (ret == 1)
2895			ret = 0;
2896		goto cleanup;
 
 
2897	}
2898
 
2899	if (unlikely(to))
2900		hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2901
2902	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2903
2904cleanup:
2905	spin_lock(q.lock_ptr);
2906	/*
2907	 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2908	 * first acquire the hb->lock before removing the lock from the
2909	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2910	 * lists consistent.
2911	 *
2912	 * In particular; it is important that futex_unlock_pi() can not
2913	 * observe this inconsistency.
2914	 */
2915	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2916		ret = 0;
2917
2918no_block:
2919	/*
2920	 * Fixup the pi_state owner and possibly acquire the lock if we
2921	 * haven't already.
2922	 */
2923	res = fixup_owner(uaddr, &q, !ret);
2924	/*
2925	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2926	 * the lock, clear our -ETIMEDOUT or -EINTR.
2927	 */
2928	if (res)
2929		ret = (res < 0) ? res : 0;
2930
2931	/*
2932	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2933	 * it and return the fault to userspace.
2934	 */
2935	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2936		pi_state = q.pi_state;
2937		get_pi_state(pi_state);
2938	}
2939
2940	/* Unqueue and drop the lock */
2941	unqueue_me_pi(&q);
2942
2943	if (pi_state) {
2944		rt_mutex_futex_unlock(&pi_state->pi_mutex);
2945		put_pi_state(pi_state);
2946	}
2947
2948	goto out_put_key;
2949
2950out_unlock_put_key:
2951	queue_unlock(hb);
2952
2953out_put_key:
2954	put_futex_key(&q.key);
2955out:
2956	if (to) {
2957		hrtimer_cancel(&to->timer);
2958		destroy_hrtimer_on_stack(&to->timer);
2959	}
2960	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2961
2962uaddr_faulted:
2963	queue_unlock(hb);
2964
2965	ret = fault_in_user_writeable(uaddr);
2966	if (ret)
2967		goto out_put_key;
2968
2969	if (!(flags & FLAGS_SHARED))
2970		goto retry_private;
2971
2972	put_futex_key(&q.key);
2973	goto retry;
2974}
2975
2976/*
2977 * Userspace attempted a TID -> 0 atomic transition, and failed.
2978 * This is the in-kernel slowpath: we look up the PI state (if any),
2979 * and do the rt-mutex unlock.
2980 */
2981static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2982{
2983	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2984	union futex_key key = FUTEX_KEY_INIT;
2985	struct futex_hash_bucket *hb;
2986	struct futex_q *top_waiter;
2987	int ret;
2988
2989	if (!IS_ENABLED(CONFIG_FUTEX_PI))
2990		return -ENOSYS;
2991
2992retry:
2993	if (get_user(uval, uaddr))
2994		return -EFAULT;
2995	/*
2996	 * We release only a lock we actually own:
2997	 */
2998	if ((uval & FUTEX_TID_MASK) != vpid)
2999		return -EPERM;
3000
3001	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3002	if (ret)
3003		return ret;
3004
3005	hb = hash_futex(&key);
3006	spin_lock(&hb->lock);
3007
3008	/*
3009	 * Check waiters first. We do not trust user space values at
3010	 * all and we at least want to know if user space fiddled
3011	 * with the futex value instead of blindly unlocking.
3012	 */
3013	top_waiter = futex_top_waiter(hb, &key);
3014	if (top_waiter) {
3015		struct futex_pi_state *pi_state = top_waiter->pi_state;
3016
3017		ret = -EINVAL;
3018		if (!pi_state)
3019			goto out_unlock;
3020
3021		/*
3022		 * If current does not own the pi_state then the futex is
3023		 * inconsistent and user space fiddled with the futex value.
3024		 */
3025		if (pi_state->owner != current)
3026			goto out_unlock;
3027
3028		get_pi_state(pi_state);
3029		/*
3030		 * By taking wait_lock while still holding hb->lock, we ensure
3031		 * there is no point where we hold neither; and therefore
3032		 * wake_futex_pi() must observe a state consistent with what we
3033		 * observed.
3034		 *
3035		 * In particular; this forces __rt_mutex_start_proxy() to
3036		 * complete such that we're guaranteed to observe the
3037		 * rt_waiter. Also see the WARN in wake_futex_pi().
3038		 */
3039		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3040		spin_unlock(&hb->lock);
3041
3042		/* drops pi_state->pi_mutex.wait_lock */
3043		ret = wake_futex_pi(uaddr, uval, pi_state);
3044
3045		put_pi_state(pi_state);
3046
3047		/*
3048		 * Success, we're done! No tricky corner cases.
3049		 */
3050		if (!ret)
3051			goto out_putkey;
3052		/*
3053		 * The atomic access to the futex value generated a
3054		 * pagefault, so retry the user-access and the wakeup:
3055		 */
3056		if (ret == -EFAULT)
3057			goto pi_faulted;
3058		/*
3059		 * A unconditional UNLOCK_PI op raced against a waiter
3060		 * setting the FUTEX_WAITERS bit. Try again.
3061		 */
3062		if (ret == -EAGAIN)
3063			goto pi_retry;
 
 
3064		/*
3065		 * wake_futex_pi has detected invalid state. Tell user
3066		 * space.
3067		 */
3068		goto out_putkey;
3069	}
3070
3071	/*
3072	 * We have no kernel internal state, i.e. no waiters in the
3073	 * kernel. Waiters which are about to queue themselves are stuck
3074	 * on hb->lock. So we can safely ignore them. We do neither
3075	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3076	 * owner.
3077	 */
3078	if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3079		spin_unlock(&hb->lock);
3080		switch (ret) {
3081		case -EFAULT:
3082			goto pi_faulted;
3083
3084		case -EAGAIN:
3085			goto pi_retry;
3086
3087		default:
3088			WARN_ON_ONCE(1);
3089			goto out_putkey;
3090		}
3091	}
3092
3093	/*
3094	 * If uval has changed, let user space handle it.
3095	 */
3096	ret = (curval == uval) ? 0 : -EAGAIN;
3097
3098out_unlock:
3099	spin_unlock(&hb->lock);
3100out_putkey:
3101	put_futex_key(&key);
3102	return ret;
3103
3104pi_retry:
3105	put_futex_key(&key);
3106	cond_resched();
3107	goto retry;
3108
3109pi_faulted:
3110	put_futex_key(&key);
3111
3112	ret = fault_in_user_writeable(uaddr);
3113	if (!ret)
3114		goto retry;
3115
3116	return ret;
3117}
3118
3119/**
3120 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3121 * @hb:		the hash_bucket futex_q was original enqueued on
3122 * @q:		the futex_q woken while waiting to be requeued
3123 * @key2:	the futex_key of the requeue target futex
3124 * @timeout:	the timeout associated with the wait (NULL if none)
3125 *
3126 * Detect if the task was woken on the initial futex as opposed to the requeue
3127 * target futex.  If so, determine if it was a timeout or a signal that caused
3128 * the wakeup and return the appropriate error code to the caller.  Must be
3129 * called with the hb lock held.
3130 *
3131 * Return:
3132 *  -  0 = no early wakeup detected;
3133 *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3134 */
3135static inline
3136int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3137				   struct futex_q *q, union futex_key *key2,
3138				   struct hrtimer_sleeper *timeout)
3139{
3140	int ret = 0;
3141
3142	/*
3143	 * With the hb lock held, we avoid races while we process the wakeup.
3144	 * We only need to hold hb (and not hb2) to ensure atomicity as the
3145	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3146	 * It can't be requeued from uaddr2 to something else since we don't
3147	 * support a PI aware source futex for requeue.
3148	 */
3149	if (!match_futex(&q->key, key2)) {
3150		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3151		/*
3152		 * We were woken prior to requeue by a timeout or a signal.
3153		 * Unqueue the futex_q and determine which it was.
3154		 */
3155		plist_del(&q->list, &hb->chain);
3156		hb_waiters_dec(hb);
3157
3158		/* Handle spurious wakeups gracefully */
3159		ret = -EWOULDBLOCK;
3160		if (timeout && !timeout->task)
3161			ret = -ETIMEDOUT;
3162		else if (signal_pending(current))
3163			ret = -ERESTARTNOINTR;
3164	}
3165	return ret;
3166}
3167
3168/**
3169 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3170 * @uaddr:	the futex we initially wait on (non-pi)
3171 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3172 *		the same type, no requeueing from private to shared, etc.
3173 * @val:	the expected value of uaddr
3174 * @abs_time:	absolute timeout
3175 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
3176 * @uaddr2:	the pi futex we will take prior to returning to user-space
3177 *
3178 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3179 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3180 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3181 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3182 * without one, the pi logic would not know which task to boost/deboost, if
3183 * there was a need to.
3184 *
3185 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3186 * via the following--
3187 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3188 * 2) wakeup on uaddr2 after a requeue
3189 * 3) signal
3190 * 4) timeout
3191 *
3192 * If 3, cleanup and return -ERESTARTNOINTR.
3193 *
3194 * If 2, we may then block on trying to take the rt_mutex and return via:
3195 * 5) successful lock
3196 * 6) signal
3197 * 7) timeout
3198 * 8) other lock acquisition failure
3199 *
3200 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3201 *
3202 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3203 *
3204 * Return:
3205 *  -  0 - On success;
3206 *  - <0 - On error
3207 */
3208static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3209				 u32 val, ktime_t *abs_time, u32 bitset,
3210				 u32 __user *uaddr2)
3211{
3212	struct hrtimer_sleeper timeout, *to;
3213	struct futex_pi_state *pi_state = NULL;
3214	struct rt_mutex_waiter rt_waiter;
3215	struct futex_hash_bucket *hb;
3216	union futex_key key2 = FUTEX_KEY_INIT;
3217	struct futex_q q = futex_q_init;
3218	int res, ret;
3219
3220	if (!IS_ENABLED(CONFIG_FUTEX_PI))
3221		return -ENOSYS;
3222
3223	if (uaddr == uaddr2)
3224		return -EINVAL;
3225
3226	if (!bitset)
3227		return -EINVAL;
3228
3229	to = futex_setup_timer(abs_time, &timeout, flags,
3230			       current->timer_slack_ns);
 
 
 
 
 
 
 
3231
3232	/*
3233	 * The waiter is allocated on our stack, manipulated by the requeue
3234	 * code while we sleep on uaddr.
3235	 */
3236	rt_mutex_init_waiter(&rt_waiter);
3237
3238	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3239	if (unlikely(ret != 0))
3240		goto out;
3241
3242	q.bitset = bitset;
3243	q.rt_waiter = &rt_waiter;
3244	q.requeue_pi_key = &key2;
3245
3246	/*
3247	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3248	 * count.
3249	 */
3250	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3251	if (ret)
3252		goto out_key2;
3253
3254	/*
3255	 * The check above which compares uaddrs is not sufficient for
3256	 * shared futexes. We need to compare the keys:
3257	 */
3258	if (match_futex(&q.key, &key2)) {
3259		queue_unlock(hb);
3260		ret = -EINVAL;
3261		goto out_put_keys;
3262	}
3263
3264	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
3265	futex_wait_queue_me(hb, &q, to);
3266
3267	spin_lock(&hb->lock);
3268	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3269	spin_unlock(&hb->lock);
3270	if (ret)
3271		goto out_put_keys;
3272
3273	/*
3274	 * In order for us to be here, we know our q.key == key2, and since
3275	 * we took the hb->lock above, we also know that futex_requeue() has
3276	 * completed and we no longer have to concern ourselves with a wakeup
3277	 * race with the atomic proxy lock acquisition by the requeue code. The
3278	 * futex_requeue dropped our key1 reference and incremented our key2
3279	 * reference count.
3280	 */
3281
3282	/* Check if the requeue code acquired the second futex for us. */
3283	if (!q.rt_waiter) {
3284		/*
3285		 * Got the lock. We might not be the anticipated owner if we
3286		 * did a lock-steal - fix up the PI-state in that case.
3287		 */
3288		if (q.pi_state && (q.pi_state->owner != current)) {
3289			spin_lock(q.lock_ptr);
3290			ret = fixup_pi_state_owner(uaddr2, &q, current);
3291			if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3292				pi_state = q.pi_state;
3293				get_pi_state(pi_state);
3294			}
3295			/*
3296			 * Drop the reference to the pi state which
3297			 * the requeue_pi() code acquired for us.
3298			 */
3299			put_pi_state(q.pi_state);
3300			spin_unlock(q.lock_ptr);
3301		}
3302	} else {
3303		struct rt_mutex *pi_mutex;
3304
3305		/*
3306		 * We have been woken up by futex_unlock_pi(), a timeout, or a
3307		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3308		 * the pi_state.
3309		 */
3310		WARN_ON(!q.pi_state);
3311		pi_mutex = &q.pi_state->pi_mutex;
3312		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3313
3314		spin_lock(q.lock_ptr);
3315		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3316			ret = 0;
3317
3318		debug_rt_mutex_free_waiter(&rt_waiter);
3319		/*
3320		 * Fixup the pi_state owner and possibly acquire the lock if we
3321		 * haven't already.
3322		 */
3323		res = fixup_owner(uaddr2, &q, !ret);
3324		/*
3325		 * If fixup_owner() returned an error, proprogate that.  If it
3326		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3327		 */
3328		if (res)
3329			ret = (res < 0) ? res : 0;
3330
3331		/*
3332		 * If fixup_pi_state_owner() faulted and was unable to handle
3333		 * the fault, unlock the rt_mutex and return the fault to
3334		 * userspace.
3335		 */
3336		if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3337			pi_state = q.pi_state;
3338			get_pi_state(pi_state);
3339		}
3340
3341		/* Unqueue and drop the lock. */
3342		unqueue_me_pi(&q);
3343	}
3344
3345	if (pi_state) {
3346		rt_mutex_futex_unlock(&pi_state->pi_mutex);
3347		put_pi_state(pi_state);
3348	}
3349
3350	if (ret == -EINTR) {
3351		/*
3352		 * We've already been requeued, but cannot restart by calling
3353		 * futex_lock_pi() directly. We could restart this syscall, but
3354		 * it would detect that the user space "val" changed and return
3355		 * -EWOULDBLOCK.  Save the overhead of the restart and return
3356		 * -EWOULDBLOCK directly.
3357		 */
3358		ret = -EWOULDBLOCK;
3359	}
3360
3361out_put_keys:
3362	put_futex_key(&q.key);
3363out_key2:
3364	put_futex_key(&key2);
3365
3366out:
3367	if (to) {
3368		hrtimer_cancel(&to->timer);
3369		destroy_hrtimer_on_stack(&to->timer);
3370	}
3371	return ret;
3372}
3373
3374/*
3375 * Support for robust futexes: the kernel cleans up held futexes at
3376 * thread exit time.
3377 *
3378 * Implementation: user-space maintains a per-thread list of locks it
3379 * is holding. Upon do_exit(), the kernel carefully walks this list,
3380 * and marks all locks that are owned by this thread with the
3381 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3382 * always manipulated with the lock held, so the list is private and
3383 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3384 * field, to allow the kernel to clean up if the thread dies after
3385 * acquiring the lock, but just before it could have added itself to
3386 * the list. There can only be one such pending lock.
3387 */
3388
3389/**
3390 * sys_set_robust_list() - Set the robust-futex list head of a task
3391 * @head:	pointer to the list-head
3392 * @len:	length of the list-head, as userspace expects
3393 */
3394SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3395		size_t, len)
3396{
3397	if (!futex_cmpxchg_enabled)
3398		return -ENOSYS;
3399	/*
3400	 * The kernel knows only one size for now:
3401	 */
3402	if (unlikely(len != sizeof(*head)))
3403		return -EINVAL;
3404
3405	current->robust_list = head;
3406
3407	return 0;
3408}
3409
3410/**
3411 * sys_get_robust_list() - Get the robust-futex list head of a task
3412 * @pid:	pid of the process [zero for current task]
3413 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
3414 * @len_ptr:	pointer to a length field, the kernel fills in the header size
3415 */
3416SYSCALL_DEFINE3(get_robust_list, int, pid,
3417		struct robust_list_head __user * __user *, head_ptr,
3418		size_t __user *, len_ptr)
3419{
3420	struct robust_list_head __user *head;
3421	unsigned long ret;
3422	struct task_struct *p;
3423
3424	if (!futex_cmpxchg_enabled)
3425		return -ENOSYS;
3426
3427	rcu_read_lock();
3428
3429	ret = -ESRCH;
3430	if (!pid)
3431		p = current;
3432	else {
3433		p = find_task_by_vpid(pid);
3434		if (!p)
3435			goto err_unlock;
3436	}
3437
3438	ret = -EPERM;
3439	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3440		goto err_unlock;
3441
3442	head = p->robust_list;
3443	rcu_read_unlock();
3444
3445	if (put_user(sizeof(*head), len_ptr))
3446		return -EFAULT;
3447	return put_user(head, head_ptr);
3448
3449err_unlock:
3450	rcu_read_unlock();
3451
3452	return ret;
3453}
3454
3455/*
3456 * Process a futex-list entry, check whether it's owned by the
3457 * dying task, and do notification if so:
3458 */
3459static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3460{
3461	u32 uval, uninitialized_var(nval), mval;
3462	int err;
3463
3464	/* Futex address must be 32bit aligned */
3465	if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3466		return -1;
3467
3468retry:
3469	if (get_user(uval, uaddr))
3470		return -1;
3471
3472	if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3473		return 0;
3474
3475	/*
3476	 * Ok, this dying thread is truly holding a futex
3477	 * of interest. Set the OWNER_DIED bit atomically
3478	 * via cmpxchg, and if the value had FUTEX_WAITERS
3479	 * set, wake up a waiter (if any). (We have to do a
3480	 * futex_wake() even if OWNER_DIED is already set -
3481	 * to handle the rare but possible case of recursive
3482	 * thread-death.) The rest of the cleanup is done in
3483	 * userspace.
3484	 */
3485	mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3486
3487	/*
3488	 * We are not holding a lock here, but we want to have
3489	 * the pagefault_disable/enable() protection because
3490	 * we want to handle the fault gracefully. If the
3491	 * access fails we try to fault in the futex with R/W
3492	 * verification via get_user_pages. get_user() above
3493	 * does not guarantee R/W access. If that fails we
3494	 * give up and leave the futex locked.
3495	 */
3496	if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3497		switch (err) {
3498		case -EFAULT:
3499			if (fault_in_user_writeable(uaddr))
3500				return -1;
3501			goto retry;
3502
3503		case -EAGAIN:
3504			cond_resched();
3505			goto retry;
3506
3507		default:
3508			WARN_ON_ONCE(1);
3509			return err;
3510		}
 
 
3511	}
3512
3513	if (nval != uval)
3514		goto retry;
3515
3516	/*
3517	 * Wake robust non-PI futexes here. The wakeup of
3518	 * PI futexes happens in exit_pi_state():
3519	 */
3520	if (!pi && (uval & FUTEX_WAITERS))
3521		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3522
3523	return 0;
3524}
3525
3526/*
3527 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3528 */
3529static inline int fetch_robust_entry(struct robust_list __user **entry,
3530				     struct robust_list __user * __user *head,
3531				     unsigned int *pi)
3532{
3533	unsigned long uentry;
3534
3535	if (get_user(uentry, (unsigned long __user *)head))
3536		return -EFAULT;
3537
3538	*entry = (void __user *)(uentry & ~1UL);
3539	*pi = uentry & 1;
3540
3541	return 0;
3542}
3543
3544/*
3545 * Walk curr->robust_list (very carefully, it's a userspace list!)
3546 * and mark any locks found there dead, and notify any waiters.
3547 *
3548 * We silently return on any sign of list-walking problem.
3549 */
3550void exit_robust_list(struct task_struct *curr)
3551{
3552	struct robust_list_head __user *head = curr->robust_list;
3553	struct robust_list __user *entry, *next_entry, *pending;
3554	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3555	unsigned int uninitialized_var(next_pi);
3556	unsigned long futex_offset;
3557	int rc;
3558
3559	if (!futex_cmpxchg_enabled)
3560		return;
3561
3562	/*
3563	 * Fetch the list head (which was registered earlier, via
3564	 * sys_set_robust_list()):
3565	 */
3566	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3567		return;
3568	/*
3569	 * Fetch the relative futex offset:
3570	 */
3571	if (get_user(futex_offset, &head->futex_offset))
3572		return;
3573	/*
3574	 * Fetch any possibly pending lock-add first, and handle it
3575	 * if it exists:
3576	 */
3577	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3578		return;
3579
3580	next_entry = NULL;	/* avoid warning with gcc */
3581	while (entry != &head->list) {
3582		/*
3583		 * Fetch the next entry in the list before calling
3584		 * handle_futex_death:
3585		 */
3586		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3587		/*
3588		 * A pending lock might already be on the list, so
3589		 * don't process it twice:
3590		 */
3591		if (entry != pending)
3592			if (handle_futex_death((void __user *)entry + futex_offset,
3593						curr, pi))
3594				return;
3595		if (rc)
3596			return;
3597		entry = next_entry;
3598		pi = next_pi;
3599		/*
3600		 * Avoid excessively long or circular lists:
3601		 */
3602		if (!--limit)
3603			break;
3604
3605		cond_resched();
3606	}
3607
3608	if (pending)
3609		handle_futex_death((void __user *)pending + futex_offset,
3610				   curr, pip);
3611}
3612
3613long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3614		u32 __user *uaddr2, u32 val2, u32 val3)
3615{
3616	int cmd = op & FUTEX_CMD_MASK;
3617	unsigned int flags = 0;
3618
3619	if (!(op & FUTEX_PRIVATE_FLAG))
3620		flags |= FLAGS_SHARED;
3621
3622	if (op & FUTEX_CLOCK_REALTIME) {
3623		flags |= FLAGS_CLOCKRT;
3624		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3625		    cmd != FUTEX_WAIT_REQUEUE_PI)
3626			return -ENOSYS;
3627	}
3628
3629	switch (cmd) {
3630	case FUTEX_LOCK_PI:
3631	case FUTEX_UNLOCK_PI:
3632	case FUTEX_TRYLOCK_PI:
3633	case FUTEX_WAIT_REQUEUE_PI:
3634	case FUTEX_CMP_REQUEUE_PI:
3635		if (!futex_cmpxchg_enabled)
3636			return -ENOSYS;
3637	}
3638
3639	switch (cmd) {
3640	case FUTEX_WAIT:
3641		val3 = FUTEX_BITSET_MATCH_ANY;
3642		/* fall through */
3643	case FUTEX_WAIT_BITSET:
3644		return futex_wait(uaddr, flags, val, timeout, val3);
3645	case FUTEX_WAKE:
3646		val3 = FUTEX_BITSET_MATCH_ANY;
3647		/* fall through */
3648	case FUTEX_WAKE_BITSET:
3649		return futex_wake(uaddr, flags, val, val3);
3650	case FUTEX_REQUEUE:
3651		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3652	case FUTEX_CMP_REQUEUE:
3653		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3654	case FUTEX_WAKE_OP:
3655		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3656	case FUTEX_LOCK_PI:
3657		return futex_lock_pi(uaddr, flags, timeout, 0);
3658	case FUTEX_UNLOCK_PI:
3659		return futex_unlock_pi(uaddr, flags);
3660	case FUTEX_TRYLOCK_PI:
3661		return futex_lock_pi(uaddr, flags, NULL, 1);
3662	case FUTEX_WAIT_REQUEUE_PI:
3663		val3 = FUTEX_BITSET_MATCH_ANY;
3664		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3665					     uaddr2);
3666	case FUTEX_CMP_REQUEUE_PI:
3667		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3668	}
3669	return -ENOSYS;
3670}
3671
3672
3673SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3674		struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3675		u32, val3)
3676{
3677	struct timespec64 ts;
3678	ktime_t t, *tp = NULL;
3679	u32 val2 = 0;
3680	int cmd = op & FUTEX_CMD_MASK;
3681
3682	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3683		      cmd == FUTEX_WAIT_BITSET ||
3684		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3685		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3686			return -EFAULT;
3687		if (get_timespec64(&ts, utime))
3688			return -EFAULT;
3689		if (!timespec64_valid(&ts))
3690			return -EINVAL;
3691
3692		t = timespec64_to_ktime(ts);
3693		if (cmd == FUTEX_WAIT)
3694			t = ktime_add_safe(ktime_get(), t);
3695		tp = &t;
3696	}
3697	/*
3698	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3699	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3700	 */
3701	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3702	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3703		val2 = (u32) (unsigned long) utime;
3704
3705	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3706}
3707
3708#ifdef CONFIG_COMPAT
3709/*
3710 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3711 */
3712static inline int
3713compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3714		   compat_uptr_t __user *head, unsigned int *pi)
3715{
3716	if (get_user(*uentry, head))
3717		return -EFAULT;
3718
3719	*entry = compat_ptr((*uentry) & ~1);
3720	*pi = (unsigned int)(*uentry) & 1;
3721
3722	return 0;
3723}
3724
3725static void __user *futex_uaddr(struct robust_list __user *entry,
3726				compat_long_t futex_offset)
3727{
3728	compat_uptr_t base = ptr_to_compat(entry);
3729	void __user *uaddr = compat_ptr(base + futex_offset);
3730
3731	return uaddr;
3732}
3733
3734/*
3735 * Walk curr->robust_list (very carefully, it's a userspace list!)
3736 * and mark any locks found there dead, and notify any waiters.
3737 *
3738 * We silently return on any sign of list-walking problem.
3739 */
3740void compat_exit_robust_list(struct task_struct *curr)
3741{
3742	struct compat_robust_list_head __user *head = curr->compat_robust_list;
3743	struct robust_list __user *entry, *next_entry, *pending;
3744	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3745	unsigned int uninitialized_var(next_pi);
3746	compat_uptr_t uentry, next_uentry, upending;
3747	compat_long_t futex_offset;
3748	int rc;
3749
3750	if (!futex_cmpxchg_enabled)
3751		return;
3752
3753	/*
3754	 * Fetch the list head (which was registered earlier, via
3755	 * sys_set_robust_list()):
3756	 */
3757	if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3758		return;
3759	/*
3760	 * Fetch the relative futex offset:
3761	 */
3762	if (get_user(futex_offset, &head->futex_offset))
3763		return;
3764	/*
3765	 * Fetch any possibly pending lock-add first, and handle it
3766	 * if it exists:
3767	 */
3768	if (compat_fetch_robust_entry(&upending, &pending,
3769			       &head->list_op_pending, &pip))
3770		return;
3771
3772	next_entry = NULL;	/* avoid warning with gcc */
3773	while (entry != (struct robust_list __user *) &head->list) {
3774		/*
3775		 * Fetch the next entry in the list before calling
3776		 * handle_futex_death:
3777		 */
3778		rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3779			(compat_uptr_t __user *)&entry->next, &next_pi);
3780		/*
3781		 * A pending lock might already be on the list, so
3782		 * dont process it twice:
3783		 */
3784		if (entry != pending) {
3785			void __user *uaddr = futex_uaddr(entry, futex_offset);
3786
3787			if (handle_futex_death(uaddr, curr, pi))
3788				return;
3789		}
3790		if (rc)
3791			return;
3792		uentry = next_uentry;
3793		entry = next_entry;
3794		pi = next_pi;
3795		/*
3796		 * Avoid excessively long or circular lists:
3797		 */
3798		if (!--limit)
3799			break;
3800
3801		cond_resched();
3802	}
3803	if (pending) {
3804		void __user *uaddr = futex_uaddr(pending, futex_offset);
3805
3806		handle_futex_death(uaddr, curr, pip);
3807	}
3808}
3809
3810COMPAT_SYSCALL_DEFINE2(set_robust_list,
3811		struct compat_robust_list_head __user *, head,
3812		compat_size_t, len)
3813{
3814	if (!futex_cmpxchg_enabled)
3815		return -ENOSYS;
3816
3817	if (unlikely(len != sizeof(*head)))
3818		return -EINVAL;
3819
3820	current->compat_robust_list = head;
3821
3822	return 0;
3823}
3824
3825COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3826			compat_uptr_t __user *, head_ptr,
3827			compat_size_t __user *, len_ptr)
3828{
3829	struct compat_robust_list_head __user *head;
3830	unsigned long ret;
3831	struct task_struct *p;
3832
3833	if (!futex_cmpxchg_enabled)
3834		return -ENOSYS;
3835
3836	rcu_read_lock();
3837
3838	ret = -ESRCH;
3839	if (!pid)
3840		p = current;
3841	else {
3842		p = find_task_by_vpid(pid);
3843		if (!p)
3844			goto err_unlock;
3845	}
3846
3847	ret = -EPERM;
3848	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3849		goto err_unlock;
3850
3851	head = p->compat_robust_list;
3852	rcu_read_unlock();
3853
3854	if (put_user(sizeof(*head), len_ptr))
3855		return -EFAULT;
3856	return put_user(ptr_to_compat(head), head_ptr);
3857
3858err_unlock:
3859	rcu_read_unlock();
3860
3861	return ret;
3862}
3863#endif /* CONFIG_COMPAT */
3864
3865#ifdef CONFIG_COMPAT_32BIT_TIME
3866SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3867		struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3868		u32, val3)
3869{
3870	struct timespec64 ts;
3871	ktime_t t, *tp = NULL;
3872	int val2 = 0;
3873	int cmd = op & FUTEX_CMD_MASK;
3874
3875	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3876		      cmd == FUTEX_WAIT_BITSET ||
3877		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3878		if (get_old_timespec32(&ts, utime))
3879			return -EFAULT;
3880		if (!timespec64_valid(&ts))
3881			return -EINVAL;
3882
3883		t = timespec64_to_ktime(ts);
3884		if (cmd == FUTEX_WAIT)
3885			t = ktime_add_safe(ktime_get(), t);
3886		tp = &t;
3887	}
3888	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3889	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3890		val2 = (int) (unsigned long) utime;
3891
3892	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3893}
3894#endif /* CONFIG_COMPAT_32BIT_TIME */
3895
3896static void __init futex_detect_cmpxchg(void)
3897{
3898#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3899	u32 curval;
3900
3901	/*
3902	 * This will fail and we want it. Some arch implementations do
3903	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3904	 * functionality. We want to know that before we call in any
3905	 * of the complex code paths. Also we want to prevent
3906	 * registration of robust lists in that case. NULL is
3907	 * guaranteed to fault and we get -EFAULT on functional
3908	 * implementation, the non-functional ones will return
3909	 * -ENOSYS.
3910	 */
3911	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3912		futex_cmpxchg_enabled = 1;
3913#endif
3914}
3915
3916static int __init futex_init(void)
3917{
3918	unsigned int futex_shift;
3919	unsigned long i;
3920
3921#if CONFIG_BASE_SMALL
3922	futex_hashsize = 16;
3923#else
3924	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3925#endif
3926
3927	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3928					       futex_hashsize, 0,
3929					       futex_hashsize < 256 ? HASH_SMALL : 0,
3930					       &futex_shift, NULL,
3931					       futex_hashsize, futex_hashsize);
3932	futex_hashsize = 1UL << futex_shift;
3933
3934	futex_detect_cmpxchg();
3935
3936	for (i = 0; i < futex_hashsize; i++) {
3937		atomic_set(&futex_queues[i].waiters, 0);
3938		plist_head_init(&futex_queues[i].chain);
3939		spin_lock_init(&futex_queues[i].lock);
3940	}
3941
3942	return 0;
3943}
3944core_initcall(futex_init);
v4.17
 
   1/*
   2 *  Fast Userspace Mutexes (which I call "Futexes!").
   3 *  (C) Rusty Russell, IBM 2002
   4 *
   5 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   6 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   7 *
   8 *  Removed page pinning, fix privately mapped COW pages and other cleanups
   9 *  (C) Copyright 2003, 2004 Jamie Lokier
  10 *
  11 *  Robust futex support started by Ingo Molnar
  12 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14 *
  15 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  16 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18 *
  19 *  PRIVATE futexes by Eric Dumazet
  20 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21 *
  22 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23 *  Copyright (C) IBM Corporation, 2009
  24 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25 *
  26 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27 *  enough at me, Linus for the original (flawed) idea, Matthew
  28 *  Kirkwood for proof-of-concept implementation.
  29 *
  30 *  "The futexes are also cursed."
  31 *  "But they come in a choice of three flavours!"
  32 *
  33 *  This program is free software; you can redistribute it and/or modify
  34 *  it under the terms of the GNU General Public License as published by
  35 *  the Free Software Foundation; either version 2 of the License, or
  36 *  (at your option) any later version.
  37 *
  38 *  This program is distributed in the hope that it will be useful,
  39 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  40 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  41 *  GNU General Public License for more details.
  42 *
  43 *  You should have received a copy of the GNU General Public License
  44 *  along with this program; if not, write to the Free Software
  45 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  46 */
 
  47#include <linux/slab.h>
  48#include <linux/poll.h>
  49#include <linux/fs.h>
  50#include <linux/file.h>
  51#include <linux/jhash.h>
  52#include <linux/init.h>
  53#include <linux/futex.h>
  54#include <linux/mount.h>
  55#include <linux/pagemap.h>
  56#include <linux/syscalls.h>
  57#include <linux/signal.h>
  58#include <linux/export.h>
  59#include <linux/magic.h>
  60#include <linux/pid.h>
  61#include <linux/nsproxy.h>
  62#include <linux/ptrace.h>
  63#include <linux/sched/rt.h>
  64#include <linux/sched/wake_q.h>
  65#include <linux/sched/mm.h>
  66#include <linux/hugetlb.h>
  67#include <linux/freezer.h>
  68#include <linux/bootmem.h>
  69#include <linux/fault-inject.h>
 
  70
  71#include <asm/futex.h>
  72
  73#include "locking/rtmutex_common.h"
  74
  75/*
  76 * READ this before attempting to hack on futexes!
  77 *
  78 * Basic futex operation and ordering guarantees
  79 * =============================================
  80 *
  81 * The waiter reads the futex value in user space and calls
  82 * futex_wait(). This function computes the hash bucket and acquires
  83 * the hash bucket lock. After that it reads the futex user space value
  84 * again and verifies that the data has not changed. If it has not changed
  85 * it enqueues itself into the hash bucket, releases the hash bucket lock
  86 * and schedules.
  87 *
  88 * The waker side modifies the user space value of the futex and calls
  89 * futex_wake(). This function computes the hash bucket and acquires the
  90 * hash bucket lock. Then it looks for waiters on that futex in the hash
  91 * bucket and wakes them.
  92 *
  93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
  94 * the hb spinlock can be avoided and simply return. In order for this
  95 * optimization to work, ordering guarantees must exist so that the waiter
  96 * being added to the list is acknowledged when the list is concurrently being
  97 * checked by the waker, avoiding scenarios like the following:
  98 *
  99 * CPU 0                               CPU 1
 100 * val = *futex;
 101 * sys_futex(WAIT, futex, val);
 102 *   futex_wait(futex, val);
 103 *   uval = *futex;
 104 *                                     *futex = newval;
 105 *                                     sys_futex(WAKE, futex);
 106 *                                       futex_wake(futex);
 107 *                                       if (queue_empty())
 108 *                                         return;
 109 *   if (uval == val)
 110 *      lock(hash_bucket(futex));
 111 *      queue();
 112 *     unlock(hash_bucket(futex));
 113 *     schedule();
 114 *
 115 * This would cause the waiter on CPU 0 to wait forever because it
 116 * missed the transition of the user space value from val to newval
 117 * and the waker did not find the waiter in the hash bucket queue.
 118 *
 119 * The correct serialization ensures that a waiter either observes
 120 * the changed user space value before blocking or is woken by a
 121 * concurrent waker:
 122 *
 123 * CPU 0                                 CPU 1
 124 * val = *futex;
 125 * sys_futex(WAIT, futex, val);
 126 *   futex_wait(futex, val);
 127 *
 128 *   waiters++; (a)
 129 *   smp_mb(); (A) <-- paired with -.
 130 *                                  |
 131 *   lock(hash_bucket(futex));      |
 132 *                                  |
 133 *   uval = *futex;                 |
 134 *                                  |        *futex = newval;
 135 *                                  |        sys_futex(WAKE, futex);
 136 *                                  |          futex_wake(futex);
 137 *                                  |
 138 *                                  `--------> smp_mb(); (B)
 139 *   if (uval == val)
 140 *     queue();
 141 *     unlock(hash_bucket(futex));
 142 *     schedule();                         if (waiters)
 143 *                                           lock(hash_bucket(futex));
 144 *   else                                    wake_waiters(futex);
 145 *     waiters--; (b)                        unlock(hash_bucket(futex));
 146 *
 147 * Where (A) orders the waiters increment and the futex value read through
 148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
 149 * to futex and the waiters read -- this is done by the barriers for both
 150 * shared and private futexes in get_futex_key_refs().
 151 *
 152 * This yields the following case (where X:=waiters, Y:=futex):
 153 *
 154 *	X = Y = 0
 155 *
 156 *	w[X]=1		w[Y]=1
 157 *	MB		MB
 158 *	r[Y]=y		r[X]=x
 159 *
 160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 161 * the guarantee that we cannot both miss the futex variable change and the
 162 * enqueue.
 163 *
 164 * Note that a new waiter is accounted for in (a) even when it is possible that
 165 * the wait call can return error, in which case we backtrack from it in (b).
 166 * Refer to the comment in queue_lock().
 167 *
 168 * Similarly, in order to account for waiters being requeued on another
 169 * address we always increment the waiters for the destination bucket before
 170 * acquiring the lock. It then decrements them again  after releasing it -
 171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 172 * will do the additional required waiter count housekeeping. This is done for
 173 * double_lock_hb() and double_unlock_hb(), respectively.
 174 */
 175
 176#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
 177int __read_mostly futex_cmpxchg_enabled;
 
 
 178#endif
 179
 180/*
 181 * Futex flags used to encode options to functions and preserve them across
 182 * restarts.
 183 */
 184#ifdef CONFIG_MMU
 185# define FLAGS_SHARED		0x01
 186#else
 187/*
 188 * NOMMU does not have per process address space. Let the compiler optimize
 189 * code away.
 190 */
 191# define FLAGS_SHARED		0x00
 192#endif
 193#define FLAGS_CLOCKRT		0x02
 194#define FLAGS_HAS_TIMEOUT	0x04
 195
 196/*
 197 * Priority Inheritance state:
 198 */
 199struct futex_pi_state {
 200	/*
 201	 * list of 'owned' pi_state instances - these have to be
 202	 * cleaned up in do_exit() if the task exits prematurely:
 203	 */
 204	struct list_head list;
 205
 206	/*
 207	 * The PI object:
 208	 */
 209	struct rt_mutex pi_mutex;
 210
 211	struct task_struct *owner;
 212	atomic_t refcount;
 213
 214	union futex_key key;
 215} __randomize_layout;
 216
 217/**
 218 * struct futex_q - The hashed futex queue entry, one per waiting task
 219 * @list:		priority-sorted list of tasks waiting on this futex
 220 * @task:		the task waiting on the futex
 221 * @lock_ptr:		the hash bucket lock
 222 * @key:		the key the futex is hashed on
 223 * @pi_state:		optional priority inheritance state
 224 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 225 * @requeue_pi_key:	the requeue_pi target futex key
 226 * @bitset:		bitset for the optional bitmasked wakeup
 227 *
 228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
 229 * we can wake only the relevant ones (hashed queues may be shared).
 230 *
 231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 233 * The order of wakeup is always to make the first condition true, then
 234 * the second.
 235 *
 236 * PI futexes are typically woken before they are removed from the hash list via
 237 * the rt_mutex code. See unqueue_me_pi().
 238 */
 239struct futex_q {
 240	struct plist_node list;
 241
 242	struct task_struct *task;
 243	spinlock_t *lock_ptr;
 244	union futex_key key;
 245	struct futex_pi_state *pi_state;
 246	struct rt_mutex_waiter *rt_waiter;
 247	union futex_key *requeue_pi_key;
 248	u32 bitset;
 249} __randomize_layout;
 250
 251static const struct futex_q futex_q_init = {
 252	/* list gets initialized in queue_me()*/
 253	.key = FUTEX_KEY_INIT,
 254	.bitset = FUTEX_BITSET_MATCH_ANY
 255};
 256
 257/*
 258 * Hash buckets are shared by all the futex_keys that hash to the same
 259 * location.  Each key may have multiple futex_q structures, one for each task
 260 * waiting on a futex.
 261 */
 262struct futex_hash_bucket {
 263	atomic_t waiters;
 264	spinlock_t lock;
 265	struct plist_head chain;
 266} ____cacheline_aligned_in_smp;
 267
 268/*
 269 * The base of the bucket array and its size are always used together
 270 * (after initialization only in hash_futex()), so ensure that they
 271 * reside in the same cacheline.
 272 */
 273static struct {
 274	struct futex_hash_bucket *queues;
 275	unsigned long            hashsize;
 276} __futex_data __read_mostly __aligned(2*sizeof(long));
 277#define futex_queues   (__futex_data.queues)
 278#define futex_hashsize (__futex_data.hashsize)
 279
 280
 281/*
 282 * Fault injections for futexes.
 283 */
 284#ifdef CONFIG_FAIL_FUTEX
 285
 286static struct {
 287	struct fault_attr attr;
 288
 289	bool ignore_private;
 290} fail_futex = {
 291	.attr = FAULT_ATTR_INITIALIZER,
 292	.ignore_private = false,
 293};
 294
 295static int __init setup_fail_futex(char *str)
 296{
 297	return setup_fault_attr(&fail_futex.attr, str);
 298}
 299__setup("fail_futex=", setup_fail_futex);
 300
 301static bool should_fail_futex(bool fshared)
 302{
 303	if (fail_futex.ignore_private && !fshared)
 304		return false;
 305
 306	return should_fail(&fail_futex.attr, 1);
 307}
 308
 309#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 310
 311static int __init fail_futex_debugfs(void)
 312{
 313	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
 314	struct dentry *dir;
 315
 316	dir = fault_create_debugfs_attr("fail_futex", NULL,
 317					&fail_futex.attr);
 318	if (IS_ERR(dir))
 319		return PTR_ERR(dir);
 320
 321	if (!debugfs_create_bool("ignore-private", mode, dir,
 322				 &fail_futex.ignore_private)) {
 323		debugfs_remove_recursive(dir);
 324		return -ENOMEM;
 325	}
 326
 327	return 0;
 328}
 329
 330late_initcall(fail_futex_debugfs);
 331
 332#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 333
 334#else
 335static inline bool should_fail_futex(bool fshared)
 336{
 337	return false;
 338}
 339#endif /* CONFIG_FAIL_FUTEX */
 340
 341static inline void futex_get_mm(union futex_key *key)
 342{
 343	mmgrab(key->private.mm);
 344	/*
 345	 * Ensure futex_get_mm() implies a full barrier such that
 346	 * get_futex_key() implies a full barrier. This is relied upon
 347	 * as smp_mb(); (B), see the ordering comment above.
 348	 */
 349	smp_mb__after_atomic();
 350}
 351
 352/*
 353 * Reflects a new waiter being added to the waitqueue.
 354 */
 355static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
 356{
 357#ifdef CONFIG_SMP
 358	atomic_inc(&hb->waiters);
 359	/*
 360	 * Full barrier (A), see the ordering comment above.
 361	 */
 362	smp_mb__after_atomic();
 363#endif
 364}
 365
 366/*
 367 * Reflects a waiter being removed from the waitqueue by wakeup
 368 * paths.
 369 */
 370static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
 371{
 372#ifdef CONFIG_SMP
 373	atomic_dec(&hb->waiters);
 374#endif
 375}
 376
 377static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
 378{
 379#ifdef CONFIG_SMP
 380	return atomic_read(&hb->waiters);
 381#else
 382	return 1;
 383#endif
 384}
 385
 386/**
 387 * hash_futex - Return the hash bucket in the global hash
 388 * @key:	Pointer to the futex key for which the hash is calculated
 389 *
 390 * We hash on the keys returned from get_futex_key (see below) and return the
 391 * corresponding hash bucket in the global hash.
 392 */
 393static struct futex_hash_bucket *hash_futex(union futex_key *key)
 394{
 395	u32 hash = jhash2((u32*)&key->both.word,
 396			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 397			  key->both.offset);
 398	return &futex_queues[hash & (futex_hashsize - 1)];
 399}
 400
 401
 402/**
 403 * match_futex - Check whether two futex keys are equal
 404 * @key1:	Pointer to key1
 405 * @key2:	Pointer to key2
 406 *
 407 * Return 1 if two futex_keys are equal, 0 otherwise.
 408 */
 409static inline int match_futex(union futex_key *key1, union futex_key *key2)
 410{
 411	return (key1 && key2
 412		&& key1->both.word == key2->both.word
 413		&& key1->both.ptr == key2->both.ptr
 414		&& key1->both.offset == key2->both.offset);
 415}
 416
 417/*
 418 * Take a reference to the resource addressed by a key.
 419 * Can be called while holding spinlocks.
 420 *
 421 */
 422static void get_futex_key_refs(union futex_key *key)
 423{
 424	if (!key->both.ptr)
 425		return;
 426
 427	/*
 428	 * On MMU less systems futexes are always "private" as there is no per
 429	 * process address space. We need the smp wmb nevertheless - yes,
 430	 * arch/blackfin has MMU less SMP ...
 431	 */
 432	if (!IS_ENABLED(CONFIG_MMU)) {
 433		smp_mb(); /* explicit smp_mb(); (B) */
 434		return;
 435	}
 436
 437	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 438	case FUT_OFF_INODE:
 439		ihold(key->shared.inode); /* implies smp_mb(); (B) */
 440		break;
 441	case FUT_OFF_MMSHARED:
 442		futex_get_mm(key); /* implies smp_mb(); (B) */
 443		break;
 444	default:
 445		/*
 446		 * Private futexes do not hold reference on an inode or
 447		 * mm, therefore the only purpose of calling get_futex_key_refs
 448		 * is because we need the barrier for the lockless waiter check.
 449		 */
 450		smp_mb(); /* explicit smp_mb(); (B) */
 451	}
 452}
 453
 454/*
 455 * Drop a reference to the resource addressed by a key.
 456 * The hash bucket spinlock must not be held. This is
 457 * a no-op for private futexes, see comment in the get
 458 * counterpart.
 459 */
 460static void drop_futex_key_refs(union futex_key *key)
 461{
 462	if (!key->both.ptr) {
 463		/* If we're here then we tried to put a key we failed to get */
 464		WARN_ON_ONCE(1);
 465		return;
 466	}
 467
 468	if (!IS_ENABLED(CONFIG_MMU))
 469		return;
 470
 471	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 472	case FUT_OFF_INODE:
 473		iput(key->shared.inode);
 474		break;
 475	case FUT_OFF_MMSHARED:
 476		mmdrop(key->private.mm);
 477		break;
 478	}
 479}
 480
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 481/**
 482 * get_futex_key() - Get parameters which are the keys for a futex
 483 * @uaddr:	virtual address of the futex
 484 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 485 * @key:	address where result is stored.
 486 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 487 *              VERIFY_WRITE)
 488 *
 489 * Return: a negative error code or 0
 490 *
 491 * The key words are stored in @key on success.
 492 *
 493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
 494 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 495 * We can usually work out the index without swapping in the page.
 496 *
 497 * lock_page() might sleep, the caller should not hold a spinlock.
 498 */
 499static int
 500get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 501{
 502	unsigned long address = (unsigned long)uaddr;
 503	struct mm_struct *mm = current->mm;
 504	struct page *page, *tail;
 505	struct address_space *mapping;
 506	int err, ro = 0;
 507
 508	/*
 509	 * The futex address must be "naturally" aligned.
 510	 */
 511	key->both.offset = address % PAGE_SIZE;
 512	if (unlikely((address % sizeof(u32)) != 0))
 513		return -EINVAL;
 514	address -= key->both.offset;
 515
 516	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
 517		return -EFAULT;
 518
 519	if (unlikely(should_fail_futex(fshared)))
 520		return -EFAULT;
 521
 522	/*
 523	 * PROCESS_PRIVATE futexes are fast.
 524	 * As the mm cannot disappear under us and the 'key' only needs
 525	 * virtual address, we dont even have to find the underlying vma.
 526	 * Note : We do have to check 'uaddr' is a valid user address,
 527	 *        but access_ok() should be faster than find_vma()
 528	 */
 529	if (!fshared) {
 530		key->private.mm = mm;
 531		key->private.address = address;
 532		get_futex_key_refs(key);  /* implies smp_mb(); (B) */
 533		return 0;
 534	}
 535
 536again:
 537	/* Ignore any VERIFY_READ mapping (futex common case) */
 538	if (unlikely(should_fail_futex(fshared)))
 539		return -EFAULT;
 540
 541	err = get_user_pages_fast(address, 1, 1, &page);
 542	/*
 543	 * If write access is not required (eg. FUTEX_WAIT), try
 544	 * and get read-only access.
 545	 */
 546	if (err == -EFAULT && rw == VERIFY_READ) {
 547		err = get_user_pages_fast(address, 1, 0, &page);
 548		ro = 1;
 549	}
 550	if (err < 0)
 551		return err;
 552	else
 553		err = 0;
 554
 555	/*
 556	 * The treatment of mapping from this point on is critical. The page
 557	 * lock protects many things but in this context the page lock
 558	 * stabilizes mapping, prevents inode freeing in the shared
 559	 * file-backed region case and guards against movement to swap cache.
 560	 *
 561	 * Strictly speaking the page lock is not needed in all cases being
 562	 * considered here and page lock forces unnecessarily serialization
 563	 * From this point on, mapping will be re-verified if necessary and
 564	 * page lock will be acquired only if it is unavoidable
 565	 *
 566	 * Mapping checks require the head page for any compound page so the
 567	 * head page and mapping is looked up now. For anonymous pages, it
 568	 * does not matter if the page splits in the future as the key is
 569	 * based on the address. For filesystem-backed pages, the tail is
 570	 * required as the index of the page determines the key. For
 571	 * base pages, there is no tail page and tail == page.
 572	 */
 573	tail = page;
 574	page = compound_head(page);
 575	mapping = READ_ONCE(page->mapping);
 576
 577	/*
 578	 * If page->mapping is NULL, then it cannot be a PageAnon
 579	 * page; but it might be the ZERO_PAGE or in the gate area or
 580	 * in a special mapping (all cases which we are happy to fail);
 581	 * or it may have been a good file page when get_user_pages_fast
 582	 * found it, but truncated or holepunched or subjected to
 583	 * invalidate_complete_page2 before we got the page lock (also
 584	 * cases which we are happy to fail).  And we hold a reference,
 585	 * so refcount care in invalidate_complete_page's remove_mapping
 586	 * prevents drop_caches from setting mapping to NULL beneath us.
 587	 *
 588	 * The case we do have to guard against is when memory pressure made
 589	 * shmem_writepage move it from filecache to swapcache beneath us:
 590	 * an unlikely race, but we do need to retry for page->mapping.
 591	 */
 592	if (unlikely(!mapping)) {
 593		int shmem_swizzled;
 594
 595		/*
 596		 * Page lock is required to identify which special case above
 597		 * applies. If this is really a shmem page then the page lock
 598		 * will prevent unexpected transitions.
 599		 */
 600		lock_page(page);
 601		shmem_swizzled = PageSwapCache(page) || page->mapping;
 602		unlock_page(page);
 603		put_page(page);
 604
 605		if (shmem_swizzled)
 606			goto again;
 607
 608		return -EFAULT;
 609	}
 610
 611	/*
 612	 * Private mappings are handled in a simple way.
 613	 *
 614	 * If the futex key is stored on an anonymous page, then the associated
 615	 * object is the mm which is implicitly pinned by the calling process.
 616	 *
 617	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 618	 * it's a read-only handle, it's expected that futexes attach to
 619	 * the object not the particular process.
 620	 */
 621	if (PageAnon(page)) {
 622		/*
 623		 * A RO anonymous page will never change and thus doesn't make
 624		 * sense for futex operations.
 625		 */
 626		if (unlikely(should_fail_futex(fshared)) || ro) {
 627			err = -EFAULT;
 628			goto out;
 629		}
 630
 631		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 632		key->private.mm = mm;
 633		key->private.address = address;
 634
 635		get_futex_key_refs(key); /* implies smp_mb(); (B) */
 636
 637	} else {
 638		struct inode *inode;
 639
 640		/*
 641		 * The associated futex object in this case is the inode and
 642		 * the page->mapping must be traversed. Ordinarily this should
 643		 * be stabilised under page lock but it's not strictly
 644		 * necessary in this case as we just want to pin the inode, not
 645		 * update the radix tree or anything like that.
 646		 *
 647		 * The RCU read lock is taken as the inode is finally freed
 648		 * under RCU. If the mapping still matches expectations then the
 649		 * mapping->host can be safely accessed as being a valid inode.
 650		 */
 651		rcu_read_lock();
 652
 653		if (READ_ONCE(page->mapping) != mapping) {
 654			rcu_read_unlock();
 655			put_page(page);
 656
 657			goto again;
 658		}
 659
 660		inode = READ_ONCE(mapping->host);
 661		if (!inode) {
 662			rcu_read_unlock();
 663			put_page(page);
 664
 665			goto again;
 666		}
 667
 668		/*
 669		 * Take a reference unless it is about to be freed. Previously
 670		 * this reference was taken by ihold under the page lock
 671		 * pinning the inode in place so i_lock was unnecessary. The
 672		 * only way for this check to fail is if the inode was
 673		 * truncated in parallel which is almost certainly an
 674		 * application bug. In such a case, just retry.
 675		 *
 676		 * We are not calling into get_futex_key_refs() in file-backed
 677		 * cases, therefore a successful atomic_inc return below will
 678		 * guarantee that get_futex_key() will still imply smp_mb(); (B).
 679		 */
 680		if (!atomic_inc_not_zero(&inode->i_count)) {
 681			rcu_read_unlock();
 682			put_page(page);
 683
 684			goto again;
 685		}
 686
 687		/* Should be impossible but lets be paranoid for now */
 688		if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
 689			err = -EFAULT;
 690			rcu_read_unlock();
 691			iput(inode);
 692
 693			goto out;
 694		}
 695
 696		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 697		key->shared.inode = inode;
 698		key->shared.pgoff = basepage_index(tail);
 699		rcu_read_unlock();
 700	}
 701
 702out:
 703	put_page(page);
 704	return err;
 705}
 706
 707static inline void put_futex_key(union futex_key *key)
 708{
 709	drop_futex_key_refs(key);
 710}
 711
 712/**
 713 * fault_in_user_writeable() - Fault in user address and verify RW access
 714 * @uaddr:	pointer to faulting user space address
 715 *
 716 * Slow path to fixup the fault we just took in the atomic write
 717 * access to @uaddr.
 718 *
 719 * We have no generic implementation of a non-destructive write to the
 720 * user address. We know that we faulted in the atomic pagefault
 721 * disabled section so we can as well avoid the #PF overhead by
 722 * calling get_user_pages() right away.
 723 */
 724static int fault_in_user_writeable(u32 __user *uaddr)
 725{
 726	struct mm_struct *mm = current->mm;
 727	int ret;
 728
 729	down_read(&mm->mmap_sem);
 730	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 731			       FAULT_FLAG_WRITE, NULL);
 732	up_read(&mm->mmap_sem);
 733
 734	return ret < 0 ? ret : 0;
 735}
 736
 737/**
 738 * futex_top_waiter() - Return the highest priority waiter on a futex
 739 * @hb:		the hash bucket the futex_q's reside in
 740 * @key:	the futex key (to distinguish it from other futex futex_q's)
 741 *
 742 * Must be called with the hb lock held.
 743 */
 744static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 745					union futex_key *key)
 746{
 747	struct futex_q *this;
 748
 749	plist_for_each_entry(this, &hb->chain, list) {
 750		if (match_futex(&this->key, key))
 751			return this;
 752	}
 753	return NULL;
 754}
 755
 756static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 757				      u32 uval, u32 newval)
 758{
 759	int ret;
 760
 761	pagefault_disable();
 762	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 763	pagefault_enable();
 764
 765	return ret;
 766}
 767
 768static int get_futex_value_locked(u32 *dest, u32 __user *from)
 769{
 770	int ret;
 771
 772	pagefault_disable();
 773	ret = __get_user(*dest, from);
 774	pagefault_enable();
 775
 776	return ret ? -EFAULT : 0;
 777}
 778
 779
 780/*
 781 * PI code:
 782 */
 783static int refill_pi_state_cache(void)
 784{
 785	struct futex_pi_state *pi_state;
 786
 787	if (likely(current->pi_state_cache))
 788		return 0;
 789
 790	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 791
 792	if (!pi_state)
 793		return -ENOMEM;
 794
 795	INIT_LIST_HEAD(&pi_state->list);
 796	/* pi_mutex gets initialized later */
 797	pi_state->owner = NULL;
 798	atomic_set(&pi_state->refcount, 1);
 799	pi_state->key = FUTEX_KEY_INIT;
 800
 801	current->pi_state_cache = pi_state;
 802
 803	return 0;
 804}
 805
 806static struct futex_pi_state *alloc_pi_state(void)
 807{
 808	struct futex_pi_state *pi_state = current->pi_state_cache;
 809
 810	WARN_ON(!pi_state);
 811	current->pi_state_cache = NULL;
 812
 813	return pi_state;
 814}
 815
 816static void get_pi_state(struct futex_pi_state *pi_state)
 817{
 818	WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
 819}
 820
 821/*
 822 * Drops a reference to the pi_state object and frees or caches it
 823 * when the last reference is gone.
 824 */
 825static void put_pi_state(struct futex_pi_state *pi_state)
 826{
 827	if (!pi_state)
 828		return;
 829
 830	if (!atomic_dec_and_test(&pi_state->refcount))
 831		return;
 832
 833	/*
 834	 * If pi_state->owner is NULL, the owner is most probably dying
 835	 * and has cleaned up the pi_state already
 836	 */
 837	if (pi_state->owner) {
 838		struct task_struct *owner;
 839
 840		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
 841		owner = pi_state->owner;
 842		if (owner) {
 843			raw_spin_lock(&owner->pi_lock);
 844			list_del_init(&pi_state->list);
 845			raw_spin_unlock(&owner->pi_lock);
 846		}
 847		rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
 848		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 849	}
 850
 851	if (current->pi_state_cache) {
 852		kfree(pi_state);
 853	} else {
 854		/*
 855		 * pi_state->list is already empty.
 856		 * clear pi_state->owner.
 857		 * refcount is at 0 - put it back to 1.
 858		 */
 859		pi_state->owner = NULL;
 860		atomic_set(&pi_state->refcount, 1);
 861		current->pi_state_cache = pi_state;
 862	}
 863}
 864
 865#ifdef CONFIG_FUTEX_PI
 866
 867/*
 868 * This task is holding PI mutexes at exit time => bad.
 869 * Kernel cleans up PI-state, but userspace is likely hosed.
 870 * (Robust-futex cleanup is separate and might save the day for userspace.)
 871 */
 872void exit_pi_state_list(struct task_struct *curr)
 873{
 874	struct list_head *next, *head = &curr->pi_state_list;
 875	struct futex_pi_state *pi_state;
 876	struct futex_hash_bucket *hb;
 877	union futex_key key = FUTEX_KEY_INIT;
 878
 879	if (!futex_cmpxchg_enabled)
 880		return;
 881	/*
 882	 * We are a ZOMBIE and nobody can enqueue itself on
 883	 * pi_state_list anymore, but we have to be careful
 884	 * versus waiters unqueueing themselves:
 885	 */
 886	raw_spin_lock_irq(&curr->pi_lock);
 887	while (!list_empty(head)) {
 888		next = head->next;
 889		pi_state = list_entry(next, struct futex_pi_state, list);
 890		key = pi_state->key;
 891		hb = hash_futex(&key);
 892
 893		/*
 894		 * We can race against put_pi_state() removing itself from the
 895		 * list (a waiter going away). put_pi_state() will first
 896		 * decrement the reference count and then modify the list, so
 897		 * its possible to see the list entry but fail this reference
 898		 * acquire.
 899		 *
 900		 * In that case; drop the locks to let put_pi_state() make
 901		 * progress and retry the loop.
 902		 */
 903		if (!atomic_inc_not_zero(&pi_state->refcount)) {
 904			raw_spin_unlock_irq(&curr->pi_lock);
 905			cpu_relax();
 906			raw_spin_lock_irq(&curr->pi_lock);
 907			continue;
 908		}
 909		raw_spin_unlock_irq(&curr->pi_lock);
 910
 911		spin_lock(&hb->lock);
 912		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
 913		raw_spin_lock(&curr->pi_lock);
 914		/*
 915		 * We dropped the pi-lock, so re-check whether this
 916		 * task still owns the PI-state:
 917		 */
 918		if (head->next != next) {
 919			/* retain curr->pi_lock for the loop invariant */
 920			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 921			spin_unlock(&hb->lock);
 922			put_pi_state(pi_state);
 923			continue;
 924		}
 925
 926		WARN_ON(pi_state->owner != curr);
 927		WARN_ON(list_empty(&pi_state->list));
 928		list_del_init(&pi_state->list);
 929		pi_state->owner = NULL;
 930
 931		raw_spin_unlock(&curr->pi_lock);
 932		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 933		spin_unlock(&hb->lock);
 934
 935		rt_mutex_futex_unlock(&pi_state->pi_mutex);
 936		put_pi_state(pi_state);
 937
 938		raw_spin_lock_irq(&curr->pi_lock);
 939	}
 940	raw_spin_unlock_irq(&curr->pi_lock);
 941}
 942
 943#endif
 944
 945/*
 946 * We need to check the following states:
 947 *
 948 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 949 *
 950 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 951 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 952 *
 953 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 954 *
 955 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 956 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 957 *
 958 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 959 *
 960 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 961 *
 962 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 963 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 964 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 965 *
 966 * [1]	Indicates that the kernel can acquire the futex atomically. We
 967 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 968 *
 969 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 970 *      thread is found then it indicates that the owner TID has died.
 971 *
 972 * [3]	Invalid. The waiter is queued on a non PI futex
 973 *
 974 * [4]	Valid state after exit_robust_list(), which sets the user space
 975 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 976 *
 977 * [5]	The user space value got manipulated between exit_robust_list()
 978 *	and exit_pi_state_list()
 979 *
 980 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 981 *	the pi_state but cannot access the user space value.
 982 *
 983 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 984 *
 985 * [8]	Owner and user space value match
 986 *
 987 * [9]	There is no transient state which sets the user space TID to 0
 988 *	except exit_robust_list(), but this is indicated by the
 989 *	FUTEX_OWNER_DIED bit. See [4]
 990 *
 991 * [10] There is no transient state which leaves owner and user space
 992 *	TID out of sync.
 993 *
 994 *
 995 * Serialization and lifetime rules:
 996 *
 997 * hb->lock:
 998 *
 999 *	hb -> futex_q, relation
1000 *	futex_q -> pi_state, relation
1001 *
1002 *	(cannot be raw because hb can contain arbitrary amount
1003 *	 of futex_q's)
1004 *
1005 * pi_mutex->wait_lock:
1006 *
1007 *	{uval, pi_state}
1008 *
1009 *	(and pi_mutex 'obviously')
1010 *
1011 * p->pi_lock:
1012 *
1013 *	p->pi_state_list -> pi_state->list, relation
1014 *
1015 * pi_state->refcount:
1016 *
1017 *	pi_state lifetime
1018 *
1019 *
1020 * Lock order:
1021 *
1022 *   hb->lock
1023 *     pi_mutex->wait_lock
1024 *       p->pi_lock
1025 *
1026 */
1027
1028/*
1029 * Validate that the existing waiter has a pi_state and sanity check
1030 * the pi_state against the user space value. If correct, attach to
1031 * it.
1032 */
1033static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1034			      struct futex_pi_state *pi_state,
1035			      struct futex_pi_state **ps)
1036{
1037	pid_t pid = uval & FUTEX_TID_MASK;
1038	u32 uval2;
1039	int ret;
1040
1041	/*
1042	 * Userspace might have messed up non-PI and PI futexes [3]
1043	 */
1044	if (unlikely(!pi_state))
1045		return -EINVAL;
1046
1047	/*
1048	 * We get here with hb->lock held, and having found a
1049	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1050	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1051	 * which in turn means that futex_lock_pi() still has a reference on
1052	 * our pi_state.
1053	 *
1054	 * The waiter holding a reference on @pi_state also protects against
1055	 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1056	 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1057	 * free pi_state before we can take a reference ourselves.
1058	 */
1059	WARN_ON(!atomic_read(&pi_state->refcount));
1060
1061	/*
1062	 * Now that we have a pi_state, we can acquire wait_lock
1063	 * and do the state validation.
1064	 */
1065	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1066
1067	/*
1068	 * Since {uval, pi_state} is serialized by wait_lock, and our current
1069	 * uval was read without holding it, it can have changed. Verify it
1070	 * still is what we expect it to be, otherwise retry the entire
1071	 * operation.
1072	 */
1073	if (get_futex_value_locked(&uval2, uaddr))
1074		goto out_efault;
1075
1076	if (uval != uval2)
1077		goto out_eagain;
1078
1079	/*
1080	 * Handle the owner died case:
1081	 */
1082	if (uval & FUTEX_OWNER_DIED) {
1083		/*
1084		 * exit_pi_state_list sets owner to NULL and wakes the
1085		 * topmost waiter. The task which acquires the
1086		 * pi_state->rt_mutex will fixup owner.
1087		 */
1088		if (!pi_state->owner) {
1089			/*
1090			 * No pi state owner, but the user space TID
1091			 * is not 0. Inconsistent state. [5]
1092			 */
1093			if (pid)
1094				goto out_einval;
1095			/*
1096			 * Take a ref on the state and return success. [4]
1097			 */
1098			goto out_attach;
1099		}
1100
1101		/*
1102		 * If TID is 0, then either the dying owner has not
1103		 * yet executed exit_pi_state_list() or some waiter
1104		 * acquired the rtmutex in the pi state, but did not
1105		 * yet fixup the TID in user space.
1106		 *
1107		 * Take a ref on the state and return success. [6]
1108		 */
1109		if (!pid)
1110			goto out_attach;
1111	} else {
1112		/*
1113		 * If the owner died bit is not set, then the pi_state
1114		 * must have an owner. [7]
1115		 */
1116		if (!pi_state->owner)
1117			goto out_einval;
1118	}
1119
1120	/*
1121	 * Bail out if user space manipulated the futex value. If pi
1122	 * state exists then the owner TID must be the same as the
1123	 * user space TID. [9/10]
1124	 */
1125	if (pid != task_pid_vnr(pi_state->owner))
1126		goto out_einval;
1127
1128out_attach:
1129	get_pi_state(pi_state);
1130	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1131	*ps = pi_state;
1132	return 0;
1133
1134out_einval:
1135	ret = -EINVAL;
1136	goto out_error;
1137
1138out_eagain:
1139	ret = -EAGAIN;
1140	goto out_error;
1141
1142out_efault:
1143	ret = -EFAULT;
1144	goto out_error;
1145
1146out_error:
1147	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1148	return ret;
1149}
1150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1151/*
1152 * Lookup the task for the TID provided from user space and attach to
1153 * it after doing proper sanity checks.
1154 */
1155static int attach_to_pi_owner(u32 uval, union futex_key *key,
1156			      struct futex_pi_state **ps)
1157{
1158	pid_t pid = uval & FUTEX_TID_MASK;
1159	struct futex_pi_state *pi_state;
1160	struct task_struct *p;
1161
1162	/*
1163	 * We are the first waiter - try to look up the real owner and attach
1164	 * the new pi_state to it, but bail out when TID = 0 [1]
 
 
 
1165	 */
1166	if (!pid)
1167		return -ESRCH;
1168	p = find_get_task_by_vpid(pid);
1169	if (!p)
1170		return -ESRCH;
1171
1172	if (unlikely(p->flags & PF_KTHREAD)) {
1173		put_task_struct(p);
1174		return -EPERM;
1175	}
1176
1177	/*
1178	 * We need to look at the task state flags to figure out,
1179	 * whether the task is exiting. To protect against the do_exit
1180	 * change of the task flags, we do this protected by
1181	 * p->pi_lock:
1182	 */
1183	raw_spin_lock_irq(&p->pi_lock);
1184	if (unlikely(p->flags & PF_EXITING)) {
1185		/*
1186		 * The task is on the way out. When PF_EXITPIDONE is
1187		 * set, we know that the task has finished the
1188		 * cleanup:
1189		 */
1190		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1191
1192		raw_spin_unlock_irq(&p->pi_lock);
1193		put_task_struct(p);
1194		return ret;
1195	}
1196
1197	/*
1198	 * No existing pi state. First waiter. [2]
1199	 *
1200	 * This creates pi_state, we have hb->lock held, this means nothing can
1201	 * observe this state, wait_lock is irrelevant.
1202	 */
1203	pi_state = alloc_pi_state();
1204
1205	/*
1206	 * Initialize the pi_mutex in locked state and make @p
1207	 * the owner of it:
1208	 */
1209	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1210
1211	/* Store the key for possible exit cleanups: */
1212	pi_state->key = *key;
1213
1214	WARN_ON(!list_empty(&pi_state->list));
1215	list_add(&pi_state->list, &p->pi_state_list);
1216	/*
1217	 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1218	 * because there is no concurrency as the object is not published yet.
1219	 */
1220	pi_state->owner = p;
1221	raw_spin_unlock_irq(&p->pi_lock);
1222
1223	put_task_struct(p);
1224
1225	*ps = pi_state;
1226
1227	return 0;
1228}
1229
1230static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1231			   struct futex_hash_bucket *hb,
1232			   union futex_key *key, struct futex_pi_state **ps)
1233{
1234	struct futex_q *top_waiter = futex_top_waiter(hb, key);
1235
1236	/*
1237	 * If there is a waiter on that futex, validate it and
1238	 * attach to the pi_state when the validation succeeds.
1239	 */
1240	if (top_waiter)
1241		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1242
1243	/*
1244	 * We are the first waiter - try to look up the owner based on
1245	 * @uval and attach to it.
1246	 */
1247	return attach_to_pi_owner(uval, key, ps);
1248}
1249
1250static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1251{
 
1252	u32 uninitialized_var(curval);
1253
1254	if (unlikely(should_fail_futex(true)))
1255		return -EFAULT;
1256
1257	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1258		return -EFAULT;
 
1259
1260	/* If user space value changed, let the caller retry */
1261	return curval != uval ? -EAGAIN : 0;
1262}
1263
1264/**
1265 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1266 * @uaddr:		the pi futex user address
1267 * @hb:			the pi futex hash bucket
1268 * @key:		the futex key associated with uaddr and hb
1269 * @ps:			the pi_state pointer where we store the result of the
1270 *			lookup
1271 * @task:		the task to perform the atomic lock work for.  This will
1272 *			be "current" except in the case of requeue pi.
1273 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1274 *
1275 * Return:
1276 *  -  0 - ready to wait;
1277 *  -  1 - acquired the lock;
1278 *  - <0 - error
1279 *
1280 * The hb->lock and futex_key refs shall be held by the caller.
1281 */
1282static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1283				union futex_key *key,
1284				struct futex_pi_state **ps,
1285				struct task_struct *task, int set_waiters)
1286{
1287	u32 uval, newval, vpid = task_pid_vnr(task);
1288	struct futex_q *top_waiter;
1289	int ret;
1290
1291	/*
1292	 * Read the user space value first so we can validate a few
1293	 * things before proceeding further.
1294	 */
1295	if (get_futex_value_locked(&uval, uaddr))
1296		return -EFAULT;
1297
1298	if (unlikely(should_fail_futex(true)))
1299		return -EFAULT;
1300
1301	/*
1302	 * Detect deadlocks.
1303	 */
1304	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1305		return -EDEADLK;
1306
1307	if ((unlikely(should_fail_futex(true))))
1308		return -EDEADLK;
1309
1310	/*
1311	 * Lookup existing state first. If it exists, try to attach to
1312	 * its pi_state.
1313	 */
1314	top_waiter = futex_top_waiter(hb, key);
1315	if (top_waiter)
1316		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1317
1318	/*
1319	 * No waiter and user TID is 0. We are here because the
1320	 * waiters or the owner died bit is set or called from
1321	 * requeue_cmp_pi or for whatever reason something took the
1322	 * syscall.
1323	 */
1324	if (!(uval & FUTEX_TID_MASK)) {
1325		/*
1326		 * We take over the futex. No other waiters and the user space
1327		 * TID is 0. We preserve the owner died bit.
1328		 */
1329		newval = uval & FUTEX_OWNER_DIED;
1330		newval |= vpid;
1331
1332		/* The futex requeue_pi code can enforce the waiters bit */
1333		if (set_waiters)
1334			newval |= FUTEX_WAITERS;
1335
1336		ret = lock_pi_update_atomic(uaddr, uval, newval);
1337		/* If the take over worked, return 1 */
1338		return ret < 0 ? ret : 1;
1339	}
1340
1341	/*
1342	 * First waiter. Set the waiters bit before attaching ourself to
1343	 * the owner. If owner tries to unlock, it will be forced into
1344	 * the kernel and blocked on hb->lock.
1345	 */
1346	newval = uval | FUTEX_WAITERS;
1347	ret = lock_pi_update_atomic(uaddr, uval, newval);
1348	if (ret)
1349		return ret;
1350	/*
1351	 * If the update of the user space value succeeded, we try to
1352	 * attach to the owner. If that fails, no harm done, we only
1353	 * set the FUTEX_WAITERS bit in the user space variable.
1354	 */
1355	return attach_to_pi_owner(uval, key, ps);
1356}
1357
1358/**
1359 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1360 * @q:	The futex_q to unqueue
1361 *
1362 * The q->lock_ptr must not be NULL and must be held by the caller.
1363 */
1364static void __unqueue_futex(struct futex_q *q)
1365{
1366	struct futex_hash_bucket *hb;
1367
1368	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1369	    || WARN_ON(plist_node_empty(&q->list)))
1370		return;
 
1371
1372	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1373	plist_del(&q->list, &hb->chain);
1374	hb_waiters_dec(hb);
1375}
1376
1377/*
1378 * The hash bucket lock must be held when this is called.
1379 * Afterwards, the futex_q must not be accessed. Callers
1380 * must ensure to later call wake_up_q() for the actual
1381 * wakeups to occur.
1382 */
1383static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1384{
1385	struct task_struct *p = q->task;
1386
1387	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1388		return;
1389
1390	/*
1391	 * Queue the task for later wakeup for after we've released
1392	 * the hb->lock. wake_q_add() grabs reference to p.
1393	 */
1394	wake_q_add(wake_q, p);
1395	__unqueue_futex(q);
1396	/*
1397	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1398	 * is written, without taking any locks. This is possible in the event
1399	 * of a spurious wakeup, for example. A memory barrier is required here
1400	 * to prevent the following store to lock_ptr from getting ahead of the
1401	 * plist_del in __unqueue_futex().
1402	 */
1403	smp_store_release(&q->lock_ptr, NULL);
 
 
 
 
 
 
1404}
1405
1406/*
1407 * Caller must hold a reference on @pi_state.
1408 */
1409static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1410{
1411	u32 uninitialized_var(curval), newval;
1412	struct task_struct *new_owner;
1413	bool postunlock = false;
1414	DEFINE_WAKE_Q(wake_q);
1415	int ret = 0;
1416
1417	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1418	if (WARN_ON_ONCE(!new_owner)) {
1419		/*
1420		 * As per the comment in futex_unlock_pi() this should not happen.
1421		 *
1422		 * When this happens, give up our locks and try again, giving
1423		 * the futex_lock_pi() instance time to complete, either by
1424		 * waiting on the rtmutex or removing itself from the futex
1425		 * queue.
1426		 */
1427		ret = -EAGAIN;
1428		goto out_unlock;
1429	}
1430
1431	/*
1432	 * We pass it to the next owner. The WAITERS bit is always kept
1433	 * enabled while there is PI state around. We cleanup the owner
1434	 * died bit, because we are the owner.
1435	 */
1436	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1437
1438	if (unlikely(should_fail_futex(true)))
1439		ret = -EFAULT;
1440
1441	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1442		ret = -EFAULT;
1443
1444	} else if (curval != uval) {
1445		/*
1446		 * If a unconditional UNLOCK_PI operation (user space did not
1447		 * try the TID->0 transition) raced with a waiter setting the
1448		 * FUTEX_WAITERS flag between get_user() and locking the hash
1449		 * bucket lock, retry the operation.
1450		 */
1451		if ((FUTEX_TID_MASK & curval) == uval)
1452			ret = -EAGAIN;
1453		else
1454			ret = -EINVAL;
1455	}
1456
1457	if (ret)
1458		goto out_unlock;
1459
1460	/*
1461	 * This is a point of no return; once we modify the uval there is no
1462	 * going back and subsequent operations must not fail.
1463	 */
1464
1465	raw_spin_lock(&pi_state->owner->pi_lock);
1466	WARN_ON(list_empty(&pi_state->list));
1467	list_del_init(&pi_state->list);
1468	raw_spin_unlock(&pi_state->owner->pi_lock);
1469
1470	raw_spin_lock(&new_owner->pi_lock);
1471	WARN_ON(!list_empty(&pi_state->list));
1472	list_add(&pi_state->list, &new_owner->pi_state_list);
1473	pi_state->owner = new_owner;
1474	raw_spin_unlock(&new_owner->pi_lock);
1475
1476	postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1477
1478out_unlock:
1479	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1480
1481	if (postunlock)
1482		rt_mutex_postunlock(&wake_q);
1483
1484	return ret;
1485}
1486
1487/*
1488 * Express the locking dependencies for lockdep:
1489 */
1490static inline void
1491double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1492{
1493	if (hb1 <= hb2) {
1494		spin_lock(&hb1->lock);
1495		if (hb1 < hb2)
1496			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1497	} else { /* hb1 > hb2 */
1498		spin_lock(&hb2->lock);
1499		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1500	}
1501}
1502
1503static inline void
1504double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1505{
1506	spin_unlock(&hb1->lock);
1507	if (hb1 != hb2)
1508		spin_unlock(&hb2->lock);
1509}
1510
1511/*
1512 * Wake up waiters matching bitset queued on this futex (uaddr).
1513 */
1514static int
1515futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1516{
1517	struct futex_hash_bucket *hb;
1518	struct futex_q *this, *next;
1519	union futex_key key = FUTEX_KEY_INIT;
1520	int ret;
1521	DEFINE_WAKE_Q(wake_q);
1522
1523	if (!bitset)
1524		return -EINVAL;
1525
1526	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1527	if (unlikely(ret != 0))
1528		goto out;
1529
1530	hb = hash_futex(&key);
1531
1532	/* Make sure we really have tasks to wakeup */
1533	if (!hb_waiters_pending(hb))
1534		goto out_put_key;
1535
1536	spin_lock(&hb->lock);
1537
1538	plist_for_each_entry_safe(this, next, &hb->chain, list) {
1539		if (match_futex (&this->key, &key)) {
1540			if (this->pi_state || this->rt_waiter) {
1541				ret = -EINVAL;
1542				break;
1543			}
1544
1545			/* Check if one of the bits is set in both bitsets */
1546			if (!(this->bitset & bitset))
1547				continue;
1548
1549			mark_wake_futex(&wake_q, this);
1550			if (++ret >= nr_wake)
1551				break;
1552		}
1553	}
1554
1555	spin_unlock(&hb->lock);
1556	wake_up_q(&wake_q);
1557out_put_key:
1558	put_futex_key(&key);
1559out:
1560	return ret;
1561}
1562
1563static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1564{
1565	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
1566	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
1567	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1568	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1569	int oldval, ret;
1570
1571	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1572		if (oparg < 0 || oparg > 31) {
1573			char comm[sizeof(current->comm)];
1574			/*
1575			 * kill this print and return -EINVAL when userspace
1576			 * is sane again
1577			 */
1578			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1579					get_task_comm(comm, current), oparg);
1580			oparg &= 31;
1581		}
1582		oparg = 1 << oparg;
1583	}
1584
1585	if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1586		return -EFAULT;
1587
1588	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1589	if (ret)
1590		return ret;
1591
1592	switch (cmp) {
1593	case FUTEX_OP_CMP_EQ:
1594		return oldval == cmparg;
1595	case FUTEX_OP_CMP_NE:
1596		return oldval != cmparg;
1597	case FUTEX_OP_CMP_LT:
1598		return oldval < cmparg;
1599	case FUTEX_OP_CMP_GE:
1600		return oldval >= cmparg;
1601	case FUTEX_OP_CMP_LE:
1602		return oldval <= cmparg;
1603	case FUTEX_OP_CMP_GT:
1604		return oldval > cmparg;
1605	default:
1606		return -ENOSYS;
1607	}
1608}
1609
1610/*
1611 * Wake up all waiters hashed on the physical page that is mapped
1612 * to this virtual address:
1613 */
1614static int
1615futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1616	      int nr_wake, int nr_wake2, int op)
1617{
1618	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1619	struct futex_hash_bucket *hb1, *hb2;
1620	struct futex_q *this, *next;
1621	int ret, op_ret;
1622	DEFINE_WAKE_Q(wake_q);
1623
1624retry:
1625	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1626	if (unlikely(ret != 0))
1627		goto out;
1628	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1629	if (unlikely(ret != 0))
1630		goto out_put_key1;
1631
1632	hb1 = hash_futex(&key1);
1633	hb2 = hash_futex(&key2);
1634
1635retry_private:
1636	double_lock_hb(hb1, hb2);
1637	op_ret = futex_atomic_op_inuser(op, uaddr2);
1638	if (unlikely(op_ret < 0)) {
1639
1640		double_unlock_hb(hb1, hb2);
1641
1642#ifndef CONFIG_MMU
1643		/*
1644		 * we don't get EFAULT from MMU faults if we don't have an MMU,
1645		 * but we might get them from range checking
1646		 */
1647		ret = op_ret;
1648		goto out_put_keys;
1649#endif
1650
1651		if (unlikely(op_ret != -EFAULT)) {
1652			ret = op_ret;
1653			goto out_put_keys;
1654		}
1655
1656		ret = fault_in_user_writeable(uaddr2);
1657		if (ret)
1658			goto out_put_keys;
 
 
1659
1660		if (!(flags & FLAGS_SHARED))
 
1661			goto retry_private;
 
1662
1663		put_futex_key(&key2);
1664		put_futex_key(&key1);
 
1665		goto retry;
1666	}
1667
1668	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1669		if (match_futex (&this->key, &key1)) {
1670			if (this->pi_state || this->rt_waiter) {
1671				ret = -EINVAL;
1672				goto out_unlock;
1673			}
1674			mark_wake_futex(&wake_q, this);
1675			if (++ret >= nr_wake)
1676				break;
1677		}
1678	}
1679
1680	if (op_ret > 0) {
1681		op_ret = 0;
1682		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1683			if (match_futex (&this->key, &key2)) {
1684				if (this->pi_state || this->rt_waiter) {
1685					ret = -EINVAL;
1686					goto out_unlock;
1687				}
1688				mark_wake_futex(&wake_q, this);
1689				if (++op_ret >= nr_wake2)
1690					break;
1691			}
1692		}
1693		ret += op_ret;
1694	}
1695
1696out_unlock:
1697	double_unlock_hb(hb1, hb2);
1698	wake_up_q(&wake_q);
1699out_put_keys:
1700	put_futex_key(&key2);
1701out_put_key1:
1702	put_futex_key(&key1);
1703out:
1704	return ret;
1705}
1706
1707/**
1708 * requeue_futex() - Requeue a futex_q from one hb to another
1709 * @q:		the futex_q to requeue
1710 * @hb1:	the source hash_bucket
1711 * @hb2:	the target hash_bucket
1712 * @key2:	the new key for the requeued futex_q
1713 */
1714static inline
1715void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1716		   struct futex_hash_bucket *hb2, union futex_key *key2)
1717{
1718
1719	/*
1720	 * If key1 and key2 hash to the same bucket, no need to
1721	 * requeue.
1722	 */
1723	if (likely(&hb1->chain != &hb2->chain)) {
1724		plist_del(&q->list, &hb1->chain);
1725		hb_waiters_dec(hb1);
1726		hb_waiters_inc(hb2);
1727		plist_add(&q->list, &hb2->chain);
1728		q->lock_ptr = &hb2->lock;
1729	}
1730	get_futex_key_refs(key2);
1731	q->key = *key2;
1732}
1733
1734/**
1735 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1736 * @q:		the futex_q
1737 * @key:	the key of the requeue target futex
1738 * @hb:		the hash_bucket of the requeue target futex
1739 *
1740 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1741 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1742 * to the requeue target futex so the waiter can detect the wakeup on the right
1743 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1744 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1745 * to protect access to the pi_state to fixup the owner later.  Must be called
1746 * with both q->lock_ptr and hb->lock held.
1747 */
1748static inline
1749void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1750			   struct futex_hash_bucket *hb)
1751{
1752	get_futex_key_refs(key);
1753	q->key = *key;
1754
1755	__unqueue_futex(q);
1756
1757	WARN_ON(!q->rt_waiter);
1758	q->rt_waiter = NULL;
1759
1760	q->lock_ptr = &hb->lock;
1761
1762	wake_up_state(q->task, TASK_NORMAL);
1763}
1764
1765/**
1766 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1767 * @pifutex:		the user address of the to futex
1768 * @hb1:		the from futex hash bucket, must be locked by the caller
1769 * @hb2:		the to futex hash bucket, must be locked by the caller
1770 * @key1:		the from futex key
1771 * @key2:		the to futex key
1772 * @ps:			address to store the pi_state pointer
1773 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1774 *
1775 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1776 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1777 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1778 * hb1 and hb2 must be held by the caller.
1779 *
1780 * Return:
1781 *  -  0 - failed to acquire the lock atomically;
1782 *  - >0 - acquired the lock, return value is vpid of the top_waiter
1783 *  - <0 - error
1784 */
1785static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1786				 struct futex_hash_bucket *hb1,
1787				 struct futex_hash_bucket *hb2,
1788				 union futex_key *key1, union futex_key *key2,
1789				 struct futex_pi_state **ps, int set_waiters)
1790{
1791	struct futex_q *top_waiter = NULL;
1792	u32 curval;
1793	int ret, vpid;
1794
1795	if (get_futex_value_locked(&curval, pifutex))
1796		return -EFAULT;
1797
1798	if (unlikely(should_fail_futex(true)))
1799		return -EFAULT;
1800
1801	/*
1802	 * Find the top_waiter and determine if there are additional waiters.
1803	 * If the caller intends to requeue more than 1 waiter to pifutex,
1804	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1805	 * as we have means to handle the possible fault.  If not, don't set
1806	 * the bit unecessarily as it will force the subsequent unlock to enter
1807	 * the kernel.
1808	 */
1809	top_waiter = futex_top_waiter(hb1, key1);
1810
1811	/* There are no waiters, nothing for us to do. */
1812	if (!top_waiter)
1813		return 0;
1814
1815	/* Ensure we requeue to the expected futex. */
1816	if (!match_futex(top_waiter->requeue_pi_key, key2))
1817		return -EINVAL;
1818
1819	/*
1820	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1821	 * the contended case or if set_waiters is 1.  The pi_state is returned
1822	 * in ps in contended cases.
1823	 */
1824	vpid = task_pid_vnr(top_waiter->task);
1825	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1826				   set_waiters);
1827	if (ret == 1) {
1828		requeue_pi_wake_futex(top_waiter, key2, hb2);
1829		return vpid;
1830	}
1831	return ret;
1832}
1833
1834/**
1835 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1836 * @uaddr1:	source futex user address
1837 * @flags:	futex flags (FLAGS_SHARED, etc.)
1838 * @uaddr2:	target futex user address
1839 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1840 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1841 * @cmpval:	@uaddr1 expected value (or %NULL)
1842 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1843 *		pi futex (pi to pi requeue is not supported)
1844 *
1845 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1846 * uaddr2 atomically on behalf of the top waiter.
1847 *
1848 * Return:
1849 *  - >=0 - on success, the number of tasks requeued or woken;
1850 *  -  <0 - on error
1851 */
1852static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1853			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1854			 u32 *cmpval, int requeue_pi)
1855{
1856	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1857	int drop_count = 0, task_count = 0, ret;
1858	struct futex_pi_state *pi_state = NULL;
1859	struct futex_hash_bucket *hb1, *hb2;
1860	struct futex_q *this, *next;
1861	DEFINE_WAKE_Q(wake_q);
1862
1863	if (nr_wake < 0 || nr_requeue < 0)
1864		return -EINVAL;
1865
1866	/*
1867	 * When PI not supported: return -ENOSYS if requeue_pi is true,
1868	 * consequently the compiler knows requeue_pi is always false past
1869	 * this point which will optimize away all the conditional code
1870	 * further down.
1871	 */
1872	if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1873		return -ENOSYS;
1874
1875	if (requeue_pi) {
1876		/*
1877		 * Requeue PI only works on two distinct uaddrs. This
1878		 * check is only valid for private futexes. See below.
1879		 */
1880		if (uaddr1 == uaddr2)
1881			return -EINVAL;
1882
1883		/*
1884		 * requeue_pi requires a pi_state, try to allocate it now
1885		 * without any locks in case it fails.
1886		 */
1887		if (refill_pi_state_cache())
1888			return -ENOMEM;
1889		/*
1890		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1891		 * + nr_requeue, since it acquires the rt_mutex prior to
1892		 * returning to userspace, so as to not leave the rt_mutex with
1893		 * waiters and no owner.  However, second and third wake-ups
1894		 * cannot be predicted as they involve race conditions with the
1895		 * first wake and a fault while looking up the pi_state.  Both
1896		 * pthread_cond_signal() and pthread_cond_broadcast() should
1897		 * use nr_wake=1.
1898		 */
1899		if (nr_wake != 1)
1900			return -EINVAL;
1901	}
1902
1903retry:
1904	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1905	if (unlikely(ret != 0))
1906		goto out;
1907	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1908			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1909	if (unlikely(ret != 0))
1910		goto out_put_key1;
1911
1912	/*
1913	 * The check above which compares uaddrs is not sufficient for
1914	 * shared futexes. We need to compare the keys:
1915	 */
1916	if (requeue_pi && match_futex(&key1, &key2)) {
1917		ret = -EINVAL;
1918		goto out_put_keys;
1919	}
1920
1921	hb1 = hash_futex(&key1);
1922	hb2 = hash_futex(&key2);
1923
1924retry_private:
1925	hb_waiters_inc(hb2);
1926	double_lock_hb(hb1, hb2);
1927
1928	if (likely(cmpval != NULL)) {
1929		u32 curval;
1930
1931		ret = get_futex_value_locked(&curval, uaddr1);
1932
1933		if (unlikely(ret)) {
1934			double_unlock_hb(hb1, hb2);
1935			hb_waiters_dec(hb2);
1936
1937			ret = get_user(curval, uaddr1);
1938			if (ret)
1939				goto out_put_keys;
1940
1941			if (!(flags & FLAGS_SHARED))
1942				goto retry_private;
1943
1944			put_futex_key(&key2);
1945			put_futex_key(&key1);
1946			goto retry;
1947		}
1948		if (curval != *cmpval) {
1949			ret = -EAGAIN;
1950			goto out_unlock;
1951		}
1952	}
1953
1954	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1955		/*
1956		 * Attempt to acquire uaddr2 and wake the top waiter. If we
1957		 * intend to requeue waiters, force setting the FUTEX_WAITERS
1958		 * bit.  We force this here where we are able to easily handle
1959		 * faults rather in the requeue loop below.
1960		 */
1961		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1962						 &key2, &pi_state, nr_requeue);
1963
1964		/*
1965		 * At this point the top_waiter has either taken uaddr2 or is
1966		 * waiting on it.  If the former, then the pi_state will not
1967		 * exist yet, look it up one more time to ensure we have a
1968		 * reference to it. If the lock was taken, ret contains the
1969		 * vpid of the top waiter task.
1970		 * If the lock was not taken, we have pi_state and an initial
1971		 * refcount on it. In case of an error we have nothing.
1972		 */
1973		if (ret > 0) {
1974			WARN_ON(pi_state);
1975			drop_count++;
1976			task_count++;
1977			/*
1978			 * If we acquired the lock, then the user space value
1979			 * of uaddr2 should be vpid. It cannot be changed by
1980			 * the top waiter as it is blocked on hb2 lock if it
1981			 * tries to do so. If something fiddled with it behind
1982			 * our back the pi state lookup might unearth it. So
1983			 * we rather use the known value than rereading and
1984			 * handing potential crap to lookup_pi_state.
1985			 *
1986			 * If that call succeeds then we have pi_state and an
1987			 * initial refcount on it.
1988			 */
1989			ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1990		}
1991
1992		switch (ret) {
1993		case 0:
1994			/* We hold a reference on the pi state. */
1995			break;
1996
1997			/* If the above failed, then pi_state is NULL */
1998		case -EFAULT:
1999			double_unlock_hb(hb1, hb2);
2000			hb_waiters_dec(hb2);
2001			put_futex_key(&key2);
2002			put_futex_key(&key1);
2003			ret = fault_in_user_writeable(uaddr2);
2004			if (!ret)
2005				goto retry;
2006			goto out;
2007		case -EAGAIN:
2008			/*
2009			 * Two reasons for this:
2010			 * - Owner is exiting and we just wait for the
2011			 *   exit to complete.
2012			 * - The user space value changed.
2013			 */
2014			double_unlock_hb(hb1, hb2);
2015			hb_waiters_dec(hb2);
2016			put_futex_key(&key2);
2017			put_futex_key(&key1);
2018			cond_resched();
2019			goto retry;
2020		default:
2021			goto out_unlock;
2022		}
2023	}
2024
2025	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2026		if (task_count - nr_wake >= nr_requeue)
2027			break;
2028
2029		if (!match_futex(&this->key, &key1))
2030			continue;
2031
2032		/*
2033		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2034		 * be paired with each other and no other futex ops.
2035		 *
2036		 * We should never be requeueing a futex_q with a pi_state,
2037		 * which is awaiting a futex_unlock_pi().
2038		 */
2039		if ((requeue_pi && !this->rt_waiter) ||
2040		    (!requeue_pi && this->rt_waiter) ||
2041		    this->pi_state) {
2042			ret = -EINVAL;
2043			break;
2044		}
2045
2046		/*
2047		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2048		 * lock, we already woke the top_waiter.  If not, it will be
2049		 * woken by futex_unlock_pi().
2050		 */
2051		if (++task_count <= nr_wake && !requeue_pi) {
2052			mark_wake_futex(&wake_q, this);
2053			continue;
2054		}
2055
2056		/* Ensure we requeue to the expected futex for requeue_pi. */
2057		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2058			ret = -EINVAL;
2059			break;
2060		}
2061
2062		/*
2063		 * Requeue nr_requeue waiters and possibly one more in the case
2064		 * of requeue_pi if we couldn't acquire the lock atomically.
2065		 */
2066		if (requeue_pi) {
2067			/*
2068			 * Prepare the waiter to take the rt_mutex. Take a
2069			 * refcount on the pi_state and store the pointer in
2070			 * the futex_q object of the waiter.
2071			 */
2072			get_pi_state(pi_state);
2073			this->pi_state = pi_state;
2074			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2075							this->rt_waiter,
2076							this->task);
2077			if (ret == 1) {
2078				/*
2079				 * We got the lock. We do neither drop the
2080				 * refcount on pi_state nor clear
2081				 * this->pi_state because the waiter needs the
2082				 * pi_state for cleaning up the user space
2083				 * value. It will drop the refcount after
2084				 * doing so.
2085				 */
2086				requeue_pi_wake_futex(this, &key2, hb2);
2087				drop_count++;
2088				continue;
2089			} else if (ret) {
2090				/*
2091				 * rt_mutex_start_proxy_lock() detected a
2092				 * potential deadlock when we tried to queue
2093				 * that waiter. Drop the pi_state reference
2094				 * which we took above and remove the pointer
2095				 * to the state from the waiters futex_q
2096				 * object.
2097				 */
2098				this->pi_state = NULL;
2099				put_pi_state(pi_state);
2100				/*
2101				 * We stop queueing more waiters and let user
2102				 * space deal with the mess.
2103				 */
2104				break;
2105			}
2106		}
2107		requeue_futex(this, hb1, hb2, &key2);
2108		drop_count++;
2109	}
2110
2111	/*
2112	 * We took an extra initial reference to the pi_state either
2113	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2114	 * need to drop it here again.
2115	 */
2116	put_pi_state(pi_state);
2117
2118out_unlock:
2119	double_unlock_hb(hb1, hb2);
2120	wake_up_q(&wake_q);
2121	hb_waiters_dec(hb2);
2122
2123	/*
2124	 * drop_futex_key_refs() must be called outside the spinlocks. During
2125	 * the requeue we moved futex_q's from the hash bucket at key1 to the
2126	 * one at key2 and updated their key pointer.  We no longer need to
2127	 * hold the references to key1.
2128	 */
2129	while (--drop_count >= 0)
2130		drop_futex_key_refs(&key1);
2131
2132out_put_keys:
2133	put_futex_key(&key2);
2134out_put_key1:
2135	put_futex_key(&key1);
2136out:
2137	return ret ? ret : task_count;
2138}
2139
2140/* The key must be already stored in q->key. */
2141static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2142	__acquires(&hb->lock)
2143{
2144	struct futex_hash_bucket *hb;
2145
2146	hb = hash_futex(&q->key);
2147
2148	/*
2149	 * Increment the counter before taking the lock so that
2150	 * a potential waker won't miss a to-be-slept task that is
2151	 * waiting for the spinlock. This is safe as all queue_lock()
2152	 * users end up calling queue_me(). Similarly, for housekeeping,
2153	 * decrement the counter at queue_unlock() when some error has
2154	 * occurred and we don't end up adding the task to the list.
2155	 */
2156	hb_waiters_inc(hb);
2157
2158	q->lock_ptr = &hb->lock;
2159
2160	spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2161	return hb;
2162}
2163
2164static inline void
2165queue_unlock(struct futex_hash_bucket *hb)
2166	__releases(&hb->lock)
2167{
2168	spin_unlock(&hb->lock);
2169	hb_waiters_dec(hb);
2170}
2171
2172static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2173{
2174	int prio;
2175
2176	/*
2177	 * The priority used to register this element is
2178	 * - either the real thread-priority for the real-time threads
2179	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2180	 * - or MAX_RT_PRIO for non-RT threads.
2181	 * Thus, all RT-threads are woken first in priority order, and
2182	 * the others are woken last, in FIFO order.
2183	 */
2184	prio = min(current->normal_prio, MAX_RT_PRIO);
2185
2186	plist_node_init(&q->list, prio);
2187	plist_add(&q->list, &hb->chain);
2188	q->task = current;
2189}
2190
2191/**
2192 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2193 * @q:	The futex_q to enqueue
2194 * @hb:	The destination hash bucket
2195 *
2196 * The hb->lock must be held by the caller, and is released here. A call to
2197 * queue_me() is typically paired with exactly one call to unqueue_me().  The
2198 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2199 * or nothing if the unqueue is done as part of the wake process and the unqueue
2200 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2201 * an example).
2202 */
2203static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2204	__releases(&hb->lock)
2205{
2206	__queue_me(q, hb);
2207	spin_unlock(&hb->lock);
2208}
2209
2210/**
2211 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2212 * @q:	The futex_q to unqueue
2213 *
2214 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2215 * be paired with exactly one earlier call to queue_me().
2216 *
2217 * Return:
2218 *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2219 *  - 0 - if the futex_q was already removed by the waking thread
2220 */
2221static int unqueue_me(struct futex_q *q)
2222{
2223	spinlock_t *lock_ptr;
2224	int ret = 0;
2225
2226	/* In the common case we don't take the spinlock, which is nice. */
2227retry:
2228	/*
2229	 * q->lock_ptr can change between this read and the following spin_lock.
2230	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2231	 * optimizing lock_ptr out of the logic below.
2232	 */
2233	lock_ptr = READ_ONCE(q->lock_ptr);
2234	if (lock_ptr != NULL) {
2235		spin_lock(lock_ptr);
2236		/*
2237		 * q->lock_ptr can change between reading it and
2238		 * spin_lock(), causing us to take the wrong lock.  This
2239		 * corrects the race condition.
2240		 *
2241		 * Reasoning goes like this: if we have the wrong lock,
2242		 * q->lock_ptr must have changed (maybe several times)
2243		 * between reading it and the spin_lock().  It can
2244		 * change again after the spin_lock() but only if it was
2245		 * already changed before the spin_lock().  It cannot,
2246		 * however, change back to the original value.  Therefore
2247		 * we can detect whether we acquired the correct lock.
2248		 */
2249		if (unlikely(lock_ptr != q->lock_ptr)) {
2250			spin_unlock(lock_ptr);
2251			goto retry;
2252		}
2253		__unqueue_futex(q);
2254
2255		BUG_ON(q->pi_state);
2256
2257		spin_unlock(lock_ptr);
2258		ret = 1;
2259	}
2260
2261	drop_futex_key_refs(&q->key);
2262	return ret;
2263}
2264
2265/*
2266 * PI futexes can not be requeued and must remove themself from the
2267 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2268 * and dropped here.
2269 */
2270static void unqueue_me_pi(struct futex_q *q)
2271	__releases(q->lock_ptr)
2272{
2273	__unqueue_futex(q);
2274
2275	BUG_ON(!q->pi_state);
2276	put_pi_state(q->pi_state);
2277	q->pi_state = NULL;
2278
2279	spin_unlock(q->lock_ptr);
2280}
2281
2282static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2283				struct task_struct *argowner)
2284{
2285	struct futex_pi_state *pi_state = q->pi_state;
2286	u32 uval, uninitialized_var(curval), newval;
2287	struct task_struct *oldowner, *newowner;
2288	u32 newtid;
2289	int ret;
2290
2291	lockdep_assert_held(q->lock_ptr);
2292
2293	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2294
2295	oldowner = pi_state->owner;
2296
2297	/*
2298	 * We are here because either:
2299	 *
2300	 *  - we stole the lock and pi_state->owner needs updating to reflect
2301	 *    that (@argowner == current),
2302	 *
2303	 * or:
2304	 *
2305	 *  - someone stole our lock and we need to fix things to point to the
2306	 *    new owner (@argowner == NULL).
2307	 *
2308	 * Either way, we have to replace the TID in the user space variable.
2309	 * This must be atomic as we have to preserve the owner died bit here.
2310	 *
2311	 * Note: We write the user space value _before_ changing the pi_state
2312	 * because we can fault here. Imagine swapped out pages or a fork
2313	 * that marked all the anonymous memory readonly for cow.
2314	 *
2315	 * Modifying pi_state _before_ the user space value would leave the
2316	 * pi_state in an inconsistent state when we fault here, because we
2317	 * need to drop the locks to handle the fault. This might be observed
2318	 * in the PID check in lookup_pi_state.
2319	 */
2320retry:
2321	if (!argowner) {
2322		if (oldowner != current) {
2323			/*
2324			 * We raced against a concurrent self; things are
2325			 * already fixed up. Nothing to do.
2326			 */
2327			ret = 0;
2328			goto out_unlock;
2329		}
2330
2331		if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2332			/* We got the lock after all, nothing to fix. */
2333			ret = 0;
2334			goto out_unlock;
2335		}
2336
2337		/*
2338		 * Since we just failed the trylock; there must be an owner.
2339		 */
2340		newowner = rt_mutex_owner(&pi_state->pi_mutex);
2341		BUG_ON(!newowner);
2342	} else {
2343		WARN_ON_ONCE(argowner != current);
2344		if (oldowner == current) {
2345			/*
2346			 * We raced against a concurrent self; things are
2347			 * already fixed up. Nothing to do.
2348			 */
2349			ret = 0;
2350			goto out_unlock;
2351		}
2352		newowner = argowner;
2353	}
2354
2355	newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2356	/* Owner died? */
2357	if (!pi_state->owner)
2358		newtid |= FUTEX_OWNER_DIED;
2359
2360	if (get_futex_value_locked(&uval, uaddr))
2361		goto handle_fault;
 
2362
2363	for (;;) {
2364		newval = (uval & FUTEX_OWNER_DIED) | newtid;
2365
2366		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2367			goto handle_fault;
 
 
2368		if (curval == uval)
2369			break;
2370		uval = curval;
2371	}
2372
2373	/*
2374	 * We fixed up user space. Now we need to fix the pi_state
2375	 * itself.
2376	 */
2377	if (pi_state->owner != NULL) {
2378		raw_spin_lock(&pi_state->owner->pi_lock);
2379		WARN_ON(list_empty(&pi_state->list));
2380		list_del_init(&pi_state->list);
2381		raw_spin_unlock(&pi_state->owner->pi_lock);
2382	}
2383
2384	pi_state->owner = newowner;
2385
2386	raw_spin_lock(&newowner->pi_lock);
2387	WARN_ON(!list_empty(&pi_state->list));
2388	list_add(&pi_state->list, &newowner->pi_state_list);
2389	raw_spin_unlock(&newowner->pi_lock);
2390	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2391
2392	return 0;
2393
2394	/*
2395	 * To handle the page fault we need to drop the locks here. That gives
2396	 * the other task (either the highest priority waiter itself or the
2397	 * task which stole the rtmutex) the chance to try the fixup of the
2398	 * pi_state. So once we are back from handling the fault we need to
2399	 * check the pi_state after reacquiring the locks and before trying to
2400	 * do another fixup. When the fixup has been done already we simply
2401	 * return.
2402	 *
2403	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2404	 * drop hb->lock since the caller owns the hb -> futex_q relation.
2405	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2406	 */
2407handle_fault:
2408	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2409	spin_unlock(q->lock_ptr);
2410
2411	ret = fault_in_user_writeable(uaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2412
2413	spin_lock(q->lock_ptr);
2414	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2415
2416	/*
2417	 * Check if someone else fixed it for us:
2418	 */
2419	if (pi_state->owner != oldowner) {
2420		ret = 0;
2421		goto out_unlock;
2422	}
2423
2424	if (ret)
2425		goto out_unlock;
2426
2427	goto retry;
2428
2429out_unlock:
2430	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2431	return ret;
2432}
2433
2434static long futex_wait_restart(struct restart_block *restart);
2435
2436/**
2437 * fixup_owner() - Post lock pi_state and corner case management
2438 * @uaddr:	user address of the futex
2439 * @q:		futex_q (contains pi_state and access to the rt_mutex)
2440 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
2441 *
2442 * After attempting to lock an rt_mutex, this function is called to cleanup
2443 * the pi_state owner as well as handle race conditions that may allow us to
2444 * acquire the lock. Must be called with the hb lock held.
2445 *
2446 * Return:
2447 *  -  1 - success, lock taken;
2448 *  -  0 - success, lock not taken;
2449 *  - <0 - on error (-EFAULT)
2450 */
2451static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2452{
2453	int ret = 0;
2454
2455	if (locked) {
2456		/*
2457		 * Got the lock. We might not be the anticipated owner if we
2458		 * did a lock-steal - fix up the PI-state in that case:
2459		 *
2460		 * Speculative pi_state->owner read (we don't hold wait_lock);
2461		 * since we own the lock pi_state->owner == current is the
2462		 * stable state, anything else needs more attention.
2463		 */
2464		if (q->pi_state->owner != current)
2465			ret = fixup_pi_state_owner(uaddr, q, current);
2466		goto out;
2467	}
2468
2469	/*
2470	 * If we didn't get the lock; check if anybody stole it from us. In
2471	 * that case, we need to fix up the uval to point to them instead of
2472	 * us, otherwise bad things happen. [10]
2473	 *
2474	 * Another speculative read; pi_state->owner == current is unstable
2475	 * but needs our attention.
2476	 */
2477	if (q->pi_state->owner == current) {
2478		ret = fixup_pi_state_owner(uaddr, q, NULL);
2479		goto out;
2480	}
2481
2482	/*
2483	 * Paranoia check. If we did not take the lock, then we should not be
2484	 * the owner of the rt_mutex.
2485	 */
2486	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2487		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2488				"pi-state %p\n", ret,
2489				q->pi_state->pi_mutex.owner,
2490				q->pi_state->owner);
2491	}
2492
2493out:
2494	return ret ? ret : locked;
2495}
2496
2497/**
2498 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2499 * @hb:		the futex hash bucket, must be locked by the caller
2500 * @q:		the futex_q to queue up on
2501 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
2502 */
2503static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2504				struct hrtimer_sleeper *timeout)
2505{
2506	/*
2507	 * The task state is guaranteed to be set before another task can
2508	 * wake it. set_current_state() is implemented using smp_store_mb() and
2509	 * queue_me() calls spin_unlock() upon completion, both serializing
2510	 * access to the hash list and forcing another memory barrier.
2511	 */
2512	set_current_state(TASK_INTERRUPTIBLE);
2513	queue_me(q, hb);
2514
2515	/* Arm the timer */
2516	if (timeout)
2517		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2518
2519	/*
2520	 * If we have been removed from the hash list, then another task
2521	 * has tried to wake us, and we can skip the call to schedule().
2522	 */
2523	if (likely(!plist_node_empty(&q->list))) {
2524		/*
2525		 * If the timer has already expired, current will already be
2526		 * flagged for rescheduling. Only call schedule if there
2527		 * is no timeout, or if it has yet to expire.
2528		 */
2529		if (!timeout || timeout->task)
2530			freezable_schedule();
2531	}
2532	__set_current_state(TASK_RUNNING);
2533}
2534
2535/**
2536 * futex_wait_setup() - Prepare to wait on a futex
2537 * @uaddr:	the futex userspace address
2538 * @val:	the expected value
2539 * @flags:	futex flags (FLAGS_SHARED, etc.)
2540 * @q:		the associated futex_q
2541 * @hb:		storage for hash_bucket pointer to be returned to caller
2542 *
2543 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2544 * compare it with the expected value.  Handle atomic faults internally.
2545 * Return with the hb lock held and a q.key reference on success, and unlocked
2546 * with no q.key reference on failure.
2547 *
2548 * Return:
2549 *  -  0 - uaddr contains val and hb has been locked;
2550 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2551 */
2552static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2553			   struct futex_q *q, struct futex_hash_bucket **hb)
2554{
2555	u32 uval;
2556	int ret;
2557
2558	/*
2559	 * Access the page AFTER the hash-bucket is locked.
2560	 * Order is important:
2561	 *
2562	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2563	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2564	 *
2565	 * The basic logical guarantee of a futex is that it blocks ONLY
2566	 * if cond(var) is known to be true at the time of blocking, for
2567	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
2568	 * would open a race condition where we could block indefinitely with
2569	 * cond(var) false, which would violate the guarantee.
2570	 *
2571	 * On the other hand, we insert q and release the hash-bucket only
2572	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
2573	 * absorb a wakeup if *uaddr does not match the desired values
2574	 * while the syscall executes.
2575	 */
2576retry:
2577	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2578	if (unlikely(ret != 0))
2579		return ret;
2580
2581retry_private:
2582	*hb = queue_lock(q);
2583
2584	ret = get_futex_value_locked(&uval, uaddr);
2585
2586	if (ret) {
2587		queue_unlock(*hb);
2588
2589		ret = get_user(uval, uaddr);
2590		if (ret)
2591			goto out;
2592
2593		if (!(flags & FLAGS_SHARED))
2594			goto retry_private;
2595
2596		put_futex_key(&q->key);
2597		goto retry;
2598	}
2599
2600	if (uval != val) {
2601		queue_unlock(*hb);
2602		ret = -EWOULDBLOCK;
2603	}
2604
2605out:
2606	if (ret)
2607		put_futex_key(&q->key);
2608	return ret;
2609}
2610
2611static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2612		      ktime_t *abs_time, u32 bitset)
2613{
2614	struct hrtimer_sleeper timeout, *to = NULL;
2615	struct restart_block *restart;
2616	struct futex_hash_bucket *hb;
2617	struct futex_q q = futex_q_init;
2618	int ret;
2619
2620	if (!bitset)
2621		return -EINVAL;
2622	q.bitset = bitset;
2623
2624	if (abs_time) {
2625		to = &timeout;
2626
2627		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2628				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2629				      HRTIMER_MODE_ABS);
2630		hrtimer_init_sleeper(to, current);
2631		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2632					     current->timer_slack_ns);
2633	}
2634
2635retry:
2636	/*
2637	 * Prepare to wait on uaddr. On success, holds hb lock and increments
2638	 * q.key refs.
2639	 */
2640	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2641	if (ret)
2642		goto out;
2643
2644	/* queue_me and wait for wakeup, timeout, or a signal. */
2645	futex_wait_queue_me(hb, &q, to);
2646
2647	/* If we were woken (and unqueued), we succeeded, whatever. */
2648	ret = 0;
2649	/* unqueue_me() drops q.key ref */
2650	if (!unqueue_me(&q))
2651		goto out;
2652	ret = -ETIMEDOUT;
2653	if (to && !to->task)
2654		goto out;
2655
2656	/*
2657	 * We expect signal_pending(current), but we might be the
2658	 * victim of a spurious wakeup as well.
2659	 */
2660	if (!signal_pending(current))
2661		goto retry;
2662
2663	ret = -ERESTARTSYS;
2664	if (!abs_time)
2665		goto out;
2666
2667	restart = &current->restart_block;
2668	restart->fn = futex_wait_restart;
2669	restart->futex.uaddr = uaddr;
2670	restart->futex.val = val;
2671	restart->futex.time = *abs_time;
2672	restart->futex.bitset = bitset;
2673	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2674
2675	ret = -ERESTART_RESTARTBLOCK;
2676
2677out:
2678	if (to) {
2679		hrtimer_cancel(&to->timer);
2680		destroy_hrtimer_on_stack(&to->timer);
2681	}
2682	return ret;
2683}
2684
2685
2686static long futex_wait_restart(struct restart_block *restart)
2687{
2688	u32 __user *uaddr = restart->futex.uaddr;
2689	ktime_t t, *tp = NULL;
2690
2691	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2692		t = restart->futex.time;
2693		tp = &t;
2694	}
2695	restart->fn = do_no_restart_syscall;
2696
2697	return (long)futex_wait(uaddr, restart->futex.flags,
2698				restart->futex.val, tp, restart->futex.bitset);
2699}
2700
2701
2702/*
2703 * Userspace tried a 0 -> TID atomic transition of the futex value
2704 * and failed. The kernel side here does the whole locking operation:
2705 * if there are waiters then it will block as a consequence of relying
2706 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2707 * a 0 value of the futex too.).
2708 *
2709 * Also serves as futex trylock_pi()'ing, and due semantics.
2710 */
2711static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2712			 ktime_t *time, int trylock)
2713{
2714	struct hrtimer_sleeper timeout, *to = NULL;
2715	struct futex_pi_state *pi_state = NULL;
2716	struct rt_mutex_waiter rt_waiter;
2717	struct futex_hash_bucket *hb;
2718	struct futex_q q = futex_q_init;
2719	int res, ret;
2720
2721	if (!IS_ENABLED(CONFIG_FUTEX_PI))
2722		return -ENOSYS;
2723
2724	if (refill_pi_state_cache())
2725		return -ENOMEM;
2726
2727	if (time) {
2728		to = &timeout;
2729		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2730				      HRTIMER_MODE_ABS);
2731		hrtimer_init_sleeper(to, current);
2732		hrtimer_set_expires(&to->timer, *time);
2733	}
2734
2735retry:
2736	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2737	if (unlikely(ret != 0))
2738		goto out;
2739
2740retry_private:
2741	hb = queue_lock(&q);
2742
2743	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2744	if (unlikely(ret)) {
2745		/*
2746		 * Atomic work succeeded and we got the lock,
2747		 * or failed. Either way, we do _not_ block.
2748		 */
2749		switch (ret) {
2750		case 1:
2751			/* We got the lock. */
2752			ret = 0;
2753			goto out_unlock_put_key;
2754		case -EFAULT:
2755			goto uaddr_faulted;
2756		case -EAGAIN:
2757			/*
2758			 * Two reasons for this:
2759			 * - Task is exiting and we just wait for the
2760			 *   exit to complete.
2761			 * - The user space value changed.
2762			 */
2763			queue_unlock(hb);
2764			put_futex_key(&q.key);
2765			cond_resched();
2766			goto retry;
2767		default:
2768			goto out_unlock_put_key;
2769		}
2770	}
2771
2772	WARN_ON(!q.pi_state);
2773
2774	/*
2775	 * Only actually queue now that the atomic ops are done:
2776	 */
2777	__queue_me(&q, hb);
2778
2779	if (trylock) {
2780		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2781		/* Fixup the trylock return value: */
2782		ret = ret ? 0 : -EWOULDBLOCK;
2783		goto no_block;
2784	}
2785
2786	rt_mutex_init_waiter(&rt_waiter);
2787
2788	/*
2789	 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2790	 * hold it while doing rt_mutex_start_proxy(), because then it will
2791	 * include hb->lock in the blocking chain, even through we'll not in
2792	 * fact hold it while blocking. This will lead it to report -EDEADLK
2793	 * and BUG when futex_unlock_pi() interleaves with this.
2794	 *
2795	 * Therefore acquire wait_lock while holding hb->lock, but drop the
2796	 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2797	 * serializes against futex_unlock_pi() as that does the exact same
2798	 * lock handoff sequence.
 
2799	 */
2800	raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2801	spin_unlock(q.lock_ptr);
 
 
 
 
 
2802	ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2803	raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2804
2805	if (ret) {
2806		if (ret == 1)
2807			ret = 0;
2808
2809		spin_lock(q.lock_ptr);
2810		goto no_block;
2811	}
2812
2813
2814	if (unlikely(to))
2815		hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2816
2817	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2818
 
2819	spin_lock(q.lock_ptr);
2820	/*
2821	 * If we failed to acquire the lock (signal/timeout), we must
2822	 * first acquire the hb->lock before removing the lock from the
2823	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2824	 * wait lists consistent.
2825	 *
2826	 * In particular; it is important that futex_unlock_pi() can not
2827	 * observe this inconsistency.
2828	 */
2829	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2830		ret = 0;
2831
2832no_block:
2833	/*
2834	 * Fixup the pi_state owner and possibly acquire the lock if we
2835	 * haven't already.
2836	 */
2837	res = fixup_owner(uaddr, &q, !ret);
2838	/*
2839	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2840	 * the lock, clear our -ETIMEDOUT or -EINTR.
2841	 */
2842	if (res)
2843		ret = (res < 0) ? res : 0;
2844
2845	/*
2846	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2847	 * it and return the fault to userspace.
2848	 */
2849	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2850		pi_state = q.pi_state;
2851		get_pi_state(pi_state);
2852	}
2853
2854	/* Unqueue and drop the lock */
2855	unqueue_me_pi(&q);
2856
2857	if (pi_state) {
2858		rt_mutex_futex_unlock(&pi_state->pi_mutex);
2859		put_pi_state(pi_state);
2860	}
2861
2862	goto out_put_key;
2863
2864out_unlock_put_key:
2865	queue_unlock(hb);
2866
2867out_put_key:
2868	put_futex_key(&q.key);
2869out:
2870	if (to) {
2871		hrtimer_cancel(&to->timer);
2872		destroy_hrtimer_on_stack(&to->timer);
2873	}
2874	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2875
2876uaddr_faulted:
2877	queue_unlock(hb);
2878
2879	ret = fault_in_user_writeable(uaddr);
2880	if (ret)
2881		goto out_put_key;
2882
2883	if (!(flags & FLAGS_SHARED))
2884		goto retry_private;
2885
2886	put_futex_key(&q.key);
2887	goto retry;
2888}
2889
2890/*
2891 * Userspace attempted a TID -> 0 atomic transition, and failed.
2892 * This is the in-kernel slowpath: we look up the PI state (if any),
2893 * and do the rt-mutex unlock.
2894 */
2895static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2896{
2897	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2898	union futex_key key = FUTEX_KEY_INIT;
2899	struct futex_hash_bucket *hb;
2900	struct futex_q *top_waiter;
2901	int ret;
2902
2903	if (!IS_ENABLED(CONFIG_FUTEX_PI))
2904		return -ENOSYS;
2905
2906retry:
2907	if (get_user(uval, uaddr))
2908		return -EFAULT;
2909	/*
2910	 * We release only a lock we actually own:
2911	 */
2912	if ((uval & FUTEX_TID_MASK) != vpid)
2913		return -EPERM;
2914
2915	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2916	if (ret)
2917		return ret;
2918
2919	hb = hash_futex(&key);
2920	spin_lock(&hb->lock);
2921
2922	/*
2923	 * Check waiters first. We do not trust user space values at
2924	 * all and we at least want to know if user space fiddled
2925	 * with the futex value instead of blindly unlocking.
2926	 */
2927	top_waiter = futex_top_waiter(hb, &key);
2928	if (top_waiter) {
2929		struct futex_pi_state *pi_state = top_waiter->pi_state;
2930
2931		ret = -EINVAL;
2932		if (!pi_state)
2933			goto out_unlock;
2934
2935		/*
2936		 * If current does not own the pi_state then the futex is
2937		 * inconsistent and user space fiddled with the futex value.
2938		 */
2939		if (pi_state->owner != current)
2940			goto out_unlock;
2941
2942		get_pi_state(pi_state);
2943		/*
2944		 * By taking wait_lock while still holding hb->lock, we ensure
2945		 * there is no point where we hold neither; and therefore
2946		 * wake_futex_pi() must observe a state consistent with what we
2947		 * observed.
 
 
 
 
2948		 */
2949		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2950		spin_unlock(&hb->lock);
2951
2952		/* drops pi_state->pi_mutex.wait_lock */
2953		ret = wake_futex_pi(uaddr, uval, pi_state);
2954
2955		put_pi_state(pi_state);
2956
2957		/*
2958		 * Success, we're done! No tricky corner cases.
2959		 */
2960		if (!ret)
2961			goto out_putkey;
2962		/*
2963		 * The atomic access to the futex value generated a
2964		 * pagefault, so retry the user-access and the wakeup:
2965		 */
2966		if (ret == -EFAULT)
2967			goto pi_faulted;
2968		/*
2969		 * A unconditional UNLOCK_PI op raced against a waiter
2970		 * setting the FUTEX_WAITERS bit. Try again.
2971		 */
2972		if (ret == -EAGAIN) {
2973			put_futex_key(&key);
2974			goto retry;
2975		}
2976		/*
2977		 * wake_futex_pi has detected invalid state. Tell user
2978		 * space.
2979		 */
2980		goto out_putkey;
2981	}
2982
2983	/*
2984	 * We have no kernel internal state, i.e. no waiters in the
2985	 * kernel. Waiters which are about to queue themselves are stuck
2986	 * on hb->lock. So we can safely ignore them. We do neither
2987	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2988	 * owner.
2989	 */
2990	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2991		spin_unlock(&hb->lock);
2992		goto pi_faulted;
 
 
 
 
 
 
 
 
 
 
2993	}
2994
2995	/*
2996	 * If uval has changed, let user space handle it.
2997	 */
2998	ret = (curval == uval) ? 0 : -EAGAIN;
2999
3000out_unlock:
3001	spin_unlock(&hb->lock);
3002out_putkey:
3003	put_futex_key(&key);
3004	return ret;
3005
 
 
 
 
 
3006pi_faulted:
3007	put_futex_key(&key);
3008
3009	ret = fault_in_user_writeable(uaddr);
3010	if (!ret)
3011		goto retry;
3012
3013	return ret;
3014}
3015
3016/**
3017 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3018 * @hb:		the hash_bucket futex_q was original enqueued on
3019 * @q:		the futex_q woken while waiting to be requeued
3020 * @key2:	the futex_key of the requeue target futex
3021 * @timeout:	the timeout associated with the wait (NULL if none)
3022 *
3023 * Detect if the task was woken on the initial futex as opposed to the requeue
3024 * target futex.  If so, determine if it was a timeout or a signal that caused
3025 * the wakeup and return the appropriate error code to the caller.  Must be
3026 * called with the hb lock held.
3027 *
3028 * Return:
3029 *  -  0 = no early wakeup detected;
3030 *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3031 */
3032static inline
3033int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3034				   struct futex_q *q, union futex_key *key2,
3035				   struct hrtimer_sleeper *timeout)
3036{
3037	int ret = 0;
3038
3039	/*
3040	 * With the hb lock held, we avoid races while we process the wakeup.
3041	 * We only need to hold hb (and not hb2) to ensure atomicity as the
3042	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3043	 * It can't be requeued from uaddr2 to something else since we don't
3044	 * support a PI aware source futex for requeue.
3045	 */
3046	if (!match_futex(&q->key, key2)) {
3047		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3048		/*
3049		 * We were woken prior to requeue by a timeout or a signal.
3050		 * Unqueue the futex_q and determine which it was.
3051		 */
3052		plist_del(&q->list, &hb->chain);
3053		hb_waiters_dec(hb);
3054
3055		/* Handle spurious wakeups gracefully */
3056		ret = -EWOULDBLOCK;
3057		if (timeout && !timeout->task)
3058			ret = -ETIMEDOUT;
3059		else if (signal_pending(current))
3060			ret = -ERESTARTNOINTR;
3061	}
3062	return ret;
3063}
3064
3065/**
3066 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3067 * @uaddr:	the futex we initially wait on (non-pi)
3068 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3069 *		the same type, no requeueing from private to shared, etc.
3070 * @val:	the expected value of uaddr
3071 * @abs_time:	absolute timeout
3072 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
3073 * @uaddr2:	the pi futex we will take prior to returning to user-space
3074 *
3075 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3076 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3077 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3078 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3079 * without one, the pi logic would not know which task to boost/deboost, if
3080 * there was a need to.
3081 *
3082 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3083 * via the following--
3084 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3085 * 2) wakeup on uaddr2 after a requeue
3086 * 3) signal
3087 * 4) timeout
3088 *
3089 * If 3, cleanup and return -ERESTARTNOINTR.
3090 *
3091 * If 2, we may then block on trying to take the rt_mutex and return via:
3092 * 5) successful lock
3093 * 6) signal
3094 * 7) timeout
3095 * 8) other lock acquisition failure
3096 *
3097 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3098 *
3099 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3100 *
3101 * Return:
3102 *  -  0 - On success;
3103 *  - <0 - On error
3104 */
3105static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3106				 u32 val, ktime_t *abs_time, u32 bitset,
3107				 u32 __user *uaddr2)
3108{
3109	struct hrtimer_sleeper timeout, *to = NULL;
3110	struct futex_pi_state *pi_state = NULL;
3111	struct rt_mutex_waiter rt_waiter;
3112	struct futex_hash_bucket *hb;
3113	union futex_key key2 = FUTEX_KEY_INIT;
3114	struct futex_q q = futex_q_init;
3115	int res, ret;
3116
3117	if (!IS_ENABLED(CONFIG_FUTEX_PI))
3118		return -ENOSYS;
3119
3120	if (uaddr == uaddr2)
3121		return -EINVAL;
3122
3123	if (!bitset)
3124		return -EINVAL;
3125
3126	if (abs_time) {
3127		to = &timeout;
3128		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3129				      CLOCK_REALTIME : CLOCK_MONOTONIC,
3130				      HRTIMER_MODE_ABS);
3131		hrtimer_init_sleeper(to, current);
3132		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3133					     current->timer_slack_ns);
3134	}
3135
3136	/*
3137	 * The waiter is allocated on our stack, manipulated by the requeue
3138	 * code while we sleep on uaddr.
3139	 */
3140	rt_mutex_init_waiter(&rt_waiter);
3141
3142	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3143	if (unlikely(ret != 0))
3144		goto out;
3145
3146	q.bitset = bitset;
3147	q.rt_waiter = &rt_waiter;
3148	q.requeue_pi_key = &key2;
3149
3150	/*
3151	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3152	 * count.
3153	 */
3154	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3155	if (ret)
3156		goto out_key2;
3157
3158	/*
3159	 * The check above which compares uaddrs is not sufficient for
3160	 * shared futexes. We need to compare the keys:
3161	 */
3162	if (match_futex(&q.key, &key2)) {
3163		queue_unlock(hb);
3164		ret = -EINVAL;
3165		goto out_put_keys;
3166	}
3167
3168	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
3169	futex_wait_queue_me(hb, &q, to);
3170
3171	spin_lock(&hb->lock);
3172	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3173	spin_unlock(&hb->lock);
3174	if (ret)
3175		goto out_put_keys;
3176
3177	/*
3178	 * In order for us to be here, we know our q.key == key2, and since
3179	 * we took the hb->lock above, we also know that futex_requeue() has
3180	 * completed and we no longer have to concern ourselves with a wakeup
3181	 * race with the atomic proxy lock acquisition by the requeue code. The
3182	 * futex_requeue dropped our key1 reference and incremented our key2
3183	 * reference count.
3184	 */
3185
3186	/* Check if the requeue code acquired the second futex for us. */
3187	if (!q.rt_waiter) {
3188		/*
3189		 * Got the lock. We might not be the anticipated owner if we
3190		 * did a lock-steal - fix up the PI-state in that case.
3191		 */
3192		if (q.pi_state && (q.pi_state->owner != current)) {
3193			spin_lock(q.lock_ptr);
3194			ret = fixup_pi_state_owner(uaddr2, &q, current);
3195			if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3196				pi_state = q.pi_state;
3197				get_pi_state(pi_state);
3198			}
3199			/*
3200			 * Drop the reference to the pi state which
3201			 * the requeue_pi() code acquired for us.
3202			 */
3203			put_pi_state(q.pi_state);
3204			spin_unlock(q.lock_ptr);
3205		}
3206	} else {
3207		struct rt_mutex *pi_mutex;
3208
3209		/*
3210		 * We have been woken up by futex_unlock_pi(), a timeout, or a
3211		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3212		 * the pi_state.
3213		 */
3214		WARN_ON(!q.pi_state);
3215		pi_mutex = &q.pi_state->pi_mutex;
3216		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3217
3218		spin_lock(q.lock_ptr);
3219		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3220			ret = 0;
3221
3222		debug_rt_mutex_free_waiter(&rt_waiter);
3223		/*
3224		 * Fixup the pi_state owner and possibly acquire the lock if we
3225		 * haven't already.
3226		 */
3227		res = fixup_owner(uaddr2, &q, !ret);
3228		/*
3229		 * If fixup_owner() returned an error, proprogate that.  If it
3230		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3231		 */
3232		if (res)
3233			ret = (res < 0) ? res : 0;
3234
3235		/*
3236		 * If fixup_pi_state_owner() faulted and was unable to handle
3237		 * the fault, unlock the rt_mutex and return the fault to
3238		 * userspace.
3239		 */
3240		if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3241			pi_state = q.pi_state;
3242			get_pi_state(pi_state);
3243		}
3244
3245		/* Unqueue and drop the lock. */
3246		unqueue_me_pi(&q);
3247	}
3248
3249	if (pi_state) {
3250		rt_mutex_futex_unlock(&pi_state->pi_mutex);
3251		put_pi_state(pi_state);
3252	}
3253
3254	if (ret == -EINTR) {
3255		/*
3256		 * We've already been requeued, but cannot restart by calling
3257		 * futex_lock_pi() directly. We could restart this syscall, but
3258		 * it would detect that the user space "val" changed and return
3259		 * -EWOULDBLOCK.  Save the overhead of the restart and return
3260		 * -EWOULDBLOCK directly.
3261		 */
3262		ret = -EWOULDBLOCK;
3263	}
3264
3265out_put_keys:
3266	put_futex_key(&q.key);
3267out_key2:
3268	put_futex_key(&key2);
3269
3270out:
3271	if (to) {
3272		hrtimer_cancel(&to->timer);
3273		destroy_hrtimer_on_stack(&to->timer);
3274	}
3275	return ret;
3276}
3277
3278/*
3279 * Support for robust futexes: the kernel cleans up held futexes at
3280 * thread exit time.
3281 *
3282 * Implementation: user-space maintains a per-thread list of locks it
3283 * is holding. Upon do_exit(), the kernel carefully walks this list,
3284 * and marks all locks that are owned by this thread with the
3285 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3286 * always manipulated with the lock held, so the list is private and
3287 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3288 * field, to allow the kernel to clean up if the thread dies after
3289 * acquiring the lock, but just before it could have added itself to
3290 * the list. There can only be one such pending lock.
3291 */
3292
3293/**
3294 * sys_set_robust_list() - Set the robust-futex list head of a task
3295 * @head:	pointer to the list-head
3296 * @len:	length of the list-head, as userspace expects
3297 */
3298SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3299		size_t, len)
3300{
3301	if (!futex_cmpxchg_enabled)
3302		return -ENOSYS;
3303	/*
3304	 * The kernel knows only one size for now:
3305	 */
3306	if (unlikely(len != sizeof(*head)))
3307		return -EINVAL;
3308
3309	current->robust_list = head;
3310
3311	return 0;
3312}
3313
3314/**
3315 * sys_get_robust_list() - Get the robust-futex list head of a task
3316 * @pid:	pid of the process [zero for current task]
3317 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
3318 * @len_ptr:	pointer to a length field, the kernel fills in the header size
3319 */
3320SYSCALL_DEFINE3(get_robust_list, int, pid,
3321		struct robust_list_head __user * __user *, head_ptr,
3322		size_t __user *, len_ptr)
3323{
3324	struct robust_list_head __user *head;
3325	unsigned long ret;
3326	struct task_struct *p;
3327
3328	if (!futex_cmpxchg_enabled)
3329		return -ENOSYS;
3330
3331	rcu_read_lock();
3332
3333	ret = -ESRCH;
3334	if (!pid)
3335		p = current;
3336	else {
3337		p = find_task_by_vpid(pid);
3338		if (!p)
3339			goto err_unlock;
3340	}
3341
3342	ret = -EPERM;
3343	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3344		goto err_unlock;
3345
3346	head = p->robust_list;
3347	rcu_read_unlock();
3348
3349	if (put_user(sizeof(*head), len_ptr))
3350		return -EFAULT;
3351	return put_user(head, head_ptr);
3352
3353err_unlock:
3354	rcu_read_unlock();
3355
3356	return ret;
3357}
3358
3359/*
3360 * Process a futex-list entry, check whether it's owned by the
3361 * dying task, and do notification if so:
3362 */
3363int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3364{
3365	u32 uval, uninitialized_var(nval), mval;
 
 
 
 
 
3366
3367retry:
3368	if (get_user(uval, uaddr))
3369		return -1;
3370
3371	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3372		/*
3373		 * Ok, this dying thread is truly holding a futex
3374		 * of interest. Set the OWNER_DIED bit atomically
3375		 * via cmpxchg, and if the value had FUTEX_WAITERS
3376		 * set, wake up a waiter (if any). (We have to do a
3377		 * futex_wake() even if OWNER_DIED is already set -
3378		 * to handle the rare but possible case of recursive
3379		 * thread-death.) The rest of the cleanup is done in
3380		 * userspace.
3381		 */
3382		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3383		/*
3384		 * We are not holding a lock here, but we want to have
3385		 * the pagefault_disable/enable() protection because
3386		 * we want to handle the fault gracefully. If the
3387		 * access fails we try to fault in the futex with R/W
3388		 * verification via get_user_pages. get_user() above
3389		 * does not guarantee R/W access. If that fails we
3390		 * give up and leave the futex locked.
3391		 */
3392		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
 
 
 
 
 
3393			if (fault_in_user_writeable(uaddr))
3394				return -1;
3395			goto retry;
3396		}
3397		if (nval != uval)
 
3398			goto retry;
3399
3400		/*
3401		 * Wake robust non-PI futexes here. The wakeup of
3402		 * PI futexes happens in exit_pi_state():
3403		 */
3404		if (!pi && (uval & FUTEX_WAITERS))
3405			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3406	}
 
 
 
 
 
 
 
 
 
 
 
3407	return 0;
3408}
3409
3410/*
3411 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3412 */
3413static inline int fetch_robust_entry(struct robust_list __user **entry,
3414				     struct robust_list __user * __user *head,
3415				     unsigned int *pi)
3416{
3417	unsigned long uentry;
3418
3419	if (get_user(uentry, (unsigned long __user *)head))
3420		return -EFAULT;
3421
3422	*entry = (void __user *)(uentry & ~1UL);
3423	*pi = uentry & 1;
3424
3425	return 0;
3426}
3427
3428/*
3429 * Walk curr->robust_list (very carefully, it's a userspace list!)
3430 * and mark any locks found there dead, and notify any waiters.
3431 *
3432 * We silently return on any sign of list-walking problem.
3433 */
3434void exit_robust_list(struct task_struct *curr)
3435{
3436	struct robust_list_head __user *head = curr->robust_list;
3437	struct robust_list __user *entry, *next_entry, *pending;
3438	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3439	unsigned int uninitialized_var(next_pi);
3440	unsigned long futex_offset;
3441	int rc;
3442
3443	if (!futex_cmpxchg_enabled)
3444		return;
3445
3446	/*
3447	 * Fetch the list head (which was registered earlier, via
3448	 * sys_set_robust_list()):
3449	 */
3450	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3451		return;
3452	/*
3453	 * Fetch the relative futex offset:
3454	 */
3455	if (get_user(futex_offset, &head->futex_offset))
3456		return;
3457	/*
3458	 * Fetch any possibly pending lock-add first, and handle it
3459	 * if it exists:
3460	 */
3461	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3462		return;
3463
3464	next_entry = NULL;	/* avoid warning with gcc */
3465	while (entry != &head->list) {
3466		/*
3467		 * Fetch the next entry in the list before calling
3468		 * handle_futex_death:
3469		 */
3470		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3471		/*
3472		 * A pending lock might already be on the list, so
3473		 * don't process it twice:
3474		 */
3475		if (entry != pending)
3476			if (handle_futex_death((void __user *)entry + futex_offset,
3477						curr, pi))
3478				return;
3479		if (rc)
3480			return;
3481		entry = next_entry;
3482		pi = next_pi;
3483		/*
3484		 * Avoid excessively long or circular lists:
3485		 */
3486		if (!--limit)
3487			break;
3488
3489		cond_resched();
3490	}
3491
3492	if (pending)
3493		handle_futex_death((void __user *)pending + futex_offset,
3494				   curr, pip);
3495}
3496
3497long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3498		u32 __user *uaddr2, u32 val2, u32 val3)
3499{
3500	int cmd = op & FUTEX_CMD_MASK;
3501	unsigned int flags = 0;
3502
3503	if (!(op & FUTEX_PRIVATE_FLAG))
3504		flags |= FLAGS_SHARED;
3505
3506	if (op & FUTEX_CLOCK_REALTIME) {
3507		flags |= FLAGS_CLOCKRT;
3508		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3509		    cmd != FUTEX_WAIT_REQUEUE_PI)
3510			return -ENOSYS;
3511	}
3512
3513	switch (cmd) {
3514	case FUTEX_LOCK_PI:
3515	case FUTEX_UNLOCK_PI:
3516	case FUTEX_TRYLOCK_PI:
3517	case FUTEX_WAIT_REQUEUE_PI:
3518	case FUTEX_CMP_REQUEUE_PI:
3519		if (!futex_cmpxchg_enabled)
3520			return -ENOSYS;
3521	}
3522
3523	switch (cmd) {
3524	case FUTEX_WAIT:
3525		val3 = FUTEX_BITSET_MATCH_ANY;
 
3526	case FUTEX_WAIT_BITSET:
3527		return futex_wait(uaddr, flags, val, timeout, val3);
3528	case FUTEX_WAKE:
3529		val3 = FUTEX_BITSET_MATCH_ANY;
 
3530	case FUTEX_WAKE_BITSET:
3531		return futex_wake(uaddr, flags, val, val3);
3532	case FUTEX_REQUEUE:
3533		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3534	case FUTEX_CMP_REQUEUE:
3535		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3536	case FUTEX_WAKE_OP:
3537		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3538	case FUTEX_LOCK_PI:
3539		return futex_lock_pi(uaddr, flags, timeout, 0);
3540	case FUTEX_UNLOCK_PI:
3541		return futex_unlock_pi(uaddr, flags);
3542	case FUTEX_TRYLOCK_PI:
3543		return futex_lock_pi(uaddr, flags, NULL, 1);
3544	case FUTEX_WAIT_REQUEUE_PI:
3545		val3 = FUTEX_BITSET_MATCH_ANY;
3546		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3547					     uaddr2);
3548	case FUTEX_CMP_REQUEUE_PI:
3549		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3550	}
3551	return -ENOSYS;
3552}
3553
3554
3555SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3556		struct timespec __user *, utime, u32 __user *, uaddr2,
3557		u32, val3)
3558{
3559	struct timespec ts;
3560	ktime_t t, *tp = NULL;
3561	u32 val2 = 0;
3562	int cmd = op & FUTEX_CMD_MASK;
3563
3564	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3565		      cmd == FUTEX_WAIT_BITSET ||
3566		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3567		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3568			return -EFAULT;
3569		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3570			return -EFAULT;
3571		if (!timespec_valid(&ts))
3572			return -EINVAL;
3573
3574		t = timespec_to_ktime(ts);
3575		if (cmd == FUTEX_WAIT)
3576			t = ktime_add_safe(ktime_get(), t);
3577		tp = &t;
3578	}
3579	/*
3580	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3581	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3582	 */
3583	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3584	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3585		val2 = (u32) (unsigned long) utime;
3586
3587	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3588}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3589
3590static void __init futex_detect_cmpxchg(void)
3591{
3592#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3593	u32 curval;
3594
3595	/*
3596	 * This will fail and we want it. Some arch implementations do
3597	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3598	 * functionality. We want to know that before we call in any
3599	 * of the complex code paths. Also we want to prevent
3600	 * registration of robust lists in that case. NULL is
3601	 * guaranteed to fault and we get -EFAULT on functional
3602	 * implementation, the non-functional ones will return
3603	 * -ENOSYS.
3604	 */
3605	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3606		futex_cmpxchg_enabled = 1;
3607#endif
3608}
3609
3610static int __init futex_init(void)
3611{
3612	unsigned int futex_shift;
3613	unsigned long i;
3614
3615#if CONFIG_BASE_SMALL
3616	futex_hashsize = 16;
3617#else
3618	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3619#endif
3620
3621	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3622					       futex_hashsize, 0,
3623					       futex_hashsize < 256 ? HASH_SMALL : 0,
3624					       &futex_shift, NULL,
3625					       futex_hashsize, futex_hashsize);
3626	futex_hashsize = 1UL << futex_shift;
3627
3628	futex_detect_cmpxchg();
3629
3630	for (i = 0; i < futex_hashsize; i++) {
3631		atomic_set(&futex_queues[i].waiters, 0);
3632		plist_head_init(&futex_queues[i].chain);
3633		spin_lock_init(&futex_queues[i].lock);
3634	}
3635
3636	return 0;
3637}
3638core_initcall(futex_init);