Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Fast Userspace Mutexes (which I call "Futexes!").
   4 *  (C) Rusty Russell, IBM 2002
   5 *
   6 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   7 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   8 *
   9 *  Removed page pinning, fix privately mapped COW pages and other cleanups
  10 *  (C) Copyright 2003, 2004 Jamie Lokier
  11 *
  12 *  Robust futex support started by Ingo Molnar
  13 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  14 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  15 *
  16 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  17 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  18 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  19 *
  20 *  PRIVATE futexes by Eric Dumazet
  21 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  22 *
  23 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  24 *  Copyright (C) IBM Corporation, 2009
  25 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  26 *
  27 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  28 *  enough at me, Linus for the original (flawed) idea, Matthew
  29 *  Kirkwood for proof-of-concept implementation.
  30 *
  31 *  "The futexes are also cursed."
  32 *  "But they come in a choice of three flavours!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  33 */
  34#include <linux/compat.h>
  35#include <linux/slab.h>
  36#include <linux/poll.h>
  37#include <linux/fs.h>
  38#include <linux/file.h>
  39#include <linux/jhash.h>
  40#include <linux/init.h>
  41#include <linux/futex.h>
  42#include <linux/mount.h>
  43#include <linux/pagemap.h>
  44#include <linux/syscalls.h>
  45#include <linux/signal.h>
  46#include <linux/export.h>
  47#include <linux/magic.h>
  48#include <linux/pid.h>
  49#include <linux/nsproxy.h>
  50#include <linux/ptrace.h>
  51#include <linux/sched/rt.h>
  52#include <linux/sched/wake_q.h>
  53#include <linux/sched/mm.h>
  54#include <linux/hugetlb.h>
  55#include <linux/freezer.h>
  56#include <linux/memblock.h>
  57#include <linux/fault-inject.h>
  58#include <linux/refcount.h>
  59
  60#include <asm/futex.h>
  61
  62#include "locking/rtmutex_common.h"
  63
  64/*
  65 * READ this before attempting to hack on futexes!
  66 *
  67 * Basic futex operation and ordering guarantees
  68 * =============================================
  69 *
  70 * The waiter reads the futex value in user space and calls
  71 * futex_wait(). This function computes the hash bucket and acquires
  72 * the hash bucket lock. After that it reads the futex user space value
  73 * again and verifies that the data has not changed. If it has not changed
  74 * it enqueues itself into the hash bucket, releases the hash bucket lock
  75 * and schedules.
  76 *
  77 * The waker side modifies the user space value of the futex and calls
  78 * futex_wake(). This function computes the hash bucket and acquires the
  79 * hash bucket lock. Then it looks for waiters on that futex in the hash
  80 * bucket and wakes them.
  81 *
  82 * In futex wake up scenarios where no tasks are blocked on a futex, taking
  83 * the hb spinlock can be avoided and simply return. In order for this
  84 * optimization to work, ordering guarantees must exist so that the waiter
  85 * being added to the list is acknowledged when the list is concurrently being
  86 * checked by the waker, avoiding scenarios like the following:
  87 *
  88 * CPU 0                               CPU 1
  89 * val = *futex;
  90 * sys_futex(WAIT, futex, val);
  91 *   futex_wait(futex, val);
  92 *   uval = *futex;
  93 *                                     *futex = newval;
  94 *                                     sys_futex(WAKE, futex);
  95 *                                       futex_wake(futex);
  96 *                                       if (queue_empty())
  97 *                                         return;
  98 *   if (uval == val)
  99 *      lock(hash_bucket(futex));
 100 *      queue();
 101 *     unlock(hash_bucket(futex));
 102 *     schedule();
 103 *
 104 * This would cause the waiter on CPU 0 to wait forever because it
 105 * missed the transition of the user space value from val to newval
 106 * and the waker did not find the waiter in the hash bucket queue.
 107 *
 108 * The correct serialization ensures that a waiter either observes
 109 * the changed user space value before blocking or is woken by a
 110 * concurrent waker:
 111 *
 112 * CPU 0                                 CPU 1
 113 * val = *futex;
 114 * sys_futex(WAIT, futex, val);
 115 *   futex_wait(futex, val);
 116 *
 117 *   waiters++; (a)
 118 *   smp_mb(); (A) <-- paired with -.
 119 *                                  |
 120 *   lock(hash_bucket(futex));      |
 121 *                                  |
 122 *   uval = *futex;                 |
 123 *                                  |        *futex = newval;
 124 *                                  |        sys_futex(WAKE, futex);
 125 *                                  |          futex_wake(futex);
 126 *                                  |
 127 *                                  `--------> smp_mb(); (B)
 128 *   if (uval == val)
 129 *     queue();
 130 *     unlock(hash_bucket(futex));
 131 *     schedule();                         if (waiters)
 132 *                                           lock(hash_bucket(futex));
 133 *   else                                    wake_waiters(futex);
 134 *     waiters--; (b)                        unlock(hash_bucket(futex));
 135 *
 136 * Where (A) orders the waiters increment and the futex value read through
 137 * atomic operations (see hb_waiters_inc) and where (B) orders the write
 138 * to futex and the waiters read -- this is done by the barriers for both
 139 * shared and private futexes in get_futex_key_refs().
 140 *
 141 * This yields the following case (where X:=waiters, Y:=futex):
 142 *
 143 *	X = Y = 0
 144 *
 145 *	w[X]=1		w[Y]=1
 146 *	MB		MB
 147 *	r[Y]=y		r[X]=x
 148 *
 149 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 150 * the guarantee that we cannot both miss the futex variable change and the
 151 * enqueue.
 152 *
 153 * Note that a new waiter is accounted for in (a) even when it is possible that
 154 * the wait call can return error, in which case we backtrack from it in (b).
 155 * Refer to the comment in queue_lock().
 156 *
 157 * Similarly, in order to account for waiters being requeued on another
 158 * address we always increment the waiters for the destination bucket before
 159 * acquiring the lock. It then decrements them again  after releasing it -
 160 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 161 * will do the additional required waiter count housekeeping. This is done for
 162 * double_lock_hb() and double_unlock_hb(), respectively.
 163 */
 164
 165#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
 166#define futex_cmpxchg_enabled 1
 167#else
 168static int  __read_mostly futex_cmpxchg_enabled;
 169#endif
 170
 171/*
 172 * Futex flags used to encode options to functions and preserve them across
 173 * restarts.
 174 */
 175#ifdef CONFIG_MMU
 176# define FLAGS_SHARED		0x01
 177#else
 178/*
 179 * NOMMU does not have per process address space. Let the compiler optimize
 180 * code away.
 181 */
 182# define FLAGS_SHARED		0x00
 183#endif
 184#define FLAGS_CLOCKRT		0x02
 185#define FLAGS_HAS_TIMEOUT	0x04
 186
 187/*
 188 * Priority Inheritance state:
 189 */
 190struct futex_pi_state {
 191	/*
 192	 * list of 'owned' pi_state instances - these have to be
 193	 * cleaned up in do_exit() if the task exits prematurely:
 194	 */
 195	struct list_head list;
 196
 197	/*
 198	 * The PI object:
 199	 */
 200	struct rt_mutex pi_mutex;
 201
 202	struct task_struct *owner;
 203	refcount_t refcount;
 204
 205	union futex_key key;
 206} __randomize_layout;
 207
 208/**
 209 * struct futex_q - The hashed futex queue entry, one per waiting task
 210 * @list:		priority-sorted list of tasks waiting on this futex
 211 * @task:		the task waiting on the futex
 212 * @lock_ptr:		the hash bucket lock
 213 * @key:		the key the futex is hashed on
 214 * @pi_state:		optional priority inheritance state
 215 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 216 * @requeue_pi_key:	the requeue_pi target futex key
 217 * @bitset:		bitset for the optional bitmasked wakeup
 218 *
 219 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
 220 * we can wake only the relevant ones (hashed queues may be shared).
 221 *
 222 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 223 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 224 * The order of wakeup is always to make the first condition true, then
 225 * the second.
 226 *
 227 * PI futexes are typically woken before they are removed from the hash list via
 228 * the rt_mutex code. See unqueue_me_pi().
 229 */
 230struct futex_q {
 231	struct plist_node list;
 232
 233	struct task_struct *task;
 234	spinlock_t *lock_ptr;
 235	union futex_key key;
 236	struct futex_pi_state *pi_state;
 237	struct rt_mutex_waiter *rt_waiter;
 238	union futex_key *requeue_pi_key;
 239	u32 bitset;
 240} __randomize_layout;
 241
 242static const struct futex_q futex_q_init = {
 243	/* list gets initialized in queue_me()*/
 244	.key = FUTEX_KEY_INIT,
 245	.bitset = FUTEX_BITSET_MATCH_ANY
 246};
 247
 248/*
 249 * Hash buckets are shared by all the futex_keys that hash to the same
 250 * location.  Each key may have multiple futex_q structures, one for each task
 251 * waiting on a futex.
 252 */
 253struct futex_hash_bucket {
 254	atomic_t waiters;
 255	spinlock_t lock;
 256	struct plist_head chain;
 257} ____cacheline_aligned_in_smp;
 258
 259/*
 260 * The base of the bucket array and its size are always used together
 261 * (after initialization only in hash_futex()), so ensure that they
 262 * reside in the same cacheline.
 263 */
 264static struct {
 265	struct futex_hash_bucket *queues;
 266	unsigned long            hashsize;
 267} __futex_data __read_mostly __aligned(2*sizeof(long));
 268#define futex_queues   (__futex_data.queues)
 269#define futex_hashsize (__futex_data.hashsize)
 270
 271
 272/*
 273 * Fault injections for futexes.
 274 */
 275#ifdef CONFIG_FAIL_FUTEX
 276
 277static struct {
 278	struct fault_attr attr;
 279
 280	bool ignore_private;
 281} fail_futex = {
 282	.attr = FAULT_ATTR_INITIALIZER,
 283	.ignore_private = false,
 284};
 285
 286static int __init setup_fail_futex(char *str)
 287{
 288	return setup_fault_attr(&fail_futex.attr, str);
 289}
 290__setup("fail_futex=", setup_fail_futex);
 291
 292static bool should_fail_futex(bool fshared)
 293{
 294	if (fail_futex.ignore_private && !fshared)
 295		return false;
 296
 297	return should_fail(&fail_futex.attr, 1);
 298}
 299
 300#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 301
 302static int __init fail_futex_debugfs(void)
 303{
 304	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
 305	struct dentry *dir;
 306
 307	dir = fault_create_debugfs_attr("fail_futex", NULL,
 308					&fail_futex.attr);
 309	if (IS_ERR(dir))
 310		return PTR_ERR(dir);
 311
 312	debugfs_create_bool("ignore-private", mode, dir,
 313			    &fail_futex.ignore_private);
 314	return 0;
 315}
 316
 317late_initcall(fail_futex_debugfs);
 318
 319#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 320
 321#else
 322static inline bool should_fail_futex(bool fshared)
 323{
 324	return false;
 325}
 326#endif /* CONFIG_FAIL_FUTEX */
 327
 328static inline void futex_get_mm(union futex_key *key)
 329{
 330	mmgrab(key->private.mm);
 331	/*
 332	 * Ensure futex_get_mm() implies a full barrier such that
 333	 * get_futex_key() implies a full barrier. This is relied upon
 334	 * as smp_mb(); (B), see the ordering comment above.
 335	 */
 336	smp_mb__after_atomic();
 337}
 338
 339/*
 340 * Reflects a new waiter being added to the waitqueue.
 341 */
 342static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
 343{
 344#ifdef CONFIG_SMP
 345	atomic_inc(&hb->waiters);
 346	/*
 347	 * Full barrier (A), see the ordering comment above.
 348	 */
 349	smp_mb__after_atomic();
 350#endif
 351}
 352
 353/*
 354 * Reflects a waiter being removed from the waitqueue by wakeup
 355 * paths.
 356 */
 357static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
 358{
 359#ifdef CONFIG_SMP
 360	atomic_dec(&hb->waiters);
 361#endif
 362}
 363
 364static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
 365{
 366#ifdef CONFIG_SMP
 367	return atomic_read(&hb->waiters);
 368#else
 369	return 1;
 370#endif
 371}
 372
 373/**
 374 * hash_futex - Return the hash bucket in the global hash
 375 * @key:	Pointer to the futex key for which the hash is calculated
 376 *
 377 * We hash on the keys returned from get_futex_key (see below) and return the
 378 * corresponding hash bucket in the global hash.
 379 */
 380static struct futex_hash_bucket *hash_futex(union futex_key *key)
 381{
 382	u32 hash = jhash2((u32*)&key->both.word,
 383			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 384			  key->both.offset);
 385	return &futex_queues[hash & (futex_hashsize - 1)];
 386}
 387
 388
 389/**
 390 * match_futex - Check whether two futex keys are equal
 391 * @key1:	Pointer to key1
 392 * @key2:	Pointer to key2
 393 *
 394 * Return 1 if two futex_keys are equal, 0 otherwise.
 395 */
 396static inline int match_futex(union futex_key *key1, union futex_key *key2)
 397{
 398	return (key1 && key2
 399		&& key1->both.word == key2->both.word
 400		&& key1->both.ptr == key2->both.ptr
 401		&& key1->both.offset == key2->both.offset);
 402}
 403
 404/*
 405 * Take a reference to the resource addressed by a key.
 406 * Can be called while holding spinlocks.
 407 *
 408 */
 409static void get_futex_key_refs(union futex_key *key)
 410{
 411	if (!key->both.ptr)
 412		return;
 413
 414	/*
 415	 * On MMU less systems futexes are always "private" as there is no per
 416	 * process address space. We need the smp wmb nevertheless - yes,
 417	 * arch/blackfin has MMU less SMP ...
 418	 */
 419	if (!IS_ENABLED(CONFIG_MMU)) {
 420		smp_mb(); /* explicit smp_mb(); (B) */
 421		return;
 422	}
 423
 424	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 425	case FUT_OFF_INODE:
 426		ihold(key->shared.inode); /* implies smp_mb(); (B) */
 427		break;
 428	case FUT_OFF_MMSHARED:
 429		futex_get_mm(key); /* implies smp_mb(); (B) */
 430		break;
 431	default:
 432		/*
 433		 * Private futexes do not hold reference on an inode or
 434		 * mm, therefore the only purpose of calling get_futex_key_refs
 435		 * is because we need the barrier for the lockless waiter check.
 436		 */
 437		smp_mb(); /* explicit smp_mb(); (B) */
 438	}
 439}
 440
 441/*
 442 * Drop a reference to the resource addressed by a key.
 443 * The hash bucket spinlock must not be held. This is
 444 * a no-op for private futexes, see comment in the get
 445 * counterpart.
 446 */
 447static void drop_futex_key_refs(union futex_key *key)
 448{
 449	if (!key->both.ptr) {
 450		/* If we're here then we tried to put a key we failed to get */
 451		WARN_ON_ONCE(1);
 452		return;
 453	}
 454
 455	if (!IS_ENABLED(CONFIG_MMU))
 456		return;
 457
 458	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 459	case FUT_OFF_INODE:
 460		iput(key->shared.inode);
 461		break;
 462	case FUT_OFF_MMSHARED:
 463		mmdrop(key->private.mm);
 464		break;
 465	}
 466}
 467
 468enum futex_access {
 469	FUTEX_READ,
 470	FUTEX_WRITE
 471};
 472
 473/**
 474 * futex_setup_timer - set up the sleeping hrtimer.
 475 * @time:	ptr to the given timeout value
 476 * @timeout:	the hrtimer_sleeper structure to be set up
 477 * @flags:	futex flags
 478 * @range_ns:	optional range in ns
 479 *
 480 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
 481 *	   value given
 482 */
 483static inline struct hrtimer_sleeper *
 484futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
 485		  int flags, u64 range_ns)
 486{
 487	if (!time)
 488		return NULL;
 489
 490	hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
 491				      CLOCK_REALTIME : CLOCK_MONOTONIC,
 492				      HRTIMER_MODE_ABS);
 493	/*
 494	 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
 495	 * effectively the same as calling hrtimer_set_expires().
 496	 */
 497	hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
 498
 499	return timeout;
 500}
 501
 502/**
 503 * get_futex_key() - Get parameters which are the keys for a futex
 504 * @uaddr:	virtual address of the futex
 505 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 506 * @key:	address where result is stored.
 507 * @rw:		mapping needs to be read/write (values: FUTEX_READ,
 508 *              FUTEX_WRITE)
 509 *
 510 * Return: a negative error code or 0
 511 *
 512 * The key words are stored in @key on success.
 
 513 *
 514 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
 515 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 516 * We can usually work out the index without swapping in the page.
 517 *
 518 * lock_page() might sleep, the caller should not hold a spinlock.
 519 */
 520static int
 521get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
 522{
 523	unsigned long address = (unsigned long)uaddr;
 524	struct mm_struct *mm = current->mm;
 525	struct page *page, *tail;
 526	struct address_space *mapping;
 527	int err, ro = 0;
 528
 529	/*
 530	 * The futex address must be "naturally" aligned.
 531	 */
 532	key->both.offset = address % PAGE_SIZE;
 533	if (unlikely((address % sizeof(u32)) != 0))
 534		return -EINVAL;
 535	address -= key->both.offset;
 536
 537	if (unlikely(!access_ok(uaddr, sizeof(u32))))
 538		return -EFAULT;
 539
 540	if (unlikely(should_fail_futex(fshared)))
 541		return -EFAULT;
 542
 543	/*
 544	 * PROCESS_PRIVATE futexes are fast.
 545	 * As the mm cannot disappear under us and the 'key' only needs
 546	 * virtual address, we dont even have to find the underlying vma.
 547	 * Note : We do have to check 'uaddr' is a valid user address,
 548	 *        but access_ok() should be faster than find_vma()
 549	 */
 550	if (!fshared) {
 
 
 551		key->private.mm = mm;
 552		key->private.address = address;
 553		get_futex_key_refs(key);  /* implies smp_mb(); (B) */
 554		return 0;
 555	}
 556
 557again:
 558	/* Ignore any VERIFY_READ mapping (futex common case) */
 559	if (unlikely(should_fail_futex(fshared)))
 560		return -EFAULT;
 561
 562	err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
 563	/*
 564	 * If write access is not required (eg. FUTEX_WAIT), try
 565	 * and get read-only access.
 566	 */
 567	if (err == -EFAULT && rw == FUTEX_READ) {
 568		err = get_user_pages_fast(address, 1, 0, &page);
 569		ro = 1;
 570	}
 571	if (err < 0)
 572		return err;
 573	else
 574		err = 0;
 575
 576	/*
 577	 * The treatment of mapping from this point on is critical. The page
 578	 * lock protects many things but in this context the page lock
 579	 * stabilizes mapping, prevents inode freeing in the shared
 580	 * file-backed region case and guards against movement to swap cache.
 581	 *
 582	 * Strictly speaking the page lock is not needed in all cases being
 583	 * considered here and page lock forces unnecessarily serialization
 584	 * From this point on, mapping will be re-verified if necessary and
 585	 * page lock will be acquired only if it is unavoidable
 586	 *
 587	 * Mapping checks require the head page for any compound page so the
 588	 * head page and mapping is looked up now. For anonymous pages, it
 589	 * does not matter if the page splits in the future as the key is
 590	 * based on the address. For filesystem-backed pages, the tail is
 591	 * required as the index of the page determines the key. For
 592	 * base pages, there is no tail page and tail == page.
 593	 */
 594	tail = page;
 595	page = compound_head(page);
 596	mapping = READ_ONCE(page->mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597
 598	/*
 599	 * If page->mapping is NULL, then it cannot be a PageAnon
 600	 * page; but it might be the ZERO_PAGE or in the gate area or
 601	 * in a special mapping (all cases which we are happy to fail);
 602	 * or it may have been a good file page when get_user_pages_fast
 603	 * found it, but truncated or holepunched or subjected to
 604	 * invalidate_complete_page2 before we got the page lock (also
 605	 * cases which we are happy to fail).  And we hold a reference,
 606	 * so refcount care in invalidate_complete_page's remove_mapping
 607	 * prevents drop_caches from setting mapping to NULL beneath us.
 608	 *
 609	 * The case we do have to guard against is when memory pressure made
 610	 * shmem_writepage move it from filecache to swapcache beneath us:
 611	 * an unlikely race, but we do need to retry for page->mapping.
 612	 */
 613	if (unlikely(!mapping)) {
 614		int shmem_swizzled;
 615
 616		/*
 617		 * Page lock is required to identify which special case above
 618		 * applies. If this is really a shmem page then the page lock
 619		 * will prevent unexpected transitions.
 620		 */
 621		lock_page(page);
 622		shmem_swizzled = PageSwapCache(page) || page->mapping;
 623		unlock_page(page);
 624		put_page(page);
 625
 626		if (shmem_swizzled)
 627			goto again;
 628
 629		return -EFAULT;
 630	}
 631
 632	/*
 633	 * Private mappings are handled in a simple way.
 634	 *
 635	 * If the futex key is stored on an anonymous page, then the associated
 636	 * object is the mm which is implicitly pinned by the calling process.
 637	 *
 638	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 639	 * it's a read-only handle, it's expected that futexes attach to
 640	 * the object not the particular process.
 641	 */
 642	if (PageAnon(page)) {
 643		/*
 644		 * A RO anonymous page will never change and thus doesn't make
 645		 * sense for futex operations.
 646		 */
 647		if (unlikely(should_fail_futex(fshared)) || ro) {
 648			err = -EFAULT;
 649			goto out;
 650		}
 651
 652		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 653		key->private.mm = mm;
 654		key->private.address = address;
 655
 656		get_futex_key_refs(key); /* implies smp_mb(); (B) */
 657
 658	} else {
 659		struct inode *inode;
 660
 661		/*
 662		 * The associated futex object in this case is the inode and
 663		 * the page->mapping must be traversed. Ordinarily this should
 664		 * be stabilised under page lock but it's not strictly
 665		 * necessary in this case as we just want to pin the inode, not
 666		 * update the radix tree or anything like that.
 667		 *
 668		 * The RCU read lock is taken as the inode is finally freed
 669		 * under RCU. If the mapping still matches expectations then the
 670		 * mapping->host can be safely accessed as being a valid inode.
 671		 */
 672		rcu_read_lock();
 673
 674		if (READ_ONCE(page->mapping) != mapping) {
 675			rcu_read_unlock();
 676			put_page(page);
 677
 678			goto again;
 679		}
 680
 681		inode = READ_ONCE(mapping->host);
 682		if (!inode) {
 683			rcu_read_unlock();
 684			put_page(page);
 685
 686			goto again;
 687		}
 688
 689		/*
 690		 * Take a reference unless it is about to be freed. Previously
 691		 * this reference was taken by ihold under the page lock
 692		 * pinning the inode in place so i_lock was unnecessary. The
 693		 * only way for this check to fail is if the inode was
 694		 * truncated in parallel which is almost certainly an
 695		 * application bug. In such a case, just retry.
 696		 *
 697		 * We are not calling into get_futex_key_refs() in file-backed
 698		 * cases, therefore a successful atomic_inc return below will
 699		 * guarantee that get_futex_key() will still imply smp_mb(); (B).
 700		 */
 701		if (!atomic_inc_not_zero(&inode->i_count)) {
 702			rcu_read_unlock();
 703			put_page(page);
 704
 705			goto again;
 706		}
 707
 708		/* Should be impossible but lets be paranoid for now */
 709		if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
 710			err = -EFAULT;
 711			rcu_read_unlock();
 712			iput(inode);
 713
 714			goto out;
 715		}
 716
 717		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 718		key->shared.inode = inode;
 719		key->shared.pgoff = basepage_index(tail);
 720		rcu_read_unlock();
 721	}
 722
 
 
 723out:
 724	put_page(page);
 
 725	return err;
 726}
 727
 728static inline void put_futex_key(union futex_key *key)
 729{
 730	drop_futex_key_refs(key);
 731}
 732
 733/**
 734 * fault_in_user_writeable() - Fault in user address and verify RW access
 735 * @uaddr:	pointer to faulting user space address
 736 *
 737 * Slow path to fixup the fault we just took in the atomic write
 738 * access to @uaddr.
 739 *
 740 * We have no generic implementation of a non-destructive write to the
 741 * user address. We know that we faulted in the atomic pagefault
 742 * disabled section so we can as well avoid the #PF overhead by
 743 * calling get_user_pages() right away.
 744 */
 745static int fault_in_user_writeable(u32 __user *uaddr)
 746{
 747	struct mm_struct *mm = current->mm;
 748	int ret;
 749
 750	down_read(&mm->mmap_sem);
 751	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 752			       FAULT_FLAG_WRITE, NULL);
 753	up_read(&mm->mmap_sem);
 754
 755	return ret < 0 ? ret : 0;
 756}
 757
 758/**
 759 * futex_top_waiter() - Return the highest priority waiter on a futex
 760 * @hb:		the hash bucket the futex_q's reside in
 761 * @key:	the futex key (to distinguish it from other futex futex_q's)
 762 *
 763 * Must be called with the hb lock held.
 764 */
 765static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 766					union futex_key *key)
 767{
 768	struct futex_q *this;
 769
 770	plist_for_each_entry(this, &hb->chain, list) {
 771		if (match_futex(&this->key, key))
 772			return this;
 773	}
 774	return NULL;
 775}
 776
 777static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 778				      u32 uval, u32 newval)
 779{
 780	int ret;
 781
 782	pagefault_disable();
 783	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 784	pagefault_enable();
 785
 786	return ret;
 787}
 788
 789static int get_futex_value_locked(u32 *dest, u32 __user *from)
 790{
 791	int ret;
 792
 793	pagefault_disable();
 794	ret = __get_user(*dest, from);
 795	pagefault_enable();
 796
 797	return ret ? -EFAULT : 0;
 798}
 799
 800
 801/*
 802 * PI code:
 803 */
 804static int refill_pi_state_cache(void)
 805{
 806	struct futex_pi_state *pi_state;
 807
 808	if (likely(current->pi_state_cache))
 809		return 0;
 810
 811	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 812
 813	if (!pi_state)
 814		return -ENOMEM;
 815
 816	INIT_LIST_HEAD(&pi_state->list);
 817	/* pi_mutex gets initialized later */
 818	pi_state->owner = NULL;
 819	refcount_set(&pi_state->refcount, 1);
 820	pi_state->key = FUTEX_KEY_INIT;
 821
 822	current->pi_state_cache = pi_state;
 823
 824	return 0;
 825}
 826
 827static struct futex_pi_state *alloc_pi_state(void)
 828{
 829	struct futex_pi_state *pi_state = current->pi_state_cache;
 830
 831	WARN_ON(!pi_state);
 832	current->pi_state_cache = NULL;
 833
 834	return pi_state;
 835}
 836
 837static void get_pi_state(struct futex_pi_state *pi_state)
 838{
 839	WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
 840}
 841
 842/*
 843 * Drops a reference to the pi_state object and frees or caches it
 844 * when the last reference is gone.
 845 */
 846static void put_pi_state(struct futex_pi_state *pi_state)
 847{
 848	if (!pi_state)
 849		return;
 850
 851	if (!refcount_dec_and_test(&pi_state->refcount))
 852		return;
 853
 854	/*
 855	 * If pi_state->owner is NULL, the owner is most probably dying
 856	 * and has cleaned up the pi_state already
 857	 */
 858	if (pi_state->owner) {
 859		struct task_struct *owner;
 
 
 860
 861		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
 862		owner = pi_state->owner;
 863		if (owner) {
 864			raw_spin_lock(&owner->pi_lock);
 865			list_del_init(&pi_state->list);
 866			raw_spin_unlock(&owner->pi_lock);
 867		}
 868		rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
 869		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 870	}
 871
 872	if (current->pi_state_cache) {
 873		kfree(pi_state);
 874	} else {
 875		/*
 876		 * pi_state->list is already empty.
 877		 * clear pi_state->owner.
 878		 * refcount is at 0 - put it back to 1.
 879		 */
 880		pi_state->owner = NULL;
 881		refcount_set(&pi_state->refcount, 1);
 882		current->pi_state_cache = pi_state;
 883	}
 884}
 885
 886#ifdef CONFIG_FUTEX_PI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 887
 888/*
 889 * This task is holding PI mutexes at exit time => bad.
 890 * Kernel cleans up PI-state, but userspace is likely hosed.
 891 * (Robust-futex cleanup is separate and might save the day for userspace.)
 892 */
 893void exit_pi_state_list(struct task_struct *curr)
 894{
 895	struct list_head *next, *head = &curr->pi_state_list;
 896	struct futex_pi_state *pi_state;
 897	struct futex_hash_bucket *hb;
 898	union futex_key key = FUTEX_KEY_INIT;
 899
 900	if (!futex_cmpxchg_enabled)
 901		return;
 902	/*
 903	 * We are a ZOMBIE and nobody can enqueue itself on
 904	 * pi_state_list anymore, but we have to be careful
 905	 * versus waiters unqueueing themselves:
 906	 */
 907	raw_spin_lock_irq(&curr->pi_lock);
 908	while (!list_empty(head)) {
 
 909		next = head->next;
 910		pi_state = list_entry(next, struct futex_pi_state, list);
 911		key = pi_state->key;
 912		hb = hash_futex(&key);
 913
 914		/*
 915		 * We can race against put_pi_state() removing itself from the
 916		 * list (a waiter going away). put_pi_state() will first
 917		 * decrement the reference count and then modify the list, so
 918		 * its possible to see the list entry but fail this reference
 919		 * acquire.
 920		 *
 921		 * In that case; drop the locks to let put_pi_state() make
 922		 * progress and retry the loop.
 923		 */
 924		if (!refcount_inc_not_zero(&pi_state->refcount)) {
 925			raw_spin_unlock_irq(&curr->pi_lock);
 926			cpu_relax();
 927			raw_spin_lock_irq(&curr->pi_lock);
 928			continue;
 929		}
 930		raw_spin_unlock_irq(&curr->pi_lock);
 931
 932		spin_lock(&hb->lock);
 933		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
 934		raw_spin_lock(&curr->pi_lock);
 935		/*
 936		 * We dropped the pi-lock, so re-check whether this
 937		 * task still owns the PI-state:
 938		 */
 939		if (head->next != next) {
 940			/* retain curr->pi_lock for the loop invariant */
 941			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 942			spin_unlock(&hb->lock);
 943			put_pi_state(pi_state);
 944			continue;
 945		}
 946
 947		WARN_ON(pi_state->owner != curr);
 948		WARN_ON(list_empty(&pi_state->list));
 949		list_del_init(&pi_state->list);
 950		pi_state->owner = NULL;
 
 951
 952		raw_spin_unlock(&curr->pi_lock);
 953		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 954		spin_unlock(&hb->lock);
 955
 956		rt_mutex_futex_unlock(&pi_state->pi_mutex);
 957		put_pi_state(pi_state);
 958
 959		raw_spin_lock_irq(&curr->pi_lock);
 960	}
 961	raw_spin_unlock_irq(&curr->pi_lock);
 962}
 963
 964#endif
 965
 966/*
 967 * We need to check the following states:
 968 *
 969 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 970 *
 971 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 972 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 973 *
 974 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 975 *
 976 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 977 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 978 *
 979 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 980 *
 981 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 982 *
 983 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 984 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 985 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 986 *
 987 * [1]	Indicates that the kernel can acquire the futex atomically. We
 988 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 989 *
 990 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 991 *      thread is found then it indicates that the owner TID has died.
 992 *
 993 * [3]	Invalid. The waiter is queued on a non PI futex
 994 *
 995 * [4]	Valid state after exit_robust_list(), which sets the user space
 996 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 997 *
 998 * [5]	The user space value got manipulated between exit_robust_list()
 999 *	and exit_pi_state_list()
1000 *
1001 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
1002 *	the pi_state but cannot access the user space value.
1003 *
1004 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1005 *
1006 * [8]	Owner and user space value match
1007 *
1008 * [9]	There is no transient state which sets the user space TID to 0
1009 *	except exit_robust_list(), but this is indicated by the
1010 *	FUTEX_OWNER_DIED bit. See [4]
1011 *
1012 * [10] There is no transient state which leaves owner and user space
1013 *	TID out of sync.
1014 *
1015 *
1016 * Serialization and lifetime rules:
1017 *
1018 * hb->lock:
1019 *
1020 *	hb -> futex_q, relation
1021 *	futex_q -> pi_state, relation
1022 *
1023 *	(cannot be raw because hb can contain arbitrary amount
1024 *	 of futex_q's)
1025 *
1026 * pi_mutex->wait_lock:
1027 *
1028 *	{uval, pi_state}
1029 *
1030 *	(and pi_mutex 'obviously')
1031 *
1032 * p->pi_lock:
1033 *
1034 *	p->pi_state_list -> pi_state->list, relation
1035 *
1036 * pi_state->refcount:
1037 *
1038 *	pi_state lifetime
1039 *
1040 *
1041 * Lock order:
1042 *
1043 *   hb->lock
1044 *     pi_mutex->wait_lock
1045 *       p->pi_lock
1046 *
1047 */
1048
1049/*
1050 * Validate that the existing waiter has a pi_state and sanity check
1051 * the pi_state against the user space value. If correct, attach to
1052 * it.
1053 */
1054static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1055			      struct futex_pi_state *pi_state,
1056			      struct futex_pi_state **ps)
1057{
 
 
 
 
1058	pid_t pid = uval & FUTEX_TID_MASK;
1059	u32 uval2;
1060	int ret;
1061
1062	/*
1063	 * Userspace might have messed up non-PI and PI futexes [3]
1064	 */
1065	if (unlikely(!pi_state))
1066		return -EINVAL;
1067
1068	/*
1069	 * We get here with hb->lock held, and having found a
1070	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1071	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1072	 * which in turn means that futex_lock_pi() still has a reference on
1073	 * our pi_state.
1074	 *
1075	 * The waiter holding a reference on @pi_state also protects against
1076	 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1077	 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1078	 * free pi_state before we can take a reference ourselves.
1079	 */
1080	WARN_ON(!refcount_read(&pi_state->refcount));
1081
1082	/*
1083	 * Now that we have a pi_state, we can acquire wait_lock
1084	 * and do the state validation.
1085	 */
1086	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1087
1088	/*
1089	 * Since {uval, pi_state} is serialized by wait_lock, and our current
1090	 * uval was read without holding it, it can have changed. Verify it
1091	 * still is what we expect it to be, otherwise retry the entire
1092	 * operation.
1093	 */
1094	if (get_futex_value_locked(&uval2, uaddr))
1095		goto out_efault;
1096
1097	if (uval != uval2)
1098		goto out_eagain;
1099
1100	/*
1101	 * Handle the owner died case:
1102	 */
1103	if (uval & FUTEX_OWNER_DIED) {
1104		/*
1105		 * exit_pi_state_list sets owner to NULL and wakes the
1106		 * topmost waiter. The task which acquires the
1107		 * pi_state->rt_mutex will fixup owner.
1108		 */
1109		if (!pi_state->owner) {
1110			/*
1111			 * No pi state owner, but the user space TID
1112			 * is not 0. Inconsistent state. [5]
1113			 */
1114			if (pid)
1115				goto out_einval;
1116			/*
1117			 * Take a ref on the state and return success. [4]
1118			 */
1119			goto out_attach;
1120		}
1121
1122		/*
1123		 * If TID is 0, then either the dying owner has not
1124		 * yet executed exit_pi_state_list() or some waiter
1125		 * acquired the rtmutex in the pi state, but did not
1126		 * yet fixup the TID in user space.
1127		 *
1128		 * Take a ref on the state and return success. [6]
1129		 */
1130		if (!pid)
1131			goto out_attach;
1132	} else {
1133		/*
1134		 * If the owner died bit is not set, then the pi_state
1135		 * must have an owner. [7]
1136		 */
1137		if (!pi_state->owner)
1138			goto out_einval;
1139	}
1140
1141	/*
1142	 * Bail out if user space manipulated the futex value. If pi
1143	 * state exists then the owner TID must be the same as the
1144	 * user space TID. [9/10]
1145	 */
1146	if (pid != task_pid_vnr(pi_state->owner))
1147		goto out_einval;
1148
1149out_attach:
1150	get_pi_state(pi_state);
1151	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1152	*ps = pi_state;
1153	return 0;
1154
1155out_einval:
1156	ret = -EINVAL;
1157	goto out_error;
1158
1159out_eagain:
1160	ret = -EAGAIN;
1161	goto out_error;
1162
1163out_efault:
1164	ret = -EFAULT;
1165	goto out_error;
1166
1167out_error:
1168	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1169	return ret;
1170}
1171
1172static int handle_exit_race(u32 __user *uaddr, u32 uval,
1173			    struct task_struct *tsk)
1174{
1175	u32 uval2;
1176
1177	/*
1178	 * If PF_EXITPIDONE is not yet set, then try again.
1179	 */
1180	if (tsk && !(tsk->flags & PF_EXITPIDONE))
1181		return -EAGAIN;
1182
1183	/*
1184	 * Reread the user space value to handle the following situation:
1185	 *
1186	 * CPU0				CPU1
1187	 *
1188	 * sys_exit()			sys_futex()
1189	 *  do_exit()			 futex_lock_pi()
1190	 *                                futex_lock_pi_atomic()
1191	 *   exit_signals(tsk)		    No waiters:
1192	 *    tsk->flags |= PF_EXITING;	    *uaddr == 0x00000PID
1193	 *  mm_release(tsk)		    Set waiter bit
1194	 *   exit_robust_list(tsk) {	    *uaddr = 0x80000PID;
1195	 *      Set owner died		    attach_to_pi_owner() {
1196	 *    *uaddr = 0xC0000000;	     tsk = get_task(PID);
1197	 *   }				     if (!tsk->flags & PF_EXITING) {
1198	 *  ...				       attach();
1199	 *  tsk->flags |= PF_EXITPIDONE;     } else {
1200	 *				       if (!(tsk->flags & PF_EXITPIDONE))
1201	 *				         return -EAGAIN;
1202	 *				       return -ESRCH; <--- FAIL
1203	 *				     }
1204	 *
1205	 * Returning ESRCH unconditionally is wrong here because the
1206	 * user space value has been changed by the exiting task.
1207	 *
1208	 * The same logic applies to the case where the exiting task is
1209	 * already gone.
1210	 */
1211	if (get_futex_value_locked(&uval2, uaddr))
1212		return -EFAULT;
1213
1214	/* If the user space value has changed, try again. */
1215	if (uval2 != uval)
1216		return -EAGAIN;
1217
1218	/*
1219	 * The exiting task did not have a robust list, the robust list was
1220	 * corrupted or the user space value in *uaddr is simply bogus.
1221	 * Give up and tell user space.
1222	 */
1223	return -ESRCH;
1224}
1225
1226/*
1227 * Lookup the task for the TID provided from user space and attach to
1228 * it after doing proper sanity checks.
1229 */
1230static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1231			      struct futex_pi_state **ps)
1232{
1233	pid_t pid = uval & FUTEX_TID_MASK;
1234	struct futex_pi_state *pi_state;
1235	struct task_struct *p;
1236
1237	/*
1238	 * We are the first waiter - try to look up the real owner and attach
1239	 * the new pi_state to it, but bail out when TID = 0 [1]
1240	 *
1241	 * The !pid check is paranoid. None of the call sites should end up
1242	 * with pid == 0, but better safe than sorry. Let the caller retry
1243	 */
1244	if (!pid)
1245		return -EAGAIN;
1246	p = find_get_task_by_vpid(pid);
1247	if (!p)
1248		return handle_exit_race(uaddr, uval, NULL);
1249
1250	if (unlikely(p->flags & PF_KTHREAD)) {
1251		put_task_struct(p);
1252		return -EPERM;
1253	}
1254
1255	/*
1256	 * We need to look at the task state flags to figure out,
1257	 * whether the task is exiting. To protect against the do_exit
1258	 * change of the task flags, we do this protected by
1259	 * p->pi_lock:
1260	 */
1261	raw_spin_lock_irq(&p->pi_lock);
1262	if (unlikely(p->flags & PF_EXITING)) {
1263		/*
1264		 * The task is on the way out. When PF_EXITPIDONE is
1265		 * set, we know that the task has finished the
1266		 * cleanup:
1267		 */
1268		int ret = handle_exit_race(uaddr, uval, p);
1269
1270		raw_spin_unlock_irq(&p->pi_lock);
1271		put_task_struct(p);
1272		return ret;
1273	}
1274
1275	/*
1276	 * No existing pi state. First waiter. [2]
1277	 *
1278	 * This creates pi_state, we have hb->lock held, this means nothing can
1279	 * observe this state, wait_lock is irrelevant.
1280	 */
1281	pi_state = alloc_pi_state();
1282
1283	/*
1284	 * Initialize the pi_mutex in locked state and make @p
1285	 * the owner of it:
1286	 */
1287	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1288
1289	/* Store the key for possible exit cleanups: */
1290	pi_state->key = *key;
1291
1292	WARN_ON(!list_empty(&pi_state->list));
1293	list_add(&pi_state->list, &p->pi_state_list);
1294	/*
1295	 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1296	 * because there is no concurrency as the object is not published yet.
1297	 */
1298	pi_state->owner = p;
1299	raw_spin_unlock_irq(&p->pi_lock);
1300
1301	put_task_struct(p);
1302
1303	*ps = pi_state;
1304
1305	return 0;
1306}
1307
1308static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1309			   struct futex_hash_bucket *hb,
1310			   union futex_key *key, struct futex_pi_state **ps)
1311{
1312	struct futex_q *top_waiter = futex_top_waiter(hb, key);
1313
1314	/*
1315	 * If there is a waiter on that futex, validate it and
1316	 * attach to the pi_state when the validation succeeds.
1317	 */
1318	if (top_waiter)
1319		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1320
1321	/*
1322	 * We are the first waiter - try to look up the owner based on
1323	 * @uval and attach to it.
1324	 */
1325	return attach_to_pi_owner(uaddr, uval, key, ps);
1326}
1327
1328static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1329{
1330	int err;
1331	u32 uninitialized_var(curval);
1332
1333	if (unlikely(should_fail_futex(true)))
1334		return -EFAULT;
1335
1336	err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1337	if (unlikely(err))
1338		return err;
1339
1340	/* If user space value changed, let the caller retry */
1341	return curval != uval ? -EAGAIN : 0;
1342}
1343
1344/**
1345 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1346 * @uaddr:		the pi futex user address
1347 * @hb:			the pi futex hash bucket
1348 * @key:		the futex key associated with uaddr and hb
1349 * @ps:			the pi_state pointer where we store the result of the
1350 *			lookup
1351 * @task:		the task to perform the atomic lock work for.  This will
1352 *			be "current" except in the case of requeue pi.
1353 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1354 *
1355 * Return:
1356 *  -  0 - ready to wait;
1357 *  -  1 - acquired the lock;
1358 *  - <0 - error
1359 *
1360 * The hb->lock and futex_key refs shall be held by the caller.
1361 */
1362static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1363				union futex_key *key,
1364				struct futex_pi_state **ps,
1365				struct task_struct *task, int set_waiters)
1366{
1367	u32 uval, newval, vpid = task_pid_vnr(task);
1368	struct futex_q *top_waiter;
1369	int ret;
 
 
1370
1371	/*
1372	 * Read the user space value first so we can validate a few
1373	 * things before proceeding further.
 
1374	 */
1375	if (get_futex_value_locked(&uval, uaddr))
1376		return -EFAULT;
 
1377
1378	if (unlikely(should_fail_futex(true)))
1379		return -EFAULT;
1380
1381	/*
1382	 * Detect deadlocks.
1383	 */
1384	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1385		return -EDEADLK;
1386
1387	if ((unlikely(should_fail_futex(true))))
1388		return -EDEADLK;
1389
1390	/*
1391	 * Lookup existing state first. If it exists, try to attach to
1392	 * its pi_state.
1393	 */
1394	top_waiter = futex_top_waiter(hb, key);
1395	if (top_waiter)
1396		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
 
1397
1398	/*
1399	 * No waiter and user TID is 0. We are here because the
1400	 * waiters or the owner died bit is set or called from
1401	 * requeue_cmp_pi or for whatever reason something took the
1402	 * syscall.
1403	 */
1404	if (!(uval & FUTEX_TID_MASK)) {
1405		/*
1406		 * We take over the futex. No other waiters and the user space
1407		 * TID is 0. We preserve the owner died bit.
1408		 */
1409		newval = uval & FUTEX_OWNER_DIED;
1410		newval |= vpid;
1411
1412		/* The futex requeue_pi code can enforce the waiters bit */
1413		if (set_waiters)
1414			newval |= FUTEX_WAITERS;
1415
1416		ret = lock_pi_update_atomic(uaddr, uval, newval);
1417		/* If the take over worked, return 1 */
1418		return ret < 0 ? ret : 1;
 
 
 
 
 
 
 
 
 
 
1419	}
1420
 
 
 
 
 
1421	/*
1422	 * First waiter. Set the waiters bit before attaching ourself to
1423	 * the owner. If owner tries to unlock, it will be forced into
1424	 * the kernel and blocked on hb->lock.
1425	 */
1426	newval = uval | FUTEX_WAITERS;
1427	ret = lock_pi_update_atomic(uaddr, uval, newval);
1428	if (ret)
1429		return ret;
1430	/*
1431	 * If the update of the user space value succeeded, we try to
1432	 * attach to the owner. If that fails, no harm done, we only
1433	 * set the FUTEX_WAITERS bit in the user space variable.
1434	 */
1435	return attach_to_pi_owner(uaddr, newval, key, ps);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436}
1437
1438/**
1439 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1440 * @q:	The futex_q to unqueue
1441 *
1442 * The q->lock_ptr must not be NULL and must be held by the caller.
1443 */
1444static void __unqueue_futex(struct futex_q *q)
1445{
1446	struct futex_hash_bucket *hb;
1447
1448	if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
 
1449		return;
1450	lockdep_assert_held(q->lock_ptr);
1451
1452	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1453	plist_del(&q->list, &hb->chain);
1454	hb_waiters_dec(hb);
1455}
1456
1457/*
1458 * The hash bucket lock must be held when this is called.
1459 * Afterwards, the futex_q must not be accessed. Callers
1460 * must ensure to later call wake_up_q() for the actual
1461 * wakeups to occur.
1462 */
1463static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1464{
1465	struct task_struct *p = q->task;
1466
1467	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1468		return;
1469
1470	get_task_struct(p);
1471	__unqueue_futex(q);
1472	/*
1473	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1474	 * is written, without taking any locks. This is possible in the event
1475	 * of a spurious wakeup, for example. A memory barrier is required here
1476	 * to prevent the following store to lock_ptr from getting ahead of the
1477	 * plist_del in __unqueue_futex().
1478	 */
1479	smp_store_release(&q->lock_ptr, NULL);
1480
 
1481	/*
1482	 * Queue the task for later wakeup for after we've released
1483	 * the hb->lock. wake_q_add() grabs reference to p.
 
 
1484	 */
1485	wake_q_add_safe(wake_q, p);
 
 
 
 
1486}
1487
1488/*
1489 * Caller must hold a reference on @pi_state.
1490 */
1491static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1492{
1493	u32 uninitialized_var(curval), newval;
1494	struct task_struct *new_owner;
1495	bool postunlock = false;
1496	DEFINE_WAKE_Q(wake_q);
1497	int ret = 0;
1498
1499	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1500	if (WARN_ON_ONCE(!new_owner)) {
1501		/*
1502		 * As per the comment in futex_unlock_pi() this should not happen.
1503		 *
1504		 * When this happens, give up our locks and try again, giving
1505		 * the futex_lock_pi() instance time to complete, either by
1506		 * waiting on the rtmutex or removing itself from the futex
1507		 * queue.
1508		 */
1509		ret = -EAGAIN;
1510		goto out_unlock;
1511	}
1512
1513	/*
1514	 * We pass it to the next owner. The WAITERS bit is always kept
1515	 * enabled while there is PI state around. We cleanup the owner
1516	 * died bit, because we are the owner.
1517	 */
1518	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1519
1520	if (unlikely(should_fail_futex(true)))
1521		ret = -EFAULT;
1522
1523	ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1524	if (!ret && (curval != uval)) {
1525		/*
1526		 * If a unconditional UNLOCK_PI operation (user space did not
1527		 * try the TID->0 transition) raced with a waiter setting the
1528		 * FUTEX_WAITERS flag between get_user() and locking the hash
1529		 * bucket lock, retry the operation.
1530		 */
1531		if ((FUTEX_TID_MASK & curval) == uval)
1532			ret = -EAGAIN;
1533		else
1534			ret = -EINVAL;
1535	}
1536
1537	if (ret)
1538		goto out_unlock;
 
 
 
 
 
1539
1540	/*
1541	 * This is a point of no return; once we modify the uval there is no
1542	 * going back and subsequent operations must not fail.
 
1543	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544
1545	raw_spin_lock(&pi_state->owner->pi_lock);
1546	WARN_ON(list_empty(&pi_state->list));
1547	list_del_init(&pi_state->list);
1548	raw_spin_unlock(&pi_state->owner->pi_lock);
1549
1550	raw_spin_lock(&new_owner->pi_lock);
1551	WARN_ON(!list_empty(&pi_state->list));
1552	list_add(&pi_state->list, &new_owner->pi_state_list);
1553	pi_state->owner = new_owner;
1554	raw_spin_unlock(&new_owner->pi_lock);
1555
1556	postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
 
1557
1558out_unlock:
1559	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 
 
 
 
1560
1561	if (postunlock)
1562		rt_mutex_postunlock(&wake_q);
 
 
 
 
 
 
1563
1564	return ret;
1565}
1566
1567/*
1568 * Express the locking dependencies for lockdep:
1569 */
1570static inline void
1571double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1572{
1573	if (hb1 <= hb2) {
1574		spin_lock(&hb1->lock);
1575		if (hb1 < hb2)
1576			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1577	} else { /* hb1 > hb2 */
1578		spin_lock(&hb2->lock);
1579		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1580	}
1581}
1582
1583static inline void
1584double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1585{
1586	spin_unlock(&hb1->lock);
1587	if (hb1 != hb2)
1588		spin_unlock(&hb2->lock);
1589}
1590
1591/*
1592 * Wake up waiters matching bitset queued on this futex (uaddr).
1593 */
1594static int
1595futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1596{
1597	struct futex_hash_bucket *hb;
1598	struct futex_q *this, *next;
 
1599	union futex_key key = FUTEX_KEY_INIT;
1600	int ret;
1601	DEFINE_WAKE_Q(wake_q);
1602
1603	if (!bitset)
1604		return -EINVAL;
1605
1606	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1607	if (unlikely(ret != 0))
1608		goto out;
1609
1610	hb = hash_futex(&key);
1611
1612	/* Make sure we really have tasks to wakeup */
1613	if (!hb_waiters_pending(hb))
1614		goto out_put_key;
1615
1616	spin_lock(&hb->lock);
 
1617
1618	plist_for_each_entry_safe(this, next, &hb->chain, list) {
1619		if (match_futex (&this->key, &key)) {
1620			if (this->pi_state || this->rt_waiter) {
1621				ret = -EINVAL;
1622				break;
1623			}
1624
1625			/* Check if one of the bits is set in both bitsets */
1626			if (!(this->bitset & bitset))
1627				continue;
1628
1629			mark_wake_futex(&wake_q, this);
1630			if (++ret >= nr_wake)
1631				break;
1632		}
1633	}
1634
1635	spin_unlock(&hb->lock);
1636	wake_up_q(&wake_q);
1637out_put_key:
1638	put_futex_key(&key);
1639out:
1640	return ret;
1641}
1642
1643static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1644{
1645	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
1646	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
1647	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1648	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1649	int oldval, ret;
1650
1651	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1652		if (oparg < 0 || oparg > 31) {
1653			char comm[sizeof(current->comm)];
1654			/*
1655			 * kill this print and return -EINVAL when userspace
1656			 * is sane again
1657			 */
1658			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1659					get_task_comm(comm, current), oparg);
1660			oparg &= 31;
1661		}
1662		oparg = 1 << oparg;
1663	}
1664
1665	if (!access_ok(uaddr, sizeof(u32)))
1666		return -EFAULT;
1667
1668	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1669	if (ret)
1670		return ret;
1671
1672	switch (cmp) {
1673	case FUTEX_OP_CMP_EQ:
1674		return oldval == cmparg;
1675	case FUTEX_OP_CMP_NE:
1676		return oldval != cmparg;
1677	case FUTEX_OP_CMP_LT:
1678		return oldval < cmparg;
1679	case FUTEX_OP_CMP_GE:
1680		return oldval >= cmparg;
1681	case FUTEX_OP_CMP_LE:
1682		return oldval <= cmparg;
1683	case FUTEX_OP_CMP_GT:
1684		return oldval > cmparg;
1685	default:
1686		return -ENOSYS;
1687	}
1688}
1689
1690/*
1691 * Wake up all waiters hashed on the physical page that is mapped
1692 * to this virtual address:
1693 */
1694static int
1695futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1696	      int nr_wake, int nr_wake2, int op)
1697{
1698	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1699	struct futex_hash_bucket *hb1, *hb2;
 
1700	struct futex_q *this, *next;
1701	int ret, op_ret;
1702	DEFINE_WAKE_Q(wake_q);
1703
1704retry:
1705	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1706	if (unlikely(ret != 0))
1707		goto out;
1708	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1709	if (unlikely(ret != 0))
1710		goto out_put_key1;
1711
1712	hb1 = hash_futex(&key1);
1713	hb2 = hash_futex(&key2);
1714
1715retry_private:
1716	double_lock_hb(hb1, hb2);
1717	op_ret = futex_atomic_op_inuser(op, uaddr2);
1718	if (unlikely(op_ret < 0)) {
 
1719		double_unlock_hb(hb1, hb2);
1720
1721		if (!IS_ENABLED(CONFIG_MMU) ||
1722		    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1723			/*
1724			 * we don't get EFAULT from MMU faults if we don't have
1725			 * an MMU, but we might get them from range checking
1726			 */
 
 
 
 
1727			ret = op_ret;
1728			goto out_put_keys;
1729		}
1730
1731		if (op_ret == -EFAULT) {
1732			ret = fault_in_user_writeable(uaddr2);
1733			if (ret)
1734				goto out_put_keys;
1735		}
1736
1737		if (!(flags & FLAGS_SHARED)) {
1738			cond_resched();
1739			goto retry_private;
1740		}
1741
1742		put_futex_key(&key2);
1743		put_futex_key(&key1);
1744		cond_resched();
1745		goto retry;
1746	}
1747
1748	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
 
 
1749		if (match_futex (&this->key, &key1)) {
1750			if (this->pi_state || this->rt_waiter) {
1751				ret = -EINVAL;
1752				goto out_unlock;
1753			}
1754			mark_wake_futex(&wake_q, this);
1755			if (++ret >= nr_wake)
1756				break;
1757		}
1758	}
1759
1760	if (op_ret > 0) {
 
 
1761		op_ret = 0;
1762		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1763			if (match_futex (&this->key, &key2)) {
1764				if (this->pi_state || this->rt_waiter) {
1765					ret = -EINVAL;
1766					goto out_unlock;
1767				}
1768				mark_wake_futex(&wake_q, this);
1769				if (++op_ret >= nr_wake2)
1770					break;
1771			}
1772		}
1773		ret += op_ret;
1774	}
1775
1776out_unlock:
1777	double_unlock_hb(hb1, hb2);
1778	wake_up_q(&wake_q);
1779out_put_keys:
1780	put_futex_key(&key2);
1781out_put_key1:
1782	put_futex_key(&key1);
1783out:
1784	return ret;
1785}
1786
1787/**
1788 * requeue_futex() - Requeue a futex_q from one hb to another
1789 * @q:		the futex_q to requeue
1790 * @hb1:	the source hash_bucket
1791 * @hb2:	the target hash_bucket
1792 * @key2:	the new key for the requeued futex_q
1793 */
1794static inline
1795void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1796		   struct futex_hash_bucket *hb2, union futex_key *key2)
1797{
1798
1799	/*
1800	 * If key1 and key2 hash to the same bucket, no need to
1801	 * requeue.
1802	 */
1803	if (likely(&hb1->chain != &hb2->chain)) {
1804		plist_del(&q->list, &hb1->chain);
1805		hb_waiters_dec(hb1);
1806		hb_waiters_inc(hb2);
1807		plist_add(&q->list, &hb2->chain);
1808		q->lock_ptr = &hb2->lock;
1809	}
1810	get_futex_key_refs(key2);
1811	q->key = *key2;
1812}
1813
1814/**
1815 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1816 * @q:		the futex_q
1817 * @key:	the key of the requeue target futex
1818 * @hb:		the hash_bucket of the requeue target futex
1819 *
1820 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1821 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1822 * to the requeue target futex so the waiter can detect the wakeup on the right
1823 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1824 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1825 * to protect access to the pi_state to fixup the owner later.  Must be called
1826 * with both q->lock_ptr and hb->lock held.
1827 */
1828static inline
1829void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1830			   struct futex_hash_bucket *hb)
1831{
1832	get_futex_key_refs(key);
1833	q->key = *key;
1834
1835	__unqueue_futex(q);
1836
1837	WARN_ON(!q->rt_waiter);
1838	q->rt_waiter = NULL;
1839
1840	q->lock_ptr = &hb->lock;
1841
1842	wake_up_state(q->task, TASK_NORMAL);
1843}
1844
1845/**
1846 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1847 * @pifutex:		the user address of the to futex
1848 * @hb1:		the from futex hash bucket, must be locked by the caller
1849 * @hb2:		the to futex hash bucket, must be locked by the caller
1850 * @key1:		the from futex key
1851 * @key2:		the to futex key
1852 * @ps:			address to store the pi_state pointer
1853 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1854 *
1855 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1856 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1857 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1858 * hb1 and hb2 must be held by the caller.
1859 *
1860 * Return:
1861 *  -  0 - failed to acquire the lock atomically;
1862 *  - >0 - acquired the lock, return value is vpid of the top_waiter
1863 *  - <0 - error
1864 */
1865static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1866				 struct futex_hash_bucket *hb1,
1867				 struct futex_hash_bucket *hb2,
1868				 union futex_key *key1, union futex_key *key2,
1869				 struct futex_pi_state **ps, int set_waiters)
1870{
1871	struct futex_q *top_waiter = NULL;
1872	u32 curval;
1873	int ret, vpid;
1874
1875	if (get_futex_value_locked(&curval, pifutex))
1876		return -EFAULT;
1877
1878	if (unlikely(should_fail_futex(true)))
1879		return -EFAULT;
1880
1881	/*
1882	 * Find the top_waiter and determine if there are additional waiters.
1883	 * If the caller intends to requeue more than 1 waiter to pifutex,
1884	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1885	 * as we have means to handle the possible fault.  If not, don't set
1886	 * the bit unecessarily as it will force the subsequent unlock to enter
1887	 * the kernel.
1888	 */
1889	top_waiter = futex_top_waiter(hb1, key1);
1890
1891	/* There are no waiters, nothing for us to do. */
1892	if (!top_waiter)
1893		return 0;
1894
1895	/* Ensure we requeue to the expected futex. */
1896	if (!match_futex(top_waiter->requeue_pi_key, key2))
1897		return -EINVAL;
1898
1899	/*
1900	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1901	 * the contended case or if set_waiters is 1.  The pi_state is returned
1902	 * in ps in contended cases.
1903	 */
1904	vpid = task_pid_vnr(top_waiter->task);
1905	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1906				   set_waiters);
1907	if (ret == 1) {
1908		requeue_pi_wake_futex(top_waiter, key2, hb2);
1909		return vpid;
1910	}
1911	return ret;
1912}
1913
1914/**
1915 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1916 * @uaddr1:	source futex user address
1917 * @flags:	futex flags (FLAGS_SHARED, etc.)
1918 * @uaddr2:	target futex user address
1919 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1920 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1921 * @cmpval:	@uaddr1 expected value (or %NULL)
1922 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1923 *		pi futex (pi to pi requeue is not supported)
1924 *
1925 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1926 * uaddr2 atomically on behalf of the top waiter.
1927 *
1928 * Return:
1929 *  - >=0 - on success, the number of tasks requeued or woken;
1930 *  -  <0 - on error
1931 */
1932static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1933			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1934			 u32 *cmpval, int requeue_pi)
1935{
1936	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1937	int drop_count = 0, task_count = 0, ret;
1938	struct futex_pi_state *pi_state = NULL;
1939	struct futex_hash_bucket *hb1, *hb2;
 
1940	struct futex_q *this, *next;
1941	DEFINE_WAKE_Q(wake_q);
1942
1943	if (nr_wake < 0 || nr_requeue < 0)
1944		return -EINVAL;
1945
1946	/*
1947	 * When PI not supported: return -ENOSYS if requeue_pi is true,
1948	 * consequently the compiler knows requeue_pi is always false past
1949	 * this point which will optimize away all the conditional code
1950	 * further down.
1951	 */
1952	if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1953		return -ENOSYS;
1954
1955	if (requeue_pi) {
1956		/*
1957		 * Requeue PI only works on two distinct uaddrs. This
1958		 * check is only valid for private futexes. See below.
1959		 */
1960		if (uaddr1 == uaddr2)
1961			return -EINVAL;
1962
1963		/*
1964		 * requeue_pi requires a pi_state, try to allocate it now
1965		 * without any locks in case it fails.
1966		 */
1967		if (refill_pi_state_cache())
1968			return -ENOMEM;
1969		/*
1970		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1971		 * + nr_requeue, since it acquires the rt_mutex prior to
1972		 * returning to userspace, so as to not leave the rt_mutex with
1973		 * waiters and no owner.  However, second and third wake-ups
1974		 * cannot be predicted as they involve race conditions with the
1975		 * first wake and a fault while looking up the pi_state.  Both
1976		 * pthread_cond_signal() and pthread_cond_broadcast() should
1977		 * use nr_wake=1.
1978		 */
1979		if (nr_wake != 1)
1980			return -EINVAL;
1981	}
1982
1983retry:
1984	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
 
 
 
 
 
 
 
 
 
1985	if (unlikely(ret != 0))
1986		goto out;
1987	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1988			    requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1989	if (unlikely(ret != 0))
1990		goto out_put_key1;
1991
1992	/*
1993	 * The check above which compares uaddrs is not sufficient for
1994	 * shared futexes. We need to compare the keys:
1995	 */
1996	if (requeue_pi && match_futex(&key1, &key2)) {
1997		ret = -EINVAL;
1998		goto out_put_keys;
1999	}
2000
2001	hb1 = hash_futex(&key1);
2002	hb2 = hash_futex(&key2);
2003
2004retry_private:
2005	hb_waiters_inc(hb2);
2006	double_lock_hb(hb1, hb2);
2007
2008	if (likely(cmpval != NULL)) {
2009		u32 curval;
2010
2011		ret = get_futex_value_locked(&curval, uaddr1);
2012
2013		if (unlikely(ret)) {
2014			double_unlock_hb(hb1, hb2);
2015			hb_waiters_dec(hb2);
2016
2017			ret = get_user(curval, uaddr1);
2018			if (ret)
2019				goto out_put_keys;
2020
2021			if (!(flags & FLAGS_SHARED))
2022				goto retry_private;
2023
2024			put_futex_key(&key2);
2025			put_futex_key(&key1);
2026			goto retry;
2027		}
2028		if (curval != *cmpval) {
2029			ret = -EAGAIN;
2030			goto out_unlock;
2031		}
2032	}
2033
2034	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2035		/*
2036		 * Attempt to acquire uaddr2 and wake the top waiter. If we
2037		 * intend to requeue waiters, force setting the FUTEX_WAITERS
2038		 * bit.  We force this here where we are able to easily handle
2039		 * faults rather in the requeue loop below.
2040		 */
2041		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2042						 &key2, &pi_state, nr_requeue);
2043
2044		/*
2045		 * At this point the top_waiter has either taken uaddr2 or is
2046		 * waiting on it.  If the former, then the pi_state will not
2047		 * exist yet, look it up one more time to ensure we have a
2048		 * reference to it. If the lock was taken, ret contains the
2049		 * vpid of the top waiter task.
2050		 * If the lock was not taken, we have pi_state and an initial
2051		 * refcount on it. In case of an error we have nothing.
2052		 */
2053		if (ret > 0) {
2054			WARN_ON(pi_state);
2055			drop_count++;
2056			task_count++;
2057			/*
2058			 * If we acquired the lock, then the user space value
2059			 * of uaddr2 should be vpid. It cannot be changed by
2060			 * the top waiter as it is blocked on hb2 lock if it
2061			 * tries to do so. If something fiddled with it behind
2062			 * our back the pi state lookup might unearth it. So
2063			 * we rather use the known value than rereading and
2064			 * handing potential crap to lookup_pi_state.
2065			 *
2066			 * If that call succeeds then we have pi_state and an
2067			 * initial refcount on it.
2068			 */
2069			ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2070		}
2071
2072		switch (ret) {
2073		case 0:
2074			/* We hold a reference on the pi state. */
2075			break;
2076
2077			/* If the above failed, then pi_state is NULL */
2078		case -EFAULT:
2079			double_unlock_hb(hb1, hb2);
2080			hb_waiters_dec(hb2);
2081			put_futex_key(&key2);
2082			put_futex_key(&key1);
2083			ret = fault_in_user_writeable(uaddr2);
2084			if (!ret)
2085				goto retry;
2086			goto out;
2087		case -EAGAIN:
2088			/*
2089			 * Two reasons for this:
2090			 * - Owner is exiting and we just wait for the
2091			 *   exit to complete.
2092			 * - The user space value changed.
2093			 */
2094			double_unlock_hb(hb1, hb2);
2095			hb_waiters_dec(hb2);
2096			put_futex_key(&key2);
2097			put_futex_key(&key1);
2098			cond_resched();
2099			goto retry;
2100		default:
2101			goto out_unlock;
2102		}
2103	}
2104
2105	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
 
2106		if (task_count - nr_wake >= nr_requeue)
2107			break;
2108
2109		if (!match_futex(&this->key, &key1))
2110			continue;
2111
2112		/*
2113		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2114		 * be paired with each other and no other futex ops.
2115		 *
2116		 * We should never be requeueing a futex_q with a pi_state,
2117		 * which is awaiting a futex_unlock_pi().
2118		 */
2119		if ((requeue_pi && !this->rt_waiter) ||
2120		    (!requeue_pi && this->rt_waiter) ||
2121		    this->pi_state) {
2122			ret = -EINVAL;
2123			break;
2124		}
2125
2126		/*
2127		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2128		 * lock, we already woke the top_waiter.  If not, it will be
2129		 * woken by futex_unlock_pi().
2130		 */
2131		if (++task_count <= nr_wake && !requeue_pi) {
2132			mark_wake_futex(&wake_q, this);
2133			continue;
2134		}
2135
2136		/* Ensure we requeue to the expected futex for requeue_pi. */
2137		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2138			ret = -EINVAL;
2139			break;
2140		}
2141
2142		/*
2143		 * Requeue nr_requeue waiters and possibly one more in the case
2144		 * of requeue_pi if we couldn't acquire the lock atomically.
2145		 */
2146		if (requeue_pi) {
2147			/*
2148			 * Prepare the waiter to take the rt_mutex. Take a
2149			 * refcount on the pi_state and store the pointer in
2150			 * the futex_q object of the waiter.
2151			 */
2152			get_pi_state(pi_state);
2153			this->pi_state = pi_state;
2154			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2155							this->rt_waiter,
2156							this->task);
2157			if (ret == 1) {
2158				/*
2159				 * We got the lock. We do neither drop the
2160				 * refcount on pi_state nor clear
2161				 * this->pi_state because the waiter needs the
2162				 * pi_state for cleaning up the user space
2163				 * value. It will drop the refcount after
2164				 * doing so.
2165				 */
2166				requeue_pi_wake_futex(this, &key2, hb2);
2167				drop_count++;
2168				continue;
2169			} else if (ret) {
2170				/*
2171				 * rt_mutex_start_proxy_lock() detected a
2172				 * potential deadlock when we tried to queue
2173				 * that waiter. Drop the pi_state reference
2174				 * which we took above and remove the pointer
2175				 * to the state from the waiters futex_q
2176				 * object.
2177				 */
2178				this->pi_state = NULL;
2179				put_pi_state(pi_state);
2180				/*
2181				 * We stop queueing more waiters and let user
2182				 * space deal with the mess.
2183				 */
2184				break;
2185			}
2186		}
2187		requeue_futex(this, hb1, hb2, &key2);
2188		drop_count++;
2189	}
2190
2191	/*
2192	 * We took an extra initial reference to the pi_state either
2193	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2194	 * need to drop it here again.
2195	 */
2196	put_pi_state(pi_state);
2197
2198out_unlock:
2199	double_unlock_hb(hb1, hb2);
2200	wake_up_q(&wake_q);
2201	hb_waiters_dec(hb2);
2202
2203	/*
2204	 * drop_futex_key_refs() must be called outside the spinlocks. During
2205	 * the requeue we moved futex_q's from the hash bucket at key1 to the
2206	 * one at key2 and updated their key pointer.  We no longer need to
2207	 * hold the references to key1.
2208	 */
2209	while (--drop_count >= 0)
2210		drop_futex_key_refs(&key1);
2211
2212out_put_keys:
2213	put_futex_key(&key2);
2214out_put_key1:
2215	put_futex_key(&key1);
2216out:
 
 
2217	return ret ? ret : task_count;
2218}
2219
2220/* The key must be already stored in q->key. */
2221static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2222	__acquires(&hb->lock)
2223{
2224	struct futex_hash_bucket *hb;
2225
2226	hb = hash_futex(&q->key);
2227
2228	/*
2229	 * Increment the counter before taking the lock so that
2230	 * a potential waker won't miss a to-be-slept task that is
2231	 * waiting for the spinlock. This is safe as all queue_lock()
2232	 * users end up calling queue_me(). Similarly, for housekeeping,
2233	 * decrement the counter at queue_unlock() when some error has
2234	 * occurred and we don't end up adding the task to the list.
2235	 */
2236	hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2237
2238	q->lock_ptr = &hb->lock;
2239
2240	spin_lock(&hb->lock);
2241	return hb;
2242}
2243
2244static inline void
2245queue_unlock(struct futex_hash_bucket *hb)
2246	__releases(&hb->lock)
2247{
2248	spin_unlock(&hb->lock);
2249	hb_waiters_dec(hb);
2250}
2251
2252static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
 
 
 
 
 
 
 
 
 
 
 
 
 
2253{
2254	int prio;
2255
2256	/*
2257	 * The priority used to register this element is
2258	 * - either the real thread-priority for the real-time threads
2259	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2260	 * - or MAX_RT_PRIO for non-RT threads.
2261	 * Thus, all RT-threads are woken first in priority order, and
2262	 * the others are woken last, in FIFO order.
2263	 */
2264	prio = min(current->normal_prio, MAX_RT_PRIO);
2265
2266	plist_node_init(&q->list, prio);
2267	plist_add(&q->list, &hb->chain);
2268	q->task = current;
2269}
2270
2271/**
2272 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2273 * @q:	The futex_q to enqueue
2274 * @hb:	The destination hash bucket
2275 *
2276 * The hb->lock must be held by the caller, and is released here. A call to
2277 * queue_me() is typically paired with exactly one call to unqueue_me().  The
2278 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2279 * or nothing if the unqueue is done as part of the wake process and the unqueue
2280 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2281 * an example).
2282 */
2283static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2284	__releases(&hb->lock)
2285{
2286	__queue_me(q, hb);
2287	spin_unlock(&hb->lock);
2288}
2289
2290/**
2291 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2292 * @q:	The futex_q to unqueue
2293 *
2294 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2295 * be paired with exactly one earlier call to queue_me().
2296 *
2297 * Return:
2298 *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2299 *  - 0 - if the futex_q was already removed by the waking thread
2300 */
2301static int unqueue_me(struct futex_q *q)
2302{
2303	spinlock_t *lock_ptr;
2304	int ret = 0;
2305
2306	/* In the common case we don't take the spinlock, which is nice. */
2307retry:
2308	/*
2309	 * q->lock_ptr can change between this read and the following spin_lock.
2310	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2311	 * optimizing lock_ptr out of the logic below.
2312	 */
2313	lock_ptr = READ_ONCE(q->lock_ptr);
2314	if (lock_ptr != NULL) {
2315		spin_lock(lock_ptr);
2316		/*
2317		 * q->lock_ptr can change between reading it and
2318		 * spin_lock(), causing us to take the wrong lock.  This
2319		 * corrects the race condition.
2320		 *
2321		 * Reasoning goes like this: if we have the wrong lock,
2322		 * q->lock_ptr must have changed (maybe several times)
2323		 * between reading it and the spin_lock().  It can
2324		 * change again after the spin_lock() but only if it was
2325		 * already changed before the spin_lock().  It cannot,
2326		 * however, change back to the original value.  Therefore
2327		 * we can detect whether we acquired the correct lock.
2328		 */
2329		if (unlikely(lock_ptr != q->lock_ptr)) {
2330			spin_unlock(lock_ptr);
2331			goto retry;
2332		}
2333		__unqueue_futex(q);
2334
2335		BUG_ON(q->pi_state);
2336
2337		spin_unlock(lock_ptr);
2338		ret = 1;
2339	}
2340
2341	drop_futex_key_refs(&q->key);
2342	return ret;
2343}
2344
2345/*
2346 * PI futexes can not be requeued and must remove themself from the
2347 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2348 * and dropped here.
2349 */
2350static void unqueue_me_pi(struct futex_q *q)
2351	__releases(q->lock_ptr)
2352{
2353	__unqueue_futex(q);
2354
2355	BUG_ON(!q->pi_state);
2356	put_pi_state(q->pi_state);
2357	q->pi_state = NULL;
2358
2359	spin_unlock(q->lock_ptr);
2360}
2361
 
 
 
 
 
 
2362static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2363				struct task_struct *argowner)
2364{
 
2365	struct futex_pi_state *pi_state = q->pi_state;
 
2366	u32 uval, uninitialized_var(curval), newval;
2367	struct task_struct *oldowner, *newowner;
2368	u32 newtid;
2369	int ret, err = 0;
2370
2371	lockdep_assert_held(q->lock_ptr);
2372
2373	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2374
2375	oldowner = pi_state->owner;
 
 
2376
2377	/*
2378	 * We are here because either:
2379	 *
2380	 *  - we stole the lock and pi_state->owner needs updating to reflect
2381	 *    that (@argowner == current),
2382	 *
2383	 * or:
2384	 *
2385	 *  - someone stole our lock and we need to fix things to point to the
2386	 *    new owner (@argowner == NULL).
2387	 *
2388	 * Either way, we have to replace the TID in the user space variable.
2389	 * This must be atomic as we have to preserve the owner died bit here.
2390	 *
2391	 * Note: We write the user space value _before_ changing the pi_state
2392	 * because we can fault here. Imagine swapped out pages or a fork
2393	 * that marked all the anonymous memory readonly for cow.
2394	 *
2395	 * Modifying pi_state _before_ the user space value would leave the
2396	 * pi_state in an inconsistent state when we fault here, because we
2397	 * need to drop the locks to handle the fault. This might be observed
2398	 * in the PID check in lookup_pi_state.
 
2399	 */
2400retry:
2401	if (!argowner) {
2402		if (oldowner != current) {
2403			/*
2404			 * We raced against a concurrent self; things are
2405			 * already fixed up. Nothing to do.
2406			 */
2407			ret = 0;
2408			goto out_unlock;
2409		}
2410
2411		if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2412			/* We got the lock after all, nothing to fix. */
2413			ret = 0;
2414			goto out_unlock;
2415		}
2416
2417		/*
2418		 * Since we just failed the trylock; there must be an owner.
2419		 */
2420		newowner = rt_mutex_owner(&pi_state->pi_mutex);
2421		BUG_ON(!newowner);
2422	} else {
2423		WARN_ON_ONCE(argowner != current);
2424		if (oldowner == current) {
2425			/*
2426			 * We raced against a concurrent self; things are
2427			 * already fixed up. Nothing to do.
2428			 */
2429			ret = 0;
2430			goto out_unlock;
2431		}
2432		newowner = argowner;
2433	}
2434
2435	newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2436	/* Owner died? */
2437	if (!pi_state->owner)
2438		newtid |= FUTEX_OWNER_DIED;
2439
2440	err = get_futex_value_locked(&uval, uaddr);
2441	if (err)
2442		goto handle_err;
2443
2444	for (;;) {
2445		newval = (uval & FUTEX_OWNER_DIED) | newtid;
2446
2447		err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2448		if (err)
2449			goto handle_err;
2450
2451		if (curval == uval)
2452			break;
2453		uval = curval;
2454	}
2455
2456	/*
2457	 * We fixed up user space. Now we need to fix the pi_state
2458	 * itself.
2459	 */
2460	if (pi_state->owner != NULL) {
2461		raw_spin_lock(&pi_state->owner->pi_lock);
2462		WARN_ON(list_empty(&pi_state->list));
2463		list_del_init(&pi_state->list);
2464		raw_spin_unlock(&pi_state->owner->pi_lock);
2465	}
2466
2467	pi_state->owner = newowner;
2468
2469	raw_spin_lock(&newowner->pi_lock);
2470	WARN_ON(!list_empty(&pi_state->list));
2471	list_add(&pi_state->list, &newowner->pi_state_list);
2472	raw_spin_unlock(&newowner->pi_lock);
2473	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2474
2475	return 0;
2476
2477	/*
2478	 * In order to reschedule or handle a page fault, we need to drop the
2479	 * locks here. In the case of a fault, this gives the other task
2480	 * (either the highest priority waiter itself or the task which stole
2481	 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2482	 * are back from handling the fault we need to check the pi_state after
2483	 * reacquiring the locks and before trying to do another fixup. When
2484	 * the fixup has been done already we simply return.
2485	 *
2486	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2487	 * drop hb->lock since the caller owns the hb -> futex_q relation.
2488	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2489	 */
2490handle_err:
2491	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2492	spin_unlock(q->lock_ptr);
2493
2494	switch (err) {
2495	case -EFAULT:
2496		ret = fault_in_user_writeable(uaddr);
2497		break;
2498
2499	case -EAGAIN:
2500		cond_resched();
2501		ret = 0;
2502		break;
2503
2504	default:
2505		WARN_ON_ONCE(1);
2506		ret = err;
2507		break;
2508	}
2509
2510	spin_lock(q->lock_ptr);
2511	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2512
2513	/*
2514	 * Check if someone else fixed it for us:
2515	 */
2516	if (pi_state->owner != oldowner) {
2517		ret = 0;
2518		goto out_unlock;
2519	}
2520
2521	if (ret)
2522		goto out_unlock;
2523
2524	goto retry;
2525
2526out_unlock:
2527	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2528	return ret;
2529}
2530
2531static long futex_wait_restart(struct restart_block *restart);
2532
2533/**
2534 * fixup_owner() - Post lock pi_state and corner case management
2535 * @uaddr:	user address of the futex
2536 * @q:		futex_q (contains pi_state and access to the rt_mutex)
2537 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
2538 *
2539 * After attempting to lock an rt_mutex, this function is called to cleanup
2540 * the pi_state owner as well as handle race conditions that may allow us to
2541 * acquire the lock. Must be called with the hb lock held.
2542 *
2543 * Return:
2544 *  -  1 - success, lock taken;
2545 *  -  0 - success, lock not taken;
2546 *  - <0 - on error (-EFAULT)
2547 */
2548static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2549{
 
2550	int ret = 0;
2551
2552	if (locked) {
2553		/*
2554		 * Got the lock. We might not be the anticipated owner if we
2555		 * did a lock-steal - fix up the PI-state in that case:
2556		 *
2557		 * Speculative pi_state->owner read (we don't hold wait_lock);
2558		 * since we own the lock pi_state->owner == current is the
2559		 * stable state, anything else needs more attention.
2560		 */
2561		if (q->pi_state->owner != current)
2562			ret = fixup_pi_state_owner(uaddr, q, current);
2563		goto out;
2564	}
2565
2566	/*
2567	 * If we didn't get the lock; check if anybody stole it from us. In
2568	 * that case, we need to fix up the uval to point to them instead of
2569	 * us, otherwise bad things happen. [10]
2570	 *
2571	 * Another speculative read; pi_state->owner == current is unstable
2572	 * but needs our attention.
2573	 */
2574	if (q->pi_state->owner == current) {
2575		ret = fixup_pi_state_owner(uaddr, q, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2576		goto out;
2577	}
2578
2579	/*
2580	 * Paranoia check. If we did not take the lock, then we should not be
2581	 * the owner of the rt_mutex.
2582	 */
2583	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2584		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2585				"pi-state %p\n", ret,
2586				q->pi_state->pi_mutex.owner,
2587				q->pi_state->owner);
2588	}
2589
2590out:
2591	return ret ? ret : locked;
2592}
2593
2594/**
2595 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2596 * @hb:		the futex hash bucket, must be locked by the caller
2597 * @q:		the futex_q to queue up on
2598 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
2599 */
2600static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2601				struct hrtimer_sleeper *timeout)
2602{
2603	/*
2604	 * The task state is guaranteed to be set before another task can
2605	 * wake it. set_current_state() is implemented using smp_store_mb() and
2606	 * queue_me() calls spin_unlock() upon completion, both serializing
2607	 * access to the hash list and forcing another memory barrier.
2608	 */
2609	set_current_state(TASK_INTERRUPTIBLE);
2610	queue_me(q, hb);
2611
2612	/* Arm the timer */
2613	if (timeout)
2614		hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
 
 
 
2615
2616	/*
2617	 * If we have been removed from the hash list, then another task
2618	 * has tried to wake us, and we can skip the call to schedule().
2619	 */
2620	if (likely(!plist_node_empty(&q->list))) {
2621		/*
2622		 * If the timer has already expired, current will already be
2623		 * flagged for rescheduling. Only call schedule if there
2624		 * is no timeout, or if it has yet to expire.
2625		 */
2626		if (!timeout || timeout->task)
2627			freezable_schedule();
2628	}
2629	__set_current_state(TASK_RUNNING);
2630}
2631
2632/**
2633 * futex_wait_setup() - Prepare to wait on a futex
2634 * @uaddr:	the futex userspace address
2635 * @val:	the expected value
2636 * @flags:	futex flags (FLAGS_SHARED, etc.)
2637 * @q:		the associated futex_q
2638 * @hb:		storage for hash_bucket pointer to be returned to caller
2639 *
2640 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2641 * compare it with the expected value.  Handle atomic faults internally.
2642 * Return with the hb lock held and a q.key reference on success, and unlocked
2643 * with no q.key reference on failure.
2644 *
2645 * Return:
2646 *  -  0 - uaddr contains val and hb has been locked;
2647 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2648 */
2649static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2650			   struct futex_q *q, struct futex_hash_bucket **hb)
2651{
2652	u32 uval;
2653	int ret;
2654
2655	/*
2656	 * Access the page AFTER the hash-bucket is locked.
2657	 * Order is important:
2658	 *
2659	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2660	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2661	 *
2662	 * The basic logical guarantee of a futex is that it blocks ONLY
2663	 * if cond(var) is known to be true at the time of blocking, for
2664	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
2665	 * would open a race condition where we could block indefinitely with
2666	 * cond(var) false, which would violate the guarantee.
2667	 *
2668	 * On the other hand, we insert q and release the hash-bucket only
2669	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
2670	 * absorb a wakeup if *uaddr does not match the desired values
2671	 * while the syscall executes.
2672	 */
2673retry:
2674	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2675	if (unlikely(ret != 0))
2676		return ret;
2677
2678retry_private:
2679	*hb = queue_lock(q);
2680
2681	ret = get_futex_value_locked(&uval, uaddr);
2682
2683	if (ret) {
2684		queue_unlock(*hb);
2685
2686		ret = get_user(uval, uaddr);
2687		if (ret)
2688			goto out;
2689
2690		if (!(flags & FLAGS_SHARED))
2691			goto retry_private;
2692
2693		put_futex_key(&q->key);
2694		goto retry;
2695	}
2696
2697	if (uval != val) {
2698		queue_unlock(*hb);
2699		ret = -EWOULDBLOCK;
2700	}
2701
2702out:
2703	if (ret)
2704		put_futex_key(&q->key);
2705	return ret;
2706}
2707
2708static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2709		      ktime_t *abs_time, u32 bitset)
2710{
2711	struct hrtimer_sleeper timeout, *to;
2712	struct restart_block *restart;
2713	struct futex_hash_bucket *hb;
2714	struct futex_q q = futex_q_init;
2715	int ret;
2716
2717	if (!bitset)
2718		return -EINVAL;
2719	q.bitset = bitset;
2720
2721	to = futex_setup_timer(abs_time, &timeout, flags,
2722			       current->timer_slack_ns);
 
 
 
 
 
 
 
 
 
2723retry:
2724	/*
2725	 * Prepare to wait on uaddr. On success, holds hb lock and increments
2726	 * q.key refs.
2727	 */
2728	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2729	if (ret)
2730		goto out;
2731
2732	/* queue_me and wait for wakeup, timeout, or a signal. */
2733	futex_wait_queue_me(hb, &q, to);
2734
2735	/* If we were woken (and unqueued), we succeeded, whatever. */
2736	ret = 0;
2737	/* unqueue_me() drops q.key ref */
2738	if (!unqueue_me(&q))
2739		goto out;
2740	ret = -ETIMEDOUT;
2741	if (to && !to->task)
2742		goto out;
2743
2744	/*
2745	 * We expect signal_pending(current), but we might be the
2746	 * victim of a spurious wakeup as well.
2747	 */
2748	if (!signal_pending(current))
2749		goto retry;
2750
2751	ret = -ERESTARTSYS;
2752	if (!abs_time)
2753		goto out;
2754
2755	restart = &current->restart_block;
2756	restart->fn = futex_wait_restart;
2757	restart->futex.uaddr = uaddr;
2758	restart->futex.val = val;
2759	restart->futex.time = *abs_time;
2760	restart->futex.bitset = bitset;
2761	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2762
2763	ret = -ERESTART_RESTARTBLOCK;
2764
2765out:
2766	if (to) {
2767		hrtimer_cancel(&to->timer);
2768		destroy_hrtimer_on_stack(&to->timer);
2769	}
2770	return ret;
2771}
2772
2773
2774static long futex_wait_restart(struct restart_block *restart)
2775{
2776	u32 __user *uaddr = restart->futex.uaddr;
2777	ktime_t t, *tp = NULL;
2778
2779	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2780		t = restart->futex.time;
2781		tp = &t;
2782	}
2783	restart->fn = do_no_restart_syscall;
2784
2785	return (long)futex_wait(uaddr, restart->futex.flags,
2786				restart->futex.val, tp, restart->futex.bitset);
2787}
2788
2789
2790/*
2791 * Userspace tried a 0 -> TID atomic transition of the futex value
2792 * and failed. The kernel side here does the whole locking operation:
2793 * if there are waiters then it will block as a consequence of relying
2794 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2795 * a 0 value of the futex too.).
2796 *
2797 * Also serves as futex trylock_pi()'ing, and due semantics.
2798 */
2799static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2800			 ktime_t *time, int trylock)
2801{
2802	struct hrtimer_sleeper timeout, *to;
2803	struct futex_pi_state *pi_state = NULL;
2804	struct rt_mutex_waiter rt_waiter;
2805	struct futex_hash_bucket *hb;
2806	struct futex_q q = futex_q_init;
2807	int res, ret;
2808
2809	if (!IS_ENABLED(CONFIG_FUTEX_PI))
2810		return -ENOSYS;
2811
2812	if (refill_pi_state_cache())
2813		return -ENOMEM;
2814
2815	to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
 
 
 
 
 
 
2816
2817retry:
2818	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2819	if (unlikely(ret != 0))
2820		goto out;
2821
2822retry_private:
2823	hb = queue_lock(&q);
2824
2825	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2826	if (unlikely(ret)) {
2827		/*
2828		 * Atomic work succeeded and we got the lock,
2829		 * or failed. Either way, we do _not_ block.
2830		 */
2831		switch (ret) {
2832		case 1:
2833			/* We got the lock. */
2834			ret = 0;
2835			goto out_unlock_put_key;
2836		case -EFAULT:
2837			goto uaddr_faulted;
2838		case -EAGAIN:
2839			/*
2840			 * Two reasons for this:
2841			 * - Task is exiting and we just wait for the
2842			 *   exit to complete.
2843			 * - The user space value changed.
2844			 */
2845			queue_unlock(hb);
2846			put_futex_key(&q.key);
2847			cond_resched();
2848			goto retry;
2849		default:
2850			goto out_unlock_put_key;
2851		}
2852	}
2853
2854	WARN_ON(!q.pi_state);
2855
2856	/*
2857	 * Only actually queue now that the atomic ops are done:
2858	 */
2859	__queue_me(&q, hb);
2860
2861	if (trylock) {
2862		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2863		/* Fixup the trylock return value: */
2864		ret = ret ? 0 : -EWOULDBLOCK;
2865		goto no_block;
2866	}
2867
2868	rt_mutex_init_waiter(&rt_waiter);
2869
 
2870	/*
2871	 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2872	 * hold it while doing rt_mutex_start_proxy(), because then it will
2873	 * include hb->lock in the blocking chain, even through we'll not in
2874	 * fact hold it while blocking. This will lead it to report -EDEADLK
2875	 * and BUG when futex_unlock_pi() interleaves with this.
2876	 *
2877	 * Therefore acquire wait_lock while holding hb->lock, but drop the
2878	 * latter before calling __rt_mutex_start_proxy_lock(). This
2879	 * interleaves with futex_unlock_pi() -- which does a similar lock
2880	 * handoff -- such that the latter can observe the futex_q::pi_state
2881	 * before __rt_mutex_start_proxy_lock() is done.
2882	 */
2883	raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2884	spin_unlock(q.lock_ptr);
2885	/*
2886	 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2887	 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2888	 * it sees the futex_q::pi_state.
2889	 */
2890	ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2891	raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2892
2893	if (ret) {
2894		if (ret == 1)
2895			ret = 0;
2896		goto cleanup;
2897	}
2898
2899	if (unlikely(to))
2900		hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2901
2902	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2903
2904cleanup:
2905	spin_lock(q.lock_ptr);
2906	/*
2907	 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2908	 * first acquire the hb->lock before removing the lock from the
2909	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2910	 * lists consistent.
2911	 *
2912	 * In particular; it is important that futex_unlock_pi() can not
2913	 * observe this inconsistency.
2914	 */
2915	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2916		ret = 0;
2917
2918no_block:
2919	/*
2920	 * Fixup the pi_state owner and possibly acquire the lock if we
2921	 * haven't already.
2922	 */
2923	res = fixup_owner(uaddr, &q, !ret);
2924	/*
2925	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2926	 * the lock, clear our -ETIMEDOUT or -EINTR.
2927	 */
2928	if (res)
2929		ret = (res < 0) ? res : 0;
2930
2931	/*
2932	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2933	 * it and return the fault to userspace.
2934	 */
2935	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2936		pi_state = q.pi_state;
2937		get_pi_state(pi_state);
2938	}
2939
2940	/* Unqueue and drop the lock */
2941	unqueue_me_pi(&q);
2942
2943	if (pi_state) {
2944		rt_mutex_futex_unlock(&pi_state->pi_mutex);
2945		put_pi_state(pi_state);
2946	}
2947
2948	goto out_put_key;
2949
2950out_unlock_put_key:
2951	queue_unlock(hb);
2952
2953out_put_key:
2954	put_futex_key(&q.key);
2955out:
2956	if (to) {
2957		hrtimer_cancel(&to->timer);
2958		destroy_hrtimer_on_stack(&to->timer);
2959	}
2960	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2961
2962uaddr_faulted:
2963	queue_unlock(hb);
2964
2965	ret = fault_in_user_writeable(uaddr);
2966	if (ret)
2967		goto out_put_key;
2968
2969	if (!(flags & FLAGS_SHARED))
2970		goto retry_private;
2971
2972	put_futex_key(&q.key);
2973	goto retry;
2974}
2975
2976/*
2977 * Userspace attempted a TID -> 0 atomic transition, and failed.
2978 * This is the in-kernel slowpath: we look up the PI state (if any),
2979 * and do the rt-mutex unlock.
2980 */
2981static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2982{
2983	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2984	union futex_key key = FUTEX_KEY_INIT;
2985	struct futex_hash_bucket *hb;
2986	struct futex_q *top_waiter;
 
 
 
2987	int ret;
2988
2989	if (!IS_ENABLED(CONFIG_FUTEX_PI))
2990		return -ENOSYS;
2991
2992retry:
2993	if (get_user(uval, uaddr))
2994		return -EFAULT;
2995	/*
2996	 * We release only a lock we actually own:
2997	 */
2998	if ((uval & FUTEX_TID_MASK) != vpid)
2999		return -EPERM;
3000
3001	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3002	if (ret)
3003		return ret;
3004
3005	hb = hash_futex(&key);
3006	spin_lock(&hb->lock);
3007
3008	/*
3009	 * Check waiters first. We do not trust user space values at
3010	 * all and we at least want to know if user space fiddled
3011	 * with the futex value instead of blindly unlocking.
3012	 */
3013	top_waiter = futex_top_waiter(hb, &key);
3014	if (top_waiter) {
3015		struct futex_pi_state *pi_state = top_waiter->pi_state;
3016
3017		ret = -EINVAL;
3018		if (!pi_state)
3019			goto out_unlock;
3020
3021		/*
3022		 * If current does not own the pi_state then the futex is
3023		 * inconsistent and user space fiddled with the futex value.
3024		 */
3025		if (pi_state->owner != current)
3026			goto out_unlock;
3027
3028		get_pi_state(pi_state);
3029		/*
3030		 * By taking wait_lock while still holding hb->lock, we ensure
3031		 * there is no point where we hold neither; and therefore
3032		 * wake_futex_pi() must observe a state consistent with what we
3033		 * observed.
3034		 *
3035		 * In particular; this forces __rt_mutex_start_proxy() to
3036		 * complete such that we're guaranteed to observe the
3037		 * rt_waiter. Also see the WARN in wake_futex_pi().
3038		 */
3039		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3040		spin_unlock(&hb->lock);
3041
3042		/* drops pi_state->pi_mutex.wait_lock */
3043		ret = wake_futex_pi(uaddr, uval, pi_state);
3044
3045		put_pi_state(pi_state);
 
 
 
 
3046
 
 
 
 
3047		/*
3048		 * Success, we're done! No tricky corner cases.
3049		 */
3050		if (!ret)
3051			goto out_putkey;
3052		/*
3053		 * The atomic access to the futex value generated a
3054		 * pagefault, so retry the user-access and the wakeup:
3055		 */
3056		if (ret == -EFAULT)
3057			goto pi_faulted;
3058		/*
3059		 * A unconditional UNLOCK_PI op raced against a waiter
3060		 * setting the FUTEX_WAITERS bit. Try again.
3061		 */
3062		if (ret == -EAGAIN)
3063			goto pi_retry;
3064		/*
3065		 * wake_futex_pi has detected invalid state. Tell user
3066		 * space.
3067		 */
3068		goto out_putkey;
3069	}
3070
3071	/*
3072	 * We have no kernel internal state, i.e. no waiters in the
3073	 * kernel. Waiters which are about to queue themselves are stuck
3074	 * on hb->lock. So we can safely ignore them. We do neither
3075	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3076	 * owner.
3077	 */
3078	if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3079		spin_unlock(&hb->lock);
3080		switch (ret) {
3081		case -EFAULT:
3082			goto pi_faulted;
3083
3084		case -EAGAIN:
3085			goto pi_retry;
3086
3087		default:
3088			WARN_ON_ONCE(1);
3089			goto out_putkey;
3090		}
3091	}
3092
3093	/*
3094	 * If uval has changed, let user space handle it.
3095	 */
3096	ret = (curval == uval) ? 0 : -EAGAIN;
3097
3098out_unlock:
3099	spin_unlock(&hb->lock);
3100out_putkey:
3101	put_futex_key(&key);
3102	return ret;
3103
3104pi_retry:
3105	put_futex_key(&key);
3106	cond_resched();
3107	goto retry;
3108
3109pi_faulted:
 
3110	put_futex_key(&key);
3111
3112	ret = fault_in_user_writeable(uaddr);
3113	if (!ret)
3114		goto retry;
3115
3116	return ret;
3117}
3118
3119/**
3120 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3121 * @hb:		the hash_bucket futex_q was original enqueued on
3122 * @q:		the futex_q woken while waiting to be requeued
3123 * @key2:	the futex_key of the requeue target futex
3124 * @timeout:	the timeout associated with the wait (NULL if none)
3125 *
3126 * Detect if the task was woken on the initial futex as opposed to the requeue
3127 * target futex.  If so, determine if it was a timeout or a signal that caused
3128 * the wakeup and return the appropriate error code to the caller.  Must be
3129 * called with the hb lock held.
3130 *
3131 * Return:
3132 *  -  0 = no early wakeup detected;
3133 *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3134 */
3135static inline
3136int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3137				   struct futex_q *q, union futex_key *key2,
3138				   struct hrtimer_sleeper *timeout)
3139{
3140	int ret = 0;
3141
3142	/*
3143	 * With the hb lock held, we avoid races while we process the wakeup.
3144	 * We only need to hold hb (and not hb2) to ensure atomicity as the
3145	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3146	 * It can't be requeued from uaddr2 to something else since we don't
3147	 * support a PI aware source futex for requeue.
3148	 */
3149	if (!match_futex(&q->key, key2)) {
3150		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3151		/*
3152		 * We were woken prior to requeue by a timeout or a signal.
3153		 * Unqueue the futex_q and determine which it was.
3154		 */
3155		plist_del(&q->list, &hb->chain);
3156		hb_waiters_dec(hb);
3157
3158		/* Handle spurious wakeups gracefully */
3159		ret = -EWOULDBLOCK;
3160		if (timeout && !timeout->task)
3161			ret = -ETIMEDOUT;
3162		else if (signal_pending(current))
3163			ret = -ERESTARTNOINTR;
3164	}
3165	return ret;
3166}
3167
3168/**
3169 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3170 * @uaddr:	the futex we initially wait on (non-pi)
3171 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3172 *		the same type, no requeueing from private to shared, etc.
3173 * @val:	the expected value of uaddr
3174 * @abs_time:	absolute timeout
3175 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
 
3176 * @uaddr2:	the pi futex we will take prior to returning to user-space
3177 *
3178 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3179 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3180 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3181 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3182 * without one, the pi logic would not know which task to boost/deboost, if
3183 * there was a need to.
3184 *
3185 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3186 * via the following--
3187 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3188 * 2) wakeup on uaddr2 after a requeue
3189 * 3) signal
3190 * 4) timeout
3191 *
3192 * If 3, cleanup and return -ERESTARTNOINTR.
3193 *
3194 * If 2, we may then block on trying to take the rt_mutex and return via:
3195 * 5) successful lock
3196 * 6) signal
3197 * 7) timeout
3198 * 8) other lock acquisition failure
3199 *
3200 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3201 *
3202 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3203 *
3204 * Return:
3205 *  -  0 - On success;
3206 *  - <0 - On error
3207 */
3208static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3209				 u32 val, ktime_t *abs_time, u32 bitset,
3210				 u32 __user *uaddr2)
3211{
3212	struct hrtimer_sleeper timeout, *to;
3213	struct futex_pi_state *pi_state = NULL;
3214	struct rt_mutex_waiter rt_waiter;
 
3215	struct futex_hash_bucket *hb;
3216	union futex_key key2 = FUTEX_KEY_INIT;
3217	struct futex_q q = futex_q_init;
3218	int res, ret;
3219
3220	if (!IS_ENABLED(CONFIG_FUTEX_PI))
3221		return -ENOSYS;
3222
3223	if (uaddr == uaddr2)
3224		return -EINVAL;
3225
3226	if (!bitset)
3227		return -EINVAL;
3228
3229	to = futex_setup_timer(abs_time, &timeout, flags,
3230			       current->timer_slack_ns);
 
 
 
 
 
 
 
3231
3232	/*
3233	 * The waiter is allocated on our stack, manipulated by the requeue
3234	 * code while we sleep on uaddr.
3235	 */
3236	rt_mutex_init_waiter(&rt_waiter);
 
3237
3238	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3239	if (unlikely(ret != 0))
3240		goto out;
3241
3242	q.bitset = bitset;
3243	q.rt_waiter = &rt_waiter;
3244	q.requeue_pi_key = &key2;
3245
3246	/*
3247	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3248	 * count.
3249	 */
3250	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3251	if (ret)
3252		goto out_key2;
3253
3254	/*
3255	 * The check above which compares uaddrs is not sufficient for
3256	 * shared futexes. We need to compare the keys:
3257	 */
3258	if (match_futex(&q.key, &key2)) {
3259		queue_unlock(hb);
3260		ret = -EINVAL;
3261		goto out_put_keys;
3262	}
3263
3264	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
3265	futex_wait_queue_me(hb, &q, to);
3266
3267	spin_lock(&hb->lock);
3268	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3269	spin_unlock(&hb->lock);
3270	if (ret)
3271		goto out_put_keys;
3272
3273	/*
3274	 * In order for us to be here, we know our q.key == key2, and since
3275	 * we took the hb->lock above, we also know that futex_requeue() has
3276	 * completed and we no longer have to concern ourselves with a wakeup
3277	 * race with the atomic proxy lock acquisition by the requeue code. The
3278	 * futex_requeue dropped our key1 reference and incremented our key2
3279	 * reference count.
3280	 */
3281
3282	/* Check if the requeue code acquired the second futex for us. */
3283	if (!q.rt_waiter) {
3284		/*
3285		 * Got the lock. We might not be the anticipated owner if we
3286		 * did a lock-steal - fix up the PI-state in that case.
3287		 */
3288		if (q.pi_state && (q.pi_state->owner != current)) {
3289			spin_lock(q.lock_ptr);
3290			ret = fixup_pi_state_owner(uaddr2, &q, current);
3291			if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3292				pi_state = q.pi_state;
3293				get_pi_state(pi_state);
3294			}
3295			/*
3296			 * Drop the reference to the pi state which
3297			 * the requeue_pi() code acquired for us.
3298			 */
3299			put_pi_state(q.pi_state);
3300			spin_unlock(q.lock_ptr);
3301		}
3302	} else {
3303		struct rt_mutex *pi_mutex;
3304
3305		/*
3306		 * We have been woken up by futex_unlock_pi(), a timeout, or a
3307		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3308		 * the pi_state.
3309		 */
3310		WARN_ON(!q.pi_state);
3311		pi_mutex = &q.pi_state->pi_mutex;
3312		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
 
3313
3314		spin_lock(q.lock_ptr);
3315		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3316			ret = 0;
3317
3318		debug_rt_mutex_free_waiter(&rt_waiter);
3319		/*
3320		 * Fixup the pi_state owner and possibly acquire the lock if we
3321		 * haven't already.
3322		 */
3323		res = fixup_owner(uaddr2, &q, !ret);
3324		/*
3325		 * If fixup_owner() returned an error, proprogate that.  If it
3326		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3327		 */
3328		if (res)
3329			ret = (res < 0) ? res : 0;
3330
3331		/*
3332		 * If fixup_pi_state_owner() faulted and was unable to handle
3333		 * the fault, unlock the rt_mutex and return the fault to
3334		 * userspace.
3335		 */
3336		if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3337			pi_state = q.pi_state;
3338			get_pi_state(pi_state);
3339		}
3340
3341		/* Unqueue and drop the lock. */
3342		unqueue_me_pi(&q);
3343	}
3344
3345	if (pi_state) {
3346		rt_mutex_futex_unlock(&pi_state->pi_mutex);
3347		put_pi_state(pi_state);
3348	}
3349
3350	if (ret == -EINTR) {
 
 
3351		/*
3352		 * We've already been requeued, but cannot restart by calling
3353		 * futex_lock_pi() directly. We could restart this syscall, but
3354		 * it would detect that the user space "val" changed and return
3355		 * -EWOULDBLOCK.  Save the overhead of the restart and return
3356		 * -EWOULDBLOCK directly.
3357		 */
3358		ret = -EWOULDBLOCK;
3359	}
3360
3361out_put_keys:
3362	put_futex_key(&q.key);
3363out_key2:
3364	put_futex_key(&key2);
3365
3366out:
3367	if (to) {
3368		hrtimer_cancel(&to->timer);
3369		destroy_hrtimer_on_stack(&to->timer);
3370	}
3371	return ret;
3372}
3373
3374/*
3375 * Support for robust futexes: the kernel cleans up held futexes at
3376 * thread exit time.
3377 *
3378 * Implementation: user-space maintains a per-thread list of locks it
3379 * is holding. Upon do_exit(), the kernel carefully walks this list,
3380 * and marks all locks that are owned by this thread with the
3381 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3382 * always manipulated with the lock held, so the list is private and
3383 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3384 * field, to allow the kernel to clean up if the thread dies after
3385 * acquiring the lock, but just before it could have added itself to
3386 * the list. There can only be one such pending lock.
3387 */
3388
3389/**
3390 * sys_set_robust_list() - Set the robust-futex list head of a task
3391 * @head:	pointer to the list-head
3392 * @len:	length of the list-head, as userspace expects
3393 */
3394SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3395		size_t, len)
3396{
3397	if (!futex_cmpxchg_enabled)
3398		return -ENOSYS;
3399	/*
3400	 * The kernel knows only one size for now:
3401	 */
3402	if (unlikely(len != sizeof(*head)))
3403		return -EINVAL;
3404
3405	current->robust_list = head;
3406
3407	return 0;
3408}
3409
3410/**
3411 * sys_get_robust_list() - Get the robust-futex list head of a task
3412 * @pid:	pid of the process [zero for current task]
3413 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
3414 * @len_ptr:	pointer to a length field, the kernel fills in the header size
3415 */
3416SYSCALL_DEFINE3(get_robust_list, int, pid,
3417		struct robust_list_head __user * __user *, head_ptr,
3418		size_t __user *, len_ptr)
3419{
3420	struct robust_list_head __user *head;
3421	unsigned long ret;
3422	struct task_struct *p;
3423
3424	if (!futex_cmpxchg_enabled)
3425		return -ENOSYS;
3426
 
 
3427	rcu_read_lock();
3428
3429	ret = -ESRCH;
3430	if (!pid)
3431		p = current;
3432	else {
3433		p = find_task_by_vpid(pid);
3434		if (!p)
3435			goto err_unlock;
3436	}
3437
3438	ret = -EPERM;
3439	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3440		goto err_unlock;
3441
3442	head = p->robust_list;
3443	rcu_read_unlock();
3444
3445	if (put_user(sizeof(*head), len_ptr))
3446		return -EFAULT;
3447	return put_user(head, head_ptr);
3448
3449err_unlock:
3450	rcu_read_unlock();
3451
3452	return ret;
3453}
3454
3455/*
3456 * Process a futex-list entry, check whether it's owned by the
3457 * dying task, and do notification if so:
3458 */
3459static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3460{
3461	u32 uval, uninitialized_var(nval), mval;
3462	int err;
3463
3464	/* Futex address must be 32bit aligned */
3465	if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3466		return -1;
3467
3468retry:
3469	if (get_user(uval, uaddr))
3470		return -1;
3471
3472	if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3473		return 0;
3474
3475	/*
3476	 * Ok, this dying thread is truly holding a futex
3477	 * of interest. Set the OWNER_DIED bit atomically
3478	 * via cmpxchg, and if the value had FUTEX_WAITERS
3479	 * set, wake up a waiter (if any). (We have to do a
3480	 * futex_wake() even if OWNER_DIED is already set -
3481	 * to handle the rare but possible case of recursive
3482	 * thread-death.) The rest of the cleanup is done in
3483	 * userspace.
3484	 */
3485	mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3486
3487	/*
3488	 * We are not holding a lock here, but we want to have
3489	 * the pagefault_disable/enable() protection because
3490	 * we want to handle the fault gracefully. If the
3491	 * access fails we try to fault in the futex with R/W
3492	 * verification via get_user_pages. get_user() above
3493	 * does not guarantee R/W access. If that fails we
3494	 * give up and leave the futex locked.
3495	 */
3496	if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3497		switch (err) {
3498		case -EFAULT:
3499			if (fault_in_user_writeable(uaddr))
3500				return -1;
3501			goto retry;
3502
3503		case -EAGAIN:
3504			cond_resched();
3505			goto retry;
3506
3507		default:
3508			WARN_ON_ONCE(1);
3509			return err;
3510		}
 
 
3511	}
3512
3513	if (nval != uval)
3514		goto retry;
3515
3516	/*
3517	 * Wake robust non-PI futexes here. The wakeup of
3518	 * PI futexes happens in exit_pi_state():
3519	 */
3520	if (!pi && (uval & FUTEX_WAITERS))
3521		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3522
3523	return 0;
3524}
3525
3526/*
3527 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3528 */
3529static inline int fetch_robust_entry(struct robust_list __user **entry,
3530				     struct robust_list __user * __user *head,
3531				     unsigned int *pi)
3532{
3533	unsigned long uentry;
3534
3535	if (get_user(uentry, (unsigned long __user *)head))
3536		return -EFAULT;
3537
3538	*entry = (void __user *)(uentry & ~1UL);
3539	*pi = uentry & 1;
3540
3541	return 0;
3542}
3543
3544/*
3545 * Walk curr->robust_list (very carefully, it's a userspace list!)
3546 * and mark any locks found there dead, and notify any waiters.
3547 *
3548 * We silently return on any sign of list-walking problem.
3549 */
3550void exit_robust_list(struct task_struct *curr)
3551{
3552	struct robust_list_head __user *head = curr->robust_list;
3553	struct robust_list __user *entry, *next_entry, *pending;
3554	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3555	unsigned int uninitialized_var(next_pi);
3556	unsigned long futex_offset;
3557	int rc;
3558
3559	if (!futex_cmpxchg_enabled)
3560		return;
3561
3562	/*
3563	 * Fetch the list head (which was registered earlier, via
3564	 * sys_set_robust_list()):
3565	 */
3566	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3567		return;
3568	/*
3569	 * Fetch the relative futex offset:
3570	 */
3571	if (get_user(futex_offset, &head->futex_offset))
3572		return;
3573	/*
3574	 * Fetch any possibly pending lock-add first, and handle it
3575	 * if it exists:
3576	 */
3577	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3578		return;
3579
3580	next_entry = NULL;	/* avoid warning with gcc */
3581	while (entry != &head->list) {
3582		/*
3583		 * Fetch the next entry in the list before calling
3584		 * handle_futex_death:
3585		 */
3586		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3587		/*
3588		 * A pending lock might already be on the list, so
3589		 * don't process it twice:
3590		 */
3591		if (entry != pending)
3592			if (handle_futex_death((void __user *)entry + futex_offset,
3593						curr, pi))
3594				return;
3595		if (rc)
3596			return;
3597		entry = next_entry;
3598		pi = next_pi;
3599		/*
3600		 * Avoid excessively long or circular lists:
3601		 */
3602		if (!--limit)
3603			break;
3604
3605		cond_resched();
3606	}
3607
3608	if (pending)
3609		handle_futex_death((void __user *)pending + futex_offset,
3610				   curr, pip);
3611}
3612
3613long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3614		u32 __user *uaddr2, u32 val2, u32 val3)
3615{
3616	int cmd = op & FUTEX_CMD_MASK;
3617	unsigned int flags = 0;
3618
3619	if (!(op & FUTEX_PRIVATE_FLAG))
3620		flags |= FLAGS_SHARED;
3621
3622	if (op & FUTEX_CLOCK_REALTIME) {
3623		flags |= FLAGS_CLOCKRT;
3624		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3625		    cmd != FUTEX_WAIT_REQUEUE_PI)
3626			return -ENOSYS;
3627	}
3628
3629	switch (cmd) {
3630	case FUTEX_LOCK_PI:
3631	case FUTEX_UNLOCK_PI:
3632	case FUTEX_TRYLOCK_PI:
3633	case FUTEX_WAIT_REQUEUE_PI:
3634	case FUTEX_CMP_REQUEUE_PI:
3635		if (!futex_cmpxchg_enabled)
3636			return -ENOSYS;
3637	}
3638
3639	switch (cmd) {
3640	case FUTEX_WAIT:
3641		val3 = FUTEX_BITSET_MATCH_ANY;
3642		/* fall through */
3643	case FUTEX_WAIT_BITSET:
3644		return futex_wait(uaddr, flags, val, timeout, val3);
3645	case FUTEX_WAKE:
3646		val3 = FUTEX_BITSET_MATCH_ANY;
3647		/* fall through */
3648	case FUTEX_WAKE_BITSET:
3649		return futex_wake(uaddr, flags, val, val3);
3650	case FUTEX_REQUEUE:
3651		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3652	case FUTEX_CMP_REQUEUE:
3653		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3654	case FUTEX_WAKE_OP:
3655		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3656	case FUTEX_LOCK_PI:
3657		return futex_lock_pi(uaddr, flags, timeout, 0);
3658	case FUTEX_UNLOCK_PI:
3659		return futex_unlock_pi(uaddr, flags);
3660	case FUTEX_TRYLOCK_PI:
3661		return futex_lock_pi(uaddr, flags, NULL, 1);
3662	case FUTEX_WAIT_REQUEUE_PI:
3663		val3 = FUTEX_BITSET_MATCH_ANY;
3664		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3665					     uaddr2);
3666	case FUTEX_CMP_REQUEUE_PI:
3667		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3668	}
3669	return -ENOSYS;
3670}
3671
3672
3673SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3674		struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3675		u32, val3)
3676{
3677	struct timespec64 ts;
3678	ktime_t t, *tp = NULL;
3679	u32 val2 = 0;
3680	int cmd = op & FUTEX_CMD_MASK;
3681
3682	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3683		      cmd == FUTEX_WAIT_BITSET ||
3684		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3685		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3686			return -EFAULT;
3687		if (get_timespec64(&ts, utime))
3688			return -EFAULT;
3689		if (!timespec64_valid(&ts))
3690			return -EINVAL;
3691
3692		t = timespec64_to_ktime(ts);
3693		if (cmd == FUTEX_WAIT)
3694			t = ktime_add_safe(ktime_get(), t);
3695		tp = &t;
3696	}
3697	/*
3698	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3699	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3700	 */
3701	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3702	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3703		val2 = (u32) (unsigned long) utime;
3704
3705	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3706}
3707
3708#ifdef CONFIG_COMPAT
3709/*
3710 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3711 */
3712static inline int
3713compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3714		   compat_uptr_t __user *head, unsigned int *pi)
3715{
3716	if (get_user(*uentry, head))
3717		return -EFAULT;
3718
3719	*entry = compat_ptr((*uentry) & ~1);
3720	*pi = (unsigned int)(*uentry) & 1;
3721
3722	return 0;
3723}
3724
3725static void __user *futex_uaddr(struct robust_list __user *entry,
3726				compat_long_t futex_offset)
3727{
3728	compat_uptr_t base = ptr_to_compat(entry);
3729	void __user *uaddr = compat_ptr(base + futex_offset);
3730
3731	return uaddr;
3732}
3733
3734/*
3735 * Walk curr->robust_list (very carefully, it's a userspace list!)
3736 * and mark any locks found there dead, and notify any waiters.
3737 *
3738 * We silently return on any sign of list-walking problem.
3739 */
3740void compat_exit_robust_list(struct task_struct *curr)
3741{
3742	struct compat_robust_list_head __user *head = curr->compat_robust_list;
3743	struct robust_list __user *entry, *next_entry, *pending;
3744	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3745	unsigned int uninitialized_var(next_pi);
3746	compat_uptr_t uentry, next_uentry, upending;
3747	compat_long_t futex_offset;
3748	int rc;
3749
3750	if (!futex_cmpxchg_enabled)
3751		return;
3752
3753	/*
3754	 * Fetch the list head (which was registered earlier, via
3755	 * sys_set_robust_list()):
3756	 */
3757	if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3758		return;
3759	/*
3760	 * Fetch the relative futex offset:
3761	 */
3762	if (get_user(futex_offset, &head->futex_offset))
3763		return;
3764	/*
3765	 * Fetch any possibly pending lock-add first, and handle it
3766	 * if it exists:
3767	 */
3768	if (compat_fetch_robust_entry(&upending, &pending,
3769			       &head->list_op_pending, &pip))
3770		return;
3771
3772	next_entry = NULL;	/* avoid warning with gcc */
3773	while (entry != (struct robust_list __user *) &head->list) {
3774		/*
3775		 * Fetch the next entry in the list before calling
3776		 * handle_futex_death:
3777		 */
3778		rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3779			(compat_uptr_t __user *)&entry->next, &next_pi);
3780		/*
3781		 * A pending lock might already be on the list, so
3782		 * dont process it twice:
3783		 */
3784		if (entry != pending) {
3785			void __user *uaddr = futex_uaddr(entry, futex_offset);
3786
3787			if (handle_futex_death(uaddr, curr, pi))
3788				return;
3789		}
3790		if (rc)
3791			return;
3792		uentry = next_uentry;
3793		entry = next_entry;
3794		pi = next_pi;
3795		/*
3796		 * Avoid excessively long or circular lists:
3797		 */
3798		if (!--limit)
3799			break;
3800
3801		cond_resched();
3802	}
3803	if (pending) {
3804		void __user *uaddr = futex_uaddr(pending, futex_offset);
3805
3806		handle_futex_death(uaddr, curr, pip);
3807	}
3808}
3809
3810COMPAT_SYSCALL_DEFINE2(set_robust_list,
3811		struct compat_robust_list_head __user *, head,
3812		compat_size_t, len)
3813{
3814	if (!futex_cmpxchg_enabled)
3815		return -ENOSYS;
3816
3817	if (unlikely(len != sizeof(*head)))
3818		return -EINVAL;
3819
3820	current->compat_robust_list = head;
3821
3822	return 0;
3823}
3824
3825COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3826			compat_uptr_t __user *, head_ptr,
3827			compat_size_t __user *, len_ptr)
3828{
3829	struct compat_robust_list_head __user *head;
3830	unsigned long ret;
3831	struct task_struct *p;
3832
3833	if (!futex_cmpxchg_enabled)
3834		return -ENOSYS;
3835
3836	rcu_read_lock();
3837
3838	ret = -ESRCH;
3839	if (!pid)
3840		p = current;
3841	else {
3842		p = find_task_by_vpid(pid);
3843		if (!p)
3844			goto err_unlock;
3845	}
3846
3847	ret = -EPERM;
3848	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3849		goto err_unlock;
3850
3851	head = p->compat_robust_list;
3852	rcu_read_unlock();
3853
3854	if (put_user(sizeof(*head), len_ptr))
3855		return -EFAULT;
3856	return put_user(ptr_to_compat(head), head_ptr);
3857
3858err_unlock:
3859	rcu_read_unlock();
3860
3861	return ret;
3862}
3863#endif /* CONFIG_COMPAT */
3864
3865#ifdef CONFIG_COMPAT_32BIT_TIME
3866SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3867		struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3868		u32, val3)
3869{
3870	struct timespec64 ts;
3871	ktime_t t, *tp = NULL;
3872	int val2 = 0;
3873	int cmd = op & FUTEX_CMD_MASK;
3874
3875	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3876		      cmd == FUTEX_WAIT_BITSET ||
3877		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3878		if (get_old_timespec32(&ts, utime))
3879			return -EFAULT;
3880		if (!timespec64_valid(&ts))
3881			return -EINVAL;
3882
3883		t = timespec64_to_ktime(ts);
3884		if (cmd == FUTEX_WAIT)
3885			t = ktime_add_safe(ktime_get(), t);
3886		tp = &t;
3887	}
3888	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3889	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3890		val2 = (int) (unsigned long) utime;
3891
3892	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3893}
3894#endif /* CONFIG_COMPAT_32BIT_TIME */
3895
3896static void __init futex_detect_cmpxchg(void)
3897{
3898#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3899	u32 curval;
 
3900
3901	/*
3902	 * This will fail and we want it. Some arch implementations do
3903	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3904	 * functionality. We want to know that before we call in any
3905	 * of the complex code paths. Also we want to prevent
3906	 * registration of robust lists in that case. NULL is
3907	 * guaranteed to fault and we get -EFAULT on functional
3908	 * implementation, the non-functional ones will return
3909	 * -ENOSYS.
3910	 */
3911	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3912		futex_cmpxchg_enabled = 1;
3913#endif
3914}
3915
3916static int __init futex_init(void)
3917{
3918	unsigned int futex_shift;
3919	unsigned long i;
3920
3921#if CONFIG_BASE_SMALL
3922	futex_hashsize = 16;
3923#else
3924	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3925#endif
3926
3927	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3928					       futex_hashsize, 0,
3929					       futex_hashsize < 256 ? HASH_SMALL : 0,
3930					       &futex_shift, NULL,
3931					       futex_hashsize, futex_hashsize);
3932	futex_hashsize = 1UL << futex_shift;
3933
3934	futex_detect_cmpxchg();
3935
3936	for (i = 0; i < futex_hashsize; i++) {
3937		atomic_set(&futex_queues[i].waiters, 0);
3938		plist_head_init(&futex_queues[i].chain);
3939		spin_lock_init(&futex_queues[i].lock);
3940	}
3941
3942	return 0;
3943}
3944core_initcall(futex_init);
v3.5.6
 
   1/*
   2 *  Fast Userspace Mutexes (which I call "Futexes!").
   3 *  (C) Rusty Russell, IBM 2002
   4 *
   5 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   6 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   7 *
   8 *  Removed page pinning, fix privately mapped COW pages and other cleanups
   9 *  (C) Copyright 2003, 2004 Jamie Lokier
  10 *
  11 *  Robust futex support started by Ingo Molnar
  12 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14 *
  15 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  16 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18 *
  19 *  PRIVATE futexes by Eric Dumazet
  20 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21 *
  22 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23 *  Copyright (C) IBM Corporation, 2009
  24 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25 *
  26 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27 *  enough at me, Linus for the original (flawed) idea, Matthew
  28 *  Kirkwood for proof-of-concept implementation.
  29 *
  30 *  "The futexes are also cursed."
  31 *  "But they come in a choice of three flavours!"
  32 *
  33 *  This program is free software; you can redistribute it and/or modify
  34 *  it under the terms of the GNU General Public License as published by
  35 *  the Free Software Foundation; either version 2 of the License, or
  36 *  (at your option) any later version.
  37 *
  38 *  This program is distributed in the hope that it will be useful,
  39 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  40 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  41 *  GNU General Public License for more details.
  42 *
  43 *  You should have received a copy of the GNU General Public License
  44 *  along with this program; if not, write to the Free Software
  45 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  46 */
 
  47#include <linux/slab.h>
  48#include <linux/poll.h>
  49#include <linux/fs.h>
  50#include <linux/file.h>
  51#include <linux/jhash.h>
  52#include <linux/init.h>
  53#include <linux/futex.h>
  54#include <linux/mount.h>
  55#include <linux/pagemap.h>
  56#include <linux/syscalls.h>
  57#include <linux/signal.h>
  58#include <linux/export.h>
  59#include <linux/magic.h>
  60#include <linux/pid.h>
  61#include <linux/nsproxy.h>
  62#include <linux/ptrace.h>
 
 
 
 
 
 
 
 
  63
  64#include <asm/futex.h>
  65
  66#include "rtmutex_common.h"
  67
  68int __read_mostly futex_cmpxchg_enabled;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69
  70#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
 
 
 
 
  71
  72/*
  73 * Futex flags used to encode options to functions and preserve them across
  74 * restarts.
  75 */
  76#define FLAGS_SHARED		0x01
 
 
 
 
 
 
 
 
  77#define FLAGS_CLOCKRT		0x02
  78#define FLAGS_HAS_TIMEOUT	0x04
  79
  80/*
  81 * Priority Inheritance state:
  82 */
  83struct futex_pi_state {
  84	/*
  85	 * list of 'owned' pi_state instances - these have to be
  86	 * cleaned up in do_exit() if the task exits prematurely:
  87	 */
  88	struct list_head list;
  89
  90	/*
  91	 * The PI object:
  92	 */
  93	struct rt_mutex pi_mutex;
  94
  95	struct task_struct *owner;
  96	atomic_t refcount;
  97
  98	union futex_key key;
  99};
 100
 101/**
 102 * struct futex_q - The hashed futex queue entry, one per waiting task
 103 * @list:		priority-sorted list of tasks waiting on this futex
 104 * @task:		the task waiting on the futex
 105 * @lock_ptr:		the hash bucket lock
 106 * @key:		the key the futex is hashed on
 107 * @pi_state:		optional priority inheritance state
 108 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 109 * @requeue_pi_key:	the requeue_pi target futex key
 110 * @bitset:		bitset for the optional bitmasked wakeup
 111 *
 112 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
 113 * we can wake only the relevant ones (hashed queues may be shared).
 114 *
 115 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 116 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 117 * The order of wakeup is always to make the first condition true, then
 118 * the second.
 119 *
 120 * PI futexes are typically woken before they are removed from the hash list via
 121 * the rt_mutex code. See unqueue_me_pi().
 122 */
 123struct futex_q {
 124	struct plist_node list;
 125
 126	struct task_struct *task;
 127	spinlock_t *lock_ptr;
 128	union futex_key key;
 129	struct futex_pi_state *pi_state;
 130	struct rt_mutex_waiter *rt_waiter;
 131	union futex_key *requeue_pi_key;
 132	u32 bitset;
 133};
 134
 135static const struct futex_q futex_q_init = {
 136	/* list gets initialized in queue_me()*/
 137	.key = FUTEX_KEY_INIT,
 138	.bitset = FUTEX_BITSET_MATCH_ANY
 139};
 140
 141/*
 142 * Hash buckets are shared by all the futex_keys that hash to the same
 143 * location.  Each key may have multiple futex_q structures, one for each task
 144 * waiting on a futex.
 145 */
 146struct futex_hash_bucket {
 
 147	spinlock_t lock;
 148	struct plist_head chain;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149};
 150
 151static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152
 153/*
 154 * We hash on the keys returned from get_futex_key (see below).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155 */
 156static struct futex_hash_bucket *hash_futex(union futex_key *key)
 157{
 158	u32 hash = jhash2((u32*)&key->both.word,
 159			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 160			  key->both.offset);
 161	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
 162}
 163
 164/*
 
 
 
 
 
 165 * Return 1 if two futex_keys are equal, 0 otherwise.
 166 */
 167static inline int match_futex(union futex_key *key1, union futex_key *key2)
 168{
 169	return (key1 && key2
 170		&& key1->both.word == key2->both.word
 171		&& key1->both.ptr == key2->both.ptr
 172		&& key1->both.offset == key2->both.offset);
 173}
 174
 175/*
 176 * Take a reference to the resource addressed by a key.
 177 * Can be called while holding spinlocks.
 178 *
 179 */
 180static void get_futex_key_refs(union futex_key *key)
 181{
 182	if (!key->both.ptr)
 183		return;
 184
 
 
 
 
 
 
 
 
 
 
 185	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 186	case FUT_OFF_INODE:
 187		ihold(key->shared.inode);
 188		break;
 189	case FUT_OFF_MMSHARED:
 190		atomic_inc(&key->private.mm->mm_count);
 191		break;
 
 
 
 
 
 
 
 192	}
 193}
 194
 195/*
 196 * Drop a reference to the resource addressed by a key.
 197 * The hash bucket spinlock must not be held.
 
 
 198 */
 199static void drop_futex_key_refs(union futex_key *key)
 200{
 201	if (!key->both.ptr) {
 202		/* If we're here then we tried to put a key we failed to get */
 203		WARN_ON_ONCE(1);
 204		return;
 205	}
 206
 
 
 
 207	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 208	case FUT_OFF_INODE:
 209		iput(key->shared.inode);
 210		break;
 211	case FUT_OFF_MMSHARED:
 212		mmdrop(key->private.mm);
 213		break;
 214	}
 215}
 216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 217/**
 218 * get_futex_key() - Get parameters which are the keys for a futex
 219 * @uaddr:	virtual address of the futex
 220 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 221 * @key:	address where result is stored.
 222 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 223 *              VERIFY_WRITE)
 
 
 224 *
 225 * Returns a negative error code or 0
 226 * The key words are stored in *key on success.
 227 *
 228 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
 229 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 230 * We can usually work out the index without swapping in the page.
 231 *
 232 * lock_page() might sleep, the caller should not hold a spinlock.
 233 */
 234static int
 235get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 236{
 237	unsigned long address = (unsigned long)uaddr;
 238	struct mm_struct *mm = current->mm;
 239	struct page *page, *page_head;
 
 240	int err, ro = 0;
 241
 242	/*
 243	 * The futex address must be "naturally" aligned.
 244	 */
 245	key->both.offset = address % PAGE_SIZE;
 246	if (unlikely((address % sizeof(u32)) != 0))
 247		return -EINVAL;
 248	address -= key->both.offset;
 249
 
 
 
 
 
 
 250	/*
 251	 * PROCESS_PRIVATE futexes are fast.
 252	 * As the mm cannot disappear under us and the 'key' only needs
 253	 * virtual address, we dont even have to find the underlying vma.
 254	 * Note : We do have to check 'uaddr' is a valid user address,
 255	 *        but access_ok() should be faster than find_vma()
 256	 */
 257	if (!fshared) {
 258		if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
 259			return -EFAULT;
 260		key->private.mm = mm;
 261		key->private.address = address;
 262		get_futex_key_refs(key);
 263		return 0;
 264	}
 265
 266again:
 267	err = get_user_pages_fast(address, 1, 1, &page);
 
 
 
 
 268	/*
 269	 * If write access is not required (eg. FUTEX_WAIT), try
 270	 * and get read-only access.
 271	 */
 272	if (err == -EFAULT && rw == VERIFY_READ) {
 273		err = get_user_pages_fast(address, 1, 0, &page);
 274		ro = 1;
 275	}
 276	if (err < 0)
 277		return err;
 278	else
 279		err = 0;
 280
 281#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 282	page_head = page;
 283	if (unlikely(PageTail(page))) {
 284		put_page(page);
 285		/* serialize against __split_huge_page_splitting() */
 286		local_irq_disable();
 287		if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
 288			page_head = compound_head(page);
 289			/*
 290			 * page_head is valid pointer but we must pin
 291			 * it before taking the PG_lock and/or
 292			 * PG_compound_lock. The moment we re-enable
 293			 * irqs __split_huge_page_splitting() can
 294			 * return and the head page can be freed from
 295			 * under us. We can't take the PG_lock and/or
 296			 * PG_compound_lock on a page that could be
 297			 * freed from under us.
 298			 */
 299			if (page != page_head) {
 300				get_page(page_head);
 301				put_page(page);
 302			}
 303			local_irq_enable();
 304		} else {
 305			local_irq_enable();
 306			goto again;
 307		}
 308	}
 309#else
 310	page_head = compound_head(page);
 311	if (page != page_head) {
 312		get_page(page_head);
 313		put_page(page);
 314	}
 315#endif
 316
 317	lock_page(page_head);
 318
 319	/*
 320	 * If page_head->mapping is NULL, then it cannot be a PageAnon
 321	 * page; but it might be the ZERO_PAGE or in the gate area or
 322	 * in a special mapping (all cases which we are happy to fail);
 323	 * or it may have been a good file page when get_user_pages_fast
 324	 * found it, but truncated or holepunched or subjected to
 325	 * invalidate_complete_page2 before we got the page lock (also
 326	 * cases which we are happy to fail).  And we hold a reference,
 327	 * so refcount care in invalidate_complete_page's remove_mapping
 328	 * prevents drop_caches from setting mapping to NULL beneath us.
 329	 *
 330	 * The case we do have to guard against is when memory pressure made
 331	 * shmem_writepage move it from filecache to swapcache beneath us:
 332	 * an unlikely race, but we do need to retry for page_head->mapping.
 333	 */
 334	if (!page_head->mapping) {
 335		int shmem_swizzled = PageSwapCache(page_head);
 336		unlock_page(page_head);
 337		put_page(page_head);
 
 
 
 
 
 
 
 
 
 338		if (shmem_swizzled)
 339			goto again;
 
 340		return -EFAULT;
 341	}
 342
 343	/*
 344	 * Private mappings are handled in a simple way.
 345	 *
 
 
 
 346	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 347	 * it's a read-only handle, it's expected that futexes attach to
 348	 * the object not the particular process.
 349	 */
 350	if (PageAnon(page_head)) {
 351		/*
 352		 * A RO anonymous page will never change and thus doesn't make
 353		 * sense for futex operations.
 354		 */
 355		if (ro) {
 356			err = -EFAULT;
 357			goto out;
 358		}
 359
 360		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 361		key->private.mm = mm;
 362		key->private.address = address;
 
 
 
 363	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 364		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 365		key->shared.inode = page_head->mapping->host;
 366		key->shared.pgoff = page_head->index;
 
 367	}
 368
 369	get_futex_key_refs(key);
 370
 371out:
 372	unlock_page(page_head);
 373	put_page(page_head);
 374	return err;
 375}
 376
 377static inline void put_futex_key(union futex_key *key)
 378{
 379	drop_futex_key_refs(key);
 380}
 381
 382/**
 383 * fault_in_user_writeable() - Fault in user address and verify RW access
 384 * @uaddr:	pointer to faulting user space address
 385 *
 386 * Slow path to fixup the fault we just took in the atomic write
 387 * access to @uaddr.
 388 *
 389 * We have no generic implementation of a non-destructive write to the
 390 * user address. We know that we faulted in the atomic pagefault
 391 * disabled section so we can as well avoid the #PF overhead by
 392 * calling get_user_pages() right away.
 393 */
 394static int fault_in_user_writeable(u32 __user *uaddr)
 395{
 396	struct mm_struct *mm = current->mm;
 397	int ret;
 398
 399	down_read(&mm->mmap_sem);
 400	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 401			       FAULT_FLAG_WRITE);
 402	up_read(&mm->mmap_sem);
 403
 404	return ret < 0 ? ret : 0;
 405}
 406
 407/**
 408 * futex_top_waiter() - Return the highest priority waiter on a futex
 409 * @hb:		the hash bucket the futex_q's reside in
 410 * @key:	the futex key (to distinguish it from other futex futex_q's)
 411 *
 412 * Must be called with the hb lock held.
 413 */
 414static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 415					union futex_key *key)
 416{
 417	struct futex_q *this;
 418
 419	plist_for_each_entry(this, &hb->chain, list) {
 420		if (match_futex(&this->key, key))
 421			return this;
 422	}
 423	return NULL;
 424}
 425
 426static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 427				      u32 uval, u32 newval)
 428{
 429	int ret;
 430
 431	pagefault_disable();
 432	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 433	pagefault_enable();
 434
 435	return ret;
 436}
 437
 438static int get_futex_value_locked(u32 *dest, u32 __user *from)
 439{
 440	int ret;
 441
 442	pagefault_disable();
 443	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
 444	pagefault_enable();
 445
 446	return ret ? -EFAULT : 0;
 447}
 448
 449
 450/*
 451 * PI code:
 452 */
 453static int refill_pi_state_cache(void)
 454{
 455	struct futex_pi_state *pi_state;
 456
 457	if (likely(current->pi_state_cache))
 458		return 0;
 459
 460	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 461
 462	if (!pi_state)
 463		return -ENOMEM;
 464
 465	INIT_LIST_HEAD(&pi_state->list);
 466	/* pi_mutex gets initialized later */
 467	pi_state->owner = NULL;
 468	atomic_set(&pi_state->refcount, 1);
 469	pi_state->key = FUTEX_KEY_INIT;
 470
 471	current->pi_state_cache = pi_state;
 472
 473	return 0;
 474}
 475
 476static struct futex_pi_state * alloc_pi_state(void)
 477{
 478	struct futex_pi_state *pi_state = current->pi_state_cache;
 479
 480	WARN_ON(!pi_state);
 481	current->pi_state_cache = NULL;
 482
 483	return pi_state;
 484}
 485
 486static void free_pi_state(struct futex_pi_state *pi_state)
 
 
 
 
 
 
 
 
 
 487{
 488	if (!atomic_dec_and_test(&pi_state->refcount))
 
 
 
 489		return;
 490
 491	/*
 492	 * If pi_state->owner is NULL, the owner is most probably dying
 493	 * and has cleaned up the pi_state already
 494	 */
 495	if (pi_state->owner) {
 496		raw_spin_lock_irq(&pi_state->owner->pi_lock);
 497		list_del_init(&pi_state->list);
 498		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 499
 500		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
 
 
 
 
 
 
 
 
 501	}
 502
 503	if (current->pi_state_cache)
 504		kfree(pi_state);
 505	else {
 506		/*
 507		 * pi_state->list is already empty.
 508		 * clear pi_state->owner.
 509		 * refcount is at 0 - put it back to 1.
 510		 */
 511		pi_state->owner = NULL;
 512		atomic_set(&pi_state->refcount, 1);
 513		current->pi_state_cache = pi_state;
 514	}
 515}
 516
 517/*
 518 * Look up the task based on what TID userspace gave us.
 519 * We dont trust it.
 520 */
 521static struct task_struct * futex_find_get_task(pid_t pid)
 522{
 523	struct task_struct *p;
 524
 525	rcu_read_lock();
 526	p = find_task_by_vpid(pid);
 527	if (p)
 528		get_task_struct(p);
 529
 530	rcu_read_unlock();
 531
 532	return p;
 533}
 534
 535/*
 536 * This task is holding PI mutexes at exit time => bad.
 537 * Kernel cleans up PI-state, but userspace is likely hosed.
 538 * (Robust-futex cleanup is separate and might save the day for userspace.)
 539 */
 540void exit_pi_state_list(struct task_struct *curr)
 541{
 542	struct list_head *next, *head = &curr->pi_state_list;
 543	struct futex_pi_state *pi_state;
 544	struct futex_hash_bucket *hb;
 545	union futex_key key = FUTEX_KEY_INIT;
 546
 547	if (!futex_cmpxchg_enabled)
 548		return;
 549	/*
 550	 * We are a ZOMBIE and nobody can enqueue itself on
 551	 * pi_state_list anymore, but we have to be careful
 552	 * versus waiters unqueueing themselves:
 553	 */
 554	raw_spin_lock_irq(&curr->pi_lock);
 555	while (!list_empty(head)) {
 556
 557		next = head->next;
 558		pi_state = list_entry(next, struct futex_pi_state, list);
 559		key = pi_state->key;
 560		hb = hash_futex(&key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 561		raw_spin_unlock_irq(&curr->pi_lock);
 562
 563		spin_lock(&hb->lock);
 564
 565		raw_spin_lock_irq(&curr->pi_lock);
 566		/*
 567		 * We dropped the pi-lock, so re-check whether this
 568		 * task still owns the PI-state:
 569		 */
 570		if (head->next != next) {
 
 
 571			spin_unlock(&hb->lock);
 
 572			continue;
 573		}
 574
 575		WARN_ON(pi_state->owner != curr);
 576		WARN_ON(list_empty(&pi_state->list));
 577		list_del_init(&pi_state->list);
 578		pi_state->owner = NULL;
 579		raw_spin_unlock_irq(&curr->pi_lock);
 580
 581		rt_mutex_unlock(&pi_state->pi_mutex);
 
 
 582
 583		spin_unlock(&hb->lock);
 
 584
 585		raw_spin_lock_irq(&curr->pi_lock);
 586	}
 587	raw_spin_unlock_irq(&curr->pi_lock);
 588}
 589
 590static int
 591lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
 592		union futex_key *key, struct futex_pi_state **ps)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 593{
 594	struct futex_pi_state *pi_state = NULL;
 595	struct futex_q *this, *next;
 596	struct plist_head *head;
 597	struct task_struct *p;
 598	pid_t pid = uval & FUTEX_TID_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 599
 600	head = &hb->chain;
 
 601
 602	plist_for_each_entry_safe(this, next, head, list) {
 603		if (match_futex(&this->key, key)) {
 
 
 
 
 
 
 
 
 604			/*
 605			 * Another waiter already exists - bump up
 606			 * the refcount and return its pi_state:
 607			 */
 608			pi_state = this->pi_state;
 
 609			/*
 610			 * Userspace might have messed up non-PI and PI futexes
 611			 */
 612			if (unlikely(!pi_state))
 613				return -EINVAL;
 614
 615			WARN_ON(!atomic_read(&pi_state->refcount));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 616
 617			/*
 618			 * When pi_state->owner is NULL then the owner died
 619			 * and another waiter is on the fly. pi_state->owner
 620			 * is fixed up by the task which acquires
 621			 * pi_state->rt_mutex.
 622			 *
 623			 * We do not check for pid == 0 which can happen when
 624			 * the owner died and robust_list_exit() cleared the
 625			 * TID.
 626			 */
 627			if (pid && pi_state->owner) {
 628				/*
 629				 * Bail out if user space manipulated the
 630				 * futex value.
 631				 */
 632				if (pid != task_pid_vnr(pi_state->owner))
 633					return -EINVAL;
 634			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 635
 636			atomic_inc(&pi_state->refcount);
 637			*ps = pi_state;
 
 
 
 
 
 638
 639			return 0;
 640		}
 641	}
 
 
 
 
 
 
 
 642
 643	/*
 644	 * We are the first waiter - try to look up the real owner and attach
 645	 * the new pi_state to it, but bail out when TID = 0
 
 
 
 646	 */
 647	if (!pid)
 648		return -ESRCH;
 649	p = futex_find_get_task(pid);
 650	if (!p)
 651		return -ESRCH;
 
 
 
 
 
 652
 653	/*
 654	 * We need to look at the task state flags to figure out,
 655	 * whether the task is exiting. To protect against the do_exit
 656	 * change of the task flags, we do this protected by
 657	 * p->pi_lock:
 658	 */
 659	raw_spin_lock_irq(&p->pi_lock);
 660	if (unlikely(p->flags & PF_EXITING)) {
 661		/*
 662		 * The task is on the way out. When PF_EXITPIDONE is
 663		 * set, we know that the task has finished the
 664		 * cleanup:
 665		 */
 666		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
 667
 668		raw_spin_unlock_irq(&p->pi_lock);
 669		put_task_struct(p);
 670		return ret;
 671	}
 672
 
 
 
 
 
 
 673	pi_state = alloc_pi_state();
 674
 675	/*
 676	 * Initialize the pi_mutex in locked state and make 'p'
 677	 * the owner of it:
 678	 */
 679	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
 680
 681	/* Store the key for possible exit cleanups: */
 682	pi_state->key = *key;
 683
 684	WARN_ON(!list_empty(&pi_state->list));
 685	list_add(&pi_state->list, &p->pi_state_list);
 
 
 
 
 686	pi_state->owner = p;
 687	raw_spin_unlock_irq(&p->pi_lock);
 688
 689	put_task_struct(p);
 690
 691	*ps = pi_state;
 692
 693	return 0;
 694}
 695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 696/**
 697 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
 698 * @uaddr:		the pi futex user address
 699 * @hb:			the pi futex hash bucket
 700 * @key:		the futex key associated with uaddr and hb
 701 * @ps:			the pi_state pointer where we store the result of the
 702 *			lookup
 703 * @task:		the task to perform the atomic lock work for.  This will
 704 *			be "current" except in the case of requeue pi.
 705 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
 706 *
 707 * Returns:
 708 *  0 - ready to wait
 709 *  1 - acquired the lock
 710 * <0 - error
 711 *
 712 * The hb->lock and futex_key refs shall be held by the caller.
 713 */
 714static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
 715				union futex_key *key,
 716				struct futex_pi_state **ps,
 717				struct task_struct *task, int set_waiters)
 718{
 719	int lock_taken, ret, ownerdied = 0;
 720	u32 uval, newval, curval, vpid = task_pid_vnr(task);
 721
 722retry:
 723	ret = lock_taken = 0;
 724
 725	/*
 726	 * To avoid races, we attempt to take the lock here again
 727	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
 728	 * the locks. It will most likely not succeed.
 729	 */
 730	newval = vpid;
 731	if (set_waiters)
 732		newval |= FUTEX_WAITERS;
 733
 734	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
 735		return -EFAULT;
 736
 737	/*
 738	 * Detect deadlocks.
 739	 */
 740	if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
 
 
 
 741		return -EDEADLK;
 742
 743	/*
 744	 * Surprise - we got the lock. Just return to userspace:
 
 745	 */
 746	if (unlikely(!curval))
 747		return 1;
 748
 749	uval = curval;
 750
 751	/*
 752	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
 753	 * to wake at the next unlock.
 
 
 754	 */
 755	newval = curval | FUTEX_WAITERS;
 
 
 
 
 
 
 
 
 
 
 756
 757	/*
 758	 * There are two cases, where a futex might have no owner (the
 759	 * owner TID is 0): OWNER_DIED. We take over the futex in this
 760	 * case. We also do an unconditional take over, when the owner
 761	 * of the futex died.
 762	 *
 763	 * This is safe as we are protected by the hash bucket lock !
 764	 */
 765	if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
 766		/* Keep the OWNER_DIED bit */
 767		newval = (curval & ~FUTEX_TID_MASK) | vpid;
 768		ownerdied = 0;
 769		lock_taken = 1;
 770	}
 771
 772	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
 773		return -EFAULT;
 774	if (unlikely(curval != uval))
 775		goto retry;
 776
 777	/*
 778	 * We took the lock due to owner died take over.
 
 
 779	 */
 780	if (unlikely(lock_taken))
 781		return 1;
 782
 
 783	/*
 784	 * We dont have the lock. Look up the PI state (or create it if
 785	 * we are the first waiter):
 
 786	 */
 787	ret = lookup_pi_state(uval, hb, key, ps);
 788
 789	if (unlikely(ret)) {
 790		switch (ret) {
 791		case -ESRCH:
 792			/*
 793			 * No owner found for this futex. Check if the
 794			 * OWNER_DIED bit is set to figure out whether
 795			 * this is a robust futex or not.
 796			 */
 797			if (get_futex_value_locked(&curval, uaddr))
 798				return -EFAULT;
 799
 800			/*
 801			 * We simply start over in case of a robust
 802			 * futex. The code above will take the futex
 803			 * and return happy.
 804			 */
 805			if (curval & FUTEX_OWNER_DIED) {
 806				ownerdied = 1;
 807				goto retry;
 808			}
 809		default:
 810			break;
 811		}
 812	}
 813
 814	return ret;
 815}
 816
 817/**
 818 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 819 * @q:	The futex_q to unqueue
 820 *
 821 * The q->lock_ptr must not be NULL and must be held by the caller.
 822 */
 823static void __unqueue_futex(struct futex_q *q)
 824{
 825	struct futex_hash_bucket *hb;
 826
 827	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
 828	    || WARN_ON(plist_node_empty(&q->list)))
 829		return;
 
 830
 831	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
 832	plist_del(&q->list, &hb->chain);
 
 833}
 834
 835/*
 836 * The hash bucket lock must be held when this is called.
 837 * Afterwards, the futex_q must not be accessed.
 
 
 838 */
 839static void wake_futex(struct futex_q *q)
 840{
 841	struct task_struct *p = q->task;
 842
 
 
 
 
 
 843	/*
 844	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
 845	 * a non-futex wake up happens on another CPU then the task
 846	 * might exit and p would dereference a non-existing task
 847	 * struct. Prevent this by holding a reference on p across the
 848	 * wake up.
 849	 */
 850	get_task_struct(p);
 851
 852	__unqueue_futex(q);
 853	/*
 854	 * The waiting task can free the futex_q as soon as
 855	 * q->lock_ptr = NULL is written, without taking any locks. A
 856	 * memory barrier is required here to prevent the following
 857	 * store to lock_ptr from getting ahead of the plist_del.
 858	 */
 859	smp_wmb();
 860	q->lock_ptr = NULL;
 861
 862	wake_up_state(p, TASK_NORMAL);
 863	put_task_struct(p);
 864}
 865
 866static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
 
 
 
 867{
 
 868	struct task_struct *new_owner;
 869	struct futex_pi_state *pi_state = this->pi_state;
 870	u32 uninitialized_var(curval), newval;
 
 871
 872	if (!pi_state)
 873		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 874
 875	/*
 876	 * If current does not own the pi_state then the futex is
 877	 * inconsistent and user space fiddled with the futex value.
 
 878	 */
 879	if (pi_state->owner != current)
 880		return -EINVAL;
 
 
 881
 882	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
 883	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
 
 
 
 
 
 
 
 
 
 
 
 884
 885	/*
 886	 * It is possible that the next waiter (the one that brought
 887	 * this owner to the kernel) timed out and is no longer
 888	 * waiting on the lock.
 889	 */
 890	if (!new_owner)
 891		new_owner = this->task;
 892
 893	/*
 894	 * We pass it to the next owner. (The WAITERS bit is always
 895	 * kept enabled while there is PI state around. We must also
 896	 * preserve the owner died bit.)
 897	 */
 898	if (!(uval & FUTEX_OWNER_DIED)) {
 899		int ret = 0;
 900
 901		newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
 902
 903		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
 904			ret = -EFAULT;
 905		else if (curval != uval)
 906			ret = -EINVAL;
 907		if (ret) {
 908			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 909			return ret;
 910		}
 911	}
 912
 913	raw_spin_lock_irq(&pi_state->owner->pi_lock);
 914	WARN_ON(list_empty(&pi_state->list));
 915	list_del_init(&pi_state->list);
 916	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 917
 918	raw_spin_lock_irq(&new_owner->pi_lock);
 919	WARN_ON(!list_empty(&pi_state->list));
 920	list_add(&pi_state->list, &new_owner->pi_state_list);
 921	pi_state->owner = new_owner;
 922	raw_spin_unlock_irq(&new_owner->pi_lock);
 923
 924	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 925	rt_mutex_unlock(&pi_state->pi_mutex);
 926
 927	return 0;
 928}
 929
 930static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
 931{
 932	u32 uninitialized_var(oldval);
 933
 934	/*
 935	 * There is no waiter, so we unlock the futex. The owner died
 936	 * bit has not to be preserved here. We are the owner:
 937	 */
 938	if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
 939		return -EFAULT;
 940	if (oldval != uval)
 941		return -EAGAIN;
 942
 943	return 0;
 944}
 945
 946/*
 947 * Express the locking dependencies for lockdep:
 948 */
 949static inline void
 950double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
 951{
 952	if (hb1 <= hb2) {
 953		spin_lock(&hb1->lock);
 954		if (hb1 < hb2)
 955			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
 956	} else { /* hb1 > hb2 */
 957		spin_lock(&hb2->lock);
 958		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
 959	}
 960}
 961
 962static inline void
 963double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
 964{
 965	spin_unlock(&hb1->lock);
 966	if (hb1 != hb2)
 967		spin_unlock(&hb2->lock);
 968}
 969
 970/*
 971 * Wake up waiters matching bitset queued on this futex (uaddr).
 972 */
 973static int
 974futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
 975{
 976	struct futex_hash_bucket *hb;
 977	struct futex_q *this, *next;
 978	struct plist_head *head;
 979	union futex_key key = FUTEX_KEY_INIT;
 980	int ret;
 
 981
 982	if (!bitset)
 983		return -EINVAL;
 984
 985	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
 986	if (unlikely(ret != 0))
 987		goto out;
 988
 989	hb = hash_futex(&key);
 
 
 
 
 
 990	spin_lock(&hb->lock);
 991	head = &hb->chain;
 992
 993	plist_for_each_entry_safe(this, next, head, list) {
 994		if (match_futex (&this->key, &key)) {
 995			if (this->pi_state || this->rt_waiter) {
 996				ret = -EINVAL;
 997				break;
 998			}
 999
1000			/* Check if one of the bits is set in both bitsets */
1001			if (!(this->bitset & bitset))
1002				continue;
1003
1004			wake_futex(this);
1005			if (++ret >= nr_wake)
1006				break;
1007		}
1008	}
1009
1010	spin_unlock(&hb->lock);
 
 
1011	put_futex_key(&key);
1012out:
1013	return ret;
1014}
1015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1016/*
1017 * Wake up all waiters hashed on the physical page that is mapped
1018 * to this virtual address:
1019 */
1020static int
1021futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1022	      int nr_wake, int nr_wake2, int op)
1023{
1024	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1025	struct futex_hash_bucket *hb1, *hb2;
1026	struct plist_head *head;
1027	struct futex_q *this, *next;
1028	int ret, op_ret;
 
1029
1030retry:
1031	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1032	if (unlikely(ret != 0))
1033		goto out;
1034	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1035	if (unlikely(ret != 0))
1036		goto out_put_key1;
1037
1038	hb1 = hash_futex(&key1);
1039	hb2 = hash_futex(&key2);
1040
1041retry_private:
1042	double_lock_hb(hb1, hb2);
1043	op_ret = futex_atomic_op_inuser(op, uaddr2);
1044	if (unlikely(op_ret < 0)) {
1045
1046		double_unlock_hb(hb1, hb2);
1047
1048#ifndef CONFIG_MMU
1049		/*
1050		 * we don't get EFAULT from MMU faults if we don't have an MMU,
1051		 * but we might get them from range checking
1052		 */
1053		ret = op_ret;
1054		goto out_put_keys;
1055#endif
1056
1057		if (unlikely(op_ret != -EFAULT)) {
1058			ret = op_ret;
1059			goto out_put_keys;
1060		}
1061
1062		ret = fault_in_user_writeable(uaddr2);
1063		if (ret)
1064			goto out_put_keys;
 
 
1065
1066		if (!(flags & FLAGS_SHARED))
 
1067			goto retry_private;
 
1068
1069		put_futex_key(&key2);
1070		put_futex_key(&key1);
 
1071		goto retry;
1072	}
1073
1074	head = &hb1->chain;
1075
1076	plist_for_each_entry_safe(this, next, head, list) {
1077		if (match_futex (&this->key, &key1)) {
1078			wake_futex(this);
 
 
 
 
1079			if (++ret >= nr_wake)
1080				break;
1081		}
1082	}
1083
1084	if (op_ret > 0) {
1085		head = &hb2->chain;
1086
1087		op_ret = 0;
1088		plist_for_each_entry_safe(this, next, head, list) {
1089			if (match_futex (&this->key, &key2)) {
1090				wake_futex(this);
 
 
 
 
1091				if (++op_ret >= nr_wake2)
1092					break;
1093			}
1094		}
1095		ret += op_ret;
1096	}
1097
 
1098	double_unlock_hb(hb1, hb2);
 
1099out_put_keys:
1100	put_futex_key(&key2);
1101out_put_key1:
1102	put_futex_key(&key1);
1103out:
1104	return ret;
1105}
1106
1107/**
1108 * requeue_futex() - Requeue a futex_q from one hb to another
1109 * @q:		the futex_q to requeue
1110 * @hb1:	the source hash_bucket
1111 * @hb2:	the target hash_bucket
1112 * @key2:	the new key for the requeued futex_q
1113 */
1114static inline
1115void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1116		   struct futex_hash_bucket *hb2, union futex_key *key2)
1117{
1118
1119	/*
1120	 * If key1 and key2 hash to the same bucket, no need to
1121	 * requeue.
1122	 */
1123	if (likely(&hb1->chain != &hb2->chain)) {
1124		plist_del(&q->list, &hb1->chain);
 
 
1125		plist_add(&q->list, &hb2->chain);
1126		q->lock_ptr = &hb2->lock;
1127	}
1128	get_futex_key_refs(key2);
1129	q->key = *key2;
1130}
1131
1132/**
1133 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1134 * @q:		the futex_q
1135 * @key:	the key of the requeue target futex
1136 * @hb:		the hash_bucket of the requeue target futex
1137 *
1138 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1139 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1140 * to the requeue target futex so the waiter can detect the wakeup on the right
1141 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1142 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1143 * to protect access to the pi_state to fixup the owner later.  Must be called
1144 * with both q->lock_ptr and hb->lock held.
1145 */
1146static inline
1147void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1148			   struct futex_hash_bucket *hb)
1149{
1150	get_futex_key_refs(key);
1151	q->key = *key;
1152
1153	__unqueue_futex(q);
1154
1155	WARN_ON(!q->rt_waiter);
1156	q->rt_waiter = NULL;
1157
1158	q->lock_ptr = &hb->lock;
1159
1160	wake_up_state(q->task, TASK_NORMAL);
1161}
1162
1163/**
1164 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1165 * @pifutex:		the user address of the to futex
1166 * @hb1:		the from futex hash bucket, must be locked by the caller
1167 * @hb2:		the to futex hash bucket, must be locked by the caller
1168 * @key1:		the from futex key
1169 * @key2:		the to futex key
1170 * @ps:			address to store the pi_state pointer
1171 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1172 *
1173 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1174 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1175 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1176 * hb1 and hb2 must be held by the caller.
1177 *
1178 * Returns:
1179 *  0 - failed to acquire the lock atomicly
1180 *  1 - acquired the lock
1181 * <0 - error
1182 */
1183static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1184				 struct futex_hash_bucket *hb1,
1185				 struct futex_hash_bucket *hb2,
1186				 union futex_key *key1, union futex_key *key2,
1187				 struct futex_pi_state **ps, int set_waiters)
1188{
1189	struct futex_q *top_waiter = NULL;
1190	u32 curval;
1191	int ret;
1192
1193	if (get_futex_value_locked(&curval, pifutex))
1194		return -EFAULT;
1195
 
 
 
1196	/*
1197	 * Find the top_waiter and determine if there are additional waiters.
1198	 * If the caller intends to requeue more than 1 waiter to pifutex,
1199	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1200	 * as we have means to handle the possible fault.  If not, don't set
1201	 * the bit unecessarily as it will force the subsequent unlock to enter
1202	 * the kernel.
1203	 */
1204	top_waiter = futex_top_waiter(hb1, key1);
1205
1206	/* There are no waiters, nothing for us to do. */
1207	if (!top_waiter)
1208		return 0;
1209
1210	/* Ensure we requeue to the expected futex. */
1211	if (!match_futex(top_waiter->requeue_pi_key, key2))
1212		return -EINVAL;
1213
1214	/*
1215	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1216	 * the contended case or if set_waiters is 1.  The pi_state is returned
1217	 * in ps in contended cases.
1218	 */
 
1219	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1220				   set_waiters);
1221	if (ret == 1)
1222		requeue_pi_wake_futex(top_waiter, key2, hb2);
1223
 
1224	return ret;
1225}
1226
1227/**
1228 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1229 * @uaddr1:	source futex user address
1230 * @flags:	futex flags (FLAGS_SHARED, etc.)
1231 * @uaddr2:	target futex user address
1232 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1233 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1234 * @cmpval:	@uaddr1 expected value (or %NULL)
1235 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1236 *		pi futex (pi to pi requeue is not supported)
1237 *
1238 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1239 * uaddr2 atomically on behalf of the top waiter.
1240 *
1241 * Returns:
1242 * >=0 - on success, the number of tasks requeued or woken
1243 *  <0 - on error
1244 */
1245static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1246			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1247			 u32 *cmpval, int requeue_pi)
1248{
1249	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1250	int drop_count = 0, task_count = 0, ret;
1251	struct futex_pi_state *pi_state = NULL;
1252	struct futex_hash_bucket *hb1, *hb2;
1253	struct plist_head *head1;
1254	struct futex_q *this, *next;
1255	u32 curval2;
 
 
 
 
 
 
 
 
 
 
 
 
1256
1257	if (requeue_pi) {
1258		/*
 
 
 
 
 
 
 
1259		 * requeue_pi requires a pi_state, try to allocate it now
1260		 * without any locks in case it fails.
1261		 */
1262		if (refill_pi_state_cache())
1263			return -ENOMEM;
1264		/*
1265		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1266		 * + nr_requeue, since it acquires the rt_mutex prior to
1267		 * returning to userspace, so as to not leave the rt_mutex with
1268		 * waiters and no owner.  However, second and third wake-ups
1269		 * cannot be predicted as they involve race conditions with the
1270		 * first wake and a fault while looking up the pi_state.  Both
1271		 * pthread_cond_signal() and pthread_cond_broadcast() should
1272		 * use nr_wake=1.
1273		 */
1274		if (nr_wake != 1)
1275			return -EINVAL;
1276	}
1277
1278retry:
1279	if (pi_state != NULL) {
1280		/*
1281		 * We will have to lookup the pi_state again, so free this one
1282		 * to keep the accounting correct.
1283		 */
1284		free_pi_state(pi_state);
1285		pi_state = NULL;
1286	}
1287
1288	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1289	if (unlikely(ret != 0))
1290		goto out;
1291	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1292			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1293	if (unlikely(ret != 0))
1294		goto out_put_key1;
1295
 
 
 
 
 
 
 
 
 
1296	hb1 = hash_futex(&key1);
1297	hb2 = hash_futex(&key2);
1298
1299retry_private:
 
1300	double_lock_hb(hb1, hb2);
1301
1302	if (likely(cmpval != NULL)) {
1303		u32 curval;
1304
1305		ret = get_futex_value_locked(&curval, uaddr1);
1306
1307		if (unlikely(ret)) {
1308			double_unlock_hb(hb1, hb2);
 
1309
1310			ret = get_user(curval, uaddr1);
1311			if (ret)
1312				goto out_put_keys;
1313
1314			if (!(flags & FLAGS_SHARED))
1315				goto retry_private;
1316
1317			put_futex_key(&key2);
1318			put_futex_key(&key1);
1319			goto retry;
1320		}
1321		if (curval != *cmpval) {
1322			ret = -EAGAIN;
1323			goto out_unlock;
1324		}
1325	}
1326
1327	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1328		/*
1329		 * Attempt to acquire uaddr2 and wake the top waiter. If we
1330		 * intend to requeue waiters, force setting the FUTEX_WAITERS
1331		 * bit.  We force this here where we are able to easily handle
1332		 * faults rather in the requeue loop below.
1333		 */
1334		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1335						 &key2, &pi_state, nr_requeue);
1336
1337		/*
1338		 * At this point the top_waiter has either taken uaddr2 or is
1339		 * waiting on it.  If the former, then the pi_state will not
1340		 * exist yet, look it up one more time to ensure we have a
1341		 * reference to it.
 
 
 
1342		 */
1343		if (ret == 1) {
1344			WARN_ON(pi_state);
1345			drop_count++;
1346			task_count++;
1347			ret = get_futex_value_locked(&curval2, uaddr2);
1348			if (!ret)
1349				ret = lookup_pi_state(curval2, hb2, &key2,
1350						      &pi_state);
 
 
 
 
 
 
 
 
 
1351		}
1352
1353		switch (ret) {
1354		case 0:
 
1355			break;
 
 
1356		case -EFAULT:
1357			double_unlock_hb(hb1, hb2);
 
1358			put_futex_key(&key2);
1359			put_futex_key(&key1);
1360			ret = fault_in_user_writeable(uaddr2);
1361			if (!ret)
1362				goto retry;
1363			goto out;
1364		case -EAGAIN:
1365			/* The owner was exiting, try again. */
 
 
 
 
 
1366			double_unlock_hb(hb1, hb2);
 
1367			put_futex_key(&key2);
1368			put_futex_key(&key1);
1369			cond_resched();
1370			goto retry;
1371		default:
1372			goto out_unlock;
1373		}
1374	}
1375
1376	head1 = &hb1->chain;
1377	plist_for_each_entry_safe(this, next, head1, list) {
1378		if (task_count - nr_wake >= nr_requeue)
1379			break;
1380
1381		if (!match_futex(&this->key, &key1))
1382			continue;
1383
1384		/*
1385		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1386		 * be paired with each other and no other futex ops.
 
 
 
1387		 */
1388		if ((requeue_pi && !this->rt_waiter) ||
1389		    (!requeue_pi && this->rt_waiter)) {
 
1390			ret = -EINVAL;
1391			break;
1392		}
1393
1394		/*
1395		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1396		 * lock, we already woke the top_waiter.  If not, it will be
1397		 * woken by futex_unlock_pi().
1398		 */
1399		if (++task_count <= nr_wake && !requeue_pi) {
1400			wake_futex(this);
1401			continue;
1402		}
1403
1404		/* Ensure we requeue to the expected futex for requeue_pi. */
1405		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1406			ret = -EINVAL;
1407			break;
1408		}
1409
1410		/*
1411		 * Requeue nr_requeue waiters and possibly one more in the case
1412		 * of requeue_pi if we couldn't acquire the lock atomically.
1413		 */
1414		if (requeue_pi) {
1415			/* Prepare the waiter to take the rt_mutex. */
1416			atomic_inc(&pi_state->refcount);
 
 
 
 
1417			this->pi_state = pi_state;
1418			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1419							this->rt_waiter,
1420							this->task, 1);
1421			if (ret == 1) {
1422				/* We got the lock. */
 
 
 
 
 
 
 
1423				requeue_pi_wake_futex(this, &key2, hb2);
1424				drop_count++;
1425				continue;
1426			} else if (ret) {
1427				/* -EDEADLK */
 
 
 
 
 
 
 
1428				this->pi_state = NULL;
1429				free_pi_state(pi_state);
1430				goto out_unlock;
 
 
 
 
1431			}
1432		}
1433		requeue_futex(this, hb1, hb2, &key2);
1434		drop_count++;
1435	}
1436
 
 
 
 
 
 
 
1437out_unlock:
1438	double_unlock_hb(hb1, hb2);
 
 
1439
1440	/*
1441	 * drop_futex_key_refs() must be called outside the spinlocks. During
1442	 * the requeue we moved futex_q's from the hash bucket at key1 to the
1443	 * one at key2 and updated their key pointer.  We no longer need to
1444	 * hold the references to key1.
1445	 */
1446	while (--drop_count >= 0)
1447		drop_futex_key_refs(&key1);
1448
1449out_put_keys:
1450	put_futex_key(&key2);
1451out_put_key1:
1452	put_futex_key(&key1);
1453out:
1454	if (pi_state != NULL)
1455		free_pi_state(pi_state);
1456	return ret ? ret : task_count;
1457}
1458
1459/* The key must be already stored in q->key. */
1460static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1461	__acquires(&hb->lock)
1462{
1463	struct futex_hash_bucket *hb;
1464
1465	hb = hash_futex(&q->key);
 
 
 
 
 
 
 
 
 
 
 
1466	q->lock_ptr = &hb->lock;
1467
1468	spin_lock(&hb->lock);
1469	return hb;
1470}
1471
1472static inline void
1473queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1474	__releases(&hb->lock)
1475{
1476	spin_unlock(&hb->lock);
 
1477}
1478
1479/**
1480 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1481 * @q:	The futex_q to enqueue
1482 * @hb:	The destination hash bucket
1483 *
1484 * The hb->lock must be held by the caller, and is released here. A call to
1485 * queue_me() is typically paired with exactly one call to unqueue_me().  The
1486 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1487 * or nothing if the unqueue is done as part of the wake process and the unqueue
1488 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1489 * an example).
1490 */
1491static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1492	__releases(&hb->lock)
1493{
1494	int prio;
1495
1496	/*
1497	 * The priority used to register this element is
1498	 * - either the real thread-priority for the real-time threads
1499	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1500	 * - or MAX_RT_PRIO for non-RT threads.
1501	 * Thus, all RT-threads are woken first in priority order, and
1502	 * the others are woken last, in FIFO order.
1503	 */
1504	prio = min(current->normal_prio, MAX_RT_PRIO);
1505
1506	plist_node_init(&q->list, prio);
1507	plist_add(&q->list, &hb->chain);
1508	q->task = current;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509	spin_unlock(&hb->lock);
1510}
1511
1512/**
1513 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1514 * @q:	The futex_q to unqueue
1515 *
1516 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1517 * be paired with exactly one earlier call to queue_me().
1518 *
1519 * Returns:
1520 *   1 - if the futex_q was still queued (and we removed unqueued it)
1521 *   0 - if the futex_q was already removed by the waking thread
1522 */
1523static int unqueue_me(struct futex_q *q)
1524{
1525	spinlock_t *lock_ptr;
1526	int ret = 0;
1527
1528	/* In the common case we don't take the spinlock, which is nice. */
1529retry:
1530	lock_ptr = q->lock_ptr;
1531	barrier();
 
 
 
 
1532	if (lock_ptr != NULL) {
1533		spin_lock(lock_ptr);
1534		/*
1535		 * q->lock_ptr can change between reading it and
1536		 * spin_lock(), causing us to take the wrong lock.  This
1537		 * corrects the race condition.
1538		 *
1539		 * Reasoning goes like this: if we have the wrong lock,
1540		 * q->lock_ptr must have changed (maybe several times)
1541		 * between reading it and the spin_lock().  It can
1542		 * change again after the spin_lock() but only if it was
1543		 * already changed before the spin_lock().  It cannot,
1544		 * however, change back to the original value.  Therefore
1545		 * we can detect whether we acquired the correct lock.
1546		 */
1547		if (unlikely(lock_ptr != q->lock_ptr)) {
1548			spin_unlock(lock_ptr);
1549			goto retry;
1550		}
1551		__unqueue_futex(q);
1552
1553		BUG_ON(q->pi_state);
1554
1555		spin_unlock(lock_ptr);
1556		ret = 1;
1557	}
1558
1559	drop_futex_key_refs(&q->key);
1560	return ret;
1561}
1562
1563/*
1564 * PI futexes can not be requeued and must remove themself from the
1565 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1566 * and dropped here.
1567 */
1568static void unqueue_me_pi(struct futex_q *q)
1569	__releases(q->lock_ptr)
1570{
1571	__unqueue_futex(q);
1572
1573	BUG_ON(!q->pi_state);
1574	free_pi_state(q->pi_state);
1575	q->pi_state = NULL;
1576
1577	spin_unlock(q->lock_ptr);
1578}
1579
1580/*
1581 * Fixup the pi_state owner with the new owner.
1582 *
1583 * Must be called with hash bucket lock held and mm->sem held for non
1584 * private futexes.
1585 */
1586static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1587				struct task_struct *newowner)
1588{
1589	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1590	struct futex_pi_state *pi_state = q->pi_state;
1591	struct task_struct *oldowner = pi_state->owner;
1592	u32 uval, uninitialized_var(curval), newval;
1593	int ret;
 
 
 
 
 
 
1594
1595	/* Owner died? */
1596	if (!pi_state->owner)
1597		newtid |= FUTEX_OWNER_DIED;
1598
1599	/*
1600	 * We are here either because we stole the rtmutex from the
1601	 * previous highest priority waiter or we are the highest priority
1602	 * waiter but failed to get the rtmutex the first time.
1603	 * We have to replace the newowner TID in the user space variable.
 
 
 
 
 
 
 
1604	 * This must be atomic as we have to preserve the owner died bit here.
1605	 *
1606	 * Note: We write the user space value _before_ changing the pi_state
1607	 * because we can fault here. Imagine swapped out pages or a fork
1608	 * that marked all the anonymous memory readonly for cow.
1609	 *
1610	 * Modifying pi_state _before_ the user space value would
1611	 * leave the pi_state in an inconsistent state when we fault
1612	 * here, because we need to drop the hash bucket lock to
1613	 * handle the fault. This might be observed in the PID check
1614	 * in lookup_pi_state.
1615	 */
1616retry:
1617	if (get_futex_value_locked(&uval, uaddr))
1618		goto handle_fault;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1619
1620	while (1) {
1621		newval = (uval & FUTEX_OWNER_DIED) | newtid;
1622
1623		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1624			goto handle_fault;
 
 
1625		if (curval == uval)
1626			break;
1627		uval = curval;
1628	}
1629
1630	/*
1631	 * We fixed up user space. Now we need to fix the pi_state
1632	 * itself.
1633	 */
1634	if (pi_state->owner != NULL) {
1635		raw_spin_lock_irq(&pi_state->owner->pi_lock);
1636		WARN_ON(list_empty(&pi_state->list));
1637		list_del_init(&pi_state->list);
1638		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1639	}
1640
1641	pi_state->owner = newowner;
1642
1643	raw_spin_lock_irq(&newowner->pi_lock);
1644	WARN_ON(!list_empty(&pi_state->list));
1645	list_add(&pi_state->list, &newowner->pi_state_list);
1646	raw_spin_unlock_irq(&newowner->pi_lock);
 
 
1647	return 0;
1648
1649	/*
1650	 * To handle the page fault we need to drop the hash bucket
1651	 * lock here. That gives the other task (either the highest priority
1652	 * waiter itself or the task which stole the rtmutex) the
1653	 * chance to try the fixup of the pi_state. So once we are
1654	 * back from handling the fault we need to check the pi_state
1655	 * after reacquiring the hash bucket lock and before trying to
1656	 * do another fixup. When the fixup has been done already we
1657	 * simply return.
 
 
 
1658	 */
1659handle_fault:
 
1660	spin_unlock(q->lock_ptr);
1661
1662	ret = fault_in_user_writeable(uaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1663
1664	spin_lock(q->lock_ptr);
 
1665
1666	/*
1667	 * Check if someone else fixed it for us:
1668	 */
1669	if (pi_state->owner != oldowner)
1670		return 0;
 
 
1671
1672	if (ret)
1673		return ret;
1674
1675	goto retry;
 
 
 
 
1676}
1677
1678static long futex_wait_restart(struct restart_block *restart);
1679
1680/**
1681 * fixup_owner() - Post lock pi_state and corner case management
1682 * @uaddr:	user address of the futex
1683 * @q:		futex_q (contains pi_state and access to the rt_mutex)
1684 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
1685 *
1686 * After attempting to lock an rt_mutex, this function is called to cleanup
1687 * the pi_state owner as well as handle race conditions that may allow us to
1688 * acquire the lock. Must be called with the hb lock held.
1689 *
1690 * Returns:
1691 *  1 - success, lock taken
1692 *  0 - success, lock not taken
1693 * <0 - on error (-EFAULT)
1694 */
1695static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1696{
1697	struct task_struct *owner;
1698	int ret = 0;
1699
1700	if (locked) {
1701		/*
1702		 * Got the lock. We might not be the anticipated owner if we
1703		 * did a lock-steal - fix up the PI-state in that case:
 
 
 
 
1704		 */
1705		if (q->pi_state->owner != current)
1706			ret = fixup_pi_state_owner(uaddr, q, current);
1707		goto out;
1708	}
1709
1710	/*
1711	 * Catch the rare case, where the lock was released when we were on the
1712	 * way back before we locked the hash bucket.
 
 
 
 
1713	 */
1714	if (q->pi_state->owner == current) {
1715		/*
1716		 * Try to get the rt_mutex now. This might fail as some other
1717		 * task acquired the rt_mutex after we removed ourself from the
1718		 * rt_mutex waiters list.
1719		 */
1720		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1721			locked = 1;
1722			goto out;
1723		}
1724
1725		/*
1726		 * pi_state is incorrect, some other task did a lock steal and
1727		 * we returned due to timeout or signal without taking the
1728		 * rt_mutex. Too late.
1729		 */
1730		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1731		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1732		if (!owner)
1733			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1734		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1735		ret = fixup_pi_state_owner(uaddr, q, owner);
1736		goto out;
1737	}
1738
1739	/*
1740	 * Paranoia check. If we did not take the lock, then we should not be
1741	 * the owner of the rt_mutex.
1742	 */
1743	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1744		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1745				"pi-state %p\n", ret,
1746				q->pi_state->pi_mutex.owner,
1747				q->pi_state->owner);
 
1748
1749out:
1750	return ret ? ret : locked;
1751}
1752
1753/**
1754 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1755 * @hb:		the futex hash bucket, must be locked by the caller
1756 * @q:		the futex_q to queue up on
1757 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
1758 */
1759static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1760				struct hrtimer_sleeper *timeout)
1761{
1762	/*
1763	 * The task state is guaranteed to be set before another task can
1764	 * wake it. set_current_state() is implemented using set_mb() and
1765	 * queue_me() calls spin_unlock() upon completion, both serializing
1766	 * access to the hash list and forcing another memory barrier.
1767	 */
1768	set_current_state(TASK_INTERRUPTIBLE);
1769	queue_me(q, hb);
1770
1771	/* Arm the timer */
1772	if (timeout) {
1773		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1774		if (!hrtimer_active(&timeout->timer))
1775			timeout->task = NULL;
1776	}
1777
1778	/*
1779	 * If we have been removed from the hash list, then another task
1780	 * has tried to wake us, and we can skip the call to schedule().
1781	 */
1782	if (likely(!plist_node_empty(&q->list))) {
1783		/*
1784		 * If the timer has already expired, current will already be
1785		 * flagged for rescheduling. Only call schedule if there
1786		 * is no timeout, or if it has yet to expire.
1787		 */
1788		if (!timeout || timeout->task)
1789			schedule();
1790	}
1791	__set_current_state(TASK_RUNNING);
1792}
1793
1794/**
1795 * futex_wait_setup() - Prepare to wait on a futex
1796 * @uaddr:	the futex userspace address
1797 * @val:	the expected value
1798 * @flags:	futex flags (FLAGS_SHARED, etc.)
1799 * @q:		the associated futex_q
1800 * @hb:		storage for hash_bucket pointer to be returned to caller
1801 *
1802 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1803 * compare it with the expected value.  Handle atomic faults internally.
1804 * Return with the hb lock held and a q.key reference on success, and unlocked
1805 * with no q.key reference on failure.
1806 *
1807 * Returns:
1808 *  0 - uaddr contains val and hb has been locked
1809 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1810 */
1811static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1812			   struct futex_q *q, struct futex_hash_bucket **hb)
1813{
1814	u32 uval;
1815	int ret;
1816
1817	/*
1818	 * Access the page AFTER the hash-bucket is locked.
1819	 * Order is important:
1820	 *
1821	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1822	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1823	 *
1824	 * The basic logical guarantee of a futex is that it blocks ONLY
1825	 * if cond(var) is known to be true at the time of blocking, for
1826	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
1827	 * would open a race condition where we could block indefinitely with
1828	 * cond(var) false, which would violate the guarantee.
1829	 *
1830	 * On the other hand, we insert q and release the hash-bucket only
1831	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
1832	 * absorb a wakeup if *uaddr does not match the desired values
1833	 * while the syscall executes.
1834	 */
1835retry:
1836	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1837	if (unlikely(ret != 0))
1838		return ret;
1839
1840retry_private:
1841	*hb = queue_lock(q);
1842
1843	ret = get_futex_value_locked(&uval, uaddr);
1844
1845	if (ret) {
1846		queue_unlock(q, *hb);
1847
1848		ret = get_user(uval, uaddr);
1849		if (ret)
1850			goto out;
1851
1852		if (!(flags & FLAGS_SHARED))
1853			goto retry_private;
1854
1855		put_futex_key(&q->key);
1856		goto retry;
1857	}
1858
1859	if (uval != val) {
1860		queue_unlock(q, *hb);
1861		ret = -EWOULDBLOCK;
1862	}
1863
1864out:
1865	if (ret)
1866		put_futex_key(&q->key);
1867	return ret;
1868}
1869
1870static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1871		      ktime_t *abs_time, u32 bitset)
1872{
1873	struct hrtimer_sleeper timeout, *to = NULL;
1874	struct restart_block *restart;
1875	struct futex_hash_bucket *hb;
1876	struct futex_q q = futex_q_init;
1877	int ret;
1878
1879	if (!bitset)
1880		return -EINVAL;
1881	q.bitset = bitset;
1882
1883	if (abs_time) {
1884		to = &timeout;
1885
1886		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1887				      CLOCK_REALTIME : CLOCK_MONOTONIC,
1888				      HRTIMER_MODE_ABS);
1889		hrtimer_init_sleeper(to, current);
1890		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1891					     current->timer_slack_ns);
1892	}
1893
1894retry:
1895	/*
1896	 * Prepare to wait on uaddr. On success, holds hb lock and increments
1897	 * q.key refs.
1898	 */
1899	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1900	if (ret)
1901		goto out;
1902
1903	/* queue_me and wait for wakeup, timeout, or a signal. */
1904	futex_wait_queue_me(hb, &q, to);
1905
1906	/* If we were woken (and unqueued), we succeeded, whatever. */
1907	ret = 0;
1908	/* unqueue_me() drops q.key ref */
1909	if (!unqueue_me(&q))
1910		goto out;
1911	ret = -ETIMEDOUT;
1912	if (to && !to->task)
1913		goto out;
1914
1915	/*
1916	 * We expect signal_pending(current), but we might be the
1917	 * victim of a spurious wakeup as well.
1918	 */
1919	if (!signal_pending(current))
1920		goto retry;
1921
1922	ret = -ERESTARTSYS;
1923	if (!abs_time)
1924		goto out;
1925
1926	restart = &current_thread_info()->restart_block;
1927	restart->fn = futex_wait_restart;
1928	restart->futex.uaddr = uaddr;
1929	restart->futex.val = val;
1930	restart->futex.time = abs_time->tv64;
1931	restart->futex.bitset = bitset;
1932	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
1933
1934	ret = -ERESTART_RESTARTBLOCK;
1935
1936out:
1937	if (to) {
1938		hrtimer_cancel(&to->timer);
1939		destroy_hrtimer_on_stack(&to->timer);
1940	}
1941	return ret;
1942}
1943
1944
1945static long futex_wait_restart(struct restart_block *restart)
1946{
1947	u32 __user *uaddr = restart->futex.uaddr;
1948	ktime_t t, *tp = NULL;
1949
1950	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1951		t.tv64 = restart->futex.time;
1952		tp = &t;
1953	}
1954	restart->fn = do_no_restart_syscall;
1955
1956	return (long)futex_wait(uaddr, restart->futex.flags,
1957				restart->futex.val, tp, restart->futex.bitset);
1958}
1959
1960
1961/*
1962 * Userspace tried a 0 -> TID atomic transition of the futex value
1963 * and failed. The kernel side here does the whole locking operation:
1964 * if there are waiters then it will block, it does PI, etc. (Due to
1965 * races the kernel might see a 0 value of the futex too.)
 
 
 
1966 */
1967static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1968			 ktime_t *time, int trylock)
1969{
1970	struct hrtimer_sleeper timeout, *to = NULL;
 
 
1971	struct futex_hash_bucket *hb;
1972	struct futex_q q = futex_q_init;
1973	int res, ret;
1974
 
 
 
1975	if (refill_pi_state_cache())
1976		return -ENOMEM;
1977
1978	if (time) {
1979		to = &timeout;
1980		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1981				      HRTIMER_MODE_ABS);
1982		hrtimer_init_sleeper(to, current);
1983		hrtimer_set_expires(&to->timer, *time);
1984	}
1985
1986retry:
1987	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
1988	if (unlikely(ret != 0))
1989		goto out;
1990
1991retry_private:
1992	hb = queue_lock(&q);
1993
1994	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1995	if (unlikely(ret)) {
 
 
 
 
1996		switch (ret) {
1997		case 1:
1998			/* We got the lock. */
1999			ret = 0;
2000			goto out_unlock_put_key;
2001		case -EFAULT:
2002			goto uaddr_faulted;
2003		case -EAGAIN:
2004			/*
2005			 * Task is exiting and we just wait for the
2006			 * exit to complete.
 
 
2007			 */
2008			queue_unlock(&q, hb);
2009			put_futex_key(&q.key);
2010			cond_resched();
2011			goto retry;
2012		default:
2013			goto out_unlock_put_key;
2014		}
2015	}
2016
 
 
2017	/*
2018	 * Only actually queue now that the atomic ops are done:
2019	 */
2020	queue_me(&q, hb);
 
 
 
 
 
 
 
 
 
2021
2022	WARN_ON(!q.pi_state);
2023	/*
2024	 * Block on the PI mutex:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2025	 */
2026	if (!trylock)
2027		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2028	else {
2029		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2030		/* Fixup the trylock return value: */
2031		ret = ret ? 0 : -EWOULDBLOCK;
 
2032	}
2033
 
 
 
 
 
 
2034	spin_lock(q.lock_ptr);
2035	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
2036	 * Fixup the pi_state owner and possibly acquire the lock if we
2037	 * haven't already.
2038	 */
2039	res = fixup_owner(uaddr, &q, !ret);
2040	/*
2041	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2042	 * the lock, clear our -ETIMEDOUT or -EINTR.
2043	 */
2044	if (res)
2045		ret = (res < 0) ? res : 0;
2046
2047	/*
2048	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2049	 * it and return the fault to userspace.
2050	 */
2051	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2052		rt_mutex_unlock(&q.pi_state->pi_mutex);
 
 
2053
2054	/* Unqueue and drop the lock */
2055	unqueue_me_pi(&q);
2056
 
 
 
 
 
2057	goto out_put_key;
2058
2059out_unlock_put_key:
2060	queue_unlock(&q, hb);
2061
2062out_put_key:
2063	put_futex_key(&q.key);
2064out:
2065	if (to)
 
2066		destroy_hrtimer_on_stack(&to->timer);
 
2067	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2068
2069uaddr_faulted:
2070	queue_unlock(&q, hb);
2071
2072	ret = fault_in_user_writeable(uaddr);
2073	if (ret)
2074		goto out_put_key;
2075
2076	if (!(flags & FLAGS_SHARED))
2077		goto retry_private;
2078
2079	put_futex_key(&q.key);
2080	goto retry;
2081}
2082
2083/*
2084 * Userspace attempted a TID -> 0 atomic transition, and failed.
2085 * This is the in-kernel slowpath: we look up the PI state (if any),
2086 * and do the rt-mutex unlock.
2087 */
2088static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2089{
 
 
2090	struct futex_hash_bucket *hb;
2091	struct futex_q *this, *next;
2092	struct plist_head *head;
2093	union futex_key key = FUTEX_KEY_INIT;
2094	u32 uval, vpid = task_pid_vnr(current);
2095	int ret;
2096
 
 
 
2097retry:
2098	if (get_user(uval, uaddr))
2099		return -EFAULT;
2100	/*
2101	 * We release only a lock we actually own:
2102	 */
2103	if ((uval & FUTEX_TID_MASK) != vpid)
2104		return -EPERM;
2105
2106	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2107	if (unlikely(ret != 0))
2108		goto out;
2109
2110	hb = hash_futex(&key);
2111	spin_lock(&hb->lock);
2112
2113	/*
2114	 * To avoid races, try to do the TID -> 0 atomic transition
2115	 * again. If it succeeds then we can return without waking
2116	 * anyone else up:
2117	 */
2118	if (!(uval & FUTEX_OWNER_DIED) &&
2119	    cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2120		goto pi_faulted;
2121	/*
2122	 * Rare case: we managed to release the lock atomically,
2123	 * no need to wake anyone else up:
2124	 */
2125	if (unlikely(uval == vpid))
2126		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2127
2128	/*
2129	 * Ok, other tasks may need to be woken up - check waiters
2130	 * and do the wakeup if necessary:
2131	 */
2132	head = &hb->chain;
2133
2134	plist_for_each_entry_safe(this, next, head, list) {
2135		if (!match_futex (&this->key, &key))
2136			continue;
2137		ret = wake_futex_pi(uaddr, uval, this);
2138		/*
2139		 * The atomic access to the futex value
2140		 * generated a pagefault, so retry the
2141		 * user-access and the wakeup:
 
 
 
 
2142		 */
2143		if (ret == -EFAULT)
2144			goto pi_faulted;
2145		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
2146	}
 
2147	/*
2148	 * No waiters - kernel unlocks the futex:
 
 
 
 
2149	 */
2150	if (!(uval & FUTEX_OWNER_DIED)) {
2151		ret = unlock_futex_pi(uaddr, uval);
2152		if (ret == -EFAULT)
 
2153			goto pi_faulted;
 
 
 
 
 
 
 
 
2154	}
2155
 
 
 
 
 
2156out_unlock:
2157	spin_unlock(&hb->lock);
 
2158	put_futex_key(&key);
 
2159
2160out:
2161	return ret;
 
 
2162
2163pi_faulted:
2164	spin_unlock(&hb->lock);
2165	put_futex_key(&key);
2166
2167	ret = fault_in_user_writeable(uaddr);
2168	if (!ret)
2169		goto retry;
2170
2171	return ret;
2172}
2173
2174/**
2175 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2176 * @hb:		the hash_bucket futex_q was original enqueued on
2177 * @q:		the futex_q woken while waiting to be requeued
2178 * @key2:	the futex_key of the requeue target futex
2179 * @timeout:	the timeout associated with the wait (NULL if none)
2180 *
2181 * Detect if the task was woken on the initial futex as opposed to the requeue
2182 * target futex.  If so, determine if it was a timeout or a signal that caused
2183 * the wakeup and return the appropriate error code to the caller.  Must be
2184 * called with the hb lock held.
2185 *
2186 * Returns
2187 *  0 - no early wakeup detected
2188 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2189 */
2190static inline
2191int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2192				   struct futex_q *q, union futex_key *key2,
2193				   struct hrtimer_sleeper *timeout)
2194{
2195	int ret = 0;
2196
2197	/*
2198	 * With the hb lock held, we avoid races while we process the wakeup.
2199	 * We only need to hold hb (and not hb2) to ensure atomicity as the
2200	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2201	 * It can't be requeued from uaddr2 to something else since we don't
2202	 * support a PI aware source futex for requeue.
2203	 */
2204	if (!match_futex(&q->key, key2)) {
2205		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2206		/*
2207		 * We were woken prior to requeue by a timeout or a signal.
2208		 * Unqueue the futex_q and determine which it was.
2209		 */
2210		plist_del(&q->list, &hb->chain);
 
2211
2212		/* Handle spurious wakeups gracefully */
2213		ret = -EWOULDBLOCK;
2214		if (timeout && !timeout->task)
2215			ret = -ETIMEDOUT;
2216		else if (signal_pending(current))
2217			ret = -ERESTARTNOINTR;
2218	}
2219	return ret;
2220}
2221
2222/**
2223 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2224 * @uaddr:	the futex we initially wait on (non-pi)
2225 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2226 * 		the same type, no requeueing from private to shared, etc.
2227 * @val:	the expected value of uaddr
2228 * @abs_time:	absolute timeout
2229 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2230 * @clockrt:	whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2231 * @uaddr2:	the pi futex we will take prior to returning to user-space
2232 *
2233 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2234 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2235 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2236 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2237 * without one, the pi logic would not know which task to boost/deboost, if
2238 * there was a need to.
2239 *
2240 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2241 * via the following:
2242 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2243 * 2) wakeup on uaddr2 after a requeue
2244 * 3) signal
2245 * 4) timeout
2246 *
2247 * If 3, cleanup and return -ERESTARTNOINTR.
2248 *
2249 * If 2, we may then block on trying to take the rt_mutex and return via:
2250 * 5) successful lock
2251 * 6) signal
2252 * 7) timeout
2253 * 8) other lock acquisition failure
2254 *
2255 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2256 *
2257 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2258 *
2259 * Returns:
2260 *  0 - On success
2261 * <0 - On error
2262 */
2263static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2264				 u32 val, ktime_t *abs_time, u32 bitset,
2265				 u32 __user *uaddr2)
2266{
2267	struct hrtimer_sleeper timeout, *to = NULL;
 
2268	struct rt_mutex_waiter rt_waiter;
2269	struct rt_mutex *pi_mutex = NULL;
2270	struct futex_hash_bucket *hb;
2271	union futex_key key2 = FUTEX_KEY_INIT;
2272	struct futex_q q = futex_q_init;
2273	int res, ret;
2274
 
 
 
2275	if (uaddr == uaddr2)
2276		return -EINVAL;
2277
2278	if (!bitset)
2279		return -EINVAL;
2280
2281	if (abs_time) {
2282		to = &timeout;
2283		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2284				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2285				      HRTIMER_MODE_ABS);
2286		hrtimer_init_sleeper(to, current);
2287		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2288					     current->timer_slack_ns);
2289	}
2290
2291	/*
2292	 * The waiter is allocated on our stack, manipulated by the requeue
2293	 * code while we sleep on uaddr.
2294	 */
2295	debug_rt_mutex_init_waiter(&rt_waiter);
2296	rt_waiter.task = NULL;
2297
2298	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2299	if (unlikely(ret != 0))
2300		goto out;
2301
2302	q.bitset = bitset;
2303	q.rt_waiter = &rt_waiter;
2304	q.requeue_pi_key = &key2;
2305
2306	/*
2307	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2308	 * count.
2309	 */
2310	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2311	if (ret)
2312		goto out_key2;
2313
 
 
 
 
 
 
 
 
 
 
2314	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
2315	futex_wait_queue_me(hb, &q, to);
2316
2317	spin_lock(&hb->lock);
2318	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2319	spin_unlock(&hb->lock);
2320	if (ret)
2321		goto out_put_keys;
2322
2323	/*
2324	 * In order for us to be here, we know our q.key == key2, and since
2325	 * we took the hb->lock above, we also know that futex_requeue() has
2326	 * completed and we no longer have to concern ourselves with a wakeup
2327	 * race with the atomic proxy lock acquisition by the requeue code. The
2328	 * futex_requeue dropped our key1 reference and incremented our key2
2329	 * reference count.
2330	 */
2331
2332	/* Check if the requeue code acquired the second futex for us. */
2333	if (!q.rt_waiter) {
2334		/*
2335		 * Got the lock. We might not be the anticipated owner if we
2336		 * did a lock-steal - fix up the PI-state in that case.
2337		 */
2338		if (q.pi_state && (q.pi_state->owner != current)) {
2339			spin_lock(q.lock_ptr);
2340			ret = fixup_pi_state_owner(uaddr2, &q, current);
 
 
 
 
 
 
 
 
 
2341			spin_unlock(q.lock_ptr);
2342		}
2343	} else {
 
 
2344		/*
2345		 * We have been woken up by futex_unlock_pi(), a timeout, or a
2346		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2347		 * the pi_state.
2348		 */
2349		WARN_ON(!q.pi_state);
2350		pi_mutex = &q.pi_state->pi_mutex;
2351		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2352		debug_rt_mutex_free_waiter(&rt_waiter);
2353
2354		spin_lock(q.lock_ptr);
 
 
 
 
2355		/*
2356		 * Fixup the pi_state owner and possibly acquire the lock if we
2357		 * haven't already.
2358		 */
2359		res = fixup_owner(uaddr2, &q, !ret);
2360		/*
2361		 * If fixup_owner() returned an error, proprogate that.  If it
2362		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2363		 */
2364		if (res)
2365			ret = (res < 0) ? res : 0;
2366
 
 
 
 
 
 
 
 
 
 
2367		/* Unqueue and drop the lock. */
2368		unqueue_me_pi(&q);
2369	}
2370
2371	/*
2372	 * If fixup_pi_state_owner() faulted and was unable to handle the
2373	 * fault, unlock the rt_mutex and return the fault to userspace.
2374	 */
2375	if (ret == -EFAULT) {
2376		if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2377			rt_mutex_unlock(pi_mutex);
2378	} else if (ret == -EINTR) {
2379		/*
2380		 * We've already been requeued, but cannot restart by calling
2381		 * futex_lock_pi() directly. We could restart this syscall, but
2382		 * it would detect that the user space "val" changed and return
2383		 * -EWOULDBLOCK.  Save the overhead of the restart and return
2384		 * -EWOULDBLOCK directly.
2385		 */
2386		ret = -EWOULDBLOCK;
2387	}
2388
2389out_put_keys:
2390	put_futex_key(&q.key);
2391out_key2:
2392	put_futex_key(&key2);
2393
2394out:
2395	if (to) {
2396		hrtimer_cancel(&to->timer);
2397		destroy_hrtimer_on_stack(&to->timer);
2398	}
2399	return ret;
2400}
2401
2402/*
2403 * Support for robust futexes: the kernel cleans up held futexes at
2404 * thread exit time.
2405 *
2406 * Implementation: user-space maintains a per-thread list of locks it
2407 * is holding. Upon do_exit(), the kernel carefully walks this list,
2408 * and marks all locks that are owned by this thread with the
2409 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2410 * always manipulated with the lock held, so the list is private and
2411 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2412 * field, to allow the kernel to clean up if the thread dies after
2413 * acquiring the lock, but just before it could have added itself to
2414 * the list. There can only be one such pending lock.
2415 */
2416
2417/**
2418 * sys_set_robust_list() - Set the robust-futex list head of a task
2419 * @head:	pointer to the list-head
2420 * @len:	length of the list-head, as userspace expects
2421 */
2422SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2423		size_t, len)
2424{
2425	if (!futex_cmpxchg_enabled)
2426		return -ENOSYS;
2427	/*
2428	 * The kernel knows only one size for now:
2429	 */
2430	if (unlikely(len != sizeof(*head)))
2431		return -EINVAL;
2432
2433	current->robust_list = head;
2434
2435	return 0;
2436}
2437
2438/**
2439 * sys_get_robust_list() - Get the robust-futex list head of a task
2440 * @pid:	pid of the process [zero for current task]
2441 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
2442 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2443 */
2444SYSCALL_DEFINE3(get_robust_list, int, pid,
2445		struct robust_list_head __user * __user *, head_ptr,
2446		size_t __user *, len_ptr)
2447{
2448	struct robust_list_head __user *head;
2449	unsigned long ret;
2450	struct task_struct *p;
2451
2452	if (!futex_cmpxchg_enabled)
2453		return -ENOSYS;
2454
2455	WARN_ONCE(1, "deprecated: get_robust_list will be deleted in 2013.\n");
2456
2457	rcu_read_lock();
2458
2459	ret = -ESRCH;
2460	if (!pid)
2461		p = current;
2462	else {
2463		p = find_task_by_vpid(pid);
2464		if (!p)
2465			goto err_unlock;
2466	}
2467
2468	ret = -EPERM;
2469	if (!ptrace_may_access(p, PTRACE_MODE_READ))
2470		goto err_unlock;
2471
2472	head = p->robust_list;
2473	rcu_read_unlock();
2474
2475	if (put_user(sizeof(*head), len_ptr))
2476		return -EFAULT;
2477	return put_user(head, head_ptr);
2478
2479err_unlock:
2480	rcu_read_unlock();
2481
2482	return ret;
2483}
2484
2485/*
2486 * Process a futex-list entry, check whether it's owned by the
2487 * dying task, and do notification if so:
2488 */
2489int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2490{
2491	u32 uval, uninitialized_var(nval), mval;
 
 
 
 
 
2492
2493retry:
2494	if (get_user(uval, uaddr))
2495		return -1;
2496
2497	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2498		/*
2499		 * Ok, this dying thread is truly holding a futex
2500		 * of interest. Set the OWNER_DIED bit atomically
2501		 * via cmpxchg, and if the value had FUTEX_WAITERS
2502		 * set, wake up a waiter (if any). (We have to do a
2503		 * futex_wake() even if OWNER_DIED is already set -
2504		 * to handle the rare but possible case of recursive
2505		 * thread-death.) The rest of the cleanup is done in
2506		 * userspace.
2507		 */
2508		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2509		/*
2510		 * We are not holding a lock here, but we want to have
2511		 * the pagefault_disable/enable() protection because
2512		 * we want to handle the fault gracefully. If the
2513		 * access fails we try to fault in the futex with R/W
2514		 * verification via get_user_pages. get_user() above
2515		 * does not guarantee R/W access. If that fails we
2516		 * give up and leave the futex locked.
2517		 */
2518		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
 
 
 
 
 
2519			if (fault_in_user_writeable(uaddr))
2520				return -1;
2521			goto retry;
2522		}
2523		if (nval != uval)
 
2524			goto retry;
2525
2526		/*
2527		 * Wake robust non-PI futexes here. The wakeup of
2528		 * PI futexes happens in exit_pi_state():
2529		 */
2530		if (!pi && (uval & FUTEX_WAITERS))
2531			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2532	}
 
 
 
 
 
 
 
 
 
 
 
2533	return 0;
2534}
2535
2536/*
2537 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2538 */
2539static inline int fetch_robust_entry(struct robust_list __user **entry,
2540				     struct robust_list __user * __user *head,
2541				     unsigned int *pi)
2542{
2543	unsigned long uentry;
2544
2545	if (get_user(uentry, (unsigned long __user *)head))
2546		return -EFAULT;
2547
2548	*entry = (void __user *)(uentry & ~1UL);
2549	*pi = uentry & 1;
2550
2551	return 0;
2552}
2553
2554/*
2555 * Walk curr->robust_list (very carefully, it's a userspace list!)
2556 * and mark any locks found there dead, and notify any waiters.
2557 *
2558 * We silently return on any sign of list-walking problem.
2559 */
2560void exit_robust_list(struct task_struct *curr)
2561{
2562	struct robust_list_head __user *head = curr->robust_list;
2563	struct robust_list __user *entry, *next_entry, *pending;
2564	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2565	unsigned int uninitialized_var(next_pi);
2566	unsigned long futex_offset;
2567	int rc;
2568
2569	if (!futex_cmpxchg_enabled)
2570		return;
2571
2572	/*
2573	 * Fetch the list head (which was registered earlier, via
2574	 * sys_set_robust_list()):
2575	 */
2576	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2577		return;
2578	/*
2579	 * Fetch the relative futex offset:
2580	 */
2581	if (get_user(futex_offset, &head->futex_offset))
2582		return;
2583	/*
2584	 * Fetch any possibly pending lock-add first, and handle it
2585	 * if it exists:
2586	 */
2587	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2588		return;
2589
2590	next_entry = NULL;	/* avoid warning with gcc */
2591	while (entry != &head->list) {
2592		/*
2593		 * Fetch the next entry in the list before calling
2594		 * handle_futex_death:
2595		 */
2596		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2597		/*
2598		 * A pending lock might already be on the list, so
2599		 * don't process it twice:
2600		 */
2601		if (entry != pending)
2602			if (handle_futex_death((void __user *)entry + futex_offset,
2603						curr, pi))
2604				return;
2605		if (rc)
2606			return;
2607		entry = next_entry;
2608		pi = next_pi;
2609		/*
2610		 * Avoid excessively long or circular lists:
2611		 */
2612		if (!--limit)
2613			break;
2614
2615		cond_resched();
2616	}
2617
2618	if (pending)
2619		handle_futex_death((void __user *)pending + futex_offset,
2620				   curr, pip);
2621}
2622
2623long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2624		u32 __user *uaddr2, u32 val2, u32 val3)
2625{
2626	int cmd = op & FUTEX_CMD_MASK;
2627	unsigned int flags = 0;
2628
2629	if (!(op & FUTEX_PRIVATE_FLAG))
2630		flags |= FLAGS_SHARED;
2631
2632	if (op & FUTEX_CLOCK_REALTIME) {
2633		flags |= FLAGS_CLOCKRT;
2634		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
 
2635			return -ENOSYS;
2636	}
2637
2638	switch (cmd) {
2639	case FUTEX_LOCK_PI:
2640	case FUTEX_UNLOCK_PI:
2641	case FUTEX_TRYLOCK_PI:
2642	case FUTEX_WAIT_REQUEUE_PI:
2643	case FUTEX_CMP_REQUEUE_PI:
2644		if (!futex_cmpxchg_enabled)
2645			return -ENOSYS;
2646	}
2647
2648	switch (cmd) {
2649	case FUTEX_WAIT:
2650		val3 = FUTEX_BITSET_MATCH_ANY;
 
2651	case FUTEX_WAIT_BITSET:
2652		return futex_wait(uaddr, flags, val, timeout, val3);
2653	case FUTEX_WAKE:
2654		val3 = FUTEX_BITSET_MATCH_ANY;
 
2655	case FUTEX_WAKE_BITSET:
2656		return futex_wake(uaddr, flags, val, val3);
2657	case FUTEX_REQUEUE:
2658		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2659	case FUTEX_CMP_REQUEUE:
2660		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2661	case FUTEX_WAKE_OP:
2662		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2663	case FUTEX_LOCK_PI:
2664		return futex_lock_pi(uaddr, flags, val, timeout, 0);
2665	case FUTEX_UNLOCK_PI:
2666		return futex_unlock_pi(uaddr, flags);
2667	case FUTEX_TRYLOCK_PI:
2668		return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2669	case FUTEX_WAIT_REQUEUE_PI:
2670		val3 = FUTEX_BITSET_MATCH_ANY;
2671		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2672					     uaddr2);
2673	case FUTEX_CMP_REQUEUE_PI:
2674		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2675	}
2676	return -ENOSYS;
2677}
2678
2679
2680SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2681		struct timespec __user *, utime, u32 __user *, uaddr2,
2682		u32, val3)
2683{
2684	struct timespec ts;
2685	ktime_t t, *tp = NULL;
2686	u32 val2 = 0;
2687	int cmd = op & FUTEX_CMD_MASK;
2688
2689	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2690		      cmd == FUTEX_WAIT_BITSET ||
2691		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2692		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
 
 
2693			return -EFAULT;
2694		if (!timespec_valid(&ts))
2695			return -EINVAL;
2696
2697		t = timespec_to_ktime(ts);
2698		if (cmd == FUTEX_WAIT)
2699			t = ktime_add_safe(ktime_get(), t);
2700		tp = &t;
2701	}
2702	/*
2703	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2704	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2705	 */
2706	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2707	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2708		val2 = (u32) (unsigned long) utime;
2709
2710	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2711}
2712
2713static int __init futex_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2714{
 
2715	u32 curval;
2716	int i;
2717
2718	/*
2719	 * This will fail and we want it. Some arch implementations do
2720	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2721	 * functionality. We want to know that before we call in any
2722	 * of the complex code paths. Also we want to prevent
2723	 * registration of robust lists in that case. NULL is
2724	 * guaranteed to fault and we get -EFAULT on functional
2725	 * implementation, the non-functional ones will return
2726	 * -ENOSYS.
2727	 */
2728	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2729		futex_cmpxchg_enabled = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2730
2731	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
 
2732		plist_head_init(&futex_queues[i].chain);
2733		spin_lock_init(&futex_queues[i].lock);
2734	}
2735
2736	return 0;
2737}
2738__initcall(futex_init);