Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/arch/arm/mm/dma-mapping.c
4 *
5 * Copyright (C) 2000-2004 Russell King
6 *
7 * DMA uncached mapping support.
8 */
9#include <linux/module.h>
10#include <linux/mm.h>
11#include <linux/genalloc.h>
12#include <linux/gfp.h>
13#include <linux/errno.h>
14#include <linux/list.h>
15#include <linux/init.h>
16#include <linux/device.h>
17#include <linux/dma-direct.h>
18#include <linux/dma-mapping.h>
19#include <linux/dma-noncoherent.h>
20#include <linux/dma-contiguous.h>
21#include <linux/highmem.h>
22#include <linux/memblock.h>
23#include <linux/slab.h>
24#include <linux/iommu.h>
25#include <linux/io.h>
26#include <linux/vmalloc.h>
27#include <linux/sizes.h>
28#include <linux/cma.h>
29
30#include <asm/memory.h>
31#include <asm/highmem.h>
32#include <asm/cacheflush.h>
33#include <asm/tlbflush.h>
34#include <asm/mach/arch.h>
35#include <asm/dma-iommu.h>
36#include <asm/mach/map.h>
37#include <asm/system_info.h>
38#include <asm/dma-contiguous.h>
39#include <xen/swiotlb-xen.h>
40
41#include "dma.h"
42#include "mm.h"
43
44struct arm_dma_alloc_args {
45 struct device *dev;
46 size_t size;
47 gfp_t gfp;
48 pgprot_t prot;
49 const void *caller;
50 bool want_vaddr;
51 int coherent_flag;
52};
53
54struct arm_dma_free_args {
55 struct device *dev;
56 size_t size;
57 void *cpu_addr;
58 struct page *page;
59 bool want_vaddr;
60};
61
62#define NORMAL 0
63#define COHERENT 1
64
65struct arm_dma_allocator {
66 void *(*alloc)(struct arm_dma_alloc_args *args,
67 struct page **ret_page);
68 void (*free)(struct arm_dma_free_args *args);
69};
70
71struct arm_dma_buffer {
72 struct list_head list;
73 void *virt;
74 struct arm_dma_allocator *allocator;
75};
76
77static LIST_HEAD(arm_dma_bufs);
78static DEFINE_SPINLOCK(arm_dma_bufs_lock);
79
80static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
81{
82 struct arm_dma_buffer *buf, *found = NULL;
83 unsigned long flags;
84
85 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
86 list_for_each_entry(buf, &arm_dma_bufs, list) {
87 if (buf->virt == virt) {
88 list_del(&buf->list);
89 found = buf;
90 break;
91 }
92 }
93 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
94 return found;
95}
96
97/*
98 * The DMA API is built upon the notion of "buffer ownership". A buffer
99 * is either exclusively owned by the CPU (and therefore may be accessed
100 * by it) or exclusively owned by the DMA device. These helper functions
101 * represent the transitions between these two ownership states.
102 *
103 * Note, however, that on later ARMs, this notion does not work due to
104 * speculative prefetches. We model our approach on the assumption that
105 * the CPU does do speculative prefetches, which means we clean caches
106 * before transfers and delay cache invalidation until transfer completion.
107 *
108 */
109static void __dma_page_cpu_to_dev(struct page *, unsigned long,
110 size_t, enum dma_data_direction);
111static void __dma_page_dev_to_cpu(struct page *, unsigned long,
112 size_t, enum dma_data_direction);
113
114/**
115 * arm_dma_map_page - map a portion of a page for streaming DMA
116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
117 * @page: page that buffer resides in
118 * @offset: offset into page for start of buffer
119 * @size: size of buffer to map
120 * @dir: DMA transfer direction
121 *
122 * Ensure that any data held in the cache is appropriately discarded
123 * or written back.
124 *
125 * The device owns this memory once this call has completed. The CPU
126 * can regain ownership by calling dma_unmap_page().
127 */
128static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
129 unsigned long offset, size_t size, enum dma_data_direction dir,
130 unsigned long attrs)
131{
132 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
133 __dma_page_cpu_to_dev(page, offset, size, dir);
134 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
135}
136
137static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
138 unsigned long offset, size_t size, enum dma_data_direction dir,
139 unsigned long attrs)
140{
141 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
142}
143
144/**
145 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
146 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
147 * @handle: DMA address of buffer
148 * @size: size of buffer (same as passed to dma_map_page)
149 * @dir: DMA transfer direction (same as passed to dma_map_page)
150 *
151 * Unmap a page streaming mode DMA translation. The handle and size
152 * must match what was provided in the previous dma_map_page() call.
153 * All other usages are undefined.
154 *
155 * After this call, reads by the CPU to the buffer are guaranteed to see
156 * whatever the device wrote there.
157 */
158static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
159 size_t size, enum dma_data_direction dir, unsigned long attrs)
160{
161 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
162 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
163 handle & ~PAGE_MASK, size, dir);
164}
165
166static void arm_dma_sync_single_for_cpu(struct device *dev,
167 dma_addr_t handle, size_t size, enum dma_data_direction dir)
168{
169 unsigned int offset = handle & (PAGE_SIZE - 1);
170 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
171 __dma_page_dev_to_cpu(page, offset, size, dir);
172}
173
174static void arm_dma_sync_single_for_device(struct device *dev,
175 dma_addr_t handle, size_t size, enum dma_data_direction dir)
176{
177 unsigned int offset = handle & (PAGE_SIZE - 1);
178 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
179 __dma_page_cpu_to_dev(page, offset, size, dir);
180}
181
182const struct dma_map_ops arm_dma_ops = {
183 .alloc = arm_dma_alloc,
184 .free = arm_dma_free,
185 .mmap = arm_dma_mmap,
186 .get_sgtable = arm_dma_get_sgtable,
187 .map_page = arm_dma_map_page,
188 .unmap_page = arm_dma_unmap_page,
189 .map_sg = arm_dma_map_sg,
190 .unmap_sg = arm_dma_unmap_sg,
191 .map_resource = dma_direct_map_resource,
192 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
193 .sync_single_for_device = arm_dma_sync_single_for_device,
194 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
195 .sync_sg_for_device = arm_dma_sync_sg_for_device,
196 .dma_supported = arm_dma_supported,
197 .get_required_mask = dma_direct_get_required_mask,
198};
199EXPORT_SYMBOL(arm_dma_ops);
200
201static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
202 dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
203static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
204 dma_addr_t handle, unsigned long attrs);
205static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
206 void *cpu_addr, dma_addr_t dma_addr, size_t size,
207 unsigned long attrs);
208
209const struct dma_map_ops arm_coherent_dma_ops = {
210 .alloc = arm_coherent_dma_alloc,
211 .free = arm_coherent_dma_free,
212 .mmap = arm_coherent_dma_mmap,
213 .get_sgtable = arm_dma_get_sgtable,
214 .map_page = arm_coherent_dma_map_page,
215 .map_sg = arm_dma_map_sg,
216 .map_resource = dma_direct_map_resource,
217 .dma_supported = arm_dma_supported,
218 .get_required_mask = dma_direct_get_required_mask,
219};
220EXPORT_SYMBOL(arm_coherent_dma_ops);
221
222static int __dma_supported(struct device *dev, u64 mask, bool warn)
223{
224 unsigned long max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
225
226 /*
227 * Translate the device's DMA mask to a PFN limit. This
228 * PFN number includes the page which we can DMA to.
229 */
230 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
231 if (warn)
232 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
233 mask,
234 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
235 max_dma_pfn + 1);
236 return 0;
237 }
238
239 return 1;
240}
241
242static u64 get_coherent_dma_mask(struct device *dev)
243{
244 u64 mask = (u64)DMA_BIT_MASK(32);
245
246 if (dev) {
247 mask = dev->coherent_dma_mask;
248
249 /*
250 * Sanity check the DMA mask - it must be non-zero, and
251 * must be able to be satisfied by a DMA allocation.
252 */
253 if (mask == 0) {
254 dev_warn(dev, "coherent DMA mask is unset\n");
255 return 0;
256 }
257
258 if (!__dma_supported(dev, mask, true))
259 return 0;
260 }
261
262 return mask;
263}
264
265static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
266{
267 /*
268 * Ensure that the allocated pages are zeroed, and that any data
269 * lurking in the kernel direct-mapped region is invalidated.
270 */
271 if (PageHighMem(page)) {
272 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
273 phys_addr_t end = base + size;
274 while (size > 0) {
275 void *ptr = kmap_atomic(page);
276 memset(ptr, 0, PAGE_SIZE);
277 if (coherent_flag != COHERENT)
278 dmac_flush_range(ptr, ptr + PAGE_SIZE);
279 kunmap_atomic(ptr);
280 page++;
281 size -= PAGE_SIZE;
282 }
283 if (coherent_flag != COHERENT)
284 outer_flush_range(base, end);
285 } else {
286 void *ptr = page_address(page);
287 memset(ptr, 0, size);
288 if (coherent_flag != COHERENT) {
289 dmac_flush_range(ptr, ptr + size);
290 outer_flush_range(__pa(ptr), __pa(ptr) + size);
291 }
292 }
293}
294
295/*
296 * Allocate a DMA buffer for 'dev' of size 'size' using the
297 * specified gfp mask. Note that 'size' must be page aligned.
298 */
299static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
300 gfp_t gfp, int coherent_flag)
301{
302 unsigned long order = get_order(size);
303 struct page *page, *p, *e;
304
305 page = alloc_pages(gfp, order);
306 if (!page)
307 return NULL;
308
309 /*
310 * Now split the huge page and free the excess pages
311 */
312 split_page(page, order);
313 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
314 __free_page(p);
315
316 __dma_clear_buffer(page, size, coherent_flag);
317
318 return page;
319}
320
321/*
322 * Free a DMA buffer. 'size' must be page aligned.
323 */
324static void __dma_free_buffer(struct page *page, size_t size)
325{
326 struct page *e = page + (size >> PAGE_SHIFT);
327
328 while (page < e) {
329 __free_page(page);
330 page++;
331 }
332}
333
334static void *__alloc_from_contiguous(struct device *dev, size_t size,
335 pgprot_t prot, struct page **ret_page,
336 const void *caller, bool want_vaddr,
337 int coherent_flag, gfp_t gfp);
338
339static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
340 pgprot_t prot, struct page **ret_page,
341 const void *caller, bool want_vaddr);
342
343#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
344static struct gen_pool *atomic_pool __ro_after_init;
345
346static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
347
348static int __init early_coherent_pool(char *p)
349{
350 atomic_pool_size = memparse(p, &p);
351 return 0;
352}
353early_param("coherent_pool", early_coherent_pool);
354
355/*
356 * Initialise the coherent pool for atomic allocations.
357 */
358static int __init atomic_pool_init(void)
359{
360 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
361 gfp_t gfp = GFP_KERNEL | GFP_DMA;
362 struct page *page;
363 void *ptr;
364
365 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
366 if (!atomic_pool)
367 goto out;
368 /*
369 * The atomic pool is only used for non-coherent allocations
370 * so we must pass NORMAL for coherent_flag.
371 */
372 if (dev_get_cma_area(NULL))
373 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
374 &page, atomic_pool_init, true, NORMAL,
375 GFP_KERNEL);
376 else
377 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
378 &page, atomic_pool_init, true);
379 if (ptr) {
380 int ret;
381
382 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
383 page_to_phys(page),
384 atomic_pool_size, -1);
385 if (ret)
386 goto destroy_genpool;
387
388 gen_pool_set_algo(atomic_pool,
389 gen_pool_first_fit_order_align,
390 NULL);
391 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
392 atomic_pool_size / 1024);
393 return 0;
394 }
395
396destroy_genpool:
397 gen_pool_destroy(atomic_pool);
398 atomic_pool = NULL;
399out:
400 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
401 atomic_pool_size / 1024);
402 return -ENOMEM;
403}
404/*
405 * CMA is activated by core_initcall, so we must be called after it.
406 */
407postcore_initcall(atomic_pool_init);
408
409struct dma_contig_early_reserve {
410 phys_addr_t base;
411 unsigned long size;
412};
413
414static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
415
416static int dma_mmu_remap_num __initdata;
417
418void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
419{
420 dma_mmu_remap[dma_mmu_remap_num].base = base;
421 dma_mmu_remap[dma_mmu_remap_num].size = size;
422 dma_mmu_remap_num++;
423}
424
425void __init dma_contiguous_remap(void)
426{
427 int i;
428 for (i = 0; i < dma_mmu_remap_num; i++) {
429 phys_addr_t start = dma_mmu_remap[i].base;
430 phys_addr_t end = start + dma_mmu_remap[i].size;
431 struct map_desc map;
432 unsigned long addr;
433
434 if (end > arm_lowmem_limit)
435 end = arm_lowmem_limit;
436 if (start >= end)
437 continue;
438
439 map.pfn = __phys_to_pfn(start);
440 map.virtual = __phys_to_virt(start);
441 map.length = end - start;
442 map.type = MT_MEMORY_DMA_READY;
443
444 /*
445 * Clear previous low-memory mapping to ensure that the
446 * TLB does not see any conflicting entries, then flush
447 * the TLB of the old entries before creating new mappings.
448 *
449 * This ensures that any speculatively loaded TLB entries
450 * (even though they may be rare) can not cause any problems,
451 * and ensures that this code is architecturally compliant.
452 */
453 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
454 addr += PMD_SIZE)
455 pmd_clear(pmd_off_k(addr));
456
457 flush_tlb_kernel_range(__phys_to_virt(start),
458 __phys_to_virt(end));
459
460 iotable_init(&map, 1);
461 }
462}
463
464static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
465{
466 struct page *page = virt_to_page(addr);
467 pgprot_t prot = *(pgprot_t *)data;
468
469 set_pte_ext(pte, mk_pte(page, prot), 0);
470 return 0;
471}
472
473static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
474{
475 unsigned long start = (unsigned long) page_address(page);
476 unsigned end = start + size;
477
478 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
479 flush_tlb_kernel_range(start, end);
480}
481
482static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
483 pgprot_t prot, struct page **ret_page,
484 const void *caller, bool want_vaddr)
485{
486 struct page *page;
487 void *ptr = NULL;
488 /*
489 * __alloc_remap_buffer is only called when the device is
490 * non-coherent
491 */
492 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
493 if (!page)
494 return NULL;
495 if (!want_vaddr)
496 goto out;
497
498 ptr = dma_common_contiguous_remap(page, size, prot, caller);
499 if (!ptr) {
500 __dma_free_buffer(page, size);
501 return NULL;
502 }
503
504 out:
505 *ret_page = page;
506 return ptr;
507}
508
509static void *__alloc_from_pool(size_t size, struct page **ret_page)
510{
511 unsigned long val;
512 void *ptr = NULL;
513
514 if (!atomic_pool) {
515 WARN(1, "coherent pool not initialised!\n");
516 return NULL;
517 }
518
519 val = gen_pool_alloc(atomic_pool, size);
520 if (val) {
521 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
522
523 *ret_page = phys_to_page(phys);
524 ptr = (void *)val;
525 }
526
527 return ptr;
528}
529
530static bool __in_atomic_pool(void *start, size_t size)
531{
532 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
533}
534
535static int __free_from_pool(void *start, size_t size)
536{
537 if (!__in_atomic_pool(start, size))
538 return 0;
539
540 gen_pool_free(atomic_pool, (unsigned long)start, size);
541
542 return 1;
543}
544
545static void *__alloc_from_contiguous(struct device *dev, size_t size,
546 pgprot_t prot, struct page **ret_page,
547 const void *caller, bool want_vaddr,
548 int coherent_flag, gfp_t gfp)
549{
550 unsigned long order = get_order(size);
551 size_t count = size >> PAGE_SHIFT;
552 struct page *page;
553 void *ptr = NULL;
554
555 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
556 if (!page)
557 return NULL;
558
559 __dma_clear_buffer(page, size, coherent_flag);
560
561 if (!want_vaddr)
562 goto out;
563
564 if (PageHighMem(page)) {
565 ptr = dma_common_contiguous_remap(page, size, prot, caller);
566 if (!ptr) {
567 dma_release_from_contiguous(dev, page, count);
568 return NULL;
569 }
570 } else {
571 __dma_remap(page, size, prot);
572 ptr = page_address(page);
573 }
574
575 out:
576 *ret_page = page;
577 return ptr;
578}
579
580static void __free_from_contiguous(struct device *dev, struct page *page,
581 void *cpu_addr, size_t size, bool want_vaddr)
582{
583 if (want_vaddr) {
584 if (PageHighMem(page))
585 dma_common_free_remap(cpu_addr, size);
586 else
587 __dma_remap(page, size, PAGE_KERNEL);
588 }
589 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
590}
591
592static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
593{
594 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
595 pgprot_writecombine(prot) :
596 pgprot_dmacoherent(prot);
597 return prot;
598}
599
600static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
601 struct page **ret_page)
602{
603 struct page *page;
604 /* __alloc_simple_buffer is only called when the device is coherent */
605 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
606 if (!page)
607 return NULL;
608
609 *ret_page = page;
610 return page_address(page);
611}
612
613static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
614 struct page **ret_page)
615{
616 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
617 ret_page);
618}
619
620static void simple_allocator_free(struct arm_dma_free_args *args)
621{
622 __dma_free_buffer(args->page, args->size);
623}
624
625static struct arm_dma_allocator simple_allocator = {
626 .alloc = simple_allocator_alloc,
627 .free = simple_allocator_free,
628};
629
630static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
631 struct page **ret_page)
632{
633 return __alloc_from_contiguous(args->dev, args->size, args->prot,
634 ret_page, args->caller,
635 args->want_vaddr, args->coherent_flag,
636 args->gfp);
637}
638
639static void cma_allocator_free(struct arm_dma_free_args *args)
640{
641 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
642 args->size, args->want_vaddr);
643}
644
645static struct arm_dma_allocator cma_allocator = {
646 .alloc = cma_allocator_alloc,
647 .free = cma_allocator_free,
648};
649
650static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
651 struct page **ret_page)
652{
653 return __alloc_from_pool(args->size, ret_page);
654}
655
656static void pool_allocator_free(struct arm_dma_free_args *args)
657{
658 __free_from_pool(args->cpu_addr, args->size);
659}
660
661static struct arm_dma_allocator pool_allocator = {
662 .alloc = pool_allocator_alloc,
663 .free = pool_allocator_free,
664};
665
666static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
667 struct page **ret_page)
668{
669 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
670 args->prot, ret_page, args->caller,
671 args->want_vaddr);
672}
673
674static void remap_allocator_free(struct arm_dma_free_args *args)
675{
676 if (args->want_vaddr)
677 dma_common_free_remap(args->cpu_addr, args->size);
678
679 __dma_free_buffer(args->page, args->size);
680}
681
682static struct arm_dma_allocator remap_allocator = {
683 .alloc = remap_allocator_alloc,
684 .free = remap_allocator_free,
685};
686
687static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
688 gfp_t gfp, pgprot_t prot, bool is_coherent,
689 unsigned long attrs, const void *caller)
690{
691 u64 mask = get_coherent_dma_mask(dev);
692 struct page *page = NULL;
693 void *addr;
694 bool allowblock, cma;
695 struct arm_dma_buffer *buf;
696 struct arm_dma_alloc_args args = {
697 .dev = dev,
698 .size = PAGE_ALIGN(size),
699 .gfp = gfp,
700 .prot = prot,
701 .caller = caller,
702 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
703 .coherent_flag = is_coherent ? COHERENT : NORMAL,
704 };
705
706#ifdef CONFIG_DMA_API_DEBUG
707 u64 limit = (mask + 1) & ~mask;
708 if (limit && size >= limit) {
709 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
710 size, mask);
711 return NULL;
712 }
713#endif
714
715 if (!mask)
716 return NULL;
717
718 buf = kzalloc(sizeof(*buf),
719 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
720 if (!buf)
721 return NULL;
722
723 if (mask < 0xffffffffULL)
724 gfp |= GFP_DMA;
725
726 /*
727 * Following is a work-around (a.k.a. hack) to prevent pages
728 * with __GFP_COMP being passed to split_page() which cannot
729 * handle them. The real problem is that this flag probably
730 * should be 0 on ARM as it is not supported on this
731 * platform; see CONFIG_HUGETLBFS.
732 */
733 gfp &= ~(__GFP_COMP);
734 args.gfp = gfp;
735
736 *handle = DMA_MAPPING_ERROR;
737 allowblock = gfpflags_allow_blocking(gfp);
738 cma = allowblock ? dev_get_cma_area(dev) : false;
739
740 if (cma)
741 buf->allocator = &cma_allocator;
742 else if (is_coherent)
743 buf->allocator = &simple_allocator;
744 else if (allowblock)
745 buf->allocator = &remap_allocator;
746 else
747 buf->allocator = &pool_allocator;
748
749 addr = buf->allocator->alloc(&args, &page);
750
751 if (page) {
752 unsigned long flags;
753
754 *handle = pfn_to_dma(dev, page_to_pfn(page));
755 buf->virt = args.want_vaddr ? addr : page;
756
757 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
758 list_add(&buf->list, &arm_dma_bufs);
759 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
760 } else {
761 kfree(buf);
762 }
763
764 return args.want_vaddr ? addr : page;
765}
766
767/*
768 * Allocate DMA-coherent memory space and return both the kernel remapped
769 * virtual and bus address for that space.
770 */
771void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
772 gfp_t gfp, unsigned long attrs)
773{
774 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
775
776 return __dma_alloc(dev, size, handle, gfp, prot, false,
777 attrs, __builtin_return_address(0));
778}
779
780static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
781 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
782{
783 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
784 attrs, __builtin_return_address(0));
785}
786
787static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
788 void *cpu_addr, dma_addr_t dma_addr, size_t size,
789 unsigned long attrs)
790{
791 int ret = -ENXIO;
792 unsigned long nr_vma_pages = vma_pages(vma);
793 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
794 unsigned long pfn = dma_to_pfn(dev, dma_addr);
795 unsigned long off = vma->vm_pgoff;
796
797 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
798 return ret;
799
800 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
801 ret = remap_pfn_range(vma, vma->vm_start,
802 pfn + off,
803 vma->vm_end - vma->vm_start,
804 vma->vm_page_prot);
805 }
806
807 return ret;
808}
809
810/*
811 * Create userspace mapping for the DMA-coherent memory.
812 */
813static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
814 void *cpu_addr, dma_addr_t dma_addr, size_t size,
815 unsigned long attrs)
816{
817 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
818}
819
820int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
821 void *cpu_addr, dma_addr_t dma_addr, size_t size,
822 unsigned long attrs)
823{
824 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
825 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
826}
827
828/*
829 * Free a buffer as defined by the above mapping.
830 */
831static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
832 dma_addr_t handle, unsigned long attrs,
833 bool is_coherent)
834{
835 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
836 struct arm_dma_buffer *buf;
837 struct arm_dma_free_args args = {
838 .dev = dev,
839 .size = PAGE_ALIGN(size),
840 .cpu_addr = cpu_addr,
841 .page = page,
842 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
843 };
844
845 buf = arm_dma_buffer_find(cpu_addr);
846 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
847 return;
848
849 buf->allocator->free(&args);
850 kfree(buf);
851}
852
853void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
854 dma_addr_t handle, unsigned long attrs)
855{
856 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
857}
858
859static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
860 dma_addr_t handle, unsigned long attrs)
861{
862 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
863}
864
865int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
866 void *cpu_addr, dma_addr_t handle, size_t size,
867 unsigned long attrs)
868{
869 unsigned long pfn = dma_to_pfn(dev, handle);
870 struct page *page;
871 int ret;
872
873 /* If the PFN is not valid, we do not have a struct page */
874 if (!pfn_valid(pfn))
875 return -ENXIO;
876
877 page = pfn_to_page(pfn);
878
879 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
880 if (unlikely(ret))
881 return ret;
882
883 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
884 return 0;
885}
886
887static void dma_cache_maint_page(struct page *page, unsigned long offset,
888 size_t size, enum dma_data_direction dir,
889 void (*op)(const void *, size_t, int))
890{
891 unsigned long pfn;
892 size_t left = size;
893
894 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
895 offset %= PAGE_SIZE;
896
897 /*
898 * A single sg entry may refer to multiple physically contiguous
899 * pages. But we still need to process highmem pages individually.
900 * If highmem is not configured then the bulk of this loop gets
901 * optimized out.
902 */
903 do {
904 size_t len = left;
905 void *vaddr;
906
907 page = pfn_to_page(pfn);
908
909 if (PageHighMem(page)) {
910 if (len + offset > PAGE_SIZE)
911 len = PAGE_SIZE - offset;
912
913 if (cache_is_vipt_nonaliasing()) {
914 vaddr = kmap_atomic(page);
915 op(vaddr + offset, len, dir);
916 kunmap_atomic(vaddr);
917 } else {
918 vaddr = kmap_high_get(page);
919 if (vaddr) {
920 op(vaddr + offset, len, dir);
921 kunmap_high(page);
922 }
923 }
924 } else {
925 vaddr = page_address(page) + offset;
926 op(vaddr, len, dir);
927 }
928 offset = 0;
929 pfn++;
930 left -= len;
931 } while (left);
932}
933
934/*
935 * Make an area consistent for devices.
936 * Note: Drivers should NOT use this function directly, as it will break
937 * platforms with CONFIG_DMABOUNCE.
938 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
939 */
940static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
941 size_t size, enum dma_data_direction dir)
942{
943 phys_addr_t paddr;
944
945 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
946
947 paddr = page_to_phys(page) + off;
948 if (dir == DMA_FROM_DEVICE) {
949 outer_inv_range(paddr, paddr + size);
950 } else {
951 outer_clean_range(paddr, paddr + size);
952 }
953 /* FIXME: non-speculating: flush on bidirectional mappings? */
954}
955
956static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
957 size_t size, enum dma_data_direction dir)
958{
959 phys_addr_t paddr = page_to_phys(page) + off;
960
961 /* FIXME: non-speculating: not required */
962 /* in any case, don't bother invalidating if DMA to device */
963 if (dir != DMA_TO_DEVICE) {
964 outer_inv_range(paddr, paddr + size);
965
966 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
967 }
968
969 /*
970 * Mark the D-cache clean for these pages to avoid extra flushing.
971 */
972 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
973 unsigned long pfn;
974 size_t left = size;
975
976 pfn = page_to_pfn(page) + off / PAGE_SIZE;
977 off %= PAGE_SIZE;
978 if (off) {
979 pfn++;
980 left -= PAGE_SIZE - off;
981 }
982 while (left >= PAGE_SIZE) {
983 page = pfn_to_page(pfn++);
984 set_bit(PG_dcache_clean, &page->flags);
985 left -= PAGE_SIZE;
986 }
987 }
988}
989
990/**
991 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
992 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
993 * @sg: list of buffers
994 * @nents: number of buffers to map
995 * @dir: DMA transfer direction
996 *
997 * Map a set of buffers described by scatterlist in streaming mode for DMA.
998 * This is the scatter-gather version of the dma_map_single interface.
999 * Here the scatter gather list elements are each tagged with the
1000 * appropriate dma address and length. They are obtained via
1001 * sg_dma_{address,length}.
1002 *
1003 * Device ownership issues as mentioned for dma_map_single are the same
1004 * here.
1005 */
1006int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1007 enum dma_data_direction dir, unsigned long attrs)
1008{
1009 const struct dma_map_ops *ops = get_dma_ops(dev);
1010 struct scatterlist *s;
1011 int i, j;
1012
1013 for_each_sg(sg, s, nents, i) {
1014#ifdef CONFIG_NEED_SG_DMA_LENGTH
1015 s->dma_length = s->length;
1016#endif
1017 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1018 s->length, dir, attrs);
1019 if (dma_mapping_error(dev, s->dma_address))
1020 goto bad_mapping;
1021 }
1022 return nents;
1023
1024 bad_mapping:
1025 for_each_sg(sg, s, i, j)
1026 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1027 return 0;
1028}
1029
1030/**
1031 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1032 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1033 * @sg: list of buffers
1034 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1035 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1036 *
1037 * Unmap a set of streaming mode DMA translations. Again, CPU access
1038 * rules concerning calls here are the same as for dma_unmap_single().
1039 */
1040void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1041 enum dma_data_direction dir, unsigned long attrs)
1042{
1043 const struct dma_map_ops *ops = get_dma_ops(dev);
1044 struct scatterlist *s;
1045
1046 int i;
1047
1048 for_each_sg(sg, s, nents, i)
1049 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1050}
1051
1052/**
1053 * arm_dma_sync_sg_for_cpu
1054 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1055 * @sg: list of buffers
1056 * @nents: number of buffers to map (returned from dma_map_sg)
1057 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1058 */
1059void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1060 int nents, enum dma_data_direction dir)
1061{
1062 const struct dma_map_ops *ops = get_dma_ops(dev);
1063 struct scatterlist *s;
1064 int i;
1065
1066 for_each_sg(sg, s, nents, i)
1067 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1068 dir);
1069}
1070
1071/**
1072 * arm_dma_sync_sg_for_device
1073 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1074 * @sg: list of buffers
1075 * @nents: number of buffers to map (returned from dma_map_sg)
1076 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1077 */
1078void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1079 int nents, enum dma_data_direction dir)
1080{
1081 const struct dma_map_ops *ops = get_dma_ops(dev);
1082 struct scatterlist *s;
1083 int i;
1084
1085 for_each_sg(sg, s, nents, i)
1086 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1087 dir);
1088}
1089
1090/*
1091 * Return whether the given device DMA address mask can be supported
1092 * properly. For example, if your device can only drive the low 24-bits
1093 * during bus mastering, then you would pass 0x00ffffff as the mask
1094 * to this function.
1095 */
1096int arm_dma_supported(struct device *dev, u64 mask)
1097{
1098 return __dma_supported(dev, mask, false);
1099}
1100
1101static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1102{
1103 /*
1104 * When CONFIG_ARM_LPAE is set, physical address can extend above
1105 * 32-bits, which then can't be addressed by devices that only support
1106 * 32-bit DMA.
1107 * Use the generic dma-direct / swiotlb ops code in that case, as that
1108 * handles bounce buffering for us.
1109 */
1110 if (IS_ENABLED(CONFIG_ARM_LPAE))
1111 return NULL;
1112 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1113}
1114
1115#ifdef CONFIG_ARM_DMA_USE_IOMMU
1116
1117static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1118{
1119 int prot = 0;
1120
1121 if (attrs & DMA_ATTR_PRIVILEGED)
1122 prot |= IOMMU_PRIV;
1123
1124 switch (dir) {
1125 case DMA_BIDIRECTIONAL:
1126 return prot | IOMMU_READ | IOMMU_WRITE;
1127 case DMA_TO_DEVICE:
1128 return prot | IOMMU_READ;
1129 case DMA_FROM_DEVICE:
1130 return prot | IOMMU_WRITE;
1131 default:
1132 return prot;
1133 }
1134}
1135
1136/* IOMMU */
1137
1138static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1139
1140static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1141 size_t size)
1142{
1143 unsigned int order = get_order(size);
1144 unsigned int align = 0;
1145 unsigned int count, start;
1146 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1147 unsigned long flags;
1148 dma_addr_t iova;
1149 int i;
1150
1151 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1152 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1153
1154 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1155 align = (1 << order) - 1;
1156
1157 spin_lock_irqsave(&mapping->lock, flags);
1158 for (i = 0; i < mapping->nr_bitmaps; i++) {
1159 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1160 mapping->bits, 0, count, align);
1161
1162 if (start > mapping->bits)
1163 continue;
1164
1165 bitmap_set(mapping->bitmaps[i], start, count);
1166 break;
1167 }
1168
1169 /*
1170 * No unused range found. Try to extend the existing mapping
1171 * and perform a second attempt to reserve an IO virtual
1172 * address range of size bytes.
1173 */
1174 if (i == mapping->nr_bitmaps) {
1175 if (extend_iommu_mapping(mapping)) {
1176 spin_unlock_irqrestore(&mapping->lock, flags);
1177 return DMA_MAPPING_ERROR;
1178 }
1179
1180 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1181 mapping->bits, 0, count, align);
1182
1183 if (start > mapping->bits) {
1184 spin_unlock_irqrestore(&mapping->lock, flags);
1185 return DMA_MAPPING_ERROR;
1186 }
1187
1188 bitmap_set(mapping->bitmaps[i], start, count);
1189 }
1190 spin_unlock_irqrestore(&mapping->lock, flags);
1191
1192 iova = mapping->base + (mapping_size * i);
1193 iova += start << PAGE_SHIFT;
1194
1195 return iova;
1196}
1197
1198static inline void __free_iova(struct dma_iommu_mapping *mapping,
1199 dma_addr_t addr, size_t size)
1200{
1201 unsigned int start, count;
1202 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1203 unsigned long flags;
1204 dma_addr_t bitmap_base;
1205 u32 bitmap_index;
1206
1207 if (!size)
1208 return;
1209
1210 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1211 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1212
1213 bitmap_base = mapping->base + mapping_size * bitmap_index;
1214
1215 start = (addr - bitmap_base) >> PAGE_SHIFT;
1216
1217 if (addr + size > bitmap_base + mapping_size) {
1218 /*
1219 * The address range to be freed reaches into the iova
1220 * range of the next bitmap. This should not happen as
1221 * we don't allow this in __alloc_iova (at the
1222 * moment).
1223 */
1224 BUG();
1225 } else
1226 count = size >> PAGE_SHIFT;
1227
1228 spin_lock_irqsave(&mapping->lock, flags);
1229 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1230 spin_unlock_irqrestore(&mapping->lock, flags);
1231}
1232
1233/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1234static const int iommu_order_array[] = { 9, 8, 4, 0 };
1235
1236static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1237 gfp_t gfp, unsigned long attrs,
1238 int coherent_flag)
1239{
1240 struct page **pages;
1241 int count = size >> PAGE_SHIFT;
1242 int array_size = count * sizeof(struct page *);
1243 int i = 0;
1244 int order_idx = 0;
1245
1246 if (array_size <= PAGE_SIZE)
1247 pages = kzalloc(array_size, GFP_KERNEL);
1248 else
1249 pages = vzalloc(array_size);
1250 if (!pages)
1251 return NULL;
1252
1253 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1254 {
1255 unsigned long order = get_order(size);
1256 struct page *page;
1257
1258 page = dma_alloc_from_contiguous(dev, count, order,
1259 gfp & __GFP_NOWARN);
1260 if (!page)
1261 goto error;
1262
1263 __dma_clear_buffer(page, size, coherent_flag);
1264
1265 for (i = 0; i < count; i++)
1266 pages[i] = page + i;
1267
1268 return pages;
1269 }
1270
1271 /* Go straight to 4K chunks if caller says it's OK. */
1272 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1273 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1274
1275 /*
1276 * IOMMU can map any pages, so himem can also be used here
1277 */
1278 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1279
1280 while (count) {
1281 int j, order;
1282
1283 order = iommu_order_array[order_idx];
1284
1285 /* Drop down when we get small */
1286 if (__fls(count) < order) {
1287 order_idx++;
1288 continue;
1289 }
1290
1291 if (order) {
1292 /* See if it's easy to allocate a high-order chunk */
1293 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1294
1295 /* Go down a notch at first sign of pressure */
1296 if (!pages[i]) {
1297 order_idx++;
1298 continue;
1299 }
1300 } else {
1301 pages[i] = alloc_pages(gfp, 0);
1302 if (!pages[i])
1303 goto error;
1304 }
1305
1306 if (order) {
1307 split_page(pages[i], order);
1308 j = 1 << order;
1309 while (--j)
1310 pages[i + j] = pages[i] + j;
1311 }
1312
1313 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1314 i += 1 << order;
1315 count -= 1 << order;
1316 }
1317
1318 return pages;
1319error:
1320 while (i--)
1321 if (pages[i])
1322 __free_pages(pages[i], 0);
1323 kvfree(pages);
1324 return NULL;
1325}
1326
1327static int __iommu_free_buffer(struct device *dev, struct page **pages,
1328 size_t size, unsigned long attrs)
1329{
1330 int count = size >> PAGE_SHIFT;
1331 int i;
1332
1333 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1334 dma_release_from_contiguous(dev, pages[0], count);
1335 } else {
1336 for (i = 0; i < count; i++)
1337 if (pages[i])
1338 __free_pages(pages[i], 0);
1339 }
1340
1341 kvfree(pages);
1342 return 0;
1343}
1344
1345/*
1346 * Create a mapping in device IO address space for specified pages
1347 */
1348static dma_addr_t
1349__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1350 unsigned long attrs)
1351{
1352 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1353 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1354 dma_addr_t dma_addr, iova;
1355 int i;
1356
1357 dma_addr = __alloc_iova(mapping, size);
1358 if (dma_addr == DMA_MAPPING_ERROR)
1359 return dma_addr;
1360
1361 iova = dma_addr;
1362 for (i = 0; i < count; ) {
1363 int ret;
1364
1365 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1366 phys_addr_t phys = page_to_phys(pages[i]);
1367 unsigned int len, j;
1368
1369 for (j = i + 1; j < count; j++, next_pfn++)
1370 if (page_to_pfn(pages[j]) != next_pfn)
1371 break;
1372
1373 len = (j - i) << PAGE_SHIFT;
1374 ret = iommu_map(mapping->domain, iova, phys, len,
1375 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1376 if (ret < 0)
1377 goto fail;
1378 iova += len;
1379 i = j;
1380 }
1381 return dma_addr;
1382fail:
1383 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1384 __free_iova(mapping, dma_addr, size);
1385 return DMA_MAPPING_ERROR;
1386}
1387
1388static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1389{
1390 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1391
1392 /*
1393 * add optional in-page offset from iova to size and align
1394 * result to page size
1395 */
1396 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1397 iova &= PAGE_MASK;
1398
1399 iommu_unmap(mapping->domain, iova, size);
1400 __free_iova(mapping, iova, size);
1401 return 0;
1402}
1403
1404static struct page **__atomic_get_pages(void *addr)
1405{
1406 struct page *page;
1407 phys_addr_t phys;
1408
1409 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1410 page = phys_to_page(phys);
1411
1412 return (struct page **)page;
1413}
1414
1415static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1416{
1417 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1418 return __atomic_get_pages(cpu_addr);
1419
1420 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1421 return cpu_addr;
1422
1423 return dma_common_find_pages(cpu_addr);
1424}
1425
1426static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1427 dma_addr_t *handle, int coherent_flag,
1428 unsigned long attrs)
1429{
1430 struct page *page;
1431 void *addr;
1432
1433 if (coherent_flag == COHERENT)
1434 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1435 else
1436 addr = __alloc_from_pool(size, &page);
1437 if (!addr)
1438 return NULL;
1439
1440 *handle = __iommu_create_mapping(dev, &page, size, attrs);
1441 if (*handle == DMA_MAPPING_ERROR)
1442 goto err_mapping;
1443
1444 return addr;
1445
1446err_mapping:
1447 __free_from_pool(addr, size);
1448 return NULL;
1449}
1450
1451static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1452 dma_addr_t handle, size_t size, int coherent_flag)
1453{
1454 __iommu_remove_mapping(dev, handle, size);
1455 if (coherent_flag == COHERENT)
1456 __dma_free_buffer(virt_to_page(cpu_addr), size);
1457 else
1458 __free_from_pool(cpu_addr, size);
1459}
1460
1461static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1462 dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1463 int coherent_flag)
1464{
1465 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1466 struct page **pages;
1467 void *addr = NULL;
1468
1469 *handle = DMA_MAPPING_ERROR;
1470 size = PAGE_ALIGN(size);
1471
1472 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1473 return __iommu_alloc_simple(dev, size, gfp, handle,
1474 coherent_flag, attrs);
1475
1476 /*
1477 * Following is a work-around (a.k.a. hack) to prevent pages
1478 * with __GFP_COMP being passed to split_page() which cannot
1479 * handle them. The real problem is that this flag probably
1480 * should be 0 on ARM as it is not supported on this
1481 * platform; see CONFIG_HUGETLBFS.
1482 */
1483 gfp &= ~(__GFP_COMP);
1484
1485 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1486 if (!pages)
1487 return NULL;
1488
1489 *handle = __iommu_create_mapping(dev, pages, size, attrs);
1490 if (*handle == DMA_MAPPING_ERROR)
1491 goto err_buffer;
1492
1493 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1494 return pages;
1495
1496 addr = dma_common_pages_remap(pages, size, prot,
1497 __builtin_return_address(0));
1498 if (!addr)
1499 goto err_mapping;
1500
1501 return addr;
1502
1503err_mapping:
1504 __iommu_remove_mapping(dev, *handle, size);
1505err_buffer:
1506 __iommu_free_buffer(dev, pages, size, attrs);
1507 return NULL;
1508}
1509
1510static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1511 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1512{
1513 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1514}
1515
1516static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1517 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1518{
1519 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1520}
1521
1522static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1523 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1524 unsigned long attrs)
1525{
1526 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1527 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1528 int err;
1529
1530 if (!pages)
1531 return -ENXIO;
1532
1533 if (vma->vm_pgoff >= nr_pages)
1534 return -ENXIO;
1535
1536 err = vm_map_pages(vma, pages, nr_pages);
1537 if (err)
1538 pr_err("Remapping memory failed: %d\n", err);
1539
1540 return err;
1541}
1542static int arm_iommu_mmap_attrs(struct device *dev,
1543 struct vm_area_struct *vma, void *cpu_addr,
1544 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1545{
1546 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1547
1548 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1549}
1550
1551static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1552 struct vm_area_struct *vma, void *cpu_addr,
1553 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1554{
1555 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1556}
1557
1558/*
1559 * free a page as defined by the above mapping.
1560 * Must not be called with IRQs disabled.
1561 */
1562void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1563 dma_addr_t handle, unsigned long attrs, int coherent_flag)
1564{
1565 struct page **pages;
1566 size = PAGE_ALIGN(size);
1567
1568 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1569 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1570 return;
1571 }
1572
1573 pages = __iommu_get_pages(cpu_addr, attrs);
1574 if (!pages) {
1575 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1576 return;
1577 }
1578
1579 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1580 dma_common_free_remap(cpu_addr, size);
1581
1582 __iommu_remove_mapping(dev, handle, size);
1583 __iommu_free_buffer(dev, pages, size, attrs);
1584}
1585
1586void arm_iommu_free_attrs(struct device *dev, size_t size,
1587 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1588{
1589 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1590}
1591
1592void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1593 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1594{
1595 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1596}
1597
1598static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1599 void *cpu_addr, dma_addr_t dma_addr,
1600 size_t size, unsigned long attrs)
1601{
1602 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1603 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1604
1605 if (!pages)
1606 return -ENXIO;
1607
1608 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1609 GFP_KERNEL);
1610}
1611
1612/*
1613 * Map a part of the scatter-gather list into contiguous io address space
1614 */
1615static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1616 size_t size, dma_addr_t *handle,
1617 enum dma_data_direction dir, unsigned long attrs,
1618 bool is_coherent)
1619{
1620 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1621 dma_addr_t iova, iova_base;
1622 int ret = 0;
1623 unsigned int count;
1624 struct scatterlist *s;
1625 int prot;
1626
1627 size = PAGE_ALIGN(size);
1628 *handle = DMA_MAPPING_ERROR;
1629
1630 iova_base = iova = __alloc_iova(mapping, size);
1631 if (iova == DMA_MAPPING_ERROR)
1632 return -ENOMEM;
1633
1634 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1635 phys_addr_t phys = page_to_phys(sg_page(s));
1636 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1637
1638 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1639 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1640
1641 prot = __dma_info_to_prot(dir, attrs);
1642
1643 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1644 if (ret < 0)
1645 goto fail;
1646 count += len >> PAGE_SHIFT;
1647 iova += len;
1648 }
1649 *handle = iova_base;
1650
1651 return 0;
1652fail:
1653 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1654 __free_iova(mapping, iova_base, size);
1655 return ret;
1656}
1657
1658static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1659 enum dma_data_direction dir, unsigned long attrs,
1660 bool is_coherent)
1661{
1662 struct scatterlist *s = sg, *dma = sg, *start = sg;
1663 int i, count = 0;
1664 unsigned int offset = s->offset;
1665 unsigned int size = s->offset + s->length;
1666 unsigned int max = dma_get_max_seg_size(dev);
1667
1668 for (i = 1; i < nents; i++) {
1669 s = sg_next(s);
1670
1671 s->dma_address = DMA_MAPPING_ERROR;
1672 s->dma_length = 0;
1673
1674 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1675 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1676 dir, attrs, is_coherent) < 0)
1677 goto bad_mapping;
1678
1679 dma->dma_address += offset;
1680 dma->dma_length = size - offset;
1681
1682 size = offset = s->offset;
1683 start = s;
1684 dma = sg_next(dma);
1685 count += 1;
1686 }
1687 size += s->length;
1688 }
1689 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1690 is_coherent) < 0)
1691 goto bad_mapping;
1692
1693 dma->dma_address += offset;
1694 dma->dma_length = size - offset;
1695
1696 return count+1;
1697
1698bad_mapping:
1699 for_each_sg(sg, s, count, i)
1700 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1701 return 0;
1702}
1703
1704/**
1705 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1706 * @dev: valid struct device pointer
1707 * @sg: list of buffers
1708 * @nents: number of buffers to map
1709 * @dir: DMA transfer direction
1710 *
1711 * Map a set of i/o coherent buffers described by scatterlist in streaming
1712 * mode for DMA. The scatter gather list elements are merged together (if
1713 * possible) and tagged with the appropriate dma address and length. They are
1714 * obtained via sg_dma_{address,length}.
1715 */
1716int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1717 int nents, enum dma_data_direction dir, unsigned long attrs)
1718{
1719 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1720}
1721
1722/**
1723 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1724 * @dev: valid struct device pointer
1725 * @sg: list of buffers
1726 * @nents: number of buffers to map
1727 * @dir: DMA transfer direction
1728 *
1729 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1730 * The scatter gather list elements are merged together (if possible) and
1731 * tagged with the appropriate dma address and length. They are obtained via
1732 * sg_dma_{address,length}.
1733 */
1734int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1735 int nents, enum dma_data_direction dir, unsigned long attrs)
1736{
1737 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1738}
1739
1740static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1741 int nents, enum dma_data_direction dir,
1742 unsigned long attrs, bool is_coherent)
1743{
1744 struct scatterlist *s;
1745 int i;
1746
1747 for_each_sg(sg, s, nents, i) {
1748 if (sg_dma_len(s))
1749 __iommu_remove_mapping(dev, sg_dma_address(s),
1750 sg_dma_len(s));
1751 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1752 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1753 s->length, dir);
1754 }
1755}
1756
1757/**
1758 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1759 * @dev: valid struct device pointer
1760 * @sg: list of buffers
1761 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1762 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1763 *
1764 * Unmap a set of streaming mode DMA translations. Again, CPU access
1765 * rules concerning calls here are the same as for dma_unmap_single().
1766 */
1767void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1768 int nents, enum dma_data_direction dir,
1769 unsigned long attrs)
1770{
1771 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1772}
1773
1774/**
1775 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1776 * @dev: valid struct device pointer
1777 * @sg: list of buffers
1778 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1779 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1780 *
1781 * Unmap a set of streaming mode DMA translations. Again, CPU access
1782 * rules concerning calls here are the same as for dma_unmap_single().
1783 */
1784void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1785 enum dma_data_direction dir,
1786 unsigned long attrs)
1787{
1788 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1789}
1790
1791/**
1792 * arm_iommu_sync_sg_for_cpu
1793 * @dev: valid struct device pointer
1794 * @sg: list of buffers
1795 * @nents: number of buffers to map (returned from dma_map_sg)
1796 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1797 */
1798void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1799 int nents, enum dma_data_direction dir)
1800{
1801 struct scatterlist *s;
1802 int i;
1803
1804 for_each_sg(sg, s, nents, i)
1805 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1806
1807}
1808
1809/**
1810 * arm_iommu_sync_sg_for_device
1811 * @dev: valid struct device pointer
1812 * @sg: list of buffers
1813 * @nents: number of buffers to map (returned from dma_map_sg)
1814 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1815 */
1816void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1817 int nents, enum dma_data_direction dir)
1818{
1819 struct scatterlist *s;
1820 int i;
1821
1822 for_each_sg(sg, s, nents, i)
1823 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1824}
1825
1826
1827/**
1828 * arm_coherent_iommu_map_page
1829 * @dev: valid struct device pointer
1830 * @page: page that buffer resides in
1831 * @offset: offset into page for start of buffer
1832 * @size: size of buffer to map
1833 * @dir: DMA transfer direction
1834 *
1835 * Coherent IOMMU aware version of arm_dma_map_page()
1836 */
1837static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1838 unsigned long offset, size_t size, enum dma_data_direction dir,
1839 unsigned long attrs)
1840{
1841 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1842 dma_addr_t dma_addr;
1843 int ret, prot, len = PAGE_ALIGN(size + offset);
1844
1845 dma_addr = __alloc_iova(mapping, len);
1846 if (dma_addr == DMA_MAPPING_ERROR)
1847 return dma_addr;
1848
1849 prot = __dma_info_to_prot(dir, attrs);
1850
1851 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1852 if (ret < 0)
1853 goto fail;
1854
1855 return dma_addr + offset;
1856fail:
1857 __free_iova(mapping, dma_addr, len);
1858 return DMA_MAPPING_ERROR;
1859}
1860
1861/**
1862 * arm_iommu_map_page
1863 * @dev: valid struct device pointer
1864 * @page: page that buffer resides in
1865 * @offset: offset into page for start of buffer
1866 * @size: size of buffer to map
1867 * @dir: DMA transfer direction
1868 *
1869 * IOMMU aware version of arm_dma_map_page()
1870 */
1871static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1872 unsigned long offset, size_t size, enum dma_data_direction dir,
1873 unsigned long attrs)
1874{
1875 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1876 __dma_page_cpu_to_dev(page, offset, size, dir);
1877
1878 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1879}
1880
1881/**
1882 * arm_coherent_iommu_unmap_page
1883 * @dev: valid struct device pointer
1884 * @handle: DMA address of buffer
1885 * @size: size of buffer (same as passed to dma_map_page)
1886 * @dir: DMA transfer direction (same as passed to dma_map_page)
1887 *
1888 * Coherent IOMMU aware version of arm_dma_unmap_page()
1889 */
1890static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1891 size_t size, enum dma_data_direction dir, unsigned long attrs)
1892{
1893 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1894 dma_addr_t iova = handle & PAGE_MASK;
1895 int offset = handle & ~PAGE_MASK;
1896 int len = PAGE_ALIGN(size + offset);
1897
1898 if (!iova)
1899 return;
1900
1901 iommu_unmap(mapping->domain, iova, len);
1902 __free_iova(mapping, iova, len);
1903}
1904
1905/**
1906 * arm_iommu_unmap_page
1907 * @dev: valid struct device pointer
1908 * @handle: DMA address of buffer
1909 * @size: size of buffer (same as passed to dma_map_page)
1910 * @dir: DMA transfer direction (same as passed to dma_map_page)
1911 *
1912 * IOMMU aware version of arm_dma_unmap_page()
1913 */
1914static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1915 size_t size, enum dma_data_direction dir, unsigned long attrs)
1916{
1917 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1918 dma_addr_t iova = handle & PAGE_MASK;
1919 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1920 int offset = handle & ~PAGE_MASK;
1921 int len = PAGE_ALIGN(size + offset);
1922
1923 if (!iova)
1924 return;
1925
1926 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1927 __dma_page_dev_to_cpu(page, offset, size, dir);
1928
1929 iommu_unmap(mapping->domain, iova, len);
1930 __free_iova(mapping, iova, len);
1931}
1932
1933/**
1934 * arm_iommu_map_resource - map a device resource for DMA
1935 * @dev: valid struct device pointer
1936 * @phys_addr: physical address of resource
1937 * @size: size of resource to map
1938 * @dir: DMA transfer direction
1939 */
1940static dma_addr_t arm_iommu_map_resource(struct device *dev,
1941 phys_addr_t phys_addr, size_t size,
1942 enum dma_data_direction dir, unsigned long attrs)
1943{
1944 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1945 dma_addr_t dma_addr;
1946 int ret, prot;
1947 phys_addr_t addr = phys_addr & PAGE_MASK;
1948 unsigned int offset = phys_addr & ~PAGE_MASK;
1949 size_t len = PAGE_ALIGN(size + offset);
1950
1951 dma_addr = __alloc_iova(mapping, len);
1952 if (dma_addr == DMA_MAPPING_ERROR)
1953 return dma_addr;
1954
1955 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1956
1957 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1958 if (ret < 0)
1959 goto fail;
1960
1961 return dma_addr + offset;
1962fail:
1963 __free_iova(mapping, dma_addr, len);
1964 return DMA_MAPPING_ERROR;
1965}
1966
1967/**
1968 * arm_iommu_unmap_resource - unmap a device DMA resource
1969 * @dev: valid struct device pointer
1970 * @dma_handle: DMA address to resource
1971 * @size: size of resource to map
1972 * @dir: DMA transfer direction
1973 */
1974static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1975 size_t size, enum dma_data_direction dir,
1976 unsigned long attrs)
1977{
1978 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1979 dma_addr_t iova = dma_handle & PAGE_MASK;
1980 unsigned int offset = dma_handle & ~PAGE_MASK;
1981 size_t len = PAGE_ALIGN(size + offset);
1982
1983 if (!iova)
1984 return;
1985
1986 iommu_unmap(mapping->domain, iova, len);
1987 __free_iova(mapping, iova, len);
1988}
1989
1990static void arm_iommu_sync_single_for_cpu(struct device *dev,
1991 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1992{
1993 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1994 dma_addr_t iova = handle & PAGE_MASK;
1995 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1996 unsigned int offset = handle & ~PAGE_MASK;
1997
1998 if (!iova)
1999 return;
2000
2001 __dma_page_dev_to_cpu(page, offset, size, dir);
2002}
2003
2004static void arm_iommu_sync_single_for_device(struct device *dev,
2005 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2006{
2007 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2008 dma_addr_t iova = handle & PAGE_MASK;
2009 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2010 unsigned int offset = handle & ~PAGE_MASK;
2011
2012 if (!iova)
2013 return;
2014
2015 __dma_page_cpu_to_dev(page, offset, size, dir);
2016}
2017
2018const struct dma_map_ops iommu_ops = {
2019 .alloc = arm_iommu_alloc_attrs,
2020 .free = arm_iommu_free_attrs,
2021 .mmap = arm_iommu_mmap_attrs,
2022 .get_sgtable = arm_iommu_get_sgtable,
2023
2024 .map_page = arm_iommu_map_page,
2025 .unmap_page = arm_iommu_unmap_page,
2026 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
2027 .sync_single_for_device = arm_iommu_sync_single_for_device,
2028
2029 .map_sg = arm_iommu_map_sg,
2030 .unmap_sg = arm_iommu_unmap_sg,
2031 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
2032 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
2033
2034 .map_resource = arm_iommu_map_resource,
2035 .unmap_resource = arm_iommu_unmap_resource,
2036
2037 .dma_supported = arm_dma_supported,
2038};
2039
2040const struct dma_map_ops iommu_coherent_ops = {
2041 .alloc = arm_coherent_iommu_alloc_attrs,
2042 .free = arm_coherent_iommu_free_attrs,
2043 .mmap = arm_coherent_iommu_mmap_attrs,
2044 .get_sgtable = arm_iommu_get_sgtable,
2045
2046 .map_page = arm_coherent_iommu_map_page,
2047 .unmap_page = arm_coherent_iommu_unmap_page,
2048
2049 .map_sg = arm_coherent_iommu_map_sg,
2050 .unmap_sg = arm_coherent_iommu_unmap_sg,
2051
2052 .map_resource = arm_iommu_map_resource,
2053 .unmap_resource = arm_iommu_unmap_resource,
2054
2055 .dma_supported = arm_dma_supported,
2056};
2057
2058/**
2059 * arm_iommu_create_mapping
2060 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2061 * @base: start address of the valid IO address space
2062 * @size: maximum size of the valid IO address space
2063 *
2064 * Creates a mapping structure which holds information about used/unused
2065 * IO address ranges, which is required to perform memory allocation and
2066 * mapping with IOMMU aware functions.
2067 *
2068 * The client device need to be attached to the mapping with
2069 * arm_iommu_attach_device function.
2070 */
2071struct dma_iommu_mapping *
2072arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2073{
2074 unsigned int bits = size >> PAGE_SHIFT;
2075 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2076 struct dma_iommu_mapping *mapping;
2077 int extensions = 1;
2078 int err = -ENOMEM;
2079
2080 /* currently only 32-bit DMA address space is supported */
2081 if (size > DMA_BIT_MASK(32) + 1)
2082 return ERR_PTR(-ERANGE);
2083
2084 if (!bitmap_size)
2085 return ERR_PTR(-EINVAL);
2086
2087 if (bitmap_size > PAGE_SIZE) {
2088 extensions = bitmap_size / PAGE_SIZE;
2089 bitmap_size = PAGE_SIZE;
2090 }
2091
2092 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2093 if (!mapping)
2094 goto err;
2095
2096 mapping->bitmap_size = bitmap_size;
2097 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2098 GFP_KERNEL);
2099 if (!mapping->bitmaps)
2100 goto err2;
2101
2102 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2103 if (!mapping->bitmaps[0])
2104 goto err3;
2105
2106 mapping->nr_bitmaps = 1;
2107 mapping->extensions = extensions;
2108 mapping->base = base;
2109 mapping->bits = BITS_PER_BYTE * bitmap_size;
2110
2111 spin_lock_init(&mapping->lock);
2112
2113 mapping->domain = iommu_domain_alloc(bus);
2114 if (!mapping->domain)
2115 goto err4;
2116
2117 kref_init(&mapping->kref);
2118 return mapping;
2119err4:
2120 kfree(mapping->bitmaps[0]);
2121err3:
2122 kfree(mapping->bitmaps);
2123err2:
2124 kfree(mapping);
2125err:
2126 return ERR_PTR(err);
2127}
2128EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2129
2130static void release_iommu_mapping(struct kref *kref)
2131{
2132 int i;
2133 struct dma_iommu_mapping *mapping =
2134 container_of(kref, struct dma_iommu_mapping, kref);
2135
2136 iommu_domain_free(mapping->domain);
2137 for (i = 0; i < mapping->nr_bitmaps; i++)
2138 kfree(mapping->bitmaps[i]);
2139 kfree(mapping->bitmaps);
2140 kfree(mapping);
2141}
2142
2143static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2144{
2145 int next_bitmap;
2146
2147 if (mapping->nr_bitmaps >= mapping->extensions)
2148 return -EINVAL;
2149
2150 next_bitmap = mapping->nr_bitmaps;
2151 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2152 GFP_ATOMIC);
2153 if (!mapping->bitmaps[next_bitmap])
2154 return -ENOMEM;
2155
2156 mapping->nr_bitmaps++;
2157
2158 return 0;
2159}
2160
2161void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2162{
2163 if (mapping)
2164 kref_put(&mapping->kref, release_iommu_mapping);
2165}
2166EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2167
2168static int __arm_iommu_attach_device(struct device *dev,
2169 struct dma_iommu_mapping *mapping)
2170{
2171 int err;
2172
2173 err = iommu_attach_device(mapping->domain, dev);
2174 if (err)
2175 return err;
2176
2177 kref_get(&mapping->kref);
2178 to_dma_iommu_mapping(dev) = mapping;
2179
2180 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2181 return 0;
2182}
2183
2184/**
2185 * arm_iommu_attach_device
2186 * @dev: valid struct device pointer
2187 * @mapping: io address space mapping structure (returned from
2188 * arm_iommu_create_mapping)
2189 *
2190 * Attaches specified io address space mapping to the provided device.
2191 * This replaces the dma operations (dma_map_ops pointer) with the
2192 * IOMMU aware version.
2193 *
2194 * More than one client might be attached to the same io address space
2195 * mapping.
2196 */
2197int arm_iommu_attach_device(struct device *dev,
2198 struct dma_iommu_mapping *mapping)
2199{
2200 int err;
2201
2202 err = __arm_iommu_attach_device(dev, mapping);
2203 if (err)
2204 return err;
2205
2206 set_dma_ops(dev, &iommu_ops);
2207 return 0;
2208}
2209EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2210
2211/**
2212 * arm_iommu_detach_device
2213 * @dev: valid struct device pointer
2214 *
2215 * Detaches the provided device from a previously attached map.
2216 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2217 */
2218void arm_iommu_detach_device(struct device *dev)
2219{
2220 struct dma_iommu_mapping *mapping;
2221
2222 mapping = to_dma_iommu_mapping(dev);
2223 if (!mapping) {
2224 dev_warn(dev, "Not attached\n");
2225 return;
2226 }
2227
2228 iommu_detach_device(mapping->domain, dev);
2229 kref_put(&mapping->kref, release_iommu_mapping);
2230 to_dma_iommu_mapping(dev) = NULL;
2231 set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2232
2233 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2234}
2235EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2236
2237static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2238{
2239 return coherent ? &iommu_coherent_ops : &iommu_ops;
2240}
2241
2242static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2243 const struct iommu_ops *iommu)
2244{
2245 struct dma_iommu_mapping *mapping;
2246
2247 if (!iommu)
2248 return false;
2249
2250 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2251 if (IS_ERR(mapping)) {
2252 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2253 size, dev_name(dev));
2254 return false;
2255 }
2256
2257 if (__arm_iommu_attach_device(dev, mapping)) {
2258 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2259 dev_name(dev));
2260 arm_iommu_release_mapping(mapping);
2261 return false;
2262 }
2263
2264 return true;
2265}
2266
2267static void arm_teardown_iommu_dma_ops(struct device *dev)
2268{
2269 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2270
2271 if (!mapping)
2272 return;
2273
2274 arm_iommu_detach_device(dev);
2275 arm_iommu_release_mapping(mapping);
2276}
2277
2278#else
2279
2280static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2281 const struct iommu_ops *iommu)
2282{
2283 return false;
2284}
2285
2286static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2287
2288#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2289
2290#endif /* CONFIG_ARM_DMA_USE_IOMMU */
2291
2292void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2293 const struct iommu_ops *iommu, bool coherent)
2294{
2295 const struct dma_map_ops *dma_ops;
2296
2297 dev->archdata.dma_coherent = coherent;
2298#ifdef CONFIG_SWIOTLB
2299 dev->dma_coherent = coherent;
2300#endif
2301
2302 /*
2303 * Don't override the dma_ops if they have already been set. Ideally
2304 * this should be the only location where dma_ops are set, remove this
2305 * check when all other callers of set_dma_ops will have disappeared.
2306 */
2307 if (dev->dma_ops)
2308 return;
2309
2310 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2311 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2312 else
2313 dma_ops = arm_get_dma_map_ops(coherent);
2314
2315 set_dma_ops(dev, dma_ops);
2316
2317#ifdef CONFIG_XEN
2318 if (xen_initial_domain())
2319 dev->dma_ops = &xen_swiotlb_dma_ops;
2320#endif
2321 dev->archdata.dma_ops_setup = true;
2322}
2323
2324void arch_teardown_dma_ops(struct device *dev)
2325{
2326 if (!dev->archdata.dma_ops_setup)
2327 return;
2328
2329 arm_teardown_iommu_dma_ops(dev);
2330 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2331 set_dma_ops(dev, NULL);
2332}
2333
2334#ifdef CONFIG_SWIOTLB
2335void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
2336 size_t size, enum dma_data_direction dir)
2337{
2338 __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2339 size, dir);
2340}
2341
2342void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
2343 size_t size, enum dma_data_direction dir)
2344{
2345 __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2346 size, dir);
2347}
2348
2349long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr,
2350 dma_addr_t dma_addr)
2351{
2352 return dma_to_pfn(dev, dma_addr);
2353}
2354
2355void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2356 gfp_t gfp, unsigned long attrs)
2357{
2358 return __dma_alloc(dev, size, dma_handle, gfp,
2359 __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2360 attrs, __builtin_return_address(0));
2361}
2362
2363void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2364 dma_addr_t dma_handle, unsigned long attrs)
2365{
2366 __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2367}
2368#endif /* CONFIG_SWIOTLB */
1/*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/bootmem.h>
13#include <linux/module.h>
14#include <linux/mm.h>
15#include <linux/genalloc.h>
16#include <linux/gfp.h>
17#include <linux/errno.h>
18#include <linux/list.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/dma-mapping.h>
22#include <linux/dma-contiguous.h>
23#include <linux/highmem.h>
24#include <linux/memblock.h>
25#include <linux/slab.h>
26#include <linux/iommu.h>
27#include <linux/io.h>
28#include <linux/vmalloc.h>
29#include <linux/sizes.h>
30#include <linux/cma.h>
31
32#include <asm/memory.h>
33#include <asm/highmem.h>
34#include <asm/cacheflush.h>
35#include <asm/tlbflush.h>
36#include <asm/mach/arch.h>
37#include <asm/dma-iommu.h>
38#include <asm/mach/map.h>
39#include <asm/system_info.h>
40#include <asm/dma-contiguous.h>
41
42#include "dma.h"
43#include "mm.h"
44
45struct arm_dma_alloc_args {
46 struct device *dev;
47 size_t size;
48 gfp_t gfp;
49 pgprot_t prot;
50 const void *caller;
51 bool want_vaddr;
52 int coherent_flag;
53};
54
55struct arm_dma_free_args {
56 struct device *dev;
57 size_t size;
58 void *cpu_addr;
59 struct page *page;
60 bool want_vaddr;
61};
62
63#define NORMAL 0
64#define COHERENT 1
65
66struct arm_dma_allocator {
67 void *(*alloc)(struct arm_dma_alloc_args *args,
68 struct page **ret_page);
69 void (*free)(struct arm_dma_free_args *args);
70};
71
72struct arm_dma_buffer {
73 struct list_head list;
74 void *virt;
75 struct arm_dma_allocator *allocator;
76};
77
78static LIST_HEAD(arm_dma_bufs);
79static DEFINE_SPINLOCK(arm_dma_bufs_lock);
80
81static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
82{
83 struct arm_dma_buffer *buf, *found = NULL;
84 unsigned long flags;
85
86 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
87 list_for_each_entry(buf, &arm_dma_bufs, list) {
88 if (buf->virt == virt) {
89 list_del(&buf->list);
90 found = buf;
91 break;
92 }
93 }
94 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
95 return found;
96}
97
98/*
99 * The DMA API is built upon the notion of "buffer ownership". A buffer
100 * is either exclusively owned by the CPU (and therefore may be accessed
101 * by it) or exclusively owned by the DMA device. These helper functions
102 * represent the transitions between these two ownership states.
103 *
104 * Note, however, that on later ARMs, this notion does not work due to
105 * speculative prefetches. We model our approach on the assumption that
106 * the CPU does do speculative prefetches, which means we clean caches
107 * before transfers and delay cache invalidation until transfer completion.
108 *
109 */
110static void __dma_page_cpu_to_dev(struct page *, unsigned long,
111 size_t, enum dma_data_direction);
112static void __dma_page_dev_to_cpu(struct page *, unsigned long,
113 size_t, enum dma_data_direction);
114
115/**
116 * arm_dma_map_page - map a portion of a page for streaming DMA
117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
118 * @page: page that buffer resides in
119 * @offset: offset into page for start of buffer
120 * @size: size of buffer to map
121 * @dir: DMA transfer direction
122 *
123 * Ensure that any data held in the cache is appropriately discarded
124 * or written back.
125 *
126 * The device owns this memory once this call has completed. The CPU
127 * can regain ownership by calling dma_unmap_page().
128 */
129static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
130 unsigned long offset, size_t size, enum dma_data_direction dir,
131 unsigned long attrs)
132{
133 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
134 __dma_page_cpu_to_dev(page, offset, size, dir);
135 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
136}
137
138static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
139 unsigned long offset, size_t size, enum dma_data_direction dir,
140 unsigned long attrs)
141{
142 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
143}
144
145/**
146 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
147 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
148 * @handle: DMA address of buffer
149 * @size: size of buffer (same as passed to dma_map_page)
150 * @dir: DMA transfer direction (same as passed to dma_map_page)
151 *
152 * Unmap a page streaming mode DMA translation. The handle and size
153 * must match what was provided in the previous dma_map_page() call.
154 * All other usages are undefined.
155 *
156 * After this call, reads by the CPU to the buffer are guaranteed to see
157 * whatever the device wrote there.
158 */
159static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
160 size_t size, enum dma_data_direction dir, unsigned long attrs)
161{
162 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
163 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
164 handle & ~PAGE_MASK, size, dir);
165}
166
167static void arm_dma_sync_single_for_cpu(struct device *dev,
168 dma_addr_t handle, size_t size, enum dma_data_direction dir)
169{
170 unsigned int offset = handle & (PAGE_SIZE - 1);
171 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
172 __dma_page_dev_to_cpu(page, offset, size, dir);
173}
174
175static void arm_dma_sync_single_for_device(struct device *dev,
176 dma_addr_t handle, size_t size, enum dma_data_direction dir)
177{
178 unsigned int offset = handle & (PAGE_SIZE - 1);
179 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
180 __dma_page_cpu_to_dev(page, offset, size, dir);
181}
182
183static int arm_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
184{
185 return dma_addr == ARM_MAPPING_ERROR;
186}
187
188const struct dma_map_ops arm_dma_ops = {
189 .alloc = arm_dma_alloc,
190 .free = arm_dma_free,
191 .mmap = arm_dma_mmap,
192 .get_sgtable = arm_dma_get_sgtable,
193 .map_page = arm_dma_map_page,
194 .unmap_page = arm_dma_unmap_page,
195 .map_sg = arm_dma_map_sg,
196 .unmap_sg = arm_dma_unmap_sg,
197 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
198 .sync_single_for_device = arm_dma_sync_single_for_device,
199 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
200 .sync_sg_for_device = arm_dma_sync_sg_for_device,
201 .mapping_error = arm_dma_mapping_error,
202 .dma_supported = arm_dma_supported,
203};
204EXPORT_SYMBOL(arm_dma_ops);
205
206static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
207 dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
208static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
209 dma_addr_t handle, unsigned long attrs);
210static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
211 void *cpu_addr, dma_addr_t dma_addr, size_t size,
212 unsigned long attrs);
213
214const struct dma_map_ops arm_coherent_dma_ops = {
215 .alloc = arm_coherent_dma_alloc,
216 .free = arm_coherent_dma_free,
217 .mmap = arm_coherent_dma_mmap,
218 .get_sgtable = arm_dma_get_sgtable,
219 .map_page = arm_coherent_dma_map_page,
220 .map_sg = arm_dma_map_sg,
221 .mapping_error = arm_dma_mapping_error,
222 .dma_supported = arm_dma_supported,
223};
224EXPORT_SYMBOL(arm_coherent_dma_ops);
225
226static int __dma_supported(struct device *dev, u64 mask, bool warn)
227{
228 unsigned long max_dma_pfn;
229
230 /*
231 * If the mask allows for more memory than we can address,
232 * and we actually have that much memory, then we must
233 * indicate that DMA to this device is not supported.
234 */
235 if (sizeof(mask) != sizeof(dma_addr_t) &&
236 mask > (dma_addr_t)~0 &&
237 dma_to_pfn(dev, ~0) < max_pfn - 1) {
238 if (warn) {
239 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
240 mask);
241 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
242 }
243 return 0;
244 }
245
246 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
247
248 /*
249 * Translate the device's DMA mask to a PFN limit. This
250 * PFN number includes the page which we can DMA to.
251 */
252 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
253 if (warn)
254 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
255 mask,
256 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
257 max_dma_pfn + 1);
258 return 0;
259 }
260
261 return 1;
262}
263
264static u64 get_coherent_dma_mask(struct device *dev)
265{
266 u64 mask = (u64)DMA_BIT_MASK(32);
267
268 if (dev) {
269 mask = dev->coherent_dma_mask;
270
271 /*
272 * Sanity check the DMA mask - it must be non-zero, and
273 * must be able to be satisfied by a DMA allocation.
274 */
275 if (mask == 0) {
276 dev_warn(dev, "coherent DMA mask is unset\n");
277 return 0;
278 }
279
280 if (!__dma_supported(dev, mask, true))
281 return 0;
282 }
283
284 return mask;
285}
286
287static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
288{
289 /*
290 * Ensure that the allocated pages are zeroed, and that any data
291 * lurking in the kernel direct-mapped region is invalidated.
292 */
293 if (PageHighMem(page)) {
294 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
295 phys_addr_t end = base + size;
296 while (size > 0) {
297 void *ptr = kmap_atomic(page);
298 memset(ptr, 0, PAGE_SIZE);
299 if (coherent_flag != COHERENT)
300 dmac_flush_range(ptr, ptr + PAGE_SIZE);
301 kunmap_atomic(ptr);
302 page++;
303 size -= PAGE_SIZE;
304 }
305 if (coherent_flag != COHERENT)
306 outer_flush_range(base, end);
307 } else {
308 void *ptr = page_address(page);
309 memset(ptr, 0, size);
310 if (coherent_flag != COHERENT) {
311 dmac_flush_range(ptr, ptr + size);
312 outer_flush_range(__pa(ptr), __pa(ptr) + size);
313 }
314 }
315}
316
317/*
318 * Allocate a DMA buffer for 'dev' of size 'size' using the
319 * specified gfp mask. Note that 'size' must be page aligned.
320 */
321static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
322 gfp_t gfp, int coherent_flag)
323{
324 unsigned long order = get_order(size);
325 struct page *page, *p, *e;
326
327 page = alloc_pages(gfp, order);
328 if (!page)
329 return NULL;
330
331 /*
332 * Now split the huge page and free the excess pages
333 */
334 split_page(page, order);
335 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
336 __free_page(p);
337
338 __dma_clear_buffer(page, size, coherent_flag);
339
340 return page;
341}
342
343/*
344 * Free a DMA buffer. 'size' must be page aligned.
345 */
346static void __dma_free_buffer(struct page *page, size_t size)
347{
348 struct page *e = page + (size >> PAGE_SHIFT);
349
350 while (page < e) {
351 __free_page(page);
352 page++;
353 }
354}
355
356static void *__alloc_from_contiguous(struct device *dev, size_t size,
357 pgprot_t prot, struct page **ret_page,
358 const void *caller, bool want_vaddr,
359 int coherent_flag, gfp_t gfp);
360
361static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
362 pgprot_t prot, struct page **ret_page,
363 const void *caller, bool want_vaddr);
364
365static void *
366__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
367 const void *caller)
368{
369 /*
370 * DMA allocation can be mapped to user space, so lets
371 * set VM_USERMAP flags too.
372 */
373 return dma_common_contiguous_remap(page, size,
374 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
375 prot, caller);
376}
377
378static void __dma_free_remap(void *cpu_addr, size_t size)
379{
380 dma_common_free_remap(cpu_addr, size,
381 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
382}
383
384#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
385static struct gen_pool *atomic_pool __ro_after_init;
386
387static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
388
389static int __init early_coherent_pool(char *p)
390{
391 atomic_pool_size = memparse(p, &p);
392 return 0;
393}
394early_param("coherent_pool", early_coherent_pool);
395
396/*
397 * Initialise the coherent pool for atomic allocations.
398 */
399static int __init atomic_pool_init(void)
400{
401 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
402 gfp_t gfp = GFP_KERNEL | GFP_DMA;
403 struct page *page;
404 void *ptr;
405
406 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
407 if (!atomic_pool)
408 goto out;
409 /*
410 * The atomic pool is only used for non-coherent allocations
411 * so we must pass NORMAL for coherent_flag.
412 */
413 if (dev_get_cma_area(NULL))
414 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
415 &page, atomic_pool_init, true, NORMAL,
416 GFP_KERNEL);
417 else
418 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
419 &page, atomic_pool_init, true);
420 if (ptr) {
421 int ret;
422
423 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
424 page_to_phys(page),
425 atomic_pool_size, -1);
426 if (ret)
427 goto destroy_genpool;
428
429 gen_pool_set_algo(atomic_pool,
430 gen_pool_first_fit_order_align,
431 NULL);
432 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
433 atomic_pool_size / 1024);
434 return 0;
435 }
436
437destroy_genpool:
438 gen_pool_destroy(atomic_pool);
439 atomic_pool = NULL;
440out:
441 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
442 atomic_pool_size / 1024);
443 return -ENOMEM;
444}
445/*
446 * CMA is activated by core_initcall, so we must be called after it.
447 */
448postcore_initcall(atomic_pool_init);
449
450struct dma_contig_early_reserve {
451 phys_addr_t base;
452 unsigned long size;
453};
454
455static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
456
457static int dma_mmu_remap_num __initdata;
458
459void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
460{
461 dma_mmu_remap[dma_mmu_remap_num].base = base;
462 dma_mmu_remap[dma_mmu_remap_num].size = size;
463 dma_mmu_remap_num++;
464}
465
466void __init dma_contiguous_remap(void)
467{
468 int i;
469 for (i = 0; i < dma_mmu_remap_num; i++) {
470 phys_addr_t start = dma_mmu_remap[i].base;
471 phys_addr_t end = start + dma_mmu_remap[i].size;
472 struct map_desc map;
473 unsigned long addr;
474
475 if (end > arm_lowmem_limit)
476 end = arm_lowmem_limit;
477 if (start >= end)
478 continue;
479
480 map.pfn = __phys_to_pfn(start);
481 map.virtual = __phys_to_virt(start);
482 map.length = end - start;
483 map.type = MT_MEMORY_DMA_READY;
484
485 /*
486 * Clear previous low-memory mapping to ensure that the
487 * TLB does not see any conflicting entries, then flush
488 * the TLB of the old entries before creating new mappings.
489 *
490 * This ensures that any speculatively loaded TLB entries
491 * (even though they may be rare) can not cause any problems,
492 * and ensures that this code is architecturally compliant.
493 */
494 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
495 addr += PMD_SIZE)
496 pmd_clear(pmd_off_k(addr));
497
498 flush_tlb_kernel_range(__phys_to_virt(start),
499 __phys_to_virt(end));
500
501 iotable_init(&map, 1);
502 }
503}
504
505static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
506 void *data)
507{
508 struct page *page = virt_to_page(addr);
509 pgprot_t prot = *(pgprot_t *)data;
510
511 set_pte_ext(pte, mk_pte(page, prot), 0);
512 return 0;
513}
514
515static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
516{
517 unsigned long start = (unsigned long) page_address(page);
518 unsigned end = start + size;
519
520 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
521 flush_tlb_kernel_range(start, end);
522}
523
524static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
525 pgprot_t prot, struct page **ret_page,
526 const void *caller, bool want_vaddr)
527{
528 struct page *page;
529 void *ptr = NULL;
530 /*
531 * __alloc_remap_buffer is only called when the device is
532 * non-coherent
533 */
534 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
535 if (!page)
536 return NULL;
537 if (!want_vaddr)
538 goto out;
539
540 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
541 if (!ptr) {
542 __dma_free_buffer(page, size);
543 return NULL;
544 }
545
546 out:
547 *ret_page = page;
548 return ptr;
549}
550
551static void *__alloc_from_pool(size_t size, struct page **ret_page)
552{
553 unsigned long val;
554 void *ptr = NULL;
555
556 if (!atomic_pool) {
557 WARN(1, "coherent pool not initialised!\n");
558 return NULL;
559 }
560
561 val = gen_pool_alloc(atomic_pool, size);
562 if (val) {
563 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
564
565 *ret_page = phys_to_page(phys);
566 ptr = (void *)val;
567 }
568
569 return ptr;
570}
571
572static bool __in_atomic_pool(void *start, size_t size)
573{
574 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
575}
576
577static int __free_from_pool(void *start, size_t size)
578{
579 if (!__in_atomic_pool(start, size))
580 return 0;
581
582 gen_pool_free(atomic_pool, (unsigned long)start, size);
583
584 return 1;
585}
586
587static void *__alloc_from_contiguous(struct device *dev, size_t size,
588 pgprot_t prot, struct page **ret_page,
589 const void *caller, bool want_vaddr,
590 int coherent_flag, gfp_t gfp)
591{
592 unsigned long order = get_order(size);
593 size_t count = size >> PAGE_SHIFT;
594 struct page *page;
595 void *ptr = NULL;
596
597 page = dma_alloc_from_contiguous(dev, count, order, gfp);
598 if (!page)
599 return NULL;
600
601 __dma_clear_buffer(page, size, coherent_flag);
602
603 if (!want_vaddr)
604 goto out;
605
606 if (PageHighMem(page)) {
607 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
608 if (!ptr) {
609 dma_release_from_contiguous(dev, page, count);
610 return NULL;
611 }
612 } else {
613 __dma_remap(page, size, prot);
614 ptr = page_address(page);
615 }
616
617 out:
618 *ret_page = page;
619 return ptr;
620}
621
622static void __free_from_contiguous(struct device *dev, struct page *page,
623 void *cpu_addr, size_t size, bool want_vaddr)
624{
625 if (want_vaddr) {
626 if (PageHighMem(page))
627 __dma_free_remap(cpu_addr, size);
628 else
629 __dma_remap(page, size, PAGE_KERNEL);
630 }
631 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
632}
633
634static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
635{
636 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
637 pgprot_writecombine(prot) :
638 pgprot_dmacoherent(prot);
639 return prot;
640}
641
642static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
643 struct page **ret_page)
644{
645 struct page *page;
646 /* __alloc_simple_buffer is only called when the device is coherent */
647 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
648 if (!page)
649 return NULL;
650
651 *ret_page = page;
652 return page_address(page);
653}
654
655static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
656 struct page **ret_page)
657{
658 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
659 ret_page);
660}
661
662static void simple_allocator_free(struct arm_dma_free_args *args)
663{
664 __dma_free_buffer(args->page, args->size);
665}
666
667static struct arm_dma_allocator simple_allocator = {
668 .alloc = simple_allocator_alloc,
669 .free = simple_allocator_free,
670};
671
672static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
673 struct page **ret_page)
674{
675 return __alloc_from_contiguous(args->dev, args->size, args->prot,
676 ret_page, args->caller,
677 args->want_vaddr, args->coherent_flag,
678 args->gfp);
679}
680
681static void cma_allocator_free(struct arm_dma_free_args *args)
682{
683 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
684 args->size, args->want_vaddr);
685}
686
687static struct arm_dma_allocator cma_allocator = {
688 .alloc = cma_allocator_alloc,
689 .free = cma_allocator_free,
690};
691
692static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
693 struct page **ret_page)
694{
695 return __alloc_from_pool(args->size, ret_page);
696}
697
698static void pool_allocator_free(struct arm_dma_free_args *args)
699{
700 __free_from_pool(args->cpu_addr, args->size);
701}
702
703static struct arm_dma_allocator pool_allocator = {
704 .alloc = pool_allocator_alloc,
705 .free = pool_allocator_free,
706};
707
708static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
709 struct page **ret_page)
710{
711 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
712 args->prot, ret_page, args->caller,
713 args->want_vaddr);
714}
715
716static void remap_allocator_free(struct arm_dma_free_args *args)
717{
718 if (args->want_vaddr)
719 __dma_free_remap(args->cpu_addr, args->size);
720
721 __dma_free_buffer(args->page, args->size);
722}
723
724static struct arm_dma_allocator remap_allocator = {
725 .alloc = remap_allocator_alloc,
726 .free = remap_allocator_free,
727};
728
729static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
730 gfp_t gfp, pgprot_t prot, bool is_coherent,
731 unsigned long attrs, const void *caller)
732{
733 u64 mask = get_coherent_dma_mask(dev);
734 struct page *page = NULL;
735 void *addr;
736 bool allowblock, cma;
737 struct arm_dma_buffer *buf;
738 struct arm_dma_alloc_args args = {
739 .dev = dev,
740 .size = PAGE_ALIGN(size),
741 .gfp = gfp,
742 .prot = prot,
743 .caller = caller,
744 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
745 .coherent_flag = is_coherent ? COHERENT : NORMAL,
746 };
747
748#ifdef CONFIG_DMA_API_DEBUG
749 u64 limit = (mask + 1) & ~mask;
750 if (limit && size >= limit) {
751 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
752 size, mask);
753 return NULL;
754 }
755#endif
756
757 if (!mask)
758 return NULL;
759
760 buf = kzalloc(sizeof(*buf),
761 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
762 if (!buf)
763 return NULL;
764
765 if (mask < 0xffffffffULL)
766 gfp |= GFP_DMA;
767
768 /*
769 * Following is a work-around (a.k.a. hack) to prevent pages
770 * with __GFP_COMP being passed to split_page() which cannot
771 * handle them. The real problem is that this flag probably
772 * should be 0 on ARM as it is not supported on this
773 * platform; see CONFIG_HUGETLBFS.
774 */
775 gfp &= ~(__GFP_COMP);
776 args.gfp = gfp;
777
778 *handle = ARM_MAPPING_ERROR;
779 allowblock = gfpflags_allow_blocking(gfp);
780 cma = allowblock ? dev_get_cma_area(dev) : false;
781
782 if (cma)
783 buf->allocator = &cma_allocator;
784 else if (is_coherent)
785 buf->allocator = &simple_allocator;
786 else if (allowblock)
787 buf->allocator = &remap_allocator;
788 else
789 buf->allocator = &pool_allocator;
790
791 addr = buf->allocator->alloc(&args, &page);
792
793 if (page) {
794 unsigned long flags;
795
796 *handle = pfn_to_dma(dev, page_to_pfn(page));
797 buf->virt = args.want_vaddr ? addr : page;
798
799 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
800 list_add(&buf->list, &arm_dma_bufs);
801 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
802 } else {
803 kfree(buf);
804 }
805
806 return args.want_vaddr ? addr : page;
807}
808
809/*
810 * Allocate DMA-coherent memory space and return both the kernel remapped
811 * virtual and bus address for that space.
812 */
813void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
814 gfp_t gfp, unsigned long attrs)
815{
816 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
817
818 return __dma_alloc(dev, size, handle, gfp, prot, false,
819 attrs, __builtin_return_address(0));
820}
821
822static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
823 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
824{
825 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
826 attrs, __builtin_return_address(0));
827}
828
829static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
830 void *cpu_addr, dma_addr_t dma_addr, size_t size,
831 unsigned long attrs)
832{
833 int ret;
834 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
835 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
836 unsigned long pfn = dma_to_pfn(dev, dma_addr);
837 unsigned long off = vma->vm_pgoff;
838
839 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
840 return ret;
841
842 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
843 ret = remap_pfn_range(vma, vma->vm_start,
844 pfn + off,
845 vma->vm_end - vma->vm_start,
846 vma->vm_page_prot);
847 }
848
849 return ret;
850}
851
852/*
853 * Create userspace mapping for the DMA-coherent memory.
854 */
855static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
856 void *cpu_addr, dma_addr_t dma_addr, size_t size,
857 unsigned long attrs)
858{
859 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
860}
861
862int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
863 void *cpu_addr, dma_addr_t dma_addr, size_t size,
864 unsigned long attrs)
865{
866 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
867 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
868}
869
870/*
871 * Free a buffer as defined by the above mapping.
872 */
873static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
874 dma_addr_t handle, unsigned long attrs,
875 bool is_coherent)
876{
877 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
878 struct arm_dma_buffer *buf;
879 struct arm_dma_free_args args = {
880 .dev = dev,
881 .size = PAGE_ALIGN(size),
882 .cpu_addr = cpu_addr,
883 .page = page,
884 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
885 };
886
887 buf = arm_dma_buffer_find(cpu_addr);
888 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
889 return;
890
891 buf->allocator->free(&args);
892 kfree(buf);
893}
894
895void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
896 dma_addr_t handle, unsigned long attrs)
897{
898 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
899}
900
901static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
902 dma_addr_t handle, unsigned long attrs)
903{
904 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
905}
906
907/*
908 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
909 * that the intention is to allow exporting memory allocated via the
910 * coherent DMA APIs through the dma_buf API, which only accepts a
911 * scattertable. This presents a couple of problems:
912 * 1. Not all memory allocated via the coherent DMA APIs is backed by
913 * a struct page
914 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
915 * as we will try to flush the memory through a different alias to that
916 * actually being used (and the flushes are redundant.)
917 */
918int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
919 void *cpu_addr, dma_addr_t handle, size_t size,
920 unsigned long attrs)
921{
922 unsigned long pfn = dma_to_pfn(dev, handle);
923 struct page *page;
924 int ret;
925
926 /* If the PFN is not valid, we do not have a struct page */
927 if (!pfn_valid(pfn))
928 return -ENXIO;
929
930 page = pfn_to_page(pfn);
931
932 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
933 if (unlikely(ret))
934 return ret;
935
936 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
937 return 0;
938}
939
940static void dma_cache_maint_page(struct page *page, unsigned long offset,
941 size_t size, enum dma_data_direction dir,
942 void (*op)(const void *, size_t, int))
943{
944 unsigned long pfn;
945 size_t left = size;
946
947 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
948 offset %= PAGE_SIZE;
949
950 /*
951 * A single sg entry may refer to multiple physically contiguous
952 * pages. But we still need to process highmem pages individually.
953 * If highmem is not configured then the bulk of this loop gets
954 * optimized out.
955 */
956 do {
957 size_t len = left;
958 void *vaddr;
959
960 page = pfn_to_page(pfn);
961
962 if (PageHighMem(page)) {
963 if (len + offset > PAGE_SIZE)
964 len = PAGE_SIZE - offset;
965
966 if (cache_is_vipt_nonaliasing()) {
967 vaddr = kmap_atomic(page);
968 op(vaddr + offset, len, dir);
969 kunmap_atomic(vaddr);
970 } else {
971 vaddr = kmap_high_get(page);
972 if (vaddr) {
973 op(vaddr + offset, len, dir);
974 kunmap_high(page);
975 }
976 }
977 } else {
978 vaddr = page_address(page) + offset;
979 op(vaddr, len, dir);
980 }
981 offset = 0;
982 pfn++;
983 left -= len;
984 } while (left);
985}
986
987/*
988 * Make an area consistent for devices.
989 * Note: Drivers should NOT use this function directly, as it will break
990 * platforms with CONFIG_DMABOUNCE.
991 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
992 */
993static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
994 size_t size, enum dma_data_direction dir)
995{
996 phys_addr_t paddr;
997
998 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
999
1000 paddr = page_to_phys(page) + off;
1001 if (dir == DMA_FROM_DEVICE) {
1002 outer_inv_range(paddr, paddr + size);
1003 } else {
1004 outer_clean_range(paddr, paddr + size);
1005 }
1006 /* FIXME: non-speculating: flush on bidirectional mappings? */
1007}
1008
1009static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1010 size_t size, enum dma_data_direction dir)
1011{
1012 phys_addr_t paddr = page_to_phys(page) + off;
1013
1014 /* FIXME: non-speculating: not required */
1015 /* in any case, don't bother invalidating if DMA to device */
1016 if (dir != DMA_TO_DEVICE) {
1017 outer_inv_range(paddr, paddr + size);
1018
1019 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1020 }
1021
1022 /*
1023 * Mark the D-cache clean for these pages to avoid extra flushing.
1024 */
1025 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1026 unsigned long pfn;
1027 size_t left = size;
1028
1029 pfn = page_to_pfn(page) + off / PAGE_SIZE;
1030 off %= PAGE_SIZE;
1031 if (off) {
1032 pfn++;
1033 left -= PAGE_SIZE - off;
1034 }
1035 while (left >= PAGE_SIZE) {
1036 page = pfn_to_page(pfn++);
1037 set_bit(PG_dcache_clean, &page->flags);
1038 left -= PAGE_SIZE;
1039 }
1040 }
1041}
1042
1043/**
1044 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1045 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1046 * @sg: list of buffers
1047 * @nents: number of buffers to map
1048 * @dir: DMA transfer direction
1049 *
1050 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1051 * This is the scatter-gather version of the dma_map_single interface.
1052 * Here the scatter gather list elements are each tagged with the
1053 * appropriate dma address and length. They are obtained via
1054 * sg_dma_{address,length}.
1055 *
1056 * Device ownership issues as mentioned for dma_map_single are the same
1057 * here.
1058 */
1059int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1060 enum dma_data_direction dir, unsigned long attrs)
1061{
1062 const struct dma_map_ops *ops = get_dma_ops(dev);
1063 struct scatterlist *s;
1064 int i, j;
1065
1066 for_each_sg(sg, s, nents, i) {
1067#ifdef CONFIG_NEED_SG_DMA_LENGTH
1068 s->dma_length = s->length;
1069#endif
1070 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1071 s->length, dir, attrs);
1072 if (dma_mapping_error(dev, s->dma_address))
1073 goto bad_mapping;
1074 }
1075 return nents;
1076
1077 bad_mapping:
1078 for_each_sg(sg, s, i, j)
1079 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1080 return 0;
1081}
1082
1083/**
1084 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1085 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1086 * @sg: list of buffers
1087 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1088 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1089 *
1090 * Unmap a set of streaming mode DMA translations. Again, CPU access
1091 * rules concerning calls here are the same as for dma_unmap_single().
1092 */
1093void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1094 enum dma_data_direction dir, unsigned long attrs)
1095{
1096 const struct dma_map_ops *ops = get_dma_ops(dev);
1097 struct scatterlist *s;
1098
1099 int i;
1100
1101 for_each_sg(sg, s, nents, i)
1102 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1103}
1104
1105/**
1106 * arm_dma_sync_sg_for_cpu
1107 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1108 * @sg: list of buffers
1109 * @nents: number of buffers to map (returned from dma_map_sg)
1110 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1111 */
1112void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1113 int nents, enum dma_data_direction dir)
1114{
1115 const struct dma_map_ops *ops = get_dma_ops(dev);
1116 struct scatterlist *s;
1117 int i;
1118
1119 for_each_sg(sg, s, nents, i)
1120 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1121 dir);
1122}
1123
1124/**
1125 * arm_dma_sync_sg_for_device
1126 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1127 * @sg: list of buffers
1128 * @nents: number of buffers to map (returned from dma_map_sg)
1129 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1130 */
1131void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1132 int nents, enum dma_data_direction dir)
1133{
1134 const struct dma_map_ops *ops = get_dma_ops(dev);
1135 struct scatterlist *s;
1136 int i;
1137
1138 for_each_sg(sg, s, nents, i)
1139 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1140 dir);
1141}
1142
1143/*
1144 * Return whether the given device DMA address mask can be supported
1145 * properly. For example, if your device can only drive the low 24-bits
1146 * during bus mastering, then you would pass 0x00ffffff as the mask
1147 * to this function.
1148 */
1149int arm_dma_supported(struct device *dev, u64 mask)
1150{
1151 return __dma_supported(dev, mask, false);
1152}
1153
1154#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1155
1156static int __init dma_debug_do_init(void)
1157{
1158 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1159 return 0;
1160}
1161core_initcall(dma_debug_do_init);
1162
1163#ifdef CONFIG_ARM_DMA_USE_IOMMU
1164
1165static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1166{
1167 int prot = 0;
1168
1169 if (attrs & DMA_ATTR_PRIVILEGED)
1170 prot |= IOMMU_PRIV;
1171
1172 switch (dir) {
1173 case DMA_BIDIRECTIONAL:
1174 return prot | IOMMU_READ | IOMMU_WRITE;
1175 case DMA_TO_DEVICE:
1176 return prot | IOMMU_READ;
1177 case DMA_FROM_DEVICE:
1178 return prot | IOMMU_WRITE;
1179 default:
1180 return prot;
1181 }
1182}
1183
1184/* IOMMU */
1185
1186static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1187
1188static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1189 size_t size)
1190{
1191 unsigned int order = get_order(size);
1192 unsigned int align = 0;
1193 unsigned int count, start;
1194 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1195 unsigned long flags;
1196 dma_addr_t iova;
1197 int i;
1198
1199 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1200 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1201
1202 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1203 align = (1 << order) - 1;
1204
1205 spin_lock_irqsave(&mapping->lock, flags);
1206 for (i = 0; i < mapping->nr_bitmaps; i++) {
1207 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1208 mapping->bits, 0, count, align);
1209
1210 if (start > mapping->bits)
1211 continue;
1212
1213 bitmap_set(mapping->bitmaps[i], start, count);
1214 break;
1215 }
1216
1217 /*
1218 * No unused range found. Try to extend the existing mapping
1219 * and perform a second attempt to reserve an IO virtual
1220 * address range of size bytes.
1221 */
1222 if (i == mapping->nr_bitmaps) {
1223 if (extend_iommu_mapping(mapping)) {
1224 spin_unlock_irqrestore(&mapping->lock, flags);
1225 return ARM_MAPPING_ERROR;
1226 }
1227
1228 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1229 mapping->bits, 0, count, align);
1230
1231 if (start > mapping->bits) {
1232 spin_unlock_irqrestore(&mapping->lock, flags);
1233 return ARM_MAPPING_ERROR;
1234 }
1235
1236 bitmap_set(mapping->bitmaps[i], start, count);
1237 }
1238 spin_unlock_irqrestore(&mapping->lock, flags);
1239
1240 iova = mapping->base + (mapping_size * i);
1241 iova += start << PAGE_SHIFT;
1242
1243 return iova;
1244}
1245
1246static inline void __free_iova(struct dma_iommu_mapping *mapping,
1247 dma_addr_t addr, size_t size)
1248{
1249 unsigned int start, count;
1250 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1251 unsigned long flags;
1252 dma_addr_t bitmap_base;
1253 u32 bitmap_index;
1254
1255 if (!size)
1256 return;
1257
1258 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1259 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1260
1261 bitmap_base = mapping->base + mapping_size * bitmap_index;
1262
1263 start = (addr - bitmap_base) >> PAGE_SHIFT;
1264
1265 if (addr + size > bitmap_base + mapping_size) {
1266 /*
1267 * The address range to be freed reaches into the iova
1268 * range of the next bitmap. This should not happen as
1269 * we don't allow this in __alloc_iova (at the
1270 * moment).
1271 */
1272 BUG();
1273 } else
1274 count = size >> PAGE_SHIFT;
1275
1276 spin_lock_irqsave(&mapping->lock, flags);
1277 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1278 spin_unlock_irqrestore(&mapping->lock, flags);
1279}
1280
1281/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1282static const int iommu_order_array[] = { 9, 8, 4, 0 };
1283
1284static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1285 gfp_t gfp, unsigned long attrs,
1286 int coherent_flag)
1287{
1288 struct page **pages;
1289 int count = size >> PAGE_SHIFT;
1290 int array_size = count * sizeof(struct page *);
1291 int i = 0;
1292 int order_idx = 0;
1293
1294 if (array_size <= PAGE_SIZE)
1295 pages = kzalloc(array_size, GFP_KERNEL);
1296 else
1297 pages = vzalloc(array_size);
1298 if (!pages)
1299 return NULL;
1300
1301 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1302 {
1303 unsigned long order = get_order(size);
1304 struct page *page;
1305
1306 page = dma_alloc_from_contiguous(dev, count, order, gfp);
1307 if (!page)
1308 goto error;
1309
1310 __dma_clear_buffer(page, size, coherent_flag);
1311
1312 for (i = 0; i < count; i++)
1313 pages[i] = page + i;
1314
1315 return pages;
1316 }
1317
1318 /* Go straight to 4K chunks if caller says it's OK. */
1319 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1320 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1321
1322 /*
1323 * IOMMU can map any pages, so himem can also be used here
1324 */
1325 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1326
1327 while (count) {
1328 int j, order;
1329
1330 order = iommu_order_array[order_idx];
1331
1332 /* Drop down when we get small */
1333 if (__fls(count) < order) {
1334 order_idx++;
1335 continue;
1336 }
1337
1338 if (order) {
1339 /* See if it's easy to allocate a high-order chunk */
1340 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1341
1342 /* Go down a notch at first sign of pressure */
1343 if (!pages[i]) {
1344 order_idx++;
1345 continue;
1346 }
1347 } else {
1348 pages[i] = alloc_pages(gfp, 0);
1349 if (!pages[i])
1350 goto error;
1351 }
1352
1353 if (order) {
1354 split_page(pages[i], order);
1355 j = 1 << order;
1356 while (--j)
1357 pages[i + j] = pages[i] + j;
1358 }
1359
1360 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1361 i += 1 << order;
1362 count -= 1 << order;
1363 }
1364
1365 return pages;
1366error:
1367 while (i--)
1368 if (pages[i])
1369 __free_pages(pages[i], 0);
1370 kvfree(pages);
1371 return NULL;
1372}
1373
1374static int __iommu_free_buffer(struct device *dev, struct page **pages,
1375 size_t size, unsigned long attrs)
1376{
1377 int count = size >> PAGE_SHIFT;
1378 int i;
1379
1380 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1381 dma_release_from_contiguous(dev, pages[0], count);
1382 } else {
1383 for (i = 0; i < count; i++)
1384 if (pages[i])
1385 __free_pages(pages[i], 0);
1386 }
1387
1388 kvfree(pages);
1389 return 0;
1390}
1391
1392/*
1393 * Create a CPU mapping for a specified pages
1394 */
1395static void *
1396__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1397 const void *caller)
1398{
1399 return dma_common_pages_remap(pages, size,
1400 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1401}
1402
1403/*
1404 * Create a mapping in device IO address space for specified pages
1405 */
1406static dma_addr_t
1407__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1408 unsigned long attrs)
1409{
1410 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1411 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1412 dma_addr_t dma_addr, iova;
1413 int i;
1414
1415 dma_addr = __alloc_iova(mapping, size);
1416 if (dma_addr == ARM_MAPPING_ERROR)
1417 return dma_addr;
1418
1419 iova = dma_addr;
1420 for (i = 0; i < count; ) {
1421 int ret;
1422
1423 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1424 phys_addr_t phys = page_to_phys(pages[i]);
1425 unsigned int len, j;
1426
1427 for (j = i + 1; j < count; j++, next_pfn++)
1428 if (page_to_pfn(pages[j]) != next_pfn)
1429 break;
1430
1431 len = (j - i) << PAGE_SHIFT;
1432 ret = iommu_map(mapping->domain, iova, phys, len,
1433 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1434 if (ret < 0)
1435 goto fail;
1436 iova += len;
1437 i = j;
1438 }
1439 return dma_addr;
1440fail:
1441 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1442 __free_iova(mapping, dma_addr, size);
1443 return ARM_MAPPING_ERROR;
1444}
1445
1446static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1447{
1448 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1449
1450 /*
1451 * add optional in-page offset from iova to size and align
1452 * result to page size
1453 */
1454 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1455 iova &= PAGE_MASK;
1456
1457 iommu_unmap(mapping->domain, iova, size);
1458 __free_iova(mapping, iova, size);
1459 return 0;
1460}
1461
1462static struct page **__atomic_get_pages(void *addr)
1463{
1464 struct page *page;
1465 phys_addr_t phys;
1466
1467 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1468 page = phys_to_page(phys);
1469
1470 return (struct page **)page;
1471}
1472
1473static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1474{
1475 struct vm_struct *area;
1476
1477 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1478 return __atomic_get_pages(cpu_addr);
1479
1480 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1481 return cpu_addr;
1482
1483 area = find_vm_area(cpu_addr);
1484 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1485 return area->pages;
1486 return NULL;
1487}
1488
1489static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1490 dma_addr_t *handle, int coherent_flag,
1491 unsigned long attrs)
1492{
1493 struct page *page;
1494 void *addr;
1495
1496 if (coherent_flag == COHERENT)
1497 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1498 else
1499 addr = __alloc_from_pool(size, &page);
1500 if (!addr)
1501 return NULL;
1502
1503 *handle = __iommu_create_mapping(dev, &page, size, attrs);
1504 if (*handle == ARM_MAPPING_ERROR)
1505 goto err_mapping;
1506
1507 return addr;
1508
1509err_mapping:
1510 __free_from_pool(addr, size);
1511 return NULL;
1512}
1513
1514static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1515 dma_addr_t handle, size_t size, int coherent_flag)
1516{
1517 __iommu_remove_mapping(dev, handle, size);
1518 if (coherent_flag == COHERENT)
1519 __dma_free_buffer(virt_to_page(cpu_addr), size);
1520 else
1521 __free_from_pool(cpu_addr, size);
1522}
1523
1524static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1525 dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1526 int coherent_flag)
1527{
1528 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1529 struct page **pages;
1530 void *addr = NULL;
1531
1532 *handle = ARM_MAPPING_ERROR;
1533 size = PAGE_ALIGN(size);
1534
1535 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1536 return __iommu_alloc_simple(dev, size, gfp, handle,
1537 coherent_flag, attrs);
1538
1539 /*
1540 * Following is a work-around (a.k.a. hack) to prevent pages
1541 * with __GFP_COMP being passed to split_page() which cannot
1542 * handle them. The real problem is that this flag probably
1543 * should be 0 on ARM as it is not supported on this
1544 * platform; see CONFIG_HUGETLBFS.
1545 */
1546 gfp &= ~(__GFP_COMP);
1547
1548 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1549 if (!pages)
1550 return NULL;
1551
1552 *handle = __iommu_create_mapping(dev, pages, size, attrs);
1553 if (*handle == ARM_MAPPING_ERROR)
1554 goto err_buffer;
1555
1556 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1557 return pages;
1558
1559 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1560 __builtin_return_address(0));
1561 if (!addr)
1562 goto err_mapping;
1563
1564 return addr;
1565
1566err_mapping:
1567 __iommu_remove_mapping(dev, *handle, size);
1568err_buffer:
1569 __iommu_free_buffer(dev, pages, size, attrs);
1570 return NULL;
1571}
1572
1573static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1574 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1575{
1576 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1577}
1578
1579static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1580 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1581{
1582 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1583}
1584
1585static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1586 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1587 unsigned long attrs)
1588{
1589 unsigned long uaddr = vma->vm_start;
1590 unsigned long usize = vma->vm_end - vma->vm_start;
1591 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1592 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1593 unsigned long off = vma->vm_pgoff;
1594
1595 if (!pages)
1596 return -ENXIO;
1597
1598 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1599 return -ENXIO;
1600
1601 pages += off;
1602
1603 do {
1604 int ret = vm_insert_page(vma, uaddr, *pages++);
1605 if (ret) {
1606 pr_err("Remapping memory failed: %d\n", ret);
1607 return ret;
1608 }
1609 uaddr += PAGE_SIZE;
1610 usize -= PAGE_SIZE;
1611 } while (usize > 0);
1612
1613 return 0;
1614}
1615static int arm_iommu_mmap_attrs(struct device *dev,
1616 struct vm_area_struct *vma, void *cpu_addr,
1617 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1618{
1619 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1620
1621 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1622}
1623
1624static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1625 struct vm_area_struct *vma, void *cpu_addr,
1626 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1627{
1628 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1629}
1630
1631/*
1632 * free a page as defined by the above mapping.
1633 * Must not be called with IRQs disabled.
1634 */
1635void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1636 dma_addr_t handle, unsigned long attrs, int coherent_flag)
1637{
1638 struct page **pages;
1639 size = PAGE_ALIGN(size);
1640
1641 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1642 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1643 return;
1644 }
1645
1646 pages = __iommu_get_pages(cpu_addr, attrs);
1647 if (!pages) {
1648 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1649 return;
1650 }
1651
1652 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1653 dma_common_free_remap(cpu_addr, size,
1654 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1655 }
1656
1657 __iommu_remove_mapping(dev, handle, size);
1658 __iommu_free_buffer(dev, pages, size, attrs);
1659}
1660
1661void arm_iommu_free_attrs(struct device *dev, size_t size,
1662 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1663{
1664 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1665}
1666
1667void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1668 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1669{
1670 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1671}
1672
1673static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1674 void *cpu_addr, dma_addr_t dma_addr,
1675 size_t size, unsigned long attrs)
1676{
1677 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1678 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1679
1680 if (!pages)
1681 return -ENXIO;
1682
1683 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1684 GFP_KERNEL);
1685}
1686
1687/*
1688 * Map a part of the scatter-gather list into contiguous io address space
1689 */
1690static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1691 size_t size, dma_addr_t *handle,
1692 enum dma_data_direction dir, unsigned long attrs,
1693 bool is_coherent)
1694{
1695 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1696 dma_addr_t iova, iova_base;
1697 int ret = 0;
1698 unsigned int count;
1699 struct scatterlist *s;
1700 int prot;
1701
1702 size = PAGE_ALIGN(size);
1703 *handle = ARM_MAPPING_ERROR;
1704
1705 iova_base = iova = __alloc_iova(mapping, size);
1706 if (iova == ARM_MAPPING_ERROR)
1707 return -ENOMEM;
1708
1709 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1710 phys_addr_t phys = page_to_phys(sg_page(s));
1711 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1712
1713 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1714 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1715
1716 prot = __dma_info_to_prot(dir, attrs);
1717
1718 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1719 if (ret < 0)
1720 goto fail;
1721 count += len >> PAGE_SHIFT;
1722 iova += len;
1723 }
1724 *handle = iova_base;
1725
1726 return 0;
1727fail:
1728 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1729 __free_iova(mapping, iova_base, size);
1730 return ret;
1731}
1732
1733static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1734 enum dma_data_direction dir, unsigned long attrs,
1735 bool is_coherent)
1736{
1737 struct scatterlist *s = sg, *dma = sg, *start = sg;
1738 int i, count = 0;
1739 unsigned int offset = s->offset;
1740 unsigned int size = s->offset + s->length;
1741 unsigned int max = dma_get_max_seg_size(dev);
1742
1743 for (i = 1; i < nents; i++) {
1744 s = sg_next(s);
1745
1746 s->dma_address = ARM_MAPPING_ERROR;
1747 s->dma_length = 0;
1748
1749 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1750 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1751 dir, attrs, is_coherent) < 0)
1752 goto bad_mapping;
1753
1754 dma->dma_address += offset;
1755 dma->dma_length = size - offset;
1756
1757 size = offset = s->offset;
1758 start = s;
1759 dma = sg_next(dma);
1760 count += 1;
1761 }
1762 size += s->length;
1763 }
1764 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1765 is_coherent) < 0)
1766 goto bad_mapping;
1767
1768 dma->dma_address += offset;
1769 dma->dma_length = size - offset;
1770
1771 return count+1;
1772
1773bad_mapping:
1774 for_each_sg(sg, s, count, i)
1775 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1776 return 0;
1777}
1778
1779/**
1780 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1781 * @dev: valid struct device pointer
1782 * @sg: list of buffers
1783 * @nents: number of buffers to map
1784 * @dir: DMA transfer direction
1785 *
1786 * Map a set of i/o coherent buffers described by scatterlist in streaming
1787 * mode for DMA. The scatter gather list elements are merged together (if
1788 * possible) and tagged with the appropriate dma address and length. They are
1789 * obtained via sg_dma_{address,length}.
1790 */
1791int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1792 int nents, enum dma_data_direction dir, unsigned long attrs)
1793{
1794 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1795}
1796
1797/**
1798 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1799 * @dev: valid struct device pointer
1800 * @sg: list of buffers
1801 * @nents: number of buffers to map
1802 * @dir: DMA transfer direction
1803 *
1804 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1805 * The scatter gather list elements are merged together (if possible) and
1806 * tagged with the appropriate dma address and length. They are obtained via
1807 * sg_dma_{address,length}.
1808 */
1809int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1810 int nents, enum dma_data_direction dir, unsigned long attrs)
1811{
1812 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1813}
1814
1815static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1816 int nents, enum dma_data_direction dir,
1817 unsigned long attrs, bool is_coherent)
1818{
1819 struct scatterlist *s;
1820 int i;
1821
1822 for_each_sg(sg, s, nents, i) {
1823 if (sg_dma_len(s))
1824 __iommu_remove_mapping(dev, sg_dma_address(s),
1825 sg_dma_len(s));
1826 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1827 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1828 s->length, dir);
1829 }
1830}
1831
1832/**
1833 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1834 * @dev: valid struct device pointer
1835 * @sg: list of buffers
1836 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1837 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1838 *
1839 * Unmap a set of streaming mode DMA translations. Again, CPU access
1840 * rules concerning calls here are the same as for dma_unmap_single().
1841 */
1842void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1843 int nents, enum dma_data_direction dir,
1844 unsigned long attrs)
1845{
1846 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1847}
1848
1849/**
1850 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1851 * @dev: valid struct device pointer
1852 * @sg: list of buffers
1853 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1854 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1855 *
1856 * Unmap a set of streaming mode DMA translations. Again, CPU access
1857 * rules concerning calls here are the same as for dma_unmap_single().
1858 */
1859void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1860 enum dma_data_direction dir,
1861 unsigned long attrs)
1862{
1863 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1864}
1865
1866/**
1867 * arm_iommu_sync_sg_for_cpu
1868 * @dev: valid struct device pointer
1869 * @sg: list of buffers
1870 * @nents: number of buffers to map (returned from dma_map_sg)
1871 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1872 */
1873void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1874 int nents, enum dma_data_direction dir)
1875{
1876 struct scatterlist *s;
1877 int i;
1878
1879 for_each_sg(sg, s, nents, i)
1880 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1881
1882}
1883
1884/**
1885 * arm_iommu_sync_sg_for_device
1886 * @dev: valid struct device pointer
1887 * @sg: list of buffers
1888 * @nents: number of buffers to map (returned from dma_map_sg)
1889 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1890 */
1891void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1892 int nents, enum dma_data_direction dir)
1893{
1894 struct scatterlist *s;
1895 int i;
1896
1897 for_each_sg(sg, s, nents, i)
1898 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1899}
1900
1901
1902/**
1903 * arm_coherent_iommu_map_page
1904 * @dev: valid struct device pointer
1905 * @page: page that buffer resides in
1906 * @offset: offset into page for start of buffer
1907 * @size: size of buffer to map
1908 * @dir: DMA transfer direction
1909 *
1910 * Coherent IOMMU aware version of arm_dma_map_page()
1911 */
1912static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1913 unsigned long offset, size_t size, enum dma_data_direction dir,
1914 unsigned long attrs)
1915{
1916 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1917 dma_addr_t dma_addr;
1918 int ret, prot, len = PAGE_ALIGN(size + offset);
1919
1920 dma_addr = __alloc_iova(mapping, len);
1921 if (dma_addr == ARM_MAPPING_ERROR)
1922 return dma_addr;
1923
1924 prot = __dma_info_to_prot(dir, attrs);
1925
1926 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1927 if (ret < 0)
1928 goto fail;
1929
1930 return dma_addr + offset;
1931fail:
1932 __free_iova(mapping, dma_addr, len);
1933 return ARM_MAPPING_ERROR;
1934}
1935
1936/**
1937 * arm_iommu_map_page
1938 * @dev: valid struct device pointer
1939 * @page: page that buffer resides in
1940 * @offset: offset into page for start of buffer
1941 * @size: size of buffer to map
1942 * @dir: DMA transfer direction
1943 *
1944 * IOMMU aware version of arm_dma_map_page()
1945 */
1946static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1947 unsigned long offset, size_t size, enum dma_data_direction dir,
1948 unsigned long attrs)
1949{
1950 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1951 __dma_page_cpu_to_dev(page, offset, size, dir);
1952
1953 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1954}
1955
1956/**
1957 * arm_coherent_iommu_unmap_page
1958 * @dev: valid struct device pointer
1959 * @handle: DMA address of buffer
1960 * @size: size of buffer (same as passed to dma_map_page)
1961 * @dir: DMA transfer direction (same as passed to dma_map_page)
1962 *
1963 * Coherent IOMMU aware version of arm_dma_unmap_page()
1964 */
1965static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1966 size_t size, enum dma_data_direction dir, unsigned long attrs)
1967{
1968 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1969 dma_addr_t iova = handle & PAGE_MASK;
1970 int offset = handle & ~PAGE_MASK;
1971 int len = PAGE_ALIGN(size + offset);
1972
1973 if (!iova)
1974 return;
1975
1976 iommu_unmap(mapping->domain, iova, len);
1977 __free_iova(mapping, iova, len);
1978}
1979
1980/**
1981 * arm_iommu_unmap_page
1982 * @dev: valid struct device pointer
1983 * @handle: DMA address of buffer
1984 * @size: size of buffer (same as passed to dma_map_page)
1985 * @dir: DMA transfer direction (same as passed to dma_map_page)
1986 *
1987 * IOMMU aware version of arm_dma_unmap_page()
1988 */
1989static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1990 size_t size, enum dma_data_direction dir, unsigned long attrs)
1991{
1992 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1993 dma_addr_t iova = handle & PAGE_MASK;
1994 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1995 int offset = handle & ~PAGE_MASK;
1996 int len = PAGE_ALIGN(size + offset);
1997
1998 if (!iova)
1999 return;
2000
2001 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
2002 __dma_page_dev_to_cpu(page, offset, size, dir);
2003
2004 iommu_unmap(mapping->domain, iova, len);
2005 __free_iova(mapping, iova, len);
2006}
2007
2008/**
2009 * arm_iommu_map_resource - map a device resource for DMA
2010 * @dev: valid struct device pointer
2011 * @phys_addr: physical address of resource
2012 * @size: size of resource to map
2013 * @dir: DMA transfer direction
2014 */
2015static dma_addr_t arm_iommu_map_resource(struct device *dev,
2016 phys_addr_t phys_addr, size_t size,
2017 enum dma_data_direction dir, unsigned long attrs)
2018{
2019 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2020 dma_addr_t dma_addr;
2021 int ret, prot;
2022 phys_addr_t addr = phys_addr & PAGE_MASK;
2023 unsigned int offset = phys_addr & ~PAGE_MASK;
2024 size_t len = PAGE_ALIGN(size + offset);
2025
2026 dma_addr = __alloc_iova(mapping, len);
2027 if (dma_addr == ARM_MAPPING_ERROR)
2028 return dma_addr;
2029
2030 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
2031
2032 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
2033 if (ret < 0)
2034 goto fail;
2035
2036 return dma_addr + offset;
2037fail:
2038 __free_iova(mapping, dma_addr, len);
2039 return ARM_MAPPING_ERROR;
2040}
2041
2042/**
2043 * arm_iommu_unmap_resource - unmap a device DMA resource
2044 * @dev: valid struct device pointer
2045 * @dma_handle: DMA address to resource
2046 * @size: size of resource to map
2047 * @dir: DMA transfer direction
2048 */
2049static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
2050 size_t size, enum dma_data_direction dir,
2051 unsigned long attrs)
2052{
2053 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2054 dma_addr_t iova = dma_handle & PAGE_MASK;
2055 unsigned int offset = dma_handle & ~PAGE_MASK;
2056 size_t len = PAGE_ALIGN(size + offset);
2057
2058 if (!iova)
2059 return;
2060
2061 iommu_unmap(mapping->domain, iova, len);
2062 __free_iova(mapping, iova, len);
2063}
2064
2065static void arm_iommu_sync_single_for_cpu(struct device *dev,
2066 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2067{
2068 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2069 dma_addr_t iova = handle & PAGE_MASK;
2070 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2071 unsigned int offset = handle & ~PAGE_MASK;
2072
2073 if (!iova)
2074 return;
2075
2076 __dma_page_dev_to_cpu(page, offset, size, dir);
2077}
2078
2079static void arm_iommu_sync_single_for_device(struct device *dev,
2080 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2081{
2082 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2083 dma_addr_t iova = handle & PAGE_MASK;
2084 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2085 unsigned int offset = handle & ~PAGE_MASK;
2086
2087 if (!iova)
2088 return;
2089
2090 __dma_page_cpu_to_dev(page, offset, size, dir);
2091}
2092
2093const struct dma_map_ops iommu_ops = {
2094 .alloc = arm_iommu_alloc_attrs,
2095 .free = arm_iommu_free_attrs,
2096 .mmap = arm_iommu_mmap_attrs,
2097 .get_sgtable = arm_iommu_get_sgtable,
2098
2099 .map_page = arm_iommu_map_page,
2100 .unmap_page = arm_iommu_unmap_page,
2101 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
2102 .sync_single_for_device = arm_iommu_sync_single_for_device,
2103
2104 .map_sg = arm_iommu_map_sg,
2105 .unmap_sg = arm_iommu_unmap_sg,
2106 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
2107 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
2108
2109 .map_resource = arm_iommu_map_resource,
2110 .unmap_resource = arm_iommu_unmap_resource,
2111
2112 .mapping_error = arm_dma_mapping_error,
2113 .dma_supported = arm_dma_supported,
2114};
2115
2116const struct dma_map_ops iommu_coherent_ops = {
2117 .alloc = arm_coherent_iommu_alloc_attrs,
2118 .free = arm_coherent_iommu_free_attrs,
2119 .mmap = arm_coherent_iommu_mmap_attrs,
2120 .get_sgtable = arm_iommu_get_sgtable,
2121
2122 .map_page = arm_coherent_iommu_map_page,
2123 .unmap_page = arm_coherent_iommu_unmap_page,
2124
2125 .map_sg = arm_coherent_iommu_map_sg,
2126 .unmap_sg = arm_coherent_iommu_unmap_sg,
2127
2128 .map_resource = arm_iommu_map_resource,
2129 .unmap_resource = arm_iommu_unmap_resource,
2130
2131 .mapping_error = arm_dma_mapping_error,
2132 .dma_supported = arm_dma_supported,
2133};
2134
2135/**
2136 * arm_iommu_create_mapping
2137 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2138 * @base: start address of the valid IO address space
2139 * @size: maximum size of the valid IO address space
2140 *
2141 * Creates a mapping structure which holds information about used/unused
2142 * IO address ranges, which is required to perform memory allocation and
2143 * mapping with IOMMU aware functions.
2144 *
2145 * The client device need to be attached to the mapping with
2146 * arm_iommu_attach_device function.
2147 */
2148struct dma_iommu_mapping *
2149arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2150{
2151 unsigned int bits = size >> PAGE_SHIFT;
2152 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2153 struct dma_iommu_mapping *mapping;
2154 int extensions = 1;
2155 int err = -ENOMEM;
2156
2157 /* currently only 32-bit DMA address space is supported */
2158 if (size > DMA_BIT_MASK(32) + 1)
2159 return ERR_PTR(-ERANGE);
2160
2161 if (!bitmap_size)
2162 return ERR_PTR(-EINVAL);
2163
2164 if (bitmap_size > PAGE_SIZE) {
2165 extensions = bitmap_size / PAGE_SIZE;
2166 bitmap_size = PAGE_SIZE;
2167 }
2168
2169 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2170 if (!mapping)
2171 goto err;
2172
2173 mapping->bitmap_size = bitmap_size;
2174 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2175 GFP_KERNEL);
2176 if (!mapping->bitmaps)
2177 goto err2;
2178
2179 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2180 if (!mapping->bitmaps[0])
2181 goto err3;
2182
2183 mapping->nr_bitmaps = 1;
2184 mapping->extensions = extensions;
2185 mapping->base = base;
2186 mapping->bits = BITS_PER_BYTE * bitmap_size;
2187
2188 spin_lock_init(&mapping->lock);
2189
2190 mapping->domain = iommu_domain_alloc(bus);
2191 if (!mapping->domain)
2192 goto err4;
2193
2194 kref_init(&mapping->kref);
2195 return mapping;
2196err4:
2197 kfree(mapping->bitmaps[0]);
2198err3:
2199 kfree(mapping->bitmaps);
2200err2:
2201 kfree(mapping);
2202err:
2203 return ERR_PTR(err);
2204}
2205EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2206
2207static void release_iommu_mapping(struct kref *kref)
2208{
2209 int i;
2210 struct dma_iommu_mapping *mapping =
2211 container_of(kref, struct dma_iommu_mapping, kref);
2212
2213 iommu_domain_free(mapping->domain);
2214 for (i = 0; i < mapping->nr_bitmaps; i++)
2215 kfree(mapping->bitmaps[i]);
2216 kfree(mapping->bitmaps);
2217 kfree(mapping);
2218}
2219
2220static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2221{
2222 int next_bitmap;
2223
2224 if (mapping->nr_bitmaps >= mapping->extensions)
2225 return -EINVAL;
2226
2227 next_bitmap = mapping->nr_bitmaps;
2228 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2229 GFP_ATOMIC);
2230 if (!mapping->bitmaps[next_bitmap])
2231 return -ENOMEM;
2232
2233 mapping->nr_bitmaps++;
2234
2235 return 0;
2236}
2237
2238void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2239{
2240 if (mapping)
2241 kref_put(&mapping->kref, release_iommu_mapping);
2242}
2243EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2244
2245static int __arm_iommu_attach_device(struct device *dev,
2246 struct dma_iommu_mapping *mapping)
2247{
2248 int err;
2249
2250 err = iommu_attach_device(mapping->domain, dev);
2251 if (err)
2252 return err;
2253
2254 kref_get(&mapping->kref);
2255 to_dma_iommu_mapping(dev) = mapping;
2256
2257 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2258 return 0;
2259}
2260
2261/**
2262 * arm_iommu_attach_device
2263 * @dev: valid struct device pointer
2264 * @mapping: io address space mapping structure (returned from
2265 * arm_iommu_create_mapping)
2266 *
2267 * Attaches specified io address space mapping to the provided device.
2268 * This replaces the dma operations (dma_map_ops pointer) with the
2269 * IOMMU aware version.
2270 *
2271 * More than one client might be attached to the same io address space
2272 * mapping.
2273 */
2274int arm_iommu_attach_device(struct device *dev,
2275 struct dma_iommu_mapping *mapping)
2276{
2277 int err;
2278
2279 err = __arm_iommu_attach_device(dev, mapping);
2280 if (err)
2281 return err;
2282
2283 set_dma_ops(dev, &iommu_ops);
2284 return 0;
2285}
2286EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2287
2288/**
2289 * arm_iommu_detach_device
2290 * @dev: valid struct device pointer
2291 *
2292 * Detaches the provided device from a previously attached map.
2293 * This voids the dma operations (dma_map_ops pointer)
2294 */
2295void arm_iommu_detach_device(struct device *dev)
2296{
2297 struct dma_iommu_mapping *mapping;
2298
2299 mapping = to_dma_iommu_mapping(dev);
2300 if (!mapping) {
2301 dev_warn(dev, "Not attached\n");
2302 return;
2303 }
2304
2305 iommu_detach_device(mapping->domain, dev);
2306 kref_put(&mapping->kref, release_iommu_mapping);
2307 to_dma_iommu_mapping(dev) = NULL;
2308 set_dma_ops(dev, NULL);
2309
2310 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2311}
2312EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2313
2314static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2315{
2316 return coherent ? &iommu_coherent_ops : &iommu_ops;
2317}
2318
2319static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2320 const struct iommu_ops *iommu)
2321{
2322 struct dma_iommu_mapping *mapping;
2323
2324 if (!iommu)
2325 return false;
2326
2327 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2328 if (IS_ERR(mapping)) {
2329 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2330 size, dev_name(dev));
2331 return false;
2332 }
2333
2334 if (__arm_iommu_attach_device(dev, mapping)) {
2335 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2336 dev_name(dev));
2337 arm_iommu_release_mapping(mapping);
2338 return false;
2339 }
2340
2341 return true;
2342}
2343
2344static void arm_teardown_iommu_dma_ops(struct device *dev)
2345{
2346 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2347
2348 if (!mapping)
2349 return;
2350
2351 arm_iommu_detach_device(dev);
2352 arm_iommu_release_mapping(mapping);
2353}
2354
2355#else
2356
2357static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2358 const struct iommu_ops *iommu)
2359{
2360 return false;
2361}
2362
2363static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2364
2365#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2366
2367#endif /* CONFIG_ARM_DMA_USE_IOMMU */
2368
2369static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2370{
2371 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2372}
2373
2374void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2375 const struct iommu_ops *iommu, bool coherent)
2376{
2377 const struct dma_map_ops *dma_ops;
2378
2379 dev->archdata.dma_coherent = coherent;
2380
2381 /*
2382 * Don't override the dma_ops if they have already been set. Ideally
2383 * this should be the only location where dma_ops are set, remove this
2384 * check when all other callers of set_dma_ops will have disappeared.
2385 */
2386 if (dev->dma_ops)
2387 return;
2388
2389 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2390 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2391 else
2392 dma_ops = arm_get_dma_map_ops(coherent);
2393
2394 set_dma_ops(dev, dma_ops);
2395
2396#ifdef CONFIG_XEN
2397 if (xen_initial_domain()) {
2398 dev->archdata.dev_dma_ops = dev->dma_ops;
2399 dev->dma_ops = xen_dma_ops;
2400 }
2401#endif
2402 dev->archdata.dma_ops_setup = true;
2403}
2404
2405void arch_teardown_dma_ops(struct device *dev)
2406{
2407 if (!dev->archdata.dma_ops_setup)
2408 return;
2409
2410 arm_teardown_iommu_dma_ops(dev);
2411}