Linux Audio

Check our new training course

Loading...
   1/*
   2 *  Fast Userspace Mutexes (which I call "Futexes!").
   3 *  (C) Rusty Russell, IBM 2002
   4 *
   5 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   6 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   7 *
   8 *  Removed page pinning, fix privately mapped COW pages and other cleanups
   9 *  (C) Copyright 2003, 2004 Jamie Lokier
  10 *
  11 *  Robust futex support started by Ingo Molnar
  12 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14 *
  15 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  16 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18 *
  19 *  PRIVATE futexes by Eric Dumazet
  20 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21 *
  22 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23 *  Copyright (C) IBM Corporation, 2009
  24 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25 *
  26 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27 *  enough at me, Linus for the original (flawed) idea, Matthew
  28 *  Kirkwood for proof-of-concept implementation.
  29 *
  30 *  "The futexes are also cursed."
  31 *  "But they come in a choice of three flavours!"
  32 *
  33 *  This program is free software; you can redistribute it and/or modify
  34 *  it under the terms of the GNU General Public License as published by
  35 *  the Free Software Foundation; either version 2 of the License, or
  36 *  (at your option) any later version.
  37 *
  38 *  This program is distributed in the hope that it will be useful,
  39 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  40 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  41 *  GNU General Public License for more details.
  42 *
  43 *  You should have received a copy of the GNU General Public License
  44 *  along with this program; if not, write to the Free Software
  45 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  46 */
  47#include <linux/slab.h>
  48#include <linux/poll.h>
  49#include <linux/fs.h>
  50#include <linux/file.h>
  51#include <linux/jhash.h>
  52#include <linux/init.h>
  53#include <linux/futex.h>
  54#include <linux/mount.h>
  55#include <linux/pagemap.h>
  56#include <linux/syscalls.h>
  57#include <linux/signal.h>
  58#include <linux/export.h>
  59#include <linux/magic.h>
  60#include <linux/pid.h>
  61#include <linux/nsproxy.h>
  62#include <linux/ptrace.h>
  63
  64#include <asm/futex.h>
  65
  66#include "rtmutex_common.h"
  67
  68int __read_mostly futex_cmpxchg_enabled;
  69
  70#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
  71
  72/*
  73 * Futex flags used to encode options to functions and preserve them across
  74 * restarts.
  75 */
  76#define FLAGS_SHARED		0x01
  77#define FLAGS_CLOCKRT		0x02
  78#define FLAGS_HAS_TIMEOUT	0x04
  79
  80/*
  81 * Priority Inheritance state:
  82 */
  83struct futex_pi_state {
  84	/*
  85	 * list of 'owned' pi_state instances - these have to be
  86	 * cleaned up in do_exit() if the task exits prematurely:
  87	 */
  88	struct list_head list;
  89
  90	/*
  91	 * The PI object:
  92	 */
  93	struct rt_mutex pi_mutex;
  94
  95	struct task_struct *owner;
  96	atomic_t refcount;
  97
  98	union futex_key key;
  99};
 100
 101/**
 102 * struct futex_q - The hashed futex queue entry, one per waiting task
 103 * @list:		priority-sorted list of tasks waiting on this futex
 104 * @task:		the task waiting on the futex
 105 * @lock_ptr:		the hash bucket lock
 106 * @key:		the key the futex is hashed on
 107 * @pi_state:		optional priority inheritance state
 108 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 109 * @requeue_pi_key:	the requeue_pi target futex key
 110 * @bitset:		bitset for the optional bitmasked wakeup
 111 *
 112 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
 113 * we can wake only the relevant ones (hashed queues may be shared).
 114 *
 115 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 116 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 117 * The order of wakeup is always to make the first condition true, then
 118 * the second.
 119 *
 120 * PI futexes are typically woken before they are removed from the hash list via
 121 * the rt_mutex code. See unqueue_me_pi().
 122 */
 123struct futex_q {
 124	struct plist_node list;
 125
 126	struct task_struct *task;
 127	spinlock_t *lock_ptr;
 128	union futex_key key;
 129	struct futex_pi_state *pi_state;
 130	struct rt_mutex_waiter *rt_waiter;
 131	union futex_key *requeue_pi_key;
 132	u32 bitset;
 133};
 134
 135static const struct futex_q futex_q_init = {
 136	/* list gets initialized in queue_me()*/
 137	.key = FUTEX_KEY_INIT,
 138	.bitset = FUTEX_BITSET_MATCH_ANY
 139};
 140
 141/*
 142 * Hash buckets are shared by all the futex_keys that hash to the same
 143 * location.  Each key may have multiple futex_q structures, one for each task
 144 * waiting on a futex.
 145 */
 146struct futex_hash_bucket {
 147	spinlock_t lock;
 148	struct plist_head chain;
 149};
 150
 151static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
 152
 153/*
 154 * We hash on the keys returned from get_futex_key (see below).
 155 */
 156static struct futex_hash_bucket *hash_futex(union futex_key *key)
 157{
 158	u32 hash = jhash2((u32*)&key->both.word,
 159			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 160			  key->both.offset);
 161	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
 162}
 163
 164/*
 165 * Return 1 if two futex_keys are equal, 0 otherwise.
 166 */
 167static inline int match_futex(union futex_key *key1, union futex_key *key2)
 168{
 169	return (key1 && key2
 170		&& key1->both.word == key2->both.word
 171		&& key1->both.ptr == key2->both.ptr
 172		&& key1->both.offset == key2->both.offset);
 173}
 174
 175/*
 176 * Take a reference to the resource addressed by a key.
 177 * Can be called while holding spinlocks.
 178 *
 179 */
 180static void get_futex_key_refs(union futex_key *key)
 181{
 182	if (!key->both.ptr)
 183		return;
 184
 185	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 186	case FUT_OFF_INODE:
 187		ihold(key->shared.inode);
 188		break;
 189	case FUT_OFF_MMSHARED:
 190		atomic_inc(&key->private.mm->mm_count);
 191		break;
 192	}
 193}
 194
 195/*
 196 * Drop a reference to the resource addressed by a key.
 197 * The hash bucket spinlock must not be held.
 198 */
 199static void drop_futex_key_refs(union futex_key *key)
 200{
 201	if (!key->both.ptr) {
 202		/* If we're here then we tried to put a key we failed to get */
 203		WARN_ON_ONCE(1);
 204		return;
 205	}
 206
 207	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 208	case FUT_OFF_INODE:
 209		iput(key->shared.inode);
 210		break;
 211	case FUT_OFF_MMSHARED:
 212		mmdrop(key->private.mm);
 213		break;
 214	}
 215}
 216
 217/**
 218 * get_futex_key() - Get parameters which are the keys for a futex
 219 * @uaddr:	virtual address of the futex
 220 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 221 * @key:	address where result is stored.
 222 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 223 *              VERIFY_WRITE)
 224 *
 225 * Returns a negative error code or 0
 226 * The key words are stored in *key on success.
 227 *
 228 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
 229 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 230 * We can usually work out the index without swapping in the page.
 231 *
 232 * lock_page() might sleep, the caller should not hold a spinlock.
 233 */
 234static int
 235get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 236{
 237	unsigned long address = (unsigned long)uaddr;
 238	struct mm_struct *mm = current->mm;
 239	struct page *page, *page_head;
 240	int err, ro = 0;
 241
 242	/*
 243	 * The futex address must be "naturally" aligned.
 244	 */
 245	key->both.offset = address % PAGE_SIZE;
 246	if (unlikely((address % sizeof(u32)) != 0))
 247		return -EINVAL;
 248	address -= key->both.offset;
 249
 250	/*
 251	 * PROCESS_PRIVATE futexes are fast.
 252	 * As the mm cannot disappear under us and the 'key' only needs
 253	 * virtual address, we dont even have to find the underlying vma.
 254	 * Note : We do have to check 'uaddr' is a valid user address,
 255	 *        but access_ok() should be faster than find_vma()
 256	 */
 257	if (!fshared) {
 258		if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
 259			return -EFAULT;
 260		key->private.mm = mm;
 261		key->private.address = address;
 262		get_futex_key_refs(key);
 263		return 0;
 264	}
 265
 266again:
 267	err = get_user_pages_fast(address, 1, 1, &page);
 268	/*
 269	 * If write access is not required (eg. FUTEX_WAIT), try
 270	 * and get read-only access.
 271	 */
 272	if (err == -EFAULT && rw == VERIFY_READ) {
 273		err = get_user_pages_fast(address, 1, 0, &page);
 274		ro = 1;
 275	}
 276	if (err < 0)
 277		return err;
 278	else
 279		err = 0;
 280
 281#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 282	page_head = page;
 283	if (unlikely(PageTail(page))) {
 284		put_page(page);
 285		/* serialize against __split_huge_page_splitting() */
 286		local_irq_disable();
 287		if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
 288			page_head = compound_head(page);
 289			/*
 290			 * page_head is valid pointer but we must pin
 291			 * it before taking the PG_lock and/or
 292			 * PG_compound_lock. The moment we re-enable
 293			 * irqs __split_huge_page_splitting() can
 294			 * return and the head page can be freed from
 295			 * under us. We can't take the PG_lock and/or
 296			 * PG_compound_lock on a page that could be
 297			 * freed from under us.
 298			 */
 299			if (page != page_head) {
 300				get_page(page_head);
 301				put_page(page);
 302			}
 303			local_irq_enable();
 304		} else {
 305			local_irq_enable();
 306			goto again;
 307		}
 308	}
 309#else
 310	page_head = compound_head(page);
 311	if (page != page_head) {
 312		get_page(page_head);
 313		put_page(page);
 314	}
 315#endif
 316
 317	lock_page(page_head);
 318
 319	/*
 320	 * If page_head->mapping is NULL, then it cannot be a PageAnon
 321	 * page; but it might be the ZERO_PAGE or in the gate area or
 322	 * in a special mapping (all cases which we are happy to fail);
 323	 * or it may have been a good file page when get_user_pages_fast
 324	 * found it, but truncated or holepunched or subjected to
 325	 * invalidate_complete_page2 before we got the page lock (also
 326	 * cases which we are happy to fail).  And we hold a reference,
 327	 * so refcount care in invalidate_complete_page's remove_mapping
 328	 * prevents drop_caches from setting mapping to NULL beneath us.
 329	 *
 330	 * The case we do have to guard against is when memory pressure made
 331	 * shmem_writepage move it from filecache to swapcache beneath us:
 332	 * an unlikely race, but we do need to retry for page_head->mapping.
 333	 */
 334	if (!page_head->mapping) {
 335		int shmem_swizzled = PageSwapCache(page_head);
 336		unlock_page(page_head);
 337		put_page(page_head);
 338		if (shmem_swizzled)
 339			goto again;
 340		return -EFAULT;
 341	}
 342
 343	/*
 344	 * Private mappings are handled in a simple way.
 345	 *
 346	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 347	 * it's a read-only handle, it's expected that futexes attach to
 348	 * the object not the particular process.
 349	 */
 350	if (PageAnon(page_head)) {
 351		/*
 352		 * A RO anonymous page will never change and thus doesn't make
 353		 * sense for futex operations.
 354		 */
 355		if (ro) {
 356			err = -EFAULT;
 357			goto out;
 358		}
 359
 360		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 361		key->private.mm = mm;
 362		key->private.address = address;
 363	} else {
 364		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 365		key->shared.inode = page_head->mapping->host;
 366		key->shared.pgoff = page_head->index;
 367	}
 368
 369	get_futex_key_refs(key);
 370
 371out:
 372	unlock_page(page_head);
 373	put_page(page_head);
 374	return err;
 375}
 376
 377static inline void put_futex_key(union futex_key *key)
 378{
 379	drop_futex_key_refs(key);
 380}
 381
 382/**
 383 * fault_in_user_writeable() - Fault in user address and verify RW access
 384 * @uaddr:	pointer to faulting user space address
 385 *
 386 * Slow path to fixup the fault we just took in the atomic write
 387 * access to @uaddr.
 388 *
 389 * We have no generic implementation of a non-destructive write to the
 390 * user address. We know that we faulted in the atomic pagefault
 391 * disabled section so we can as well avoid the #PF overhead by
 392 * calling get_user_pages() right away.
 393 */
 394static int fault_in_user_writeable(u32 __user *uaddr)
 395{
 396	struct mm_struct *mm = current->mm;
 397	int ret;
 398
 399	down_read(&mm->mmap_sem);
 400	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 401			       FAULT_FLAG_WRITE);
 402	up_read(&mm->mmap_sem);
 403
 404	return ret < 0 ? ret : 0;
 405}
 406
 407/**
 408 * futex_top_waiter() - Return the highest priority waiter on a futex
 409 * @hb:		the hash bucket the futex_q's reside in
 410 * @key:	the futex key (to distinguish it from other futex futex_q's)
 411 *
 412 * Must be called with the hb lock held.
 413 */
 414static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 415					union futex_key *key)
 416{
 417	struct futex_q *this;
 418
 419	plist_for_each_entry(this, &hb->chain, list) {
 420		if (match_futex(&this->key, key))
 421			return this;
 422	}
 423	return NULL;
 424}
 425
 426static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 427				      u32 uval, u32 newval)
 428{
 429	int ret;
 430
 431	pagefault_disable();
 432	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 433	pagefault_enable();
 434
 435	return ret;
 436}
 437
 438static int get_futex_value_locked(u32 *dest, u32 __user *from)
 439{
 440	int ret;
 441
 442	pagefault_disable();
 443	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
 444	pagefault_enable();
 445
 446	return ret ? -EFAULT : 0;
 447}
 448
 449
 450/*
 451 * PI code:
 452 */
 453static int refill_pi_state_cache(void)
 454{
 455	struct futex_pi_state *pi_state;
 456
 457	if (likely(current->pi_state_cache))
 458		return 0;
 459
 460	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 461
 462	if (!pi_state)
 463		return -ENOMEM;
 464
 465	INIT_LIST_HEAD(&pi_state->list);
 466	/* pi_mutex gets initialized later */
 467	pi_state->owner = NULL;
 468	atomic_set(&pi_state->refcount, 1);
 469	pi_state->key = FUTEX_KEY_INIT;
 470
 471	current->pi_state_cache = pi_state;
 472
 473	return 0;
 474}
 475
 476static struct futex_pi_state * alloc_pi_state(void)
 477{
 478	struct futex_pi_state *pi_state = current->pi_state_cache;
 479
 480	WARN_ON(!pi_state);
 481	current->pi_state_cache = NULL;
 482
 483	return pi_state;
 484}
 485
 486static void free_pi_state(struct futex_pi_state *pi_state)
 487{
 488	if (!atomic_dec_and_test(&pi_state->refcount))
 489		return;
 490
 491	/*
 492	 * If pi_state->owner is NULL, the owner is most probably dying
 493	 * and has cleaned up the pi_state already
 494	 */
 495	if (pi_state->owner) {
 496		raw_spin_lock_irq(&pi_state->owner->pi_lock);
 497		list_del_init(&pi_state->list);
 498		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 499
 500		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
 501	}
 502
 503	if (current->pi_state_cache)
 504		kfree(pi_state);
 505	else {
 506		/*
 507		 * pi_state->list is already empty.
 508		 * clear pi_state->owner.
 509		 * refcount is at 0 - put it back to 1.
 510		 */
 511		pi_state->owner = NULL;
 512		atomic_set(&pi_state->refcount, 1);
 513		current->pi_state_cache = pi_state;
 514	}
 515}
 516
 517/*
 518 * Look up the task based on what TID userspace gave us.
 519 * We dont trust it.
 520 */
 521static struct task_struct * futex_find_get_task(pid_t pid)
 522{
 523	struct task_struct *p;
 524
 525	rcu_read_lock();
 526	p = find_task_by_vpid(pid);
 527	if (p)
 528		get_task_struct(p);
 529
 530	rcu_read_unlock();
 531
 532	return p;
 533}
 534
 535/*
 536 * This task is holding PI mutexes at exit time => bad.
 537 * Kernel cleans up PI-state, but userspace is likely hosed.
 538 * (Robust-futex cleanup is separate and might save the day for userspace.)
 539 */
 540void exit_pi_state_list(struct task_struct *curr)
 541{
 542	struct list_head *next, *head = &curr->pi_state_list;
 543	struct futex_pi_state *pi_state;
 544	struct futex_hash_bucket *hb;
 545	union futex_key key = FUTEX_KEY_INIT;
 546
 547	if (!futex_cmpxchg_enabled)
 548		return;
 549	/*
 550	 * We are a ZOMBIE and nobody can enqueue itself on
 551	 * pi_state_list anymore, but we have to be careful
 552	 * versus waiters unqueueing themselves:
 553	 */
 554	raw_spin_lock_irq(&curr->pi_lock);
 555	while (!list_empty(head)) {
 556
 557		next = head->next;
 558		pi_state = list_entry(next, struct futex_pi_state, list);
 559		key = pi_state->key;
 560		hb = hash_futex(&key);
 561		raw_spin_unlock_irq(&curr->pi_lock);
 562
 563		spin_lock(&hb->lock);
 564
 565		raw_spin_lock_irq(&curr->pi_lock);
 566		/*
 567		 * We dropped the pi-lock, so re-check whether this
 568		 * task still owns the PI-state:
 569		 */
 570		if (head->next != next) {
 571			spin_unlock(&hb->lock);
 572			continue;
 573		}
 574
 575		WARN_ON(pi_state->owner != curr);
 576		WARN_ON(list_empty(&pi_state->list));
 577		list_del_init(&pi_state->list);
 578		pi_state->owner = NULL;
 579		raw_spin_unlock_irq(&curr->pi_lock);
 580
 581		rt_mutex_unlock(&pi_state->pi_mutex);
 582
 583		spin_unlock(&hb->lock);
 584
 585		raw_spin_lock_irq(&curr->pi_lock);
 586	}
 587	raw_spin_unlock_irq(&curr->pi_lock);
 588}
 589
 590static int
 591lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
 592		union futex_key *key, struct futex_pi_state **ps)
 593{
 594	struct futex_pi_state *pi_state = NULL;
 595	struct futex_q *this, *next;
 596	struct plist_head *head;
 597	struct task_struct *p;
 598	pid_t pid = uval & FUTEX_TID_MASK;
 599
 600	head = &hb->chain;
 601
 602	plist_for_each_entry_safe(this, next, head, list) {
 603		if (match_futex(&this->key, key)) {
 604			/*
 605			 * Another waiter already exists - bump up
 606			 * the refcount and return its pi_state:
 607			 */
 608			pi_state = this->pi_state;
 609			/*
 610			 * Userspace might have messed up non-PI and PI futexes
 611			 */
 612			if (unlikely(!pi_state))
 613				return -EINVAL;
 614
 615			WARN_ON(!atomic_read(&pi_state->refcount));
 616
 617			/*
 618			 * When pi_state->owner is NULL then the owner died
 619			 * and another waiter is on the fly. pi_state->owner
 620			 * is fixed up by the task which acquires
 621			 * pi_state->rt_mutex.
 622			 *
 623			 * We do not check for pid == 0 which can happen when
 624			 * the owner died and robust_list_exit() cleared the
 625			 * TID.
 626			 */
 627			if (pid && pi_state->owner) {
 628				/*
 629				 * Bail out if user space manipulated the
 630				 * futex value.
 631				 */
 632				if (pid != task_pid_vnr(pi_state->owner))
 633					return -EINVAL;
 634			}
 635
 636			atomic_inc(&pi_state->refcount);
 637			*ps = pi_state;
 638
 639			return 0;
 640		}
 641	}
 642
 643	/*
 644	 * We are the first waiter - try to look up the real owner and attach
 645	 * the new pi_state to it, but bail out when TID = 0
 646	 */
 647	if (!pid)
 648		return -ESRCH;
 649	p = futex_find_get_task(pid);
 650	if (!p)
 651		return -ESRCH;
 652
 653	/*
 654	 * We need to look at the task state flags to figure out,
 655	 * whether the task is exiting. To protect against the do_exit
 656	 * change of the task flags, we do this protected by
 657	 * p->pi_lock:
 658	 */
 659	raw_spin_lock_irq(&p->pi_lock);
 660	if (unlikely(p->flags & PF_EXITING)) {
 661		/*
 662		 * The task is on the way out. When PF_EXITPIDONE is
 663		 * set, we know that the task has finished the
 664		 * cleanup:
 665		 */
 666		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
 667
 668		raw_spin_unlock_irq(&p->pi_lock);
 669		put_task_struct(p);
 670		return ret;
 671	}
 672
 673	pi_state = alloc_pi_state();
 674
 675	/*
 676	 * Initialize the pi_mutex in locked state and make 'p'
 677	 * the owner of it:
 678	 */
 679	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
 680
 681	/* Store the key for possible exit cleanups: */
 682	pi_state->key = *key;
 683
 684	WARN_ON(!list_empty(&pi_state->list));
 685	list_add(&pi_state->list, &p->pi_state_list);
 686	pi_state->owner = p;
 687	raw_spin_unlock_irq(&p->pi_lock);
 688
 689	put_task_struct(p);
 690
 691	*ps = pi_state;
 692
 693	return 0;
 694}
 695
 696/**
 697 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
 698 * @uaddr:		the pi futex user address
 699 * @hb:			the pi futex hash bucket
 700 * @key:		the futex key associated with uaddr and hb
 701 * @ps:			the pi_state pointer where we store the result of the
 702 *			lookup
 703 * @task:		the task to perform the atomic lock work for.  This will
 704 *			be "current" except in the case of requeue pi.
 705 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
 706 *
 707 * Returns:
 708 *  0 - ready to wait
 709 *  1 - acquired the lock
 710 * <0 - error
 711 *
 712 * The hb->lock and futex_key refs shall be held by the caller.
 713 */
 714static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
 715				union futex_key *key,
 716				struct futex_pi_state **ps,
 717				struct task_struct *task, int set_waiters)
 718{
 719	int lock_taken, ret, ownerdied = 0;
 720	u32 uval, newval, curval, vpid = task_pid_vnr(task);
 721
 722retry:
 723	ret = lock_taken = 0;
 724
 725	/*
 726	 * To avoid races, we attempt to take the lock here again
 727	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
 728	 * the locks. It will most likely not succeed.
 729	 */
 730	newval = vpid;
 731	if (set_waiters)
 732		newval |= FUTEX_WAITERS;
 733
 734	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
 735		return -EFAULT;
 736
 737	/*
 738	 * Detect deadlocks.
 739	 */
 740	if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
 741		return -EDEADLK;
 742
 743	/*
 744	 * Surprise - we got the lock. Just return to userspace:
 745	 */
 746	if (unlikely(!curval))
 747		return 1;
 748
 749	uval = curval;
 750
 751	/*
 752	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
 753	 * to wake at the next unlock.
 754	 */
 755	newval = curval | FUTEX_WAITERS;
 756
 757	/*
 758	 * There are two cases, where a futex might have no owner (the
 759	 * owner TID is 0): OWNER_DIED. We take over the futex in this
 760	 * case. We also do an unconditional take over, when the owner
 761	 * of the futex died.
 762	 *
 763	 * This is safe as we are protected by the hash bucket lock !
 764	 */
 765	if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
 766		/* Keep the OWNER_DIED bit */
 767		newval = (curval & ~FUTEX_TID_MASK) | vpid;
 768		ownerdied = 0;
 769		lock_taken = 1;
 770	}
 771
 772	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
 773		return -EFAULT;
 774	if (unlikely(curval != uval))
 775		goto retry;
 776
 777	/*
 778	 * We took the lock due to owner died take over.
 779	 */
 780	if (unlikely(lock_taken))
 781		return 1;
 782
 783	/*
 784	 * We dont have the lock. Look up the PI state (or create it if
 785	 * we are the first waiter):
 786	 */
 787	ret = lookup_pi_state(uval, hb, key, ps);
 788
 789	if (unlikely(ret)) {
 790		switch (ret) {
 791		case -ESRCH:
 792			/*
 793			 * No owner found for this futex. Check if the
 794			 * OWNER_DIED bit is set to figure out whether
 795			 * this is a robust futex or not.
 796			 */
 797			if (get_futex_value_locked(&curval, uaddr))
 798				return -EFAULT;
 799
 800			/*
 801			 * We simply start over in case of a robust
 802			 * futex. The code above will take the futex
 803			 * and return happy.
 804			 */
 805			if (curval & FUTEX_OWNER_DIED) {
 806				ownerdied = 1;
 807				goto retry;
 808			}
 809		default:
 810			break;
 811		}
 812	}
 813
 814	return ret;
 815}
 816
 817/**
 818 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 819 * @q:	The futex_q to unqueue
 820 *
 821 * The q->lock_ptr must not be NULL and must be held by the caller.
 822 */
 823static void __unqueue_futex(struct futex_q *q)
 824{
 825	struct futex_hash_bucket *hb;
 826
 827	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
 828	    || WARN_ON(plist_node_empty(&q->list)))
 829		return;
 830
 831	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
 832	plist_del(&q->list, &hb->chain);
 833}
 834
 835/*
 836 * The hash bucket lock must be held when this is called.
 837 * Afterwards, the futex_q must not be accessed.
 838 */
 839static void wake_futex(struct futex_q *q)
 840{
 841	struct task_struct *p = q->task;
 842
 843	/*
 844	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
 845	 * a non-futex wake up happens on another CPU then the task
 846	 * might exit and p would dereference a non-existing task
 847	 * struct. Prevent this by holding a reference on p across the
 848	 * wake up.
 849	 */
 850	get_task_struct(p);
 851
 852	__unqueue_futex(q);
 853	/*
 854	 * The waiting task can free the futex_q as soon as
 855	 * q->lock_ptr = NULL is written, without taking any locks. A
 856	 * memory barrier is required here to prevent the following
 857	 * store to lock_ptr from getting ahead of the plist_del.
 858	 */
 859	smp_wmb();
 860	q->lock_ptr = NULL;
 861
 862	wake_up_state(p, TASK_NORMAL);
 863	put_task_struct(p);
 864}
 865
 866static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
 867{
 868	struct task_struct *new_owner;
 869	struct futex_pi_state *pi_state = this->pi_state;
 870	u32 uninitialized_var(curval), newval;
 871
 872	if (!pi_state)
 873		return -EINVAL;
 874
 875	/*
 876	 * If current does not own the pi_state then the futex is
 877	 * inconsistent and user space fiddled with the futex value.
 878	 */
 879	if (pi_state->owner != current)
 880		return -EINVAL;
 881
 882	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
 883	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
 884
 885	/*
 886	 * It is possible that the next waiter (the one that brought
 887	 * this owner to the kernel) timed out and is no longer
 888	 * waiting on the lock.
 889	 */
 890	if (!new_owner)
 891		new_owner = this->task;
 892
 893	/*
 894	 * We pass it to the next owner. (The WAITERS bit is always
 895	 * kept enabled while there is PI state around. We must also
 896	 * preserve the owner died bit.)
 897	 */
 898	if (!(uval & FUTEX_OWNER_DIED)) {
 899		int ret = 0;
 900
 901		newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
 902
 903		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
 904			ret = -EFAULT;
 905		else if (curval != uval)
 906			ret = -EINVAL;
 907		if (ret) {
 908			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 909			return ret;
 910		}
 911	}
 912
 913	raw_spin_lock_irq(&pi_state->owner->pi_lock);
 914	WARN_ON(list_empty(&pi_state->list));
 915	list_del_init(&pi_state->list);
 916	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 917
 918	raw_spin_lock_irq(&new_owner->pi_lock);
 919	WARN_ON(!list_empty(&pi_state->list));
 920	list_add(&pi_state->list, &new_owner->pi_state_list);
 921	pi_state->owner = new_owner;
 922	raw_spin_unlock_irq(&new_owner->pi_lock);
 923
 924	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 925	rt_mutex_unlock(&pi_state->pi_mutex);
 926
 927	return 0;
 928}
 929
 930static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
 931{
 932	u32 uninitialized_var(oldval);
 933
 934	/*
 935	 * There is no waiter, so we unlock the futex. The owner died
 936	 * bit has not to be preserved here. We are the owner:
 937	 */
 938	if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
 939		return -EFAULT;
 940	if (oldval != uval)
 941		return -EAGAIN;
 942
 943	return 0;
 944}
 945
 946/*
 947 * Express the locking dependencies for lockdep:
 948 */
 949static inline void
 950double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
 951{
 952	if (hb1 <= hb2) {
 953		spin_lock(&hb1->lock);
 954		if (hb1 < hb2)
 955			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
 956	} else { /* hb1 > hb2 */
 957		spin_lock(&hb2->lock);
 958		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
 959	}
 960}
 961
 962static inline void
 963double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
 964{
 965	spin_unlock(&hb1->lock);
 966	if (hb1 != hb2)
 967		spin_unlock(&hb2->lock);
 968}
 969
 970/*
 971 * Wake up waiters matching bitset queued on this futex (uaddr).
 972 */
 973static int
 974futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
 975{
 976	struct futex_hash_bucket *hb;
 977	struct futex_q *this, *next;
 978	struct plist_head *head;
 979	union futex_key key = FUTEX_KEY_INIT;
 980	int ret;
 981
 982	if (!bitset)
 983		return -EINVAL;
 984
 985	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
 986	if (unlikely(ret != 0))
 987		goto out;
 988
 989	hb = hash_futex(&key);
 990	spin_lock(&hb->lock);
 991	head = &hb->chain;
 992
 993	plist_for_each_entry_safe(this, next, head, list) {
 994		if (match_futex (&this->key, &key)) {
 995			if (this->pi_state || this->rt_waiter) {
 996				ret = -EINVAL;
 997				break;
 998			}
 999
1000			/* Check if one of the bits is set in both bitsets */
1001			if (!(this->bitset & bitset))
1002				continue;
1003
1004			wake_futex(this);
1005			if (++ret >= nr_wake)
1006				break;
1007		}
1008	}
1009
1010	spin_unlock(&hb->lock);
1011	put_futex_key(&key);
1012out:
1013	return ret;
1014}
1015
1016/*
1017 * Wake up all waiters hashed on the physical page that is mapped
1018 * to this virtual address:
1019 */
1020static int
1021futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1022	      int nr_wake, int nr_wake2, int op)
1023{
1024	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1025	struct futex_hash_bucket *hb1, *hb2;
1026	struct plist_head *head;
1027	struct futex_q *this, *next;
1028	int ret, op_ret;
1029
1030retry:
1031	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1032	if (unlikely(ret != 0))
1033		goto out;
1034	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1035	if (unlikely(ret != 0))
1036		goto out_put_key1;
1037
1038	hb1 = hash_futex(&key1);
1039	hb2 = hash_futex(&key2);
1040
1041retry_private:
1042	double_lock_hb(hb1, hb2);
1043	op_ret = futex_atomic_op_inuser(op, uaddr2);
1044	if (unlikely(op_ret < 0)) {
1045
1046		double_unlock_hb(hb1, hb2);
1047
1048#ifndef CONFIG_MMU
1049		/*
1050		 * we don't get EFAULT from MMU faults if we don't have an MMU,
1051		 * but we might get them from range checking
1052		 */
1053		ret = op_ret;
1054		goto out_put_keys;
1055#endif
1056
1057		if (unlikely(op_ret != -EFAULT)) {
1058			ret = op_ret;
1059			goto out_put_keys;
1060		}
1061
1062		ret = fault_in_user_writeable(uaddr2);
1063		if (ret)
1064			goto out_put_keys;
1065
1066		if (!(flags & FLAGS_SHARED))
1067			goto retry_private;
1068
1069		put_futex_key(&key2);
1070		put_futex_key(&key1);
1071		goto retry;
1072	}
1073
1074	head = &hb1->chain;
1075
1076	plist_for_each_entry_safe(this, next, head, list) {
1077		if (match_futex (&this->key, &key1)) {
1078			wake_futex(this);
1079			if (++ret >= nr_wake)
1080				break;
1081		}
1082	}
1083
1084	if (op_ret > 0) {
1085		head = &hb2->chain;
1086
1087		op_ret = 0;
1088		plist_for_each_entry_safe(this, next, head, list) {
1089			if (match_futex (&this->key, &key2)) {
1090				wake_futex(this);
1091				if (++op_ret >= nr_wake2)
1092					break;
1093			}
1094		}
1095		ret += op_ret;
1096	}
1097
1098	double_unlock_hb(hb1, hb2);
1099out_put_keys:
1100	put_futex_key(&key2);
1101out_put_key1:
1102	put_futex_key(&key1);
1103out:
1104	return ret;
1105}
1106
1107/**
1108 * requeue_futex() - Requeue a futex_q from one hb to another
1109 * @q:		the futex_q to requeue
1110 * @hb1:	the source hash_bucket
1111 * @hb2:	the target hash_bucket
1112 * @key2:	the new key for the requeued futex_q
1113 */
1114static inline
1115void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1116		   struct futex_hash_bucket *hb2, union futex_key *key2)
1117{
1118
1119	/*
1120	 * If key1 and key2 hash to the same bucket, no need to
1121	 * requeue.
1122	 */
1123	if (likely(&hb1->chain != &hb2->chain)) {
1124		plist_del(&q->list, &hb1->chain);
1125		plist_add(&q->list, &hb2->chain);
1126		q->lock_ptr = &hb2->lock;
1127	}
1128	get_futex_key_refs(key2);
1129	q->key = *key2;
1130}
1131
1132/**
1133 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1134 * @q:		the futex_q
1135 * @key:	the key of the requeue target futex
1136 * @hb:		the hash_bucket of the requeue target futex
1137 *
1138 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1139 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1140 * to the requeue target futex so the waiter can detect the wakeup on the right
1141 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1142 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1143 * to protect access to the pi_state to fixup the owner later.  Must be called
1144 * with both q->lock_ptr and hb->lock held.
1145 */
1146static inline
1147void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1148			   struct futex_hash_bucket *hb)
1149{
1150	get_futex_key_refs(key);
1151	q->key = *key;
1152
1153	__unqueue_futex(q);
1154
1155	WARN_ON(!q->rt_waiter);
1156	q->rt_waiter = NULL;
1157
1158	q->lock_ptr = &hb->lock;
1159
1160	wake_up_state(q->task, TASK_NORMAL);
1161}
1162
1163/**
1164 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1165 * @pifutex:		the user address of the to futex
1166 * @hb1:		the from futex hash bucket, must be locked by the caller
1167 * @hb2:		the to futex hash bucket, must be locked by the caller
1168 * @key1:		the from futex key
1169 * @key2:		the to futex key
1170 * @ps:			address to store the pi_state pointer
1171 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1172 *
1173 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1174 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1175 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1176 * hb1 and hb2 must be held by the caller.
1177 *
1178 * Returns:
1179 *  0 - failed to acquire the lock atomicly
1180 *  1 - acquired the lock
1181 * <0 - error
1182 */
1183static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1184				 struct futex_hash_bucket *hb1,
1185				 struct futex_hash_bucket *hb2,
1186				 union futex_key *key1, union futex_key *key2,
1187				 struct futex_pi_state **ps, int set_waiters)
1188{
1189	struct futex_q *top_waiter = NULL;
1190	u32 curval;
1191	int ret;
1192
1193	if (get_futex_value_locked(&curval, pifutex))
1194		return -EFAULT;
1195
1196	/*
1197	 * Find the top_waiter and determine if there are additional waiters.
1198	 * If the caller intends to requeue more than 1 waiter to pifutex,
1199	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1200	 * as we have means to handle the possible fault.  If not, don't set
1201	 * the bit unecessarily as it will force the subsequent unlock to enter
1202	 * the kernel.
1203	 */
1204	top_waiter = futex_top_waiter(hb1, key1);
1205
1206	/* There are no waiters, nothing for us to do. */
1207	if (!top_waiter)
1208		return 0;
1209
1210	/* Ensure we requeue to the expected futex. */
1211	if (!match_futex(top_waiter->requeue_pi_key, key2))
1212		return -EINVAL;
1213
1214	/*
1215	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1216	 * the contended case or if set_waiters is 1.  The pi_state is returned
1217	 * in ps in contended cases.
1218	 */
1219	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1220				   set_waiters);
1221	if (ret == 1)
1222		requeue_pi_wake_futex(top_waiter, key2, hb2);
1223
1224	return ret;
1225}
1226
1227/**
1228 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1229 * @uaddr1:	source futex user address
1230 * @flags:	futex flags (FLAGS_SHARED, etc.)
1231 * @uaddr2:	target futex user address
1232 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1233 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1234 * @cmpval:	@uaddr1 expected value (or %NULL)
1235 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1236 *		pi futex (pi to pi requeue is not supported)
1237 *
1238 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1239 * uaddr2 atomically on behalf of the top waiter.
1240 *
1241 * Returns:
1242 * >=0 - on success, the number of tasks requeued or woken
1243 *  <0 - on error
1244 */
1245static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1246			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1247			 u32 *cmpval, int requeue_pi)
1248{
1249	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1250	int drop_count = 0, task_count = 0, ret;
1251	struct futex_pi_state *pi_state = NULL;
1252	struct futex_hash_bucket *hb1, *hb2;
1253	struct plist_head *head1;
1254	struct futex_q *this, *next;
1255	u32 curval2;
1256
1257	if (requeue_pi) {
1258		/*
1259		 * requeue_pi requires a pi_state, try to allocate it now
1260		 * without any locks in case it fails.
1261		 */
1262		if (refill_pi_state_cache())
1263			return -ENOMEM;
1264		/*
1265		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1266		 * + nr_requeue, since it acquires the rt_mutex prior to
1267		 * returning to userspace, so as to not leave the rt_mutex with
1268		 * waiters and no owner.  However, second and third wake-ups
1269		 * cannot be predicted as they involve race conditions with the
1270		 * first wake and a fault while looking up the pi_state.  Both
1271		 * pthread_cond_signal() and pthread_cond_broadcast() should
1272		 * use nr_wake=1.
1273		 */
1274		if (nr_wake != 1)
1275			return -EINVAL;
1276	}
1277
1278retry:
1279	if (pi_state != NULL) {
1280		/*
1281		 * We will have to lookup the pi_state again, so free this one
1282		 * to keep the accounting correct.
1283		 */
1284		free_pi_state(pi_state);
1285		pi_state = NULL;
1286	}
1287
1288	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1289	if (unlikely(ret != 0))
1290		goto out;
1291	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1292			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1293	if (unlikely(ret != 0))
1294		goto out_put_key1;
1295
1296	hb1 = hash_futex(&key1);
1297	hb2 = hash_futex(&key2);
1298
1299retry_private:
1300	double_lock_hb(hb1, hb2);
1301
1302	if (likely(cmpval != NULL)) {
1303		u32 curval;
1304
1305		ret = get_futex_value_locked(&curval, uaddr1);
1306
1307		if (unlikely(ret)) {
1308			double_unlock_hb(hb1, hb2);
1309
1310			ret = get_user(curval, uaddr1);
1311			if (ret)
1312				goto out_put_keys;
1313
1314			if (!(flags & FLAGS_SHARED))
1315				goto retry_private;
1316
1317			put_futex_key(&key2);
1318			put_futex_key(&key1);
1319			goto retry;
1320		}
1321		if (curval != *cmpval) {
1322			ret = -EAGAIN;
1323			goto out_unlock;
1324		}
1325	}
1326
1327	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1328		/*
1329		 * Attempt to acquire uaddr2 and wake the top waiter. If we
1330		 * intend to requeue waiters, force setting the FUTEX_WAITERS
1331		 * bit.  We force this here where we are able to easily handle
1332		 * faults rather in the requeue loop below.
1333		 */
1334		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1335						 &key2, &pi_state, nr_requeue);
1336
1337		/*
1338		 * At this point the top_waiter has either taken uaddr2 or is
1339		 * waiting on it.  If the former, then the pi_state will not
1340		 * exist yet, look it up one more time to ensure we have a
1341		 * reference to it.
1342		 */
1343		if (ret == 1) {
1344			WARN_ON(pi_state);
1345			drop_count++;
1346			task_count++;
1347			ret = get_futex_value_locked(&curval2, uaddr2);
1348			if (!ret)
1349				ret = lookup_pi_state(curval2, hb2, &key2,
1350						      &pi_state);
1351		}
1352
1353		switch (ret) {
1354		case 0:
1355			break;
1356		case -EFAULT:
1357			double_unlock_hb(hb1, hb2);
1358			put_futex_key(&key2);
1359			put_futex_key(&key1);
1360			ret = fault_in_user_writeable(uaddr2);
1361			if (!ret)
1362				goto retry;
1363			goto out;
1364		case -EAGAIN:
1365			/* The owner was exiting, try again. */
1366			double_unlock_hb(hb1, hb2);
1367			put_futex_key(&key2);
1368			put_futex_key(&key1);
1369			cond_resched();
1370			goto retry;
1371		default:
1372			goto out_unlock;
1373		}
1374	}
1375
1376	head1 = &hb1->chain;
1377	plist_for_each_entry_safe(this, next, head1, list) {
1378		if (task_count - nr_wake >= nr_requeue)
1379			break;
1380
1381		if (!match_futex(&this->key, &key1))
1382			continue;
1383
1384		/*
1385		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1386		 * be paired with each other and no other futex ops.
1387		 */
1388		if ((requeue_pi && !this->rt_waiter) ||
1389		    (!requeue_pi && this->rt_waiter)) {
1390			ret = -EINVAL;
1391			break;
1392		}
1393
1394		/*
1395		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1396		 * lock, we already woke the top_waiter.  If not, it will be
1397		 * woken by futex_unlock_pi().
1398		 */
1399		if (++task_count <= nr_wake && !requeue_pi) {
1400			wake_futex(this);
1401			continue;
1402		}
1403
1404		/* Ensure we requeue to the expected futex for requeue_pi. */
1405		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1406			ret = -EINVAL;
1407			break;
1408		}
1409
1410		/*
1411		 * Requeue nr_requeue waiters and possibly one more in the case
1412		 * of requeue_pi if we couldn't acquire the lock atomically.
1413		 */
1414		if (requeue_pi) {
1415			/* Prepare the waiter to take the rt_mutex. */
1416			atomic_inc(&pi_state->refcount);
1417			this->pi_state = pi_state;
1418			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1419							this->rt_waiter,
1420							this->task, 1);
1421			if (ret == 1) {
1422				/* We got the lock. */
1423				requeue_pi_wake_futex(this, &key2, hb2);
1424				drop_count++;
1425				continue;
1426			} else if (ret) {
1427				/* -EDEADLK */
1428				this->pi_state = NULL;
1429				free_pi_state(pi_state);
1430				goto out_unlock;
1431			}
1432		}
1433		requeue_futex(this, hb1, hb2, &key2);
1434		drop_count++;
1435	}
1436
1437out_unlock:
1438	double_unlock_hb(hb1, hb2);
1439
1440	/*
1441	 * drop_futex_key_refs() must be called outside the spinlocks. During
1442	 * the requeue we moved futex_q's from the hash bucket at key1 to the
1443	 * one at key2 and updated their key pointer.  We no longer need to
1444	 * hold the references to key1.
1445	 */
1446	while (--drop_count >= 0)
1447		drop_futex_key_refs(&key1);
1448
1449out_put_keys:
1450	put_futex_key(&key2);
1451out_put_key1:
1452	put_futex_key(&key1);
1453out:
1454	if (pi_state != NULL)
1455		free_pi_state(pi_state);
1456	return ret ? ret : task_count;
1457}
1458
1459/* The key must be already stored in q->key. */
1460static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1461	__acquires(&hb->lock)
1462{
1463	struct futex_hash_bucket *hb;
1464
1465	hb = hash_futex(&q->key);
1466	q->lock_ptr = &hb->lock;
1467
1468	spin_lock(&hb->lock);
1469	return hb;
1470}
1471
1472static inline void
1473queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1474	__releases(&hb->lock)
1475{
1476	spin_unlock(&hb->lock);
1477}
1478
1479/**
1480 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1481 * @q:	The futex_q to enqueue
1482 * @hb:	The destination hash bucket
1483 *
1484 * The hb->lock must be held by the caller, and is released here. A call to
1485 * queue_me() is typically paired with exactly one call to unqueue_me().  The
1486 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1487 * or nothing if the unqueue is done as part of the wake process and the unqueue
1488 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1489 * an example).
1490 */
1491static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1492	__releases(&hb->lock)
1493{
1494	int prio;
1495
1496	/*
1497	 * The priority used to register this element is
1498	 * - either the real thread-priority for the real-time threads
1499	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1500	 * - or MAX_RT_PRIO for non-RT threads.
1501	 * Thus, all RT-threads are woken first in priority order, and
1502	 * the others are woken last, in FIFO order.
1503	 */
1504	prio = min(current->normal_prio, MAX_RT_PRIO);
1505
1506	plist_node_init(&q->list, prio);
1507	plist_add(&q->list, &hb->chain);
1508	q->task = current;
1509	spin_unlock(&hb->lock);
1510}
1511
1512/**
1513 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1514 * @q:	The futex_q to unqueue
1515 *
1516 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1517 * be paired with exactly one earlier call to queue_me().
1518 *
1519 * Returns:
1520 *   1 - if the futex_q was still queued (and we removed unqueued it)
1521 *   0 - if the futex_q was already removed by the waking thread
1522 */
1523static int unqueue_me(struct futex_q *q)
1524{
1525	spinlock_t *lock_ptr;
1526	int ret = 0;
1527
1528	/* In the common case we don't take the spinlock, which is nice. */
1529retry:
1530	lock_ptr = q->lock_ptr;
1531	barrier();
1532	if (lock_ptr != NULL) {
1533		spin_lock(lock_ptr);
1534		/*
1535		 * q->lock_ptr can change between reading it and
1536		 * spin_lock(), causing us to take the wrong lock.  This
1537		 * corrects the race condition.
1538		 *
1539		 * Reasoning goes like this: if we have the wrong lock,
1540		 * q->lock_ptr must have changed (maybe several times)
1541		 * between reading it and the spin_lock().  It can
1542		 * change again after the spin_lock() but only if it was
1543		 * already changed before the spin_lock().  It cannot,
1544		 * however, change back to the original value.  Therefore
1545		 * we can detect whether we acquired the correct lock.
1546		 */
1547		if (unlikely(lock_ptr != q->lock_ptr)) {
1548			spin_unlock(lock_ptr);
1549			goto retry;
1550		}
1551		__unqueue_futex(q);
1552
1553		BUG_ON(q->pi_state);
1554
1555		spin_unlock(lock_ptr);
1556		ret = 1;
1557	}
1558
1559	drop_futex_key_refs(&q->key);
1560	return ret;
1561}
1562
1563/*
1564 * PI futexes can not be requeued and must remove themself from the
1565 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1566 * and dropped here.
1567 */
1568static void unqueue_me_pi(struct futex_q *q)
1569	__releases(q->lock_ptr)
1570{
1571	__unqueue_futex(q);
1572
1573	BUG_ON(!q->pi_state);
1574	free_pi_state(q->pi_state);
1575	q->pi_state = NULL;
1576
1577	spin_unlock(q->lock_ptr);
1578}
1579
1580/*
1581 * Fixup the pi_state owner with the new owner.
1582 *
1583 * Must be called with hash bucket lock held and mm->sem held for non
1584 * private futexes.
1585 */
1586static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1587				struct task_struct *newowner)
1588{
1589	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1590	struct futex_pi_state *pi_state = q->pi_state;
1591	struct task_struct *oldowner = pi_state->owner;
1592	u32 uval, uninitialized_var(curval), newval;
1593	int ret;
1594
1595	/* Owner died? */
1596	if (!pi_state->owner)
1597		newtid |= FUTEX_OWNER_DIED;
1598
1599	/*
1600	 * We are here either because we stole the rtmutex from the
1601	 * previous highest priority waiter or we are the highest priority
1602	 * waiter but failed to get the rtmutex the first time.
1603	 * We have to replace the newowner TID in the user space variable.
1604	 * This must be atomic as we have to preserve the owner died bit here.
1605	 *
1606	 * Note: We write the user space value _before_ changing the pi_state
1607	 * because we can fault here. Imagine swapped out pages or a fork
1608	 * that marked all the anonymous memory readonly for cow.
1609	 *
1610	 * Modifying pi_state _before_ the user space value would
1611	 * leave the pi_state in an inconsistent state when we fault
1612	 * here, because we need to drop the hash bucket lock to
1613	 * handle the fault. This might be observed in the PID check
1614	 * in lookup_pi_state.
1615	 */
1616retry:
1617	if (get_futex_value_locked(&uval, uaddr))
1618		goto handle_fault;
1619
1620	while (1) {
1621		newval = (uval & FUTEX_OWNER_DIED) | newtid;
1622
1623		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1624			goto handle_fault;
1625		if (curval == uval)
1626			break;
1627		uval = curval;
1628	}
1629
1630	/*
1631	 * We fixed up user space. Now we need to fix the pi_state
1632	 * itself.
1633	 */
1634	if (pi_state->owner != NULL) {
1635		raw_spin_lock_irq(&pi_state->owner->pi_lock);
1636		WARN_ON(list_empty(&pi_state->list));
1637		list_del_init(&pi_state->list);
1638		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1639	}
1640
1641	pi_state->owner = newowner;
1642
1643	raw_spin_lock_irq(&newowner->pi_lock);
1644	WARN_ON(!list_empty(&pi_state->list));
1645	list_add(&pi_state->list, &newowner->pi_state_list);
1646	raw_spin_unlock_irq(&newowner->pi_lock);
1647	return 0;
1648
1649	/*
1650	 * To handle the page fault we need to drop the hash bucket
1651	 * lock here. That gives the other task (either the highest priority
1652	 * waiter itself or the task which stole the rtmutex) the
1653	 * chance to try the fixup of the pi_state. So once we are
1654	 * back from handling the fault we need to check the pi_state
1655	 * after reacquiring the hash bucket lock and before trying to
1656	 * do another fixup. When the fixup has been done already we
1657	 * simply return.
1658	 */
1659handle_fault:
1660	spin_unlock(q->lock_ptr);
1661
1662	ret = fault_in_user_writeable(uaddr);
1663
1664	spin_lock(q->lock_ptr);
1665
1666	/*
1667	 * Check if someone else fixed it for us:
1668	 */
1669	if (pi_state->owner != oldowner)
1670		return 0;
1671
1672	if (ret)
1673		return ret;
1674
1675	goto retry;
1676}
1677
1678static long futex_wait_restart(struct restart_block *restart);
1679
1680/**
1681 * fixup_owner() - Post lock pi_state and corner case management
1682 * @uaddr:	user address of the futex
1683 * @q:		futex_q (contains pi_state and access to the rt_mutex)
1684 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
1685 *
1686 * After attempting to lock an rt_mutex, this function is called to cleanup
1687 * the pi_state owner as well as handle race conditions that may allow us to
1688 * acquire the lock. Must be called with the hb lock held.
1689 *
1690 * Returns:
1691 *  1 - success, lock taken
1692 *  0 - success, lock not taken
1693 * <0 - on error (-EFAULT)
1694 */
1695static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1696{
1697	struct task_struct *owner;
1698	int ret = 0;
1699
1700	if (locked) {
1701		/*
1702		 * Got the lock. We might not be the anticipated owner if we
1703		 * did a lock-steal - fix up the PI-state in that case:
1704		 */
1705		if (q->pi_state->owner != current)
1706			ret = fixup_pi_state_owner(uaddr, q, current);
1707		goto out;
1708	}
1709
1710	/*
1711	 * Catch the rare case, where the lock was released when we were on the
1712	 * way back before we locked the hash bucket.
1713	 */
1714	if (q->pi_state->owner == current) {
1715		/*
1716		 * Try to get the rt_mutex now. This might fail as some other
1717		 * task acquired the rt_mutex after we removed ourself from the
1718		 * rt_mutex waiters list.
1719		 */
1720		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1721			locked = 1;
1722			goto out;
1723		}
1724
1725		/*
1726		 * pi_state is incorrect, some other task did a lock steal and
1727		 * we returned due to timeout or signal without taking the
1728		 * rt_mutex. Too late.
1729		 */
1730		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1731		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1732		if (!owner)
1733			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1734		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1735		ret = fixup_pi_state_owner(uaddr, q, owner);
1736		goto out;
1737	}
1738
1739	/*
1740	 * Paranoia check. If we did not take the lock, then we should not be
1741	 * the owner of the rt_mutex.
1742	 */
1743	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1744		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1745				"pi-state %p\n", ret,
1746				q->pi_state->pi_mutex.owner,
1747				q->pi_state->owner);
1748
1749out:
1750	return ret ? ret : locked;
1751}
1752
1753/**
1754 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1755 * @hb:		the futex hash bucket, must be locked by the caller
1756 * @q:		the futex_q to queue up on
1757 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
1758 */
1759static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1760				struct hrtimer_sleeper *timeout)
1761{
1762	/*
1763	 * The task state is guaranteed to be set before another task can
1764	 * wake it. set_current_state() is implemented using set_mb() and
1765	 * queue_me() calls spin_unlock() upon completion, both serializing
1766	 * access to the hash list and forcing another memory barrier.
1767	 */
1768	set_current_state(TASK_INTERRUPTIBLE);
1769	queue_me(q, hb);
1770
1771	/* Arm the timer */
1772	if (timeout) {
1773		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1774		if (!hrtimer_active(&timeout->timer))
1775			timeout->task = NULL;
1776	}
1777
1778	/*
1779	 * If we have been removed from the hash list, then another task
1780	 * has tried to wake us, and we can skip the call to schedule().
1781	 */
1782	if (likely(!plist_node_empty(&q->list))) {
1783		/*
1784		 * If the timer has already expired, current will already be
1785		 * flagged for rescheduling. Only call schedule if there
1786		 * is no timeout, or if it has yet to expire.
1787		 */
1788		if (!timeout || timeout->task)
1789			schedule();
1790	}
1791	__set_current_state(TASK_RUNNING);
1792}
1793
1794/**
1795 * futex_wait_setup() - Prepare to wait on a futex
1796 * @uaddr:	the futex userspace address
1797 * @val:	the expected value
1798 * @flags:	futex flags (FLAGS_SHARED, etc.)
1799 * @q:		the associated futex_q
1800 * @hb:		storage for hash_bucket pointer to be returned to caller
1801 *
1802 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1803 * compare it with the expected value.  Handle atomic faults internally.
1804 * Return with the hb lock held and a q.key reference on success, and unlocked
1805 * with no q.key reference on failure.
1806 *
1807 * Returns:
1808 *  0 - uaddr contains val and hb has been locked
1809 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1810 */
1811static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1812			   struct futex_q *q, struct futex_hash_bucket **hb)
1813{
1814	u32 uval;
1815	int ret;
1816
1817	/*
1818	 * Access the page AFTER the hash-bucket is locked.
1819	 * Order is important:
1820	 *
1821	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1822	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1823	 *
1824	 * The basic logical guarantee of a futex is that it blocks ONLY
1825	 * if cond(var) is known to be true at the time of blocking, for
1826	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
1827	 * would open a race condition where we could block indefinitely with
1828	 * cond(var) false, which would violate the guarantee.
1829	 *
1830	 * On the other hand, we insert q and release the hash-bucket only
1831	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
1832	 * absorb a wakeup if *uaddr does not match the desired values
1833	 * while the syscall executes.
1834	 */
1835retry:
1836	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1837	if (unlikely(ret != 0))
1838		return ret;
1839
1840retry_private:
1841	*hb = queue_lock(q);
1842
1843	ret = get_futex_value_locked(&uval, uaddr);
1844
1845	if (ret) {
1846		queue_unlock(q, *hb);
1847
1848		ret = get_user(uval, uaddr);
1849		if (ret)
1850			goto out;
1851
1852		if (!(flags & FLAGS_SHARED))
1853			goto retry_private;
1854
1855		put_futex_key(&q->key);
1856		goto retry;
1857	}
1858
1859	if (uval != val) {
1860		queue_unlock(q, *hb);
1861		ret = -EWOULDBLOCK;
1862	}
1863
1864out:
1865	if (ret)
1866		put_futex_key(&q->key);
1867	return ret;
1868}
1869
1870static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1871		      ktime_t *abs_time, u32 bitset)
1872{
1873	struct hrtimer_sleeper timeout, *to = NULL;
1874	struct restart_block *restart;
1875	struct futex_hash_bucket *hb;
1876	struct futex_q q = futex_q_init;
1877	int ret;
1878
1879	if (!bitset)
1880		return -EINVAL;
1881	q.bitset = bitset;
1882
1883	if (abs_time) {
1884		to = &timeout;
1885
1886		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1887				      CLOCK_REALTIME : CLOCK_MONOTONIC,
1888				      HRTIMER_MODE_ABS);
1889		hrtimer_init_sleeper(to, current);
1890		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1891					     current->timer_slack_ns);
1892	}
1893
1894retry:
1895	/*
1896	 * Prepare to wait on uaddr. On success, holds hb lock and increments
1897	 * q.key refs.
1898	 */
1899	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1900	if (ret)
1901		goto out;
1902
1903	/* queue_me and wait for wakeup, timeout, or a signal. */
1904	futex_wait_queue_me(hb, &q, to);
1905
1906	/* If we were woken (and unqueued), we succeeded, whatever. */
1907	ret = 0;
1908	/* unqueue_me() drops q.key ref */
1909	if (!unqueue_me(&q))
1910		goto out;
1911	ret = -ETIMEDOUT;
1912	if (to && !to->task)
1913		goto out;
1914
1915	/*
1916	 * We expect signal_pending(current), but we might be the
1917	 * victim of a spurious wakeup as well.
1918	 */
1919	if (!signal_pending(current))
1920		goto retry;
1921
1922	ret = -ERESTARTSYS;
1923	if (!abs_time)
1924		goto out;
1925
1926	restart = &current_thread_info()->restart_block;
1927	restart->fn = futex_wait_restart;
1928	restart->futex.uaddr = uaddr;
1929	restart->futex.val = val;
1930	restart->futex.time = abs_time->tv64;
1931	restart->futex.bitset = bitset;
1932	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
1933
1934	ret = -ERESTART_RESTARTBLOCK;
1935
1936out:
1937	if (to) {
1938		hrtimer_cancel(&to->timer);
1939		destroy_hrtimer_on_stack(&to->timer);
1940	}
1941	return ret;
1942}
1943
1944
1945static long futex_wait_restart(struct restart_block *restart)
1946{
1947	u32 __user *uaddr = restart->futex.uaddr;
1948	ktime_t t, *tp = NULL;
1949
1950	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1951		t.tv64 = restart->futex.time;
1952		tp = &t;
1953	}
1954	restart->fn = do_no_restart_syscall;
1955
1956	return (long)futex_wait(uaddr, restart->futex.flags,
1957				restart->futex.val, tp, restart->futex.bitset);
1958}
1959
1960
1961/*
1962 * Userspace tried a 0 -> TID atomic transition of the futex value
1963 * and failed. The kernel side here does the whole locking operation:
1964 * if there are waiters then it will block, it does PI, etc. (Due to
1965 * races the kernel might see a 0 value of the futex too.)
1966 */
1967static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1968			 ktime_t *time, int trylock)
1969{
1970	struct hrtimer_sleeper timeout, *to = NULL;
1971	struct futex_hash_bucket *hb;
1972	struct futex_q q = futex_q_init;
1973	int res, ret;
1974
1975	if (refill_pi_state_cache())
1976		return -ENOMEM;
1977
1978	if (time) {
1979		to = &timeout;
1980		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1981				      HRTIMER_MODE_ABS);
1982		hrtimer_init_sleeper(to, current);
1983		hrtimer_set_expires(&to->timer, *time);
1984	}
1985
1986retry:
1987	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
1988	if (unlikely(ret != 0))
1989		goto out;
1990
1991retry_private:
1992	hb = queue_lock(&q);
1993
1994	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1995	if (unlikely(ret)) {
1996		switch (ret) {
1997		case 1:
1998			/* We got the lock. */
1999			ret = 0;
2000			goto out_unlock_put_key;
2001		case -EFAULT:
2002			goto uaddr_faulted;
2003		case -EAGAIN:
2004			/*
2005			 * Task is exiting and we just wait for the
2006			 * exit to complete.
2007			 */
2008			queue_unlock(&q, hb);
2009			put_futex_key(&q.key);
2010			cond_resched();
2011			goto retry;
2012		default:
2013			goto out_unlock_put_key;
2014		}
2015	}
2016
2017	/*
2018	 * Only actually queue now that the atomic ops are done:
2019	 */
2020	queue_me(&q, hb);
2021
2022	WARN_ON(!q.pi_state);
2023	/*
2024	 * Block on the PI mutex:
2025	 */
2026	if (!trylock)
2027		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2028	else {
2029		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2030		/* Fixup the trylock return value: */
2031		ret = ret ? 0 : -EWOULDBLOCK;
2032	}
2033
2034	spin_lock(q.lock_ptr);
2035	/*
2036	 * Fixup the pi_state owner and possibly acquire the lock if we
2037	 * haven't already.
2038	 */
2039	res = fixup_owner(uaddr, &q, !ret);
2040	/*
2041	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2042	 * the lock, clear our -ETIMEDOUT or -EINTR.
2043	 */
2044	if (res)
2045		ret = (res < 0) ? res : 0;
2046
2047	/*
2048	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2049	 * it and return the fault to userspace.
2050	 */
2051	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2052		rt_mutex_unlock(&q.pi_state->pi_mutex);
2053
2054	/* Unqueue and drop the lock */
2055	unqueue_me_pi(&q);
2056
2057	goto out_put_key;
2058
2059out_unlock_put_key:
2060	queue_unlock(&q, hb);
2061
2062out_put_key:
2063	put_futex_key(&q.key);
2064out:
2065	if (to)
2066		destroy_hrtimer_on_stack(&to->timer);
2067	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2068
2069uaddr_faulted:
2070	queue_unlock(&q, hb);
2071
2072	ret = fault_in_user_writeable(uaddr);
2073	if (ret)
2074		goto out_put_key;
2075
2076	if (!(flags & FLAGS_SHARED))
2077		goto retry_private;
2078
2079	put_futex_key(&q.key);
2080	goto retry;
2081}
2082
2083/*
2084 * Userspace attempted a TID -> 0 atomic transition, and failed.
2085 * This is the in-kernel slowpath: we look up the PI state (if any),
2086 * and do the rt-mutex unlock.
2087 */
2088static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2089{
2090	struct futex_hash_bucket *hb;
2091	struct futex_q *this, *next;
2092	struct plist_head *head;
2093	union futex_key key = FUTEX_KEY_INIT;
2094	u32 uval, vpid = task_pid_vnr(current);
2095	int ret;
2096
2097retry:
2098	if (get_user(uval, uaddr))
2099		return -EFAULT;
2100	/*
2101	 * We release only a lock we actually own:
2102	 */
2103	if ((uval & FUTEX_TID_MASK) != vpid)
2104		return -EPERM;
2105
2106	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2107	if (unlikely(ret != 0))
2108		goto out;
2109
2110	hb = hash_futex(&key);
2111	spin_lock(&hb->lock);
2112
2113	/*
2114	 * To avoid races, try to do the TID -> 0 atomic transition
2115	 * again. If it succeeds then we can return without waking
2116	 * anyone else up:
2117	 */
2118	if (!(uval & FUTEX_OWNER_DIED) &&
2119	    cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2120		goto pi_faulted;
2121	/*
2122	 * Rare case: we managed to release the lock atomically,
2123	 * no need to wake anyone else up:
2124	 */
2125	if (unlikely(uval == vpid))
2126		goto out_unlock;
2127
2128	/*
2129	 * Ok, other tasks may need to be woken up - check waiters
2130	 * and do the wakeup if necessary:
2131	 */
2132	head = &hb->chain;
2133
2134	plist_for_each_entry_safe(this, next, head, list) {
2135		if (!match_futex (&this->key, &key))
2136			continue;
2137		ret = wake_futex_pi(uaddr, uval, this);
2138		/*
2139		 * The atomic access to the futex value
2140		 * generated a pagefault, so retry the
2141		 * user-access and the wakeup:
2142		 */
2143		if (ret == -EFAULT)
2144			goto pi_faulted;
2145		goto out_unlock;
2146	}
2147	/*
2148	 * No waiters - kernel unlocks the futex:
2149	 */
2150	if (!(uval & FUTEX_OWNER_DIED)) {
2151		ret = unlock_futex_pi(uaddr, uval);
2152		if (ret == -EFAULT)
2153			goto pi_faulted;
2154	}
2155
2156out_unlock:
2157	spin_unlock(&hb->lock);
2158	put_futex_key(&key);
2159
2160out:
2161	return ret;
2162
2163pi_faulted:
2164	spin_unlock(&hb->lock);
2165	put_futex_key(&key);
2166
2167	ret = fault_in_user_writeable(uaddr);
2168	if (!ret)
2169		goto retry;
2170
2171	return ret;
2172}
2173
2174/**
2175 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2176 * @hb:		the hash_bucket futex_q was original enqueued on
2177 * @q:		the futex_q woken while waiting to be requeued
2178 * @key2:	the futex_key of the requeue target futex
2179 * @timeout:	the timeout associated with the wait (NULL if none)
2180 *
2181 * Detect if the task was woken on the initial futex as opposed to the requeue
2182 * target futex.  If so, determine if it was a timeout or a signal that caused
2183 * the wakeup and return the appropriate error code to the caller.  Must be
2184 * called with the hb lock held.
2185 *
2186 * Returns
2187 *  0 - no early wakeup detected
2188 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2189 */
2190static inline
2191int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2192				   struct futex_q *q, union futex_key *key2,
2193				   struct hrtimer_sleeper *timeout)
2194{
2195	int ret = 0;
2196
2197	/*
2198	 * With the hb lock held, we avoid races while we process the wakeup.
2199	 * We only need to hold hb (and not hb2) to ensure atomicity as the
2200	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2201	 * It can't be requeued from uaddr2 to something else since we don't
2202	 * support a PI aware source futex for requeue.
2203	 */
2204	if (!match_futex(&q->key, key2)) {
2205		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2206		/*
2207		 * We were woken prior to requeue by a timeout or a signal.
2208		 * Unqueue the futex_q and determine which it was.
2209		 */
2210		plist_del(&q->list, &hb->chain);
2211
2212		/* Handle spurious wakeups gracefully */
2213		ret = -EWOULDBLOCK;
2214		if (timeout && !timeout->task)
2215			ret = -ETIMEDOUT;
2216		else if (signal_pending(current))
2217			ret = -ERESTARTNOINTR;
2218	}
2219	return ret;
2220}
2221
2222/**
2223 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2224 * @uaddr:	the futex we initially wait on (non-pi)
2225 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2226 * 		the same type, no requeueing from private to shared, etc.
2227 * @val:	the expected value of uaddr
2228 * @abs_time:	absolute timeout
2229 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2230 * @clockrt:	whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2231 * @uaddr2:	the pi futex we will take prior to returning to user-space
2232 *
2233 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2234 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2235 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2236 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2237 * without one, the pi logic would not know which task to boost/deboost, if
2238 * there was a need to.
2239 *
2240 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2241 * via the following:
2242 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2243 * 2) wakeup on uaddr2 after a requeue
2244 * 3) signal
2245 * 4) timeout
2246 *
2247 * If 3, cleanup and return -ERESTARTNOINTR.
2248 *
2249 * If 2, we may then block on trying to take the rt_mutex and return via:
2250 * 5) successful lock
2251 * 6) signal
2252 * 7) timeout
2253 * 8) other lock acquisition failure
2254 *
2255 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2256 *
2257 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2258 *
2259 * Returns:
2260 *  0 - On success
2261 * <0 - On error
2262 */
2263static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2264				 u32 val, ktime_t *abs_time, u32 bitset,
2265				 u32 __user *uaddr2)
2266{
2267	struct hrtimer_sleeper timeout, *to = NULL;
2268	struct rt_mutex_waiter rt_waiter;
2269	struct rt_mutex *pi_mutex = NULL;
2270	struct futex_hash_bucket *hb;
2271	union futex_key key2 = FUTEX_KEY_INIT;
2272	struct futex_q q = futex_q_init;
2273	int res, ret;
2274
2275	if (uaddr == uaddr2)
2276		return -EINVAL;
2277
2278	if (!bitset)
2279		return -EINVAL;
2280
2281	if (abs_time) {
2282		to = &timeout;
2283		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2284				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2285				      HRTIMER_MODE_ABS);
2286		hrtimer_init_sleeper(to, current);
2287		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2288					     current->timer_slack_ns);
2289	}
2290
2291	/*
2292	 * The waiter is allocated on our stack, manipulated by the requeue
2293	 * code while we sleep on uaddr.
2294	 */
2295	debug_rt_mutex_init_waiter(&rt_waiter);
2296	rt_waiter.task = NULL;
2297
2298	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2299	if (unlikely(ret != 0))
2300		goto out;
2301
2302	q.bitset = bitset;
2303	q.rt_waiter = &rt_waiter;
2304	q.requeue_pi_key = &key2;
2305
2306	/*
2307	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2308	 * count.
2309	 */
2310	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2311	if (ret)
2312		goto out_key2;
2313
2314	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
2315	futex_wait_queue_me(hb, &q, to);
2316
2317	spin_lock(&hb->lock);
2318	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2319	spin_unlock(&hb->lock);
2320	if (ret)
2321		goto out_put_keys;
2322
2323	/*
2324	 * In order for us to be here, we know our q.key == key2, and since
2325	 * we took the hb->lock above, we also know that futex_requeue() has
2326	 * completed and we no longer have to concern ourselves with a wakeup
2327	 * race with the atomic proxy lock acquisition by the requeue code. The
2328	 * futex_requeue dropped our key1 reference and incremented our key2
2329	 * reference count.
2330	 */
2331
2332	/* Check if the requeue code acquired the second futex for us. */
2333	if (!q.rt_waiter) {
2334		/*
2335		 * Got the lock. We might not be the anticipated owner if we
2336		 * did a lock-steal - fix up the PI-state in that case.
2337		 */
2338		if (q.pi_state && (q.pi_state->owner != current)) {
2339			spin_lock(q.lock_ptr);
2340			ret = fixup_pi_state_owner(uaddr2, &q, current);
2341			spin_unlock(q.lock_ptr);
2342		}
2343	} else {
2344		/*
2345		 * We have been woken up by futex_unlock_pi(), a timeout, or a
2346		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2347		 * the pi_state.
2348		 */
2349		WARN_ON(!q.pi_state);
2350		pi_mutex = &q.pi_state->pi_mutex;
2351		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2352		debug_rt_mutex_free_waiter(&rt_waiter);
2353
2354		spin_lock(q.lock_ptr);
2355		/*
2356		 * Fixup the pi_state owner and possibly acquire the lock if we
2357		 * haven't already.
2358		 */
2359		res = fixup_owner(uaddr2, &q, !ret);
2360		/*
2361		 * If fixup_owner() returned an error, proprogate that.  If it
2362		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2363		 */
2364		if (res)
2365			ret = (res < 0) ? res : 0;
2366
2367		/* Unqueue and drop the lock. */
2368		unqueue_me_pi(&q);
2369	}
2370
2371	/*
2372	 * If fixup_pi_state_owner() faulted and was unable to handle the
2373	 * fault, unlock the rt_mutex and return the fault to userspace.
2374	 */
2375	if (ret == -EFAULT) {
2376		if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2377			rt_mutex_unlock(pi_mutex);
2378	} else if (ret == -EINTR) {
2379		/*
2380		 * We've already been requeued, but cannot restart by calling
2381		 * futex_lock_pi() directly. We could restart this syscall, but
2382		 * it would detect that the user space "val" changed and return
2383		 * -EWOULDBLOCK.  Save the overhead of the restart and return
2384		 * -EWOULDBLOCK directly.
2385		 */
2386		ret = -EWOULDBLOCK;
2387	}
2388
2389out_put_keys:
2390	put_futex_key(&q.key);
2391out_key2:
2392	put_futex_key(&key2);
2393
2394out:
2395	if (to) {
2396		hrtimer_cancel(&to->timer);
2397		destroy_hrtimer_on_stack(&to->timer);
2398	}
2399	return ret;
2400}
2401
2402/*
2403 * Support for robust futexes: the kernel cleans up held futexes at
2404 * thread exit time.
2405 *
2406 * Implementation: user-space maintains a per-thread list of locks it
2407 * is holding. Upon do_exit(), the kernel carefully walks this list,
2408 * and marks all locks that are owned by this thread with the
2409 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2410 * always manipulated with the lock held, so the list is private and
2411 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2412 * field, to allow the kernel to clean up if the thread dies after
2413 * acquiring the lock, but just before it could have added itself to
2414 * the list. There can only be one such pending lock.
2415 */
2416
2417/**
2418 * sys_set_robust_list() - Set the robust-futex list head of a task
2419 * @head:	pointer to the list-head
2420 * @len:	length of the list-head, as userspace expects
2421 */
2422SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2423		size_t, len)
2424{
2425	if (!futex_cmpxchg_enabled)
2426		return -ENOSYS;
2427	/*
2428	 * The kernel knows only one size for now:
2429	 */
2430	if (unlikely(len != sizeof(*head)))
2431		return -EINVAL;
2432
2433	current->robust_list = head;
2434
2435	return 0;
2436}
2437
2438/**
2439 * sys_get_robust_list() - Get the robust-futex list head of a task
2440 * @pid:	pid of the process [zero for current task]
2441 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
2442 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2443 */
2444SYSCALL_DEFINE3(get_robust_list, int, pid,
2445		struct robust_list_head __user * __user *, head_ptr,
2446		size_t __user *, len_ptr)
2447{
2448	struct robust_list_head __user *head;
2449	unsigned long ret;
2450	struct task_struct *p;
2451
2452	if (!futex_cmpxchg_enabled)
2453		return -ENOSYS;
2454
2455	WARN_ONCE(1, "deprecated: get_robust_list will be deleted in 2013.\n");
2456
2457	rcu_read_lock();
2458
2459	ret = -ESRCH;
2460	if (!pid)
2461		p = current;
2462	else {
2463		p = find_task_by_vpid(pid);
2464		if (!p)
2465			goto err_unlock;
2466	}
2467
2468	ret = -EPERM;
2469	if (!ptrace_may_access(p, PTRACE_MODE_READ))
2470		goto err_unlock;
2471
2472	head = p->robust_list;
2473	rcu_read_unlock();
2474
2475	if (put_user(sizeof(*head), len_ptr))
2476		return -EFAULT;
2477	return put_user(head, head_ptr);
2478
2479err_unlock:
2480	rcu_read_unlock();
2481
2482	return ret;
2483}
2484
2485/*
2486 * Process a futex-list entry, check whether it's owned by the
2487 * dying task, and do notification if so:
2488 */
2489int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2490{
2491	u32 uval, uninitialized_var(nval), mval;
2492
2493retry:
2494	if (get_user(uval, uaddr))
2495		return -1;
2496
2497	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2498		/*
2499		 * Ok, this dying thread is truly holding a futex
2500		 * of interest. Set the OWNER_DIED bit atomically
2501		 * via cmpxchg, and if the value had FUTEX_WAITERS
2502		 * set, wake up a waiter (if any). (We have to do a
2503		 * futex_wake() even if OWNER_DIED is already set -
2504		 * to handle the rare but possible case of recursive
2505		 * thread-death.) The rest of the cleanup is done in
2506		 * userspace.
2507		 */
2508		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2509		/*
2510		 * We are not holding a lock here, but we want to have
2511		 * the pagefault_disable/enable() protection because
2512		 * we want to handle the fault gracefully. If the
2513		 * access fails we try to fault in the futex with R/W
2514		 * verification via get_user_pages. get_user() above
2515		 * does not guarantee R/W access. If that fails we
2516		 * give up and leave the futex locked.
2517		 */
2518		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2519			if (fault_in_user_writeable(uaddr))
2520				return -1;
2521			goto retry;
2522		}
2523		if (nval != uval)
2524			goto retry;
2525
2526		/*
2527		 * Wake robust non-PI futexes here. The wakeup of
2528		 * PI futexes happens in exit_pi_state():
2529		 */
2530		if (!pi && (uval & FUTEX_WAITERS))
2531			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2532	}
2533	return 0;
2534}
2535
2536/*
2537 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2538 */
2539static inline int fetch_robust_entry(struct robust_list __user **entry,
2540				     struct robust_list __user * __user *head,
2541				     unsigned int *pi)
2542{
2543	unsigned long uentry;
2544
2545	if (get_user(uentry, (unsigned long __user *)head))
2546		return -EFAULT;
2547
2548	*entry = (void __user *)(uentry & ~1UL);
2549	*pi = uentry & 1;
2550
2551	return 0;
2552}
2553
2554/*
2555 * Walk curr->robust_list (very carefully, it's a userspace list!)
2556 * and mark any locks found there dead, and notify any waiters.
2557 *
2558 * We silently return on any sign of list-walking problem.
2559 */
2560void exit_robust_list(struct task_struct *curr)
2561{
2562	struct robust_list_head __user *head = curr->robust_list;
2563	struct robust_list __user *entry, *next_entry, *pending;
2564	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2565	unsigned int uninitialized_var(next_pi);
2566	unsigned long futex_offset;
2567	int rc;
2568
2569	if (!futex_cmpxchg_enabled)
2570		return;
2571
2572	/*
2573	 * Fetch the list head (which was registered earlier, via
2574	 * sys_set_robust_list()):
2575	 */
2576	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2577		return;
2578	/*
2579	 * Fetch the relative futex offset:
2580	 */
2581	if (get_user(futex_offset, &head->futex_offset))
2582		return;
2583	/*
2584	 * Fetch any possibly pending lock-add first, and handle it
2585	 * if it exists:
2586	 */
2587	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2588		return;
2589
2590	next_entry = NULL;	/* avoid warning with gcc */
2591	while (entry != &head->list) {
2592		/*
2593		 * Fetch the next entry in the list before calling
2594		 * handle_futex_death:
2595		 */
2596		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2597		/*
2598		 * A pending lock might already be on the list, so
2599		 * don't process it twice:
2600		 */
2601		if (entry != pending)
2602			if (handle_futex_death((void __user *)entry + futex_offset,
2603						curr, pi))
2604				return;
2605		if (rc)
2606			return;
2607		entry = next_entry;
2608		pi = next_pi;
2609		/*
2610		 * Avoid excessively long or circular lists:
2611		 */
2612		if (!--limit)
2613			break;
2614
2615		cond_resched();
2616	}
2617
2618	if (pending)
2619		handle_futex_death((void __user *)pending + futex_offset,
2620				   curr, pip);
2621}
2622
2623long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2624		u32 __user *uaddr2, u32 val2, u32 val3)
2625{
2626	int cmd = op & FUTEX_CMD_MASK;
2627	unsigned int flags = 0;
2628
2629	if (!(op & FUTEX_PRIVATE_FLAG))
2630		flags |= FLAGS_SHARED;
2631
2632	if (op & FUTEX_CLOCK_REALTIME) {
2633		flags |= FLAGS_CLOCKRT;
2634		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2635			return -ENOSYS;
2636	}
2637
2638	switch (cmd) {
2639	case FUTEX_LOCK_PI:
2640	case FUTEX_UNLOCK_PI:
2641	case FUTEX_TRYLOCK_PI:
2642	case FUTEX_WAIT_REQUEUE_PI:
2643	case FUTEX_CMP_REQUEUE_PI:
2644		if (!futex_cmpxchg_enabled)
2645			return -ENOSYS;
2646	}
2647
2648	switch (cmd) {
2649	case FUTEX_WAIT:
2650		val3 = FUTEX_BITSET_MATCH_ANY;
2651	case FUTEX_WAIT_BITSET:
2652		return futex_wait(uaddr, flags, val, timeout, val3);
2653	case FUTEX_WAKE:
2654		val3 = FUTEX_BITSET_MATCH_ANY;
2655	case FUTEX_WAKE_BITSET:
2656		return futex_wake(uaddr, flags, val, val3);
2657	case FUTEX_REQUEUE:
2658		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2659	case FUTEX_CMP_REQUEUE:
2660		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2661	case FUTEX_WAKE_OP:
2662		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2663	case FUTEX_LOCK_PI:
2664		return futex_lock_pi(uaddr, flags, val, timeout, 0);
2665	case FUTEX_UNLOCK_PI:
2666		return futex_unlock_pi(uaddr, flags);
2667	case FUTEX_TRYLOCK_PI:
2668		return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2669	case FUTEX_WAIT_REQUEUE_PI:
2670		val3 = FUTEX_BITSET_MATCH_ANY;
2671		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2672					     uaddr2);
2673	case FUTEX_CMP_REQUEUE_PI:
2674		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2675	}
2676	return -ENOSYS;
2677}
2678
2679
2680SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2681		struct timespec __user *, utime, u32 __user *, uaddr2,
2682		u32, val3)
2683{
2684	struct timespec ts;
2685	ktime_t t, *tp = NULL;
2686	u32 val2 = 0;
2687	int cmd = op & FUTEX_CMD_MASK;
2688
2689	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2690		      cmd == FUTEX_WAIT_BITSET ||
2691		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2692		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2693			return -EFAULT;
2694		if (!timespec_valid(&ts))
2695			return -EINVAL;
2696
2697		t = timespec_to_ktime(ts);
2698		if (cmd == FUTEX_WAIT)
2699			t = ktime_add_safe(ktime_get(), t);
2700		tp = &t;
2701	}
2702	/*
2703	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2704	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2705	 */
2706	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2707	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2708		val2 = (u32) (unsigned long) utime;
2709
2710	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2711}
2712
2713static int __init futex_init(void)
2714{
2715	u32 curval;
2716	int i;
2717
2718	/*
2719	 * This will fail and we want it. Some arch implementations do
2720	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2721	 * functionality. We want to know that before we call in any
2722	 * of the complex code paths. Also we want to prevent
2723	 * registration of robust lists in that case. NULL is
2724	 * guaranteed to fault and we get -EFAULT on functional
2725	 * implementation, the non-functional ones will return
2726	 * -ENOSYS.
2727	 */
2728	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2729		futex_cmpxchg_enabled = 1;
2730
2731	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2732		plist_head_init(&futex_queues[i].chain);
2733		spin_lock_init(&futex_queues[i].lock);
2734	}
2735
2736	return 0;
2737}
2738__initcall(futex_init);