Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/dma-mapping.c
   4 *
   5 *  Copyright (C) 2000-2004 Russell King
   6 *
 
 
 
 
   7 *  DMA uncached mapping support.
   8 */
 
   9#include <linux/module.h>
  10#include <linux/mm.h>
  11#include <linux/genalloc.h>
  12#include <linux/gfp.h>
  13#include <linux/errno.h>
  14#include <linux/list.h>
  15#include <linux/init.h>
  16#include <linux/device.h>
  17#include <linux/dma-direct.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/dma-noncoherent.h>
  20#include <linux/dma-contiguous.h>
  21#include <linux/highmem.h>
  22#include <linux/memblock.h>
  23#include <linux/slab.h>
  24#include <linux/iommu.h>
  25#include <linux/io.h>
  26#include <linux/vmalloc.h>
  27#include <linux/sizes.h>
  28#include <linux/cma.h>
  29
  30#include <asm/memory.h>
  31#include <asm/highmem.h>
  32#include <asm/cacheflush.h>
  33#include <asm/tlbflush.h>
  34#include <asm/mach/arch.h>
  35#include <asm/dma-iommu.h>
  36#include <asm/mach/map.h>
  37#include <asm/system_info.h>
  38#include <asm/dma-contiguous.h>
  39#include <xen/swiotlb-xen.h>
  40
  41#include "dma.h"
  42#include "mm.h"
  43
  44struct arm_dma_alloc_args {
  45	struct device *dev;
  46	size_t size;
  47	gfp_t gfp;
  48	pgprot_t prot;
  49	const void *caller;
  50	bool want_vaddr;
  51	int coherent_flag;
  52};
  53
  54struct arm_dma_free_args {
  55	struct device *dev;
  56	size_t size;
  57	void *cpu_addr;
  58	struct page *page;
  59	bool want_vaddr;
  60};
  61
  62#define NORMAL	    0
  63#define COHERENT    1
  64
  65struct arm_dma_allocator {
  66	void *(*alloc)(struct arm_dma_alloc_args *args,
  67		       struct page **ret_page);
  68	void (*free)(struct arm_dma_free_args *args);
  69};
  70
  71struct arm_dma_buffer {
  72	struct list_head list;
  73	void *virt;
  74	struct arm_dma_allocator *allocator;
  75};
  76
  77static LIST_HEAD(arm_dma_bufs);
  78static DEFINE_SPINLOCK(arm_dma_bufs_lock);
  79
  80static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
  81{
  82	struct arm_dma_buffer *buf, *found = NULL;
  83	unsigned long flags;
  84
  85	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
  86	list_for_each_entry(buf, &arm_dma_bufs, list) {
  87		if (buf->virt == virt) {
  88			list_del(&buf->list);
  89			found = buf;
  90			break;
  91		}
  92	}
  93	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
  94	return found;
  95}
  96
  97/*
  98 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  99 * is either exclusively owned by the CPU (and therefore may be accessed
 100 * by it) or exclusively owned by the DMA device.  These helper functions
 101 * represent the transitions between these two ownership states.
 102 *
 103 * Note, however, that on later ARMs, this notion does not work due to
 104 * speculative prefetches.  We model our approach on the assumption that
 105 * the CPU does do speculative prefetches, which means we clean caches
 106 * before transfers and delay cache invalidation until transfer completion.
 107 *
 108 */
 109static void __dma_page_cpu_to_dev(struct page *, unsigned long,
 110		size_t, enum dma_data_direction);
 111static void __dma_page_dev_to_cpu(struct page *, unsigned long,
 112		size_t, enum dma_data_direction);
 113
 114/**
 115 * arm_dma_map_page - map a portion of a page for streaming DMA
 116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 117 * @page: page that buffer resides in
 118 * @offset: offset into page for start of buffer
 119 * @size: size of buffer to map
 120 * @dir: DMA transfer direction
 121 *
 122 * Ensure that any data held in the cache is appropriately discarded
 123 * or written back.
 124 *
 125 * The device owns this memory once this call has completed.  The CPU
 126 * can regain ownership by calling dma_unmap_page().
 127 */
 128static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
 129	     unsigned long offset, size_t size, enum dma_data_direction dir,
 130	     unsigned long attrs)
 131{
 132	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 133		__dma_page_cpu_to_dev(page, offset, size, dir);
 134	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 135}
 136
 137static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
 138	     unsigned long offset, size_t size, enum dma_data_direction dir,
 139	     unsigned long attrs)
 140{
 141	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 142}
 143
 144/**
 145 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 146 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 147 * @handle: DMA address of buffer
 148 * @size: size of buffer (same as passed to dma_map_page)
 149 * @dir: DMA transfer direction (same as passed to dma_map_page)
 150 *
 151 * Unmap a page streaming mode DMA translation.  The handle and size
 152 * must match what was provided in the previous dma_map_page() call.
 153 * All other usages are undefined.
 154 *
 155 * After this call, reads by the CPU to the buffer are guaranteed to see
 156 * whatever the device wrote there.
 157 */
 158static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
 159		size_t size, enum dma_data_direction dir, unsigned long attrs)
 
 160{
 161	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 162		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 163				      handle & ~PAGE_MASK, size, dir);
 164}
 165
 166static void arm_dma_sync_single_for_cpu(struct device *dev,
 167		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 168{
 169	unsigned int offset = handle & (PAGE_SIZE - 1);
 170	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 171	__dma_page_dev_to_cpu(page, offset, size, dir);
 172}
 173
 174static void arm_dma_sync_single_for_device(struct device *dev,
 175		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 176{
 177	unsigned int offset = handle & (PAGE_SIZE - 1);
 178	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 179	__dma_page_cpu_to_dev(page, offset, size, dir);
 180}
 181
 182const struct dma_map_ops arm_dma_ops = {
 183	.alloc			= arm_dma_alloc,
 184	.free			= arm_dma_free,
 185	.mmap			= arm_dma_mmap,
 186	.get_sgtable		= arm_dma_get_sgtable,
 187	.map_page		= arm_dma_map_page,
 188	.unmap_page		= arm_dma_unmap_page,
 189	.map_sg			= arm_dma_map_sg,
 190	.unmap_sg		= arm_dma_unmap_sg,
 191	.map_resource		= dma_direct_map_resource,
 192	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
 193	.sync_single_for_device	= arm_dma_sync_single_for_device,
 194	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
 195	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
 196	.dma_supported		= arm_dma_supported,
 197	.get_required_mask	= dma_direct_get_required_mask,
 198};
 199EXPORT_SYMBOL(arm_dma_ops);
 200
 201static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 202	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
 203static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 204				  dma_addr_t handle, unsigned long attrs);
 205static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 206		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 207		 unsigned long attrs);
 208
 209const struct dma_map_ops arm_coherent_dma_ops = {
 210	.alloc			= arm_coherent_dma_alloc,
 211	.free			= arm_coherent_dma_free,
 212	.mmap			= arm_coherent_dma_mmap,
 213	.get_sgtable		= arm_dma_get_sgtable,
 214	.map_page		= arm_coherent_dma_map_page,
 215	.map_sg			= arm_dma_map_sg,
 216	.map_resource		= dma_direct_map_resource,
 217	.dma_supported		= arm_dma_supported,
 218	.get_required_mask	= dma_direct_get_required_mask,
 219};
 220EXPORT_SYMBOL(arm_coherent_dma_ops);
 221
 222static int __dma_supported(struct device *dev, u64 mask, bool warn)
 223{
 224	unsigned long max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225
 226	/*
 227	 * Translate the device's DMA mask to a PFN limit.  This
 228	 * PFN number includes the page which we can DMA to.
 229	 */
 230	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
 231		if (warn)
 232			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
 233				 mask,
 234				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
 235				 max_dma_pfn + 1);
 236		return 0;
 237	}
 238
 239	return 1;
 240}
 241
 242static u64 get_coherent_dma_mask(struct device *dev)
 243{
 244	u64 mask = (u64)DMA_BIT_MASK(32);
 245
 246	if (dev) {
 247		mask = dev->coherent_dma_mask;
 248
 249		/*
 250		 * Sanity check the DMA mask - it must be non-zero, and
 251		 * must be able to be satisfied by a DMA allocation.
 252		 */
 253		if (mask == 0) {
 254			dev_warn(dev, "coherent DMA mask is unset\n");
 255			return 0;
 256		}
 257
 258		if (!__dma_supported(dev, mask, true))
 259			return 0;
 260	}
 261
 262	return mask;
 263}
 264
 265static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
 266{
 267	/*
 268	 * Ensure that the allocated pages are zeroed, and that any data
 269	 * lurking in the kernel direct-mapped region is invalidated.
 270	 */
 271	if (PageHighMem(page)) {
 272		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 273		phys_addr_t end = base + size;
 274		while (size > 0) {
 275			void *ptr = kmap_atomic(page);
 276			memset(ptr, 0, PAGE_SIZE);
 277			if (coherent_flag != COHERENT)
 278				dmac_flush_range(ptr, ptr + PAGE_SIZE);
 279			kunmap_atomic(ptr);
 280			page++;
 281			size -= PAGE_SIZE;
 282		}
 283		if (coherent_flag != COHERENT)
 284			outer_flush_range(base, end);
 285	} else {
 286		void *ptr = page_address(page);
 287		memset(ptr, 0, size);
 288		if (coherent_flag != COHERENT) {
 289			dmac_flush_range(ptr, ptr + size);
 290			outer_flush_range(__pa(ptr), __pa(ptr) + size);
 291		}
 292	}
 293}
 294
 295/*
 296 * Allocate a DMA buffer for 'dev' of size 'size' using the
 297 * specified gfp mask.  Note that 'size' must be page aligned.
 298 */
 299static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
 300				       gfp_t gfp, int coherent_flag)
 301{
 302	unsigned long order = get_order(size);
 303	struct page *page, *p, *e;
 304
 305	page = alloc_pages(gfp, order);
 306	if (!page)
 307		return NULL;
 308
 309	/*
 310	 * Now split the huge page and free the excess pages
 311	 */
 312	split_page(page, order);
 313	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 314		__free_page(p);
 315
 316	__dma_clear_buffer(page, size, coherent_flag);
 317
 318	return page;
 319}
 320
 321/*
 322 * Free a DMA buffer.  'size' must be page aligned.
 323 */
 324static void __dma_free_buffer(struct page *page, size_t size)
 325{
 326	struct page *e = page + (size >> PAGE_SHIFT);
 327
 328	while (page < e) {
 329		__free_page(page);
 330		page++;
 331	}
 332}
 333
 
 
 334static void *__alloc_from_contiguous(struct device *dev, size_t size,
 335				     pgprot_t prot, struct page **ret_page,
 336				     const void *caller, bool want_vaddr,
 337				     int coherent_flag, gfp_t gfp);
 338
 339static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 340				 pgprot_t prot, struct page **ret_page,
 341				 const void *caller, bool want_vaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342
 343#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
 344static struct gen_pool *atomic_pool __ro_after_init;
 345
 346static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 347
 348static int __init early_coherent_pool(char *p)
 349{
 350	atomic_pool_size = memparse(p, &p);
 351	return 0;
 352}
 353early_param("coherent_pool", early_coherent_pool);
 354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355/*
 356 * Initialise the coherent pool for atomic allocations.
 357 */
 358static int __init atomic_pool_init(void)
 359{
 
 360	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 361	gfp_t gfp = GFP_KERNEL | GFP_DMA;
 
 
 362	struct page *page;
 
 363	void *ptr;
 
 364
 365	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
 366	if (!atomic_pool)
 367		goto out;
 368	/*
 369	 * The atomic pool is only used for non-coherent allocations
 370	 * so we must pass NORMAL for coherent_flag.
 371	 */
 372	if (dev_get_cma_area(NULL))
 373		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
 374				      &page, atomic_pool_init, true, NORMAL,
 375				      GFP_KERNEL);
 376	else
 377		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
 378					   &page, atomic_pool_init, true);
 379	if (ptr) {
 380		int ret;
 381
 382		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
 383					page_to_phys(page),
 384					atomic_pool_size, -1);
 385		if (ret)
 386			goto destroy_genpool;
 387
 388		gen_pool_set_algo(atomic_pool,
 389				gen_pool_first_fit_order_align,
 390				NULL);
 391		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
 392		       atomic_pool_size / 1024);
 393		return 0;
 394	}
 395
 396destroy_genpool:
 397	gen_pool_destroy(atomic_pool);
 398	atomic_pool = NULL;
 399out:
 400	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
 401	       atomic_pool_size / 1024);
 402	return -ENOMEM;
 403}
 404/*
 405 * CMA is activated by core_initcall, so we must be called after it.
 406 */
 407postcore_initcall(atomic_pool_init);
 408
 409struct dma_contig_early_reserve {
 410	phys_addr_t base;
 411	unsigned long size;
 412};
 413
 414static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 415
 416static int dma_mmu_remap_num __initdata;
 417
 418void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 419{
 420	dma_mmu_remap[dma_mmu_remap_num].base = base;
 421	dma_mmu_remap[dma_mmu_remap_num].size = size;
 422	dma_mmu_remap_num++;
 423}
 424
 425void __init dma_contiguous_remap(void)
 426{
 427	int i;
 428	for (i = 0; i < dma_mmu_remap_num; i++) {
 429		phys_addr_t start = dma_mmu_remap[i].base;
 430		phys_addr_t end = start + dma_mmu_remap[i].size;
 431		struct map_desc map;
 432		unsigned long addr;
 433
 434		if (end > arm_lowmem_limit)
 435			end = arm_lowmem_limit;
 436		if (start >= end)
 437			continue;
 438
 439		map.pfn = __phys_to_pfn(start);
 440		map.virtual = __phys_to_virt(start);
 441		map.length = end - start;
 442		map.type = MT_MEMORY_DMA_READY;
 443
 444		/*
 445		 * Clear previous low-memory mapping to ensure that the
 446		 * TLB does not see any conflicting entries, then flush
 447		 * the TLB of the old entries before creating new mappings.
 448		 *
 449		 * This ensures that any speculatively loaded TLB entries
 450		 * (even though they may be rare) can not cause any problems,
 451		 * and ensures that this code is architecturally compliant.
 452		 */
 453		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 454		     addr += PMD_SIZE)
 455			pmd_clear(pmd_off_k(addr));
 456
 457		flush_tlb_kernel_range(__phys_to_virt(start),
 458				       __phys_to_virt(end));
 459
 460		iotable_init(&map, 1);
 461	}
 462}
 463
 464static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
 
 465{
 466	struct page *page = virt_to_page(addr);
 467	pgprot_t prot = *(pgprot_t *)data;
 468
 469	set_pte_ext(pte, mk_pte(page, prot), 0);
 470	return 0;
 471}
 472
 473static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 474{
 475	unsigned long start = (unsigned long) page_address(page);
 476	unsigned end = start + size;
 477
 478	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 479	flush_tlb_kernel_range(start, end);
 480}
 481
 482static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 483				 pgprot_t prot, struct page **ret_page,
 484				 const void *caller, bool want_vaddr)
 485{
 486	struct page *page;
 487	void *ptr = NULL;
 488	/*
 489	 * __alloc_remap_buffer is only called when the device is
 490	 * non-coherent
 491	 */
 492	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
 493	if (!page)
 494		return NULL;
 495	if (!want_vaddr)
 496		goto out;
 497
 498	ptr = dma_common_contiguous_remap(page, size, prot, caller);
 499	if (!ptr) {
 500		__dma_free_buffer(page, size);
 501		return NULL;
 502	}
 503
 504 out:
 505	*ret_page = page;
 506	return ptr;
 507}
 508
 509static void *__alloc_from_pool(size_t size, struct page **ret_page)
 510{
 511	unsigned long val;
 
 
 
 512	void *ptr = NULL;
 
 513
 514	if (!atomic_pool) {
 515		WARN(1, "coherent pool not initialised!\n");
 516		return NULL;
 517	}
 518
 519	val = gen_pool_alloc(atomic_pool, size);
 520	if (val) {
 521		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 
 
 
 522
 523		*ret_page = phys_to_page(phys);
 524		ptr = (void *)val;
 
 
 
 
 
 
 
 
 
 525	}
 
 526
 527	return ptr;
 528}
 529
 530static bool __in_atomic_pool(void *start, size_t size)
 531{
 532	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533}
 534
 535static int __free_from_pool(void *start, size_t size)
 536{
 
 
 
 
 537	if (!__in_atomic_pool(start, size))
 538		return 0;
 539
 540	gen_pool_free(atomic_pool, (unsigned long)start, size);
 
 
 
 
 
 541
 542	return 1;
 543}
 544
 545static void *__alloc_from_contiguous(struct device *dev, size_t size,
 546				     pgprot_t prot, struct page **ret_page,
 547				     const void *caller, bool want_vaddr,
 548				     int coherent_flag, gfp_t gfp)
 549{
 550	unsigned long order = get_order(size);
 551	size_t count = size >> PAGE_SHIFT;
 552	struct page *page;
 553	void *ptr = NULL;
 554
 555	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
 556	if (!page)
 557		return NULL;
 558
 559	__dma_clear_buffer(page, size, coherent_flag);
 560
 561	if (!want_vaddr)
 562		goto out;
 563
 564	if (PageHighMem(page)) {
 565		ptr = dma_common_contiguous_remap(page, size, prot, caller);
 566		if (!ptr) {
 567			dma_release_from_contiguous(dev, page, count);
 568			return NULL;
 569		}
 570	} else {
 571		__dma_remap(page, size, prot);
 572		ptr = page_address(page);
 573	}
 574
 575 out:
 576	*ret_page = page;
 577	return ptr;
 578}
 579
 580static void __free_from_contiguous(struct device *dev, struct page *page,
 581				   void *cpu_addr, size_t size, bool want_vaddr)
 582{
 583	if (want_vaddr) {
 584		if (PageHighMem(page))
 585			dma_common_free_remap(cpu_addr, size);
 586		else
 587			__dma_remap(page, size, PAGE_KERNEL);
 588	}
 589	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 590}
 591
 592static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
 593{
 594	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
 595			pgprot_writecombine(prot) :
 596			pgprot_dmacoherent(prot);
 597	return prot;
 598}
 599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 601				   struct page **ret_page)
 602{
 603	struct page *page;
 604	/* __alloc_simple_buffer is only called when the device is coherent */
 605	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
 606	if (!page)
 607		return NULL;
 608
 609	*ret_page = page;
 610	return page_address(page);
 611}
 612
 613static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
 614				    struct page **ret_page)
 615{
 616	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
 617				     ret_page);
 618}
 619
 620static void simple_allocator_free(struct arm_dma_free_args *args)
 621{
 622	__dma_free_buffer(args->page, args->size);
 623}
 624
 625static struct arm_dma_allocator simple_allocator = {
 626	.alloc = simple_allocator_alloc,
 627	.free = simple_allocator_free,
 628};
 629
 630static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
 631				 struct page **ret_page)
 632{
 633	return __alloc_from_contiguous(args->dev, args->size, args->prot,
 634				       ret_page, args->caller,
 635				       args->want_vaddr, args->coherent_flag,
 636				       args->gfp);
 637}
 638
 639static void cma_allocator_free(struct arm_dma_free_args *args)
 640{
 641	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
 642			       args->size, args->want_vaddr);
 643}
 644
 645static struct arm_dma_allocator cma_allocator = {
 646	.alloc = cma_allocator_alloc,
 647	.free = cma_allocator_free,
 648};
 649
 650static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
 651				  struct page **ret_page)
 652{
 653	return __alloc_from_pool(args->size, ret_page);
 654}
 655
 656static void pool_allocator_free(struct arm_dma_free_args *args)
 657{
 658	__free_from_pool(args->cpu_addr, args->size);
 659}
 660
 661static struct arm_dma_allocator pool_allocator = {
 662	.alloc = pool_allocator_alloc,
 663	.free = pool_allocator_free,
 664};
 665
 666static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
 667				   struct page **ret_page)
 668{
 669	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
 670				    args->prot, ret_page, args->caller,
 671				    args->want_vaddr);
 672}
 673
 674static void remap_allocator_free(struct arm_dma_free_args *args)
 675{
 676	if (args->want_vaddr)
 677		dma_common_free_remap(args->cpu_addr, args->size);
 678
 679	__dma_free_buffer(args->page, args->size);
 680}
 681
 682static struct arm_dma_allocator remap_allocator = {
 683	.alloc = remap_allocator_alloc,
 684	.free = remap_allocator_free,
 685};
 686
 687static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 688			 gfp_t gfp, pgprot_t prot, bool is_coherent,
 689			 unsigned long attrs, const void *caller)
 690{
 691	u64 mask = get_coherent_dma_mask(dev);
 692	struct page *page = NULL;
 693	void *addr;
 694	bool allowblock, cma;
 695	struct arm_dma_buffer *buf;
 696	struct arm_dma_alloc_args args = {
 697		.dev = dev,
 698		.size = PAGE_ALIGN(size),
 699		.gfp = gfp,
 700		.prot = prot,
 701		.caller = caller,
 702		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 703		.coherent_flag = is_coherent ? COHERENT : NORMAL,
 704	};
 705
 706#ifdef CONFIG_DMA_API_DEBUG
 707	u64 limit = (mask + 1) & ~mask;
 708	if (limit && size >= limit) {
 709		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 710			size, mask);
 711		return NULL;
 712	}
 713#endif
 714
 715	if (!mask)
 716		return NULL;
 717
 718	buf = kzalloc(sizeof(*buf),
 719		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
 720	if (!buf)
 721		return NULL;
 722
 723	if (mask < 0xffffffffULL)
 724		gfp |= GFP_DMA;
 725
 726	/*
 727	 * Following is a work-around (a.k.a. hack) to prevent pages
 728	 * with __GFP_COMP being passed to split_page() which cannot
 729	 * handle them.  The real problem is that this flag probably
 730	 * should be 0 on ARM as it is not supported on this
 731	 * platform; see CONFIG_HUGETLBFS.
 732	 */
 733	gfp &= ~(__GFP_COMP);
 734	args.gfp = gfp;
 735
 736	*handle = DMA_MAPPING_ERROR;
 737	allowblock = gfpflags_allow_blocking(gfp);
 738	cma = allowblock ? dev_get_cma_area(dev) : false;
 739
 740	if (cma)
 741		buf->allocator = &cma_allocator;
 742	else if (is_coherent)
 743		buf->allocator = &simple_allocator;
 744	else if (allowblock)
 745		buf->allocator = &remap_allocator;
 746	else
 747		buf->allocator = &pool_allocator;
 748
 749	addr = buf->allocator->alloc(&args, &page);
 750
 751	if (page) {
 752		unsigned long flags;
 
 
 
 
 
 
 753
 
 754		*handle = pfn_to_dma(dev, page_to_pfn(page));
 755		buf->virt = args.want_vaddr ? addr : page;
 756
 757		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
 758		list_add(&buf->list, &arm_dma_bufs);
 759		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
 760	} else {
 761		kfree(buf);
 762	}
 763
 764	return args.want_vaddr ? addr : page;
 765}
 766
 767/*
 768 * Allocate DMA-coherent memory space and return both the kernel remapped
 769 * virtual and bus address for that space.
 770 */
 771void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 772		    gfp_t gfp, unsigned long attrs)
 773{
 774	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
 
 
 
 
 775
 776	return __dma_alloc(dev, size, handle, gfp, prot, false,
 777			   attrs, __builtin_return_address(0));
 778}
 779
 780static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 781	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
 782{
 783	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
 784			   attrs, __builtin_return_address(0));
 
 
 
 
 
 
 785}
 786
 787static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 
 
 
 788		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 789		 unsigned long attrs)
 790{
 791	int ret = -ENXIO;
 792	unsigned long nr_vma_pages = vma_pages(vma);
 
 793	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 794	unsigned long pfn = dma_to_pfn(dev, dma_addr);
 795	unsigned long off = vma->vm_pgoff;
 796
 797	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
 
 
 798		return ret;
 799
 800	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
 801		ret = remap_pfn_range(vma, vma->vm_start,
 802				      pfn + off,
 803				      vma->vm_end - vma->vm_start,
 804				      vma->vm_page_prot);
 805	}
 
 806
 807	return ret;
 808}
 809
 810/*
 811 * Create userspace mapping for the DMA-coherent memory.
 812 */
 813static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 814		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 815		 unsigned long attrs)
 816{
 817	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 818}
 819
 820int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 821		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 822		 unsigned long attrs)
 823{
 824	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 825	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 826}
 827
 828/*
 829 * Free a buffer as defined by the above mapping.
 830 */
 831static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 832			   dma_addr_t handle, unsigned long attrs,
 833			   bool is_coherent)
 834{
 835	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 836	struct arm_dma_buffer *buf;
 837	struct arm_dma_free_args args = {
 838		.dev = dev,
 839		.size = PAGE_ALIGN(size),
 840		.cpu_addr = cpu_addr,
 841		.page = page,
 842		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 843	};
 844
 845	buf = arm_dma_buffer_find(cpu_addr);
 846	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
 847		return;
 848
 849	buf->allocator->free(&args);
 850	kfree(buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 851}
 852
 853void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 854		  dma_addr_t handle, unsigned long attrs)
 855{
 856	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
 857}
 858
 859static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 860				  dma_addr_t handle, unsigned long attrs)
 861{
 862	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
 863}
 864
 865int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
 866		 void *cpu_addr, dma_addr_t handle, size_t size,
 867		 unsigned long attrs)
 868{
 869	unsigned long pfn = dma_to_pfn(dev, handle);
 870	struct page *page;
 871	int ret;
 872
 873	/* If the PFN is not valid, we do not have a struct page */
 874	if (!pfn_valid(pfn))
 875		return -ENXIO;
 876
 877	page = pfn_to_page(pfn);
 878
 879	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 880	if (unlikely(ret))
 881		return ret;
 882
 883	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 884	return 0;
 885}
 886
 887static void dma_cache_maint_page(struct page *page, unsigned long offset,
 888	size_t size, enum dma_data_direction dir,
 889	void (*op)(const void *, size_t, int))
 890{
 891	unsigned long pfn;
 892	size_t left = size;
 893
 894	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 895	offset %= PAGE_SIZE;
 896
 897	/*
 898	 * A single sg entry may refer to multiple physically contiguous
 899	 * pages.  But we still need to process highmem pages individually.
 900	 * If highmem is not configured then the bulk of this loop gets
 901	 * optimized out.
 902	 */
 903	do {
 904		size_t len = left;
 905		void *vaddr;
 906
 907		page = pfn_to_page(pfn);
 908
 909		if (PageHighMem(page)) {
 910			if (len + offset > PAGE_SIZE)
 911				len = PAGE_SIZE - offset;
 912
 913			if (cache_is_vipt_nonaliasing()) {
 914				vaddr = kmap_atomic(page);
 915				op(vaddr + offset, len, dir);
 916				kunmap_atomic(vaddr);
 917			} else {
 918				vaddr = kmap_high_get(page);
 919				if (vaddr) {
 920					op(vaddr + offset, len, dir);
 921					kunmap_high(page);
 922				}
 923			}
 924		} else {
 925			vaddr = page_address(page) + offset;
 926			op(vaddr, len, dir);
 927		}
 928		offset = 0;
 929		pfn++;
 930		left -= len;
 931	} while (left);
 932}
 933
 934/*
 935 * Make an area consistent for devices.
 936 * Note: Drivers should NOT use this function directly, as it will break
 937 * platforms with CONFIG_DMABOUNCE.
 938 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 939 */
 940static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 941	size_t size, enum dma_data_direction dir)
 942{
 943	phys_addr_t paddr;
 944
 945	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 946
 947	paddr = page_to_phys(page) + off;
 948	if (dir == DMA_FROM_DEVICE) {
 949		outer_inv_range(paddr, paddr + size);
 950	} else {
 951		outer_clean_range(paddr, paddr + size);
 952	}
 953	/* FIXME: non-speculating: flush on bidirectional mappings? */
 954}
 955
 956static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 957	size_t size, enum dma_data_direction dir)
 958{
 959	phys_addr_t paddr = page_to_phys(page) + off;
 960
 961	/* FIXME: non-speculating: not required */
 962	/* in any case, don't bother invalidating if DMA to device */
 963	if (dir != DMA_TO_DEVICE) {
 964		outer_inv_range(paddr, paddr + size);
 965
 966		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 967	}
 968
 969	/*
 970	 * Mark the D-cache clean for these pages to avoid extra flushing.
 971	 */
 972	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
 973		unsigned long pfn;
 974		size_t left = size;
 975
 976		pfn = page_to_pfn(page) + off / PAGE_SIZE;
 977		off %= PAGE_SIZE;
 978		if (off) {
 979			pfn++;
 980			left -= PAGE_SIZE - off;
 981		}
 982		while (left >= PAGE_SIZE) {
 983			page = pfn_to_page(pfn++);
 984			set_bit(PG_dcache_clean, &page->flags);
 985			left -= PAGE_SIZE;
 986		}
 987	}
 988}
 989
 990/**
 991 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
 992 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 993 * @sg: list of buffers
 994 * @nents: number of buffers to map
 995 * @dir: DMA transfer direction
 996 *
 997 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 998 * This is the scatter-gather version of the dma_map_single interface.
 999 * Here the scatter gather list elements are each tagged with the
1000 * appropriate dma address and length.  They are obtained via
1001 * sg_dma_{address,length}.
1002 *
1003 * Device ownership issues as mentioned for dma_map_single are the same
1004 * here.
1005 */
1006int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1007		enum dma_data_direction dir, unsigned long attrs)
1008{
1009	const struct dma_map_ops *ops = get_dma_ops(dev);
1010	struct scatterlist *s;
1011	int i, j;
1012
1013	for_each_sg(sg, s, nents, i) {
1014#ifdef CONFIG_NEED_SG_DMA_LENGTH
1015		s->dma_length = s->length;
1016#endif
1017		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1018						s->length, dir, attrs);
1019		if (dma_mapping_error(dev, s->dma_address))
1020			goto bad_mapping;
1021	}
1022	return nents;
1023
1024 bad_mapping:
1025	for_each_sg(sg, s, i, j)
1026		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1027	return 0;
1028}
1029
1030/**
1031 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1032 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1033 * @sg: list of buffers
1034 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1035 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1036 *
1037 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1038 * rules concerning calls here are the same as for dma_unmap_single().
1039 */
1040void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1041		enum dma_data_direction dir, unsigned long attrs)
1042{
1043	const struct dma_map_ops *ops = get_dma_ops(dev);
1044	struct scatterlist *s;
1045
1046	int i;
1047
1048	for_each_sg(sg, s, nents, i)
1049		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1050}
1051
1052/**
1053 * arm_dma_sync_sg_for_cpu
1054 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1055 * @sg: list of buffers
1056 * @nents: number of buffers to map (returned from dma_map_sg)
1057 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1058 */
1059void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1060			int nents, enum dma_data_direction dir)
1061{
1062	const struct dma_map_ops *ops = get_dma_ops(dev);
1063	struct scatterlist *s;
1064	int i;
1065
1066	for_each_sg(sg, s, nents, i)
1067		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1068					 dir);
1069}
1070
1071/**
1072 * arm_dma_sync_sg_for_device
1073 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1074 * @sg: list of buffers
1075 * @nents: number of buffers to map (returned from dma_map_sg)
1076 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1077 */
1078void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1079			int nents, enum dma_data_direction dir)
1080{
1081	const struct dma_map_ops *ops = get_dma_ops(dev);
1082	struct scatterlist *s;
1083	int i;
1084
1085	for_each_sg(sg, s, nents, i)
1086		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1087					    dir);
1088}
1089
1090/*
1091 * Return whether the given device DMA address mask can be supported
1092 * properly.  For example, if your device can only drive the low 24-bits
1093 * during bus mastering, then you would pass 0x00ffffff as the mask
1094 * to this function.
1095 */
1096int arm_dma_supported(struct device *dev, u64 mask)
1097{
1098	return __dma_supported(dev, mask, false);
1099}
 
1100
1101static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1102{
1103	/*
1104	 * When CONFIG_ARM_LPAE is set, physical address can extend above
1105	 * 32-bits, which then can't be addressed by devices that only support
1106	 * 32-bit DMA.
1107	 * Use the generic dma-direct / swiotlb ops code in that case, as that
1108	 * handles bounce buffering for us.
1109	 */
1110	if (IS_ENABLED(CONFIG_ARM_LPAE))
1111		return NULL;
1112	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1113}
1114
1115#ifdef CONFIG_ARM_DMA_USE_IOMMU
1116
1117static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1118{
1119	int prot = 0;
1120
1121	if (attrs & DMA_ATTR_PRIVILEGED)
1122		prot |= IOMMU_PRIV;
1123
1124	switch (dir) {
1125	case DMA_BIDIRECTIONAL:
1126		return prot | IOMMU_READ | IOMMU_WRITE;
1127	case DMA_TO_DEVICE:
1128		return prot | IOMMU_READ;
1129	case DMA_FROM_DEVICE:
1130		return prot | IOMMU_WRITE;
1131	default:
1132		return prot;
1133	}
1134}
 
 
 
1135
1136/* IOMMU */
1137
1138static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1139
1140static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1141				      size_t size)
1142{
1143	unsigned int order = get_order(size);
1144	unsigned int align = 0;
1145	unsigned int count, start;
1146	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1147	unsigned long flags;
1148	dma_addr_t iova;
1149	int i;
1150
1151	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1152		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1153
1154	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1155	align = (1 << order) - 1;
1156
1157	spin_lock_irqsave(&mapping->lock, flags);
1158	for (i = 0; i < mapping->nr_bitmaps; i++) {
1159		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1160				mapping->bits, 0, count, align);
1161
1162		if (start > mapping->bits)
1163			continue;
1164
1165		bitmap_set(mapping->bitmaps[i], start, count);
1166		break;
1167	}
1168
1169	/*
1170	 * No unused range found. Try to extend the existing mapping
1171	 * and perform a second attempt to reserve an IO virtual
1172	 * address range of size bytes.
1173	 */
1174	if (i == mapping->nr_bitmaps) {
1175		if (extend_iommu_mapping(mapping)) {
1176			spin_unlock_irqrestore(&mapping->lock, flags);
1177			return DMA_MAPPING_ERROR;
1178		}
1179
1180		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1181				mapping->bits, 0, count, align);
1182
1183		if (start > mapping->bits) {
1184			spin_unlock_irqrestore(&mapping->lock, flags);
1185			return DMA_MAPPING_ERROR;
1186		}
1187
1188		bitmap_set(mapping->bitmaps[i], start, count);
1189	}
1190	spin_unlock_irqrestore(&mapping->lock, flags);
1191
1192	iova = mapping->base + (mapping_size * i);
1193	iova += start << PAGE_SHIFT;
1194
1195	return iova;
1196}
1197
1198static inline void __free_iova(struct dma_iommu_mapping *mapping,
1199			       dma_addr_t addr, size_t size)
1200{
1201	unsigned int start, count;
1202	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1203	unsigned long flags;
1204	dma_addr_t bitmap_base;
1205	u32 bitmap_index;
1206
1207	if (!size)
1208		return;
1209
1210	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1211	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1212
1213	bitmap_base = mapping->base + mapping_size * bitmap_index;
1214
1215	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1216
1217	if (addr + size > bitmap_base + mapping_size) {
1218		/*
1219		 * The address range to be freed reaches into the iova
1220		 * range of the next bitmap. This should not happen as
1221		 * we don't allow this in __alloc_iova (at the
1222		 * moment).
1223		 */
1224		BUG();
1225	} else
1226		count = size >> PAGE_SHIFT;
1227
1228	spin_lock_irqsave(&mapping->lock, flags);
1229	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1230	spin_unlock_irqrestore(&mapping->lock, flags);
1231}
1232
1233/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1234static const int iommu_order_array[] = { 9, 8, 4, 0 };
1235
1236static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1237					  gfp_t gfp, unsigned long attrs,
1238					  int coherent_flag)
1239{
1240	struct page **pages;
1241	int count = size >> PAGE_SHIFT;
1242	int array_size = count * sizeof(struct page *);
1243	int i = 0;
1244	int order_idx = 0;
1245
1246	if (array_size <= PAGE_SIZE)
1247		pages = kzalloc(array_size, GFP_KERNEL);
1248	else
1249		pages = vzalloc(array_size);
1250	if (!pages)
1251		return NULL;
1252
1253	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1254	{
1255		unsigned long order = get_order(size);
1256		struct page *page;
1257
1258		page = dma_alloc_from_contiguous(dev, count, order,
1259						 gfp & __GFP_NOWARN);
1260		if (!page)
1261			goto error;
1262
1263		__dma_clear_buffer(page, size, coherent_flag);
1264
1265		for (i = 0; i < count; i++)
1266			pages[i] = page + i;
1267
1268		return pages;
1269	}
1270
1271	/* Go straight to 4K chunks if caller says it's OK. */
1272	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1273		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1274
1275	/*
1276	 * IOMMU can map any pages, so himem can also be used here
1277	 */
1278	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1279
1280	while (count) {
1281		int j, order;
1282
1283		order = iommu_order_array[order_idx];
1284
1285		/* Drop down when we get small */
1286		if (__fls(count) < order) {
1287			order_idx++;
1288			continue;
1289		}
1290
1291		if (order) {
1292			/* See if it's easy to allocate a high-order chunk */
1293			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1294
1295			/* Go down a notch at first sign of pressure */
1296			if (!pages[i]) {
1297				order_idx++;
1298				continue;
1299			}
1300		} else {
1301			pages[i] = alloc_pages(gfp, 0);
1302			if (!pages[i])
1303				goto error;
1304		}
1305
1306		if (order) {
1307			split_page(pages[i], order);
1308			j = 1 << order;
1309			while (--j)
1310				pages[i + j] = pages[i] + j;
1311		}
1312
1313		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1314		i += 1 << order;
1315		count -= 1 << order;
1316	}
1317
1318	return pages;
1319error:
1320	while (i--)
1321		if (pages[i])
1322			__free_pages(pages[i], 0);
1323	kvfree(pages);
 
 
 
1324	return NULL;
1325}
1326
1327static int __iommu_free_buffer(struct device *dev, struct page **pages,
1328			       size_t size, unsigned long attrs)
1329{
1330	int count = size >> PAGE_SHIFT;
 
1331	int i;
1332
1333	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1334		dma_release_from_contiguous(dev, pages[0], count);
1335	} else {
1336		for (i = 0; i < count; i++)
1337			if (pages[i])
1338				__free_pages(pages[i], 0);
1339	}
1340
1341	kvfree(pages);
 
 
 
1342	return 0;
1343}
1344
1345/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346 * Create a mapping in device IO address space for specified pages
1347 */
1348static dma_addr_t
1349__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1350		       unsigned long attrs)
1351{
1352	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1353	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1354	dma_addr_t dma_addr, iova;
1355	int i;
1356
1357	dma_addr = __alloc_iova(mapping, size);
1358	if (dma_addr == DMA_MAPPING_ERROR)
1359		return dma_addr;
1360
1361	iova = dma_addr;
1362	for (i = 0; i < count; ) {
1363		int ret;
1364
1365		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1366		phys_addr_t phys = page_to_phys(pages[i]);
1367		unsigned int len, j;
1368
1369		for (j = i + 1; j < count; j++, next_pfn++)
1370			if (page_to_pfn(pages[j]) != next_pfn)
1371				break;
1372
1373		len = (j - i) << PAGE_SHIFT;
1374		ret = iommu_map(mapping->domain, iova, phys, len,
1375				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1376		if (ret < 0)
1377			goto fail;
1378		iova += len;
1379		i = j;
1380	}
1381	return dma_addr;
1382fail:
1383	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1384	__free_iova(mapping, dma_addr, size);
1385	return DMA_MAPPING_ERROR;
1386}
1387
1388static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1389{
1390	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1391
1392	/*
1393	 * add optional in-page offset from iova to size and align
1394	 * result to page size
1395	 */
1396	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1397	iova &= PAGE_MASK;
1398
1399	iommu_unmap(mapping->domain, iova, size);
1400	__free_iova(mapping, iova, size);
1401	return 0;
1402}
1403
1404static struct page **__atomic_get_pages(void *addr)
1405{
1406	struct page *page;
1407	phys_addr_t phys;
1408
1409	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1410	page = phys_to_page(phys);
1411
1412	return (struct page **)page;
1413}
1414
1415static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1416{
 
 
1417	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1418		return __atomic_get_pages(cpu_addr);
1419
1420	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1421		return cpu_addr;
1422
1423	return dma_common_find_pages(cpu_addr);
 
 
 
1424}
1425
1426static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1427				  dma_addr_t *handle, int coherent_flag,
1428				  unsigned long attrs)
1429{
1430	struct page *page;
1431	void *addr;
1432
1433	if (coherent_flag  == COHERENT)
1434		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1435	else
1436		addr = __alloc_from_pool(size, &page);
1437	if (!addr)
1438		return NULL;
1439
1440	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1441	if (*handle == DMA_MAPPING_ERROR)
1442		goto err_mapping;
1443
1444	return addr;
1445
1446err_mapping:
1447	__free_from_pool(addr, size);
1448	return NULL;
1449}
1450
1451static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1452			dma_addr_t handle, size_t size, int coherent_flag)
1453{
1454	__iommu_remove_mapping(dev, handle, size);
1455	if (coherent_flag == COHERENT)
1456		__dma_free_buffer(virt_to_page(cpu_addr), size);
1457	else
1458		__free_from_pool(cpu_addr, size);
1459}
1460
1461static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1462	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1463	    int coherent_flag)
1464{
1465	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1466	struct page **pages;
1467	void *addr = NULL;
1468
1469	*handle = DMA_MAPPING_ERROR;
1470	size = PAGE_ALIGN(size);
1471
1472	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1473		return __iommu_alloc_simple(dev, size, gfp, handle,
1474					    coherent_flag, attrs);
1475
1476	/*
1477	 * Following is a work-around (a.k.a. hack) to prevent pages
1478	 * with __GFP_COMP being passed to split_page() which cannot
1479	 * handle them.  The real problem is that this flag probably
1480	 * should be 0 on ARM as it is not supported on this
1481	 * platform; see CONFIG_HUGETLBFS.
1482	 */
1483	gfp &= ~(__GFP_COMP);
1484
1485	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1486	if (!pages)
1487		return NULL;
1488
1489	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1490	if (*handle == DMA_MAPPING_ERROR)
1491		goto err_buffer;
1492
1493	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1494		return pages;
1495
1496	addr = dma_common_pages_remap(pages, size, prot,
1497				   __builtin_return_address(0));
1498	if (!addr)
1499		goto err_mapping;
1500
1501	return addr;
1502
1503err_mapping:
1504	__iommu_remove_mapping(dev, *handle, size);
1505err_buffer:
1506	__iommu_free_buffer(dev, pages, size, attrs);
1507	return NULL;
1508}
1509
1510static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1511	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1512{
1513	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1514}
1515
1516static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1517		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1518{
1519	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1520}
1521
1522static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1523		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1524		    unsigned long attrs)
1525{
 
 
1526	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1527	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1528	int err;
1529
1530	if (!pages)
1531		return -ENXIO;
1532
1533	if (vma->vm_pgoff >= nr_pages)
1534		return -ENXIO;
1535
1536	err = vm_map_pages(vma, pages, nr_pages);
1537	if (err)
1538		pr_err("Remapping memory failed: %d\n", err);
1539
1540	return err;
1541}
1542static int arm_iommu_mmap_attrs(struct device *dev,
1543		struct vm_area_struct *vma, void *cpu_addr,
1544		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1545{
1546	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1547
1548	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1549}
1550
1551static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1552		struct vm_area_struct *vma, void *cpu_addr,
1553		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1554{
1555	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1556}
1557
1558/*
1559 * free a page as defined by the above mapping.
1560 * Must not be called with IRQs disabled.
1561 */
1562void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1563	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1564{
1565	struct page **pages;
1566	size = PAGE_ALIGN(size);
1567
1568	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1569		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1570		return;
1571	}
1572
1573	pages = __iommu_get_pages(cpu_addr, attrs);
1574	if (!pages) {
1575		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1576		return;
1577	}
1578
1579	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1580		dma_common_free_remap(cpu_addr, size);
 
 
1581
1582	__iommu_remove_mapping(dev, handle, size);
1583	__iommu_free_buffer(dev, pages, size, attrs);
1584}
1585
1586void arm_iommu_free_attrs(struct device *dev, size_t size,
1587		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1588{
1589	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1590}
1591
1592void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1593		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1594{
1595	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1596}
1597
1598static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1599				 void *cpu_addr, dma_addr_t dma_addr,
1600				 size_t size, unsigned long attrs)
1601{
1602	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1603	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1604
1605	if (!pages)
1606		return -ENXIO;
1607
1608	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1609					 GFP_KERNEL);
1610}
1611
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1612/*
1613 * Map a part of the scatter-gather list into contiguous io address space
1614 */
1615static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1616			  size_t size, dma_addr_t *handle,
1617			  enum dma_data_direction dir, unsigned long attrs,
1618			  bool is_coherent)
1619{
1620	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1621	dma_addr_t iova, iova_base;
1622	int ret = 0;
1623	unsigned int count;
1624	struct scatterlist *s;
1625	int prot;
1626
1627	size = PAGE_ALIGN(size);
1628	*handle = DMA_MAPPING_ERROR;
1629
1630	iova_base = iova = __alloc_iova(mapping, size);
1631	if (iova == DMA_MAPPING_ERROR)
1632		return -ENOMEM;
1633
1634	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1635		phys_addr_t phys = page_to_phys(sg_page(s));
1636		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1637
1638		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 
1639			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1640
1641		prot = __dma_info_to_prot(dir, attrs);
1642
1643		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1644		if (ret < 0)
1645			goto fail;
1646		count += len >> PAGE_SHIFT;
1647		iova += len;
1648	}
1649	*handle = iova_base;
1650
1651	return 0;
1652fail:
1653	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1654	__free_iova(mapping, iova_base, size);
1655	return ret;
1656}
1657
1658static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1659		     enum dma_data_direction dir, unsigned long attrs,
1660		     bool is_coherent)
1661{
1662	struct scatterlist *s = sg, *dma = sg, *start = sg;
1663	int i, count = 0;
1664	unsigned int offset = s->offset;
1665	unsigned int size = s->offset + s->length;
1666	unsigned int max = dma_get_max_seg_size(dev);
1667
1668	for (i = 1; i < nents; i++) {
1669		s = sg_next(s);
1670
1671		s->dma_address = DMA_MAPPING_ERROR;
1672		s->dma_length = 0;
1673
1674		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1675			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1676			    dir, attrs, is_coherent) < 0)
1677				goto bad_mapping;
1678
1679			dma->dma_address += offset;
1680			dma->dma_length = size - offset;
1681
1682			size = offset = s->offset;
1683			start = s;
1684			dma = sg_next(dma);
1685			count += 1;
1686		}
1687		size += s->length;
1688	}
1689	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1690		is_coherent) < 0)
1691		goto bad_mapping;
1692
1693	dma->dma_address += offset;
1694	dma->dma_length = size - offset;
1695
1696	return count+1;
1697
1698bad_mapping:
1699	for_each_sg(sg, s, count, i)
1700		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1701	return 0;
1702}
1703
1704/**
1705 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1706 * @dev: valid struct device pointer
1707 * @sg: list of buffers
1708 * @nents: number of buffers to map
1709 * @dir: DMA transfer direction
1710 *
1711 * Map a set of i/o coherent buffers described by scatterlist in streaming
1712 * mode for DMA. The scatter gather list elements are merged together (if
1713 * possible) and tagged with the appropriate dma address and length. They are
1714 * obtained via sg_dma_{address,length}.
1715 */
1716int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1717		int nents, enum dma_data_direction dir, unsigned long attrs)
1718{
1719	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1720}
1721
1722/**
1723 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1724 * @dev: valid struct device pointer
1725 * @sg: list of buffers
1726 * @nents: number of buffers to map
1727 * @dir: DMA transfer direction
1728 *
1729 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1730 * The scatter gather list elements are merged together (if possible) and
1731 * tagged with the appropriate dma address and length. They are obtained via
1732 * sg_dma_{address,length}.
1733 */
1734int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1735		int nents, enum dma_data_direction dir, unsigned long attrs)
1736{
1737	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1738}
1739
1740static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1741		int nents, enum dma_data_direction dir,
1742		unsigned long attrs, bool is_coherent)
1743{
1744	struct scatterlist *s;
1745	int i;
1746
1747	for_each_sg(sg, s, nents, i) {
1748		if (sg_dma_len(s))
1749			__iommu_remove_mapping(dev, sg_dma_address(s),
1750					       sg_dma_len(s));
1751		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 
1752			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1753					      s->length, dir);
1754	}
1755}
1756
1757/**
1758 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1759 * @dev: valid struct device pointer
1760 * @sg: list of buffers
1761 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1762 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1763 *
1764 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1765 * rules concerning calls here are the same as for dma_unmap_single().
1766 */
1767void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1768		int nents, enum dma_data_direction dir,
1769		unsigned long attrs)
1770{
1771	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1772}
1773
1774/**
1775 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1776 * @dev: valid struct device pointer
1777 * @sg: list of buffers
1778 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1779 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1780 *
1781 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1782 * rules concerning calls here are the same as for dma_unmap_single().
1783 */
1784void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1785			enum dma_data_direction dir,
1786			unsigned long attrs)
1787{
1788	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1789}
1790
1791/**
1792 * arm_iommu_sync_sg_for_cpu
1793 * @dev: valid struct device pointer
1794 * @sg: list of buffers
1795 * @nents: number of buffers to map (returned from dma_map_sg)
1796 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1797 */
1798void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1799			int nents, enum dma_data_direction dir)
1800{
1801	struct scatterlist *s;
1802	int i;
1803
1804	for_each_sg(sg, s, nents, i)
1805		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1806
1807}
1808
1809/**
1810 * arm_iommu_sync_sg_for_device
1811 * @dev: valid struct device pointer
1812 * @sg: list of buffers
1813 * @nents: number of buffers to map (returned from dma_map_sg)
1814 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1815 */
1816void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1817			int nents, enum dma_data_direction dir)
1818{
1819	struct scatterlist *s;
1820	int i;
1821
1822	for_each_sg(sg, s, nents, i)
1823		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1824}
1825
1826
1827/**
1828 * arm_coherent_iommu_map_page
1829 * @dev: valid struct device pointer
1830 * @page: page that buffer resides in
1831 * @offset: offset into page for start of buffer
1832 * @size: size of buffer to map
1833 * @dir: DMA transfer direction
1834 *
1835 * Coherent IOMMU aware version of arm_dma_map_page()
1836 */
1837static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1838	     unsigned long offset, size_t size, enum dma_data_direction dir,
1839	     unsigned long attrs)
1840{
1841	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1842	dma_addr_t dma_addr;
1843	int ret, prot, len = PAGE_ALIGN(size + offset);
1844
1845	dma_addr = __alloc_iova(mapping, len);
1846	if (dma_addr == DMA_MAPPING_ERROR)
1847		return dma_addr;
1848
1849	prot = __dma_info_to_prot(dir, attrs);
1850
1851	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1852	if (ret < 0)
1853		goto fail;
1854
1855	return dma_addr + offset;
1856fail:
1857	__free_iova(mapping, dma_addr, len);
1858	return DMA_MAPPING_ERROR;
1859}
1860
1861/**
1862 * arm_iommu_map_page
1863 * @dev: valid struct device pointer
1864 * @page: page that buffer resides in
1865 * @offset: offset into page for start of buffer
1866 * @size: size of buffer to map
1867 * @dir: DMA transfer direction
1868 *
1869 * IOMMU aware version of arm_dma_map_page()
1870 */
1871static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1872	     unsigned long offset, size_t size, enum dma_data_direction dir,
1873	     unsigned long attrs)
1874{
1875	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1876		__dma_page_cpu_to_dev(page, offset, size, dir);
1877
1878	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1879}
1880
1881/**
1882 * arm_coherent_iommu_unmap_page
1883 * @dev: valid struct device pointer
1884 * @handle: DMA address of buffer
1885 * @size: size of buffer (same as passed to dma_map_page)
1886 * @dir: DMA transfer direction (same as passed to dma_map_page)
1887 *
1888 * Coherent IOMMU aware version of arm_dma_unmap_page()
1889 */
1890static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1891		size_t size, enum dma_data_direction dir, unsigned long attrs)
 
1892{
1893	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1894	dma_addr_t iova = handle & PAGE_MASK;
1895	int offset = handle & ~PAGE_MASK;
1896	int len = PAGE_ALIGN(size + offset);
1897
1898	if (!iova)
1899		return;
1900
1901	iommu_unmap(mapping->domain, iova, len);
1902	__free_iova(mapping, iova, len);
1903}
1904
1905/**
1906 * arm_iommu_unmap_page
1907 * @dev: valid struct device pointer
1908 * @handle: DMA address of buffer
1909 * @size: size of buffer (same as passed to dma_map_page)
1910 * @dir: DMA transfer direction (same as passed to dma_map_page)
1911 *
1912 * IOMMU aware version of arm_dma_unmap_page()
1913 */
1914static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1915		size_t size, enum dma_data_direction dir, unsigned long attrs)
 
1916{
1917	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1918	dma_addr_t iova = handle & PAGE_MASK;
1919	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1920	int offset = handle & ~PAGE_MASK;
1921	int len = PAGE_ALIGN(size + offset);
1922
1923	if (!iova)
1924		return;
1925
1926	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1927		__dma_page_dev_to_cpu(page, offset, size, dir);
1928
1929	iommu_unmap(mapping->domain, iova, len);
1930	__free_iova(mapping, iova, len);
1931}
1932
1933/**
1934 * arm_iommu_map_resource - map a device resource for DMA
1935 * @dev: valid struct device pointer
1936 * @phys_addr: physical address of resource
1937 * @size: size of resource to map
1938 * @dir: DMA transfer direction
1939 */
1940static dma_addr_t arm_iommu_map_resource(struct device *dev,
1941		phys_addr_t phys_addr, size_t size,
1942		enum dma_data_direction dir, unsigned long attrs)
1943{
1944	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1945	dma_addr_t dma_addr;
1946	int ret, prot;
1947	phys_addr_t addr = phys_addr & PAGE_MASK;
1948	unsigned int offset = phys_addr & ~PAGE_MASK;
1949	size_t len = PAGE_ALIGN(size + offset);
1950
1951	dma_addr = __alloc_iova(mapping, len);
1952	if (dma_addr == DMA_MAPPING_ERROR)
1953		return dma_addr;
1954
1955	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1956
1957	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1958	if (ret < 0)
1959		goto fail;
1960
1961	return dma_addr + offset;
1962fail:
1963	__free_iova(mapping, dma_addr, len);
1964	return DMA_MAPPING_ERROR;
1965}
1966
1967/**
1968 * arm_iommu_unmap_resource - unmap a device DMA resource
1969 * @dev: valid struct device pointer
1970 * @dma_handle: DMA address to resource
1971 * @size: size of resource to map
1972 * @dir: DMA transfer direction
1973 */
1974static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1975		size_t size, enum dma_data_direction dir,
1976		unsigned long attrs)
1977{
1978	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1979	dma_addr_t iova = dma_handle & PAGE_MASK;
1980	unsigned int offset = dma_handle & ~PAGE_MASK;
1981	size_t len = PAGE_ALIGN(size + offset);
1982
1983	if (!iova)
1984		return;
1985
1986	iommu_unmap(mapping->domain, iova, len);
1987	__free_iova(mapping, iova, len);
1988}
1989
1990static void arm_iommu_sync_single_for_cpu(struct device *dev,
1991		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1992{
1993	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1994	dma_addr_t iova = handle & PAGE_MASK;
1995	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1996	unsigned int offset = handle & ~PAGE_MASK;
1997
1998	if (!iova)
1999		return;
2000
2001	__dma_page_dev_to_cpu(page, offset, size, dir);
2002}
2003
2004static void arm_iommu_sync_single_for_device(struct device *dev,
2005		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2006{
2007	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2008	dma_addr_t iova = handle & PAGE_MASK;
2009	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2010	unsigned int offset = handle & ~PAGE_MASK;
2011
2012	if (!iova)
2013		return;
2014
2015	__dma_page_cpu_to_dev(page, offset, size, dir);
2016}
2017
2018const struct dma_map_ops iommu_ops = {
2019	.alloc		= arm_iommu_alloc_attrs,
2020	.free		= arm_iommu_free_attrs,
2021	.mmap		= arm_iommu_mmap_attrs,
2022	.get_sgtable	= arm_iommu_get_sgtable,
2023
2024	.map_page		= arm_iommu_map_page,
2025	.unmap_page		= arm_iommu_unmap_page,
2026	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
2027	.sync_single_for_device	= arm_iommu_sync_single_for_device,
2028
2029	.map_sg			= arm_iommu_map_sg,
2030	.unmap_sg		= arm_iommu_unmap_sg,
2031	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
2032	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2033
2034	.map_resource		= arm_iommu_map_resource,
2035	.unmap_resource		= arm_iommu_unmap_resource,
2036
2037	.dma_supported		= arm_dma_supported,
2038};
2039
2040const struct dma_map_ops iommu_coherent_ops = {
2041	.alloc		= arm_coherent_iommu_alloc_attrs,
2042	.free		= arm_coherent_iommu_free_attrs,
2043	.mmap		= arm_coherent_iommu_mmap_attrs,
2044	.get_sgtable	= arm_iommu_get_sgtable,
2045
2046	.map_page	= arm_coherent_iommu_map_page,
2047	.unmap_page	= arm_coherent_iommu_unmap_page,
2048
2049	.map_sg		= arm_coherent_iommu_map_sg,
2050	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2051
2052	.map_resource	= arm_iommu_map_resource,
2053	.unmap_resource	= arm_iommu_unmap_resource,
2054
2055	.dma_supported		= arm_dma_supported,
2056};
2057
2058/**
2059 * arm_iommu_create_mapping
2060 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2061 * @base: start address of the valid IO address space
2062 * @size: maximum size of the valid IO address space
2063 *
2064 * Creates a mapping structure which holds information about used/unused
2065 * IO address ranges, which is required to perform memory allocation and
2066 * mapping with IOMMU aware functions.
2067 *
2068 * The client device need to be attached to the mapping with
2069 * arm_iommu_attach_device function.
2070 */
2071struct dma_iommu_mapping *
2072arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2073{
2074	unsigned int bits = size >> PAGE_SHIFT;
2075	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2076	struct dma_iommu_mapping *mapping;
2077	int extensions = 1;
2078	int err = -ENOMEM;
2079
2080	/* currently only 32-bit DMA address space is supported */
2081	if (size > DMA_BIT_MASK(32) + 1)
2082		return ERR_PTR(-ERANGE);
2083
2084	if (!bitmap_size)
2085		return ERR_PTR(-EINVAL);
2086
2087	if (bitmap_size > PAGE_SIZE) {
2088		extensions = bitmap_size / PAGE_SIZE;
2089		bitmap_size = PAGE_SIZE;
2090	}
2091
2092	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2093	if (!mapping)
2094		goto err;
2095
2096	mapping->bitmap_size = bitmap_size;
2097	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2098				   GFP_KERNEL);
2099	if (!mapping->bitmaps)
2100		goto err2;
2101
2102	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2103	if (!mapping->bitmaps[0])
2104		goto err3;
2105
2106	mapping->nr_bitmaps = 1;
2107	mapping->extensions = extensions;
2108	mapping->base = base;
2109	mapping->bits = BITS_PER_BYTE * bitmap_size;
 
2110
2111	spin_lock_init(&mapping->lock);
2112
2113	mapping->domain = iommu_domain_alloc(bus);
2114	if (!mapping->domain)
2115		goto err4;
2116
2117	kref_init(&mapping->kref);
2118	return mapping;
2119err4:
2120	kfree(mapping->bitmaps[0]);
2121err3:
2122	kfree(mapping->bitmaps);
2123err2:
2124	kfree(mapping);
2125err:
2126	return ERR_PTR(err);
2127}
2128EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2129
2130static void release_iommu_mapping(struct kref *kref)
2131{
2132	int i;
2133	struct dma_iommu_mapping *mapping =
2134		container_of(kref, struct dma_iommu_mapping, kref);
2135
2136	iommu_domain_free(mapping->domain);
2137	for (i = 0; i < mapping->nr_bitmaps; i++)
2138		kfree(mapping->bitmaps[i]);
2139	kfree(mapping->bitmaps);
2140	kfree(mapping);
2141}
2142
2143static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2144{
2145	int next_bitmap;
2146
2147	if (mapping->nr_bitmaps >= mapping->extensions)
2148		return -EINVAL;
2149
2150	next_bitmap = mapping->nr_bitmaps;
2151	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2152						GFP_ATOMIC);
2153	if (!mapping->bitmaps[next_bitmap])
2154		return -ENOMEM;
2155
2156	mapping->nr_bitmaps++;
2157
2158	return 0;
2159}
2160
2161void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2162{
2163	if (mapping)
2164		kref_put(&mapping->kref, release_iommu_mapping);
2165}
2166EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2167
2168static int __arm_iommu_attach_device(struct device *dev,
2169				     struct dma_iommu_mapping *mapping)
2170{
2171	int err;
2172
2173	err = iommu_attach_device(mapping->domain, dev);
2174	if (err)
2175		return err;
2176
2177	kref_get(&mapping->kref);
2178	to_dma_iommu_mapping(dev) = mapping;
2179
2180	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2181	return 0;
2182}
2183
2184/**
2185 * arm_iommu_attach_device
2186 * @dev: valid struct device pointer
2187 * @mapping: io address space mapping structure (returned from
2188 *	arm_iommu_create_mapping)
2189 *
2190 * Attaches specified io address space mapping to the provided device.
2191 * This replaces the dma operations (dma_map_ops pointer) with the
2192 * IOMMU aware version.
2193 *
2194 * More than one client might be attached to the same io address space
2195 * mapping.
2196 */
2197int arm_iommu_attach_device(struct device *dev,
2198			    struct dma_iommu_mapping *mapping)
2199{
2200	int err;
2201
2202	err = __arm_iommu_attach_device(dev, mapping);
2203	if (err)
2204		return err;
2205
 
 
2206	set_dma_ops(dev, &iommu_ops);
 
 
2207	return 0;
2208}
2209EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2210
2211/**
2212 * arm_iommu_detach_device
2213 * @dev: valid struct device pointer
2214 *
2215 * Detaches the provided device from a previously attached map.
2216 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2217 */
2218void arm_iommu_detach_device(struct device *dev)
2219{
2220	struct dma_iommu_mapping *mapping;
2221
2222	mapping = to_dma_iommu_mapping(dev);
2223	if (!mapping) {
2224		dev_warn(dev, "Not attached\n");
2225		return;
2226	}
2227
2228	iommu_detach_device(mapping->domain, dev);
2229	kref_put(&mapping->kref, release_iommu_mapping);
2230	to_dma_iommu_mapping(dev) = NULL;
2231	set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2232
2233	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2234}
2235EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2236
2237static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2238{
2239	return coherent ? &iommu_coherent_ops : &iommu_ops;
2240}
2241
2242static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2243				    const struct iommu_ops *iommu)
2244{
2245	struct dma_iommu_mapping *mapping;
2246
2247	if (!iommu)
2248		return false;
2249
2250	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2251	if (IS_ERR(mapping)) {
2252		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2253				size, dev_name(dev));
2254		return false;
2255	}
2256
2257	if (__arm_iommu_attach_device(dev, mapping)) {
2258		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2259				dev_name(dev));
2260		arm_iommu_release_mapping(mapping);
2261		return false;
2262	}
2263
2264	return true;
2265}
2266
2267static void arm_teardown_iommu_dma_ops(struct device *dev)
2268{
2269	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2270
2271	if (!mapping)
2272		return;
2273
2274	arm_iommu_detach_device(dev);
2275	arm_iommu_release_mapping(mapping);
2276}
2277
2278#else
2279
2280static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2281				    const struct iommu_ops *iommu)
2282{
2283	return false;
2284}
2285
2286static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2287
2288#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2289
2290#endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2291
2292void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2293			const struct iommu_ops *iommu, bool coherent)
2294{
2295	const struct dma_map_ops *dma_ops;
2296
2297	dev->archdata.dma_coherent = coherent;
2298#ifdef CONFIG_SWIOTLB
2299	dev->dma_coherent = coherent;
2300#endif
2301
2302	/*
2303	 * Don't override the dma_ops if they have already been set. Ideally
2304	 * this should be the only location where dma_ops are set, remove this
2305	 * check when all other callers of set_dma_ops will have disappeared.
2306	 */
2307	if (dev->dma_ops)
2308		return;
2309
2310	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2311		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2312	else
2313		dma_ops = arm_get_dma_map_ops(coherent);
2314
2315	set_dma_ops(dev, dma_ops);
2316
2317#ifdef CONFIG_XEN
2318	if (xen_initial_domain())
2319		dev->dma_ops = &xen_swiotlb_dma_ops;
2320#endif
2321	dev->archdata.dma_ops_setup = true;
2322}
2323
2324void arch_teardown_dma_ops(struct device *dev)
2325{
2326	if (!dev->archdata.dma_ops_setup)
2327		return;
2328
2329	arm_teardown_iommu_dma_ops(dev);
2330	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2331	set_dma_ops(dev, NULL);
2332}
2333
2334#ifdef CONFIG_SWIOTLB
2335void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
2336		size_t size, enum dma_data_direction dir)
2337{
2338	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2339			      size, dir);
2340}
2341
2342void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
2343		size_t size, enum dma_data_direction dir)
2344{
2345	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2346			      size, dir);
2347}
2348
2349long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr,
2350		dma_addr_t dma_addr)
2351{
2352	return dma_to_pfn(dev, dma_addr);
2353}
2354
2355void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2356		gfp_t gfp, unsigned long attrs)
2357{
2358	return __dma_alloc(dev, size, dma_handle, gfp,
2359			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2360			   attrs, __builtin_return_address(0));
2361}
2362
2363void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2364		dma_addr_t dma_handle, unsigned long attrs)
2365{
2366	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2367}
2368#endif /* CONFIG_SWIOTLB */
v3.15
 
   1/*
   2 *  linux/arch/arm/mm/dma-mapping.c
   3 *
   4 *  Copyright (C) 2000-2004 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 *  DMA uncached mapping support.
  11 */
  12#include <linux/bootmem.h>
  13#include <linux/module.h>
  14#include <linux/mm.h>
 
  15#include <linux/gfp.h>
  16#include <linux/errno.h>
  17#include <linux/list.h>
  18#include <linux/init.h>
  19#include <linux/device.h>
 
  20#include <linux/dma-mapping.h>
 
  21#include <linux/dma-contiguous.h>
  22#include <linux/highmem.h>
  23#include <linux/memblock.h>
  24#include <linux/slab.h>
  25#include <linux/iommu.h>
  26#include <linux/io.h>
  27#include <linux/vmalloc.h>
  28#include <linux/sizes.h>
 
  29
  30#include <asm/memory.h>
  31#include <asm/highmem.h>
  32#include <asm/cacheflush.h>
  33#include <asm/tlbflush.h>
  34#include <asm/mach/arch.h>
  35#include <asm/dma-iommu.h>
  36#include <asm/mach/map.h>
  37#include <asm/system_info.h>
  38#include <asm/dma-contiguous.h>
 
  39
 
  40#include "mm.h"
  41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  42/*
  43 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  44 * is either exclusively owned by the CPU (and therefore may be accessed
  45 * by it) or exclusively owned by the DMA device.  These helper functions
  46 * represent the transitions between these two ownership states.
  47 *
  48 * Note, however, that on later ARMs, this notion does not work due to
  49 * speculative prefetches.  We model our approach on the assumption that
  50 * the CPU does do speculative prefetches, which means we clean caches
  51 * before transfers and delay cache invalidation until transfer completion.
  52 *
  53 */
  54static void __dma_page_cpu_to_dev(struct page *, unsigned long,
  55		size_t, enum dma_data_direction);
  56static void __dma_page_dev_to_cpu(struct page *, unsigned long,
  57		size_t, enum dma_data_direction);
  58
  59/**
  60 * arm_dma_map_page - map a portion of a page for streaming DMA
  61 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  62 * @page: page that buffer resides in
  63 * @offset: offset into page for start of buffer
  64 * @size: size of buffer to map
  65 * @dir: DMA transfer direction
  66 *
  67 * Ensure that any data held in the cache is appropriately discarded
  68 * or written back.
  69 *
  70 * The device owns this memory once this call has completed.  The CPU
  71 * can regain ownership by calling dma_unmap_page().
  72 */
  73static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
  74	     unsigned long offset, size_t size, enum dma_data_direction dir,
  75	     struct dma_attrs *attrs)
  76{
  77	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  78		__dma_page_cpu_to_dev(page, offset, size, dir);
  79	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  80}
  81
  82static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
  83	     unsigned long offset, size_t size, enum dma_data_direction dir,
  84	     struct dma_attrs *attrs)
  85{
  86	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  87}
  88
  89/**
  90 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
  91 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  92 * @handle: DMA address of buffer
  93 * @size: size of buffer (same as passed to dma_map_page)
  94 * @dir: DMA transfer direction (same as passed to dma_map_page)
  95 *
  96 * Unmap a page streaming mode DMA translation.  The handle and size
  97 * must match what was provided in the previous dma_map_page() call.
  98 * All other usages are undefined.
  99 *
 100 * After this call, reads by the CPU to the buffer are guaranteed to see
 101 * whatever the device wrote there.
 102 */
 103static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
 104		size_t size, enum dma_data_direction dir,
 105		struct dma_attrs *attrs)
 106{
 107	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
 108		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 109				      handle & ~PAGE_MASK, size, dir);
 110}
 111
 112static void arm_dma_sync_single_for_cpu(struct device *dev,
 113		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 114{
 115	unsigned int offset = handle & (PAGE_SIZE - 1);
 116	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 117	__dma_page_dev_to_cpu(page, offset, size, dir);
 118}
 119
 120static void arm_dma_sync_single_for_device(struct device *dev,
 121		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 122{
 123	unsigned int offset = handle & (PAGE_SIZE - 1);
 124	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 125	__dma_page_cpu_to_dev(page, offset, size, dir);
 126}
 127
 128struct dma_map_ops arm_dma_ops = {
 129	.alloc			= arm_dma_alloc,
 130	.free			= arm_dma_free,
 131	.mmap			= arm_dma_mmap,
 132	.get_sgtable		= arm_dma_get_sgtable,
 133	.map_page		= arm_dma_map_page,
 134	.unmap_page		= arm_dma_unmap_page,
 135	.map_sg			= arm_dma_map_sg,
 136	.unmap_sg		= arm_dma_unmap_sg,
 
 137	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
 138	.sync_single_for_device	= arm_dma_sync_single_for_device,
 139	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
 140	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
 141	.set_dma_mask		= arm_dma_set_mask,
 
 142};
 143EXPORT_SYMBOL(arm_dma_ops);
 144
 145static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 146	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
 147static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 148				  dma_addr_t handle, struct dma_attrs *attrs);
 
 
 
 149
 150struct dma_map_ops arm_coherent_dma_ops = {
 151	.alloc			= arm_coherent_dma_alloc,
 152	.free			= arm_coherent_dma_free,
 153	.mmap			= arm_dma_mmap,
 154	.get_sgtable		= arm_dma_get_sgtable,
 155	.map_page		= arm_coherent_dma_map_page,
 156	.map_sg			= arm_dma_map_sg,
 157	.set_dma_mask		= arm_dma_set_mask,
 
 
 158};
 159EXPORT_SYMBOL(arm_coherent_dma_ops);
 160
 161static int __dma_supported(struct device *dev, u64 mask, bool warn)
 162{
 163	unsigned long max_dma_pfn;
 164
 165	/*
 166	 * If the mask allows for more memory than we can address,
 167	 * and we actually have that much memory, then we must
 168	 * indicate that DMA to this device is not supported.
 169	 */
 170	if (sizeof(mask) != sizeof(dma_addr_t) &&
 171	    mask > (dma_addr_t)~0 &&
 172	    dma_to_pfn(dev, ~0) < max_pfn) {
 173		if (warn) {
 174			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
 175				 mask);
 176			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
 177		}
 178		return 0;
 179	}
 180
 181	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
 182
 183	/*
 184	 * Translate the device's DMA mask to a PFN limit.  This
 185	 * PFN number includes the page which we can DMA to.
 186	 */
 187	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
 188		if (warn)
 189			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
 190				 mask,
 191				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
 192				 max_dma_pfn + 1);
 193		return 0;
 194	}
 195
 196	return 1;
 197}
 198
 199static u64 get_coherent_dma_mask(struct device *dev)
 200{
 201	u64 mask = (u64)DMA_BIT_MASK(32);
 202
 203	if (dev) {
 204		mask = dev->coherent_dma_mask;
 205
 206		/*
 207		 * Sanity check the DMA mask - it must be non-zero, and
 208		 * must be able to be satisfied by a DMA allocation.
 209		 */
 210		if (mask == 0) {
 211			dev_warn(dev, "coherent DMA mask is unset\n");
 212			return 0;
 213		}
 214
 215		if (!__dma_supported(dev, mask, true))
 216			return 0;
 217	}
 218
 219	return mask;
 220}
 221
 222static void __dma_clear_buffer(struct page *page, size_t size)
 223{
 224	/*
 225	 * Ensure that the allocated pages are zeroed, and that any data
 226	 * lurking in the kernel direct-mapped region is invalidated.
 227	 */
 228	if (PageHighMem(page)) {
 229		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 230		phys_addr_t end = base + size;
 231		while (size > 0) {
 232			void *ptr = kmap_atomic(page);
 233			memset(ptr, 0, PAGE_SIZE);
 234			dmac_flush_range(ptr, ptr + PAGE_SIZE);
 
 235			kunmap_atomic(ptr);
 236			page++;
 237			size -= PAGE_SIZE;
 238		}
 239		outer_flush_range(base, end);
 
 240	} else {
 241		void *ptr = page_address(page);
 242		memset(ptr, 0, size);
 243		dmac_flush_range(ptr, ptr + size);
 244		outer_flush_range(__pa(ptr), __pa(ptr) + size);
 
 
 245	}
 246}
 247
 248/*
 249 * Allocate a DMA buffer for 'dev' of size 'size' using the
 250 * specified gfp mask.  Note that 'size' must be page aligned.
 251 */
 252static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
 
 253{
 254	unsigned long order = get_order(size);
 255	struct page *page, *p, *e;
 256
 257	page = alloc_pages(gfp, order);
 258	if (!page)
 259		return NULL;
 260
 261	/*
 262	 * Now split the huge page and free the excess pages
 263	 */
 264	split_page(page, order);
 265	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 266		__free_page(p);
 267
 268	__dma_clear_buffer(page, size);
 269
 270	return page;
 271}
 272
 273/*
 274 * Free a DMA buffer.  'size' must be page aligned.
 275 */
 276static void __dma_free_buffer(struct page *page, size_t size)
 277{
 278	struct page *e = page + (size >> PAGE_SHIFT);
 279
 280	while (page < e) {
 281		__free_page(page);
 282		page++;
 283	}
 284}
 285
 286#ifdef CONFIG_MMU
 287
 288static void *__alloc_from_contiguous(struct device *dev, size_t size,
 289				     pgprot_t prot, struct page **ret_page,
 290				     const void *caller);
 
 291
 292static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 293				 pgprot_t prot, struct page **ret_page,
 294				 const void *caller);
 295
 296static void *
 297__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
 298	const void *caller)
 299{
 300	struct vm_struct *area;
 301	unsigned long addr;
 302
 303	/*
 304	 * DMA allocation can be mapped to user space, so lets
 305	 * set VM_USERMAP flags too.
 306	 */
 307	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
 308				  caller);
 309	if (!area)
 310		return NULL;
 311	addr = (unsigned long)area->addr;
 312	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
 313
 314	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
 315		vunmap((void *)addr);
 316		return NULL;
 317	}
 318	return (void *)addr;
 319}
 320
 321static void __dma_free_remap(void *cpu_addr, size_t size)
 322{
 323	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
 324	struct vm_struct *area = find_vm_area(cpu_addr);
 325	if (!area || (area->flags & flags) != flags) {
 326		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
 327		return;
 328	}
 329	unmap_kernel_range((unsigned long)cpu_addr, size);
 330	vunmap(cpu_addr);
 331}
 332
 333#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
 
 334
 335struct dma_pool {
 336	size_t size;
 337	spinlock_t lock;
 338	unsigned long *bitmap;
 339	unsigned long nr_pages;
 340	void *vaddr;
 341	struct page **pages;
 342};
 343
 344static struct dma_pool atomic_pool = {
 345	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,
 346};
 347
 348static int __init early_coherent_pool(char *p)
 349{
 350	atomic_pool.size = memparse(p, &p);
 351	return 0;
 352}
 353early_param("coherent_pool", early_coherent_pool);
 354
 355void __init init_dma_coherent_pool_size(unsigned long size)
 356{
 357	/*
 358	 * Catch any attempt to set the pool size too late.
 359	 */
 360	BUG_ON(atomic_pool.vaddr);
 361
 362	/*
 363	 * Set architecture specific coherent pool size only if
 364	 * it has not been changed by kernel command line parameter.
 365	 */
 366	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
 367		atomic_pool.size = size;
 368}
 369
 370/*
 371 * Initialise the coherent pool for atomic allocations.
 372 */
 373static int __init atomic_pool_init(void)
 374{
 375	struct dma_pool *pool = &atomic_pool;
 376	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 377	gfp_t gfp = GFP_KERNEL | GFP_DMA;
 378	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
 379	unsigned long *bitmap;
 380	struct page *page;
 381	struct page **pages;
 382	void *ptr;
 383	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
 384
 385	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
 386	if (!bitmap)
 387		goto no_bitmap;
 388
 389	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
 390	if (!pages)
 391		goto no_pages;
 392
 393	if (IS_ENABLED(CONFIG_DMA_CMA))
 394		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
 395					      atomic_pool_init);
 396	else
 397		ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
 398					   atomic_pool_init);
 399	if (ptr) {
 400		int i;
 401
 402		for (i = 0; i < nr_pages; i++)
 403			pages[i] = page + i;
 404
 405		spin_lock_init(&pool->lock);
 406		pool->vaddr = ptr;
 407		pool->pages = pages;
 408		pool->bitmap = bitmap;
 409		pool->nr_pages = nr_pages;
 410		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
 411		       (unsigned)pool->size / 1024);
 
 412		return 0;
 413	}
 414
 415	kfree(pages);
 416no_pages:
 417	kfree(bitmap);
 418no_bitmap:
 419	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
 420	       (unsigned)pool->size / 1024);
 421	return -ENOMEM;
 422}
 423/*
 424 * CMA is activated by core_initcall, so we must be called after it.
 425 */
 426postcore_initcall(atomic_pool_init);
 427
 428struct dma_contig_early_reserve {
 429	phys_addr_t base;
 430	unsigned long size;
 431};
 432
 433static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 434
 435static int dma_mmu_remap_num __initdata;
 436
 437void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 438{
 439	dma_mmu_remap[dma_mmu_remap_num].base = base;
 440	dma_mmu_remap[dma_mmu_remap_num].size = size;
 441	dma_mmu_remap_num++;
 442}
 443
 444void __init dma_contiguous_remap(void)
 445{
 446	int i;
 447	for (i = 0; i < dma_mmu_remap_num; i++) {
 448		phys_addr_t start = dma_mmu_remap[i].base;
 449		phys_addr_t end = start + dma_mmu_remap[i].size;
 450		struct map_desc map;
 451		unsigned long addr;
 452
 453		if (end > arm_lowmem_limit)
 454			end = arm_lowmem_limit;
 455		if (start >= end)
 456			continue;
 457
 458		map.pfn = __phys_to_pfn(start);
 459		map.virtual = __phys_to_virt(start);
 460		map.length = end - start;
 461		map.type = MT_MEMORY_DMA_READY;
 462
 463		/*
 464		 * Clear previous low-memory mapping
 
 
 
 
 
 
 465		 */
 466		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 467		     addr += PMD_SIZE)
 468			pmd_clear(pmd_off_k(addr));
 469
 
 
 
 470		iotable_init(&map, 1);
 471	}
 472}
 473
 474static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
 475			    void *data)
 476{
 477	struct page *page = virt_to_page(addr);
 478	pgprot_t prot = *(pgprot_t *)data;
 479
 480	set_pte_ext(pte, mk_pte(page, prot), 0);
 481	return 0;
 482}
 483
 484static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 485{
 486	unsigned long start = (unsigned long) page_address(page);
 487	unsigned end = start + size;
 488
 489	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 490	flush_tlb_kernel_range(start, end);
 491}
 492
 493static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 494				 pgprot_t prot, struct page **ret_page,
 495				 const void *caller)
 496{
 497	struct page *page;
 498	void *ptr;
 499	page = __dma_alloc_buffer(dev, size, gfp);
 
 
 
 
 500	if (!page)
 501		return NULL;
 
 
 502
 503	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
 504	if (!ptr) {
 505		__dma_free_buffer(page, size);
 506		return NULL;
 507	}
 508
 
 509	*ret_page = page;
 510	return ptr;
 511}
 512
 513static void *__alloc_from_pool(size_t size, struct page **ret_page)
 514{
 515	struct dma_pool *pool = &atomic_pool;
 516	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 517	unsigned int pageno;
 518	unsigned long flags;
 519	void *ptr = NULL;
 520	unsigned long align_mask;
 521
 522	if (!pool->vaddr) {
 523		WARN(1, "coherent pool not initialised!\n");
 524		return NULL;
 525	}
 526
 527	/*
 528	 * Align the region allocation - allocations from pool are rather
 529	 * small, so align them to their order in pages, minimum is a page
 530	 * size. This helps reduce fragmentation of the DMA space.
 531	 */
 532	align_mask = (1 << get_order(size)) - 1;
 533
 534	spin_lock_irqsave(&pool->lock, flags);
 535	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
 536					    0, count, align_mask);
 537	if (pageno < pool->nr_pages) {
 538		bitmap_set(pool->bitmap, pageno, count);
 539		ptr = pool->vaddr + PAGE_SIZE * pageno;
 540		*ret_page = pool->pages[pageno];
 541	} else {
 542		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
 543			    "Please increase it with coherent_pool= kernel parameter!\n",
 544			    (unsigned)pool->size / 1024);
 545	}
 546	spin_unlock_irqrestore(&pool->lock, flags);
 547
 548	return ptr;
 549}
 550
 551static bool __in_atomic_pool(void *start, size_t size)
 552{
 553	struct dma_pool *pool = &atomic_pool;
 554	void *end = start + size;
 555	void *pool_start = pool->vaddr;
 556	void *pool_end = pool->vaddr + pool->size;
 557
 558	if (start < pool_start || start >= pool_end)
 559		return false;
 560
 561	if (end <= pool_end)
 562		return true;
 563
 564	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
 565	     start, end - 1, pool_start, pool_end - 1);
 566
 567	return false;
 568}
 569
 570static int __free_from_pool(void *start, size_t size)
 571{
 572	struct dma_pool *pool = &atomic_pool;
 573	unsigned long pageno, count;
 574	unsigned long flags;
 575
 576	if (!__in_atomic_pool(start, size))
 577		return 0;
 578
 579	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
 580	count = size >> PAGE_SHIFT;
 581
 582	spin_lock_irqsave(&pool->lock, flags);
 583	bitmap_clear(pool->bitmap, pageno, count);
 584	spin_unlock_irqrestore(&pool->lock, flags);
 585
 586	return 1;
 587}
 588
 589static void *__alloc_from_contiguous(struct device *dev, size_t size,
 590				     pgprot_t prot, struct page **ret_page,
 591				     const void *caller)
 
 592{
 593	unsigned long order = get_order(size);
 594	size_t count = size >> PAGE_SHIFT;
 595	struct page *page;
 596	void *ptr;
 597
 598	page = dma_alloc_from_contiguous(dev, count, order);
 599	if (!page)
 600		return NULL;
 601
 602	__dma_clear_buffer(page, size);
 
 
 
 603
 604	if (PageHighMem(page)) {
 605		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
 606		if (!ptr) {
 607			dma_release_from_contiguous(dev, page, count);
 608			return NULL;
 609		}
 610	} else {
 611		__dma_remap(page, size, prot);
 612		ptr = page_address(page);
 613	}
 
 
 614	*ret_page = page;
 615	return ptr;
 616}
 617
 618static void __free_from_contiguous(struct device *dev, struct page *page,
 619				   void *cpu_addr, size_t size)
 620{
 621	if (PageHighMem(page))
 622		__dma_free_remap(cpu_addr, size);
 623	else
 624		__dma_remap(page, size, PAGE_KERNEL);
 
 
 625	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 626}
 627
 628static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
 629{
 630	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
 631			    pgprot_writecombine(prot) :
 632			    pgprot_dmacoherent(prot);
 633	return prot;
 634}
 635
 636#define nommu() 0
 637
 638#else	/* !CONFIG_MMU */
 639
 640#define nommu() 1
 641
 642#define __get_dma_pgprot(attrs, prot)	__pgprot(0)
 643#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
 644#define __alloc_from_pool(size, ret_page)			NULL
 645#define __alloc_from_contiguous(dev, size, prot, ret, c)	NULL
 646#define __free_from_pool(cpu_addr, size)			0
 647#define __free_from_contiguous(dev, page, cpu_addr, size)	do { } while (0)
 648#define __dma_free_remap(cpu_addr, size)			do { } while (0)
 649
 650#endif	/* CONFIG_MMU */
 651
 652static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 653				   struct page **ret_page)
 654{
 655	struct page *page;
 656	page = __dma_alloc_buffer(dev, size, gfp);
 
 657	if (!page)
 658		return NULL;
 659
 660	*ret_page = page;
 661	return page_address(page);
 662}
 663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665
 666static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 667			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
 
 668{
 669	u64 mask = get_coherent_dma_mask(dev);
 670	struct page *page = NULL;
 671	void *addr;
 
 
 
 
 
 
 
 
 
 
 
 672
 673#ifdef CONFIG_DMA_API_DEBUG
 674	u64 limit = (mask + 1) & ~mask;
 675	if (limit && size >= limit) {
 676		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 677			size, mask);
 678		return NULL;
 679	}
 680#endif
 681
 682	if (!mask)
 683		return NULL;
 684
 
 
 
 
 
 685	if (mask < 0xffffffffULL)
 686		gfp |= GFP_DMA;
 687
 688	/*
 689	 * Following is a work-around (a.k.a. hack) to prevent pages
 690	 * with __GFP_COMP being passed to split_page() which cannot
 691	 * handle them.  The real problem is that this flag probably
 692	 * should be 0 on ARM as it is not supported on this
 693	 * platform; see CONFIG_HUGETLBFS.
 694	 */
 695	gfp &= ~(__GFP_COMP);
 
 696
 697	*handle = DMA_ERROR_CODE;
 698	size = PAGE_ALIGN(size);
 
 
 
 
 
 
 
 
 
 
 
 
 699
 700	if (is_coherent || nommu())
 701		addr = __alloc_simple_buffer(dev, size, gfp, &page);
 702	else if (!(gfp & __GFP_WAIT))
 703		addr = __alloc_from_pool(size, &page);
 704	else if (!IS_ENABLED(CONFIG_DMA_CMA))
 705		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
 706	else
 707		addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
 708
 709	if (addr)
 710		*handle = pfn_to_dma(dev, page_to_pfn(page));
 
 711
 712	return addr;
 
 
 
 
 
 
 
 713}
 714
 715/*
 716 * Allocate DMA-coherent memory space and return both the kernel remapped
 717 * virtual and bus address for that space.
 718 */
 719void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 720		    gfp_t gfp, struct dma_attrs *attrs)
 721{
 722	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
 723	void *memory;
 724
 725	if (dma_alloc_from_coherent(dev, size, handle, &memory))
 726		return memory;
 727
 728	return __dma_alloc(dev, size, handle, gfp, prot, false,
 729			   __builtin_return_address(0));
 730}
 731
 732static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 733	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
 734{
 735	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
 736	void *memory;
 737
 738	if (dma_alloc_from_coherent(dev, size, handle, &memory))
 739		return memory;
 740
 741	return __dma_alloc(dev, size, handle, gfp, prot, true,
 742			   __builtin_return_address(0));
 743}
 744
 745/*
 746 * Create userspace mapping for the DMA-coherent memory.
 747 */
 748int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 749		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 750		 struct dma_attrs *attrs)
 751{
 752	int ret = -ENXIO;
 753#ifdef CONFIG_MMU
 754	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 755	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 756	unsigned long pfn = dma_to_pfn(dev, dma_addr);
 757	unsigned long off = vma->vm_pgoff;
 758
 759	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 760
 761	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
 762		return ret;
 763
 764	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
 765		ret = remap_pfn_range(vma, vma->vm_start,
 766				      pfn + off,
 767				      vma->vm_end - vma->vm_start,
 768				      vma->vm_page_prot);
 769	}
 770#endif	/* CONFIG_MMU */
 771
 772	return ret;
 773}
 774
 775/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776 * Free a buffer as defined by the above mapping.
 777 */
 778static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 779			   dma_addr_t handle, struct dma_attrs *attrs,
 780			   bool is_coherent)
 781{
 782	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 
 
 
 
 
 
 
 
 783
 784	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
 
 785		return;
 786
 787	size = PAGE_ALIGN(size);
 788
 789	if (is_coherent || nommu()) {
 790		__dma_free_buffer(page, size);
 791	} else if (__free_from_pool(cpu_addr, size)) {
 792		return;
 793	} else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
 794		__dma_free_remap(cpu_addr, size);
 795		__dma_free_buffer(page, size);
 796	} else {
 797		/*
 798		 * Non-atomic allocations cannot be freed with IRQs disabled
 799		 */
 800		WARN_ON(irqs_disabled());
 801		__free_from_contiguous(dev, page, cpu_addr, size);
 802	}
 803}
 804
 805void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 806		  dma_addr_t handle, struct dma_attrs *attrs)
 807{
 808	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
 809}
 810
 811static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 812				  dma_addr_t handle, struct dma_attrs *attrs)
 813{
 814	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
 815}
 816
 817int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
 818		 void *cpu_addr, dma_addr_t handle, size_t size,
 819		 struct dma_attrs *attrs)
 820{
 821	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 
 822	int ret;
 823
 
 
 
 
 
 
 824	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 825	if (unlikely(ret))
 826		return ret;
 827
 828	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 829	return 0;
 830}
 831
 832static void dma_cache_maint_page(struct page *page, unsigned long offset,
 833	size_t size, enum dma_data_direction dir,
 834	void (*op)(const void *, size_t, int))
 835{
 836	unsigned long pfn;
 837	size_t left = size;
 838
 839	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 840	offset %= PAGE_SIZE;
 841
 842	/*
 843	 * A single sg entry may refer to multiple physically contiguous
 844	 * pages.  But we still need to process highmem pages individually.
 845	 * If highmem is not configured then the bulk of this loop gets
 846	 * optimized out.
 847	 */
 848	do {
 849		size_t len = left;
 850		void *vaddr;
 851
 852		page = pfn_to_page(pfn);
 853
 854		if (PageHighMem(page)) {
 855			if (len + offset > PAGE_SIZE)
 856				len = PAGE_SIZE - offset;
 857
 858			if (cache_is_vipt_nonaliasing()) {
 859				vaddr = kmap_atomic(page);
 860				op(vaddr + offset, len, dir);
 861				kunmap_atomic(vaddr);
 862			} else {
 863				vaddr = kmap_high_get(page);
 864				if (vaddr) {
 865					op(vaddr + offset, len, dir);
 866					kunmap_high(page);
 867				}
 868			}
 869		} else {
 870			vaddr = page_address(page) + offset;
 871			op(vaddr, len, dir);
 872		}
 873		offset = 0;
 874		pfn++;
 875		left -= len;
 876	} while (left);
 877}
 878
 879/*
 880 * Make an area consistent for devices.
 881 * Note: Drivers should NOT use this function directly, as it will break
 882 * platforms with CONFIG_DMABOUNCE.
 883 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 884 */
 885static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 886	size_t size, enum dma_data_direction dir)
 887{
 888	unsigned long paddr;
 889
 890	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 891
 892	paddr = page_to_phys(page) + off;
 893	if (dir == DMA_FROM_DEVICE) {
 894		outer_inv_range(paddr, paddr + size);
 895	} else {
 896		outer_clean_range(paddr, paddr + size);
 897	}
 898	/* FIXME: non-speculating: flush on bidirectional mappings? */
 899}
 900
 901static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 902	size_t size, enum dma_data_direction dir)
 903{
 904	unsigned long paddr = page_to_phys(page) + off;
 905
 906	/* FIXME: non-speculating: not required */
 907	/* don't bother invalidating if DMA to device */
 908	if (dir != DMA_TO_DEVICE)
 909		outer_inv_range(paddr, paddr + size);
 910
 911	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 
 912
 913	/*
 914	 * Mark the D-cache clean for these pages to avoid extra flushing.
 915	 */
 916	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
 917		unsigned long pfn;
 918		size_t left = size;
 919
 920		pfn = page_to_pfn(page) + off / PAGE_SIZE;
 921		off %= PAGE_SIZE;
 922		if (off) {
 923			pfn++;
 924			left -= PAGE_SIZE - off;
 925		}
 926		while (left >= PAGE_SIZE) {
 927			page = pfn_to_page(pfn++);
 928			set_bit(PG_dcache_clean, &page->flags);
 929			left -= PAGE_SIZE;
 930		}
 931	}
 932}
 933
 934/**
 935 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
 936 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 937 * @sg: list of buffers
 938 * @nents: number of buffers to map
 939 * @dir: DMA transfer direction
 940 *
 941 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 942 * This is the scatter-gather version of the dma_map_single interface.
 943 * Here the scatter gather list elements are each tagged with the
 944 * appropriate dma address and length.  They are obtained via
 945 * sg_dma_{address,length}.
 946 *
 947 * Device ownership issues as mentioned for dma_map_single are the same
 948 * here.
 949 */
 950int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 951		enum dma_data_direction dir, struct dma_attrs *attrs)
 952{
 953	struct dma_map_ops *ops = get_dma_ops(dev);
 954	struct scatterlist *s;
 955	int i, j;
 956
 957	for_each_sg(sg, s, nents, i) {
 958#ifdef CONFIG_NEED_SG_DMA_LENGTH
 959		s->dma_length = s->length;
 960#endif
 961		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
 962						s->length, dir, attrs);
 963		if (dma_mapping_error(dev, s->dma_address))
 964			goto bad_mapping;
 965	}
 966	return nents;
 967
 968 bad_mapping:
 969	for_each_sg(sg, s, i, j)
 970		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 971	return 0;
 972}
 973
 974/**
 975 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 976 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 977 * @sg: list of buffers
 978 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 979 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 980 *
 981 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 982 * rules concerning calls here are the same as for dma_unmap_single().
 983 */
 984void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 985		enum dma_data_direction dir, struct dma_attrs *attrs)
 986{
 987	struct dma_map_ops *ops = get_dma_ops(dev);
 988	struct scatterlist *s;
 989
 990	int i;
 991
 992	for_each_sg(sg, s, nents, i)
 993		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 994}
 995
 996/**
 997 * arm_dma_sync_sg_for_cpu
 998 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 999 * @sg: list of buffers
1000 * @nents: number of buffers to map (returned from dma_map_sg)
1001 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1002 */
1003void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1004			int nents, enum dma_data_direction dir)
1005{
1006	struct dma_map_ops *ops = get_dma_ops(dev);
1007	struct scatterlist *s;
1008	int i;
1009
1010	for_each_sg(sg, s, nents, i)
1011		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1012					 dir);
1013}
1014
1015/**
1016 * arm_dma_sync_sg_for_device
1017 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1018 * @sg: list of buffers
1019 * @nents: number of buffers to map (returned from dma_map_sg)
1020 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1021 */
1022void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1023			int nents, enum dma_data_direction dir)
1024{
1025	struct dma_map_ops *ops = get_dma_ops(dev);
1026	struct scatterlist *s;
1027	int i;
1028
1029	for_each_sg(sg, s, nents, i)
1030		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1031					    dir);
1032}
1033
1034/*
1035 * Return whether the given device DMA address mask can be supported
1036 * properly.  For example, if your device can only drive the low 24-bits
1037 * during bus mastering, then you would pass 0x00ffffff as the mask
1038 * to this function.
1039 */
1040int dma_supported(struct device *dev, u64 mask)
1041{
1042	return __dma_supported(dev, mask, false);
1043}
1044EXPORT_SYMBOL(dma_supported);
1045
1046int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1047{
1048	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1049		return -EIO;
 
 
 
 
 
 
 
 
 
1050
1051	*dev->dma_mask = dma_mask;
1052
1053	return 0;
1054}
 
1055
1056#define PREALLOC_DMA_DEBUG_ENTRIES	4096
 
1057
1058static int __init dma_debug_do_init(void)
1059{
1060	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1061	return 0;
 
 
 
 
 
 
1062}
1063fs_initcall(dma_debug_do_init);
1064
1065#ifdef CONFIG_ARM_DMA_USE_IOMMU
1066
1067/* IOMMU */
1068
1069static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1070
1071static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1072				      size_t size)
1073{
1074	unsigned int order = get_order(size);
1075	unsigned int align = 0;
1076	unsigned int count, start;
 
1077	unsigned long flags;
1078	dma_addr_t iova;
1079	int i;
1080
1081	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1082		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1083
1084	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1085	align = (1 << order) - 1;
1086
1087	spin_lock_irqsave(&mapping->lock, flags);
1088	for (i = 0; i < mapping->nr_bitmaps; i++) {
1089		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1090				mapping->bits, 0, count, align);
1091
1092		if (start > mapping->bits)
1093			continue;
1094
1095		bitmap_set(mapping->bitmaps[i], start, count);
1096		break;
1097	}
1098
1099	/*
1100	 * No unused range found. Try to extend the existing mapping
1101	 * and perform a second attempt to reserve an IO virtual
1102	 * address range of size bytes.
1103	 */
1104	if (i == mapping->nr_bitmaps) {
1105		if (extend_iommu_mapping(mapping)) {
1106			spin_unlock_irqrestore(&mapping->lock, flags);
1107			return DMA_ERROR_CODE;
1108		}
1109
1110		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1111				mapping->bits, 0, count, align);
1112
1113		if (start > mapping->bits) {
1114			spin_unlock_irqrestore(&mapping->lock, flags);
1115			return DMA_ERROR_CODE;
1116		}
1117
1118		bitmap_set(mapping->bitmaps[i], start, count);
1119	}
1120	spin_unlock_irqrestore(&mapping->lock, flags);
1121
1122	iova = mapping->base + (mapping->size * i);
1123	iova += start << PAGE_SHIFT;
1124
1125	return iova;
1126}
1127
1128static inline void __free_iova(struct dma_iommu_mapping *mapping,
1129			       dma_addr_t addr, size_t size)
1130{
1131	unsigned int start, count;
 
1132	unsigned long flags;
1133	dma_addr_t bitmap_base;
1134	u32 bitmap_index;
1135
1136	if (!size)
1137		return;
1138
1139	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping->size;
1140	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1141
1142	bitmap_base = mapping->base + mapping->size * bitmap_index;
1143
1144	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1145
1146	if (addr + size > bitmap_base + mapping->size) {
1147		/*
1148		 * The address range to be freed reaches into the iova
1149		 * range of the next bitmap. This should not happen as
1150		 * we don't allow this in __alloc_iova (at the
1151		 * moment).
1152		 */
1153		BUG();
1154	} else
1155		count = size >> PAGE_SHIFT;
1156
1157	spin_lock_irqsave(&mapping->lock, flags);
1158	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1159	spin_unlock_irqrestore(&mapping->lock, flags);
1160}
1161
 
 
 
1162static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1163					  gfp_t gfp, struct dma_attrs *attrs)
 
1164{
1165	struct page **pages;
1166	int count = size >> PAGE_SHIFT;
1167	int array_size = count * sizeof(struct page *);
1168	int i = 0;
 
1169
1170	if (array_size <= PAGE_SIZE)
1171		pages = kzalloc(array_size, gfp);
1172	else
1173		pages = vzalloc(array_size);
1174	if (!pages)
1175		return NULL;
1176
1177	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1178	{
1179		unsigned long order = get_order(size);
1180		struct page *page;
1181
1182		page = dma_alloc_from_contiguous(dev, count, order);
 
1183		if (!page)
1184			goto error;
1185
1186		__dma_clear_buffer(page, size);
1187
1188		for (i = 0; i < count; i++)
1189			pages[i] = page + i;
1190
1191		return pages;
1192	}
1193
 
 
 
 
1194	/*
1195	 * IOMMU can map any pages, so himem can also be used here
1196	 */
1197	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1198
1199	while (count) {
1200		int j, order = __fls(count);
 
 
 
 
 
 
 
 
 
 
 
 
1201
1202		pages[i] = alloc_pages(gfp, order);
1203		while (!pages[i] && order)
1204			pages[i] = alloc_pages(gfp, --order);
1205		if (!pages[i])
1206			goto error;
 
 
 
 
 
1207
1208		if (order) {
1209			split_page(pages[i], order);
1210			j = 1 << order;
1211			while (--j)
1212				pages[i + j] = pages[i] + j;
1213		}
1214
1215		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1216		i += 1 << order;
1217		count -= 1 << order;
1218	}
1219
1220	return pages;
1221error:
1222	while (i--)
1223		if (pages[i])
1224			__free_pages(pages[i], 0);
1225	if (array_size <= PAGE_SIZE)
1226		kfree(pages);
1227	else
1228		vfree(pages);
1229	return NULL;
1230}
1231
1232static int __iommu_free_buffer(struct device *dev, struct page **pages,
1233			       size_t size, struct dma_attrs *attrs)
1234{
1235	int count = size >> PAGE_SHIFT;
1236	int array_size = count * sizeof(struct page *);
1237	int i;
1238
1239	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1240		dma_release_from_contiguous(dev, pages[0], count);
1241	} else {
1242		for (i = 0; i < count; i++)
1243			if (pages[i])
1244				__free_pages(pages[i], 0);
1245	}
1246
1247	if (array_size <= PAGE_SIZE)
1248		kfree(pages);
1249	else
1250		vfree(pages);
1251	return 0;
1252}
1253
1254/*
1255 * Create a CPU mapping for a specified pages
1256 */
1257static void *
1258__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1259		    const void *caller)
1260{
1261	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1262	struct vm_struct *area;
1263	unsigned long p;
1264
1265	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1266				  caller);
1267	if (!area)
1268		return NULL;
1269
1270	area->pages = pages;
1271	area->nr_pages = nr_pages;
1272	p = (unsigned long)area->addr;
1273
1274	for (i = 0; i < nr_pages; i++) {
1275		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1276		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1277			goto err;
1278		p += PAGE_SIZE;
1279	}
1280	return area->addr;
1281err:
1282	unmap_kernel_range((unsigned long)area->addr, size);
1283	vunmap(area->addr);
1284	return NULL;
1285}
1286
1287/*
1288 * Create a mapping in device IO address space for specified pages
1289 */
1290static dma_addr_t
1291__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
 
1292{
1293	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1294	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1295	dma_addr_t dma_addr, iova;
1296	int i, ret = DMA_ERROR_CODE;
1297
1298	dma_addr = __alloc_iova(mapping, size);
1299	if (dma_addr == DMA_ERROR_CODE)
1300		return dma_addr;
1301
1302	iova = dma_addr;
1303	for (i = 0; i < count; ) {
 
 
1304		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1305		phys_addr_t phys = page_to_phys(pages[i]);
1306		unsigned int len, j;
1307
1308		for (j = i + 1; j < count; j++, next_pfn++)
1309			if (page_to_pfn(pages[j]) != next_pfn)
1310				break;
1311
1312		len = (j - i) << PAGE_SHIFT;
1313		ret = iommu_map(mapping->domain, iova, phys, len,
1314				IOMMU_READ|IOMMU_WRITE);
1315		if (ret < 0)
1316			goto fail;
1317		iova += len;
1318		i = j;
1319	}
1320	return dma_addr;
1321fail:
1322	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1323	__free_iova(mapping, dma_addr, size);
1324	return DMA_ERROR_CODE;
1325}
1326
1327static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1328{
1329	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1330
1331	/*
1332	 * add optional in-page offset from iova to size and align
1333	 * result to page size
1334	 */
1335	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1336	iova &= PAGE_MASK;
1337
1338	iommu_unmap(mapping->domain, iova, size);
1339	__free_iova(mapping, iova, size);
1340	return 0;
1341}
1342
1343static struct page **__atomic_get_pages(void *addr)
1344{
1345	struct dma_pool *pool = &atomic_pool;
1346	struct page **pages = pool->pages;
1347	int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
 
 
1348
1349	return pages + offs;
1350}
1351
1352static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1353{
1354	struct vm_struct *area;
1355
1356	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1357		return __atomic_get_pages(cpu_addr);
1358
1359	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1360		return cpu_addr;
1361
1362	area = find_vm_area(cpu_addr);
1363	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1364		return area->pages;
1365	return NULL;
1366}
1367
1368static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1369				  dma_addr_t *handle)
 
1370{
1371	struct page *page;
1372	void *addr;
1373
1374	addr = __alloc_from_pool(size, &page);
 
 
 
1375	if (!addr)
1376		return NULL;
1377
1378	*handle = __iommu_create_mapping(dev, &page, size);
1379	if (*handle == DMA_ERROR_CODE)
1380		goto err_mapping;
1381
1382	return addr;
1383
1384err_mapping:
1385	__free_from_pool(addr, size);
1386	return NULL;
1387}
1388
1389static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1390				dma_addr_t handle, size_t size)
1391{
1392	__iommu_remove_mapping(dev, handle, size);
1393	__free_from_pool(cpu_addr, size);
 
 
 
1394}
1395
1396static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1397	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
 
1398{
1399	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1400	struct page **pages;
1401	void *addr = NULL;
1402
1403	*handle = DMA_ERROR_CODE;
1404	size = PAGE_ALIGN(size);
1405
1406	if (!(gfp & __GFP_WAIT))
1407		return __iommu_alloc_atomic(dev, size, handle);
 
1408
1409	/*
1410	 * Following is a work-around (a.k.a. hack) to prevent pages
1411	 * with __GFP_COMP being passed to split_page() which cannot
1412	 * handle them.  The real problem is that this flag probably
1413	 * should be 0 on ARM as it is not supported on this
1414	 * platform; see CONFIG_HUGETLBFS.
1415	 */
1416	gfp &= ~(__GFP_COMP);
1417
1418	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1419	if (!pages)
1420		return NULL;
1421
1422	*handle = __iommu_create_mapping(dev, pages, size);
1423	if (*handle == DMA_ERROR_CODE)
1424		goto err_buffer;
1425
1426	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1427		return pages;
1428
1429	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1430				   __builtin_return_address(0));
1431	if (!addr)
1432		goto err_mapping;
1433
1434	return addr;
1435
1436err_mapping:
1437	__iommu_remove_mapping(dev, *handle, size);
1438err_buffer:
1439	__iommu_free_buffer(dev, pages, size, attrs);
1440	return NULL;
1441}
1442
1443static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
 
 
 
 
 
 
 
 
 
 
 
 
1444		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1445		    struct dma_attrs *attrs)
1446{
1447	unsigned long uaddr = vma->vm_start;
1448	unsigned long usize = vma->vm_end - vma->vm_start;
1449	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
 
 
1450
1451	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 
1452
1453	if (!pages)
1454		return -ENXIO;
1455
1456	do {
1457		int ret = vm_insert_page(vma, uaddr, *pages++);
1458		if (ret) {
1459			pr_err("Remapping memory failed: %d\n", ret);
1460			return ret;
1461		}
1462		uaddr += PAGE_SIZE;
1463		usize -= PAGE_SIZE;
1464	} while (usize > 0);
 
 
 
 
 
1465
1466	return 0;
 
 
 
 
1467}
1468
1469/*
1470 * free a page as defined by the above mapping.
1471 * Must not be called with IRQs disabled.
1472 */
1473void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1474			  dma_addr_t handle, struct dma_attrs *attrs)
1475{
1476	struct page **pages;
1477	size = PAGE_ALIGN(size);
1478
1479	if (__in_atomic_pool(cpu_addr, size)) {
1480		__iommu_free_atomic(dev, cpu_addr, handle, size);
1481		return;
1482	}
1483
1484	pages = __iommu_get_pages(cpu_addr, attrs);
1485	if (!pages) {
1486		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1487		return;
1488	}
1489
1490	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1491		unmap_kernel_range((unsigned long)cpu_addr, size);
1492		vunmap(cpu_addr);
1493	}
1494
1495	__iommu_remove_mapping(dev, handle, size);
1496	__iommu_free_buffer(dev, pages, size, attrs);
1497}
1498
 
 
 
 
 
 
 
 
 
 
 
 
1499static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1500				 void *cpu_addr, dma_addr_t dma_addr,
1501				 size_t size, struct dma_attrs *attrs)
1502{
1503	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1504	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1505
1506	if (!pages)
1507		return -ENXIO;
1508
1509	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1510					 GFP_KERNEL);
1511}
1512
1513static int __dma_direction_to_prot(enum dma_data_direction dir)
1514{
1515	int prot;
1516
1517	switch (dir) {
1518	case DMA_BIDIRECTIONAL:
1519		prot = IOMMU_READ | IOMMU_WRITE;
1520		break;
1521	case DMA_TO_DEVICE:
1522		prot = IOMMU_READ;
1523		break;
1524	case DMA_FROM_DEVICE:
1525		prot = IOMMU_WRITE;
1526		break;
1527	default:
1528		prot = 0;
1529	}
1530
1531	return prot;
1532}
1533
1534/*
1535 * Map a part of the scatter-gather list into contiguous io address space
1536 */
1537static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1538			  size_t size, dma_addr_t *handle,
1539			  enum dma_data_direction dir, struct dma_attrs *attrs,
1540			  bool is_coherent)
1541{
1542	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1543	dma_addr_t iova, iova_base;
1544	int ret = 0;
1545	unsigned int count;
1546	struct scatterlist *s;
1547	int prot;
1548
1549	size = PAGE_ALIGN(size);
1550	*handle = DMA_ERROR_CODE;
1551
1552	iova_base = iova = __alloc_iova(mapping, size);
1553	if (iova == DMA_ERROR_CODE)
1554		return -ENOMEM;
1555
1556	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1557		phys_addr_t phys = page_to_phys(sg_page(s));
1558		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1559
1560		if (!is_coherent &&
1561			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1562			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1563
1564		prot = __dma_direction_to_prot(dir);
1565
1566		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1567		if (ret < 0)
1568			goto fail;
1569		count += len >> PAGE_SHIFT;
1570		iova += len;
1571	}
1572	*handle = iova_base;
1573
1574	return 0;
1575fail:
1576	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1577	__free_iova(mapping, iova_base, size);
1578	return ret;
1579}
1580
1581static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1582		     enum dma_data_direction dir, struct dma_attrs *attrs,
1583		     bool is_coherent)
1584{
1585	struct scatterlist *s = sg, *dma = sg, *start = sg;
1586	int i, count = 0;
1587	unsigned int offset = s->offset;
1588	unsigned int size = s->offset + s->length;
1589	unsigned int max = dma_get_max_seg_size(dev);
1590
1591	for (i = 1; i < nents; i++) {
1592		s = sg_next(s);
1593
1594		s->dma_address = DMA_ERROR_CODE;
1595		s->dma_length = 0;
1596
1597		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1598			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1599			    dir, attrs, is_coherent) < 0)
1600				goto bad_mapping;
1601
1602			dma->dma_address += offset;
1603			dma->dma_length = size - offset;
1604
1605			size = offset = s->offset;
1606			start = s;
1607			dma = sg_next(dma);
1608			count += 1;
1609		}
1610		size += s->length;
1611	}
1612	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1613		is_coherent) < 0)
1614		goto bad_mapping;
1615
1616	dma->dma_address += offset;
1617	dma->dma_length = size - offset;
1618
1619	return count+1;
1620
1621bad_mapping:
1622	for_each_sg(sg, s, count, i)
1623		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1624	return 0;
1625}
1626
1627/**
1628 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1629 * @dev: valid struct device pointer
1630 * @sg: list of buffers
1631 * @nents: number of buffers to map
1632 * @dir: DMA transfer direction
1633 *
1634 * Map a set of i/o coherent buffers described by scatterlist in streaming
1635 * mode for DMA. The scatter gather list elements are merged together (if
1636 * possible) and tagged with the appropriate dma address and length. They are
1637 * obtained via sg_dma_{address,length}.
1638 */
1639int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1640		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1641{
1642	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1643}
1644
1645/**
1646 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1647 * @dev: valid struct device pointer
1648 * @sg: list of buffers
1649 * @nents: number of buffers to map
1650 * @dir: DMA transfer direction
1651 *
1652 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1653 * The scatter gather list elements are merged together (if possible) and
1654 * tagged with the appropriate dma address and length. They are obtained via
1655 * sg_dma_{address,length}.
1656 */
1657int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1658		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1659{
1660	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1661}
1662
1663static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1664		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1665		bool is_coherent)
1666{
1667	struct scatterlist *s;
1668	int i;
1669
1670	for_each_sg(sg, s, nents, i) {
1671		if (sg_dma_len(s))
1672			__iommu_remove_mapping(dev, sg_dma_address(s),
1673					       sg_dma_len(s));
1674		if (!is_coherent &&
1675		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1676			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1677					      s->length, dir);
1678	}
1679}
1680
1681/**
1682 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1683 * @dev: valid struct device pointer
1684 * @sg: list of buffers
1685 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1686 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1687 *
1688 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1689 * rules concerning calls here are the same as for dma_unmap_single().
1690 */
1691void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1692		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
 
1693{
1694	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1695}
1696
1697/**
1698 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1699 * @dev: valid struct device pointer
1700 * @sg: list of buffers
1701 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1702 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1703 *
1704 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1705 * rules concerning calls here are the same as for dma_unmap_single().
1706 */
1707void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1708			enum dma_data_direction dir, struct dma_attrs *attrs)
 
1709{
1710	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1711}
1712
1713/**
1714 * arm_iommu_sync_sg_for_cpu
1715 * @dev: valid struct device pointer
1716 * @sg: list of buffers
1717 * @nents: number of buffers to map (returned from dma_map_sg)
1718 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1719 */
1720void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1721			int nents, enum dma_data_direction dir)
1722{
1723	struct scatterlist *s;
1724	int i;
1725
1726	for_each_sg(sg, s, nents, i)
1727		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1728
1729}
1730
1731/**
1732 * arm_iommu_sync_sg_for_device
1733 * @dev: valid struct device pointer
1734 * @sg: list of buffers
1735 * @nents: number of buffers to map (returned from dma_map_sg)
1736 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1737 */
1738void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1739			int nents, enum dma_data_direction dir)
1740{
1741	struct scatterlist *s;
1742	int i;
1743
1744	for_each_sg(sg, s, nents, i)
1745		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1746}
1747
1748
1749/**
1750 * arm_coherent_iommu_map_page
1751 * @dev: valid struct device pointer
1752 * @page: page that buffer resides in
1753 * @offset: offset into page for start of buffer
1754 * @size: size of buffer to map
1755 * @dir: DMA transfer direction
1756 *
1757 * Coherent IOMMU aware version of arm_dma_map_page()
1758 */
1759static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1760	     unsigned long offset, size_t size, enum dma_data_direction dir,
1761	     struct dma_attrs *attrs)
1762{
1763	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1764	dma_addr_t dma_addr;
1765	int ret, prot, len = PAGE_ALIGN(size + offset);
1766
1767	dma_addr = __alloc_iova(mapping, len);
1768	if (dma_addr == DMA_ERROR_CODE)
1769		return dma_addr;
1770
1771	prot = __dma_direction_to_prot(dir);
1772
1773	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1774	if (ret < 0)
1775		goto fail;
1776
1777	return dma_addr + offset;
1778fail:
1779	__free_iova(mapping, dma_addr, len);
1780	return DMA_ERROR_CODE;
1781}
1782
1783/**
1784 * arm_iommu_map_page
1785 * @dev: valid struct device pointer
1786 * @page: page that buffer resides in
1787 * @offset: offset into page for start of buffer
1788 * @size: size of buffer to map
1789 * @dir: DMA transfer direction
1790 *
1791 * IOMMU aware version of arm_dma_map_page()
1792 */
1793static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1794	     unsigned long offset, size_t size, enum dma_data_direction dir,
1795	     struct dma_attrs *attrs)
1796{
1797	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1798		__dma_page_cpu_to_dev(page, offset, size, dir);
1799
1800	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1801}
1802
1803/**
1804 * arm_coherent_iommu_unmap_page
1805 * @dev: valid struct device pointer
1806 * @handle: DMA address of buffer
1807 * @size: size of buffer (same as passed to dma_map_page)
1808 * @dir: DMA transfer direction (same as passed to dma_map_page)
1809 *
1810 * Coherent IOMMU aware version of arm_dma_unmap_page()
1811 */
1812static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1813		size_t size, enum dma_data_direction dir,
1814		struct dma_attrs *attrs)
1815{
1816	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1817	dma_addr_t iova = handle & PAGE_MASK;
1818	int offset = handle & ~PAGE_MASK;
1819	int len = PAGE_ALIGN(size + offset);
1820
1821	if (!iova)
1822		return;
1823
1824	iommu_unmap(mapping->domain, iova, len);
1825	__free_iova(mapping, iova, len);
1826}
1827
1828/**
1829 * arm_iommu_unmap_page
1830 * @dev: valid struct device pointer
1831 * @handle: DMA address of buffer
1832 * @size: size of buffer (same as passed to dma_map_page)
1833 * @dir: DMA transfer direction (same as passed to dma_map_page)
1834 *
1835 * IOMMU aware version of arm_dma_unmap_page()
1836 */
1837static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1838		size_t size, enum dma_data_direction dir,
1839		struct dma_attrs *attrs)
1840{
1841	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1842	dma_addr_t iova = handle & PAGE_MASK;
1843	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1844	int offset = handle & ~PAGE_MASK;
1845	int len = PAGE_ALIGN(size + offset);
1846
1847	if (!iova)
1848		return;
1849
1850	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1851		__dma_page_dev_to_cpu(page, offset, size, dir);
1852
1853	iommu_unmap(mapping->domain, iova, len);
1854	__free_iova(mapping, iova, len);
1855}
1856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1857static void arm_iommu_sync_single_for_cpu(struct device *dev,
1858		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1859{
1860	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1861	dma_addr_t iova = handle & PAGE_MASK;
1862	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1863	unsigned int offset = handle & ~PAGE_MASK;
1864
1865	if (!iova)
1866		return;
1867
1868	__dma_page_dev_to_cpu(page, offset, size, dir);
1869}
1870
1871static void arm_iommu_sync_single_for_device(struct device *dev,
1872		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1873{
1874	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1875	dma_addr_t iova = handle & PAGE_MASK;
1876	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1877	unsigned int offset = handle & ~PAGE_MASK;
1878
1879	if (!iova)
1880		return;
1881
1882	__dma_page_cpu_to_dev(page, offset, size, dir);
1883}
1884
1885struct dma_map_ops iommu_ops = {
1886	.alloc		= arm_iommu_alloc_attrs,
1887	.free		= arm_iommu_free_attrs,
1888	.mmap		= arm_iommu_mmap_attrs,
1889	.get_sgtable	= arm_iommu_get_sgtable,
1890
1891	.map_page		= arm_iommu_map_page,
1892	.unmap_page		= arm_iommu_unmap_page,
1893	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1894	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1895
1896	.map_sg			= arm_iommu_map_sg,
1897	.unmap_sg		= arm_iommu_unmap_sg,
1898	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1899	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1900
1901	.set_dma_mask		= arm_dma_set_mask,
 
 
 
1902};
1903
1904struct dma_map_ops iommu_coherent_ops = {
1905	.alloc		= arm_iommu_alloc_attrs,
1906	.free		= arm_iommu_free_attrs,
1907	.mmap		= arm_iommu_mmap_attrs,
1908	.get_sgtable	= arm_iommu_get_sgtable,
1909
1910	.map_page	= arm_coherent_iommu_map_page,
1911	.unmap_page	= arm_coherent_iommu_unmap_page,
1912
1913	.map_sg		= arm_coherent_iommu_map_sg,
1914	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1915
1916	.set_dma_mask	= arm_dma_set_mask,
 
 
 
1917};
1918
1919/**
1920 * arm_iommu_create_mapping
1921 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1922 * @base: start address of the valid IO address space
1923 * @size: maximum size of the valid IO address space
1924 *
1925 * Creates a mapping structure which holds information about used/unused
1926 * IO address ranges, which is required to perform memory allocation and
1927 * mapping with IOMMU aware functions.
1928 *
1929 * The client device need to be attached to the mapping with
1930 * arm_iommu_attach_device function.
1931 */
1932struct dma_iommu_mapping *
1933arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
1934{
1935	unsigned int bits = size >> PAGE_SHIFT;
1936	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1937	struct dma_iommu_mapping *mapping;
1938	int extensions = 1;
1939	int err = -ENOMEM;
1940
 
 
 
 
1941	if (!bitmap_size)
1942		return ERR_PTR(-EINVAL);
1943
1944	if (bitmap_size > PAGE_SIZE) {
1945		extensions = bitmap_size / PAGE_SIZE;
1946		bitmap_size = PAGE_SIZE;
1947	}
1948
1949	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1950	if (!mapping)
1951		goto err;
1952
1953	mapping->bitmap_size = bitmap_size;
1954	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1955				GFP_KERNEL);
1956	if (!mapping->bitmaps)
1957		goto err2;
1958
1959	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1960	if (!mapping->bitmaps[0])
1961		goto err3;
1962
1963	mapping->nr_bitmaps = 1;
1964	mapping->extensions = extensions;
1965	mapping->base = base;
1966	mapping->bits = BITS_PER_BYTE * bitmap_size;
1967	mapping->size = mapping->bits << PAGE_SHIFT;
1968
1969	spin_lock_init(&mapping->lock);
1970
1971	mapping->domain = iommu_domain_alloc(bus);
1972	if (!mapping->domain)
1973		goto err4;
1974
1975	kref_init(&mapping->kref);
1976	return mapping;
1977err4:
1978	kfree(mapping->bitmaps[0]);
1979err3:
1980	kfree(mapping->bitmaps);
1981err2:
1982	kfree(mapping);
1983err:
1984	return ERR_PTR(err);
1985}
1986EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1987
1988static void release_iommu_mapping(struct kref *kref)
1989{
1990	int i;
1991	struct dma_iommu_mapping *mapping =
1992		container_of(kref, struct dma_iommu_mapping, kref);
1993
1994	iommu_domain_free(mapping->domain);
1995	for (i = 0; i < mapping->nr_bitmaps; i++)
1996		kfree(mapping->bitmaps[i]);
1997	kfree(mapping->bitmaps);
1998	kfree(mapping);
1999}
2000
2001static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2002{
2003	int next_bitmap;
2004
2005	if (mapping->nr_bitmaps > mapping->extensions)
2006		return -EINVAL;
2007
2008	next_bitmap = mapping->nr_bitmaps;
2009	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2010						GFP_ATOMIC);
2011	if (!mapping->bitmaps[next_bitmap])
2012		return -ENOMEM;
2013
2014	mapping->nr_bitmaps++;
2015
2016	return 0;
2017}
2018
2019void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2020{
2021	if (mapping)
2022		kref_put(&mapping->kref, release_iommu_mapping);
2023}
2024EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2026/**
2027 * arm_iommu_attach_device
2028 * @dev: valid struct device pointer
2029 * @mapping: io address space mapping structure (returned from
2030 *	arm_iommu_create_mapping)
2031 *
2032 * Attaches specified io address space mapping to the provided device,
2033 * this replaces the dma operations (dma_map_ops pointer) with the
2034 * IOMMU aware version. More than one client might be attached to
2035 * the same io address space mapping.
 
 
2036 */
2037int arm_iommu_attach_device(struct device *dev,
2038			    struct dma_iommu_mapping *mapping)
2039{
2040	int err;
2041
2042	err = iommu_attach_device(mapping->domain, dev);
2043	if (err)
2044		return err;
2045
2046	kref_get(&mapping->kref);
2047	dev->archdata.mapping = mapping;
2048	set_dma_ops(dev, &iommu_ops);
2049
2050	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2051	return 0;
2052}
2053EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2054
2055/**
2056 * arm_iommu_detach_device
2057 * @dev: valid struct device pointer
2058 *
2059 * Detaches the provided device from a previously attached map.
2060 * This voids the dma operations (dma_map_ops pointer)
2061 */
2062void arm_iommu_detach_device(struct device *dev)
2063{
2064	struct dma_iommu_mapping *mapping;
2065
2066	mapping = to_dma_iommu_mapping(dev);
2067	if (!mapping) {
2068		dev_warn(dev, "Not attached\n");
2069		return;
2070	}
2071
2072	iommu_detach_device(mapping->domain, dev);
2073	kref_put(&mapping->kref, release_iommu_mapping);
2074	dev->archdata.mapping = NULL;
2075	set_dma_ops(dev, NULL);
2076
2077	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2078}
2079EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2081#endif