Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/dma-mapping.c
   4 *
   5 *  Copyright (C) 2000-2004 Russell King
   6 *
 
 
 
 
   7 *  DMA uncached mapping support.
   8 */
 
   9#include <linux/module.h>
  10#include <linux/mm.h>
  11#include <linux/genalloc.h>
  12#include <linux/gfp.h>
  13#include <linux/errno.h>
  14#include <linux/list.h>
  15#include <linux/init.h>
  16#include <linux/device.h>
  17#include <linux/dma-direct.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/dma-noncoherent.h>
  20#include <linux/dma-contiguous.h>
  21#include <linux/highmem.h>
  22#include <linux/memblock.h>
  23#include <linux/slab.h>
  24#include <linux/iommu.h>
  25#include <linux/io.h>
  26#include <linux/vmalloc.h>
  27#include <linux/sizes.h>
  28#include <linux/cma.h>
  29
  30#include <asm/memory.h>
  31#include <asm/highmem.h>
  32#include <asm/cacheflush.h>
  33#include <asm/tlbflush.h>
  34#include <asm/mach/arch.h>
  35#include <asm/dma-iommu.h>
  36#include <asm/mach/map.h>
  37#include <asm/system_info.h>
  38#include <asm/dma-contiguous.h>
  39#include <xen/swiotlb-xen.h>
  40
  41#include "dma.h"
  42#include "mm.h"
  43
  44struct arm_dma_alloc_args {
  45	struct device *dev;
  46	size_t size;
  47	gfp_t gfp;
  48	pgprot_t prot;
  49	const void *caller;
  50	bool want_vaddr;
  51	int coherent_flag;
  52};
  53
  54struct arm_dma_free_args {
  55	struct device *dev;
  56	size_t size;
  57	void *cpu_addr;
  58	struct page *page;
  59	bool want_vaddr;
  60};
  61
  62#define NORMAL	    0
  63#define COHERENT    1
  64
  65struct arm_dma_allocator {
  66	void *(*alloc)(struct arm_dma_alloc_args *args,
  67		       struct page **ret_page);
  68	void (*free)(struct arm_dma_free_args *args);
  69};
  70
  71struct arm_dma_buffer {
  72	struct list_head list;
  73	void *virt;
  74	struct arm_dma_allocator *allocator;
  75};
  76
  77static LIST_HEAD(arm_dma_bufs);
  78static DEFINE_SPINLOCK(arm_dma_bufs_lock);
  79
  80static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
  81{
  82	struct arm_dma_buffer *buf, *found = NULL;
  83	unsigned long flags;
  84
  85	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
  86	list_for_each_entry(buf, &arm_dma_bufs, list) {
  87		if (buf->virt == virt) {
  88			list_del(&buf->list);
  89			found = buf;
  90			break;
  91		}
  92	}
  93	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
  94	return found;
  95}
  96
  97/*
  98 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  99 * is either exclusively owned by the CPU (and therefore may be accessed
 100 * by it) or exclusively owned by the DMA device.  These helper functions
 101 * represent the transitions between these two ownership states.
 102 *
 103 * Note, however, that on later ARMs, this notion does not work due to
 104 * speculative prefetches.  We model our approach on the assumption that
 105 * the CPU does do speculative prefetches, which means we clean caches
 106 * before transfers and delay cache invalidation until transfer completion.
 107 *
 108 */
 109static void __dma_page_cpu_to_dev(struct page *, unsigned long,
 110		size_t, enum dma_data_direction);
 111static void __dma_page_dev_to_cpu(struct page *, unsigned long,
 112		size_t, enum dma_data_direction);
 113
 114/**
 115 * arm_dma_map_page - map a portion of a page for streaming DMA
 116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 117 * @page: page that buffer resides in
 118 * @offset: offset into page for start of buffer
 119 * @size: size of buffer to map
 120 * @dir: DMA transfer direction
 121 *
 122 * Ensure that any data held in the cache is appropriately discarded
 123 * or written back.
 124 *
 125 * The device owns this memory once this call has completed.  The CPU
 126 * can regain ownership by calling dma_unmap_page().
 127 */
 128static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
 129	     unsigned long offset, size_t size, enum dma_data_direction dir,
 130	     unsigned long attrs)
 131{
 132	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 133		__dma_page_cpu_to_dev(page, offset, size, dir);
 134	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 135}
 136
 137static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
 138	     unsigned long offset, size_t size, enum dma_data_direction dir,
 139	     unsigned long attrs)
 140{
 141	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 142}
 143
 144/**
 145 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 146 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 147 * @handle: DMA address of buffer
 148 * @size: size of buffer (same as passed to dma_map_page)
 149 * @dir: DMA transfer direction (same as passed to dma_map_page)
 150 *
 151 * Unmap a page streaming mode DMA translation.  The handle and size
 152 * must match what was provided in the previous dma_map_page() call.
 153 * All other usages are undefined.
 154 *
 155 * After this call, reads by the CPU to the buffer are guaranteed to see
 156 * whatever the device wrote there.
 157 */
 158static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
 159		size_t size, enum dma_data_direction dir, unsigned long attrs)
 160{
 161	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 162		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 163				      handle & ~PAGE_MASK, size, dir);
 164}
 165
 166static void arm_dma_sync_single_for_cpu(struct device *dev,
 167		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 168{
 169	unsigned int offset = handle & (PAGE_SIZE - 1);
 170	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 171	__dma_page_dev_to_cpu(page, offset, size, dir);
 172}
 173
 174static void arm_dma_sync_single_for_device(struct device *dev,
 175		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 176{
 177	unsigned int offset = handle & (PAGE_SIZE - 1);
 178	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 179	__dma_page_cpu_to_dev(page, offset, size, dir);
 180}
 181
 182const struct dma_map_ops arm_dma_ops = {
 183	.alloc			= arm_dma_alloc,
 184	.free			= arm_dma_free,
 185	.mmap			= arm_dma_mmap,
 186	.get_sgtable		= arm_dma_get_sgtable,
 187	.map_page		= arm_dma_map_page,
 188	.unmap_page		= arm_dma_unmap_page,
 189	.map_sg			= arm_dma_map_sg,
 190	.unmap_sg		= arm_dma_unmap_sg,
 191	.map_resource		= dma_direct_map_resource,
 192	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
 193	.sync_single_for_device	= arm_dma_sync_single_for_device,
 194	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
 195	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
 196	.dma_supported		= arm_dma_supported,
 197	.get_required_mask	= dma_direct_get_required_mask,
 198};
 199EXPORT_SYMBOL(arm_dma_ops);
 200
 201static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 202	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
 203static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 204				  dma_addr_t handle, unsigned long attrs);
 205static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 206		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 207		 unsigned long attrs);
 208
 209const struct dma_map_ops arm_coherent_dma_ops = {
 210	.alloc			= arm_coherent_dma_alloc,
 211	.free			= arm_coherent_dma_free,
 212	.mmap			= arm_coherent_dma_mmap,
 213	.get_sgtable		= arm_dma_get_sgtable,
 214	.map_page		= arm_coherent_dma_map_page,
 215	.map_sg			= arm_dma_map_sg,
 216	.map_resource		= dma_direct_map_resource,
 217	.dma_supported		= arm_dma_supported,
 218	.get_required_mask	= dma_direct_get_required_mask,
 219};
 220EXPORT_SYMBOL(arm_coherent_dma_ops);
 221
 222static int __dma_supported(struct device *dev, u64 mask, bool warn)
 223{
 224	unsigned long max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225
 226	/*
 227	 * Translate the device's DMA mask to a PFN limit.  This
 228	 * PFN number includes the page which we can DMA to.
 229	 */
 230	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
 231		if (warn)
 232			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
 233				 mask,
 234				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
 235				 max_dma_pfn + 1);
 236		return 0;
 237	}
 238
 239	return 1;
 240}
 241
 242static u64 get_coherent_dma_mask(struct device *dev)
 243{
 244	u64 mask = (u64)DMA_BIT_MASK(32);
 245
 246	if (dev) {
 247		mask = dev->coherent_dma_mask;
 248
 249		/*
 250		 * Sanity check the DMA mask - it must be non-zero, and
 251		 * must be able to be satisfied by a DMA allocation.
 252		 */
 253		if (mask == 0) {
 254			dev_warn(dev, "coherent DMA mask is unset\n");
 255			return 0;
 256		}
 257
 258		if (!__dma_supported(dev, mask, true))
 259			return 0;
 260	}
 261
 262	return mask;
 263}
 264
 265static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
 266{
 267	/*
 268	 * Ensure that the allocated pages are zeroed, and that any data
 269	 * lurking in the kernel direct-mapped region is invalidated.
 270	 */
 271	if (PageHighMem(page)) {
 272		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 273		phys_addr_t end = base + size;
 274		while (size > 0) {
 275			void *ptr = kmap_atomic(page);
 276			memset(ptr, 0, PAGE_SIZE);
 277			if (coherent_flag != COHERENT)
 278				dmac_flush_range(ptr, ptr + PAGE_SIZE);
 279			kunmap_atomic(ptr);
 280			page++;
 281			size -= PAGE_SIZE;
 282		}
 283		if (coherent_flag != COHERENT)
 284			outer_flush_range(base, end);
 285	} else {
 286		void *ptr = page_address(page);
 287		memset(ptr, 0, size);
 288		if (coherent_flag != COHERENT) {
 289			dmac_flush_range(ptr, ptr + size);
 290			outer_flush_range(__pa(ptr), __pa(ptr) + size);
 291		}
 292	}
 293}
 294
 295/*
 296 * Allocate a DMA buffer for 'dev' of size 'size' using the
 297 * specified gfp mask.  Note that 'size' must be page aligned.
 298 */
 299static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
 300				       gfp_t gfp, int coherent_flag)
 301{
 302	unsigned long order = get_order(size);
 303	struct page *page, *p, *e;
 304
 305	page = alloc_pages(gfp, order);
 306	if (!page)
 307		return NULL;
 308
 309	/*
 310	 * Now split the huge page and free the excess pages
 311	 */
 312	split_page(page, order);
 313	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 314		__free_page(p);
 315
 316	__dma_clear_buffer(page, size, coherent_flag);
 317
 318	return page;
 319}
 320
 321/*
 322 * Free a DMA buffer.  'size' must be page aligned.
 323 */
 324static void __dma_free_buffer(struct page *page, size_t size)
 325{
 326	struct page *e = page + (size >> PAGE_SHIFT);
 327
 328	while (page < e) {
 329		__free_page(page);
 330		page++;
 331	}
 332}
 333
 
 
 334static void *__alloc_from_contiguous(struct device *dev, size_t size,
 335				     pgprot_t prot, struct page **ret_page,
 336				     const void *caller, bool want_vaddr,
 337				     int coherent_flag, gfp_t gfp);
 338
 339static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 340				 pgprot_t prot, struct page **ret_page,
 341				 const void *caller, bool want_vaddr);
 342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 343#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
 344static struct gen_pool *atomic_pool __ro_after_init;
 345
 346static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
 347
 348static int __init early_coherent_pool(char *p)
 349{
 350	atomic_pool_size = memparse(p, &p);
 351	return 0;
 352}
 353early_param("coherent_pool", early_coherent_pool);
 354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355/*
 356 * Initialise the coherent pool for atomic allocations.
 357 */
 358static int __init atomic_pool_init(void)
 359{
 360	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 361	gfp_t gfp = GFP_KERNEL | GFP_DMA;
 362	struct page *page;
 363	void *ptr;
 364
 365	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
 366	if (!atomic_pool)
 367		goto out;
 368	/*
 369	 * The atomic pool is only used for non-coherent allocations
 370	 * so we must pass NORMAL for coherent_flag.
 371	 */
 372	if (dev_get_cma_area(NULL))
 373		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
 374				      &page, atomic_pool_init, true, NORMAL,
 375				      GFP_KERNEL);
 376	else
 377		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
 378					   &page, atomic_pool_init, true);
 379	if (ptr) {
 380		int ret;
 381
 382		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
 383					page_to_phys(page),
 384					atomic_pool_size, -1);
 385		if (ret)
 386			goto destroy_genpool;
 387
 388		gen_pool_set_algo(atomic_pool,
 389				gen_pool_first_fit_order_align,
 390				NULL);
 391		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
 392		       atomic_pool_size / 1024);
 393		return 0;
 394	}
 395
 396destroy_genpool:
 397	gen_pool_destroy(atomic_pool);
 398	atomic_pool = NULL;
 399out:
 400	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
 401	       atomic_pool_size / 1024);
 402	return -ENOMEM;
 403}
 404/*
 405 * CMA is activated by core_initcall, so we must be called after it.
 406 */
 407postcore_initcall(atomic_pool_init);
 408
 409struct dma_contig_early_reserve {
 410	phys_addr_t base;
 411	unsigned long size;
 412};
 413
 414static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 415
 416static int dma_mmu_remap_num __initdata;
 417
 418void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 419{
 420	dma_mmu_remap[dma_mmu_remap_num].base = base;
 421	dma_mmu_remap[dma_mmu_remap_num].size = size;
 422	dma_mmu_remap_num++;
 423}
 424
 425void __init dma_contiguous_remap(void)
 426{
 427	int i;
 428	for (i = 0; i < dma_mmu_remap_num; i++) {
 429		phys_addr_t start = dma_mmu_remap[i].base;
 430		phys_addr_t end = start + dma_mmu_remap[i].size;
 431		struct map_desc map;
 432		unsigned long addr;
 433
 434		if (end > arm_lowmem_limit)
 435			end = arm_lowmem_limit;
 436		if (start >= end)
 437			continue;
 438
 439		map.pfn = __phys_to_pfn(start);
 440		map.virtual = __phys_to_virt(start);
 441		map.length = end - start;
 442		map.type = MT_MEMORY_DMA_READY;
 443
 444		/*
 445		 * Clear previous low-memory mapping to ensure that the
 446		 * TLB does not see any conflicting entries, then flush
 447		 * the TLB of the old entries before creating new mappings.
 448		 *
 449		 * This ensures that any speculatively loaded TLB entries
 450		 * (even though they may be rare) can not cause any problems,
 451		 * and ensures that this code is architecturally compliant.
 452		 */
 453		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 454		     addr += PMD_SIZE)
 455			pmd_clear(pmd_off_k(addr));
 456
 457		flush_tlb_kernel_range(__phys_to_virt(start),
 458				       __phys_to_virt(end));
 459
 460		iotable_init(&map, 1);
 461	}
 462}
 463
 464static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
 
 465{
 466	struct page *page = virt_to_page(addr);
 467	pgprot_t prot = *(pgprot_t *)data;
 468
 469	set_pte_ext(pte, mk_pte(page, prot), 0);
 470	return 0;
 471}
 472
 473static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 474{
 475	unsigned long start = (unsigned long) page_address(page);
 476	unsigned end = start + size;
 477
 478	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 479	flush_tlb_kernel_range(start, end);
 480}
 481
 482static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 483				 pgprot_t prot, struct page **ret_page,
 484				 const void *caller, bool want_vaddr)
 485{
 486	struct page *page;
 487	void *ptr = NULL;
 488	/*
 489	 * __alloc_remap_buffer is only called when the device is
 490	 * non-coherent
 491	 */
 492	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
 493	if (!page)
 494		return NULL;
 495	if (!want_vaddr)
 496		goto out;
 497
 498	ptr = dma_common_contiguous_remap(page, size, prot, caller);
 499	if (!ptr) {
 500		__dma_free_buffer(page, size);
 501		return NULL;
 502	}
 503
 504 out:
 505	*ret_page = page;
 506	return ptr;
 507}
 508
 509static void *__alloc_from_pool(size_t size, struct page **ret_page)
 510{
 511	unsigned long val;
 512	void *ptr = NULL;
 513
 514	if (!atomic_pool) {
 515		WARN(1, "coherent pool not initialised!\n");
 516		return NULL;
 517	}
 518
 519	val = gen_pool_alloc(atomic_pool, size);
 520	if (val) {
 521		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 522
 523		*ret_page = phys_to_page(phys);
 524		ptr = (void *)val;
 525	}
 526
 527	return ptr;
 528}
 529
 530static bool __in_atomic_pool(void *start, size_t size)
 531{
 532	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
 533}
 534
 535static int __free_from_pool(void *start, size_t size)
 536{
 537	if (!__in_atomic_pool(start, size))
 538		return 0;
 539
 540	gen_pool_free(atomic_pool, (unsigned long)start, size);
 541
 542	return 1;
 543}
 544
 545static void *__alloc_from_contiguous(struct device *dev, size_t size,
 546				     pgprot_t prot, struct page **ret_page,
 547				     const void *caller, bool want_vaddr,
 548				     int coherent_flag, gfp_t gfp)
 549{
 550	unsigned long order = get_order(size);
 551	size_t count = size >> PAGE_SHIFT;
 552	struct page *page;
 553	void *ptr = NULL;
 554
 555	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
 556	if (!page)
 557		return NULL;
 558
 559	__dma_clear_buffer(page, size, coherent_flag);
 560
 561	if (!want_vaddr)
 562		goto out;
 563
 564	if (PageHighMem(page)) {
 565		ptr = dma_common_contiguous_remap(page, size, prot, caller);
 566		if (!ptr) {
 567			dma_release_from_contiguous(dev, page, count);
 568			return NULL;
 569		}
 570	} else {
 571		__dma_remap(page, size, prot);
 572		ptr = page_address(page);
 573	}
 574
 575 out:
 576	*ret_page = page;
 577	return ptr;
 578}
 579
 580static void __free_from_contiguous(struct device *dev, struct page *page,
 581				   void *cpu_addr, size_t size, bool want_vaddr)
 582{
 583	if (want_vaddr) {
 584		if (PageHighMem(page))
 585			dma_common_free_remap(cpu_addr, size);
 586		else
 587			__dma_remap(page, size, PAGE_KERNEL);
 588	}
 589	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 590}
 591
 592static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
 593{
 594	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
 595			pgprot_writecombine(prot) :
 596			pgprot_dmacoherent(prot);
 597	return prot;
 598}
 599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 601				   struct page **ret_page)
 602{
 603	struct page *page;
 604	/* __alloc_simple_buffer is only called when the device is coherent */
 605	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
 606	if (!page)
 607		return NULL;
 608
 609	*ret_page = page;
 610	return page_address(page);
 611}
 612
 613static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
 614				    struct page **ret_page)
 615{
 616	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
 617				     ret_page);
 618}
 619
 620static void simple_allocator_free(struct arm_dma_free_args *args)
 621{
 622	__dma_free_buffer(args->page, args->size);
 623}
 624
 625static struct arm_dma_allocator simple_allocator = {
 626	.alloc = simple_allocator_alloc,
 627	.free = simple_allocator_free,
 628};
 629
 630static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
 631				 struct page **ret_page)
 632{
 633	return __alloc_from_contiguous(args->dev, args->size, args->prot,
 634				       ret_page, args->caller,
 635				       args->want_vaddr, args->coherent_flag,
 636				       args->gfp);
 637}
 638
 639static void cma_allocator_free(struct arm_dma_free_args *args)
 640{
 641	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
 642			       args->size, args->want_vaddr);
 643}
 644
 645static struct arm_dma_allocator cma_allocator = {
 646	.alloc = cma_allocator_alloc,
 647	.free = cma_allocator_free,
 648};
 649
 650static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
 651				  struct page **ret_page)
 652{
 653	return __alloc_from_pool(args->size, ret_page);
 654}
 655
 656static void pool_allocator_free(struct arm_dma_free_args *args)
 657{
 658	__free_from_pool(args->cpu_addr, args->size);
 659}
 660
 661static struct arm_dma_allocator pool_allocator = {
 662	.alloc = pool_allocator_alloc,
 663	.free = pool_allocator_free,
 664};
 665
 666static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
 667				   struct page **ret_page)
 668{
 669	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
 670				    args->prot, ret_page, args->caller,
 671				    args->want_vaddr);
 672}
 673
 674static void remap_allocator_free(struct arm_dma_free_args *args)
 675{
 676	if (args->want_vaddr)
 677		dma_common_free_remap(args->cpu_addr, args->size);
 678
 679	__dma_free_buffer(args->page, args->size);
 680}
 681
 682static struct arm_dma_allocator remap_allocator = {
 683	.alloc = remap_allocator_alloc,
 684	.free = remap_allocator_free,
 685};
 686
 687static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 688			 gfp_t gfp, pgprot_t prot, bool is_coherent,
 689			 unsigned long attrs, const void *caller)
 690{
 691	u64 mask = get_coherent_dma_mask(dev);
 692	struct page *page = NULL;
 693	void *addr;
 694	bool allowblock, cma;
 695	struct arm_dma_buffer *buf;
 696	struct arm_dma_alloc_args args = {
 697		.dev = dev,
 698		.size = PAGE_ALIGN(size),
 699		.gfp = gfp,
 700		.prot = prot,
 701		.caller = caller,
 702		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 703		.coherent_flag = is_coherent ? COHERENT : NORMAL,
 704	};
 705
 706#ifdef CONFIG_DMA_API_DEBUG
 707	u64 limit = (mask + 1) & ~mask;
 708	if (limit && size >= limit) {
 709		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 710			size, mask);
 711		return NULL;
 712	}
 713#endif
 714
 715	if (!mask)
 716		return NULL;
 717
 718	buf = kzalloc(sizeof(*buf),
 719		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
 720	if (!buf)
 721		return NULL;
 722
 723	if (mask < 0xffffffffULL)
 724		gfp |= GFP_DMA;
 725
 726	/*
 727	 * Following is a work-around (a.k.a. hack) to prevent pages
 728	 * with __GFP_COMP being passed to split_page() which cannot
 729	 * handle them.  The real problem is that this flag probably
 730	 * should be 0 on ARM as it is not supported on this
 731	 * platform; see CONFIG_HUGETLBFS.
 732	 */
 733	gfp &= ~(__GFP_COMP);
 734	args.gfp = gfp;
 735
 736	*handle = DMA_MAPPING_ERROR;
 737	allowblock = gfpflags_allow_blocking(gfp);
 738	cma = allowblock ? dev_get_cma_area(dev) : false;
 739
 740	if (cma)
 741		buf->allocator = &cma_allocator;
 742	else if (is_coherent)
 743		buf->allocator = &simple_allocator;
 744	else if (allowblock)
 745		buf->allocator = &remap_allocator;
 746	else
 747		buf->allocator = &pool_allocator;
 748
 749	addr = buf->allocator->alloc(&args, &page);
 750
 751	if (page) {
 752		unsigned long flags;
 753
 754		*handle = pfn_to_dma(dev, page_to_pfn(page));
 755		buf->virt = args.want_vaddr ? addr : page;
 756
 757		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
 758		list_add(&buf->list, &arm_dma_bufs);
 759		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
 760	} else {
 761		kfree(buf);
 762	}
 763
 764	return args.want_vaddr ? addr : page;
 765}
 766
 767/*
 768 * Allocate DMA-coherent memory space and return both the kernel remapped
 769 * virtual and bus address for that space.
 770 */
 771void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 772		    gfp_t gfp, unsigned long attrs)
 773{
 774	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
 775
 776	return __dma_alloc(dev, size, handle, gfp, prot, false,
 777			   attrs, __builtin_return_address(0));
 778}
 779
 780static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 781	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
 782{
 783	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
 784			   attrs, __builtin_return_address(0));
 785}
 786
 787static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 788		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 789		 unsigned long attrs)
 790{
 791	int ret = -ENXIO;
 792	unsigned long nr_vma_pages = vma_pages(vma);
 
 793	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 794	unsigned long pfn = dma_to_pfn(dev, dma_addr);
 795	unsigned long off = vma->vm_pgoff;
 796
 797	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
 798		return ret;
 799
 800	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
 801		ret = remap_pfn_range(vma, vma->vm_start,
 802				      pfn + off,
 803				      vma->vm_end - vma->vm_start,
 804				      vma->vm_page_prot);
 805	}
 
 806
 807	return ret;
 808}
 809
 810/*
 811 * Create userspace mapping for the DMA-coherent memory.
 812 */
 813static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 814		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 815		 unsigned long attrs)
 816{
 817	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 818}
 819
 820int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 821		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 822		 unsigned long attrs)
 823{
 
 824	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 
 825	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 826}
 827
 828/*
 829 * Free a buffer as defined by the above mapping.
 830 */
 831static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 832			   dma_addr_t handle, unsigned long attrs,
 833			   bool is_coherent)
 834{
 835	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 836	struct arm_dma_buffer *buf;
 837	struct arm_dma_free_args args = {
 838		.dev = dev,
 839		.size = PAGE_ALIGN(size),
 840		.cpu_addr = cpu_addr,
 841		.page = page,
 842		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 843	};
 844
 845	buf = arm_dma_buffer_find(cpu_addr);
 846	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
 847		return;
 848
 849	buf->allocator->free(&args);
 850	kfree(buf);
 851}
 852
 853void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 854		  dma_addr_t handle, unsigned long attrs)
 855{
 856	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
 857}
 858
 859static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 860				  dma_addr_t handle, unsigned long attrs)
 861{
 862	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
 863}
 864
 865int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
 866		 void *cpu_addr, dma_addr_t handle, size_t size,
 867		 unsigned long attrs)
 868{
 869	unsigned long pfn = dma_to_pfn(dev, handle);
 870	struct page *page;
 871	int ret;
 872
 873	/* If the PFN is not valid, we do not have a struct page */
 874	if (!pfn_valid(pfn))
 875		return -ENXIO;
 876
 877	page = pfn_to_page(pfn);
 878
 879	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 880	if (unlikely(ret))
 881		return ret;
 882
 883	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 884	return 0;
 885}
 886
 887static void dma_cache_maint_page(struct page *page, unsigned long offset,
 888	size_t size, enum dma_data_direction dir,
 889	void (*op)(const void *, size_t, int))
 890{
 891	unsigned long pfn;
 892	size_t left = size;
 893
 894	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 895	offset %= PAGE_SIZE;
 896
 897	/*
 898	 * A single sg entry may refer to multiple physically contiguous
 899	 * pages.  But we still need to process highmem pages individually.
 900	 * If highmem is not configured then the bulk of this loop gets
 901	 * optimized out.
 902	 */
 903	do {
 904		size_t len = left;
 905		void *vaddr;
 906
 907		page = pfn_to_page(pfn);
 908
 909		if (PageHighMem(page)) {
 910			if (len + offset > PAGE_SIZE)
 911				len = PAGE_SIZE - offset;
 912
 913			if (cache_is_vipt_nonaliasing()) {
 914				vaddr = kmap_atomic(page);
 915				op(vaddr + offset, len, dir);
 916				kunmap_atomic(vaddr);
 917			} else {
 918				vaddr = kmap_high_get(page);
 919				if (vaddr) {
 920					op(vaddr + offset, len, dir);
 921					kunmap_high(page);
 922				}
 923			}
 924		} else {
 925			vaddr = page_address(page) + offset;
 926			op(vaddr, len, dir);
 927		}
 928		offset = 0;
 929		pfn++;
 930		left -= len;
 931	} while (left);
 932}
 933
 934/*
 935 * Make an area consistent for devices.
 936 * Note: Drivers should NOT use this function directly, as it will break
 937 * platforms with CONFIG_DMABOUNCE.
 938 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 939 */
 940static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 941	size_t size, enum dma_data_direction dir)
 942{
 943	phys_addr_t paddr;
 944
 945	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 946
 947	paddr = page_to_phys(page) + off;
 948	if (dir == DMA_FROM_DEVICE) {
 949		outer_inv_range(paddr, paddr + size);
 950	} else {
 951		outer_clean_range(paddr, paddr + size);
 952	}
 953	/* FIXME: non-speculating: flush on bidirectional mappings? */
 954}
 955
 956static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 957	size_t size, enum dma_data_direction dir)
 958{
 959	phys_addr_t paddr = page_to_phys(page) + off;
 960
 961	/* FIXME: non-speculating: not required */
 962	/* in any case, don't bother invalidating if DMA to device */
 963	if (dir != DMA_TO_DEVICE) {
 964		outer_inv_range(paddr, paddr + size);
 965
 966		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 967	}
 968
 969	/*
 970	 * Mark the D-cache clean for these pages to avoid extra flushing.
 971	 */
 972	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
 973		unsigned long pfn;
 974		size_t left = size;
 975
 976		pfn = page_to_pfn(page) + off / PAGE_SIZE;
 977		off %= PAGE_SIZE;
 978		if (off) {
 979			pfn++;
 980			left -= PAGE_SIZE - off;
 981		}
 982		while (left >= PAGE_SIZE) {
 983			page = pfn_to_page(pfn++);
 984			set_bit(PG_dcache_clean, &page->flags);
 985			left -= PAGE_SIZE;
 986		}
 987	}
 988}
 989
 990/**
 991 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
 992 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 993 * @sg: list of buffers
 994 * @nents: number of buffers to map
 995 * @dir: DMA transfer direction
 996 *
 997 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 998 * This is the scatter-gather version of the dma_map_single interface.
 999 * Here the scatter gather list elements are each tagged with the
1000 * appropriate dma address and length.  They are obtained via
1001 * sg_dma_{address,length}.
1002 *
1003 * Device ownership issues as mentioned for dma_map_single are the same
1004 * here.
1005 */
1006int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1007		enum dma_data_direction dir, unsigned long attrs)
1008{
1009	const struct dma_map_ops *ops = get_dma_ops(dev);
1010	struct scatterlist *s;
1011	int i, j;
1012
1013	for_each_sg(sg, s, nents, i) {
1014#ifdef CONFIG_NEED_SG_DMA_LENGTH
1015		s->dma_length = s->length;
1016#endif
1017		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1018						s->length, dir, attrs);
1019		if (dma_mapping_error(dev, s->dma_address))
1020			goto bad_mapping;
1021	}
1022	return nents;
1023
1024 bad_mapping:
1025	for_each_sg(sg, s, i, j)
1026		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1027	return 0;
1028}
1029
1030/**
1031 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1032 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1033 * @sg: list of buffers
1034 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1035 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1036 *
1037 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1038 * rules concerning calls here are the same as for dma_unmap_single().
1039 */
1040void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1041		enum dma_data_direction dir, unsigned long attrs)
1042{
1043	const struct dma_map_ops *ops = get_dma_ops(dev);
1044	struct scatterlist *s;
1045
1046	int i;
1047
1048	for_each_sg(sg, s, nents, i)
1049		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1050}
1051
1052/**
1053 * arm_dma_sync_sg_for_cpu
1054 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1055 * @sg: list of buffers
1056 * @nents: number of buffers to map (returned from dma_map_sg)
1057 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1058 */
1059void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1060			int nents, enum dma_data_direction dir)
1061{
1062	const struct dma_map_ops *ops = get_dma_ops(dev);
1063	struct scatterlist *s;
1064	int i;
1065
1066	for_each_sg(sg, s, nents, i)
1067		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1068					 dir);
1069}
1070
1071/**
1072 * arm_dma_sync_sg_for_device
1073 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1074 * @sg: list of buffers
1075 * @nents: number of buffers to map (returned from dma_map_sg)
1076 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1077 */
1078void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1079			int nents, enum dma_data_direction dir)
1080{
1081	const struct dma_map_ops *ops = get_dma_ops(dev);
1082	struct scatterlist *s;
1083	int i;
1084
1085	for_each_sg(sg, s, nents, i)
1086		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1087					    dir);
1088}
1089
1090/*
1091 * Return whether the given device DMA address mask can be supported
1092 * properly.  For example, if your device can only drive the low 24-bits
1093 * during bus mastering, then you would pass 0x00ffffff as the mask
1094 * to this function.
1095 */
1096int arm_dma_supported(struct device *dev, u64 mask)
1097{
1098	return __dma_supported(dev, mask, false);
1099}
 
 
 
1100
1101static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1102{
1103	/*
1104	 * When CONFIG_ARM_LPAE is set, physical address can extend above
1105	 * 32-bits, which then can't be addressed by devices that only support
1106	 * 32-bit DMA.
1107	 * Use the generic dma-direct / swiotlb ops code in that case, as that
1108	 * handles bounce buffering for us.
1109	 */
1110	if (IS_ENABLED(CONFIG_ARM_LPAE))
1111		return NULL;
1112	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1113}
 
1114
1115#ifdef CONFIG_ARM_DMA_USE_IOMMU
1116
1117static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1118{
1119	int prot = 0;
1120
1121	if (attrs & DMA_ATTR_PRIVILEGED)
1122		prot |= IOMMU_PRIV;
1123
1124	switch (dir) {
1125	case DMA_BIDIRECTIONAL:
1126		return prot | IOMMU_READ | IOMMU_WRITE;
1127	case DMA_TO_DEVICE:
1128		return prot | IOMMU_READ;
1129	case DMA_FROM_DEVICE:
1130		return prot | IOMMU_WRITE;
1131	default:
1132		return prot;
1133	}
1134}
1135
1136/* IOMMU */
1137
1138static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1139
1140static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1141				      size_t size)
1142{
1143	unsigned int order = get_order(size);
1144	unsigned int align = 0;
1145	unsigned int count, start;
1146	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1147	unsigned long flags;
1148	dma_addr_t iova;
1149	int i;
1150
1151	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1152		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1153
1154	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1155	align = (1 << order) - 1;
1156
1157	spin_lock_irqsave(&mapping->lock, flags);
1158	for (i = 0; i < mapping->nr_bitmaps; i++) {
1159		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1160				mapping->bits, 0, count, align);
1161
1162		if (start > mapping->bits)
1163			continue;
1164
1165		bitmap_set(mapping->bitmaps[i], start, count);
1166		break;
1167	}
1168
1169	/*
1170	 * No unused range found. Try to extend the existing mapping
1171	 * and perform a second attempt to reserve an IO virtual
1172	 * address range of size bytes.
1173	 */
1174	if (i == mapping->nr_bitmaps) {
1175		if (extend_iommu_mapping(mapping)) {
1176			spin_unlock_irqrestore(&mapping->lock, flags);
1177			return DMA_MAPPING_ERROR;
1178		}
1179
1180		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1181				mapping->bits, 0, count, align);
1182
1183		if (start > mapping->bits) {
1184			spin_unlock_irqrestore(&mapping->lock, flags);
1185			return DMA_MAPPING_ERROR;
1186		}
1187
1188		bitmap_set(mapping->bitmaps[i], start, count);
1189	}
1190	spin_unlock_irqrestore(&mapping->lock, flags);
1191
1192	iova = mapping->base + (mapping_size * i);
1193	iova += start << PAGE_SHIFT;
1194
1195	return iova;
1196}
1197
1198static inline void __free_iova(struct dma_iommu_mapping *mapping,
1199			       dma_addr_t addr, size_t size)
1200{
1201	unsigned int start, count;
1202	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1203	unsigned long flags;
1204	dma_addr_t bitmap_base;
1205	u32 bitmap_index;
1206
1207	if (!size)
1208		return;
1209
1210	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1211	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1212
1213	bitmap_base = mapping->base + mapping_size * bitmap_index;
1214
1215	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1216
1217	if (addr + size > bitmap_base + mapping_size) {
1218		/*
1219		 * The address range to be freed reaches into the iova
1220		 * range of the next bitmap. This should not happen as
1221		 * we don't allow this in __alloc_iova (at the
1222		 * moment).
1223		 */
1224		BUG();
1225	} else
1226		count = size >> PAGE_SHIFT;
1227
1228	spin_lock_irqsave(&mapping->lock, flags);
1229	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1230	spin_unlock_irqrestore(&mapping->lock, flags);
1231}
1232
1233/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1234static const int iommu_order_array[] = { 9, 8, 4, 0 };
1235
1236static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1237					  gfp_t gfp, unsigned long attrs,
1238					  int coherent_flag)
1239{
1240	struct page **pages;
1241	int count = size >> PAGE_SHIFT;
1242	int array_size = count * sizeof(struct page *);
1243	int i = 0;
1244	int order_idx = 0;
1245
1246	if (array_size <= PAGE_SIZE)
1247		pages = kzalloc(array_size, GFP_KERNEL);
1248	else
1249		pages = vzalloc(array_size);
1250	if (!pages)
1251		return NULL;
1252
1253	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1254	{
1255		unsigned long order = get_order(size);
1256		struct page *page;
1257
1258		page = dma_alloc_from_contiguous(dev, count, order,
1259						 gfp & __GFP_NOWARN);
1260		if (!page)
1261			goto error;
1262
1263		__dma_clear_buffer(page, size, coherent_flag);
1264
1265		for (i = 0; i < count; i++)
1266			pages[i] = page + i;
1267
1268		return pages;
1269	}
1270
1271	/* Go straight to 4K chunks if caller says it's OK. */
1272	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1273		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1274
1275	/*
1276	 * IOMMU can map any pages, so himem can also be used here
1277	 */
1278	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1279
1280	while (count) {
1281		int j, order;
1282
1283		order = iommu_order_array[order_idx];
1284
1285		/* Drop down when we get small */
1286		if (__fls(count) < order) {
1287			order_idx++;
1288			continue;
1289		}
1290
1291		if (order) {
1292			/* See if it's easy to allocate a high-order chunk */
1293			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1294
1295			/* Go down a notch at first sign of pressure */
1296			if (!pages[i]) {
1297				order_idx++;
1298				continue;
1299			}
1300		} else {
1301			pages[i] = alloc_pages(gfp, 0);
1302			if (!pages[i])
1303				goto error;
1304		}
1305
1306		if (order) {
1307			split_page(pages[i], order);
1308			j = 1 << order;
1309			while (--j)
1310				pages[i + j] = pages[i] + j;
1311		}
1312
1313		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1314		i += 1 << order;
1315		count -= 1 << order;
1316	}
1317
1318	return pages;
1319error:
1320	while (i--)
1321		if (pages[i])
1322			__free_pages(pages[i], 0);
1323	kvfree(pages);
1324	return NULL;
1325}
1326
1327static int __iommu_free_buffer(struct device *dev, struct page **pages,
1328			       size_t size, unsigned long attrs)
1329{
1330	int count = size >> PAGE_SHIFT;
1331	int i;
1332
1333	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1334		dma_release_from_contiguous(dev, pages[0], count);
1335	} else {
1336		for (i = 0; i < count; i++)
1337			if (pages[i])
1338				__free_pages(pages[i], 0);
1339	}
1340
1341	kvfree(pages);
1342	return 0;
1343}
1344
1345/*
 
 
 
 
 
 
 
 
 
 
 
1346 * Create a mapping in device IO address space for specified pages
1347 */
1348static dma_addr_t
1349__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1350		       unsigned long attrs)
1351{
1352	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1353	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1354	dma_addr_t dma_addr, iova;
1355	int i;
1356
1357	dma_addr = __alloc_iova(mapping, size);
1358	if (dma_addr == DMA_MAPPING_ERROR)
1359		return dma_addr;
1360
1361	iova = dma_addr;
1362	for (i = 0; i < count; ) {
1363		int ret;
1364
1365		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1366		phys_addr_t phys = page_to_phys(pages[i]);
1367		unsigned int len, j;
1368
1369		for (j = i + 1; j < count; j++, next_pfn++)
1370			if (page_to_pfn(pages[j]) != next_pfn)
1371				break;
1372
1373		len = (j - i) << PAGE_SHIFT;
1374		ret = iommu_map(mapping->domain, iova, phys, len,
1375				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1376		if (ret < 0)
1377			goto fail;
1378		iova += len;
1379		i = j;
1380	}
1381	return dma_addr;
1382fail:
1383	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1384	__free_iova(mapping, dma_addr, size);
1385	return DMA_MAPPING_ERROR;
1386}
1387
1388static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1389{
1390	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1391
1392	/*
1393	 * add optional in-page offset from iova to size and align
1394	 * result to page size
1395	 */
1396	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1397	iova &= PAGE_MASK;
1398
1399	iommu_unmap(mapping->domain, iova, size);
1400	__free_iova(mapping, iova, size);
1401	return 0;
1402}
1403
1404static struct page **__atomic_get_pages(void *addr)
1405{
1406	struct page *page;
1407	phys_addr_t phys;
1408
1409	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1410	page = phys_to_page(phys);
1411
1412	return (struct page **)page;
1413}
1414
1415static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1416{
 
 
1417	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1418		return __atomic_get_pages(cpu_addr);
1419
1420	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1421		return cpu_addr;
1422
1423	return dma_common_find_pages(cpu_addr);
 
 
 
1424}
1425
1426static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1427				  dma_addr_t *handle, int coherent_flag,
1428				  unsigned long attrs)
1429{
1430	struct page *page;
1431	void *addr;
1432
1433	if (coherent_flag  == COHERENT)
1434		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1435	else
1436		addr = __alloc_from_pool(size, &page);
1437	if (!addr)
1438		return NULL;
1439
1440	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1441	if (*handle == DMA_MAPPING_ERROR)
1442		goto err_mapping;
1443
1444	return addr;
1445
1446err_mapping:
1447	__free_from_pool(addr, size);
1448	return NULL;
1449}
1450
1451static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1452			dma_addr_t handle, size_t size, int coherent_flag)
1453{
1454	__iommu_remove_mapping(dev, handle, size);
1455	if (coherent_flag == COHERENT)
1456		__dma_free_buffer(virt_to_page(cpu_addr), size);
1457	else
1458		__free_from_pool(cpu_addr, size);
1459}
1460
1461static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1462	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1463	    int coherent_flag)
1464{
1465	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1466	struct page **pages;
1467	void *addr = NULL;
1468
1469	*handle = DMA_MAPPING_ERROR;
1470	size = PAGE_ALIGN(size);
1471
1472	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1473		return __iommu_alloc_simple(dev, size, gfp, handle,
1474					    coherent_flag, attrs);
1475
1476	/*
1477	 * Following is a work-around (a.k.a. hack) to prevent pages
1478	 * with __GFP_COMP being passed to split_page() which cannot
1479	 * handle them.  The real problem is that this flag probably
1480	 * should be 0 on ARM as it is not supported on this
1481	 * platform; see CONFIG_HUGETLBFS.
1482	 */
1483	gfp &= ~(__GFP_COMP);
1484
1485	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1486	if (!pages)
1487		return NULL;
1488
1489	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1490	if (*handle == DMA_MAPPING_ERROR)
1491		goto err_buffer;
1492
1493	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1494		return pages;
1495
1496	addr = dma_common_pages_remap(pages, size, prot,
1497				   __builtin_return_address(0));
1498	if (!addr)
1499		goto err_mapping;
1500
1501	return addr;
1502
1503err_mapping:
1504	__iommu_remove_mapping(dev, *handle, size);
1505err_buffer:
1506	__iommu_free_buffer(dev, pages, size, attrs);
1507	return NULL;
1508}
1509
1510static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1511	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1512{
1513	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1514}
1515
1516static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1517		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1518{
1519	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1520}
1521
1522static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1523		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1524		    unsigned long attrs)
1525{
 
 
1526	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1527	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1528	int err;
1529
1530	if (!pages)
1531		return -ENXIO;
1532
1533	if (vma->vm_pgoff >= nr_pages)
1534		return -ENXIO;
1535
1536	err = vm_map_pages(vma, pages, nr_pages);
1537	if (err)
1538		pr_err("Remapping memory failed: %d\n", err);
 
 
 
 
 
 
 
 
1539
1540	return err;
1541}
1542static int arm_iommu_mmap_attrs(struct device *dev,
1543		struct vm_area_struct *vma, void *cpu_addr,
1544		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1545{
1546	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1547
1548	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1549}
1550
1551static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1552		struct vm_area_struct *vma, void *cpu_addr,
1553		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1554{
1555	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1556}
1557
1558/*
1559 * free a page as defined by the above mapping.
1560 * Must not be called with IRQs disabled.
1561 */
1562void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1563	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1564{
1565	struct page **pages;
1566	size = PAGE_ALIGN(size);
1567
1568	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1569		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1570		return;
1571	}
1572
1573	pages = __iommu_get_pages(cpu_addr, attrs);
1574	if (!pages) {
1575		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1576		return;
1577	}
1578
1579	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1580		dma_common_free_remap(cpu_addr, size);
 
 
1581
1582	__iommu_remove_mapping(dev, handle, size);
1583	__iommu_free_buffer(dev, pages, size, attrs);
1584}
1585
1586void arm_iommu_free_attrs(struct device *dev, size_t size,
1587		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1588{
1589	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1590}
1591
1592void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1593		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1594{
1595	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1596}
1597
1598static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1599				 void *cpu_addr, dma_addr_t dma_addr,
1600				 size_t size, unsigned long attrs)
1601{
1602	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1603	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1604
1605	if (!pages)
1606		return -ENXIO;
1607
1608	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1609					 GFP_KERNEL);
1610}
1611
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1612/*
1613 * Map a part of the scatter-gather list into contiguous io address space
1614 */
1615static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1616			  size_t size, dma_addr_t *handle,
1617			  enum dma_data_direction dir, unsigned long attrs,
1618			  bool is_coherent)
1619{
1620	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1621	dma_addr_t iova, iova_base;
1622	int ret = 0;
1623	unsigned int count;
1624	struct scatterlist *s;
1625	int prot;
1626
1627	size = PAGE_ALIGN(size);
1628	*handle = DMA_MAPPING_ERROR;
1629
1630	iova_base = iova = __alloc_iova(mapping, size);
1631	if (iova == DMA_MAPPING_ERROR)
1632		return -ENOMEM;
1633
1634	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1635		phys_addr_t phys = page_to_phys(sg_page(s));
1636		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1637
1638		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1639			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1640
1641		prot = __dma_info_to_prot(dir, attrs);
1642
1643		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1644		if (ret < 0)
1645			goto fail;
1646		count += len >> PAGE_SHIFT;
1647		iova += len;
1648	}
1649	*handle = iova_base;
1650
1651	return 0;
1652fail:
1653	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1654	__free_iova(mapping, iova_base, size);
1655	return ret;
1656}
1657
1658static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1659		     enum dma_data_direction dir, unsigned long attrs,
1660		     bool is_coherent)
1661{
1662	struct scatterlist *s = sg, *dma = sg, *start = sg;
1663	int i, count = 0;
1664	unsigned int offset = s->offset;
1665	unsigned int size = s->offset + s->length;
1666	unsigned int max = dma_get_max_seg_size(dev);
1667
1668	for (i = 1; i < nents; i++) {
1669		s = sg_next(s);
1670
1671		s->dma_address = DMA_MAPPING_ERROR;
1672		s->dma_length = 0;
1673
1674		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1675			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1676			    dir, attrs, is_coherent) < 0)
1677				goto bad_mapping;
1678
1679			dma->dma_address += offset;
1680			dma->dma_length = size - offset;
1681
1682			size = offset = s->offset;
1683			start = s;
1684			dma = sg_next(dma);
1685			count += 1;
1686		}
1687		size += s->length;
1688	}
1689	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1690		is_coherent) < 0)
1691		goto bad_mapping;
1692
1693	dma->dma_address += offset;
1694	dma->dma_length = size - offset;
1695
1696	return count+1;
1697
1698bad_mapping:
1699	for_each_sg(sg, s, count, i)
1700		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1701	return 0;
1702}
1703
1704/**
1705 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1706 * @dev: valid struct device pointer
1707 * @sg: list of buffers
1708 * @nents: number of buffers to map
1709 * @dir: DMA transfer direction
1710 *
1711 * Map a set of i/o coherent buffers described by scatterlist in streaming
1712 * mode for DMA. The scatter gather list elements are merged together (if
1713 * possible) and tagged with the appropriate dma address and length. They are
1714 * obtained via sg_dma_{address,length}.
1715 */
1716int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1717		int nents, enum dma_data_direction dir, unsigned long attrs)
1718{
1719	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1720}
1721
1722/**
1723 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1724 * @dev: valid struct device pointer
1725 * @sg: list of buffers
1726 * @nents: number of buffers to map
1727 * @dir: DMA transfer direction
1728 *
1729 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1730 * The scatter gather list elements are merged together (if possible) and
1731 * tagged with the appropriate dma address and length. They are obtained via
1732 * sg_dma_{address,length}.
1733 */
1734int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1735		int nents, enum dma_data_direction dir, unsigned long attrs)
1736{
1737	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1738}
1739
1740static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1741		int nents, enum dma_data_direction dir,
1742		unsigned long attrs, bool is_coherent)
1743{
1744	struct scatterlist *s;
1745	int i;
1746
1747	for_each_sg(sg, s, nents, i) {
1748		if (sg_dma_len(s))
1749			__iommu_remove_mapping(dev, sg_dma_address(s),
1750					       sg_dma_len(s));
1751		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1752			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1753					      s->length, dir);
1754	}
1755}
1756
1757/**
1758 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1759 * @dev: valid struct device pointer
1760 * @sg: list of buffers
1761 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1762 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1763 *
1764 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1765 * rules concerning calls here are the same as for dma_unmap_single().
1766 */
1767void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1768		int nents, enum dma_data_direction dir,
1769		unsigned long attrs)
1770{
1771	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1772}
1773
1774/**
1775 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1776 * @dev: valid struct device pointer
1777 * @sg: list of buffers
1778 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1779 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1780 *
1781 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1782 * rules concerning calls here are the same as for dma_unmap_single().
1783 */
1784void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1785			enum dma_data_direction dir,
1786			unsigned long attrs)
1787{
1788	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1789}
1790
1791/**
1792 * arm_iommu_sync_sg_for_cpu
1793 * @dev: valid struct device pointer
1794 * @sg: list of buffers
1795 * @nents: number of buffers to map (returned from dma_map_sg)
1796 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1797 */
1798void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1799			int nents, enum dma_data_direction dir)
1800{
1801	struct scatterlist *s;
1802	int i;
1803
1804	for_each_sg(sg, s, nents, i)
1805		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1806
1807}
1808
1809/**
1810 * arm_iommu_sync_sg_for_device
1811 * @dev: valid struct device pointer
1812 * @sg: list of buffers
1813 * @nents: number of buffers to map (returned from dma_map_sg)
1814 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1815 */
1816void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1817			int nents, enum dma_data_direction dir)
1818{
1819	struct scatterlist *s;
1820	int i;
1821
1822	for_each_sg(sg, s, nents, i)
1823		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1824}
1825
1826
1827/**
1828 * arm_coherent_iommu_map_page
1829 * @dev: valid struct device pointer
1830 * @page: page that buffer resides in
1831 * @offset: offset into page for start of buffer
1832 * @size: size of buffer to map
1833 * @dir: DMA transfer direction
1834 *
1835 * Coherent IOMMU aware version of arm_dma_map_page()
1836 */
1837static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1838	     unsigned long offset, size_t size, enum dma_data_direction dir,
1839	     unsigned long attrs)
1840{
1841	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1842	dma_addr_t dma_addr;
1843	int ret, prot, len = PAGE_ALIGN(size + offset);
1844
1845	dma_addr = __alloc_iova(mapping, len);
1846	if (dma_addr == DMA_MAPPING_ERROR)
1847		return dma_addr;
1848
1849	prot = __dma_info_to_prot(dir, attrs);
1850
1851	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1852	if (ret < 0)
1853		goto fail;
1854
1855	return dma_addr + offset;
1856fail:
1857	__free_iova(mapping, dma_addr, len);
1858	return DMA_MAPPING_ERROR;
1859}
1860
1861/**
1862 * arm_iommu_map_page
1863 * @dev: valid struct device pointer
1864 * @page: page that buffer resides in
1865 * @offset: offset into page for start of buffer
1866 * @size: size of buffer to map
1867 * @dir: DMA transfer direction
1868 *
1869 * IOMMU aware version of arm_dma_map_page()
1870 */
1871static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1872	     unsigned long offset, size_t size, enum dma_data_direction dir,
1873	     unsigned long attrs)
1874{
1875	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1876		__dma_page_cpu_to_dev(page, offset, size, dir);
1877
1878	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1879}
1880
1881/**
1882 * arm_coherent_iommu_unmap_page
1883 * @dev: valid struct device pointer
1884 * @handle: DMA address of buffer
1885 * @size: size of buffer (same as passed to dma_map_page)
1886 * @dir: DMA transfer direction (same as passed to dma_map_page)
1887 *
1888 * Coherent IOMMU aware version of arm_dma_unmap_page()
1889 */
1890static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1891		size_t size, enum dma_data_direction dir, unsigned long attrs)
1892{
1893	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1894	dma_addr_t iova = handle & PAGE_MASK;
1895	int offset = handle & ~PAGE_MASK;
1896	int len = PAGE_ALIGN(size + offset);
1897
1898	if (!iova)
1899		return;
1900
1901	iommu_unmap(mapping->domain, iova, len);
1902	__free_iova(mapping, iova, len);
1903}
1904
1905/**
1906 * arm_iommu_unmap_page
1907 * @dev: valid struct device pointer
1908 * @handle: DMA address of buffer
1909 * @size: size of buffer (same as passed to dma_map_page)
1910 * @dir: DMA transfer direction (same as passed to dma_map_page)
1911 *
1912 * IOMMU aware version of arm_dma_unmap_page()
1913 */
1914static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1915		size_t size, enum dma_data_direction dir, unsigned long attrs)
1916{
1917	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1918	dma_addr_t iova = handle & PAGE_MASK;
1919	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1920	int offset = handle & ~PAGE_MASK;
1921	int len = PAGE_ALIGN(size + offset);
1922
1923	if (!iova)
1924		return;
1925
1926	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1927		__dma_page_dev_to_cpu(page, offset, size, dir);
1928
1929	iommu_unmap(mapping->domain, iova, len);
1930	__free_iova(mapping, iova, len);
1931}
1932
1933/**
1934 * arm_iommu_map_resource - map a device resource for DMA
1935 * @dev: valid struct device pointer
1936 * @phys_addr: physical address of resource
1937 * @size: size of resource to map
1938 * @dir: DMA transfer direction
1939 */
1940static dma_addr_t arm_iommu_map_resource(struct device *dev,
1941		phys_addr_t phys_addr, size_t size,
1942		enum dma_data_direction dir, unsigned long attrs)
1943{
1944	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1945	dma_addr_t dma_addr;
1946	int ret, prot;
1947	phys_addr_t addr = phys_addr & PAGE_MASK;
1948	unsigned int offset = phys_addr & ~PAGE_MASK;
1949	size_t len = PAGE_ALIGN(size + offset);
1950
1951	dma_addr = __alloc_iova(mapping, len);
1952	if (dma_addr == DMA_MAPPING_ERROR)
1953		return dma_addr;
1954
1955	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1956
1957	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1958	if (ret < 0)
1959		goto fail;
1960
1961	return dma_addr + offset;
1962fail:
1963	__free_iova(mapping, dma_addr, len);
1964	return DMA_MAPPING_ERROR;
1965}
1966
1967/**
1968 * arm_iommu_unmap_resource - unmap a device DMA resource
1969 * @dev: valid struct device pointer
1970 * @dma_handle: DMA address to resource
1971 * @size: size of resource to map
1972 * @dir: DMA transfer direction
1973 */
1974static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1975		size_t size, enum dma_data_direction dir,
1976		unsigned long attrs)
1977{
1978	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1979	dma_addr_t iova = dma_handle & PAGE_MASK;
1980	unsigned int offset = dma_handle & ~PAGE_MASK;
1981	size_t len = PAGE_ALIGN(size + offset);
1982
1983	if (!iova)
1984		return;
1985
1986	iommu_unmap(mapping->domain, iova, len);
1987	__free_iova(mapping, iova, len);
1988}
1989
1990static void arm_iommu_sync_single_for_cpu(struct device *dev,
1991		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1992{
1993	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1994	dma_addr_t iova = handle & PAGE_MASK;
1995	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1996	unsigned int offset = handle & ~PAGE_MASK;
1997
1998	if (!iova)
1999		return;
2000
2001	__dma_page_dev_to_cpu(page, offset, size, dir);
2002}
2003
2004static void arm_iommu_sync_single_for_device(struct device *dev,
2005		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2006{
2007	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2008	dma_addr_t iova = handle & PAGE_MASK;
2009	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2010	unsigned int offset = handle & ~PAGE_MASK;
2011
2012	if (!iova)
2013		return;
2014
2015	__dma_page_cpu_to_dev(page, offset, size, dir);
2016}
2017
2018const struct dma_map_ops iommu_ops = {
2019	.alloc		= arm_iommu_alloc_attrs,
2020	.free		= arm_iommu_free_attrs,
2021	.mmap		= arm_iommu_mmap_attrs,
2022	.get_sgtable	= arm_iommu_get_sgtable,
2023
2024	.map_page		= arm_iommu_map_page,
2025	.unmap_page		= arm_iommu_unmap_page,
2026	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
2027	.sync_single_for_device	= arm_iommu_sync_single_for_device,
2028
2029	.map_sg			= arm_iommu_map_sg,
2030	.unmap_sg		= arm_iommu_unmap_sg,
2031	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
2032	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2033
2034	.map_resource		= arm_iommu_map_resource,
2035	.unmap_resource		= arm_iommu_unmap_resource,
2036
2037	.dma_supported		= arm_dma_supported,
2038};
2039
2040const struct dma_map_ops iommu_coherent_ops = {
2041	.alloc		= arm_coherent_iommu_alloc_attrs,
2042	.free		= arm_coherent_iommu_free_attrs,
2043	.mmap		= arm_coherent_iommu_mmap_attrs,
2044	.get_sgtable	= arm_iommu_get_sgtable,
2045
2046	.map_page	= arm_coherent_iommu_map_page,
2047	.unmap_page	= arm_coherent_iommu_unmap_page,
2048
2049	.map_sg		= arm_coherent_iommu_map_sg,
2050	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2051
2052	.map_resource	= arm_iommu_map_resource,
2053	.unmap_resource	= arm_iommu_unmap_resource,
2054
2055	.dma_supported		= arm_dma_supported,
2056};
2057
2058/**
2059 * arm_iommu_create_mapping
2060 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2061 * @base: start address of the valid IO address space
2062 * @size: maximum size of the valid IO address space
2063 *
2064 * Creates a mapping structure which holds information about used/unused
2065 * IO address ranges, which is required to perform memory allocation and
2066 * mapping with IOMMU aware functions.
2067 *
2068 * The client device need to be attached to the mapping with
2069 * arm_iommu_attach_device function.
2070 */
2071struct dma_iommu_mapping *
2072arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2073{
2074	unsigned int bits = size >> PAGE_SHIFT;
2075	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2076	struct dma_iommu_mapping *mapping;
2077	int extensions = 1;
2078	int err = -ENOMEM;
2079
2080	/* currently only 32-bit DMA address space is supported */
2081	if (size > DMA_BIT_MASK(32) + 1)
2082		return ERR_PTR(-ERANGE);
2083
2084	if (!bitmap_size)
2085		return ERR_PTR(-EINVAL);
2086
2087	if (bitmap_size > PAGE_SIZE) {
2088		extensions = bitmap_size / PAGE_SIZE;
2089		bitmap_size = PAGE_SIZE;
2090	}
2091
2092	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2093	if (!mapping)
2094		goto err;
2095
2096	mapping->bitmap_size = bitmap_size;
2097	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2098				   GFP_KERNEL);
2099	if (!mapping->bitmaps)
2100		goto err2;
2101
2102	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2103	if (!mapping->bitmaps[0])
2104		goto err3;
2105
2106	mapping->nr_bitmaps = 1;
2107	mapping->extensions = extensions;
2108	mapping->base = base;
2109	mapping->bits = BITS_PER_BYTE * bitmap_size;
2110
2111	spin_lock_init(&mapping->lock);
2112
2113	mapping->domain = iommu_domain_alloc(bus);
2114	if (!mapping->domain)
2115		goto err4;
2116
2117	kref_init(&mapping->kref);
2118	return mapping;
2119err4:
2120	kfree(mapping->bitmaps[0]);
2121err3:
2122	kfree(mapping->bitmaps);
2123err2:
2124	kfree(mapping);
2125err:
2126	return ERR_PTR(err);
2127}
2128EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2129
2130static void release_iommu_mapping(struct kref *kref)
2131{
2132	int i;
2133	struct dma_iommu_mapping *mapping =
2134		container_of(kref, struct dma_iommu_mapping, kref);
2135
2136	iommu_domain_free(mapping->domain);
2137	for (i = 0; i < mapping->nr_bitmaps; i++)
2138		kfree(mapping->bitmaps[i]);
2139	kfree(mapping->bitmaps);
2140	kfree(mapping);
2141}
2142
2143static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2144{
2145	int next_bitmap;
2146
2147	if (mapping->nr_bitmaps >= mapping->extensions)
2148		return -EINVAL;
2149
2150	next_bitmap = mapping->nr_bitmaps;
2151	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2152						GFP_ATOMIC);
2153	if (!mapping->bitmaps[next_bitmap])
2154		return -ENOMEM;
2155
2156	mapping->nr_bitmaps++;
2157
2158	return 0;
2159}
2160
2161void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2162{
2163	if (mapping)
2164		kref_put(&mapping->kref, release_iommu_mapping);
2165}
2166EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2167
2168static int __arm_iommu_attach_device(struct device *dev,
2169				     struct dma_iommu_mapping *mapping)
2170{
2171	int err;
2172
2173	err = iommu_attach_device(mapping->domain, dev);
2174	if (err)
2175		return err;
2176
2177	kref_get(&mapping->kref);
2178	to_dma_iommu_mapping(dev) = mapping;
2179
2180	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2181	return 0;
2182}
2183
2184/**
2185 * arm_iommu_attach_device
2186 * @dev: valid struct device pointer
2187 * @mapping: io address space mapping structure (returned from
2188 *	arm_iommu_create_mapping)
2189 *
2190 * Attaches specified io address space mapping to the provided device.
2191 * This replaces the dma operations (dma_map_ops pointer) with the
2192 * IOMMU aware version.
2193 *
2194 * More than one client might be attached to the same io address space
2195 * mapping.
2196 */
2197int arm_iommu_attach_device(struct device *dev,
2198			    struct dma_iommu_mapping *mapping)
2199{
2200	int err;
2201
2202	err = __arm_iommu_attach_device(dev, mapping);
2203	if (err)
2204		return err;
2205
2206	set_dma_ops(dev, &iommu_ops);
2207	return 0;
2208}
2209EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2210
2211/**
2212 * arm_iommu_detach_device
2213 * @dev: valid struct device pointer
2214 *
2215 * Detaches the provided device from a previously attached map.
2216 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2217 */
2218void arm_iommu_detach_device(struct device *dev)
2219{
2220	struct dma_iommu_mapping *mapping;
2221
2222	mapping = to_dma_iommu_mapping(dev);
2223	if (!mapping) {
2224		dev_warn(dev, "Not attached\n");
2225		return;
2226	}
2227
2228	iommu_detach_device(mapping->domain, dev);
2229	kref_put(&mapping->kref, release_iommu_mapping);
2230	to_dma_iommu_mapping(dev) = NULL;
2231	set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2232
2233	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2234}
 
 
 
 
 
 
 
 
 
 
 
 
 
2235EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2236
2237static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2238{
2239	return coherent ? &iommu_coherent_ops : &iommu_ops;
2240}
2241
2242static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2243				    const struct iommu_ops *iommu)
2244{
2245	struct dma_iommu_mapping *mapping;
2246
2247	if (!iommu)
2248		return false;
2249
2250	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2251	if (IS_ERR(mapping)) {
2252		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2253				size, dev_name(dev));
2254		return false;
2255	}
2256
2257	if (__arm_iommu_attach_device(dev, mapping)) {
2258		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2259				dev_name(dev));
2260		arm_iommu_release_mapping(mapping);
2261		return false;
2262	}
2263
2264	return true;
2265}
2266
2267static void arm_teardown_iommu_dma_ops(struct device *dev)
2268{
2269	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2270
2271	if (!mapping)
2272		return;
2273
2274	arm_iommu_detach_device(dev);
2275	arm_iommu_release_mapping(mapping);
2276}
2277
2278#else
2279
2280static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2281				    const struct iommu_ops *iommu)
2282{
2283	return false;
2284}
2285
2286static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2287
2288#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2289
2290#endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2291
 
 
 
 
 
2292void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2293			const struct iommu_ops *iommu, bool coherent)
2294{
2295	const struct dma_map_ops *dma_ops;
2296
2297	dev->archdata.dma_coherent = coherent;
2298#ifdef CONFIG_SWIOTLB
2299	dev->dma_coherent = coherent;
2300#endif
2301
2302	/*
2303	 * Don't override the dma_ops if they have already been set. Ideally
2304	 * this should be the only location where dma_ops are set, remove this
2305	 * check when all other callers of set_dma_ops will have disappeared.
2306	 */
2307	if (dev->dma_ops)
2308		return;
2309
2310	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2311		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2312	else
2313		dma_ops = arm_get_dma_map_ops(coherent);
2314
2315	set_dma_ops(dev, dma_ops);
2316
2317#ifdef CONFIG_XEN
2318	if (xen_initial_domain())
2319		dev->dma_ops = &xen_swiotlb_dma_ops;
2320#endif
2321	dev->archdata.dma_ops_setup = true;
2322}
2323
2324void arch_teardown_dma_ops(struct device *dev)
2325{
2326	if (!dev->archdata.dma_ops_setup)
2327		return;
2328
2329	arm_teardown_iommu_dma_ops(dev);
2330	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2331	set_dma_ops(dev, NULL);
2332}
2333
2334#ifdef CONFIG_SWIOTLB
2335void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
2336		size_t size, enum dma_data_direction dir)
2337{
2338	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2339			      size, dir);
2340}
2341
2342void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
2343		size_t size, enum dma_data_direction dir)
2344{
2345	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2346			      size, dir);
2347}
2348
2349long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr,
2350		dma_addr_t dma_addr)
2351{
2352	return dma_to_pfn(dev, dma_addr);
2353}
2354
2355void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2356		gfp_t gfp, unsigned long attrs)
2357{
2358	return __dma_alloc(dev, size, dma_handle, gfp,
2359			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2360			   attrs, __builtin_return_address(0));
2361}
2362
2363void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2364		dma_addr_t dma_handle, unsigned long attrs)
2365{
2366	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2367}
2368#endif /* CONFIG_SWIOTLB */
v4.10.11
 
   1/*
   2 *  linux/arch/arm/mm/dma-mapping.c
   3 *
   4 *  Copyright (C) 2000-2004 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 *  DMA uncached mapping support.
  11 */
  12#include <linux/bootmem.h>
  13#include <linux/module.h>
  14#include <linux/mm.h>
  15#include <linux/genalloc.h>
  16#include <linux/gfp.h>
  17#include <linux/errno.h>
  18#include <linux/list.h>
  19#include <linux/init.h>
  20#include <linux/device.h>
 
  21#include <linux/dma-mapping.h>
 
  22#include <linux/dma-contiguous.h>
  23#include <linux/highmem.h>
  24#include <linux/memblock.h>
  25#include <linux/slab.h>
  26#include <linux/iommu.h>
  27#include <linux/io.h>
  28#include <linux/vmalloc.h>
  29#include <linux/sizes.h>
  30#include <linux/cma.h>
  31
  32#include <asm/memory.h>
  33#include <asm/highmem.h>
  34#include <asm/cacheflush.h>
  35#include <asm/tlbflush.h>
  36#include <asm/mach/arch.h>
  37#include <asm/dma-iommu.h>
  38#include <asm/mach/map.h>
  39#include <asm/system_info.h>
  40#include <asm/dma-contiguous.h>
 
  41
  42#include "dma.h"
  43#include "mm.h"
  44
  45struct arm_dma_alloc_args {
  46	struct device *dev;
  47	size_t size;
  48	gfp_t gfp;
  49	pgprot_t prot;
  50	const void *caller;
  51	bool want_vaddr;
  52	int coherent_flag;
  53};
  54
  55struct arm_dma_free_args {
  56	struct device *dev;
  57	size_t size;
  58	void *cpu_addr;
  59	struct page *page;
  60	bool want_vaddr;
  61};
  62
  63#define NORMAL	    0
  64#define COHERENT    1
  65
  66struct arm_dma_allocator {
  67	void *(*alloc)(struct arm_dma_alloc_args *args,
  68		       struct page **ret_page);
  69	void (*free)(struct arm_dma_free_args *args);
  70};
  71
  72struct arm_dma_buffer {
  73	struct list_head list;
  74	void *virt;
  75	struct arm_dma_allocator *allocator;
  76};
  77
  78static LIST_HEAD(arm_dma_bufs);
  79static DEFINE_SPINLOCK(arm_dma_bufs_lock);
  80
  81static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
  82{
  83	struct arm_dma_buffer *buf, *found = NULL;
  84	unsigned long flags;
  85
  86	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
  87	list_for_each_entry(buf, &arm_dma_bufs, list) {
  88		if (buf->virt == virt) {
  89			list_del(&buf->list);
  90			found = buf;
  91			break;
  92		}
  93	}
  94	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
  95	return found;
  96}
  97
  98/*
  99 * The DMA API is built upon the notion of "buffer ownership".  A buffer
 100 * is either exclusively owned by the CPU (and therefore may be accessed
 101 * by it) or exclusively owned by the DMA device.  These helper functions
 102 * represent the transitions between these two ownership states.
 103 *
 104 * Note, however, that on later ARMs, this notion does not work due to
 105 * speculative prefetches.  We model our approach on the assumption that
 106 * the CPU does do speculative prefetches, which means we clean caches
 107 * before transfers and delay cache invalidation until transfer completion.
 108 *
 109 */
 110static void __dma_page_cpu_to_dev(struct page *, unsigned long,
 111		size_t, enum dma_data_direction);
 112static void __dma_page_dev_to_cpu(struct page *, unsigned long,
 113		size_t, enum dma_data_direction);
 114
 115/**
 116 * arm_dma_map_page - map a portion of a page for streaming DMA
 117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 118 * @page: page that buffer resides in
 119 * @offset: offset into page for start of buffer
 120 * @size: size of buffer to map
 121 * @dir: DMA transfer direction
 122 *
 123 * Ensure that any data held in the cache is appropriately discarded
 124 * or written back.
 125 *
 126 * The device owns this memory once this call has completed.  The CPU
 127 * can regain ownership by calling dma_unmap_page().
 128 */
 129static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
 130	     unsigned long offset, size_t size, enum dma_data_direction dir,
 131	     unsigned long attrs)
 132{
 133	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 134		__dma_page_cpu_to_dev(page, offset, size, dir);
 135	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 136}
 137
 138static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
 139	     unsigned long offset, size_t size, enum dma_data_direction dir,
 140	     unsigned long attrs)
 141{
 142	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 143}
 144
 145/**
 146 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 147 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 148 * @handle: DMA address of buffer
 149 * @size: size of buffer (same as passed to dma_map_page)
 150 * @dir: DMA transfer direction (same as passed to dma_map_page)
 151 *
 152 * Unmap a page streaming mode DMA translation.  The handle and size
 153 * must match what was provided in the previous dma_map_page() call.
 154 * All other usages are undefined.
 155 *
 156 * After this call, reads by the CPU to the buffer are guaranteed to see
 157 * whatever the device wrote there.
 158 */
 159static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
 160		size_t size, enum dma_data_direction dir, unsigned long attrs)
 161{
 162	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 163		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 164				      handle & ~PAGE_MASK, size, dir);
 165}
 166
 167static void arm_dma_sync_single_for_cpu(struct device *dev,
 168		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 169{
 170	unsigned int offset = handle & (PAGE_SIZE - 1);
 171	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 172	__dma_page_dev_to_cpu(page, offset, size, dir);
 173}
 174
 175static void arm_dma_sync_single_for_device(struct device *dev,
 176		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 177{
 178	unsigned int offset = handle & (PAGE_SIZE - 1);
 179	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 180	__dma_page_cpu_to_dev(page, offset, size, dir);
 181}
 182
 183struct dma_map_ops arm_dma_ops = {
 184	.alloc			= arm_dma_alloc,
 185	.free			= arm_dma_free,
 186	.mmap			= arm_dma_mmap,
 187	.get_sgtable		= arm_dma_get_sgtable,
 188	.map_page		= arm_dma_map_page,
 189	.unmap_page		= arm_dma_unmap_page,
 190	.map_sg			= arm_dma_map_sg,
 191	.unmap_sg		= arm_dma_unmap_sg,
 
 192	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
 193	.sync_single_for_device	= arm_dma_sync_single_for_device,
 194	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
 195	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
 
 
 196};
 197EXPORT_SYMBOL(arm_dma_ops);
 198
 199static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 200	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
 201static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 202				  dma_addr_t handle, unsigned long attrs);
 203static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 204		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 205		 unsigned long attrs);
 206
 207struct dma_map_ops arm_coherent_dma_ops = {
 208	.alloc			= arm_coherent_dma_alloc,
 209	.free			= arm_coherent_dma_free,
 210	.mmap			= arm_coherent_dma_mmap,
 211	.get_sgtable		= arm_dma_get_sgtable,
 212	.map_page		= arm_coherent_dma_map_page,
 213	.map_sg			= arm_dma_map_sg,
 
 
 
 214};
 215EXPORT_SYMBOL(arm_coherent_dma_ops);
 216
 217static int __dma_supported(struct device *dev, u64 mask, bool warn)
 218{
 219	unsigned long max_dma_pfn;
 220
 221	/*
 222	 * If the mask allows for more memory than we can address,
 223	 * and we actually have that much memory, then we must
 224	 * indicate that DMA to this device is not supported.
 225	 */
 226	if (sizeof(mask) != sizeof(dma_addr_t) &&
 227	    mask > (dma_addr_t)~0 &&
 228	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
 229		if (warn) {
 230			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
 231				 mask);
 232			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
 233		}
 234		return 0;
 235	}
 236
 237	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
 238
 239	/*
 240	 * Translate the device's DMA mask to a PFN limit.  This
 241	 * PFN number includes the page which we can DMA to.
 242	 */
 243	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
 244		if (warn)
 245			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
 246				 mask,
 247				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
 248				 max_dma_pfn + 1);
 249		return 0;
 250	}
 251
 252	return 1;
 253}
 254
 255static u64 get_coherent_dma_mask(struct device *dev)
 256{
 257	u64 mask = (u64)DMA_BIT_MASK(32);
 258
 259	if (dev) {
 260		mask = dev->coherent_dma_mask;
 261
 262		/*
 263		 * Sanity check the DMA mask - it must be non-zero, and
 264		 * must be able to be satisfied by a DMA allocation.
 265		 */
 266		if (mask == 0) {
 267			dev_warn(dev, "coherent DMA mask is unset\n");
 268			return 0;
 269		}
 270
 271		if (!__dma_supported(dev, mask, true))
 272			return 0;
 273	}
 274
 275	return mask;
 276}
 277
 278static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
 279{
 280	/*
 281	 * Ensure that the allocated pages are zeroed, and that any data
 282	 * lurking in the kernel direct-mapped region is invalidated.
 283	 */
 284	if (PageHighMem(page)) {
 285		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 286		phys_addr_t end = base + size;
 287		while (size > 0) {
 288			void *ptr = kmap_atomic(page);
 289			memset(ptr, 0, PAGE_SIZE);
 290			if (coherent_flag != COHERENT)
 291				dmac_flush_range(ptr, ptr + PAGE_SIZE);
 292			kunmap_atomic(ptr);
 293			page++;
 294			size -= PAGE_SIZE;
 295		}
 296		if (coherent_flag != COHERENT)
 297			outer_flush_range(base, end);
 298	} else {
 299		void *ptr = page_address(page);
 300		memset(ptr, 0, size);
 301		if (coherent_flag != COHERENT) {
 302			dmac_flush_range(ptr, ptr + size);
 303			outer_flush_range(__pa(ptr), __pa(ptr) + size);
 304		}
 305	}
 306}
 307
 308/*
 309 * Allocate a DMA buffer for 'dev' of size 'size' using the
 310 * specified gfp mask.  Note that 'size' must be page aligned.
 311 */
 312static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
 313				       gfp_t gfp, int coherent_flag)
 314{
 315	unsigned long order = get_order(size);
 316	struct page *page, *p, *e;
 317
 318	page = alloc_pages(gfp, order);
 319	if (!page)
 320		return NULL;
 321
 322	/*
 323	 * Now split the huge page and free the excess pages
 324	 */
 325	split_page(page, order);
 326	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 327		__free_page(p);
 328
 329	__dma_clear_buffer(page, size, coherent_flag);
 330
 331	return page;
 332}
 333
 334/*
 335 * Free a DMA buffer.  'size' must be page aligned.
 336 */
 337static void __dma_free_buffer(struct page *page, size_t size)
 338{
 339	struct page *e = page + (size >> PAGE_SHIFT);
 340
 341	while (page < e) {
 342		__free_page(page);
 343		page++;
 344	}
 345}
 346
 347#ifdef CONFIG_MMU
 348
 349static void *__alloc_from_contiguous(struct device *dev, size_t size,
 350				     pgprot_t prot, struct page **ret_page,
 351				     const void *caller, bool want_vaddr,
 352				     int coherent_flag);
 353
 354static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 355				 pgprot_t prot, struct page **ret_page,
 356				 const void *caller, bool want_vaddr);
 357
 358static void *
 359__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
 360	const void *caller)
 361{
 362	/*
 363	 * DMA allocation can be mapped to user space, so lets
 364	 * set VM_USERMAP flags too.
 365	 */
 366	return dma_common_contiguous_remap(page, size,
 367			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
 368			prot, caller);
 369}
 370
 371static void __dma_free_remap(void *cpu_addr, size_t size)
 372{
 373	dma_common_free_remap(cpu_addr, size,
 374			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
 375}
 376
 377#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
 378static struct gen_pool *atomic_pool;
 379
 380static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
 381
 382static int __init early_coherent_pool(char *p)
 383{
 384	atomic_pool_size = memparse(p, &p);
 385	return 0;
 386}
 387early_param("coherent_pool", early_coherent_pool);
 388
 389void __init init_dma_coherent_pool_size(unsigned long size)
 390{
 391	/*
 392	 * Catch any attempt to set the pool size too late.
 393	 */
 394	BUG_ON(atomic_pool);
 395
 396	/*
 397	 * Set architecture specific coherent pool size only if
 398	 * it has not been changed by kernel command line parameter.
 399	 */
 400	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
 401		atomic_pool_size = size;
 402}
 403
 404/*
 405 * Initialise the coherent pool for atomic allocations.
 406 */
 407static int __init atomic_pool_init(void)
 408{
 409	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 410	gfp_t gfp = GFP_KERNEL | GFP_DMA;
 411	struct page *page;
 412	void *ptr;
 413
 414	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
 415	if (!atomic_pool)
 416		goto out;
 417	/*
 418	 * The atomic pool is only used for non-coherent allocations
 419	 * so we must pass NORMAL for coherent_flag.
 420	 */
 421	if (dev_get_cma_area(NULL))
 422		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
 423				      &page, atomic_pool_init, true, NORMAL);
 
 424	else
 425		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
 426					   &page, atomic_pool_init, true);
 427	if (ptr) {
 428		int ret;
 429
 430		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
 431					page_to_phys(page),
 432					atomic_pool_size, -1);
 433		if (ret)
 434			goto destroy_genpool;
 435
 436		gen_pool_set_algo(atomic_pool,
 437				gen_pool_first_fit_order_align,
 438				(void *)PAGE_SHIFT);
 439		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
 440		       atomic_pool_size / 1024);
 441		return 0;
 442	}
 443
 444destroy_genpool:
 445	gen_pool_destroy(atomic_pool);
 446	atomic_pool = NULL;
 447out:
 448	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
 449	       atomic_pool_size / 1024);
 450	return -ENOMEM;
 451}
 452/*
 453 * CMA is activated by core_initcall, so we must be called after it.
 454 */
 455postcore_initcall(atomic_pool_init);
 456
 457struct dma_contig_early_reserve {
 458	phys_addr_t base;
 459	unsigned long size;
 460};
 461
 462static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 463
 464static int dma_mmu_remap_num __initdata;
 465
 466void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 467{
 468	dma_mmu_remap[dma_mmu_remap_num].base = base;
 469	dma_mmu_remap[dma_mmu_remap_num].size = size;
 470	dma_mmu_remap_num++;
 471}
 472
 473void __init dma_contiguous_remap(void)
 474{
 475	int i;
 476	for (i = 0; i < dma_mmu_remap_num; i++) {
 477		phys_addr_t start = dma_mmu_remap[i].base;
 478		phys_addr_t end = start + dma_mmu_remap[i].size;
 479		struct map_desc map;
 480		unsigned long addr;
 481
 482		if (end > arm_lowmem_limit)
 483			end = arm_lowmem_limit;
 484		if (start >= end)
 485			continue;
 486
 487		map.pfn = __phys_to_pfn(start);
 488		map.virtual = __phys_to_virt(start);
 489		map.length = end - start;
 490		map.type = MT_MEMORY_DMA_READY;
 491
 492		/*
 493		 * Clear previous low-memory mapping to ensure that the
 494		 * TLB does not see any conflicting entries, then flush
 495		 * the TLB of the old entries before creating new mappings.
 496		 *
 497		 * This ensures that any speculatively loaded TLB entries
 498		 * (even though they may be rare) can not cause any problems,
 499		 * and ensures that this code is architecturally compliant.
 500		 */
 501		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 502		     addr += PMD_SIZE)
 503			pmd_clear(pmd_off_k(addr));
 504
 505		flush_tlb_kernel_range(__phys_to_virt(start),
 506				       __phys_to_virt(end));
 507
 508		iotable_init(&map, 1);
 509	}
 510}
 511
 512static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
 513			    void *data)
 514{
 515	struct page *page = virt_to_page(addr);
 516	pgprot_t prot = *(pgprot_t *)data;
 517
 518	set_pte_ext(pte, mk_pte(page, prot), 0);
 519	return 0;
 520}
 521
 522static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 523{
 524	unsigned long start = (unsigned long) page_address(page);
 525	unsigned end = start + size;
 526
 527	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 528	flush_tlb_kernel_range(start, end);
 529}
 530
 531static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 532				 pgprot_t prot, struct page **ret_page,
 533				 const void *caller, bool want_vaddr)
 534{
 535	struct page *page;
 536	void *ptr = NULL;
 537	/*
 538	 * __alloc_remap_buffer is only called when the device is
 539	 * non-coherent
 540	 */
 541	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
 542	if (!page)
 543		return NULL;
 544	if (!want_vaddr)
 545		goto out;
 546
 547	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
 548	if (!ptr) {
 549		__dma_free_buffer(page, size);
 550		return NULL;
 551	}
 552
 553 out:
 554	*ret_page = page;
 555	return ptr;
 556}
 557
 558static void *__alloc_from_pool(size_t size, struct page **ret_page)
 559{
 560	unsigned long val;
 561	void *ptr = NULL;
 562
 563	if (!atomic_pool) {
 564		WARN(1, "coherent pool not initialised!\n");
 565		return NULL;
 566	}
 567
 568	val = gen_pool_alloc(atomic_pool, size);
 569	if (val) {
 570		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 571
 572		*ret_page = phys_to_page(phys);
 573		ptr = (void *)val;
 574	}
 575
 576	return ptr;
 577}
 578
 579static bool __in_atomic_pool(void *start, size_t size)
 580{
 581	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
 582}
 583
 584static int __free_from_pool(void *start, size_t size)
 585{
 586	if (!__in_atomic_pool(start, size))
 587		return 0;
 588
 589	gen_pool_free(atomic_pool, (unsigned long)start, size);
 590
 591	return 1;
 592}
 593
 594static void *__alloc_from_contiguous(struct device *dev, size_t size,
 595				     pgprot_t prot, struct page **ret_page,
 596				     const void *caller, bool want_vaddr,
 597				     int coherent_flag)
 598{
 599	unsigned long order = get_order(size);
 600	size_t count = size >> PAGE_SHIFT;
 601	struct page *page;
 602	void *ptr = NULL;
 603
 604	page = dma_alloc_from_contiguous(dev, count, order);
 605	if (!page)
 606		return NULL;
 607
 608	__dma_clear_buffer(page, size, coherent_flag);
 609
 610	if (!want_vaddr)
 611		goto out;
 612
 613	if (PageHighMem(page)) {
 614		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
 615		if (!ptr) {
 616			dma_release_from_contiguous(dev, page, count);
 617			return NULL;
 618		}
 619	} else {
 620		__dma_remap(page, size, prot);
 621		ptr = page_address(page);
 622	}
 623
 624 out:
 625	*ret_page = page;
 626	return ptr;
 627}
 628
 629static void __free_from_contiguous(struct device *dev, struct page *page,
 630				   void *cpu_addr, size_t size, bool want_vaddr)
 631{
 632	if (want_vaddr) {
 633		if (PageHighMem(page))
 634			__dma_free_remap(cpu_addr, size);
 635		else
 636			__dma_remap(page, size, PAGE_KERNEL);
 637	}
 638	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 639}
 640
 641static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
 642{
 643	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
 644			pgprot_writecombine(prot) :
 645			pgprot_dmacoherent(prot);
 646	return prot;
 647}
 648
 649#define nommu() 0
 650
 651#else	/* !CONFIG_MMU */
 652
 653#define nommu() 1
 654
 655#define __get_dma_pgprot(attrs, prot)				__pgprot(0)
 656#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)	NULL
 657#define __alloc_from_pool(size, ret_page)			NULL
 658#define __alloc_from_contiguous(dev, size, prot, ret, c, wv, coherent_flag)	NULL
 659#define __free_from_pool(cpu_addr, size)			do { } while (0)
 660#define __free_from_contiguous(dev, page, cpu_addr, size, wv)	do { } while (0)
 661#define __dma_free_remap(cpu_addr, size)			do { } while (0)
 662
 663#endif	/* CONFIG_MMU */
 664
 665static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 666				   struct page **ret_page)
 667{
 668	struct page *page;
 669	/* __alloc_simple_buffer is only called when the device is coherent */
 670	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
 671	if (!page)
 672		return NULL;
 673
 674	*ret_page = page;
 675	return page_address(page);
 676}
 677
 678static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
 679				    struct page **ret_page)
 680{
 681	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
 682				     ret_page);
 683}
 684
 685static void simple_allocator_free(struct arm_dma_free_args *args)
 686{
 687	__dma_free_buffer(args->page, args->size);
 688}
 689
 690static struct arm_dma_allocator simple_allocator = {
 691	.alloc = simple_allocator_alloc,
 692	.free = simple_allocator_free,
 693};
 694
 695static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
 696				 struct page **ret_page)
 697{
 698	return __alloc_from_contiguous(args->dev, args->size, args->prot,
 699				       ret_page, args->caller,
 700				       args->want_vaddr, args->coherent_flag);
 
 701}
 702
 703static void cma_allocator_free(struct arm_dma_free_args *args)
 704{
 705	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
 706			       args->size, args->want_vaddr);
 707}
 708
 709static struct arm_dma_allocator cma_allocator = {
 710	.alloc = cma_allocator_alloc,
 711	.free = cma_allocator_free,
 712};
 713
 714static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
 715				  struct page **ret_page)
 716{
 717	return __alloc_from_pool(args->size, ret_page);
 718}
 719
 720static void pool_allocator_free(struct arm_dma_free_args *args)
 721{
 722	__free_from_pool(args->cpu_addr, args->size);
 723}
 724
 725static struct arm_dma_allocator pool_allocator = {
 726	.alloc = pool_allocator_alloc,
 727	.free = pool_allocator_free,
 728};
 729
 730static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
 731				   struct page **ret_page)
 732{
 733	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
 734				    args->prot, ret_page, args->caller,
 735				    args->want_vaddr);
 736}
 737
 738static void remap_allocator_free(struct arm_dma_free_args *args)
 739{
 740	if (args->want_vaddr)
 741		__dma_free_remap(args->cpu_addr, args->size);
 742
 743	__dma_free_buffer(args->page, args->size);
 744}
 745
 746static struct arm_dma_allocator remap_allocator = {
 747	.alloc = remap_allocator_alloc,
 748	.free = remap_allocator_free,
 749};
 750
 751static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 752			 gfp_t gfp, pgprot_t prot, bool is_coherent,
 753			 unsigned long attrs, const void *caller)
 754{
 755	u64 mask = get_coherent_dma_mask(dev);
 756	struct page *page = NULL;
 757	void *addr;
 758	bool allowblock, cma;
 759	struct arm_dma_buffer *buf;
 760	struct arm_dma_alloc_args args = {
 761		.dev = dev,
 762		.size = PAGE_ALIGN(size),
 763		.gfp = gfp,
 764		.prot = prot,
 765		.caller = caller,
 766		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 767		.coherent_flag = is_coherent ? COHERENT : NORMAL,
 768	};
 769
 770#ifdef CONFIG_DMA_API_DEBUG
 771	u64 limit = (mask + 1) & ~mask;
 772	if (limit && size >= limit) {
 773		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 774			size, mask);
 775		return NULL;
 776	}
 777#endif
 778
 779	if (!mask)
 780		return NULL;
 781
 782	buf = kzalloc(sizeof(*buf),
 783		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
 784	if (!buf)
 785		return NULL;
 786
 787	if (mask < 0xffffffffULL)
 788		gfp |= GFP_DMA;
 789
 790	/*
 791	 * Following is a work-around (a.k.a. hack) to prevent pages
 792	 * with __GFP_COMP being passed to split_page() which cannot
 793	 * handle them.  The real problem is that this flag probably
 794	 * should be 0 on ARM as it is not supported on this
 795	 * platform; see CONFIG_HUGETLBFS.
 796	 */
 797	gfp &= ~(__GFP_COMP);
 798	args.gfp = gfp;
 799
 800	*handle = DMA_ERROR_CODE;
 801	allowblock = gfpflags_allow_blocking(gfp);
 802	cma = allowblock ? dev_get_cma_area(dev) : false;
 803
 804	if (cma)
 805		buf->allocator = &cma_allocator;
 806	else if (nommu() || is_coherent)
 807		buf->allocator = &simple_allocator;
 808	else if (allowblock)
 809		buf->allocator = &remap_allocator;
 810	else
 811		buf->allocator = &pool_allocator;
 812
 813	addr = buf->allocator->alloc(&args, &page);
 814
 815	if (page) {
 816		unsigned long flags;
 817
 818		*handle = pfn_to_dma(dev, page_to_pfn(page));
 819		buf->virt = args.want_vaddr ? addr : page;
 820
 821		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
 822		list_add(&buf->list, &arm_dma_bufs);
 823		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
 824	} else {
 825		kfree(buf);
 826	}
 827
 828	return args.want_vaddr ? addr : page;
 829}
 830
 831/*
 832 * Allocate DMA-coherent memory space and return both the kernel remapped
 833 * virtual and bus address for that space.
 834 */
 835void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 836		    gfp_t gfp, unsigned long attrs)
 837{
 838	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
 839
 840	return __dma_alloc(dev, size, handle, gfp, prot, false,
 841			   attrs, __builtin_return_address(0));
 842}
 843
 844static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 845	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
 846{
 847	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
 848			   attrs, __builtin_return_address(0));
 849}
 850
 851static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 852		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 853		 unsigned long attrs)
 854{
 855	int ret = -ENXIO;
 856#ifdef CONFIG_MMU
 857	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 858	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 859	unsigned long pfn = dma_to_pfn(dev, dma_addr);
 860	unsigned long off = vma->vm_pgoff;
 861
 862	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
 863		return ret;
 864
 865	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
 866		ret = remap_pfn_range(vma, vma->vm_start,
 867				      pfn + off,
 868				      vma->vm_end - vma->vm_start,
 869				      vma->vm_page_prot);
 870	}
 871#endif	/* CONFIG_MMU */
 872
 873	return ret;
 874}
 875
 876/*
 877 * Create userspace mapping for the DMA-coherent memory.
 878 */
 879static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 880		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 881		 unsigned long attrs)
 882{
 883	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 884}
 885
 886int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 887		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 888		 unsigned long attrs)
 889{
 890#ifdef CONFIG_MMU
 891	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 892#endif	/* CONFIG_MMU */
 893	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 894}
 895
 896/*
 897 * Free a buffer as defined by the above mapping.
 898 */
 899static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 900			   dma_addr_t handle, unsigned long attrs,
 901			   bool is_coherent)
 902{
 903	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 904	struct arm_dma_buffer *buf;
 905	struct arm_dma_free_args args = {
 906		.dev = dev,
 907		.size = PAGE_ALIGN(size),
 908		.cpu_addr = cpu_addr,
 909		.page = page,
 910		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 911	};
 912
 913	buf = arm_dma_buffer_find(cpu_addr);
 914	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
 915		return;
 916
 917	buf->allocator->free(&args);
 918	kfree(buf);
 919}
 920
 921void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 922		  dma_addr_t handle, unsigned long attrs)
 923{
 924	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
 925}
 926
 927static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 928				  dma_addr_t handle, unsigned long attrs)
 929{
 930	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
 931}
 932
 933int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
 934		 void *cpu_addr, dma_addr_t handle, size_t size,
 935		 unsigned long attrs)
 936{
 937	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 
 938	int ret;
 939
 
 
 
 
 
 
 940	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 941	if (unlikely(ret))
 942		return ret;
 943
 944	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 945	return 0;
 946}
 947
 948static void dma_cache_maint_page(struct page *page, unsigned long offset,
 949	size_t size, enum dma_data_direction dir,
 950	void (*op)(const void *, size_t, int))
 951{
 952	unsigned long pfn;
 953	size_t left = size;
 954
 955	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 956	offset %= PAGE_SIZE;
 957
 958	/*
 959	 * A single sg entry may refer to multiple physically contiguous
 960	 * pages.  But we still need to process highmem pages individually.
 961	 * If highmem is not configured then the bulk of this loop gets
 962	 * optimized out.
 963	 */
 964	do {
 965		size_t len = left;
 966		void *vaddr;
 967
 968		page = pfn_to_page(pfn);
 969
 970		if (PageHighMem(page)) {
 971			if (len + offset > PAGE_SIZE)
 972				len = PAGE_SIZE - offset;
 973
 974			if (cache_is_vipt_nonaliasing()) {
 975				vaddr = kmap_atomic(page);
 976				op(vaddr + offset, len, dir);
 977				kunmap_atomic(vaddr);
 978			} else {
 979				vaddr = kmap_high_get(page);
 980				if (vaddr) {
 981					op(vaddr + offset, len, dir);
 982					kunmap_high(page);
 983				}
 984			}
 985		} else {
 986			vaddr = page_address(page) + offset;
 987			op(vaddr, len, dir);
 988		}
 989		offset = 0;
 990		pfn++;
 991		left -= len;
 992	} while (left);
 993}
 994
 995/*
 996 * Make an area consistent for devices.
 997 * Note: Drivers should NOT use this function directly, as it will break
 998 * platforms with CONFIG_DMABOUNCE.
 999 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
1000 */
1001static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
1002	size_t size, enum dma_data_direction dir)
1003{
1004	phys_addr_t paddr;
1005
1006	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
1007
1008	paddr = page_to_phys(page) + off;
1009	if (dir == DMA_FROM_DEVICE) {
1010		outer_inv_range(paddr, paddr + size);
1011	} else {
1012		outer_clean_range(paddr, paddr + size);
1013	}
1014	/* FIXME: non-speculating: flush on bidirectional mappings? */
1015}
1016
1017static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1018	size_t size, enum dma_data_direction dir)
1019{
1020	phys_addr_t paddr = page_to_phys(page) + off;
1021
1022	/* FIXME: non-speculating: not required */
1023	/* in any case, don't bother invalidating if DMA to device */
1024	if (dir != DMA_TO_DEVICE) {
1025		outer_inv_range(paddr, paddr + size);
1026
1027		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1028	}
1029
1030	/*
1031	 * Mark the D-cache clean for these pages to avoid extra flushing.
1032	 */
1033	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1034		unsigned long pfn;
1035		size_t left = size;
1036
1037		pfn = page_to_pfn(page) + off / PAGE_SIZE;
1038		off %= PAGE_SIZE;
1039		if (off) {
1040			pfn++;
1041			left -= PAGE_SIZE - off;
1042		}
1043		while (left >= PAGE_SIZE) {
1044			page = pfn_to_page(pfn++);
1045			set_bit(PG_dcache_clean, &page->flags);
1046			left -= PAGE_SIZE;
1047		}
1048	}
1049}
1050
1051/**
1052 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1053 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1054 * @sg: list of buffers
1055 * @nents: number of buffers to map
1056 * @dir: DMA transfer direction
1057 *
1058 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1059 * This is the scatter-gather version of the dma_map_single interface.
1060 * Here the scatter gather list elements are each tagged with the
1061 * appropriate dma address and length.  They are obtained via
1062 * sg_dma_{address,length}.
1063 *
1064 * Device ownership issues as mentioned for dma_map_single are the same
1065 * here.
1066 */
1067int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1068		enum dma_data_direction dir, unsigned long attrs)
1069{
1070	struct dma_map_ops *ops = get_dma_ops(dev);
1071	struct scatterlist *s;
1072	int i, j;
1073
1074	for_each_sg(sg, s, nents, i) {
1075#ifdef CONFIG_NEED_SG_DMA_LENGTH
1076		s->dma_length = s->length;
1077#endif
1078		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1079						s->length, dir, attrs);
1080		if (dma_mapping_error(dev, s->dma_address))
1081			goto bad_mapping;
1082	}
1083	return nents;
1084
1085 bad_mapping:
1086	for_each_sg(sg, s, i, j)
1087		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1088	return 0;
1089}
1090
1091/**
1092 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1093 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1094 * @sg: list of buffers
1095 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1096 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1097 *
1098 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1099 * rules concerning calls here are the same as for dma_unmap_single().
1100 */
1101void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1102		enum dma_data_direction dir, unsigned long attrs)
1103{
1104	struct dma_map_ops *ops = get_dma_ops(dev);
1105	struct scatterlist *s;
1106
1107	int i;
1108
1109	for_each_sg(sg, s, nents, i)
1110		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1111}
1112
1113/**
1114 * arm_dma_sync_sg_for_cpu
1115 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1116 * @sg: list of buffers
1117 * @nents: number of buffers to map (returned from dma_map_sg)
1118 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1119 */
1120void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1121			int nents, enum dma_data_direction dir)
1122{
1123	struct dma_map_ops *ops = get_dma_ops(dev);
1124	struct scatterlist *s;
1125	int i;
1126
1127	for_each_sg(sg, s, nents, i)
1128		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1129					 dir);
1130}
1131
1132/**
1133 * arm_dma_sync_sg_for_device
1134 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1135 * @sg: list of buffers
1136 * @nents: number of buffers to map (returned from dma_map_sg)
1137 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1138 */
1139void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1140			int nents, enum dma_data_direction dir)
1141{
1142	struct dma_map_ops *ops = get_dma_ops(dev);
1143	struct scatterlist *s;
1144	int i;
1145
1146	for_each_sg(sg, s, nents, i)
1147		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1148					    dir);
1149}
1150
1151/*
1152 * Return whether the given device DMA address mask can be supported
1153 * properly.  For example, if your device can only drive the low 24-bits
1154 * during bus mastering, then you would pass 0x00ffffff as the mask
1155 * to this function.
1156 */
1157int dma_supported(struct device *dev, u64 mask)
1158{
1159	return __dma_supported(dev, mask, false);
1160}
1161EXPORT_SYMBOL(dma_supported);
1162
1163#define PREALLOC_DMA_DEBUG_ENTRIES	4096
1164
1165static int __init dma_debug_do_init(void)
1166{
1167	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1168	return 0;
 
 
 
 
 
 
 
 
1169}
1170core_initcall(dma_debug_do_init);
1171
1172#ifdef CONFIG_ARM_DMA_USE_IOMMU
1173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174/* IOMMU */
1175
1176static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1177
1178static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1179				      size_t size)
1180{
1181	unsigned int order = get_order(size);
1182	unsigned int align = 0;
1183	unsigned int count, start;
1184	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1185	unsigned long flags;
1186	dma_addr_t iova;
1187	int i;
1188
1189	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1190		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1191
1192	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1193	align = (1 << order) - 1;
1194
1195	spin_lock_irqsave(&mapping->lock, flags);
1196	for (i = 0; i < mapping->nr_bitmaps; i++) {
1197		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1198				mapping->bits, 0, count, align);
1199
1200		if (start > mapping->bits)
1201			continue;
1202
1203		bitmap_set(mapping->bitmaps[i], start, count);
1204		break;
1205	}
1206
1207	/*
1208	 * No unused range found. Try to extend the existing mapping
1209	 * and perform a second attempt to reserve an IO virtual
1210	 * address range of size bytes.
1211	 */
1212	if (i == mapping->nr_bitmaps) {
1213		if (extend_iommu_mapping(mapping)) {
1214			spin_unlock_irqrestore(&mapping->lock, flags);
1215			return DMA_ERROR_CODE;
1216		}
1217
1218		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1219				mapping->bits, 0, count, align);
1220
1221		if (start > mapping->bits) {
1222			spin_unlock_irqrestore(&mapping->lock, flags);
1223			return DMA_ERROR_CODE;
1224		}
1225
1226		bitmap_set(mapping->bitmaps[i], start, count);
1227	}
1228	spin_unlock_irqrestore(&mapping->lock, flags);
1229
1230	iova = mapping->base + (mapping_size * i);
1231	iova += start << PAGE_SHIFT;
1232
1233	return iova;
1234}
1235
1236static inline void __free_iova(struct dma_iommu_mapping *mapping,
1237			       dma_addr_t addr, size_t size)
1238{
1239	unsigned int start, count;
1240	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1241	unsigned long flags;
1242	dma_addr_t bitmap_base;
1243	u32 bitmap_index;
1244
1245	if (!size)
1246		return;
1247
1248	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1249	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1250
1251	bitmap_base = mapping->base + mapping_size * bitmap_index;
1252
1253	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1254
1255	if (addr + size > bitmap_base + mapping_size) {
1256		/*
1257		 * The address range to be freed reaches into the iova
1258		 * range of the next bitmap. This should not happen as
1259		 * we don't allow this in __alloc_iova (at the
1260		 * moment).
1261		 */
1262		BUG();
1263	} else
1264		count = size >> PAGE_SHIFT;
1265
1266	spin_lock_irqsave(&mapping->lock, flags);
1267	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1268	spin_unlock_irqrestore(&mapping->lock, flags);
1269}
1270
1271/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1272static const int iommu_order_array[] = { 9, 8, 4, 0 };
1273
1274static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1275					  gfp_t gfp, unsigned long attrs,
1276					  int coherent_flag)
1277{
1278	struct page **pages;
1279	int count = size >> PAGE_SHIFT;
1280	int array_size = count * sizeof(struct page *);
1281	int i = 0;
1282	int order_idx = 0;
1283
1284	if (array_size <= PAGE_SIZE)
1285		pages = kzalloc(array_size, GFP_KERNEL);
1286	else
1287		pages = vzalloc(array_size);
1288	if (!pages)
1289		return NULL;
1290
1291	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1292	{
1293		unsigned long order = get_order(size);
1294		struct page *page;
1295
1296		page = dma_alloc_from_contiguous(dev, count, order);
 
1297		if (!page)
1298			goto error;
1299
1300		__dma_clear_buffer(page, size, coherent_flag);
1301
1302		for (i = 0; i < count; i++)
1303			pages[i] = page + i;
1304
1305		return pages;
1306	}
1307
1308	/* Go straight to 4K chunks if caller says it's OK. */
1309	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1310		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1311
1312	/*
1313	 * IOMMU can map any pages, so himem can also be used here
1314	 */
1315	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1316
1317	while (count) {
1318		int j, order;
1319
1320		order = iommu_order_array[order_idx];
1321
1322		/* Drop down when we get small */
1323		if (__fls(count) < order) {
1324			order_idx++;
1325			continue;
1326		}
1327
1328		if (order) {
1329			/* See if it's easy to allocate a high-order chunk */
1330			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1331
1332			/* Go down a notch at first sign of pressure */
1333			if (!pages[i]) {
1334				order_idx++;
1335				continue;
1336			}
1337		} else {
1338			pages[i] = alloc_pages(gfp, 0);
1339			if (!pages[i])
1340				goto error;
1341		}
1342
1343		if (order) {
1344			split_page(pages[i], order);
1345			j = 1 << order;
1346			while (--j)
1347				pages[i + j] = pages[i] + j;
1348		}
1349
1350		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1351		i += 1 << order;
1352		count -= 1 << order;
1353	}
1354
1355	return pages;
1356error:
1357	while (i--)
1358		if (pages[i])
1359			__free_pages(pages[i], 0);
1360	kvfree(pages);
1361	return NULL;
1362}
1363
1364static int __iommu_free_buffer(struct device *dev, struct page **pages,
1365			       size_t size, unsigned long attrs)
1366{
1367	int count = size >> PAGE_SHIFT;
1368	int i;
1369
1370	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1371		dma_release_from_contiguous(dev, pages[0], count);
1372	} else {
1373		for (i = 0; i < count; i++)
1374			if (pages[i])
1375				__free_pages(pages[i], 0);
1376	}
1377
1378	kvfree(pages);
1379	return 0;
1380}
1381
1382/*
1383 * Create a CPU mapping for a specified pages
1384 */
1385static void *
1386__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1387		    const void *caller)
1388{
1389	return dma_common_pages_remap(pages, size,
1390			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1391}
1392
1393/*
1394 * Create a mapping in device IO address space for specified pages
1395 */
1396static dma_addr_t
1397__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
 
1398{
1399	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1400	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1401	dma_addr_t dma_addr, iova;
1402	int i;
1403
1404	dma_addr = __alloc_iova(mapping, size);
1405	if (dma_addr == DMA_ERROR_CODE)
1406		return dma_addr;
1407
1408	iova = dma_addr;
1409	for (i = 0; i < count; ) {
1410		int ret;
1411
1412		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1413		phys_addr_t phys = page_to_phys(pages[i]);
1414		unsigned int len, j;
1415
1416		for (j = i + 1; j < count; j++, next_pfn++)
1417			if (page_to_pfn(pages[j]) != next_pfn)
1418				break;
1419
1420		len = (j - i) << PAGE_SHIFT;
1421		ret = iommu_map(mapping->domain, iova, phys, len,
1422				IOMMU_READ|IOMMU_WRITE);
1423		if (ret < 0)
1424			goto fail;
1425		iova += len;
1426		i = j;
1427	}
1428	return dma_addr;
1429fail:
1430	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1431	__free_iova(mapping, dma_addr, size);
1432	return DMA_ERROR_CODE;
1433}
1434
1435static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1436{
1437	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1438
1439	/*
1440	 * add optional in-page offset from iova to size and align
1441	 * result to page size
1442	 */
1443	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1444	iova &= PAGE_MASK;
1445
1446	iommu_unmap(mapping->domain, iova, size);
1447	__free_iova(mapping, iova, size);
1448	return 0;
1449}
1450
1451static struct page **__atomic_get_pages(void *addr)
1452{
1453	struct page *page;
1454	phys_addr_t phys;
1455
1456	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1457	page = phys_to_page(phys);
1458
1459	return (struct page **)page;
1460}
1461
1462static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1463{
1464	struct vm_struct *area;
1465
1466	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1467		return __atomic_get_pages(cpu_addr);
1468
1469	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1470		return cpu_addr;
1471
1472	area = find_vm_area(cpu_addr);
1473	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1474		return area->pages;
1475	return NULL;
1476}
1477
1478static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1479				  dma_addr_t *handle, int coherent_flag)
 
1480{
1481	struct page *page;
1482	void *addr;
1483
1484	if (coherent_flag  == COHERENT)
1485		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1486	else
1487		addr = __alloc_from_pool(size, &page);
1488	if (!addr)
1489		return NULL;
1490
1491	*handle = __iommu_create_mapping(dev, &page, size);
1492	if (*handle == DMA_ERROR_CODE)
1493		goto err_mapping;
1494
1495	return addr;
1496
1497err_mapping:
1498	__free_from_pool(addr, size);
1499	return NULL;
1500}
1501
1502static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1503			dma_addr_t handle, size_t size, int coherent_flag)
1504{
1505	__iommu_remove_mapping(dev, handle, size);
1506	if (coherent_flag == COHERENT)
1507		__dma_free_buffer(virt_to_page(cpu_addr), size);
1508	else
1509		__free_from_pool(cpu_addr, size);
1510}
1511
1512static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1513	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1514	    int coherent_flag)
1515{
1516	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1517	struct page **pages;
1518	void *addr = NULL;
1519
1520	*handle = DMA_ERROR_CODE;
1521	size = PAGE_ALIGN(size);
1522
1523	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1524		return __iommu_alloc_simple(dev, size, gfp, handle,
1525					    coherent_flag);
1526
1527	/*
1528	 * Following is a work-around (a.k.a. hack) to prevent pages
1529	 * with __GFP_COMP being passed to split_page() which cannot
1530	 * handle them.  The real problem is that this flag probably
1531	 * should be 0 on ARM as it is not supported on this
1532	 * platform; see CONFIG_HUGETLBFS.
1533	 */
1534	gfp &= ~(__GFP_COMP);
1535
1536	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1537	if (!pages)
1538		return NULL;
1539
1540	*handle = __iommu_create_mapping(dev, pages, size);
1541	if (*handle == DMA_ERROR_CODE)
1542		goto err_buffer;
1543
1544	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1545		return pages;
1546
1547	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1548				   __builtin_return_address(0));
1549	if (!addr)
1550		goto err_mapping;
1551
1552	return addr;
1553
1554err_mapping:
1555	__iommu_remove_mapping(dev, *handle, size);
1556err_buffer:
1557	__iommu_free_buffer(dev, pages, size, attrs);
1558	return NULL;
1559}
1560
1561static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1562	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1563{
1564	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1565}
1566
1567static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1568		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1569{
1570	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1571}
1572
1573static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1574		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1575		    unsigned long attrs)
1576{
1577	unsigned long uaddr = vma->vm_start;
1578	unsigned long usize = vma->vm_end - vma->vm_start;
1579	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1580	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1581	unsigned long off = vma->vm_pgoff;
1582
1583	if (!pages)
1584		return -ENXIO;
1585
1586	if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1587		return -ENXIO;
1588
1589	pages += off;
1590
1591	do {
1592		int ret = vm_insert_page(vma, uaddr, *pages++);
1593		if (ret) {
1594			pr_err("Remapping memory failed: %d\n", ret);
1595			return ret;
1596		}
1597		uaddr += PAGE_SIZE;
1598		usize -= PAGE_SIZE;
1599	} while (usize > 0);
1600
1601	return 0;
1602}
1603static int arm_iommu_mmap_attrs(struct device *dev,
1604		struct vm_area_struct *vma, void *cpu_addr,
1605		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1606{
1607	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1608
1609	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1610}
1611
1612static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1613		struct vm_area_struct *vma, void *cpu_addr,
1614		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1615{
1616	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1617}
1618
1619/*
1620 * free a page as defined by the above mapping.
1621 * Must not be called with IRQs disabled.
1622 */
1623void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1624	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1625{
1626	struct page **pages;
1627	size = PAGE_ALIGN(size);
1628
1629	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1630		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1631		return;
1632	}
1633
1634	pages = __iommu_get_pages(cpu_addr, attrs);
1635	if (!pages) {
1636		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1637		return;
1638	}
1639
1640	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1641		dma_common_free_remap(cpu_addr, size,
1642			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1643	}
1644
1645	__iommu_remove_mapping(dev, handle, size);
1646	__iommu_free_buffer(dev, pages, size, attrs);
1647}
1648
1649void arm_iommu_free_attrs(struct device *dev, size_t size,
1650		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1651{
1652	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1653}
1654
1655void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1656		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1657{
1658	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1659}
1660
1661static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1662				 void *cpu_addr, dma_addr_t dma_addr,
1663				 size_t size, unsigned long attrs)
1664{
1665	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1666	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1667
1668	if (!pages)
1669		return -ENXIO;
1670
1671	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1672					 GFP_KERNEL);
1673}
1674
1675static int __dma_direction_to_prot(enum dma_data_direction dir)
1676{
1677	int prot;
1678
1679	switch (dir) {
1680	case DMA_BIDIRECTIONAL:
1681		prot = IOMMU_READ | IOMMU_WRITE;
1682		break;
1683	case DMA_TO_DEVICE:
1684		prot = IOMMU_READ;
1685		break;
1686	case DMA_FROM_DEVICE:
1687		prot = IOMMU_WRITE;
1688		break;
1689	default:
1690		prot = 0;
1691	}
1692
1693	return prot;
1694}
1695
1696/*
1697 * Map a part of the scatter-gather list into contiguous io address space
1698 */
1699static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1700			  size_t size, dma_addr_t *handle,
1701			  enum dma_data_direction dir, unsigned long attrs,
1702			  bool is_coherent)
1703{
1704	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1705	dma_addr_t iova, iova_base;
1706	int ret = 0;
1707	unsigned int count;
1708	struct scatterlist *s;
1709	int prot;
1710
1711	size = PAGE_ALIGN(size);
1712	*handle = DMA_ERROR_CODE;
1713
1714	iova_base = iova = __alloc_iova(mapping, size);
1715	if (iova == DMA_ERROR_CODE)
1716		return -ENOMEM;
1717
1718	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1719		phys_addr_t phys = page_to_phys(sg_page(s));
1720		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1721
1722		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1723			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1724
1725		prot = __dma_direction_to_prot(dir);
1726
1727		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1728		if (ret < 0)
1729			goto fail;
1730		count += len >> PAGE_SHIFT;
1731		iova += len;
1732	}
1733	*handle = iova_base;
1734
1735	return 0;
1736fail:
1737	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1738	__free_iova(mapping, iova_base, size);
1739	return ret;
1740}
1741
1742static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1743		     enum dma_data_direction dir, unsigned long attrs,
1744		     bool is_coherent)
1745{
1746	struct scatterlist *s = sg, *dma = sg, *start = sg;
1747	int i, count = 0;
1748	unsigned int offset = s->offset;
1749	unsigned int size = s->offset + s->length;
1750	unsigned int max = dma_get_max_seg_size(dev);
1751
1752	for (i = 1; i < nents; i++) {
1753		s = sg_next(s);
1754
1755		s->dma_address = DMA_ERROR_CODE;
1756		s->dma_length = 0;
1757
1758		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1759			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1760			    dir, attrs, is_coherent) < 0)
1761				goto bad_mapping;
1762
1763			dma->dma_address += offset;
1764			dma->dma_length = size - offset;
1765
1766			size = offset = s->offset;
1767			start = s;
1768			dma = sg_next(dma);
1769			count += 1;
1770		}
1771		size += s->length;
1772	}
1773	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1774		is_coherent) < 0)
1775		goto bad_mapping;
1776
1777	dma->dma_address += offset;
1778	dma->dma_length = size - offset;
1779
1780	return count+1;
1781
1782bad_mapping:
1783	for_each_sg(sg, s, count, i)
1784		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1785	return 0;
1786}
1787
1788/**
1789 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1790 * @dev: valid struct device pointer
1791 * @sg: list of buffers
1792 * @nents: number of buffers to map
1793 * @dir: DMA transfer direction
1794 *
1795 * Map a set of i/o coherent buffers described by scatterlist in streaming
1796 * mode for DMA. The scatter gather list elements are merged together (if
1797 * possible) and tagged with the appropriate dma address and length. They are
1798 * obtained via sg_dma_{address,length}.
1799 */
1800int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1801		int nents, enum dma_data_direction dir, unsigned long attrs)
1802{
1803	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1804}
1805
1806/**
1807 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1808 * @dev: valid struct device pointer
1809 * @sg: list of buffers
1810 * @nents: number of buffers to map
1811 * @dir: DMA transfer direction
1812 *
1813 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1814 * The scatter gather list elements are merged together (if possible) and
1815 * tagged with the appropriate dma address and length. They are obtained via
1816 * sg_dma_{address,length}.
1817 */
1818int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1819		int nents, enum dma_data_direction dir, unsigned long attrs)
1820{
1821	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1822}
1823
1824static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1825		int nents, enum dma_data_direction dir,
1826		unsigned long attrs, bool is_coherent)
1827{
1828	struct scatterlist *s;
1829	int i;
1830
1831	for_each_sg(sg, s, nents, i) {
1832		if (sg_dma_len(s))
1833			__iommu_remove_mapping(dev, sg_dma_address(s),
1834					       sg_dma_len(s));
1835		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1836			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1837					      s->length, dir);
1838	}
1839}
1840
1841/**
1842 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1843 * @dev: valid struct device pointer
1844 * @sg: list of buffers
1845 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1846 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1847 *
1848 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1849 * rules concerning calls here are the same as for dma_unmap_single().
1850 */
1851void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1852		int nents, enum dma_data_direction dir,
1853		unsigned long attrs)
1854{
1855	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1856}
1857
1858/**
1859 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1860 * @dev: valid struct device pointer
1861 * @sg: list of buffers
1862 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1863 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1864 *
1865 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1866 * rules concerning calls here are the same as for dma_unmap_single().
1867 */
1868void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1869			enum dma_data_direction dir,
1870			unsigned long attrs)
1871{
1872	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1873}
1874
1875/**
1876 * arm_iommu_sync_sg_for_cpu
1877 * @dev: valid struct device pointer
1878 * @sg: list of buffers
1879 * @nents: number of buffers to map (returned from dma_map_sg)
1880 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1881 */
1882void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1883			int nents, enum dma_data_direction dir)
1884{
1885	struct scatterlist *s;
1886	int i;
1887
1888	for_each_sg(sg, s, nents, i)
1889		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1890
1891}
1892
1893/**
1894 * arm_iommu_sync_sg_for_device
1895 * @dev: valid struct device pointer
1896 * @sg: list of buffers
1897 * @nents: number of buffers to map (returned from dma_map_sg)
1898 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1899 */
1900void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1901			int nents, enum dma_data_direction dir)
1902{
1903	struct scatterlist *s;
1904	int i;
1905
1906	for_each_sg(sg, s, nents, i)
1907		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1908}
1909
1910
1911/**
1912 * arm_coherent_iommu_map_page
1913 * @dev: valid struct device pointer
1914 * @page: page that buffer resides in
1915 * @offset: offset into page for start of buffer
1916 * @size: size of buffer to map
1917 * @dir: DMA transfer direction
1918 *
1919 * Coherent IOMMU aware version of arm_dma_map_page()
1920 */
1921static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1922	     unsigned long offset, size_t size, enum dma_data_direction dir,
1923	     unsigned long attrs)
1924{
1925	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1926	dma_addr_t dma_addr;
1927	int ret, prot, len = PAGE_ALIGN(size + offset);
1928
1929	dma_addr = __alloc_iova(mapping, len);
1930	if (dma_addr == DMA_ERROR_CODE)
1931		return dma_addr;
1932
1933	prot = __dma_direction_to_prot(dir);
1934
1935	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1936	if (ret < 0)
1937		goto fail;
1938
1939	return dma_addr + offset;
1940fail:
1941	__free_iova(mapping, dma_addr, len);
1942	return DMA_ERROR_CODE;
1943}
1944
1945/**
1946 * arm_iommu_map_page
1947 * @dev: valid struct device pointer
1948 * @page: page that buffer resides in
1949 * @offset: offset into page for start of buffer
1950 * @size: size of buffer to map
1951 * @dir: DMA transfer direction
1952 *
1953 * IOMMU aware version of arm_dma_map_page()
1954 */
1955static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1956	     unsigned long offset, size_t size, enum dma_data_direction dir,
1957	     unsigned long attrs)
1958{
1959	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1960		__dma_page_cpu_to_dev(page, offset, size, dir);
1961
1962	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1963}
1964
1965/**
1966 * arm_coherent_iommu_unmap_page
1967 * @dev: valid struct device pointer
1968 * @handle: DMA address of buffer
1969 * @size: size of buffer (same as passed to dma_map_page)
1970 * @dir: DMA transfer direction (same as passed to dma_map_page)
1971 *
1972 * Coherent IOMMU aware version of arm_dma_unmap_page()
1973 */
1974static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1975		size_t size, enum dma_data_direction dir, unsigned long attrs)
1976{
1977	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1978	dma_addr_t iova = handle & PAGE_MASK;
1979	int offset = handle & ~PAGE_MASK;
1980	int len = PAGE_ALIGN(size + offset);
1981
1982	if (!iova)
1983		return;
1984
1985	iommu_unmap(mapping->domain, iova, len);
1986	__free_iova(mapping, iova, len);
1987}
1988
1989/**
1990 * arm_iommu_unmap_page
1991 * @dev: valid struct device pointer
1992 * @handle: DMA address of buffer
1993 * @size: size of buffer (same as passed to dma_map_page)
1994 * @dir: DMA transfer direction (same as passed to dma_map_page)
1995 *
1996 * IOMMU aware version of arm_dma_unmap_page()
1997 */
1998static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1999		size_t size, enum dma_data_direction dir, unsigned long attrs)
2000{
2001	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2002	dma_addr_t iova = handle & PAGE_MASK;
2003	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2004	int offset = handle & ~PAGE_MASK;
2005	int len = PAGE_ALIGN(size + offset);
2006
2007	if (!iova)
2008		return;
2009
2010	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
2011		__dma_page_dev_to_cpu(page, offset, size, dir);
2012
2013	iommu_unmap(mapping->domain, iova, len);
2014	__free_iova(mapping, iova, len);
2015}
2016
2017/**
2018 * arm_iommu_map_resource - map a device resource for DMA
2019 * @dev: valid struct device pointer
2020 * @phys_addr: physical address of resource
2021 * @size: size of resource to map
2022 * @dir: DMA transfer direction
2023 */
2024static dma_addr_t arm_iommu_map_resource(struct device *dev,
2025		phys_addr_t phys_addr, size_t size,
2026		enum dma_data_direction dir, unsigned long attrs)
2027{
2028	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2029	dma_addr_t dma_addr;
2030	int ret, prot;
2031	phys_addr_t addr = phys_addr & PAGE_MASK;
2032	unsigned int offset = phys_addr & ~PAGE_MASK;
2033	size_t len = PAGE_ALIGN(size + offset);
2034
2035	dma_addr = __alloc_iova(mapping, len);
2036	if (dma_addr == DMA_ERROR_CODE)
2037		return dma_addr;
2038
2039	prot = __dma_direction_to_prot(dir) | IOMMU_MMIO;
2040
2041	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
2042	if (ret < 0)
2043		goto fail;
2044
2045	return dma_addr + offset;
2046fail:
2047	__free_iova(mapping, dma_addr, len);
2048	return DMA_ERROR_CODE;
2049}
2050
2051/**
2052 * arm_iommu_unmap_resource - unmap a device DMA resource
2053 * @dev: valid struct device pointer
2054 * @dma_handle: DMA address to resource
2055 * @size: size of resource to map
2056 * @dir: DMA transfer direction
2057 */
2058static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
2059		size_t size, enum dma_data_direction dir,
2060		unsigned long attrs)
2061{
2062	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2063	dma_addr_t iova = dma_handle & PAGE_MASK;
2064	unsigned int offset = dma_handle & ~PAGE_MASK;
2065	size_t len = PAGE_ALIGN(size + offset);
2066
2067	if (!iova)
2068		return;
2069
2070	iommu_unmap(mapping->domain, iova, len);
2071	__free_iova(mapping, iova, len);
2072}
2073
2074static void arm_iommu_sync_single_for_cpu(struct device *dev,
2075		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2076{
2077	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2078	dma_addr_t iova = handle & PAGE_MASK;
2079	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2080	unsigned int offset = handle & ~PAGE_MASK;
2081
2082	if (!iova)
2083		return;
2084
2085	__dma_page_dev_to_cpu(page, offset, size, dir);
2086}
2087
2088static void arm_iommu_sync_single_for_device(struct device *dev,
2089		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2090{
2091	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2092	dma_addr_t iova = handle & PAGE_MASK;
2093	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2094	unsigned int offset = handle & ~PAGE_MASK;
2095
2096	if (!iova)
2097		return;
2098
2099	__dma_page_cpu_to_dev(page, offset, size, dir);
2100}
2101
2102struct dma_map_ops iommu_ops = {
2103	.alloc		= arm_iommu_alloc_attrs,
2104	.free		= arm_iommu_free_attrs,
2105	.mmap		= arm_iommu_mmap_attrs,
2106	.get_sgtable	= arm_iommu_get_sgtable,
2107
2108	.map_page		= arm_iommu_map_page,
2109	.unmap_page		= arm_iommu_unmap_page,
2110	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
2111	.sync_single_for_device	= arm_iommu_sync_single_for_device,
2112
2113	.map_sg			= arm_iommu_map_sg,
2114	.unmap_sg		= arm_iommu_unmap_sg,
2115	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
2116	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2117
2118	.map_resource		= arm_iommu_map_resource,
2119	.unmap_resource		= arm_iommu_unmap_resource,
 
 
2120};
2121
2122struct dma_map_ops iommu_coherent_ops = {
2123	.alloc		= arm_coherent_iommu_alloc_attrs,
2124	.free		= arm_coherent_iommu_free_attrs,
2125	.mmap		= arm_coherent_iommu_mmap_attrs,
2126	.get_sgtable	= arm_iommu_get_sgtable,
2127
2128	.map_page	= arm_coherent_iommu_map_page,
2129	.unmap_page	= arm_coherent_iommu_unmap_page,
2130
2131	.map_sg		= arm_coherent_iommu_map_sg,
2132	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2133
2134	.map_resource	= arm_iommu_map_resource,
2135	.unmap_resource	= arm_iommu_unmap_resource,
 
 
2136};
2137
2138/**
2139 * arm_iommu_create_mapping
2140 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2141 * @base: start address of the valid IO address space
2142 * @size: maximum size of the valid IO address space
2143 *
2144 * Creates a mapping structure which holds information about used/unused
2145 * IO address ranges, which is required to perform memory allocation and
2146 * mapping with IOMMU aware functions.
2147 *
2148 * The client device need to be attached to the mapping with
2149 * arm_iommu_attach_device function.
2150 */
2151struct dma_iommu_mapping *
2152arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2153{
2154	unsigned int bits = size >> PAGE_SHIFT;
2155	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2156	struct dma_iommu_mapping *mapping;
2157	int extensions = 1;
2158	int err = -ENOMEM;
2159
2160	/* currently only 32-bit DMA address space is supported */
2161	if (size > DMA_BIT_MASK(32) + 1)
2162		return ERR_PTR(-ERANGE);
2163
2164	if (!bitmap_size)
2165		return ERR_PTR(-EINVAL);
2166
2167	if (bitmap_size > PAGE_SIZE) {
2168		extensions = bitmap_size / PAGE_SIZE;
2169		bitmap_size = PAGE_SIZE;
2170	}
2171
2172	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2173	if (!mapping)
2174		goto err;
2175
2176	mapping->bitmap_size = bitmap_size;
2177	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2178				GFP_KERNEL);
2179	if (!mapping->bitmaps)
2180		goto err2;
2181
2182	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2183	if (!mapping->bitmaps[0])
2184		goto err3;
2185
2186	mapping->nr_bitmaps = 1;
2187	mapping->extensions = extensions;
2188	mapping->base = base;
2189	mapping->bits = BITS_PER_BYTE * bitmap_size;
2190
2191	spin_lock_init(&mapping->lock);
2192
2193	mapping->domain = iommu_domain_alloc(bus);
2194	if (!mapping->domain)
2195		goto err4;
2196
2197	kref_init(&mapping->kref);
2198	return mapping;
2199err4:
2200	kfree(mapping->bitmaps[0]);
2201err3:
2202	kfree(mapping->bitmaps);
2203err2:
2204	kfree(mapping);
2205err:
2206	return ERR_PTR(err);
2207}
2208EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2209
2210static void release_iommu_mapping(struct kref *kref)
2211{
2212	int i;
2213	struct dma_iommu_mapping *mapping =
2214		container_of(kref, struct dma_iommu_mapping, kref);
2215
2216	iommu_domain_free(mapping->domain);
2217	for (i = 0; i < mapping->nr_bitmaps; i++)
2218		kfree(mapping->bitmaps[i]);
2219	kfree(mapping->bitmaps);
2220	kfree(mapping);
2221}
2222
2223static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2224{
2225	int next_bitmap;
2226
2227	if (mapping->nr_bitmaps >= mapping->extensions)
2228		return -EINVAL;
2229
2230	next_bitmap = mapping->nr_bitmaps;
2231	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2232						GFP_ATOMIC);
2233	if (!mapping->bitmaps[next_bitmap])
2234		return -ENOMEM;
2235
2236	mapping->nr_bitmaps++;
2237
2238	return 0;
2239}
2240
2241void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2242{
2243	if (mapping)
2244		kref_put(&mapping->kref, release_iommu_mapping);
2245}
2246EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2247
2248static int __arm_iommu_attach_device(struct device *dev,
2249				     struct dma_iommu_mapping *mapping)
2250{
2251	int err;
2252
2253	err = iommu_attach_device(mapping->domain, dev);
2254	if (err)
2255		return err;
2256
2257	kref_get(&mapping->kref);
2258	to_dma_iommu_mapping(dev) = mapping;
2259
2260	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2261	return 0;
2262}
2263
2264/**
2265 * arm_iommu_attach_device
2266 * @dev: valid struct device pointer
2267 * @mapping: io address space mapping structure (returned from
2268 *	arm_iommu_create_mapping)
2269 *
2270 * Attaches specified io address space mapping to the provided device.
2271 * This replaces the dma operations (dma_map_ops pointer) with the
2272 * IOMMU aware version.
2273 *
2274 * More than one client might be attached to the same io address space
2275 * mapping.
2276 */
2277int arm_iommu_attach_device(struct device *dev,
2278			    struct dma_iommu_mapping *mapping)
2279{
2280	int err;
2281
2282	err = __arm_iommu_attach_device(dev, mapping);
2283	if (err)
2284		return err;
2285
2286	set_dma_ops(dev, &iommu_ops);
2287	return 0;
2288}
2289EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2290
2291static void __arm_iommu_detach_device(struct device *dev)
 
 
 
 
 
 
 
2292{
2293	struct dma_iommu_mapping *mapping;
2294
2295	mapping = to_dma_iommu_mapping(dev);
2296	if (!mapping) {
2297		dev_warn(dev, "Not attached\n");
2298		return;
2299	}
2300
2301	iommu_detach_device(mapping->domain, dev);
2302	kref_put(&mapping->kref, release_iommu_mapping);
2303	to_dma_iommu_mapping(dev) = NULL;
 
2304
2305	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2306}
2307
2308/**
2309 * arm_iommu_detach_device
2310 * @dev: valid struct device pointer
2311 *
2312 * Detaches the provided device from a previously attached map.
2313 * This voids the dma operations (dma_map_ops pointer)
2314 */
2315void arm_iommu_detach_device(struct device *dev)
2316{
2317	__arm_iommu_detach_device(dev);
2318	set_dma_ops(dev, NULL);
2319}
2320EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2321
2322static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2323{
2324	return coherent ? &iommu_coherent_ops : &iommu_ops;
2325}
2326
2327static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2328				    const struct iommu_ops *iommu)
2329{
2330	struct dma_iommu_mapping *mapping;
2331
2332	if (!iommu)
2333		return false;
2334
2335	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2336	if (IS_ERR(mapping)) {
2337		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2338				size, dev_name(dev));
2339		return false;
2340	}
2341
2342	if (__arm_iommu_attach_device(dev, mapping)) {
2343		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2344				dev_name(dev));
2345		arm_iommu_release_mapping(mapping);
2346		return false;
2347	}
2348
2349	return true;
2350}
2351
2352static void arm_teardown_iommu_dma_ops(struct device *dev)
2353{
2354	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2355
2356	if (!mapping)
2357		return;
2358
2359	__arm_iommu_detach_device(dev);
2360	arm_iommu_release_mapping(mapping);
2361}
2362
2363#else
2364
2365static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2366				    const struct iommu_ops *iommu)
2367{
2368	return false;
2369}
2370
2371static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2372
2373#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2374
2375#endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2376
2377static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2378{
2379	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2380}
2381
2382void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2383			const struct iommu_ops *iommu, bool coherent)
2384{
2385	struct dma_map_ops *dma_ops;
2386
2387	dev->archdata.dma_coherent = coherent;
 
 
 
 
 
 
 
 
 
 
 
 
2388	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2389		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2390	else
2391		dma_ops = arm_get_dma_map_ops(coherent);
2392
2393	set_dma_ops(dev, dma_ops);
 
 
 
 
 
 
2394}
2395
2396void arch_teardown_dma_ops(struct device *dev)
2397{
 
 
 
2398	arm_teardown_iommu_dma_ops(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2399}