Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/arch/arm/mm/dma-mapping.c
4 *
5 * Copyright (C) 2000-2004 Russell King
6 *
7 * DMA uncached mapping support.
8 */
9#include <linux/module.h>
10#include <linux/mm.h>
11#include <linux/genalloc.h>
12#include <linux/gfp.h>
13#include <linux/errno.h>
14#include <linux/list.h>
15#include <linux/init.h>
16#include <linux/device.h>
17#include <linux/dma-direct.h>
18#include <linux/dma-mapping.h>
19#include <linux/dma-noncoherent.h>
20#include <linux/dma-contiguous.h>
21#include <linux/highmem.h>
22#include <linux/memblock.h>
23#include <linux/slab.h>
24#include <linux/iommu.h>
25#include <linux/io.h>
26#include <linux/vmalloc.h>
27#include <linux/sizes.h>
28#include <linux/cma.h>
29
30#include <asm/memory.h>
31#include <asm/highmem.h>
32#include <asm/cacheflush.h>
33#include <asm/tlbflush.h>
34#include <asm/mach/arch.h>
35#include <asm/dma-iommu.h>
36#include <asm/mach/map.h>
37#include <asm/system_info.h>
38#include <asm/dma-contiguous.h>
39#include <xen/swiotlb-xen.h>
40
41#include "dma.h"
42#include "mm.h"
43
44struct arm_dma_alloc_args {
45 struct device *dev;
46 size_t size;
47 gfp_t gfp;
48 pgprot_t prot;
49 const void *caller;
50 bool want_vaddr;
51 int coherent_flag;
52};
53
54struct arm_dma_free_args {
55 struct device *dev;
56 size_t size;
57 void *cpu_addr;
58 struct page *page;
59 bool want_vaddr;
60};
61
62#define NORMAL 0
63#define COHERENT 1
64
65struct arm_dma_allocator {
66 void *(*alloc)(struct arm_dma_alloc_args *args,
67 struct page **ret_page);
68 void (*free)(struct arm_dma_free_args *args);
69};
70
71struct arm_dma_buffer {
72 struct list_head list;
73 void *virt;
74 struct arm_dma_allocator *allocator;
75};
76
77static LIST_HEAD(arm_dma_bufs);
78static DEFINE_SPINLOCK(arm_dma_bufs_lock);
79
80static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
81{
82 struct arm_dma_buffer *buf, *found = NULL;
83 unsigned long flags;
84
85 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
86 list_for_each_entry(buf, &arm_dma_bufs, list) {
87 if (buf->virt == virt) {
88 list_del(&buf->list);
89 found = buf;
90 break;
91 }
92 }
93 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
94 return found;
95}
96
97/*
98 * The DMA API is built upon the notion of "buffer ownership". A buffer
99 * is either exclusively owned by the CPU (and therefore may be accessed
100 * by it) or exclusively owned by the DMA device. These helper functions
101 * represent the transitions between these two ownership states.
102 *
103 * Note, however, that on later ARMs, this notion does not work due to
104 * speculative prefetches. We model our approach on the assumption that
105 * the CPU does do speculative prefetches, which means we clean caches
106 * before transfers and delay cache invalidation until transfer completion.
107 *
108 */
109static void __dma_page_cpu_to_dev(struct page *, unsigned long,
110 size_t, enum dma_data_direction);
111static void __dma_page_dev_to_cpu(struct page *, unsigned long,
112 size_t, enum dma_data_direction);
113
114/**
115 * arm_dma_map_page - map a portion of a page for streaming DMA
116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
117 * @page: page that buffer resides in
118 * @offset: offset into page for start of buffer
119 * @size: size of buffer to map
120 * @dir: DMA transfer direction
121 *
122 * Ensure that any data held in the cache is appropriately discarded
123 * or written back.
124 *
125 * The device owns this memory once this call has completed. The CPU
126 * can regain ownership by calling dma_unmap_page().
127 */
128static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
129 unsigned long offset, size_t size, enum dma_data_direction dir,
130 unsigned long attrs)
131{
132 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
133 __dma_page_cpu_to_dev(page, offset, size, dir);
134 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
135}
136
137static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
138 unsigned long offset, size_t size, enum dma_data_direction dir,
139 unsigned long attrs)
140{
141 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
142}
143
144/**
145 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
146 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
147 * @handle: DMA address of buffer
148 * @size: size of buffer (same as passed to dma_map_page)
149 * @dir: DMA transfer direction (same as passed to dma_map_page)
150 *
151 * Unmap a page streaming mode DMA translation. The handle and size
152 * must match what was provided in the previous dma_map_page() call.
153 * All other usages are undefined.
154 *
155 * After this call, reads by the CPU to the buffer are guaranteed to see
156 * whatever the device wrote there.
157 */
158static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
159 size_t size, enum dma_data_direction dir, unsigned long attrs)
160{
161 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
162 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
163 handle & ~PAGE_MASK, size, dir);
164}
165
166static void arm_dma_sync_single_for_cpu(struct device *dev,
167 dma_addr_t handle, size_t size, enum dma_data_direction dir)
168{
169 unsigned int offset = handle & (PAGE_SIZE - 1);
170 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
171 __dma_page_dev_to_cpu(page, offset, size, dir);
172}
173
174static void arm_dma_sync_single_for_device(struct device *dev,
175 dma_addr_t handle, size_t size, enum dma_data_direction dir)
176{
177 unsigned int offset = handle & (PAGE_SIZE - 1);
178 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
179 __dma_page_cpu_to_dev(page, offset, size, dir);
180}
181
182const struct dma_map_ops arm_dma_ops = {
183 .alloc = arm_dma_alloc,
184 .free = arm_dma_free,
185 .mmap = arm_dma_mmap,
186 .get_sgtable = arm_dma_get_sgtable,
187 .map_page = arm_dma_map_page,
188 .unmap_page = arm_dma_unmap_page,
189 .map_sg = arm_dma_map_sg,
190 .unmap_sg = arm_dma_unmap_sg,
191 .map_resource = dma_direct_map_resource,
192 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
193 .sync_single_for_device = arm_dma_sync_single_for_device,
194 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
195 .sync_sg_for_device = arm_dma_sync_sg_for_device,
196 .dma_supported = arm_dma_supported,
197 .get_required_mask = dma_direct_get_required_mask,
198};
199EXPORT_SYMBOL(arm_dma_ops);
200
201static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
202 dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
203static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
204 dma_addr_t handle, unsigned long attrs);
205static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
206 void *cpu_addr, dma_addr_t dma_addr, size_t size,
207 unsigned long attrs);
208
209const struct dma_map_ops arm_coherent_dma_ops = {
210 .alloc = arm_coherent_dma_alloc,
211 .free = arm_coherent_dma_free,
212 .mmap = arm_coherent_dma_mmap,
213 .get_sgtable = arm_dma_get_sgtable,
214 .map_page = arm_coherent_dma_map_page,
215 .map_sg = arm_dma_map_sg,
216 .map_resource = dma_direct_map_resource,
217 .dma_supported = arm_dma_supported,
218 .get_required_mask = dma_direct_get_required_mask,
219};
220EXPORT_SYMBOL(arm_coherent_dma_ops);
221
222static int __dma_supported(struct device *dev, u64 mask, bool warn)
223{
224 unsigned long max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
225
226 /*
227 * Translate the device's DMA mask to a PFN limit. This
228 * PFN number includes the page which we can DMA to.
229 */
230 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
231 if (warn)
232 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
233 mask,
234 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
235 max_dma_pfn + 1);
236 return 0;
237 }
238
239 return 1;
240}
241
242static u64 get_coherent_dma_mask(struct device *dev)
243{
244 u64 mask = (u64)DMA_BIT_MASK(32);
245
246 if (dev) {
247 mask = dev->coherent_dma_mask;
248
249 /*
250 * Sanity check the DMA mask - it must be non-zero, and
251 * must be able to be satisfied by a DMA allocation.
252 */
253 if (mask == 0) {
254 dev_warn(dev, "coherent DMA mask is unset\n");
255 return 0;
256 }
257
258 if (!__dma_supported(dev, mask, true))
259 return 0;
260 }
261
262 return mask;
263}
264
265static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
266{
267 /*
268 * Ensure that the allocated pages are zeroed, and that any data
269 * lurking in the kernel direct-mapped region is invalidated.
270 */
271 if (PageHighMem(page)) {
272 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
273 phys_addr_t end = base + size;
274 while (size > 0) {
275 void *ptr = kmap_atomic(page);
276 memset(ptr, 0, PAGE_SIZE);
277 if (coherent_flag != COHERENT)
278 dmac_flush_range(ptr, ptr + PAGE_SIZE);
279 kunmap_atomic(ptr);
280 page++;
281 size -= PAGE_SIZE;
282 }
283 if (coherent_flag != COHERENT)
284 outer_flush_range(base, end);
285 } else {
286 void *ptr = page_address(page);
287 memset(ptr, 0, size);
288 if (coherent_flag != COHERENT) {
289 dmac_flush_range(ptr, ptr + size);
290 outer_flush_range(__pa(ptr), __pa(ptr) + size);
291 }
292 }
293}
294
295/*
296 * Allocate a DMA buffer for 'dev' of size 'size' using the
297 * specified gfp mask. Note that 'size' must be page aligned.
298 */
299static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
300 gfp_t gfp, int coherent_flag)
301{
302 unsigned long order = get_order(size);
303 struct page *page, *p, *e;
304
305 page = alloc_pages(gfp, order);
306 if (!page)
307 return NULL;
308
309 /*
310 * Now split the huge page and free the excess pages
311 */
312 split_page(page, order);
313 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
314 __free_page(p);
315
316 __dma_clear_buffer(page, size, coherent_flag);
317
318 return page;
319}
320
321/*
322 * Free a DMA buffer. 'size' must be page aligned.
323 */
324static void __dma_free_buffer(struct page *page, size_t size)
325{
326 struct page *e = page + (size >> PAGE_SHIFT);
327
328 while (page < e) {
329 __free_page(page);
330 page++;
331 }
332}
333
334static void *__alloc_from_contiguous(struct device *dev, size_t size,
335 pgprot_t prot, struct page **ret_page,
336 const void *caller, bool want_vaddr,
337 int coherent_flag, gfp_t gfp);
338
339static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
340 pgprot_t prot, struct page **ret_page,
341 const void *caller, bool want_vaddr);
342
343#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
344static struct gen_pool *atomic_pool __ro_after_init;
345
346static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
347
348static int __init early_coherent_pool(char *p)
349{
350 atomic_pool_size = memparse(p, &p);
351 return 0;
352}
353early_param("coherent_pool", early_coherent_pool);
354
355/*
356 * Initialise the coherent pool for atomic allocations.
357 */
358static int __init atomic_pool_init(void)
359{
360 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
361 gfp_t gfp = GFP_KERNEL | GFP_DMA;
362 struct page *page;
363 void *ptr;
364
365 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
366 if (!atomic_pool)
367 goto out;
368 /*
369 * The atomic pool is only used for non-coherent allocations
370 * so we must pass NORMAL for coherent_flag.
371 */
372 if (dev_get_cma_area(NULL))
373 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
374 &page, atomic_pool_init, true, NORMAL,
375 GFP_KERNEL);
376 else
377 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
378 &page, atomic_pool_init, true);
379 if (ptr) {
380 int ret;
381
382 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
383 page_to_phys(page),
384 atomic_pool_size, -1);
385 if (ret)
386 goto destroy_genpool;
387
388 gen_pool_set_algo(atomic_pool,
389 gen_pool_first_fit_order_align,
390 NULL);
391 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
392 atomic_pool_size / 1024);
393 return 0;
394 }
395
396destroy_genpool:
397 gen_pool_destroy(atomic_pool);
398 atomic_pool = NULL;
399out:
400 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
401 atomic_pool_size / 1024);
402 return -ENOMEM;
403}
404/*
405 * CMA is activated by core_initcall, so we must be called after it.
406 */
407postcore_initcall(atomic_pool_init);
408
409struct dma_contig_early_reserve {
410 phys_addr_t base;
411 unsigned long size;
412};
413
414static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
415
416static int dma_mmu_remap_num __initdata;
417
418void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
419{
420 dma_mmu_remap[dma_mmu_remap_num].base = base;
421 dma_mmu_remap[dma_mmu_remap_num].size = size;
422 dma_mmu_remap_num++;
423}
424
425void __init dma_contiguous_remap(void)
426{
427 int i;
428 for (i = 0; i < dma_mmu_remap_num; i++) {
429 phys_addr_t start = dma_mmu_remap[i].base;
430 phys_addr_t end = start + dma_mmu_remap[i].size;
431 struct map_desc map;
432 unsigned long addr;
433
434 if (end > arm_lowmem_limit)
435 end = arm_lowmem_limit;
436 if (start >= end)
437 continue;
438
439 map.pfn = __phys_to_pfn(start);
440 map.virtual = __phys_to_virt(start);
441 map.length = end - start;
442 map.type = MT_MEMORY_DMA_READY;
443
444 /*
445 * Clear previous low-memory mapping to ensure that the
446 * TLB does not see any conflicting entries, then flush
447 * the TLB of the old entries before creating new mappings.
448 *
449 * This ensures that any speculatively loaded TLB entries
450 * (even though they may be rare) can not cause any problems,
451 * and ensures that this code is architecturally compliant.
452 */
453 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
454 addr += PMD_SIZE)
455 pmd_clear(pmd_off_k(addr));
456
457 flush_tlb_kernel_range(__phys_to_virt(start),
458 __phys_to_virt(end));
459
460 iotable_init(&map, 1);
461 }
462}
463
464static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
465{
466 struct page *page = virt_to_page(addr);
467 pgprot_t prot = *(pgprot_t *)data;
468
469 set_pte_ext(pte, mk_pte(page, prot), 0);
470 return 0;
471}
472
473static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
474{
475 unsigned long start = (unsigned long) page_address(page);
476 unsigned end = start + size;
477
478 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
479 flush_tlb_kernel_range(start, end);
480}
481
482static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
483 pgprot_t prot, struct page **ret_page,
484 const void *caller, bool want_vaddr)
485{
486 struct page *page;
487 void *ptr = NULL;
488 /*
489 * __alloc_remap_buffer is only called when the device is
490 * non-coherent
491 */
492 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
493 if (!page)
494 return NULL;
495 if (!want_vaddr)
496 goto out;
497
498 ptr = dma_common_contiguous_remap(page, size, prot, caller);
499 if (!ptr) {
500 __dma_free_buffer(page, size);
501 return NULL;
502 }
503
504 out:
505 *ret_page = page;
506 return ptr;
507}
508
509static void *__alloc_from_pool(size_t size, struct page **ret_page)
510{
511 unsigned long val;
512 void *ptr = NULL;
513
514 if (!atomic_pool) {
515 WARN(1, "coherent pool not initialised!\n");
516 return NULL;
517 }
518
519 val = gen_pool_alloc(atomic_pool, size);
520 if (val) {
521 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
522
523 *ret_page = phys_to_page(phys);
524 ptr = (void *)val;
525 }
526
527 return ptr;
528}
529
530static bool __in_atomic_pool(void *start, size_t size)
531{
532 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
533}
534
535static int __free_from_pool(void *start, size_t size)
536{
537 if (!__in_atomic_pool(start, size))
538 return 0;
539
540 gen_pool_free(atomic_pool, (unsigned long)start, size);
541
542 return 1;
543}
544
545static void *__alloc_from_contiguous(struct device *dev, size_t size,
546 pgprot_t prot, struct page **ret_page,
547 const void *caller, bool want_vaddr,
548 int coherent_flag, gfp_t gfp)
549{
550 unsigned long order = get_order(size);
551 size_t count = size >> PAGE_SHIFT;
552 struct page *page;
553 void *ptr = NULL;
554
555 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
556 if (!page)
557 return NULL;
558
559 __dma_clear_buffer(page, size, coherent_flag);
560
561 if (!want_vaddr)
562 goto out;
563
564 if (PageHighMem(page)) {
565 ptr = dma_common_contiguous_remap(page, size, prot, caller);
566 if (!ptr) {
567 dma_release_from_contiguous(dev, page, count);
568 return NULL;
569 }
570 } else {
571 __dma_remap(page, size, prot);
572 ptr = page_address(page);
573 }
574
575 out:
576 *ret_page = page;
577 return ptr;
578}
579
580static void __free_from_contiguous(struct device *dev, struct page *page,
581 void *cpu_addr, size_t size, bool want_vaddr)
582{
583 if (want_vaddr) {
584 if (PageHighMem(page))
585 dma_common_free_remap(cpu_addr, size);
586 else
587 __dma_remap(page, size, PAGE_KERNEL);
588 }
589 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
590}
591
592static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
593{
594 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
595 pgprot_writecombine(prot) :
596 pgprot_dmacoherent(prot);
597 return prot;
598}
599
600static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
601 struct page **ret_page)
602{
603 struct page *page;
604 /* __alloc_simple_buffer is only called when the device is coherent */
605 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
606 if (!page)
607 return NULL;
608
609 *ret_page = page;
610 return page_address(page);
611}
612
613static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
614 struct page **ret_page)
615{
616 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
617 ret_page);
618}
619
620static void simple_allocator_free(struct arm_dma_free_args *args)
621{
622 __dma_free_buffer(args->page, args->size);
623}
624
625static struct arm_dma_allocator simple_allocator = {
626 .alloc = simple_allocator_alloc,
627 .free = simple_allocator_free,
628};
629
630static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
631 struct page **ret_page)
632{
633 return __alloc_from_contiguous(args->dev, args->size, args->prot,
634 ret_page, args->caller,
635 args->want_vaddr, args->coherent_flag,
636 args->gfp);
637}
638
639static void cma_allocator_free(struct arm_dma_free_args *args)
640{
641 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
642 args->size, args->want_vaddr);
643}
644
645static struct arm_dma_allocator cma_allocator = {
646 .alloc = cma_allocator_alloc,
647 .free = cma_allocator_free,
648};
649
650static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
651 struct page **ret_page)
652{
653 return __alloc_from_pool(args->size, ret_page);
654}
655
656static void pool_allocator_free(struct arm_dma_free_args *args)
657{
658 __free_from_pool(args->cpu_addr, args->size);
659}
660
661static struct arm_dma_allocator pool_allocator = {
662 .alloc = pool_allocator_alloc,
663 .free = pool_allocator_free,
664};
665
666static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
667 struct page **ret_page)
668{
669 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
670 args->prot, ret_page, args->caller,
671 args->want_vaddr);
672}
673
674static void remap_allocator_free(struct arm_dma_free_args *args)
675{
676 if (args->want_vaddr)
677 dma_common_free_remap(args->cpu_addr, args->size);
678
679 __dma_free_buffer(args->page, args->size);
680}
681
682static struct arm_dma_allocator remap_allocator = {
683 .alloc = remap_allocator_alloc,
684 .free = remap_allocator_free,
685};
686
687static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
688 gfp_t gfp, pgprot_t prot, bool is_coherent,
689 unsigned long attrs, const void *caller)
690{
691 u64 mask = get_coherent_dma_mask(dev);
692 struct page *page = NULL;
693 void *addr;
694 bool allowblock, cma;
695 struct arm_dma_buffer *buf;
696 struct arm_dma_alloc_args args = {
697 .dev = dev,
698 .size = PAGE_ALIGN(size),
699 .gfp = gfp,
700 .prot = prot,
701 .caller = caller,
702 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
703 .coherent_flag = is_coherent ? COHERENT : NORMAL,
704 };
705
706#ifdef CONFIG_DMA_API_DEBUG
707 u64 limit = (mask + 1) & ~mask;
708 if (limit && size >= limit) {
709 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
710 size, mask);
711 return NULL;
712 }
713#endif
714
715 if (!mask)
716 return NULL;
717
718 buf = kzalloc(sizeof(*buf),
719 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
720 if (!buf)
721 return NULL;
722
723 if (mask < 0xffffffffULL)
724 gfp |= GFP_DMA;
725
726 /*
727 * Following is a work-around (a.k.a. hack) to prevent pages
728 * with __GFP_COMP being passed to split_page() which cannot
729 * handle them. The real problem is that this flag probably
730 * should be 0 on ARM as it is not supported on this
731 * platform; see CONFIG_HUGETLBFS.
732 */
733 gfp &= ~(__GFP_COMP);
734 args.gfp = gfp;
735
736 *handle = DMA_MAPPING_ERROR;
737 allowblock = gfpflags_allow_blocking(gfp);
738 cma = allowblock ? dev_get_cma_area(dev) : false;
739
740 if (cma)
741 buf->allocator = &cma_allocator;
742 else if (is_coherent)
743 buf->allocator = &simple_allocator;
744 else if (allowblock)
745 buf->allocator = &remap_allocator;
746 else
747 buf->allocator = &pool_allocator;
748
749 addr = buf->allocator->alloc(&args, &page);
750
751 if (page) {
752 unsigned long flags;
753
754 *handle = pfn_to_dma(dev, page_to_pfn(page));
755 buf->virt = args.want_vaddr ? addr : page;
756
757 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
758 list_add(&buf->list, &arm_dma_bufs);
759 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
760 } else {
761 kfree(buf);
762 }
763
764 return args.want_vaddr ? addr : page;
765}
766
767/*
768 * Allocate DMA-coherent memory space and return both the kernel remapped
769 * virtual and bus address for that space.
770 */
771void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
772 gfp_t gfp, unsigned long attrs)
773{
774 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
775
776 return __dma_alloc(dev, size, handle, gfp, prot, false,
777 attrs, __builtin_return_address(0));
778}
779
780static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
781 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
782{
783 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
784 attrs, __builtin_return_address(0));
785}
786
787static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
788 void *cpu_addr, dma_addr_t dma_addr, size_t size,
789 unsigned long attrs)
790{
791 int ret = -ENXIO;
792 unsigned long nr_vma_pages = vma_pages(vma);
793 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
794 unsigned long pfn = dma_to_pfn(dev, dma_addr);
795 unsigned long off = vma->vm_pgoff;
796
797 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
798 return ret;
799
800 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
801 ret = remap_pfn_range(vma, vma->vm_start,
802 pfn + off,
803 vma->vm_end - vma->vm_start,
804 vma->vm_page_prot);
805 }
806
807 return ret;
808}
809
810/*
811 * Create userspace mapping for the DMA-coherent memory.
812 */
813static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
814 void *cpu_addr, dma_addr_t dma_addr, size_t size,
815 unsigned long attrs)
816{
817 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
818}
819
820int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
821 void *cpu_addr, dma_addr_t dma_addr, size_t size,
822 unsigned long attrs)
823{
824 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
825 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
826}
827
828/*
829 * Free a buffer as defined by the above mapping.
830 */
831static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
832 dma_addr_t handle, unsigned long attrs,
833 bool is_coherent)
834{
835 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
836 struct arm_dma_buffer *buf;
837 struct arm_dma_free_args args = {
838 .dev = dev,
839 .size = PAGE_ALIGN(size),
840 .cpu_addr = cpu_addr,
841 .page = page,
842 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
843 };
844
845 buf = arm_dma_buffer_find(cpu_addr);
846 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
847 return;
848
849 buf->allocator->free(&args);
850 kfree(buf);
851}
852
853void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
854 dma_addr_t handle, unsigned long attrs)
855{
856 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
857}
858
859static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
860 dma_addr_t handle, unsigned long attrs)
861{
862 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
863}
864
865int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
866 void *cpu_addr, dma_addr_t handle, size_t size,
867 unsigned long attrs)
868{
869 unsigned long pfn = dma_to_pfn(dev, handle);
870 struct page *page;
871 int ret;
872
873 /* If the PFN is not valid, we do not have a struct page */
874 if (!pfn_valid(pfn))
875 return -ENXIO;
876
877 page = pfn_to_page(pfn);
878
879 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
880 if (unlikely(ret))
881 return ret;
882
883 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
884 return 0;
885}
886
887static void dma_cache_maint_page(struct page *page, unsigned long offset,
888 size_t size, enum dma_data_direction dir,
889 void (*op)(const void *, size_t, int))
890{
891 unsigned long pfn;
892 size_t left = size;
893
894 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
895 offset %= PAGE_SIZE;
896
897 /*
898 * A single sg entry may refer to multiple physically contiguous
899 * pages. But we still need to process highmem pages individually.
900 * If highmem is not configured then the bulk of this loop gets
901 * optimized out.
902 */
903 do {
904 size_t len = left;
905 void *vaddr;
906
907 page = pfn_to_page(pfn);
908
909 if (PageHighMem(page)) {
910 if (len + offset > PAGE_SIZE)
911 len = PAGE_SIZE - offset;
912
913 if (cache_is_vipt_nonaliasing()) {
914 vaddr = kmap_atomic(page);
915 op(vaddr + offset, len, dir);
916 kunmap_atomic(vaddr);
917 } else {
918 vaddr = kmap_high_get(page);
919 if (vaddr) {
920 op(vaddr + offset, len, dir);
921 kunmap_high(page);
922 }
923 }
924 } else {
925 vaddr = page_address(page) + offset;
926 op(vaddr, len, dir);
927 }
928 offset = 0;
929 pfn++;
930 left -= len;
931 } while (left);
932}
933
934/*
935 * Make an area consistent for devices.
936 * Note: Drivers should NOT use this function directly, as it will break
937 * platforms with CONFIG_DMABOUNCE.
938 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
939 */
940static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
941 size_t size, enum dma_data_direction dir)
942{
943 phys_addr_t paddr;
944
945 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
946
947 paddr = page_to_phys(page) + off;
948 if (dir == DMA_FROM_DEVICE) {
949 outer_inv_range(paddr, paddr + size);
950 } else {
951 outer_clean_range(paddr, paddr + size);
952 }
953 /* FIXME: non-speculating: flush on bidirectional mappings? */
954}
955
956static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
957 size_t size, enum dma_data_direction dir)
958{
959 phys_addr_t paddr = page_to_phys(page) + off;
960
961 /* FIXME: non-speculating: not required */
962 /* in any case, don't bother invalidating if DMA to device */
963 if (dir != DMA_TO_DEVICE) {
964 outer_inv_range(paddr, paddr + size);
965
966 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
967 }
968
969 /*
970 * Mark the D-cache clean for these pages to avoid extra flushing.
971 */
972 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
973 unsigned long pfn;
974 size_t left = size;
975
976 pfn = page_to_pfn(page) + off / PAGE_SIZE;
977 off %= PAGE_SIZE;
978 if (off) {
979 pfn++;
980 left -= PAGE_SIZE - off;
981 }
982 while (left >= PAGE_SIZE) {
983 page = pfn_to_page(pfn++);
984 set_bit(PG_dcache_clean, &page->flags);
985 left -= PAGE_SIZE;
986 }
987 }
988}
989
990/**
991 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
992 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
993 * @sg: list of buffers
994 * @nents: number of buffers to map
995 * @dir: DMA transfer direction
996 *
997 * Map a set of buffers described by scatterlist in streaming mode for DMA.
998 * This is the scatter-gather version of the dma_map_single interface.
999 * Here the scatter gather list elements are each tagged with the
1000 * appropriate dma address and length. They are obtained via
1001 * sg_dma_{address,length}.
1002 *
1003 * Device ownership issues as mentioned for dma_map_single are the same
1004 * here.
1005 */
1006int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1007 enum dma_data_direction dir, unsigned long attrs)
1008{
1009 const struct dma_map_ops *ops = get_dma_ops(dev);
1010 struct scatterlist *s;
1011 int i, j;
1012
1013 for_each_sg(sg, s, nents, i) {
1014#ifdef CONFIG_NEED_SG_DMA_LENGTH
1015 s->dma_length = s->length;
1016#endif
1017 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1018 s->length, dir, attrs);
1019 if (dma_mapping_error(dev, s->dma_address))
1020 goto bad_mapping;
1021 }
1022 return nents;
1023
1024 bad_mapping:
1025 for_each_sg(sg, s, i, j)
1026 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1027 return 0;
1028}
1029
1030/**
1031 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1032 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1033 * @sg: list of buffers
1034 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1035 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1036 *
1037 * Unmap a set of streaming mode DMA translations. Again, CPU access
1038 * rules concerning calls here are the same as for dma_unmap_single().
1039 */
1040void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1041 enum dma_data_direction dir, unsigned long attrs)
1042{
1043 const struct dma_map_ops *ops = get_dma_ops(dev);
1044 struct scatterlist *s;
1045
1046 int i;
1047
1048 for_each_sg(sg, s, nents, i)
1049 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1050}
1051
1052/**
1053 * arm_dma_sync_sg_for_cpu
1054 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1055 * @sg: list of buffers
1056 * @nents: number of buffers to map (returned from dma_map_sg)
1057 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1058 */
1059void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1060 int nents, enum dma_data_direction dir)
1061{
1062 const struct dma_map_ops *ops = get_dma_ops(dev);
1063 struct scatterlist *s;
1064 int i;
1065
1066 for_each_sg(sg, s, nents, i)
1067 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1068 dir);
1069}
1070
1071/**
1072 * arm_dma_sync_sg_for_device
1073 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1074 * @sg: list of buffers
1075 * @nents: number of buffers to map (returned from dma_map_sg)
1076 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1077 */
1078void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1079 int nents, enum dma_data_direction dir)
1080{
1081 const struct dma_map_ops *ops = get_dma_ops(dev);
1082 struct scatterlist *s;
1083 int i;
1084
1085 for_each_sg(sg, s, nents, i)
1086 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1087 dir);
1088}
1089
1090/*
1091 * Return whether the given device DMA address mask can be supported
1092 * properly. For example, if your device can only drive the low 24-bits
1093 * during bus mastering, then you would pass 0x00ffffff as the mask
1094 * to this function.
1095 */
1096int arm_dma_supported(struct device *dev, u64 mask)
1097{
1098 return __dma_supported(dev, mask, false);
1099}
1100
1101static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1102{
1103 /*
1104 * When CONFIG_ARM_LPAE is set, physical address can extend above
1105 * 32-bits, which then can't be addressed by devices that only support
1106 * 32-bit DMA.
1107 * Use the generic dma-direct / swiotlb ops code in that case, as that
1108 * handles bounce buffering for us.
1109 */
1110 if (IS_ENABLED(CONFIG_ARM_LPAE))
1111 return NULL;
1112 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1113}
1114
1115#ifdef CONFIG_ARM_DMA_USE_IOMMU
1116
1117static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1118{
1119 int prot = 0;
1120
1121 if (attrs & DMA_ATTR_PRIVILEGED)
1122 prot |= IOMMU_PRIV;
1123
1124 switch (dir) {
1125 case DMA_BIDIRECTIONAL:
1126 return prot | IOMMU_READ | IOMMU_WRITE;
1127 case DMA_TO_DEVICE:
1128 return prot | IOMMU_READ;
1129 case DMA_FROM_DEVICE:
1130 return prot | IOMMU_WRITE;
1131 default:
1132 return prot;
1133 }
1134}
1135
1136/* IOMMU */
1137
1138static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1139
1140static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1141 size_t size)
1142{
1143 unsigned int order = get_order(size);
1144 unsigned int align = 0;
1145 unsigned int count, start;
1146 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1147 unsigned long flags;
1148 dma_addr_t iova;
1149 int i;
1150
1151 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1152 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1153
1154 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1155 align = (1 << order) - 1;
1156
1157 spin_lock_irqsave(&mapping->lock, flags);
1158 for (i = 0; i < mapping->nr_bitmaps; i++) {
1159 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1160 mapping->bits, 0, count, align);
1161
1162 if (start > mapping->bits)
1163 continue;
1164
1165 bitmap_set(mapping->bitmaps[i], start, count);
1166 break;
1167 }
1168
1169 /*
1170 * No unused range found. Try to extend the existing mapping
1171 * and perform a second attempt to reserve an IO virtual
1172 * address range of size bytes.
1173 */
1174 if (i == mapping->nr_bitmaps) {
1175 if (extend_iommu_mapping(mapping)) {
1176 spin_unlock_irqrestore(&mapping->lock, flags);
1177 return DMA_MAPPING_ERROR;
1178 }
1179
1180 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1181 mapping->bits, 0, count, align);
1182
1183 if (start > mapping->bits) {
1184 spin_unlock_irqrestore(&mapping->lock, flags);
1185 return DMA_MAPPING_ERROR;
1186 }
1187
1188 bitmap_set(mapping->bitmaps[i], start, count);
1189 }
1190 spin_unlock_irqrestore(&mapping->lock, flags);
1191
1192 iova = mapping->base + (mapping_size * i);
1193 iova += start << PAGE_SHIFT;
1194
1195 return iova;
1196}
1197
1198static inline void __free_iova(struct dma_iommu_mapping *mapping,
1199 dma_addr_t addr, size_t size)
1200{
1201 unsigned int start, count;
1202 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1203 unsigned long flags;
1204 dma_addr_t bitmap_base;
1205 u32 bitmap_index;
1206
1207 if (!size)
1208 return;
1209
1210 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1211 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1212
1213 bitmap_base = mapping->base + mapping_size * bitmap_index;
1214
1215 start = (addr - bitmap_base) >> PAGE_SHIFT;
1216
1217 if (addr + size > bitmap_base + mapping_size) {
1218 /*
1219 * The address range to be freed reaches into the iova
1220 * range of the next bitmap. This should not happen as
1221 * we don't allow this in __alloc_iova (at the
1222 * moment).
1223 */
1224 BUG();
1225 } else
1226 count = size >> PAGE_SHIFT;
1227
1228 spin_lock_irqsave(&mapping->lock, flags);
1229 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1230 spin_unlock_irqrestore(&mapping->lock, flags);
1231}
1232
1233/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1234static const int iommu_order_array[] = { 9, 8, 4, 0 };
1235
1236static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1237 gfp_t gfp, unsigned long attrs,
1238 int coherent_flag)
1239{
1240 struct page **pages;
1241 int count = size >> PAGE_SHIFT;
1242 int array_size = count * sizeof(struct page *);
1243 int i = 0;
1244 int order_idx = 0;
1245
1246 if (array_size <= PAGE_SIZE)
1247 pages = kzalloc(array_size, GFP_KERNEL);
1248 else
1249 pages = vzalloc(array_size);
1250 if (!pages)
1251 return NULL;
1252
1253 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1254 {
1255 unsigned long order = get_order(size);
1256 struct page *page;
1257
1258 page = dma_alloc_from_contiguous(dev, count, order,
1259 gfp & __GFP_NOWARN);
1260 if (!page)
1261 goto error;
1262
1263 __dma_clear_buffer(page, size, coherent_flag);
1264
1265 for (i = 0; i < count; i++)
1266 pages[i] = page + i;
1267
1268 return pages;
1269 }
1270
1271 /* Go straight to 4K chunks if caller says it's OK. */
1272 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1273 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1274
1275 /*
1276 * IOMMU can map any pages, so himem can also be used here
1277 */
1278 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1279
1280 while (count) {
1281 int j, order;
1282
1283 order = iommu_order_array[order_idx];
1284
1285 /* Drop down when we get small */
1286 if (__fls(count) < order) {
1287 order_idx++;
1288 continue;
1289 }
1290
1291 if (order) {
1292 /* See if it's easy to allocate a high-order chunk */
1293 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1294
1295 /* Go down a notch at first sign of pressure */
1296 if (!pages[i]) {
1297 order_idx++;
1298 continue;
1299 }
1300 } else {
1301 pages[i] = alloc_pages(gfp, 0);
1302 if (!pages[i])
1303 goto error;
1304 }
1305
1306 if (order) {
1307 split_page(pages[i], order);
1308 j = 1 << order;
1309 while (--j)
1310 pages[i + j] = pages[i] + j;
1311 }
1312
1313 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1314 i += 1 << order;
1315 count -= 1 << order;
1316 }
1317
1318 return pages;
1319error:
1320 while (i--)
1321 if (pages[i])
1322 __free_pages(pages[i], 0);
1323 kvfree(pages);
1324 return NULL;
1325}
1326
1327static int __iommu_free_buffer(struct device *dev, struct page **pages,
1328 size_t size, unsigned long attrs)
1329{
1330 int count = size >> PAGE_SHIFT;
1331 int i;
1332
1333 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1334 dma_release_from_contiguous(dev, pages[0], count);
1335 } else {
1336 for (i = 0; i < count; i++)
1337 if (pages[i])
1338 __free_pages(pages[i], 0);
1339 }
1340
1341 kvfree(pages);
1342 return 0;
1343}
1344
1345/*
1346 * Create a mapping in device IO address space for specified pages
1347 */
1348static dma_addr_t
1349__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1350 unsigned long attrs)
1351{
1352 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1353 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1354 dma_addr_t dma_addr, iova;
1355 int i;
1356
1357 dma_addr = __alloc_iova(mapping, size);
1358 if (dma_addr == DMA_MAPPING_ERROR)
1359 return dma_addr;
1360
1361 iova = dma_addr;
1362 for (i = 0; i < count; ) {
1363 int ret;
1364
1365 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1366 phys_addr_t phys = page_to_phys(pages[i]);
1367 unsigned int len, j;
1368
1369 for (j = i + 1; j < count; j++, next_pfn++)
1370 if (page_to_pfn(pages[j]) != next_pfn)
1371 break;
1372
1373 len = (j - i) << PAGE_SHIFT;
1374 ret = iommu_map(mapping->domain, iova, phys, len,
1375 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1376 if (ret < 0)
1377 goto fail;
1378 iova += len;
1379 i = j;
1380 }
1381 return dma_addr;
1382fail:
1383 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1384 __free_iova(mapping, dma_addr, size);
1385 return DMA_MAPPING_ERROR;
1386}
1387
1388static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1389{
1390 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1391
1392 /*
1393 * add optional in-page offset from iova to size and align
1394 * result to page size
1395 */
1396 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1397 iova &= PAGE_MASK;
1398
1399 iommu_unmap(mapping->domain, iova, size);
1400 __free_iova(mapping, iova, size);
1401 return 0;
1402}
1403
1404static struct page **__atomic_get_pages(void *addr)
1405{
1406 struct page *page;
1407 phys_addr_t phys;
1408
1409 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1410 page = phys_to_page(phys);
1411
1412 return (struct page **)page;
1413}
1414
1415static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1416{
1417 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1418 return __atomic_get_pages(cpu_addr);
1419
1420 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1421 return cpu_addr;
1422
1423 return dma_common_find_pages(cpu_addr);
1424}
1425
1426static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1427 dma_addr_t *handle, int coherent_flag,
1428 unsigned long attrs)
1429{
1430 struct page *page;
1431 void *addr;
1432
1433 if (coherent_flag == COHERENT)
1434 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1435 else
1436 addr = __alloc_from_pool(size, &page);
1437 if (!addr)
1438 return NULL;
1439
1440 *handle = __iommu_create_mapping(dev, &page, size, attrs);
1441 if (*handle == DMA_MAPPING_ERROR)
1442 goto err_mapping;
1443
1444 return addr;
1445
1446err_mapping:
1447 __free_from_pool(addr, size);
1448 return NULL;
1449}
1450
1451static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1452 dma_addr_t handle, size_t size, int coherent_flag)
1453{
1454 __iommu_remove_mapping(dev, handle, size);
1455 if (coherent_flag == COHERENT)
1456 __dma_free_buffer(virt_to_page(cpu_addr), size);
1457 else
1458 __free_from_pool(cpu_addr, size);
1459}
1460
1461static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1462 dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1463 int coherent_flag)
1464{
1465 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1466 struct page **pages;
1467 void *addr = NULL;
1468
1469 *handle = DMA_MAPPING_ERROR;
1470 size = PAGE_ALIGN(size);
1471
1472 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1473 return __iommu_alloc_simple(dev, size, gfp, handle,
1474 coherent_flag, attrs);
1475
1476 /*
1477 * Following is a work-around (a.k.a. hack) to prevent pages
1478 * with __GFP_COMP being passed to split_page() which cannot
1479 * handle them. The real problem is that this flag probably
1480 * should be 0 on ARM as it is not supported on this
1481 * platform; see CONFIG_HUGETLBFS.
1482 */
1483 gfp &= ~(__GFP_COMP);
1484
1485 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1486 if (!pages)
1487 return NULL;
1488
1489 *handle = __iommu_create_mapping(dev, pages, size, attrs);
1490 if (*handle == DMA_MAPPING_ERROR)
1491 goto err_buffer;
1492
1493 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1494 return pages;
1495
1496 addr = dma_common_pages_remap(pages, size, prot,
1497 __builtin_return_address(0));
1498 if (!addr)
1499 goto err_mapping;
1500
1501 return addr;
1502
1503err_mapping:
1504 __iommu_remove_mapping(dev, *handle, size);
1505err_buffer:
1506 __iommu_free_buffer(dev, pages, size, attrs);
1507 return NULL;
1508}
1509
1510static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1511 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1512{
1513 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1514}
1515
1516static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1517 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1518{
1519 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1520}
1521
1522static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1523 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1524 unsigned long attrs)
1525{
1526 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1527 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1528 int err;
1529
1530 if (!pages)
1531 return -ENXIO;
1532
1533 if (vma->vm_pgoff >= nr_pages)
1534 return -ENXIO;
1535
1536 err = vm_map_pages(vma, pages, nr_pages);
1537 if (err)
1538 pr_err("Remapping memory failed: %d\n", err);
1539
1540 return err;
1541}
1542static int arm_iommu_mmap_attrs(struct device *dev,
1543 struct vm_area_struct *vma, void *cpu_addr,
1544 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1545{
1546 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1547
1548 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1549}
1550
1551static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1552 struct vm_area_struct *vma, void *cpu_addr,
1553 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1554{
1555 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1556}
1557
1558/*
1559 * free a page as defined by the above mapping.
1560 * Must not be called with IRQs disabled.
1561 */
1562void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1563 dma_addr_t handle, unsigned long attrs, int coherent_flag)
1564{
1565 struct page **pages;
1566 size = PAGE_ALIGN(size);
1567
1568 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1569 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1570 return;
1571 }
1572
1573 pages = __iommu_get_pages(cpu_addr, attrs);
1574 if (!pages) {
1575 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1576 return;
1577 }
1578
1579 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1580 dma_common_free_remap(cpu_addr, size);
1581
1582 __iommu_remove_mapping(dev, handle, size);
1583 __iommu_free_buffer(dev, pages, size, attrs);
1584}
1585
1586void arm_iommu_free_attrs(struct device *dev, size_t size,
1587 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1588{
1589 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1590}
1591
1592void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1593 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1594{
1595 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1596}
1597
1598static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1599 void *cpu_addr, dma_addr_t dma_addr,
1600 size_t size, unsigned long attrs)
1601{
1602 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1603 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1604
1605 if (!pages)
1606 return -ENXIO;
1607
1608 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1609 GFP_KERNEL);
1610}
1611
1612/*
1613 * Map a part of the scatter-gather list into contiguous io address space
1614 */
1615static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1616 size_t size, dma_addr_t *handle,
1617 enum dma_data_direction dir, unsigned long attrs,
1618 bool is_coherent)
1619{
1620 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1621 dma_addr_t iova, iova_base;
1622 int ret = 0;
1623 unsigned int count;
1624 struct scatterlist *s;
1625 int prot;
1626
1627 size = PAGE_ALIGN(size);
1628 *handle = DMA_MAPPING_ERROR;
1629
1630 iova_base = iova = __alloc_iova(mapping, size);
1631 if (iova == DMA_MAPPING_ERROR)
1632 return -ENOMEM;
1633
1634 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1635 phys_addr_t phys = page_to_phys(sg_page(s));
1636 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1637
1638 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1639 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1640
1641 prot = __dma_info_to_prot(dir, attrs);
1642
1643 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1644 if (ret < 0)
1645 goto fail;
1646 count += len >> PAGE_SHIFT;
1647 iova += len;
1648 }
1649 *handle = iova_base;
1650
1651 return 0;
1652fail:
1653 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1654 __free_iova(mapping, iova_base, size);
1655 return ret;
1656}
1657
1658static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1659 enum dma_data_direction dir, unsigned long attrs,
1660 bool is_coherent)
1661{
1662 struct scatterlist *s = sg, *dma = sg, *start = sg;
1663 int i, count = 0;
1664 unsigned int offset = s->offset;
1665 unsigned int size = s->offset + s->length;
1666 unsigned int max = dma_get_max_seg_size(dev);
1667
1668 for (i = 1; i < nents; i++) {
1669 s = sg_next(s);
1670
1671 s->dma_address = DMA_MAPPING_ERROR;
1672 s->dma_length = 0;
1673
1674 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1675 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1676 dir, attrs, is_coherent) < 0)
1677 goto bad_mapping;
1678
1679 dma->dma_address += offset;
1680 dma->dma_length = size - offset;
1681
1682 size = offset = s->offset;
1683 start = s;
1684 dma = sg_next(dma);
1685 count += 1;
1686 }
1687 size += s->length;
1688 }
1689 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1690 is_coherent) < 0)
1691 goto bad_mapping;
1692
1693 dma->dma_address += offset;
1694 dma->dma_length = size - offset;
1695
1696 return count+1;
1697
1698bad_mapping:
1699 for_each_sg(sg, s, count, i)
1700 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1701 return 0;
1702}
1703
1704/**
1705 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1706 * @dev: valid struct device pointer
1707 * @sg: list of buffers
1708 * @nents: number of buffers to map
1709 * @dir: DMA transfer direction
1710 *
1711 * Map a set of i/o coherent buffers described by scatterlist in streaming
1712 * mode for DMA. The scatter gather list elements are merged together (if
1713 * possible) and tagged with the appropriate dma address and length. They are
1714 * obtained via sg_dma_{address,length}.
1715 */
1716int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1717 int nents, enum dma_data_direction dir, unsigned long attrs)
1718{
1719 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1720}
1721
1722/**
1723 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1724 * @dev: valid struct device pointer
1725 * @sg: list of buffers
1726 * @nents: number of buffers to map
1727 * @dir: DMA transfer direction
1728 *
1729 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1730 * The scatter gather list elements are merged together (if possible) and
1731 * tagged with the appropriate dma address and length. They are obtained via
1732 * sg_dma_{address,length}.
1733 */
1734int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1735 int nents, enum dma_data_direction dir, unsigned long attrs)
1736{
1737 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1738}
1739
1740static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1741 int nents, enum dma_data_direction dir,
1742 unsigned long attrs, bool is_coherent)
1743{
1744 struct scatterlist *s;
1745 int i;
1746
1747 for_each_sg(sg, s, nents, i) {
1748 if (sg_dma_len(s))
1749 __iommu_remove_mapping(dev, sg_dma_address(s),
1750 sg_dma_len(s));
1751 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1752 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1753 s->length, dir);
1754 }
1755}
1756
1757/**
1758 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1759 * @dev: valid struct device pointer
1760 * @sg: list of buffers
1761 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1762 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1763 *
1764 * Unmap a set of streaming mode DMA translations. Again, CPU access
1765 * rules concerning calls here are the same as for dma_unmap_single().
1766 */
1767void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1768 int nents, enum dma_data_direction dir,
1769 unsigned long attrs)
1770{
1771 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1772}
1773
1774/**
1775 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1776 * @dev: valid struct device pointer
1777 * @sg: list of buffers
1778 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1779 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1780 *
1781 * Unmap a set of streaming mode DMA translations. Again, CPU access
1782 * rules concerning calls here are the same as for dma_unmap_single().
1783 */
1784void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1785 enum dma_data_direction dir,
1786 unsigned long attrs)
1787{
1788 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1789}
1790
1791/**
1792 * arm_iommu_sync_sg_for_cpu
1793 * @dev: valid struct device pointer
1794 * @sg: list of buffers
1795 * @nents: number of buffers to map (returned from dma_map_sg)
1796 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1797 */
1798void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1799 int nents, enum dma_data_direction dir)
1800{
1801 struct scatterlist *s;
1802 int i;
1803
1804 for_each_sg(sg, s, nents, i)
1805 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1806
1807}
1808
1809/**
1810 * arm_iommu_sync_sg_for_device
1811 * @dev: valid struct device pointer
1812 * @sg: list of buffers
1813 * @nents: number of buffers to map (returned from dma_map_sg)
1814 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1815 */
1816void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1817 int nents, enum dma_data_direction dir)
1818{
1819 struct scatterlist *s;
1820 int i;
1821
1822 for_each_sg(sg, s, nents, i)
1823 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1824}
1825
1826
1827/**
1828 * arm_coherent_iommu_map_page
1829 * @dev: valid struct device pointer
1830 * @page: page that buffer resides in
1831 * @offset: offset into page for start of buffer
1832 * @size: size of buffer to map
1833 * @dir: DMA transfer direction
1834 *
1835 * Coherent IOMMU aware version of arm_dma_map_page()
1836 */
1837static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1838 unsigned long offset, size_t size, enum dma_data_direction dir,
1839 unsigned long attrs)
1840{
1841 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1842 dma_addr_t dma_addr;
1843 int ret, prot, len = PAGE_ALIGN(size + offset);
1844
1845 dma_addr = __alloc_iova(mapping, len);
1846 if (dma_addr == DMA_MAPPING_ERROR)
1847 return dma_addr;
1848
1849 prot = __dma_info_to_prot(dir, attrs);
1850
1851 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1852 if (ret < 0)
1853 goto fail;
1854
1855 return dma_addr + offset;
1856fail:
1857 __free_iova(mapping, dma_addr, len);
1858 return DMA_MAPPING_ERROR;
1859}
1860
1861/**
1862 * arm_iommu_map_page
1863 * @dev: valid struct device pointer
1864 * @page: page that buffer resides in
1865 * @offset: offset into page for start of buffer
1866 * @size: size of buffer to map
1867 * @dir: DMA transfer direction
1868 *
1869 * IOMMU aware version of arm_dma_map_page()
1870 */
1871static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1872 unsigned long offset, size_t size, enum dma_data_direction dir,
1873 unsigned long attrs)
1874{
1875 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1876 __dma_page_cpu_to_dev(page, offset, size, dir);
1877
1878 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1879}
1880
1881/**
1882 * arm_coherent_iommu_unmap_page
1883 * @dev: valid struct device pointer
1884 * @handle: DMA address of buffer
1885 * @size: size of buffer (same as passed to dma_map_page)
1886 * @dir: DMA transfer direction (same as passed to dma_map_page)
1887 *
1888 * Coherent IOMMU aware version of arm_dma_unmap_page()
1889 */
1890static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1891 size_t size, enum dma_data_direction dir, unsigned long attrs)
1892{
1893 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1894 dma_addr_t iova = handle & PAGE_MASK;
1895 int offset = handle & ~PAGE_MASK;
1896 int len = PAGE_ALIGN(size + offset);
1897
1898 if (!iova)
1899 return;
1900
1901 iommu_unmap(mapping->domain, iova, len);
1902 __free_iova(mapping, iova, len);
1903}
1904
1905/**
1906 * arm_iommu_unmap_page
1907 * @dev: valid struct device pointer
1908 * @handle: DMA address of buffer
1909 * @size: size of buffer (same as passed to dma_map_page)
1910 * @dir: DMA transfer direction (same as passed to dma_map_page)
1911 *
1912 * IOMMU aware version of arm_dma_unmap_page()
1913 */
1914static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1915 size_t size, enum dma_data_direction dir, unsigned long attrs)
1916{
1917 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1918 dma_addr_t iova = handle & PAGE_MASK;
1919 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1920 int offset = handle & ~PAGE_MASK;
1921 int len = PAGE_ALIGN(size + offset);
1922
1923 if (!iova)
1924 return;
1925
1926 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1927 __dma_page_dev_to_cpu(page, offset, size, dir);
1928
1929 iommu_unmap(mapping->domain, iova, len);
1930 __free_iova(mapping, iova, len);
1931}
1932
1933/**
1934 * arm_iommu_map_resource - map a device resource for DMA
1935 * @dev: valid struct device pointer
1936 * @phys_addr: physical address of resource
1937 * @size: size of resource to map
1938 * @dir: DMA transfer direction
1939 */
1940static dma_addr_t arm_iommu_map_resource(struct device *dev,
1941 phys_addr_t phys_addr, size_t size,
1942 enum dma_data_direction dir, unsigned long attrs)
1943{
1944 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1945 dma_addr_t dma_addr;
1946 int ret, prot;
1947 phys_addr_t addr = phys_addr & PAGE_MASK;
1948 unsigned int offset = phys_addr & ~PAGE_MASK;
1949 size_t len = PAGE_ALIGN(size + offset);
1950
1951 dma_addr = __alloc_iova(mapping, len);
1952 if (dma_addr == DMA_MAPPING_ERROR)
1953 return dma_addr;
1954
1955 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1956
1957 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1958 if (ret < 0)
1959 goto fail;
1960
1961 return dma_addr + offset;
1962fail:
1963 __free_iova(mapping, dma_addr, len);
1964 return DMA_MAPPING_ERROR;
1965}
1966
1967/**
1968 * arm_iommu_unmap_resource - unmap a device DMA resource
1969 * @dev: valid struct device pointer
1970 * @dma_handle: DMA address to resource
1971 * @size: size of resource to map
1972 * @dir: DMA transfer direction
1973 */
1974static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1975 size_t size, enum dma_data_direction dir,
1976 unsigned long attrs)
1977{
1978 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1979 dma_addr_t iova = dma_handle & PAGE_MASK;
1980 unsigned int offset = dma_handle & ~PAGE_MASK;
1981 size_t len = PAGE_ALIGN(size + offset);
1982
1983 if (!iova)
1984 return;
1985
1986 iommu_unmap(mapping->domain, iova, len);
1987 __free_iova(mapping, iova, len);
1988}
1989
1990static void arm_iommu_sync_single_for_cpu(struct device *dev,
1991 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1992{
1993 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1994 dma_addr_t iova = handle & PAGE_MASK;
1995 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1996 unsigned int offset = handle & ~PAGE_MASK;
1997
1998 if (!iova)
1999 return;
2000
2001 __dma_page_dev_to_cpu(page, offset, size, dir);
2002}
2003
2004static void arm_iommu_sync_single_for_device(struct device *dev,
2005 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2006{
2007 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2008 dma_addr_t iova = handle & PAGE_MASK;
2009 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2010 unsigned int offset = handle & ~PAGE_MASK;
2011
2012 if (!iova)
2013 return;
2014
2015 __dma_page_cpu_to_dev(page, offset, size, dir);
2016}
2017
2018const struct dma_map_ops iommu_ops = {
2019 .alloc = arm_iommu_alloc_attrs,
2020 .free = arm_iommu_free_attrs,
2021 .mmap = arm_iommu_mmap_attrs,
2022 .get_sgtable = arm_iommu_get_sgtable,
2023
2024 .map_page = arm_iommu_map_page,
2025 .unmap_page = arm_iommu_unmap_page,
2026 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
2027 .sync_single_for_device = arm_iommu_sync_single_for_device,
2028
2029 .map_sg = arm_iommu_map_sg,
2030 .unmap_sg = arm_iommu_unmap_sg,
2031 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
2032 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
2033
2034 .map_resource = arm_iommu_map_resource,
2035 .unmap_resource = arm_iommu_unmap_resource,
2036
2037 .dma_supported = arm_dma_supported,
2038};
2039
2040const struct dma_map_ops iommu_coherent_ops = {
2041 .alloc = arm_coherent_iommu_alloc_attrs,
2042 .free = arm_coherent_iommu_free_attrs,
2043 .mmap = arm_coherent_iommu_mmap_attrs,
2044 .get_sgtable = arm_iommu_get_sgtable,
2045
2046 .map_page = arm_coherent_iommu_map_page,
2047 .unmap_page = arm_coherent_iommu_unmap_page,
2048
2049 .map_sg = arm_coherent_iommu_map_sg,
2050 .unmap_sg = arm_coherent_iommu_unmap_sg,
2051
2052 .map_resource = arm_iommu_map_resource,
2053 .unmap_resource = arm_iommu_unmap_resource,
2054
2055 .dma_supported = arm_dma_supported,
2056};
2057
2058/**
2059 * arm_iommu_create_mapping
2060 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2061 * @base: start address of the valid IO address space
2062 * @size: maximum size of the valid IO address space
2063 *
2064 * Creates a mapping structure which holds information about used/unused
2065 * IO address ranges, which is required to perform memory allocation and
2066 * mapping with IOMMU aware functions.
2067 *
2068 * The client device need to be attached to the mapping with
2069 * arm_iommu_attach_device function.
2070 */
2071struct dma_iommu_mapping *
2072arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2073{
2074 unsigned int bits = size >> PAGE_SHIFT;
2075 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2076 struct dma_iommu_mapping *mapping;
2077 int extensions = 1;
2078 int err = -ENOMEM;
2079
2080 /* currently only 32-bit DMA address space is supported */
2081 if (size > DMA_BIT_MASK(32) + 1)
2082 return ERR_PTR(-ERANGE);
2083
2084 if (!bitmap_size)
2085 return ERR_PTR(-EINVAL);
2086
2087 if (bitmap_size > PAGE_SIZE) {
2088 extensions = bitmap_size / PAGE_SIZE;
2089 bitmap_size = PAGE_SIZE;
2090 }
2091
2092 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2093 if (!mapping)
2094 goto err;
2095
2096 mapping->bitmap_size = bitmap_size;
2097 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2098 GFP_KERNEL);
2099 if (!mapping->bitmaps)
2100 goto err2;
2101
2102 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2103 if (!mapping->bitmaps[0])
2104 goto err3;
2105
2106 mapping->nr_bitmaps = 1;
2107 mapping->extensions = extensions;
2108 mapping->base = base;
2109 mapping->bits = BITS_PER_BYTE * bitmap_size;
2110
2111 spin_lock_init(&mapping->lock);
2112
2113 mapping->domain = iommu_domain_alloc(bus);
2114 if (!mapping->domain)
2115 goto err4;
2116
2117 kref_init(&mapping->kref);
2118 return mapping;
2119err4:
2120 kfree(mapping->bitmaps[0]);
2121err3:
2122 kfree(mapping->bitmaps);
2123err2:
2124 kfree(mapping);
2125err:
2126 return ERR_PTR(err);
2127}
2128EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2129
2130static void release_iommu_mapping(struct kref *kref)
2131{
2132 int i;
2133 struct dma_iommu_mapping *mapping =
2134 container_of(kref, struct dma_iommu_mapping, kref);
2135
2136 iommu_domain_free(mapping->domain);
2137 for (i = 0; i < mapping->nr_bitmaps; i++)
2138 kfree(mapping->bitmaps[i]);
2139 kfree(mapping->bitmaps);
2140 kfree(mapping);
2141}
2142
2143static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2144{
2145 int next_bitmap;
2146
2147 if (mapping->nr_bitmaps >= mapping->extensions)
2148 return -EINVAL;
2149
2150 next_bitmap = mapping->nr_bitmaps;
2151 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2152 GFP_ATOMIC);
2153 if (!mapping->bitmaps[next_bitmap])
2154 return -ENOMEM;
2155
2156 mapping->nr_bitmaps++;
2157
2158 return 0;
2159}
2160
2161void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2162{
2163 if (mapping)
2164 kref_put(&mapping->kref, release_iommu_mapping);
2165}
2166EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2167
2168static int __arm_iommu_attach_device(struct device *dev,
2169 struct dma_iommu_mapping *mapping)
2170{
2171 int err;
2172
2173 err = iommu_attach_device(mapping->domain, dev);
2174 if (err)
2175 return err;
2176
2177 kref_get(&mapping->kref);
2178 to_dma_iommu_mapping(dev) = mapping;
2179
2180 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2181 return 0;
2182}
2183
2184/**
2185 * arm_iommu_attach_device
2186 * @dev: valid struct device pointer
2187 * @mapping: io address space mapping structure (returned from
2188 * arm_iommu_create_mapping)
2189 *
2190 * Attaches specified io address space mapping to the provided device.
2191 * This replaces the dma operations (dma_map_ops pointer) with the
2192 * IOMMU aware version.
2193 *
2194 * More than one client might be attached to the same io address space
2195 * mapping.
2196 */
2197int arm_iommu_attach_device(struct device *dev,
2198 struct dma_iommu_mapping *mapping)
2199{
2200 int err;
2201
2202 err = __arm_iommu_attach_device(dev, mapping);
2203 if (err)
2204 return err;
2205
2206 set_dma_ops(dev, &iommu_ops);
2207 return 0;
2208}
2209EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2210
2211/**
2212 * arm_iommu_detach_device
2213 * @dev: valid struct device pointer
2214 *
2215 * Detaches the provided device from a previously attached map.
2216 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2217 */
2218void arm_iommu_detach_device(struct device *dev)
2219{
2220 struct dma_iommu_mapping *mapping;
2221
2222 mapping = to_dma_iommu_mapping(dev);
2223 if (!mapping) {
2224 dev_warn(dev, "Not attached\n");
2225 return;
2226 }
2227
2228 iommu_detach_device(mapping->domain, dev);
2229 kref_put(&mapping->kref, release_iommu_mapping);
2230 to_dma_iommu_mapping(dev) = NULL;
2231 set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2232
2233 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2234}
2235EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2236
2237static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2238{
2239 return coherent ? &iommu_coherent_ops : &iommu_ops;
2240}
2241
2242static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2243 const struct iommu_ops *iommu)
2244{
2245 struct dma_iommu_mapping *mapping;
2246
2247 if (!iommu)
2248 return false;
2249
2250 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2251 if (IS_ERR(mapping)) {
2252 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2253 size, dev_name(dev));
2254 return false;
2255 }
2256
2257 if (__arm_iommu_attach_device(dev, mapping)) {
2258 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2259 dev_name(dev));
2260 arm_iommu_release_mapping(mapping);
2261 return false;
2262 }
2263
2264 return true;
2265}
2266
2267static void arm_teardown_iommu_dma_ops(struct device *dev)
2268{
2269 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2270
2271 if (!mapping)
2272 return;
2273
2274 arm_iommu_detach_device(dev);
2275 arm_iommu_release_mapping(mapping);
2276}
2277
2278#else
2279
2280static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2281 const struct iommu_ops *iommu)
2282{
2283 return false;
2284}
2285
2286static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2287
2288#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2289
2290#endif /* CONFIG_ARM_DMA_USE_IOMMU */
2291
2292void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2293 const struct iommu_ops *iommu, bool coherent)
2294{
2295 const struct dma_map_ops *dma_ops;
2296
2297 dev->archdata.dma_coherent = coherent;
2298#ifdef CONFIG_SWIOTLB
2299 dev->dma_coherent = coherent;
2300#endif
2301
2302 /*
2303 * Don't override the dma_ops if they have already been set. Ideally
2304 * this should be the only location where dma_ops are set, remove this
2305 * check when all other callers of set_dma_ops will have disappeared.
2306 */
2307 if (dev->dma_ops)
2308 return;
2309
2310 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2311 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2312 else
2313 dma_ops = arm_get_dma_map_ops(coherent);
2314
2315 set_dma_ops(dev, dma_ops);
2316
2317#ifdef CONFIG_XEN
2318 if (xen_initial_domain())
2319 dev->dma_ops = &xen_swiotlb_dma_ops;
2320#endif
2321 dev->archdata.dma_ops_setup = true;
2322}
2323
2324void arch_teardown_dma_ops(struct device *dev)
2325{
2326 if (!dev->archdata.dma_ops_setup)
2327 return;
2328
2329 arm_teardown_iommu_dma_ops(dev);
2330 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2331 set_dma_ops(dev, NULL);
2332}
2333
2334#ifdef CONFIG_SWIOTLB
2335void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
2336 size_t size, enum dma_data_direction dir)
2337{
2338 __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2339 size, dir);
2340}
2341
2342void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
2343 size_t size, enum dma_data_direction dir)
2344{
2345 __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2346 size, dir);
2347}
2348
2349long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr,
2350 dma_addr_t dma_addr)
2351{
2352 return dma_to_pfn(dev, dma_addr);
2353}
2354
2355void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2356 gfp_t gfp, unsigned long attrs)
2357{
2358 return __dma_alloc(dev, size, dma_handle, gfp,
2359 __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2360 attrs, __builtin_return_address(0));
2361}
2362
2363void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2364 dma_addr_t dma_handle, unsigned long attrs)
2365{
2366 __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2367}
2368#endif /* CONFIG_SWIOTLB */
1/*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/bootmem.h>
13#include <linux/module.h>
14#include <linux/mm.h>
15#include <linux/genalloc.h>
16#include <linux/gfp.h>
17#include <linux/errno.h>
18#include <linux/list.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/dma-mapping.h>
22#include <linux/dma-contiguous.h>
23#include <linux/highmem.h>
24#include <linux/memblock.h>
25#include <linux/slab.h>
26#include <linux/iommu.h>
27#include <linux/io.h>
28#include <linux/vmalloc.h>
29#include <linux/sizes.h>
30#include <linux/cma.h>
31
32#include <asm/memory.h>
33#include <asm/highmem.h>
34#include <asm/cacheflush.h>
35#include <asm/tlbflush.h>
36#include <asm/mach/arch.h>
37#include <asm/dma-iommu.h>
38#include <asm/mach/map.h>
39#include <asm/system_info.h>
40#include <asm/dma-contiguous.h>
41
42#include "dma.h"
43#include "mm.h"
44
45struct arm_dma_alloc_args {
46 struct device *dev;
47 size_t size;
48 gfp_t gfp;
49 pgprot_t prot;
50 const void *caller;
51 bool want_vaddr;
52 int coherent_flag;
53};
54
55struct arm_dma_free_args {
56 struct device *dev;
57 size_t size;
58 void *cpu_addr;
59 struct page *page;
60 bool want_vaddr;
61};
62
63#define NORMAL 0
64#define COHERENT 1
65
66struct arm_dma_allocator {
67 void *(*alloc)(struct arm_dma_alloc_args *args,
68 struct page **ret_page);
69 void (*free)(struct arm_dma_free_args *args);
70};
71
72struct arm_dma_buffer {
73 struct list_head list;
74 void *virt;
75 struct arm_dma_allocator *allocator;
76};
77
78static LIST_HEAD(arm_dma_bufs);
79static DEFINE_SPINLOCK(arm_dma_bufs_lock);
80
81static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
82{
83 struct arm_dma_buffer *buf, *found = NULL;
84 unsigned long flags;
85
86 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
87 list_for_each_entry(buf, &arm_dma_bufs, list) {
88 if (buf->virt == virt) {
89 list_del(&buf->list);
90 found = buf;
91 break;
92 }
93 }
94 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
95 return found;
96}
97
98/*
99 * The DMA API is built upon the notion of "buffer ownership". A buffer
100 * is either exclusively owned by the CPU (and therefore may be accessed
101 * by it) or exclusively owned by the DMA device. These helper functions
102 * represent the transitions between these two ownership states.
103 *
104 * Note, however, that on later ARMs, this notion does not work due to
105 * speculative prefetches. We model our approach on the assumption that
106 * the CPU does do speculative prefetches, which means we clean caches
107 * before transfers and delay cache invalidation until transfer completion.
108 *
109 */
110static void __dma_page_cpu_to_dev(struct page *, unsigned long,
111 size_t, enum dma_data_direction);
112static void __dma_page_dev_to_cpu(struct page *, unsigned long,
113 size_t, enum dma_data_direction);
114
115/**
116 * arm_dma_map_page - map a portion of a page for streaming DMA
117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
118 * @page: page that buffer resides in
119 * @offset: offset into page for start of buffer
120 * @size: size of buffer to map
121 * @dir: DMA transfer direction
122 *
123 * Ensure that any data held in the cache is appropriately discarded
124 * or written back.
125 *
126 * The device owns this memory once this call has completed. The CPU
127 * can regain ownership by calling dma_unmap_page().
128 */
129static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
130 unsigned long offset, size_t size, enum dma_data_direction dir,
131 unsigned long attrs)
132{
133 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
134 __dma_page_cpu_to_dev(page, offset, size, dir);
135 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
136}
137
138static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
139 unsigned long offset, size_t size, enum dma_data_direction dir,
140 unsigned long attrs)
141{
142 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
143}
144
145/**
146 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
147 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
148 * @handle: DMA address of buffer
149 * @size: size of buffer (same as passed to dma_map_page)
150 * @dir: DMA transfer direction (same as passed to dma_map_page)
151 *
152 * Unmap a page streaming mode DMA translation. The handle and size
153 * must match what was provided in the previous dma_map_page() call.
154 * All other usages are undefined.
155 *
156 * After this call, reads by the CPU to the buffer are guaranteed to see
157 * whatever the device wrote there.
158 */
159static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
160 size_t size, enum dma_data_direction dir, unsigned long attrs)
161{
162 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
163 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
164 handle & ~PAGE_MASK, size, dir);
165}
166
167static void arm_dma_sync_single_for_cpu(struct device *dev,
168 dma_addr_t handle, size_t size, enum dma_data_direction dir)
169{
170 unsigned int offset = handle & (PAGE_SIZE - 1);
171 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
172 __dma_page_dev_to_cpu(page, offset, size, dir);
173}
174
175static void arm_dma_sync_single_for_device(struct device *dev,
176 dma_addr_t handle, size_t size, enum dma_data_direction dir)
177{
178 unsigned int offset = handle & (PAGE_SIZE - 1);
179 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
180 __dma_page_cpu_to_dev(page, offset, size, dir);
181}
182
183struct dma_map_ops arm_dma_ops = {
184 .alloc = arm_dma_alloc,
185 .free = arm_dma_free,
186 .mmap = arm_dma_mmap,
187 .get_sgtable = arm_dma_get_sgtable,
188 .map_page = arm_dma_map_page,
189 .unmap_page = arm_dma_unmap_page,
190 .map_sg = arm_dma_map_sg,
191 .unmap_sg = arm_dma_unmap_sg,
192 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
193 .sync_single_for_device = arm_dma_sync_single_for_device,
194 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
195 .sync_sg_for_device = arm_dma_sync_sg_for_device,
196};
197EXPORT_SYMBOL(arm_dma_ops);
198
199static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
200 dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
201static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
202 dma_addr_t handle, unsigned long attrs);
203static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
204 void *cpu_addr, dma_addr_t dma_addr, size_t size,
205 unsigned long attrs);
206
207struct dma_map_ops arm_coherent_dma_ops = {
208 .alloc = arm_coherent_dma_alloc,
209 .free = arm_coherent_dma_free,
210 .mmap = arm_coherent_dma_mmap,
211 .get_sgtable = arm_dma_get_sgtable,
212 .map_page = arm_coherent_dma_map_page,
213 .map_sg = arm_dma_map_sg,
214};
215EXPORT_SYMBOL(arm_coherent_dma_ops);
216
217static int __dma_supported(struct device *dev, u64 mask, bool warn)
218{
219 unsigned long max_dma_pfn;
220
221 /*
222 * If the mask allows for more memory than we can address,
223 * and we actually have that much memory, then we must
224 * indicate that DMA to this device is not supported.
225 */
226 if (sizeof(mask) != sizeof(dma_addr_t) &&
227 mask > (dma_addr_t)~0 &&
228 dma_to_pfn(dev, ~0) < max_pfn - 1) {
229 if (warn) {
230 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
231 mask);
232 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
233 }
234 return 0;
235 }
236
237 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
238
239 /*
240 * Translate the device's DMA mask to a PFN limit. This
241 * PFN number includes the page which we can DMA to.
242 */
243 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
244 if (warn)
245 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
246 mask,
247 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
248 max_dma_pfn + 1);
249 return 0;
250 }
251
252 return 1;
253}
254
255static u64 get_coherent_dma_mask(struct device *dev)
256{
257 u64 mask = (u64)DMA_BIT_MASK(32);
258
259 if (dev) {
260 mask = dev->coherent_dma_mask;
261
262 /*
263 * Sanity check the DMA mask - it must be non-zero, and
264 * must be able to be satisfied by a DMA allocation.
265 */
266 if (mask == 0) {
267 dev_warn(dev, "coherent DMA mask is unset\n");
268 return 0;
269 }
270
271 if (!__dma_supported(dev, mask, true))
272 return 0;
273 }
274
275 return mask;
276}
277
278static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
279{
280 /*
281 * Ensure that the allocated pages are zeroed, and that any data
282 * lurking in the kernel direct-mapped region is invalidated.
283 */
284 if (PageHighMem(page)) {
285 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
286 phys_addr_t end = base + size;
287 while (size > 0) {
288 void *ptr = kmap_atomic(page);
289 memset(ptr, 0, PAGE_SIZE);
290 if (coherent_flag != COHERENT)
291 dmac_flush_range(ptr, ptr + PAGE_SIZE);
292 kunmap_atomic(ptr);
293 page++;
294 size -= PAGE_SIZE;
295 }
296 if (coherent_flag != COHERENT)
297 outer_flush_range(base, end);
298 } else {
299 void *ptr = page_address(page);
300 memset(ptr, 0, size);
301 if (coherent_flag != COHERENT) {
302 dmac_flush_range(ptr, ptr + size);
303 outer_flush_range(__pa(ptr), __pa(ptr) + size);
304 }
305 }
306}
307
308/*
309 * Allocate a DMA buffer for 'dev' of size 'size' using the
310 * specified gfp mask. Note that 'size' must be page aligned.
311 */
312static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
313 gfp_t gfp, int coherent_flag)
314{
315 unsigned long order = get_order(size);
316 struct page *page, *p, *e;
317
318 page = alloc_pages(gfp, order);
319 if (!page)
320 return NULL;
321
322 /*
323 * Now split the huge page and free the excess pages
324 */
325 split_page(page, order);
326 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
327 __free_page(p);
328
329 __dma_clear_buffer(page, size, coherent_flag);
330
331 return page;
332}
333
334/*
335 * Free a DMA buffer. 'size' must be page aligned.
336 */
337static void __dma_free_buffer(struct page *page, size_t size)
338{
339 struct page *e = page + (size >> PAGE_SHIFT);
340
341 while (page < e) {
342 __free_page(page);
343 page++;
344 }
345}
346
347#ifdef CONFIG_MMU
348
349static void *__alloc_from_contiguous(struct device *dev, size_t size,
350 pgprot_t prot, struct page **ret_page,
351 const void *caller, bool want_vaddr,
352 int coherent_flag);
353
354static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
355 pgprot_t prot, struct page **ret_page,
356 const void *caller, bool want_vaddr);
357
358static void *
359__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
360 const void *caller)
361{
362 /*
363 * DMA allocation can be mapped to user space, so lets
364 * set VM_USERMAP flags too.
365 */
366 return dma_common_contiguous_remap(page, size,
367 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
368 prot, caller);
369}
370
371static void __dma_free_remap(void *cpu_addr, size_t size)
372{
373 dma_common_free_remap(cpu_addr, size,
374 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
375}
376
377#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
378static struct gen_pool *atomic_pool;
379
380static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
381
382static int __init early_coherent_pool(char *p)
383{
384 atomic_pool_size = memparse(p, &p);
385 return 0;
386}
387early_param("coherent_pool", early_coherent_pool);
388
389void __init init_dma_coherent_pool_size(unsigned long size)
390{
391 /*
392 * Catch any attempt to set the pool size too late.
393 */
394 BUG_ON(atomic_pool);
395
396 /*
397 * Set architecture specific coherent pool size only if
398 * it has not been changed by kernel command line parameter.
399 */
400 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
401 atomic_pool_size = size;
402}
403
404/*
405 * Initialise the coherent pool for atomic allocations.
406 */
407static int __init atomic_pool_init(void)
408{
409 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
410 gfp_t gfp = GFP_KERNEL | GFP_DMA;
411 struct page *page;
412 void *ptr;
413
414 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
415 if (!atomic_pool)
416 goto out;
417 /*
418 * The atomic pool is only used for non-coherent allocations
419 * so we must pass NORMAL for coherent_flag.
420 */
421 if (dev_get_cma_area(NULL))
422 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
423 &page, atomic_pool_init, true, NORMAL);
424 else
425 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
426 &page, atomic_pool_init, true);
427 if (ptr) {
428 int ret;
429
430 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
431 page_to_phys(page),
432 atomic_pool_size, -1);
433 if (ret)
434 goto destroy_genpool;
435
436 gen_pool_set_algo(atomic_pool,
437 gen_pool_first_fit_order_align,
438 (void *)PAGE_SHIFT);
439 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
440 atomic_pool_size / 1024);
441 return 0;
442 }
443
444destroy_genpool:
445 gen_pool_destroy(atomic_pool);
446 atomic_pool = NULL;
447out:
448 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
449 atomic_pool_size / 1024);
450 return -ENOMEM;
451}
452/*
453 * CMA is activated by core_initcall, so we must be called after it.
454 */
455postcore_initcall(atomic_pool_init);
456
457struct dma_contig_early_reserve {
458 phys_addr_t base;
459 unsigned long size;
460};
461
462static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
463
464static int dma_mmu_remap_num __initdata;
465
466void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
467{
468 dma_mmu_remap[dma_mmu_remap_num].base = base;
469 dma_mmu_remap[dma_mmu_remap_num].size = size;
470 dma_mmu_remap_num++;
471}
472
473void __init dma_contiguous_remap(void)
474{
475 int i;
476 for (i = 0; i < dma_mmu_remap_num; i++) {
477 phys_addr_t start = dma_mmu_remap[i].base;
478 phys_addr_t end = start + dma_mmu_remap[i].size;
479 struct map_desc map;
480 unsigned long addr;
481
482 if (end > arm_lowmem_limit)
483 end = arm_lowmem_limit;
484 if (start >= end)
485 continue;
486
487 map.pfn = __phys_to_pfn(start);
488 map.virtual = __phys_to_virt(start);
489 map.length = end - start;
490 map.type = MT_MEMORY_DMA_READY;
491
492 /*
493 * Clear previous low-memory mapping to ensure that the
494 * TLB does not see any conflicting entries, then flush
495 * the TLB of the old entries before creating new mappings.
496 *
497 * This ensures that any speculatively loaded TLB entries
498 * (even though they may be rare) can not cause any problems,
499 * and ensures that this code is architecturally compliant.
500 */
501 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
502 addr += PMD_SIZE)
503 pmd_clear(pmd_off_k(addr));
504
505 flush_tlb_kernel_range(__phys_to_virt(start),
506 __phys_to_virt(end));
507
508 iotable_init(&map, 1);
509 }
510}
511
512static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
513 void *data)
514{
515 struct page *page = virt_to_page(addr);
516 pgprot_t prot = *(pgprot_t *)data;
517
518 set_pte_ext(pte, mk_pte(page, prot), 0);
519 return 0;
520}
521
522static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
523{
524 unsigned long start = (unsigned long) page_address(page);
525 unsigned end = start + size;
526
527 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
528 flush_tlb_kernel_range(start, end);
529}
530
531static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
532 pgprot_t prot, struct page **ret_page,
533 const void *caller, bool want_vaddr)
534{
535 struct page *page;
536 void *ptr = NULL;
537 /*
538 * __alloc_remap_buffer is only called when the device is
539 * non-coherent
540 */
541 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
542 if (!page)
543 return NULL;
544 if (!want_vaddr)
545 goto out;
546
547 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
548 if (!ptr) {
549 __dma_free_buffer(page, size);
550 return NULL;
551 }
552
553 out:
554 *ret_page = page;
555 return ptr;
556}
557
558static void *__alloc_from_pool(size_t size, struct page **ret_page)
559{
560 unsigned long val;
561 void *ptr = NULL;
562
563 if (!atomic_pool) {
564 WARN(1, "coherent pool not initialised!\n");
565 return NULL;
566 }
567
568 val = gen_pool_alloc(atomic_pool, size);
569 if (val) {
570 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
571
572 *ret_page = phys_to_page(phys);
573 ptr = (void *)val;
574 }
575
576 return ptr;
577}
578
579static bool __in_atomic_pool(void *start, size_t size)
580{
581 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
582}
583
584static int __free_from_pool(void *start, size_t size)
585{
586 if (!__in_atomic_pool(start, size))
587 return 0;
588
589 gen_pool_free(atomic_pool, (unsigned long)start, size);
590
591 return 1;
592}
593
594static void *__alloc_from_contiguous(struct device *dev, size_t size,
595 pgprot_t prot, struct page **ret_page,
596 const void *caller, bool want_vaddr,
597 int coherent_flag)
598{
599 unsigned long order = get_order(size);
600 size_t count = size >> PAGE_SHIFT;
601 struct page *page;
602 void *ptr = NULL;
603
604 page = dma_alloc_from_contiguous(dev, count, order);
605 if (!page)
606 return NULL;
607
608 __dma_clear_buffer(page, size, coherent_flag);
609
610 if (!want_vaddr)
611 goto out;
612
613 if (PageHighMem(page)) {
614 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
615 if (!ptr) {
616 dma_release_from_contiguous(dev, page, count);
617 return NULL;
618 }
619 } else {
620 __dma_remap(page, size, prot);
621 ptr = page_address(page);
622 }
623
624 out:
625 *ret_page = page;
626 return ptr;
627}
628
629static void __free_from_contiguous(struct device *dev, struct page *page,
630 void *cpu_addr, size_t size, bool want_vaddr)
631{
632 if (want_vaddr) {
633 if (PageHighMem(page))
634 __dma_free_remap(cpu_addr, size);
635 else
636 __dma_remap(page, size, PAGE_KERNEL);
637 }
638 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
639}
640
641static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
642{
643 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
644 pgprot_writecombine(prot) :
645 pgprot_dmacoherent(prot);
646 return prot;
647}
648
649#define nommu() 0
650
651#else /* !CONFIG_MMU */
652
653#define nommu() 1
654
655#define __get_dma_pgprot(attrs, prot) __pgprot(0)
656#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL
657#define __alloc_from_pool(size, ret_page) NULL
658#define __alloc_from_contiguous(dev, size, prot, ret, c, wv, coherent_flag) NULL
659#define __free_from_pool(cpu_addr, size) do { } while (0)
660#define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0)
661#define __dma_free_remap(cpu_addr, size) do { } while (0)
662
663#endif /* CONFIG_MMU */
664
665static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
666 struct page **ret_page)
667{
668 struct page *page;
669 /* __alloc_simple_buffer is only called when the device is coherent */
670 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
671 if (!page)
672 return NULL;
673
674 *ret_page = page;
675 return page_address(page);
676}
677
678static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
679 struct page **ret_page)
680{
681 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
682 ret_page);
683}
684
685static void simple_allocator_free(struct arm_dma_free_args *args)
686{
687 __dma_free_buffer(args->page, args->size);
688}
689
690static struct arm_dma_allocator simple_allocator = {
691 .alloc = simple_allocator_alloc,
692 .free = simple_allocator_free,
693};
694
695static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
696 struct page **ret_page)
697{
698 return __alloc_from_contiguous(args->dev, args->size, args->prot,
699 ret_page, args->caller,
700 args->want_vaddr, args->coherent_flag);
701}
702
703static void cma_allocator_free(struct arm_dma_free_args *args)
704{
705 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
706 args->size, args->want_vaddr);
707}
708
709static struct arm_dma_allocator cma_allocator = {
710 .alloc = cma_allocator_alloc,
711 .free = cma_allocator_free,
712};
713
714static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
715 struct page **ret_page)
716{
717 return __alloc_from_pool(args->size, ret_page);
718}
719
720static void pool_allocator_free(struct arm_dma_free_args *args)
721{
722 __free_from_pool(args->cpu_addr, args->size);
723}
724
725static struct arm_dma_allocator pool_allocator = {
726 .alloc = pool_allocator_alloc,
727 .free = pool_allocator_free,
728};
729
730static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
731 struct page **ret_page)
732{
733 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
734 args->prot, ret_page, args->caller,
735 args->want_vaddr);
736}
737
738static void remap_allocator_free(struct arm_dma_free_args *args)
739{
740 if (args->want_vaddr)
741 __dma_free_remap(args->cpu_addr, args->size);
742
743 __dma_free_buffer(args->page, args->size);
744}
745
746static struct arm_dma_allocator remap_allocator = {
747 .alloc = remap_allocator_alloc,
748 .free = remap_allocator_free,
749};
750
751static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
752 gfp_t gfp, pgprot_t prot, bool is_coherent,
753 unsigned long attrs, const void *caller)
754{
755 u64 mask = get_coherent_dma_mask(dev);
756 struct page *page = NULL;
757 void *addr;
758 bool allowblock, cma;
759 struct arm_dma_buffer *buf;
760 struct arm_dma_alloc_args args = {
761 .dev = dev,
762 .size = PAGE_ALIGN(size),
763 .gfp = gfp,
764 .prot = prot,
765 .caller = caller,
766 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
767 .coherent_flag = is_coherent ? COHERENT : NORMAL,
768 };
769
770#ifdef CONFIG_DMA_API_DEBUG
771 u64 limit = (mask + 1) & ~mask;
772 if (limit && size >= limit) {
773 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
774 size, mask);
775 return NULL;
776 }
777#endif
778
779 if (!mask)
780 return NULL;
781
782 buf = kzalloc(sizeof(*buf),
783 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
784 if (!buf)
785 return NULL;
786
787 if (mask < 0xffffffffULL)
788 gfp |= GFP_DMA;
789
790 /*
791 * Following is a work-around (a.k.a. hack) to prevent pages
792 * with __GFP_COMP being passed to split_page() which cannot
793 * handle them. The real problem is that this flag probably
794 * should be 0 on ARM as it is not supported on this
795 * platform; see CONFIG_HUGETLBFS.
796 */
797 gfp &= ~(__GFP_COMP);
798 args.gfp = gfp;
799
800 *handle = DMA_ERROR_CODE;
801 allowblock = gfpflags_allow_blocking(gfp);
802 cma = allowblock ? dev_get_cma_area(dev) : false;
803
804 if (cma)
805 buf->allocator = &cma_allocator;
806 else if (nommu() || is_coherent)
807 buf->allocator = &simple_allocator;
808 else if (allowblock)
809 buf->allocator = &remap_allocator;
810 else
811 buf->allocator = &pool_allocator;
812
813 addr = buf->allocator->alloc(&args, &page);
814
815 if (page) {
816 unsigned long flags;
817
818 *handle = pfn_to_dma(dev, page_to_pfn(page));
819 buf->virt = args.want_vaddr ? addr : page;
820
821 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
822 list_add(&buf->list, &arm_dma_bufs);
823 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
824 } else {
825 kfree(buf);
826 }
827
828 return args.want_vaddr ? addr : page;
829}
830
831/*
832 * Allocate DMA-coherent memory space and return both the kernel remapped
833 * virtual and bus address for that space.
834 */
835void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
836 gfp_t gfp, unsigned long attrs)
837{
838 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
839
840 return __dma_alloc(dev, size, handle, gfp, prot, false,
841 attrs, __builtin_return_address(0));
842}
843
844static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
845 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
846{
847 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
848 attrs, __builtin_return_address(0));
849}
850
851static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
852 void *cpu_addr, dma_addr_t dma_addr, size_t size,
853 unsigned long attrs)
854{
855 int ret = -ENXIO;
856#ifdef CONFIG_MMU
857 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
858 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
859 unsigned long pfn = dma_to_pfn(dev, dma_addr);
860 unsigned long off = vma->vm_pgoff;
861
862 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
863 return ret;
864
865 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
866 ret = remap_pfn_range(vma, vma->vm_start,
867 pfn + off,
868 vma->vm_end - vma->vm_start,
869 vma->vm_page_prot);
870 }
871#endif /* CONFIG_MMU */
872
873 return ret;
874}
875
876/*
877 * Create userspace mapping for the DMA-coherent memory.
878 */
879static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
880 void *cpu_addr, dma_addr_t dma_addr, size_t size,
881 unsigned long attrs)
882{
883 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
884}
885
886int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
887 void *cpu_addr, dma_addr_t dma_addr, size_t size,
888 unsigned long attrs)
889{
890#ifdef CONFIG_MMU
891 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
892#endif /* CONFIG_MMU */
893 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
894}
895
896/*
897 * Free a buffer as defined by the above mapping.
898 */
899static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
900 dma_addr_t handle, unsigned long attrs,
901 bool is_coherent)
902{
903 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
904 struct arm_dma_buffer *buf;
905 struct arm_dma_free_args args = {
906 .dev = dev,
907 .size = PAGE_ALIGN(size),
908 .cpu_addr = cpu_addr,
909 .page = page,
910 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
911 };
912
913 buf = arm_dma_buffer_find(cpu_addr);
914 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
915 return;
916
917 buf->allocator->free(&args);
918 kfree(buf);
919}
920
921void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
922 dma_addr_t handle, unsigned long attrs)
923{
924 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
925}
926
927static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
928 dma_addr_t handle, unsigned long attrs)
929{
930 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
931}
932
933int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
934 void *cpu_addr, dma_addr_t handle, size_t size,
935 unsigned long attrs)
936{
937 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
938 int ret;
939
940 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
941 if (unlikely(ret))
942 return ret;
943
944 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
945 return 0;
946}
947
948static void dma_cache_maint_page(struct page *page, unsigned long offset,
949 size_t size, enum dma_data_direction dir,
950 void (*op)(const void *, size_t, int))
951{
952 unsigned long pfn;
953 size_t left = size;
954
955 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
956 offset %= PAGE_SIZE;
957
958 /*
959 * A single sg entry may refer to multiple physically contiguous
960 * pages. But we still need to process highmem pages individually.
961 * If highmem is not configured then the bulk of this loop gets
962 * optimized out.
963 */
964 do {
965 size_t len = left;
966 void *vaddr;
967
968 page = pfn_to_page(pfn);
969
970 if (PageHighMem(page)) {
971 if (len + offset > PAGE_SIZE)
972 len = PAGE_SIZE - offset;
973
974 if (cache_is_vipt_nonaliasing()) {
975 vaddr = kmap_atomic(page);
976 op(vaddr + offset, len, dir);
977 kunmap_atomic(vaddr);
978 } else {
979 vaddr = kmap_high_get(page);
980 if (vaddr) {
981 op(vaddr + offset, len, dir);
982 kunmap_high(page);
983 }
984 }
985 } else {
986 vaddr = page_address(page) + offset;
987 op(vaddr, len, dir);
988 }
989 offset = 0;
990 pfn++;
991 left -= len;
992 } while (left);
993}
994
995/*
996 * Make an area consistent for devices.
997 * Note: Drivers should NOT use this function directly, as it will break
998 * platforms with CONFIG_DMABOUNCE.
999 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
1000 */
1001static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
1002 size_t size, enum dma_data_direction dir)
1003{
1004 phys_addr_t paddr;
1005
1006 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
1007
1008 paddr = page_to_phys(page) + off;
1009 if (dir == DMA_FROM_DEVICE) {
1010 outer_inv_range(paddr, paddr + size);
1011 } else {
1012 outer_clean_range(paddr, paddr + size);
1013 }
1014 /* FIXME: non-speculating: flush on bidirectional mappings? */
1015}
1016
1017static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1018 size_t size, enum dma_data_direction dir)
1019{
1020 phys_addr_t paddr = page_to_phys(page) + off;
1021
1022 /* FIXME: non-speculating: not required */
1023 /* in any case, don't bother invalidating if DMA to device */
1024 if (dir != DMA_TO_DEVICE) {
1025 outer_inv_range(paddr, paddr + size);
1026
1027 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1028 }
1029
1030 /*
1031 * Mark the D-cache clean for these pages to avoid extra flushing.
1032 */
1033 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1034 unsigned long pfn;
1035 size_t left = size;
1036
1037 pfn = page_to_pfn(page) + off / PAGE_SIZE;
1038 off %= PAGE_SIZE;
1039 if (off) {
1040 pfn++;
1041 left -= PAGE_SIZE - off;
1042 }
1043 while (left >= PAGE_SIZE) {
1044 page = pfn_to_page(pfn++);
1045 set_bit(PG_dcache_clean, &page->flags);
1046 left -= PAGE_SIZE;
1047 }
1048 }
1049}
1050
1051/**
1052 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1053 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1054 * @sg: list of buffers
1055 * @nents: number of buffers to map
1056 * @dir: DMA transfer direction
1057 *
1058 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1059 * This is the scatter-gather version of the dma_map_single interface.
1060 * Here the scatter gather list elements are each tagged with the
1061 * appropriate dma address and length. They are obtained via
1062 * sg_dma_{address,length}.
1063 *
1064 * Device ownership issues as mentioned for dma_map_single are the same
1065 * here.
1066 */
1067int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1068 enum dma_data_direction dir, unsigned long attrs)
1069{
1070 struct dma_map_ops *ops = get_dma_ops(dev);
1071 struct scatterlist *s;
1072 int i, j;
1073
1074 for_each_sg(sg, s, nents, i) {
1075#ifdef CONFIG_NEED_SG_DMA_LENGTH
1076 s->dma_length = s->length;
1077#endif
1078 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1079 s->length, dir, attrs);
1080 if (dma_mapping_error(dev, s->dma_address))
1081 goto bad_mapping;
1082 }
1083 return nents;
1084
1085 bad_mapping:
1086 for_each_sg(sg, s, i, j)
1087 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1088 return 0;
1089}
1090
1091/**
1092 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1093 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1094 * @sg: list of buffers
1095 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1096 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1097 *
1098 * Unmap a set of streaming mode DMA translations. Again, CPU access
1099 * rules concerning calls here are the same as for dma_unmap_single().
1100 */
1101void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1102 enum dma_data_direction dir, unsigned long attrs)
1103{
1104 struct dma_map_ops *ops = get_dma_ops(dev);
1105 struct scatterlist *s;
1106
1107 int i;
1108
1109 for_each_sg(sg, s, nents, i)
1110 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1111}
1112
1113/**
1114 * arm_dma_sync_sg_for_cpu
1115 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1116 * @sg: list of buffers
1117 * @nents: number of buffers to map (returned from dma_map_sg)
1118 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1119 */
1120void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1121 int nents, enum dma_data_direction dir)
1122{
1123 struct dma_map_ops *ops = get_dma_ops(dev);
1124 struct scatterlist *s;
1125 int i;
1126
1127 for_each_sg(sg, s, nents, i)
1128 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1129 dir);
1130}
1131
1132/**
1133 * arm_dma_sync_sg_for_device
1134 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1135 * @sg: list of buffers
1136 * @nents: number of buffers to map (returned from dma_map_sg)
1137 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1138 */
1139void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1140 int nents, enum dma_data_direction dir)
1141{
1142 struct dma_map_ops *ops = get_dma_ops(dev);
1143 struct scatterlist *s;
1144 int i;
1145
1146 for_each_sg(sg, s, nents, i)
1147 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1148 dir);
1149}
1150
1151/*
1152 * Return whether the given device DMA address mask can be supported
1153 * properly. For example, if your device can only drive the low 24-bits
1154 * during bus mastering, then you would pass 0x00ffffff as the mask
1155 * to this function.
1156 */
1157int dma_supported(struct device *dev, u64 mask)
1158{
1159 return __dma_supported(dev, mask, false);
1160}
1161EXPORT_SYMBOL(dma_supported);
1162
1163#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1164
1165static int __init dma_debug_do_init(void)
1166{
1167 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1168 return 0;
1169}
1170core_initcall(dma_debug_do_init);
1171
1172#ifdef CONFIG_ARM_DMA_USE_IOMMU
1173
1174/* IOMMU */
1175
1176static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1177
1178static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1179 size_t size)
1180{
1181 unsigned int order = get_order(size);
1182 unsigned int align = 0;
1183 unsigned int count, start;
1184 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1185 unsigned long flags;
1186 dma_addr_t iova;
1187 int i;
1188
1189 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1190 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1191
1192 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1193 align = (1 << order) - 1;
1194
1195 spin_lock_irqsave(&mapping->lock, flags);
1196 for (i = 0; i < mapping->nr_bitmaps; i++) {
1197 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1198 mapping->bits, 0, count, align);
1199
1200 if (start > mapping->bits)
1201 continue;
1202
1203 bitmap_set(mapping->bitmaps[i], start, count);
1204 break;
1205 }
1206
1207 /*
1208 * No unused range found. Try to extend the existing mapping
1209 * and perform a second attempt to reserve an IO virtual
1210 * address range of size bytes.
1211 */
1212 if (i == mapping->nr_bitmaps) {
1213 if (extend_iommu_mapping(mapping)) {
1214 spin_unlock_irqrestore(&mapping->lock, flags);
1215 return DMA_ERROR_CODE;
1216 }
1217
1218 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1219 mapping->bits, 0, count, align);
1220
1221 if (start > mapping->bits) {
1222 spin_unlock_irqrestore(&mapping->lock, flags);
1223 return DMA_ERROR_CODE;
1224 }
1225
1226 bitmap_set(mapping->bitmaps[i], start, count);
1227 }
1228 spin_unlock_irqrestore(&mapping->lock, flags);
1229
1230 iova = mapping->base + (mapping_size * i);
1231 iova += start << PAGE_SHIFT;
1232
1233 return iova;
1234}
1235
1236static inline void __free_iova(struct dma_iommu_mapping *mapping,
1237 dma_addr_t addr, size_t size)
1238{
1239 unsigned int start, count;
1240 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1241 unsigned long flags;
1242 dma_addr_t bitmap_base;
1243 u32 bitmap_index;
1244
1245 if (!size)
1246 return;
1247
1248 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1249 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1250
1251 bitmap_base = mapping->base + mapping_size * bitmap_index;
1252
1253 start = (addr - bitmap_base) >> PAGE_SHIFT;
1254
1255 if (addr + size > bitmap_base + mapping_size) {
1256 /*
1257 * The address range to be freed reaches into the iova
1258 * range of the next bitmap. This should not happen as
1259 * we don't allow this in __alloc_iova (at the
1260 * moment).
1261 */
1262 BUG();
1263 } else
1264 count = size >> PAGE_SHIFT;
1265
1266 spin_lock_irqsave(&mapping->lock, flags);
1267 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1268 spin_unlock_irqrestore(&mapping->lock, flags);
1269}
1270
1271/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1272static const int iommu_order_array[] = { 9, 8, 4, 0 };
1273
1274static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1275 gfp_t gfp, unsigned long attrs,
1276 int coherent_flag)
1277{
1278 struct page **pages;
1279 int count = size >> PAGE_SHIFT;
1280 int array_size = count * sizeof(struct page *);
1281 int i = 0;
1282 int order_idx = 0;
1283
1284 if (array_size <= PAGE_SIZE)
1285 pages = kzalloc(array_size, GFP_KERNEL);
1286 else
1287 pages = vzalloc(array_size);
1288 if (!pages)
1289 return NULL;
1290
1291 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1292 {
1293 unsigned long order = get_order(size);
1294 struct page *page;
1295
1296 page = dma_alloc_from_contiguous(dev, count, order);
1297 if (!page)
1298 goto error;
1299
1300 __dma_clear_buffer(page, size, coherent_flag);
1301
1302 for (i = 0; i < count; i++)
1303 pages[i] = page + i;
1304
1305 return pages;
1306 }
1307
1308 /* Go straight to 4K chunks if caller says it's OK. */
1309 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1310 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1311
1312 /*
1313 * IOMMU can map any pages, so himem can also be used here
1314 */
1315 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1316
1317 while (count) {
1318 int j, order;
1319
1320 order = iommu_order_array[order_idx];
1321
1322 /* Drop down when we get small */
1323 if (__fls(count) < order) {
1324 order_idx++;
1325 continue;
1326 }
1327
1328 if (order) {
1329 /* See if it's easy to allocate a high-order chunk */
1330 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1331
1332 /* Go down a notch at first sign of pressure */
1333 if (!pages[i]) {
1334 order_idx++;
1335 continue;
1336 }
1337 } else {
1338 pages[i] = alloc_pages(gfp, 0);
1339 if (!pages[i])
1340 goto error;
1341 }
1342
1343 if (order) {
1344 split_page(pages[i], order);
1345 j = 1 << order;
1346 while (--j)
1347 pages[i + j] = pages[i] + j;
1348 }
1349
1350 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1351 i += 1 << order;
1352 count -= 1 << order;
1353 }
1354
1355 return pages;
1356error:
1357 while (i--)
1358 if (pages[i])
1359 __free_pages(pages[i], 0);
1360 kvfree(pages);
1361 return NULL;
1362}
1363
1364static int __iommu_free_buffer(struct device *dev, struct page **pages,
1365 size_t size, unsigned long attrs)
1366{
1367 int count = size >> PAGE_SHIFT;
1368 int i;
1369
1370 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1371 dma_release_from_contiguous(dev, pages[0], count);
1372 } else {
1373 for (i = 0; i < count; i++)
1374 if (pages[i])
1375 __free_pages(pages[i], 0);
1376 }
1377
1378 kvfree(pages);
1379 return 0;
1380}
1381
1382/*
1383 * Create a CPU mapping for a specified pages
1384 */
1385static void *
1386__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1387 const void *caller)
1388{
1389 return dma_common_pages_remap(pages, size,
1390 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1391}
1392
1393/*
1394 * Create a mapping in device IO address space for specified pages
1395 */
1396static dma_addr_t
1397__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1398{
1399 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1400 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1401 dma_addr_t dma_addr, iova;
1402 int i;
1403
1404 dma_addr = __alloc_iova(mapping, size);
1405 if (dma_addr == DMA_ERROR_CODE)
1406 return dma_addr;
1407
1408 iova = dma_addr;
1409 for (i = 0; i < count; ) {
1410 int ret;
1411
1412 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1413 phys_addr_t phys = page_to_phys(pages[i]);
1414 unsigned int len, j;
1415
1416 for (j = i + 1; j < count; j++, next_pfn++)
1417 if (page_to_pfn(pages[j]) != next_pfn)
1418 break;
1419
1420 len = (j - i) << PAGE_SHIFT;
1421 ret = iommu_map(mapping->domain, iova, phys, len,
1422 IOMMU_READ|IOMMU_WRITE);
1423 if (ret < 0)
1424 goto fail;
1425 iova += len;
1426 i = j;
1427 }
1428 return dma_addr;
1429fail:
1430 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1431 __free_iova(mapping, dma_addr, size);
1432 return DMA_ERROR_CODE;
1433}
1434
1435static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1436{
1437 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1438
1439 /*
1440 * add optional in-page offset from iova to size and align
1441 * result to page size
1442 */
1443 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1444 iova &= PAGE_MASK;
1445
1446 iommu_unmap(mapping->domain, iova, size);
1447 __free_iova(mapping, iova, size);
1448 return 0;
1449}
1450
1451static struct page **__atomic_get_pages(void *addr)
1452{
1453 struct page *page;
1454 phys_addr_t phys;
1455
1456 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1457 page = phys_to_page(phys);
1458
1459 return (struct page **)page;
1460}
1461
1462static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1463{
1464 struct vm_struct *area;
1465
1466 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1467 return __atomic_get_pages(cpu_addr);
1468
1469 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1470 return cpu_addr;
1471
1472 area = find_vm_area(cpu_addr);
1473 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1474 return area->pages;
1475 return NULL;
1476}
1477
1478static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1479 dma_addr_t *handle, int coherent_flag)
1480{
1481 struct page *page;
1482 void *addr;
1483
1484 if (coherent_flag == COHERENT)
1485 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1486 else
1487 addr = __alloc_from_pool(size, &page);
1488 if (!addr)
1489 return NULL;
1490
1491 *handle = __iommu_create_mapping(dev, &page, size);
1492 if (*handle == DMA_ERROR_CODE)
1493 goto err_mapping;
1494
1495 return addr;
1496
1497err_mapping:
1498 __free_from_pool(addr, size);
1499 return NULL;
1500}
1501
1502static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1503 dma_addr_t handle, size_t size, int coherent_flag)
1504{
1505 __iommu_remove_mapping(dev, handle, size);
1506 if (coherent_flag == COHERENT)
1507 __dma_free_buffer(virt_to_page(cpu_addr), size);
1508 else
1509 __free_from_pool(cpu_addr, size);
1510}
1511
1512static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1513 dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1514 int coherent_flag)
1515{
1516 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1517 struct page **pages;
1518 void *addr = NULL;
1519
1520 *handle = DMA_ERROR_CODE;
1521 size = PAGE_ALIGN(size);
1522
1523 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1524 return __iommu_alloc_simple(dev, size, gfp, handle,
1525 coherent_flag);
1526
1527 /*
1528 * Following is a work-around (a.k.a. hack) to prevent pages
1529 * with __GFP_COMP being passed to split_page() which cannot
1530 * handle them. The real problem is that this flag probably
1531 * should be 0 on ARM as it is not supported on this
1532 * platform; see CONFIG_HUGETLBFS.
1533 */
1534 gfp &= ~(__GFP_COMP);
1535
1536 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1537 if (!pages)
1538 return NULL;
1539
1540 *handle = __iommu_create_mapping(dev, pages, size);
1541 if (*handle == DMA_ERROR_CODE)
1542 goto err_buffer;
1543
1544 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1545 return pages;
1546
1547 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1548 __builtin_return_address(0));
1549 if (!addr)
1550 goto err_mapping;
1551
1552 return addr;
1553
1554err_mapping:
1555 __iommu_remove_mapping(dev, *handle, size);
1556err_buffer:
1557 __iommu_free_buffer(dev, pages, size, attrs);
1558 return NULL;
1559}
1560
1561static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1562 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1563{
1564 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1565}
1566
1567static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1568 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1569{
1570 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1571}
1572
1573static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1574 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1575 unsigned long attrs)
1576{
1577 unsigned long uaddr = vma->vm_start;
1578 unsigned long usize = vma->vm_end - vma->vm_start;
1579 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1580 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1581 unsigned long off = vma->vm_pgoff;
1582
1583 if (!pages)
1584 return -ENXIO;
1585
1586 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1587 return -ENXIO;
1588
1589 pages += off;
1590
1591 do {
1592 int ret = vm_insert_page(vma, uaddr, *pages++);
1593 if (ret) {
1594 pr_err("Remapping memory failed: %d\n", ret);
1595 return ret;
1596 }
1597 uaddr += PAGE_SIZE;
1598 usize -= PAGE_SIZE;
1599 } while (usize > 0);
1600
1601 return 0;
1602}
1603static int arm_iommu_mmap_attrs(struct device *dev,
1604 struct vm_area_struct *vma, void *cpu_addr,
1605 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1606{
1607 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1608
1609 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1610}
1611
1612static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1613 struct vm_area_struct *vma, void *cpu_addr,
1614 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1615{
1616 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1617}
1618
1619/*
1620 * free a page as defined by the above mapping.
1621 * Must not be called with IRQs disabled.
1622 */
1623void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1624 dma_addr_t handle, unsigned long attrs, int coherent_flag)
1625{
1626 struct page **pages;
1627 size = PAGE_ALIGN(size);
1628
1629 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1630 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1631 return;
1632 }
1633
1634 pages = __iommu_get_pages(cpu_addr, attrs);
1635 if (!pages) {
1636 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1637 return;
1638 }
1639
1640 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1641 dma_common_free_remap(cpu_addr, size,
1642 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1643 }
1644
1645 __iommu_remove_mapping(dev, handle, size);
1646 __iommu_free_buffer(dev, pages, size, attrs);
1647}
1648
1649void arm_iommu_free_attrs(struct device *dev, size_t size,
1650 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1651{
1652 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1653}
1654
1655void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1656 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1657{
1658 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1659}
1660
1661static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1662 void *cpu_addr, dma_addr_t dma_addr,
1663 size_t size, unsigned long attrs)
1664{
1665 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1666 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1667
1668 if (!pages)
1669 return -ENXIO;
1670
1671 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1672 GFP_KERNEL);
1673}
1674
1675static int __dma_direction_to_prot(enum dma_data_direction dir)
1676{
1677 int prot;
1678
1679 switch (dir) {
1680 case DMA_BIDIRECTIONAL:
1681 prot = IOMMU_READ | IOMMU_WRITE;
1682 break;
1683 case DMA_TO_DEVICE:
1684 prot = IOMMU_READ;
1685 break;
1686 case DMA_FROM_DEVICE:
1687 prot = IOMMU_WRITE;
1688 break;
1689 default:
1690 prot = 0;
1691 }
1692
1693 return prot;
1694}
1695
1696/*
1697 * Map a part of the scatter-gather list into contiguous io address space
1698 */
1699static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1700 size_t size, dma_addr_t *handle,
1701 enum dma_data_direction dir, unsigned long attrs,
1702 bool is_coherent)
1703{
1704 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1705 dma_addr_t iova, iova_base;
1706 int ret = 0;
1707 unsigned int count;
1708 struct scatterlist *s;
1709 int prot;
1710
1711 size = PAGE_ALIGN(size);
1712 *handle = DMA_ERROR_CODE;
1713
1714 iova_base = iova = __alloc_iova(mapping, size);
1715 if (iova == DMA_ERROR_CODE)
1716 return -ENOMEM;
1717
1718 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1719 phys_addr_t phys = page_to_phys(sg_page(s));
1720 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1721
1722 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1723 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1724
1725 prot = __dma_direction_to_prot(dir);
1726
1727 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1728 if (ret < 0)
1729 goto fail;
1730 count += len >> PAGE_SHIFT;
1731 iova += len;
1732 }
1733 *handle = iova_base;
1734
1735 return 0;
1736fail:
1737 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1738 __free_iova(mapping, iova_base, size);
1739 return ret;
1740}
1741
1742static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1743 enum dma_data_direction dir, unsigned long attrs,
1744 bool is_coherent)
1745{
1746 struct scatterlist *s = sg, *dma = sg, *start = sg;
1747 int i, count = 0;
1748 unsigned int offset = s->offset;
1749 unsigned int size = s->offset + s->length;
1750 unsigned int max = dma_get_max_seg_size(dev);
1751
1752 for (i = 1; i < nents; i++) {
1753 s = sg_next(s);
1754
1755 s->dma_address = DMA_ERROR_CODE;
1756 s->dma_length = 0;
1757
1758 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1759 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1760 dir, attrs, is_coherent) < 0)
1761 goto bad_mapping;
1762
1763 dma->dma_address += offset;
1764 dma->dma_length = size - offset;
1765
1766 size = offset = s->offset;
1767 start = s;
1768 dma = sg_next(dma);
1769 count += 1;
1770 }
1771 size += s->length;
1772 }
1773 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1774 is_coherent) < 0)
1775 goto bad_mapping;
1776
1777 dma->dma_address += offset;
1778 dma->dma_length = size - offset;
1779
1780 return count+1;
1781
1782bad_mapping:
1783 for_each_sg(sg, s, count, i)
1784 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1785 return 0;
1786}
1787
1788/**
1789 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1790 * @dev: valid struct device pointer
1791 * @sg: list of buffers
1792 * @nents: number of buffers to map
1793 * @dir: DMA transfer direction
1794 *
1795 * Map a set of i/o coherent buffers described by scatterlist in streaming
1796 * mode for DMA. The scatter gather list elements are merged together (if
1797 * possible) and tagged with the appropriate dma address and length. They are
1798 * obtained via sg_dma_{address,length}.
1799 */
1800int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1801 int nents, enum dma_data_direction dir, unsigned long attrs)
1802{
1803 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1804}
1805
1806/**
1807 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1808 * @dev: valid struct device pointer
1809 * @sg: list of buffers
1810 * @nents: number of buffers to map
1811 * @dir: DMA transfer direction
1812 *
1813 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1814 * The scatter gather list elements are merged together (if possible) and
1815 * tagged with the appropriate dma address and length. They are obtained via
1816 * sg_dma_{address,length}.
1817 */
1818int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1819 int nents, enum dma_data_direction dir, unsigned long attrs)
1820{
1821 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1822}
1823
1824static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1825 int nents, enum dma_data_direction dir,
1826 unsigned long attrs, bool is_coherent)
1827{
1828 struct scatterlist *s;
1829 int i;
1830
1831 for_each_sg(sg, s, nents, i) {
1832 if (sg_dma_len(s))
1833 __iommu_remove_mapping(dev, sg_dma_address(s),
1834 sg_dma_len(s));
1835 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1836 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1837 s->length, dir);
1838 }
1839}
1840
1841/**
1842 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1843 * @dev: valid struct device pointer
1844 * @sg: list of buffers
1845 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1846 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1847 *
1848 * Unmap a set of streaming mode DMA translations. Again, CPU access
1849 * rules concerning calls here are the same as for dma_unmap_single().
1850 */
1851void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1852 int nents, enum dma_data_direction dir,
1853 unsigned long attrs)
1854{
1855 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1856}
1857
1858/**
1859 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1860 * @dev: valid struct device pointer
1861 * @sg: list of buffers
1862 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1863 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1864 *
1865 * Unmap a set of streaming mode DMA translations. Again, CPU access
1866 * rules concerning calls here are the same as for dma_unmap_single().
1867 */
1868void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1869 enum dma_data_direction dir,
1870 unsigned long attrs)
1871{
1872 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1873}
1874
1875/**
1876 * arm_iommu_sync_sg_for_cpu
1877 * @dev: valid struct device pointer
1878 * @sg: list of buffers
1879 * @nents: number of buffers to map (returned from dma_map_sg)
1880 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1881 */
1882void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1883 int nents, enum dma_data_direction dir)
1884{
1885 struct scatterlist *s;
1886 int i;
1887
1888 for_each_sg(sg, s, nents, i)
1889 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1890
1891}
1892
1893/**
1894 * arm_iommu_sync_sg_for_device
1895 * @dev: valid struct device pointer
1896 * @sg: list of buffers
1897 * @nents: number of buffers to map (returned from dma_map_sg)
1898 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1899 */
1900void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1901 int nents, enum dma_data_direction dir)
1902{
1903 struct scatterlist *s;
1904 int i;
1905
1906 for_each_sg(sg, s, nents, i)
1907 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1908}
1909
1910
1911/**
1912 * arm_coherent_iommu_map_page
1913 * @dev: valid struct device pointer
1914 * @page: page that buffer resides in
1915 * @offset: offset into page for start of buffer
1916 * @size: size of buffer to map
1917 * @dir: DMA transfer direction
1918 *
1919 * Coherent IOMMU aware version of arm_dma_map_page()
1920 */
1921static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1922 unsigned long offset, size_t size, enum dma_data_direction dir,
1923 unsigned long attrs)
1924{
1925 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1926 dma_addr_t dma_addr;
1927 int ret, prot, len = PAGE_ALIGN(size + offset);
1928
1929 dma_addr = __alloc_iova(mapping, len);
1930 if (dma_addr == DMA_ERROR_CODE)
1931 return dma_addr;
1932
1933 prot = __dma_direction_to_prot(dir);
1934
1935 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1936 if (ret < 0)
1937 goto fail;
1938
1939 return dma_addr + offset;
1940fail:
1941 __free_iova(mapping, dma_addr, len);
1942 return DMA_ERROR_CODE;
1943}
1944
1945/**
1946 * arm_iommu_map_page
1947 * @dev: valid struct device pointer
1948 * @page: page that buffer resides in
1949 * @offset: offset into page for start of buffer
1950 * @size: size of buffer to map
1951 * @dir: DMA transfer direction
1952 *
1953 * IOMMU aware version of arm_dma_map_page()
1954 */
1955static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1956 unsigned long offset, size_t size, enum dma_data_direction dir,
1957 unsigned long attrs)
1958{
1959 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1960 __dma_page_cpu_to_dev(page, offset, size, dir);
1961
1962 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1963}
1964
1965/**
1966 * arm_coherent_iommu_unmap_page
1967 * @dev: valid struct device pointer
1968 * @handle: DMA address of buffer
1969 * @size: size of buffer (same as passed to dma_map_page)
1970 * @dir: DMA transfer direction (same as passed to dma_map_page)
1971 *
1972 * Coherent IOMMU aware version of arm_dma_unmap_page()
1973 */
1974static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1975 size_t size, enum dma_data_direction dir, unsigned long attrs)
1976{
1977 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1978 dma_addr_t iova = handle & PAGE_MASK;
1979 int offset = handle & ~PAGE_MASK;
1980 int len = PAGE_ALIGN(size + offset);
1981
1982 if (!iova)
1983 return;
1984
1985 iommu_unmap(mapping->domain, iova, len);
1986 __free_iova(mapping, iova, len);
1987}
1988
1989/**
1990 * arm_iommu_unmap_page
1991 * @dev: valid struct device pointer
1992 * @handle: DMA address of buffer
1993 * @size: size of buffer (same as passed to dma_map_page)
1994 * @dir: DMA transfer direction (same as passed to dma_map_page)
1995 *
1996 * IOMMU aware version of arm_dma_unmap_page()
1997 */
1998static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1999 size_t size, enum dma_data_direction dir, unsigned long attrs)
2000{
2001 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2002 dma_addr_t iova = handle & PAGE_MASK;
2003 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2004 int offset = handle & ~PAGE_MASK;
2005 int len = PAGE_ALIGN(size + offset);
2006
2007 if (!iova)
2008 return;
2009
2010 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
2011 __dma_page_dev_to_cpu(page, offset, size, dir);
2012
2013 iommu_unmap(mapping->domain, iova, len);
2014 __free_iova(mapping, iova, len);
2015}
2016
2017/**
2018 * arm_iommu_map_resource - map a device resource for DMA
2019 * @dev: valid struct device pointer
2020 * @phys_addr: physical address of resource
2021 * @size: size of resource to map
2022 * @dir: DMA transfer direction
2023 */
2024static dma_addr_t arm_iommu_map_resource(struct device *dev,
2025 phys_addr_t phys_addr, size_t size,
2026 enum dma_data_direction dir, unsigned long attrs)
2027{
2028 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2029 dma_addr_t dma_addr;
2030 int ret, prot;
2031 phys_addr_t addr = phys_addr & PAGE_MASK;
2032 unsigned int offset = phys_addr & ~PAGE_MASK;
2033 size_t len = PAGE_ALIGN(size + offset);
2034
2035 dma_addr = __alloc_iova(mapping, len);
2036 if (dma_addr == DMA_ERROR_CODE)
2037 return dma_addr;
2038
2039 prot = __dma_direction_to_prot(dir) | IOMMU_MMIO;
2040
2041 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
2042 if (ret < 0)
2043 goto fail;
2044
2045 return dma_addr + offset;
2046fail:
2047 __free_iova(mapping, dma_addr, len);
2048 return DMA_ERROR_CODE;
2049}
2050
2051/**
2052 * arm_iommu_unmap_resource - unmap a device DMA resource
2053 * @dev: valid struct device pointer
2054 * @dma_handle: DMA address to resource
2055 * @size: size of resource to map
2056 * @dir: DMA transfer direction
2057 */
2058static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
2059 size_t size, enum dma_data_direction dir,
2060 unsigned long attrs)
2061{
2062 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2063 dma_addr_t iova = dma_handle & PAGE_MASK;
2064 unsigned int offset = dma_handle & ~PAGE_MASK;
2065 size_t len = PAGE_ALIGN(size + offset);
2066
2067 if (!iova)
2068 return;
2069
2070 iommu_unmap(mapping->domain, iova, len);
2071 __free_iova(mapping, iova, len);
2072}
2073
2074static void arm_iommu_sync_single_for_cpu(struct device *dev,
2075 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2076{
2077 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2078 dma_addr_t iova = handle & PAGE_MASK;
2079 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2080 unsigned int offset = handle & ~PAGE_MASK;
2081
2082 if (!iova)
2083 return;
2084
2085 __dma_page_dev_to_cpu(page, offset, size, dir);
2086}
2087
2088static void arm_iommu_sync_single_for_device(struct device *dev,
2089 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2090{
2091 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2092 dma_addr_t iova = handle & PAGE_MASK;
2093 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2094 unsigned int offset = handle & ~PAGE_MASK;
2095
2096 if (!iova)
2097 return;
2098
2099 __dma_page_cpu_to_dev(page, offset, size, dir);
2100}
2101
2102struct dma_map_ops iommu_ops = {
2103 .alloc = arm_iommu_alloc_attrs,
2104 .free = arm_iommu_free_attrs,
2105 .mmap = arm_iommu_mmap_attrs,
2106 .get_sgtable = arm_iommu_get_sgtable,
2107
2108 .map_page = arm_iommu_map_page,
2109 .unmap_page = arm_iommu_unmap_page,
2110 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
2111 .sync_single_for_device = arm_iommu_sync_single_for_device,
2112
2113 .map_sg = arm_iommu_map_sg,
2114 .unmap_sg = arm_iommu_unmap_sg,
2115 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
2116 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
2117
2118 .map_resource = arm_iommu_map_resource,
2119 .unmap_resource = arm_iommu_unmap_resource,
2120};
2121
2122struct dma_map_ops iommu_coherent_ops = {
2123 .alloc = arm_coherent_iommu_alloc_attrs,
2124 .free = arm_coherent_iommu_free_attrs,
2125 .mmap = arm_coherent_iommu_mmap_attrs,
2126 .get_sgtable = arm_iommu_get_sgtable,
2127
2128 .map_page = arm_coherent_iommu_map_page,
2129 .unmap_page = arm_coherent_iommu_unmap_page,
2130
2131 .map_sg = arm_coherent_iommu_map_sg,
2132 .unmap_sg = arm_coherent_iommu_unmap_sg,
2133
2134 .map_resource = arm_iommu_map_resource,
2135 .unmap_resource = arm_iommu_unmap_resource,
2136};
2137
2138/**
2139 * arm_iommu_create_mapping
2140 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2141 * @base: start address of the valid IO address space
2142 * @size: maximum size of the valid IO address space
2143 *
2144 * Creates a mapping structure which holds information about used/unused
2145 * IO address ranges, which is required to perform memory allocation and
2146 * mapping with IOMMU aware functions.
2147 *
2148 * The client device need to be attached to the mapping with
2149 * arm_iommu_attach_device function.
2150 */
2151struct dma_iommu_mapping *
2152arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2153{
2154 unsigned int bits = size >> PAGE_SHIFT;
2155 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2156 struct dma_iommu_mapping *mapping;
2157 int extensions = 1;
2158 int err = -ENOMEM;
2159
2160 /* currently only 32-bit DMA address space is supported */
2161 if (size > DMA_BIT_MASK(32) + 1)
2162 return ERR_PTR(-ERANGE);
2163
2164 if (!bitmap_size)
2165 return ERR_PTR(-EINVAL);
2166
2167 if (bitmap_size > PAGE_SIZE) {
2168 extensions = bitmap_size / PAGE_SIZE;
2169 bitmap_size = PAGE_SIZE;
2170 }
2171
2172 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2173 if (!mapping)
2174 goto err;
2175
2176 mapping->bitmap_size = bitmap_size;
2177 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2178 GFP_KERNEL);
2179 if (!mapping->bitmaps)
2180 goto err2;
2181
2182 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2183 if (!mapping->bitmaps[0])
2184 goto err3;
2185
2186 mapping->nr_bitmaps = 1;
2187 mapping->extensions = extensions;
2188 mapping->base = base;
2189 mapping->bits = BITS_PER_BYTE * bitmap_size;
2190
2191 spin_lock_init(&mapping->lock);
2192
2193 mapping->domain = iommu_domain_alloc(bus);
2194 if (!mapping->domain)
2195 goto err4;
2196
2197 kref_init(&mapping->kref);
2198 return mapping;
2199err4:
2200 kfree(mapping->bitmaps[0]);
2201err3:
2202 kfree(mapping->bitmaps);
2203err2:
2204 kfree(mapping);
2205err:
2206 return ERR_PTR(err);
2207}
2208EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2209
2210static void release_iommu_mapping(struct kref *kref)
2211{
2212 int i;
2213 struct dma_iommu_mapping *mapping =
2214 container_of(kref, struct dma_iommu_mapping, kref);
2215
2216 iommu_domain_free(mapping->domain);
2217 for (i = 0; i < mapping->nr_bitmaps; i++)
2218 kfree(mapping->bitmaps[i]);
2219 kfree(mapping->bitmaps);
2220 kfree(mapping);
2221}
2222
2223static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2224{
2225 int next_bitmap;
2226
2227 if (mapping->nr_bitmaps >= mapping->extensions)
2228 return -EINVAL;
2229
2230 next_bitmap = mapping->nr_bitmaps;
2231 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2232 GFP_ATOMIC);
2233 if (!mapping->bitmaps[next_bitmap])
2234 return -ENOMEM;
2235
2236 mapping->nr_bitmaps++;
2237
2238 return 0;
2239}
2240
2241void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2242{
2243 if (mapping)
2244 kref_put(&mapping->kref, release_iommu_mapping);
2245}
2246EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2247
2248static int __arm_iommu_attach_device(struct device *dev,
2249 struct dma_iommu_mapping *mapping)
2250{
2251 int err;
2252
2253 err = iommu_attach_device(mapping->domain, dev);
2254 if (err)
2255 return err;
2256
2257 kref_get(&mapping->kref);
2258 to_dma_iommu_mapping(dev) = mapping;
2259
2260 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2261 return 0;
2262}
2263
2264/**
2265 * arm_iommu_attach_device
2266 * @dev: valid struct device pointer
2267 * @mapping: io address space mapping structure (returned from
2268 * arm_iommu_create_mapping)
2269 *
2270 * Attaches specified io address space mapping to the provided device.
2271 * This replaces the dma operations (dma_map_ops pointer) with the
2272 * IOMMU aware version.
2273 *
2274 * More than one client might be attached to the same io address space
2275 * mapping.
2276 */
2277int arm_iommu_attach_device(struct device *dev,
2278 struct dma_iommu_mapping *mapping)
2279{
2280 int err;
2281
2282 err = __arm_iommu_attach_device(dev, mapping);
2283 if (err)
2284 return err;
2285
2286 set_dma_ops(dev, &iommu_ops);
2287 return 0;
2288}
2289EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2290
2291static void __arm_iommu_detach_device(struct device *dev)
2292{
2293 struct dma_iommu_mapping *mapping;
2294
2295 mapping = to_dma_iommu_mapping(dev);
2296 if (!mapping) {
2297 dev_warn(dev, "Not attached\n");
2298 return;
2299 }
2300
2301 iommu_detach_device(mapping->domain, dev);
2302 kref_put(&mapping->kref, release_iommu_mapping);
2303 to_dma_iommu_mapping(dev) = NULL;
2304
2305 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2306}
2307
2308/**
2309 * arm_iommu_detach_device
2310 * @dev: valid struct device pointer
2311 *
2312 * Detaches the provided device from a previously attached map.
2313 * This voids the dma operations (dma_map_ops pointer)
2314 */
2315void arm_iommu_detach_device(struct device *dev)
2316{
2317 __arm_iommu_detach_device(dev);
2318 set_dma_ops(dev, NULL);
2319}
2320EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2321
2322static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2323{
2324 return coherent ? &iommu_coherent_ops : &iommu_ops;
2325}
2326
2327static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2328 const struct iommu_ops *iommu)
2329{
2330 struct dma_iommu_mapping *mapping;
2331
2332 if (!iommu)
2333 return false;
2334
2335 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2336 if (IS_ERR(mapping)) {
2337 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2338 size, dev_name(dev));
2339 return false;
2340 }
2341
2342 if (__arm_iommu_attach_device(dev, mapping)) {
2343 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2344 dev_name(dev));
2345 arm_iommu_release_mapping(mapping);
2346 return false;
2347 }
2348
2349 return true;
2350}
2351
2352static void arm_teardown_iommu_dma_ops(struct device *dev)
2353{
2354 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2355
2356 if (!mapping)
2357 return;
2358
2359 __arm_iommu_detach_device(dev);
2360 arm_iommu_release_mapping(mapping);
2361}
2362
2363#else
2364
2365static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2366 const struct iommu_ops *iommu)
2367{
2368 return false;
2369}
2370
2371static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2372
2373#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2374
2375#endif /* CONFIG_ARM_DMA_USE_IOMMU */
2376
2377static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2378{
2379 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2380}
2381
2382void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2383 const struct iommu_ops *iommu, bool coherent)
2384{
2385 struct dma_map_ops *dma_ops;
2386
2387 dev->archdata.dma_coherent = coherent;
2388 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2389 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2390 else
2391 dma_ops = arm_get_dma_map_ops(coherent);
2392
2393 set_dma_ops(dev, dma_ops);
2394}
2395
2396void arch_teardown_dma_ops(struct device *dev)
2397{
2398 arm_teardown_iommu_dma_ops(dev);
2399}