Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/arch/arm/mm/dma-mapping.c
4 *
5 * Copyright (C) 2000-2004 Russell King
6 *
7 * DMA uncached mapping support.
8 */
9#include <linux/module.h>
10#include <linux/mm.h>
11#include <linux/genalloc.h>
12#include <linux/gfp.h>
13#include <linux/errno.h>
14#include <linux/list.h>
15#include <linux/init.h>
16#include <linux/device.h>
17#include <linux/dma-direct.h>
18#include <linux/dma-mapping.h>
19#include <linux/dma-noncoherent.h>
20#include <linux/dma-contiguous.h>
21#include <linux/highmem.h>
22#include <linux/memblock.h>
23#include <linux/slab.h>
24#include <linux/iommu.h>
25#include <linux/io.h>
26#include <linux/vmalloc.h>
27#include <linux/sizes.h>
28#include <linux/cma.h>
29
30#include <asm/memory.h>
31#include <asm/highmem.h>
32#include <asm/cacheflush.h>
33#include <asm/tlbflush.h>
34#include <asm/mach/arch.h>
35#include <asm/dma-iommu.h>
36#include <asm/mach/map.h>
37#include <asm/system_info.h>
38#include <asm/dma-contiguous.h>
39#include <xen/swiotlb-xen.h>
40
41#include "dma.h"
42#include "mm.h"
43
44struct arm_dma_alloc_args {
45 struct device *dev;
46 size_t size;
47 gfp_t gfp;
48 pgprot_t prot;
49 const void *caller;
50 bool want_vaddr;
51 int coherent_flag;
52};
53
54struct arm_dma_free_args {
55 struct device *dev;
56 size_t size;
57 void *cpu_addr;
58 struct page *page;
59 bool want_vaddr;
60};
61
62#define NORMAL 0
63#define COHERENT 1
64
65struct arm_dma_allocator {
66 void *(*alloc)(struct arm_dma_alloc_args *args,
67 struct page **ret_page);
68 void (*free)(struct arm_dma_free_args *args);
69};
70
71struct arm_dma_buffer {
72 struct list_head list;
73 void *virt;
74 struct arm_dma_allocator *allocator;
75};
76
77static LIST_HEAD(arm_dma_bufs);
78static DEFINE_SPINLOCK(arm_dma_bufs_lock);
79
80static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
81{
82 struct arm_dma_buffer *buf, *found = NULL;
83 unsigned long flags;
84
85 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
86 list_for_each_entry(buf, &arm_dma_bufs, list) {
87 if (buf->virt == virt) {
88 list_del(&buf->list);
89 found = buf;
90 break;
91 }
92 }
93 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
94 return found;
95}
96
97/*
98 * The DMA API is built upon the notion of "buffer ownership". A buffer
99 * is either exclusively owned by the CPU (and therefore may be accessed
100 * by it) or exclusively owned by the DMA device. These helper functions
101 * represent the transitions between these two ownership states.
102 *
103 * Note, however, that on later ARMs, this notion does not work due to
104 * speculative prefetches. We model our approach on the assumption that
105 * the CPU does do speculative prefetches, which means we clean caches
106 * before transfers and delay cache invalidation until transfer completion.
107 *
108 */
109static void __dma_page_cpu_to_dev(struct page *, unsigned long,
110 size_t, enum dma_data_direction);
111static void __dma_page_dev_to_cpu(struct page *, unsigned long,
112 size_t, enum dma_data_direction);
113
114/**
115 * arm_dma_map_page - map a portion of a page for streaming DMA
116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
117 * @page: page that buffer resides in
118 * @offset: offset into page for start of buffer
119 * @size: size of buffer to map
120 * @dir: DMA transfer direction
121 *
122 * Ensure that any data held in the cache is appropriately discarded
123 * or written back.
124 *
125 * The device owns this memory once this call has completed. The CPU
126 * can regain ownership by calling dma_unmap_page().
127 */
128static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
129 unsigned long offset, size_t size, enum dma_data_direction dir,
130 unsigned long attrs)
131{
132 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
133 __dma_page_cpu_to_dev(page, offset, size, dir);
134 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
135}
136
137static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
138 unsigned long offset, size_t size, enum dma_data_direction dir,
139 unsigned long attrs)
140{
141 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
142}
143
144/**
145 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
146 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
147 * @handle: DMA address of buffer
148 * @size: size of buffer (same as passed to dma_map_page)
149 * @dir: DMA transfer direction (same as passed to dma_map_page)
150 *
151 * Unmap a page streaming mode DMA translation. The handle and size
152 * must match what was provided in the previous dma_map_page() call.
153 * All other usages are undefined.
154 *
155 * After this call, reads by the CPU to the buffer are guaranteed to see
156 * whatever the device wrote there.
157 */
158static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
159 size_t size, enum dma_data_direction dir, unsigned long attrs)
160{
161 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
162 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
163 handle & ~PAGE_MASK, size, dir);
164}
165
166static void arm_dma_sync_single_for_cpu(struct device *dev,
167 dma_addr_t handle, size_t size, enum dma_data_direction dir)
168{
169 unsigned int offset = handle & (PAGE_SIZE - 1);
170 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
171 __dma_page_dev_to_cpu(page, offset, size, dir);
172}
173
174static void arm_dma_sync_single_for_device(struct device *dev,
175 dma_addr_t handle, size_t size, enum dma_data_direction dir)
176{
177 unsigned int offset = handle & (PAGE_SIZE - 1);
178 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
179 __dma_page_cpu_to_dev(page, offset, size, dir);
180}
181
182const struct dma_map_ops arm_dma_ops = {
183 .alloc = arm_dma_alloc,
184 .free = arm_dma_free,
185 .mmap = arm_dma_mmap,
186 .get_sgtable = arm_dma_get_sgtable,
187 .map_page = arm_dma_map_page,
188 .unmap_page = arm_dma_unmap_page,
189 .map_sg = arm_dma_map_sg,
190 .unmap_sg = arm_dma_unmap_sg,
191 .map_resource = dma_direct_map_resource,
192 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
193 .sync_single_for_device = arm_dma_sync_single_for_device,
194 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
195 .sync_sg_for_device = arm_dma_sync_sg_for_device,
196 .dma_supported = arm_dma_supported,
197 .get_required_mask = dma_direct_get_required_mask,
198};
199EXPORT_SYMBOL(arm_dma_ops);
200
201static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
202 dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
203static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
204 dma_addr_t handle, unsigned long attrs);
205static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
206 void *cpu_addr, dma_addr_t dma_addr, size_t size,
207 unsigned long attrs);
208
209const struct dma_map_ops arm_coherent_dma_ops = {
210 .alloc = arm_coherent_dma_alloc,
211 .free = arm_coherent_dma_free,
212 .mmap = arm_coherent_dma_mmap,
213 .get_sgtable = arm_dma_get_sgtable,
214 .map_page = arm_coherent_dma_map_page,
215 .map_sg = arm_dma_map_sg,
216 .map_resource = dma_direct_map_resource,
217 .dma_supported = arm_dma_supported,
218 .get_required_mask = dma_direct_get_required_mask,
219};
220EXPORT_SYMBOL(arm_coherent_dma_ops);
221
222static int __dma_supported(struct device *dev, u64 mask, bool warn)
223{
224 unsigned long max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
225
226 /*
227 * Translate the device's DMA mask to a PFN limit. This
228 * PFN number includes the page which we can DMA to.
229 */
230 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
231 if (warn)
232 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
233 mask,
234 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
235 max_dma_pfn + 1);
236 return 0;
237 }
238
239 return 1;
240}
241
242static u64 get_coherent_dma_mask(struct device *dev)
243{
244 u64 mask = (u64)DMA_BIT_MASK(32);
245
246 if (dev) {
247 mask = dev->coherent_dma_mask;
248
249 /*
250 * Sanity check the DMA mask - it must be non-zero, and
251 * must be able to be satisfied by a DMA allocation.
252 */
253 if (mask == 0) {
254 dev_warn(dev, "coherent DMA mask is unset\n");
255 return 0;
256 }
257
258 if (!__dma_supported(dev, mask, true))
259 return 0;
260 }
261
262 return mask;
263}
264
265static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
266{
267 /*
268 * Ensure that the allocated pages are zeroed, and that any data
269 * lurking in the kernel direct-mapped region is invalidated.
270 */
271 if (PageHighMem(page)) {
272 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
273 phys_addr_t end = base + size;
274 while (size > 0) {
275 void *ptr = kmap_atomic(page);
276 memset(ptr, 0, PAGE_SIZE);
277 if (coherent_flag != COHERENT)
278 dmac_flush_range(ptr, ptr + PAGE_SIZE);
279 kunmap_atomic(ptr);
280 page++;
281 size -= PAGE_SIZE;
282 }
283 if (coherent_flag != COHERENT)
284 outer_flush_range(base, end);
285 } else {
286 void *ptr = page_address(page);
287 memset(ptr, 0, size);
288 if (coherent_flag != COHERENT) {
289 dmac_flush_range(ptr, ptr + size);
290 outer_flush_range(__pa(ptr), __pa(ptr) + size);
291 }
292 }
293}
294
295/*
296 * Allocate a DMA buffer for 'dev' of size 'size' using the
297 * specified gfp mask. Note that 'size' must be page aligned.
298 */
299static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
300 gfp_t gfp, int coherent_flag)
301{
302 unsigned long order = get_order(size);
303 struct page *page, *p, *e;
304
305 page = alloc_pages(gfp, order);
306 if (!page)
307 return NULL;
308
309 /*
310 * Now split the huge page and free the excess pages
311 */
312 split_page(page, order);
313 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
314 __free_page(p);
315
316 __dma_clear_buffer(page, size, coherent_flag);
317
318 return page;
319}
320
321/*
322 * Free a DMA buffer. 'size' must be page aligned.
323 */
324static void __dma_free_buffer(struct page *page, size_t size)
325{
326 struct page *e = page + (size >> PAGE_SHIFT);
327
328 while (page < e) {
329 __free_page(page);
330 page++;
331 }
332}
333
334static void *__alloc_from_contiguous(struct device *dev, size_t size,
335 pgprot_t prot, struct page **ret_page,
336 const void *caller, bool want_vaddr,
337 int coherent_flag, gfp_t gfp);
338
339static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
340 pgprot_t prot, struct page **ret_page,
341 const void *caller, bool want_vaddr);
342
343#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
344static struct gen_pool *atomic_pool __ro_after_init;
345
346static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
347
348static int __init early_coherent_pool(char *p)
349{
350 atomic_pool_size = memparse(p, &p);
351 return 0;
352}
353early_param("coherent_pool", early_coherent_pool);
354
355/*
356 * Initialise the coherent pool for atomic allocations.
357 */
358static int __init atomic_pool_init(void)
359{
360 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
361 gfp_t gfp = GFP_KERNEL | GFP_DMA;
362 struct page *page;
363 void *ptr;
364
365 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
366 if (!atomic_pool)
367 goto out;
368 /*
369 * The atomic pool is only used for non-coherent allocations
370 * so we must pass NORMAL for coherent_flag.
371 */
372 if (dev_get_cma_area(NULL))
373 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
374 &page, atomic_pool_init, true, NORMAL,
375 GFP_KERNEL);
376 else
377 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
378 &page, atomic_pool_init, true);
379 if (ptr) {
380 int ret;
381
382 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
383 page_to_phys(page),
384 atomic_pool_size, -1);
385 if (ret)
386 goto destroy_genpool;
387
388 gen_pool_set_algo(atomic_pool,
389 gen_pool_first_fit_order_align,
390 NULL);
391 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
392 atomic_pool_size / 1024);
393 return 0;
394 }
395
396destroy_genpool:
397 gen_pool_destroy(atomic_pool);
398 atomic_pool = NULL;
399out:
400 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
401 atomic_pool_size / 1024);
402 return -ENOMEM;
403}
404/*
405 * CMA is activated by core_initcall, so we must be called after it.
406 */
407postcore_initcall(atomic_pool_init);
408
409struct dma_contig_early_reserve {
410 phys_addr_t base;
411 unsigned long size;
412};
413
414static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
415
416static int dma_mmu_remap_num __initdata;
417
418void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
419{
420 dma_mmu_remap[dma_mmu_remap_num].base = base;
421 dma_mmu_remap[dma_mmu_remap_num].size = size;
422 dma_mmu_remap_num++;
423}
424
425void __init dma_contiguous_remap(void)
426{
427 int i;
428 for (i = 0; i < dma_mmu_remap_num; i++) {
429 phys_addr_t start = dma_mmu_remap[i].base;
430 phys_addr_t end = start + dma_mmu_remap[i].size;
431 struct map_desc map;
432 unsigned long addr;
433
434 if (end > arm_lowmem_limit)
435 end = arm_lowmem_limit;
436 if (start >= end)
437 continue;
438
439 map.pfn = __phys_to_pfn(start);
440 map.virtual = __phys_to_virt(start);
441 map.length = end - start;
442 map.type = MT_MEMORY_DMA_READY;
443
444 /*
445 * Clear previous low-memory mapping to ensure that the
446 * TLB does not see any conflicting entries, then flush
447 * the TLB of the old entries before creating new mappings.
448 *
449 * This ensures that any speculatively loaded TLB entries
450 * (even though they may be rare) can not cause any problems,
451 * and ensures that this code is architecturally compliant.
452 */
453 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
454 addr += PMD_SIZE)
455 pmd_clear(pmd_off_k(addr));
456
457 flush_tlb_kernel_range(__phys_to_virt(start),
458 __phys_to_virt(end));
459
460 iotable_init(&map, 1);
461 }
462}
463
464static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
465{
466 struct page *page = virt_to_page(addr);
467 pgprot_t prot = *(pgprot_t *)data;
468
469 set_pte_ext(pte, mk_pte(page, prot), 0);
470 return 0;
471}
472
473static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
474{
475 unsigned long start = (unsigned long) page_address(page);
476 unsigned end = start + size;
477
478 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
479 flush_tlb_kernel_range(start, end);
480}
481
482static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
483 pgprot_t prot, struct page **ret_page,
484 const void *caller, bool want_vaddr)
485{
486 struct page *page;
487 void *ptr = NULL;
488 /*
489 * __alloc_remap_buffer is only called when the device is
490 * non-coherent
491 */
492 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
493 if (!page)
494 return NULL;
495 if (!want_vaddr)
496 goto out;
497
498 ptr = dma_common_contiguous_remap(page, size, prot, caller);
499 if (!ptr) {
500 __dma_free_buffer(page, size);
501 return NULL;
502 }
503
504 out:
505 *ret_page = page;
506 return ptr;
507}
508
509static void *__alloc_from_pool(size_t size, struct page **ret_page)
510{
511 unsigned long val;
512 void *ptr = NULL;
513
514 if (!atomic_pool) {
515 WARN(1, "coherent pool not initialised!\n");
516 return NULL;
517 }
518
519 val = gen_pool_alloc(atomic_pool, size);
520 if (val) {
521 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
522
523 *ret_page = phys_to_page(phys);
524 ptr = (void *)val;
525 }
526
527 return ptr;
528}
529
530static bool __in_atomic_pool(void *start, size_t size)
531{
532 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
533}
534
535static int __free_from_pool(void *start, size_t size)
536{
537 if (!__in_atomic_pool(start, size))
538 return 0;
539
540 gen_pool_free(atomic_pool, (unsigned long)start, size);
541
542 return 1;
543}
544
545static void *__alloc_from_contiguous(struct device *dev, size_t size,
546 pgprot_t prot, struct page **ret_page,
547 const void *caller, bool want_vaddr,
548 int coherent_flag, gfp_t gfp)
549{
550 unsigned long order = get_order(size);
551 size_t count = size >> PAGE_SHIFT;
552 struct page *page;
553 void *ptr = NULL;
554
555 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
556 if (!page)
557 return NULL;
558
559 __dma_clear_buffer(page, size, coherent_flag);
560
561 if (!want_vaddr)
562 goto out;
563
564 if (PageHighMem(page)) {
565 ptr = dma_common_contiguous_remap(page, size, prot, caller);
566 if (!ptr) {
567 dma_release_from_contiguous(dev, page, count);
568 return NULL;
569 }
570 } else {
571 __dma_remap(page, size, prot);
572 ptr = page_address(page);
573 }
574
575 out:
576 *ret_page = page;
577 return ptr;
578}
579
580static void __free_from_contiguous(struct device *dev, struct page *page,
581 void *cpu_addr, size_t size, bool want_vaddr)
582{
583 if (want_vaddr) {
584 if (PageHighMem(page))
585 dma_common_free_remap(cpu_addr, size);
586 else
587 __dma_remap(page, size, PAGE_KERNEL);
588 }
589 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
590}
591
592static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
593{
594 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
595 pgprot_writecombine(prot) :
596 pgprot_dmacoherent(prot);
597 return prot;
598}
599
600static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
601 struct page **ret_page)
602{
603 struct page *page;
604 /* __alloc_simple_buffer is only called when the device is coherent */
605 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
606 if (!page)
607 return NULL;
608
609 *ret_page = page;
610 return page_address(page);
611}
612
613static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
614 struct page **ret_page)
615{
616 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
617 ret_page);
618}
619
620static void simple_allocator_free(struct arm_dma_free_args *args)
621{
622 __dma_free_buffer(args->page, args->size);
623}
624
625static struct arm_dma_allocator simple_allocator = {
626 .alloc = simple_allocator_alloc,
627 .free = simple_allocator_free,
628};
629
630static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
631 struct page **ret_page)
632{
633 return __alloc_from_contiguous(args->dev, args->size, args->prot,
634 ret_page, args->caller,
635 args->want_vaddr, args->coherent_flag,
636 args->gfp);
637}
638
639static void cma_allocator_free(struct arm_dma_free_args *args)
640{
641 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
642 args->size, args->want_vaddr);
643}
644
645static struct arm_dma_allocator cma_allocator = {
646 .alloc = cma_allocator_alloc,
647 .free = cma_allocator_free,
648};
649
650static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
651 struct page **ret_page)
652{
653 return __alloc_from_pool(args->size, ret_page);
654}
655
656static void pool_allocator_free(struct arm_dma_free_args *args)
657{
658 __free_from_pool(args->cpu_addr, args->size);
659}
660
661static struct arm_dma_allocator pool_allocator = {
662 .alloc = pool_allocator_alloc,
663 .free = pool_allocator_free,
664};
665
666static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
667 struct page **ret_page)
668{
669 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
670 args->prot, ret_page, args->caller,
671 args->want_vaddr);
672}
673
674static void remap_allocator_free(struct arm_dma_free_args *args)
675{
676 if (args->want_vaddr)
677 dma_common_free_remap(args->cpu_addr, args->size);
678
679 __dma_free_buffer(args->page, args->size);
680}
681
682static struct arm_dma_allocator remap_allocator = {
683 .alloc = remap_allocator_alloc,
684 .free = remap_allocator_free,
685};
686
687static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
688 gfp_t gfp, pgprot_t prot, bool is_coherent,
689 unsigned long attrs, const void *caller)
690{
691 u64 mask = get_coherent_dma_mask(dev);
692 struct page *page = NULL;
693 void *addr;
694 bool allowblock, cma;
695 struct arm_dma_buffer *buf;
696 struct arm_dma_alloc_args args = {
697 .dev = dev,
698 .size = PAGE_ALIGN(size),
699 .gfp = gfp,
700 .prot = prot,
701 .caller = caller,
702 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
703 .coherent_flag = is_coherent ? COHERENT : NORMAL,
704 };
705
706#ifdef CONFIG_DMA_API_DEBUG
707 u64 limit = (mask + 1) & ~mask;
708 if (limit && size >= limit) {
709 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
710 size, mask);
711 return NULL;
712 }
713#endif
714
715 if (!mask)
716 return NULL;
717
718 buf = kzalloc(sizeof(*buf),
719 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
720 if (!buf)
721 return NULL;
722
723 if (mask < 0xffffffffULL)
724 gfp |= GFP_DMA;
725
726 /*
727 * Following is a work-around (a.k.a. hack) to prevent pages
728 * with __GFP_COMP being passed to split_page() which cannot
729 * handle them. The real problem is that this flag probably
730 * should be 0 on ARM as it is not supported on this
731 * platform; see CONFIG_HUGETLBFS.
732 */
733 gfp &= ~(__GFP_COMP);
734 args.gfp = gfp;
735
736 *handle = DMA_MAPPING_ERROR;
737 allowblock = gfpflags_allow_blocking(gfp);
738 cma = allowblock ? dev_get_cma_area(dev) : false;
739
740 if (cma)
741 buf->allocator = &cma_allocator;
742 else if (is_coherent)
743 buf->allocator = &simple_allocator;
744 else if (allowblock)
745 buf->allocator = &remap_allocator;
746 else
747 buf->allocator = &pool_allocator;
748
749 addr = buf->allocator->alloc(&args, &page);
750
751 if (page) {
752 unsigned long flags;
753
754 *handle = pfn_to_dma(dev, page_to_pfn(page));
755 buf->virt = args.want_vaddr ? addr : page;
756
757 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
758 list_add(&buf->list, &arm_dma_bufs);
759 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
760 } else {
761 kfree(buf);
762 }
763
764 return args.want_vaddr ? addr : page;
765}
766
767/*
768 * Allocate DMA-coherent memory space and return both the kernel remapped
769 * virtual and bus address for that space.
770 */
771void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
772 gfp_t gfp, unsigned long attrs)
773{
774 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
775
776 return __dma_alloc(dev, size, handle, gfp, prot, false,
777 attrs, __builtin_return_address(0));
778}
779
780static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
781 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
782{
783 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
784 attrs, __builtin_return_address(0));
785}
786
787static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
788 void *cpu_addr, dma_addr_t dma_addr, size_t size,
789 unsigned long attrs)
790{
791 int ret = -ENXIO;
792 unsigned long nr_vma_pages = vma_pages(vma);
793 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
794 unsigned long pfn = dma_to_pfn(dev, dma_addr);
795 unsigned long off = vma->vm_pgoff;
796
797 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
798 return ret;
799
800 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
801 ret = remap_pfn_range(vma, vma->vm_start,
802 pfn + off,
803 vma->vm_end - vma->vm_start,
804 vma->vm_page_prot);
805 }
806
807 return ret;
808}
809
810/*
811 * Create userspace mapping for the DMA-coherent memory.
812 */
813static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
814 void *cpu_addr, dma_addr_t dma_addr, size_t size,
815 unsigned long attrs)
816{
817 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
818}
819
820int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
821 void *cpu_addr, dma_addr_t dma_addr, size_t size,
822 unsigned long attrs)
823{
824 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
825 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
826}
827
828/*
829 * Free a buffer as defined by the above mapping.
830 */
831static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
832 dma_addr_t handle, unsigned long attrs,
833 bool is_coherent)
834{
835 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
836 struct arm_dma_buffer *buf;
837 struct arm_dma_free_args args = {
838 .dev = dev,
839 .size = PAGE_ALIGN(size),
840 .cpu_addr = cpu_addr,
841 .page = page,
842 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
843 };
844
845 buf = arm_dma_buffer_find(cpu_addr);
846 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
847 return;
848
849 buf->allocator->free(&args);
850 kfree(buf);
851}
852
853void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
854 dma_addr_t handle, unsigned long attrs)
855{
856 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
857}
858
859static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
860 dma_addr_t handle, unsigned long attrs)
861{
862 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
863}
864
865int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
866 void *cpu_addr, dma_addr_t handle, size_t size,
867 unsigned long attrs)
868{
869 unsigned long pfn = dma_to_pfn(dev, handle);
870 struct page *page;
871 int ret;
872
873 /* If the PFN is not valid, we do not have a struct page */
874 if (!pfn_valid(pfn))
875 return -ENXIO;
876
877 page = pfn_to_page(pfn);
878
879 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
880 if (unlikely(ret))
881 return ret;
882
883 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
884 return 0;
885}
886
887static void dma_cache_maint_page(struct page *page, unsigned long offset,
888 size_t size, enum dma_data_direction dir,
889 void (*op)(const void *, size_t, int))
890{
891 unsigned long pfn;
892 size_t left = size;
893
894 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
895 offset %= PAGE_SIZE;
896
897 /*
898 * A single sg entry may refer to multiple physically contiguous
899 * pages. But we still need to process highmem pages individually.
900 * If highmem is not configured then the bulk of this loop gets
901 * optimized out.
902 */
903 do {
904 size_t len = left;
905 void *vaddr;
906
907 page = pfn_to_page(pfn);
908
909 if (PageHighMem(page)) {
910 if (len + offset > PAGE_SIZE)
911 len = PAGE_SIZE - offset;
912
913 if (cache_is_vipt_nonaliasing()) {
914 vaddr = kmap_atomic(page);
915 op(vaddr + offset, len, dir);
916 kunmap_atomic(vaddr);
917 } else {
918 vaddr = kmap_high_get(page);
919 if (vaddr) {
920 op(vaddr + offset, len, dir);
921 kunmap_high(page);
922 }
923 }
924 } else {
925 vaddr = page_address(page) + offset;
926 op(vaddr, len, dir);
927 }
928 offset = 0;
929 pfn++;
930 left -= len;
931 } while (left);
932}
933
934/*
935 * Make an area consistent for devices.
936 * Note: Drivers should NOT use this function directly, as it will break
937 * platforms with CONFIG_DMABOUNCE.
938 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
939 */
940static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
941 size_t size, enum dma_data_direction dir)
942{
943 phys_addr_t paddr;
944
945 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
946
947 paddr = page_to_phys(page) + off;
948 if (dir == DMA_FROM_DEVICE) {
949 outer_inv_range(paddr, paddr + size);
950 } else {
951 outer_clean_range(paddr, paddr + size);
952 }
953 /* FIXME: non-speculating: flush on bidirectional mappings? */
954}
955
956static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
957 size_t size, enum dma_data_direction dir)
958{
959 phys_addr_t paddr = page_to_phys(page) + off;
960
961 /* FIXME: non-speculating: not required */
962 /* in any case, don't bother invalidating if DMA to device */
963 if (dir != DMA_TO_DEVICE) {
964 outer_inv_range(paddr, paddr + size);
965
966 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
967 }
968
969 /*
970 * Mark the D-cache clean for these pages to avoid extra flushing.
971 */
972 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
973 unsigned long pfn;
974 size_t left = size;
975
976 pfn = page_to_pfn(page) + off / PAGE_SIZE;
977 off %= PAGE_SIZE;
978 if (off) {
979 pfn++;
980 left -= PAGE_SIZE - off;
981 }
982 while (left >= PAGE_SIZE) {
983 page = pfn_to_page(pfn++);
984 set_bit(PG_dcache_clean, &page->flags);
985 left -= PAGE_SIZE;
986 }
987 }
988}
989
990/**
991 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
992 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
993 * @sg: list of buffers
994 * @nents: number of buffers to map
995 * @dir: DMA transfer direction
996 *
997 * Map a set of buffers described by scatterlist in streaming mode for DMA.
998 * This is the scatter-gather version of the dma_map_single interface.
999 * Here the scatter gather list elements are each tagged with the
1000 * appropriate dma address and length. They are obtained via
1001 * sg_dma_{address,length}.
1002 *
1003 * Device ownership issues as mentioned for dma_map_single are the same
1004 * here.
1005 */
1006int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1007 enum dma_data_direction dir, unsigned long attrs)
1008{
1009 const struct dma_map_ops *ops = get_dma_ops(dev);
1010 struct scatterlist *s;
1011 int i, j;
1012
1013 for_each_sg(sg, s, nents, i) {
1014#ifdef CONFIG_NEED_SG_DMA_LENGTH
1015 s->dma_length = s->length;
1016#endif
1017 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1018 s->length, dir, attrs);
1019 if (dma_mapping_error(dev, s->dma_address))
1020 goto bad_mapping;
1021 }
1022 return nents;
1023
1024 bad_mapping:
1025 for_each_sg(sg, s, i, j)
1026 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1027 return 0;
1028}
1029
1030/**
1031 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1032 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1033 * @sg: list of buffers
1034 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1035 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1036 *
1037 * Unmap a set of streaming mode DMA translations. Again, CPU access
1038 * rules concerning calls here are the same as for dma_unmap_single().
1039 */
1040void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1041 enum dma_data_direction dir, unsigned long attrs)
1042{
1043 const struct dma_map_ops *ops = get_dma_ops(dev);
1044 struct scatterlist *s;
1045
1046 int i;
1047
1048 for_each_sg(sg, s, nents, i)
1049 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1050}
1051
1052/**
1053 * arm_dma_sync_sg_for_cpu
1054 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1055 * @sg: list of buffers
1056 * @nents: number of buffers to map (returned from dma_map_sg)
1057 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1058 */
1059void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1060 int nents, enum dma_data_direction dir)
1061{
1062 const struct dma_map_ops *ops = get_dma_ops(dev);
1063 struct scatterlist *s;
1064 int i;
1065
1066 for_each_sg(sg, s, nents, i)
1067 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1068 dir);
1069}
1070
1071/**
1072 * arm_dma_sync_sg_for_device
1073 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1074 * @sg: list of buffers
1075 * @nents: number of buffers to map (returned from dma_map_sg)
1076 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1077 */
1078void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1079 int nents, enum dma_data_direction dir)
1080{
1081 const struct dma_map_ops *ops = get_dma_ops(dev);
1082 struct scatterlist *s;
1083 int i;
1084
1085 for_each_sg(sg, s, nents, i)
1086 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1087 dir);
1088}
1089
1090/*
1091 * Return whether the given device DMA address mask can be supported
1092 * properly. For example, if your device can only drive the low 24-bits
1093 * during bus mastering, then you would pass 0x00ffffff as the mask
1094 * to this function.
1095 */
1096int arm_dma_supported(struct device *dev, u64 mask)
1097{
1098 return __dma_supported(dev, mask, false);
1099}
1100
1101static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1102{
1103 /*
1104 * When CONFIG_ARM_LPAE is set, physical address can extend above
1105 * 32-bits, which then can't be addressed by devices that only support
1106 * 32-bit DMA.
1107 * Use the generic dma-direct / swiotlb ops code in that case, as that
1108 * handles bounce buffering for us.
1109 */
1110 if (IS_ENABLED(CONFIG_ARM_LPAE))
1111 return NULL;
1112 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1113}
1114
1115#ifdef CONFIG_ARM_DMA_USE_IOMMU
1116
1117static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1118{
1119 int prot = 0;
1120
1121 if (attrs & DMA_ATTR_PRIVILEGED)
1122 prot |= IOMMU_PRIV;
1123
1124 switch (dir) {
1125 case DMA_BIDIRECTIONAL:
1126 return prot | IOMMU_READ | IOMMU_WRITE;
1127 case DMA_TO_DEVICE:
1128 return prot | IOMMU_READ;
1129 case DMA_FROM_DEVICE:
1130 return prot | IOMMU_WRITE;
1131 default:
1132 return prot;
1133 }
1134}
1135
1136/* IOMMU */
1137
1138static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1139
1140static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1141 size_t size)
1142{
1143 unsigned int order = get_order(size);
1144 unsigned int align = 0;
1145 unsigned int count, start;
1146 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1147 unsigned long flags;
1148 dma_addr_t iova;
1149 int i;
1150
1151 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1152 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1153
1154 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1155 align = (1 << order) - 1;
1156
1157 spin_lock_irqsave(&mapping->lock, flags);
1158 for (i = 0; i < mapping->nr_bitmaps; i++) {
1159 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1160 mapping->bits, 0, count, align);
1161
1162 if (start > mapping->bits)
1163 continue;
1164
1165 bitmap_set(mapping->bitmaps[i], start, count);
1166 break;
1167 }
1168
1169 /*
1170 * No unused range found. Try to extend the existing mapping
1171 * and perform a second attempt to reserve an IO virtual
1172 * address range of size bytes.
1173 */
1174 if (i == mapping->nr_bitmaps) {
1175 if (extend_iommu_mapping(mapping)) {
1176 spin_unlock_irqrestore(&mapping->lock, flags);
1177 return DMA_MAPPING_ERROR;
1178 }
1179
1180 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1181 mapping->bits, 0, count, align);
1182
1183 if (start > mapping->bits) {
1184 spin_unlock_irqrestore(&mapping->lock, flags);
1185 return DMA_MAPPING_ERROR;
1186 }
1187
1188 bitmap_set(mapping->bitmaps[i], start, count);
1189 }
1190 spin_unlock_irqrestore(&mapping->lock, flags);
1191
1192 iova = mapping->base + (mapping_size * i);
1193 iova += start << PAGE_SHIFT;
1194
1195 return iova;
1196}
1197
1198static inline void __free_iova(struct dma_iommu_mapping *mapping,
1199 dma_addr_t addr, size_t size)
1200{
1201 unsigned int start, count;
1202 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1203 unsigned long flags;
1204 dma_addr_t bitmap_base;
1205 u32 bitmap_index;
1206
1207 if (!size)
1208 return;
1209
1210 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1211 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1212
1213 bitmap_base = mapping->base + mapping_size * bitmap_index;
1214
1215 start = (addr - bitmap_base) >> PAGE_SHIFT;
1216
1217 if (addr + size > bitmap_base + mapping_size) {
1218 /*
1219 * The address range to be freed reaches into the iova
1220 * range of the next bitmap. This should not happen as
1221 * we don't allow this in __alloc_iova (at the
1222 * moment).
1223 */
1224 BUG();
1225 } else
1226 count = size >> PAGE_SHIFT;
1227
1228 spin_lock_irqsave(&mapping->lock, flags);
1229 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1230 spin_unlock_irqrestore(&mapping->lock, flags);
1231}
1232
1233/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1234static const int iommu_order_array[] = { 9, 8, 4, 0 };
1235
1236static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1237 gfp_t gfp, unsigned long attrs,
1238 int coherent_flag)
1239{
1240 struct page **pages;
1241 int count = size >> PAGE_SHIFT;
1242 int array_size = count * sizeof(struct page *);
1243 int i = 0;
1244 int order_idx = 0;
1245
1246 if (array_size <= PAGE_SIZE)
1247 pages = kzalloc(array_size, GFP_KERNEL);
1248 else
1249 pages = vzalloc(array_size);
1250 if (!pages)
1251 return NULL;
1252
1253 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1254 {
1255 unsigned long order = get_order(size);
1256 struct page *page;
1257
1258 page = dma_alloc_from_contiguous(dev, count, order,
1259 gfp & __GFP_NOWARN);
1260 if (!page)
1261 goto error;
1262
1263 __dma_clear_buffer(page, size, coherent_flag);
1264
1265 for (i = 0; i < count; i++)
1266 pages[i] = page + i;
1267
1268 return pages;
1269 }
1270
1271 /* Go straight to 4K chunks if caller says it's OK. */
1272 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1273 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1274
1275 /*
1276 * IOMMU can map any pages, so himem can also be used here
1277 */
1278 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1279
1280 while (count) {
1281 int j, order;
1282
1283 order = iommu_order_array[order_idx];
1284
1285 /* Drop down when we get small */
1286 if (__fls(count) < order) {
1287 order_idx++;
1288 continue;
1289 }
1290
1291 if (order) {
1292 /* See if it's easy to allocate a high-order chunk */
1293 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1294
1295 /* Go down a notch at first sign of pressure */
1296 if (!pages[i]) {
1297 order_idx++;
1298 continue;
1299 }
1300 } else {
1301 pages[i] = alloc_pages(gfp, 0);
1302 if (!pages[i])
1303 goto error;
1304 }
1305
1306 if (order) {
1307 split_page(pages[i], order);
1308 j = 1 << order;
1309 while (--j)
1310 pages[i + j] = pages[i] + j;
1311 }
1312
1313 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1314 i += 1 << order;
1315 count -= 1 << order;
1316 }
1317
1318 return pages;
1319error:
1320 while (i--)
1321 if (pages[i])
1322 __free_pages(pages[i], 0);
1323 kvfree(pages);
1324 return NULL;
1325}
1326
1327static int __iommu_free_buffer(struct device *dev, struct page **pages,
1328 size_t size, unsigned long attrs)
1329{
1330 int count = size >> PAGE_SHIFT;
1331 int i;
1332
1333 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1334 dma_release_from_contiguous(dev, pages[0], count);
1335 } else {
1336 for (i = 0; i < count; i++)
1337 if (pages[i])
1338 __free_pages(pages[i], 0);
1339 }
1340
1341 kvfree(pages);
1342 return 0;
1343}
1344
1345/*
1346 * Create a mapping in device IO address space for specified pages
1347 */
1348static dma_addr_t
1349__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1350 unsigned long attrs)
1351{
1352 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1353 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1354 dma_addr_t dma_addr, iova;
1355 int i;
1356
1357 dma_addr = __alloc_iova(mapping, size);
1358 if (dma_addr == DMA_MAPPING_ERROR)
1359 return dma_addr;
1360
1361 iova = dma_addr;
1362 for (i = 0; i < count; ) {
1363 int ret;
1364
1365 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1366 phys_addr_t phys = page_to_phys(pages[i]);
1367 unsigned int len, j;
1368
1369 for (j = i + 1; j < count; j++, next_pfn++)
1370 if (page_to_pfn(pages[j]) != next_pfn)
1371 break;
1372
1373 len = (j - i) << PAGE_SHIFT;
1374 ret = iommu_map(mapping->domain, iova, phys, len,
1375 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1376 if (ret < 0)
1377 goto fail;
1378 iova += len;
1379 i = j;
1380 }
1381 return dma_addr;
1382fail:
1383 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1384 __free_iova(mapping, dma_addr, size);
1385 return DMA_MAPPING_ERROR;
1386}
1387
1388static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1389{
1390 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1391
1392 /*
1393 * add optional in-page offset from iova to size and align
1394 * result to page size
1395 */
1396 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1397 iova &= PAGE_MASK;
1398
1399 iommu_unmap(mapping->domain, iova, size);
1400 __free_iova(mapping, iova, size);
1401 return 0;
1402}
1403
1404static struct page **__atomic_get_pages(void *addr)
1405{
1406 struct page *page;
1407 phys_addr_t phys;
1408
1409 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1410 page = phys_to_page(phys);
1411
1412 return (struct page **)page;
1413}
1414
1415static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1416{
1417 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1418 return __atomic_get_pages(cpu_addr);
1419
1420 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1421 return cpu_addr;
1422
1423 return dma_common_find_pages(cpu_addr);
1424}
1425
1426static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1427 dma_addr_t *handle, int coherent_flag,
1428 unsigned long attrs)
1429{
1430 struct page *page;
1431 void *addr;
1432
1433 if (coherent_flag == COHERENT)
1434 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1435 else
1436 addr = __alloc_from_pool(size, &page);
1437 if (!addr)
1438 return NULL;
1439
1440 *handle = __iommu_create_mapping(dev, &page, size, attrs);
1441 if (*handle == DMA_MAPPING_ERROR)
1442 goto err_mapping;
1443
1444 return addr;
1445
1446err_mapping:
1447 __free_from_pool(addr, size);
1448 return NULL;
1449}
1450
1451static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1452 dma_addr_t handle, size_t size, int coherent_flag)
1453{
1454 __iommu_remove_mapping(dev, handle, size);
1455 if (coherent_flag == COHERENT)
1456 __dma_free_buffer(virt_to_page(cpu_addr), size);
1457 else
1458 __free_from_pool(cpu_addr, size);
1459}
1460
1461static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1462 dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1463 int coherent_flag)
1464{
1465 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1466 struct page **pages;
1467 void *addr = NULL;
1468
1469 *handle = DMA_MAPPING_ERROR;
1470 size = PAGE_ALIGN(size);
1471
1472 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1473 return __iommu_alloc_simple(dev, size, gfp, handle,
1474 coherent_flag, attrs);
1475
1476 /*
1477 * Following is a work-around (a.k.a. hack) to prevent pages
1478 * with __GFP_COMP being passed to split_page() which cannot
1479 * handle them. The real problem is that this flag probably
1480 * should be 0 on ARM as it is not supported on this
1481 * platform; see CONFIG_HUGETLBFS.
1482 */
1483 gfp &= ~(__GFP_COMP);
1484
1485 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1486 if (!pages)
1487 return NULL;
1488
1489 *handle = __iommu_create_mapping(dev, pages, size, attrs);
1490 if (*handle == DMA_MAPPING_ERROR)
1491 goto err_buffer;
1492
1493 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1494 return pages;
1495
1496 addr = dma_common_pages_remap(pages, size, prot,
1497 __builtin_return_address(0));
1498 if (!addr)
1499 goto err_mapping;
1500
1501 return addr;
1502
1503err_mapping:
1504 __iommu_remove_mapping(dev, *handle, size);
1505err_buffer:
1506 __iommu_free_buffer(dev, pages, size, attrs);
1507 return NULL;
1508}
1509
1510static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1511 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1512{
1513 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1514}
1515
1516static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1517 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1518{
1519 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1520}
1521
1522static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1523 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1524 unsigned long attrs)
1525{
1526 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1527 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1528 int err;
1529
1530 if (!pages)
1531 return -ENXIO;
1532
1533 if (vma->vm_pgoff >= nr_pages)
1534 return -ENXIO;
1535
1536 err = vm_map_pages(vma, pages, nr_pages);
1537 if (err)
1538 pr_err("Remapping memory failed: %d\n", err);
1539
1540 return err;
1541}
1542static int arm_iommu_mmap_attrs(struct device *dev,
1543 struct vm_area_struct *vma, void *cpu_addr,
1544 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1545{
1546 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1547
1548 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1549}
1550
1551static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1552 struct vm_area_struct *vma, void *cpu_addr,
1553 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1554{
1555 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1556}
1557
1558/*
1559 * free a page as defined by the above mapping.
1560 * Must not be called with IRQs disabled.
1561 */
1562void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1563 dma_addr_t handle, unsigned long attrs, int coherent_flag)
1564{
1565 struct page **pages;
1566 size = PAGE_ALIGN(size);
1567
1568 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1569 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1570 return;
1571 }
1572
1573 pages = __iommu_get_pages(cpu_addr, attrs);
1574 if (!pages) {
1575 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1576 return;
1577 }
1578
1579 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1580 dma_common_free_remap(cpu_addr, size);
1581
1582 __iommu_remove_mapping(dev, handle, size);
1583 __iommu_free_buffer(dev, pages, size, attrs);
1584}
1585
1586void arm_iommu_free_attrs(struct device *dev, size_t size,
1587 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1588{
1589 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1590}
1591
1592void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1593 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1594{
1595 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1596}
1597
1598static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1599 void *cpu_addr, dma_addr_t dma_addr,
1600 size_t size, unsigned long attrs)
1601{
1602 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1603 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1604
1605 if (!pages)
1606 return -ENXIO;
1607
1608 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1609 GFP_KERNEL);
1610}
1611
1612/*
1613 * Map a part of the scatter-gather list into contiguous io address space
1614 */
1615static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1616 size_t size, dma_addr_t *handle,
1617 enum dma_data_direction dir, unsigned long attrs,
1618 bool is_coherent)
1619{
1620 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1621 dma_addr_t iova, iova_base;
1622 int ret = 0;
1623 unsigned int count;
1624 struct scatterlist *s;
1625 int prot;
1626
1627 size = PAGE_ALIGN(size);
1628 *handle = DMA_MAPPING_ERROR;
1629
1630 iova_base = iova = __alloc_iova(mapping, size);
1631 if (iova == DMA_MAPPING_ERROR)
1632 return -ENOMEM;
1633
1634 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1635 phys_addr_t phys = page_to_phys(sg_page(s));
1636 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1637
1638 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1639 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1640
1641 prot = __dma_info_to_prot(dir, attrs);
1642
1643 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1644 if (ret < 0)
1645 goto fail;
1646 count += len >> PAGE_SHIFT;
1647 iova += len;
1648 }
1649 *handle = iova_base;
1650
1651 return 0;
1652fail:
1653 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1654 __free_iova(mapping, iova_base, size);
1655 return ret;
1656}
1657
1658static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1659 enum dma_data_direction dir, unsigned long attrs,
1660 bool is_coherent)
1661{
1662 struct scatterlist *s = sg, *dma = sg, *start = sg;
1663 int i, count = 0;
1664 unsigned int offset = s->offset;
1665 unsigned int size = s->offset + s->length;
1666 unsigned int max = dma_get_max_seg_size(dev);
1667
1668 for (i = 1; i < nents; i++) {
1669 s = sg_next(s);
1670
1671 s->dma_address = DMA_MAPPING_ERROR;
1672 s->dma_length = 0;
1673
1674 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1675 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1676 dir, attrs, is_coherent) < 0)
1677 goto bad_mapping;
1678
1679 dma->dma_address += offset;
1680 dma->dma_length = size - offset;
1681
1682 size = offset = s->offset;
1683 start = s;
1684 dma = sg_next(dma);
1685 count += 1;
1686 }
1687 size += s->length;
1688 }
1689 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1690 is_coherent) < 0)
1691 goto bad_mapping;
1692
1693 dma->dma_address += offset;
1694 dma->dma_length = size - offset;
1695
1696 return count+1;
1697
1698bad_mapping:
1699 for_each_sg(sg, s, count, i)
1700 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1701 return 0;
1702}
1703
1704/**
1705 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1706 * @dev: valid struct device pointer
1707 * @sg: list of buffers
1708 * @nents: number of buffers to map
1709 * @dir: DMA transfer direction
1710 *
1711 * Map a set of i/o coherent buffers described by scatterlist in streaming
1712 * mode for DMA. The scatter gather list elements are merged together (if
1713 * possible) and tagged with the appropriate dma address and length. They are
1714 * obtained via sg_dma_{address,length}.
1715 */
1716int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1717 int nents, enum dma_data_direction dir, unsigned long attrs)
1718{
1719 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1720}
1721
1722/**
1723 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1724 * @dev: valid struct device pointer
1725 * @sg: list of buffers
1726 * @nents: number of buffers to map
1727 * @dir: DMA transfer direction
1728 *
1729 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1730 * The scatter gather list elements are merged together (if possible) and
1731 * tagged with the appropriate dma address and length. They are obtained via
1732 * sg_dma_{address,length}.
1733 */
1734int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1735 int nents, enum dma_data_direction dir, unsigned long attrs)
1736{
1737 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1738}
1739
1740static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1741 int nents, enum dma_data_direction dir,
1742 unsigned long attrs, bool is_coherent)
1743{
1744 struct scatterlist *s;
1745 int i;
1746
1747 for_each_sg(sg, s, nents, i) {
1748 if (sg_dma_len(s))
1749 __iommu_remove_mapping(dev, sg_dma_address(s),
1750 sg_dma_len(s));
1751 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1752 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1753 s->length, dir);
1754 }
1755}
1756
1757/**
1758 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1759 * @dev: valid struct device pointer
1760 * @sg: list of buffers
1761 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1762 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1763 *
1764 * Unmap a set of streaming mode DMA translations. Again, CPU access
1765 * rules concerning calls here are the same as for dma_unmap_single().
1766 */
1767void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1768 int nents, enum dma_data_direction dir,
1769 unsigned long attrs)
1770{
1771 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1772}
1773
1774/**
1775 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1776 * @dev: valid struct device pointer
1777 * @sg: list of buffers
1778 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1779 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1780 *
1781 * Unmap a set of streaming mode DMA translations. Again, CPU access
1782 * rules concerning calls here are the same as for dma_unmap_single().
1783 */
1784void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1785 enum dma_data_direction dir,
1786 unsigned long attrs)
1787{
1788 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1789}
1790
1791/**
1792 * arm_iommu_sync_sg_for_cpu
1793 * @dev: valid struct device pointer
1794 * @sg: list of buffers
1795 * @nents: number of buffers to map (returned from dma_map_sg)
1796 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1797 */
1798void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1799 int nents, enum dma_data_direction dir)
1800{
1801 struct scatterlist *s;
1802 int i;
1803
1804 for_each_sg(sg, s, nents, i)
1805 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1806
1807}
1808
1809/**
1810 * arm_iommu_sync_sg_for_device
1811 * @dev: valid struct device pointer
1812 * @sg: list of buffers
1813 * @nents: number of buffers to map (returned from dma_map_sg)
1814 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1815 */
1816void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1817 int nents, enum dma_data_direction dir)
1818{
1819 struct scatterlist *s;
1820 int i;
1821
1822 for_each_sg(sg, s, nents, i)
1823 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1824}
1825
1826
1827/**
1828 * arm_coherent_iommu_map_page
1829 * @dev: valid struct device pointer
1830 * @page: page that buffer resides in
1831 * @offset: offset into page for start of buffer
1832 * @size: size of buffer to map
1833 * @dir: DMA transfer direction
1834 *
1835 * Coherent IOMMU aware version of arm_dma_map_page()
1836 */
1837static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1838 unsigned long offset, size_t size, enum dma_data_direction dir,
1839 unsigned long attrs)
1840{
1841 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1842 dma_addr_t dma_addr;
1843 int ret, prot, len = PAGE_ALIGN(size + offset);
1844
1845 dma_addr = __alloc_iova(mapping, len);
1846 if (dma_addr == DMA_MAPPING_ERROR)
1847 return dma_addr;
1848
1849 prot = __dma_info_to_prot(dir, attrs);
1850
1851 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1852 if (ret < 0)
1853 goto fail;
1854
1855 return dma_addr + offset;
1856fail:
1857 __free_iova(mapping, dma_addr, len);
1858 return DMA_MAPPING_ERROR;
1859}
1860
1861/**
1862 * arm_iommu_map_page
1863 * @dev: valid struct device pointer
1864 * @page: page that buffer resides in
1865 * @offset: offset into page for start of buffer
1866 * @size: size of buffer to map
1867 * @dir: DMA transfer direction
1868 *
1869 * IOMMU aware version of arm_dma_map_page()
1870 */
1871static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1872 unsigned long offset, size_t size, enum dma_data_direction dir,
1873 unsigned long attrs)
1874{
1875 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1876 __dma_page_cpu_to_dev(page, offset, size, dir);
1877
1878 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1879}
1880
1881/**
1882 * arm_coherent_iommu_unmap_page
1883 * @dev: valid struct device pointer
1884 * @handle: DMA address of buffer
1885 * @size: size of buffer (same as passed to dma_map_page)
1886 * @dir: DMA transfer direction (same as passed to dma_map_page)
1887 *
1888 * Coherent IOMMU aware version of arm_dma_unmap_page()
1889 */
1890static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1891 size_t size, enum dma_data_direction dir, unsigned long attrs)
1892{
1893 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1894 dma_addr_t iova = handle & PAGE_MASK;
1895 int offset = handle & ~PAGE_MASK;
1896 int len = PAGE_ALIGN(size + offset);
1897
1898 if (!iova)
1899 return;
1900
1901 iommu_unmap(mapping->domain, iova, len);
1902 __free_iova(mapping, iova, len);
1903}
1904
1905/**
1906 * arm_iommu_unmap_page
1907 * @dev: valid struct device pointer
1908 * @handle: DMA address of buffer
1909 * @size: size of buffer (same as passed to dma_map_page)
1910 * @dir: DMA transfer direction (same as passed to dma_map_page)
1911 *
1912 * IOMMU aware version of arm_dma_unmap_page()
1913 */
1914static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1915 size_t size, enum dma_data_direction dir, unsigned long attrs)
1916{
1917 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1918 dma_addr_t iova = handle & PAGE_MASK;
1919 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1920 int offset = handle & ~PAGE_MASK;
1921 int len = PAGE_ALIGN(size + offset);
1922
1923 if (!iova)
1924 return;
1925
1926 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1927 __dma_page_dev_to_cpu(page, offset, size, dir);
1928
1929 iommu_unmap(mapping->domain, iova, len);
1930 __free_iova(mapping, iova, len);
1931}
1932
1933/**
1934 * arm_iommu_map_resource - map a device resource for DMA
1935 * @dev: valid struct device pointer
1936 * @phys_addr: physical address of resource
1937 * @size: size of resource to map
1938 * @dir: DMA transfer direction
1939 */
1940static dma_addr_t arm_iommu_map_resource(struct device *dev,
1941 phys_addr_t phys_addr, size_t size,
1942 enum dma_data_direction dir, unsigned long attrs)
1943{
1944 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1945 dma_addr_t dma_addr;
1946 int ret, prot;
1947 phys_addr_t addr = phys_addr & PAGE_MASK;
1948 unsigned int offset = phys_addr & ~PAGE_MASK;
1949 size_t len = PAGE_ALIGN(size + offset);
1950
1951 dma_addr = __alloc_iova(mapping, len);
1952 if (dma_addr == DMA_MAPPING_ERROR)
1953 return dma_addr;
1954
1955 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1956
1957 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1958 if (ret < 0)
1959 goto fail;
1960
1961 return dma_addr + offset;
1962fail:
1963 __free_iova(mapping, dma_addr, len);
1964 return DMA_MAPPING_ERROR;
1965}
1966
1967/**
1968 * arm_iommu_unmap_resource - unmap a device DMA resource
1969 * @dev: valid struct device pointer
1970 * @dma_handle: DMA address to resource
1971 * @size: size of resource to map
1972 * @dir: DMA transfer direction
1973 */
1974static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1975 size_t size, enum dma_data_direction dir,
1976 unsigned long attrs)
1977{
1978 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1979 dma_addr_t iova = dma_handle & PAGE_MASK;
1980 unsigned int offset = dma_handle & ~PAGE_MASK;
1981 size_t len = PAGE_ALIGN(size + offset);
1982
1983 if (!iova)
1984 return;
1985
1986 iommu_unmap(mapping->domain, iova, len);
1987 __free_iova(mapping, iova, len);
1988}
1989
1990static void arm_iommu_sync_single_for_cpu(struct device *dev,
1991 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1992{
1993 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1994 dma_addr_t iova = handle & PAGE_MASK;
1995 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1996 unsigned int offset = handle & ~PAGE_MASK;
1997
1998 if (!iova)
1999 return;
2000
2001 __dma_page_dev_to_cpu(page, offset, size, dir);
2002}
2003
2004static void arm_iommu_sync_single_for_device(struct device *dev,
2005 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2006{
2007 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2008 dma_addr_t iova = handle & PAGE_MASK;
2009 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2010 unsigned int offset = handle & ~PAGE_MASK;
2011
2012 if (!iova)
2013 return;
2014
2015 __dma_page_cpu_to_dev(page, offset, size, dir);
2016}
2017
2018const struct dma_map_ops iommu_ops = {
2019 .alloc = arm_iommu_alloc_attrs,
2020 .free = arm_iommu_free_attrs,
2021 .mmap = arm_iommu_mmap_attrs,
2022 .get_sgtable = arm_iommu_get_sgtable,
2023
2024 .map_page = arm_iommu_map_page,
2025 .unmap_page = arm_iommu_unmap_page,
2026 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
2027 .sync_single_for_device = arm_iommu_sync_single_for_device,
2028
2029 .map_sg = arm_iommu_map_sg,
2030 .unmap_sg = arm_iommu_unmap_sg,
2031 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
2032 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
2033
2034 .map_resource = arm_iommu_map_resource,
2035 .unmap_resource = arm_iommu_unmap_resource,
2036
2037 .dma_supported = arm_dma_supported,
2038};
2039
2040const struct dma_map_ops iommu_coherent_ops = {
2041 .alloc = arm_coherent_iommu_alloc_attrs,
2042 .free = arm_coherent_iommu_free_attrs,
2043 .mmap = arm_coherent_iommu_mmap_attrs,
2044 .get_sgtable = arm_iommu_get_sgtable,
2045
2046 .map_page = arm_coherent_iommu_map_page,
2047 .unmap_page = arm_coherent_iommu_unmap_page,
2048
2049 .map_sg = arm_coherent_iommu_map_sg,
2050 .unmap_sg = arm_coherent_iommu_unmap_sg,
2051
2052 .map_resource = arm_iommu_map_resource,
2053 .unmap_resource = arm_iommu_unmap_resource,
2054
2055 .dma_supported = arm_dma_supported,
2056};
2057
2058/**
2059 * arm_iommu_create_mapping
2060 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2061 * @base: start address of the valid IO address space
2062 * @size: maximum size of the valid IO address space
2063 *
2064 * Creates a mapping structure which holds information about used/unused
2065 * IO address ranges, which is required to perform memory allocation and
2066 * mapping with IOMMU aware functions.
2067 *
2068 * The client device need to be attached to the mapping with
2069 * arm_iommu_attach_device function.
2070 */
2071struct dma_iommu_mapping *
2072arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2073{
2074 unsigned int bits = size >> PAGE_SHIFT;
2075 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2076 struct dma_iommu_mapping *mapping;
2077 int extensions = 1;
2078 int err = -ENOMEM;
2079
2080 /* currently only 32-bit DMA address space is supported */
2081 if (size > DMA_BIT_MASK(32) + 1)
2082 return ERR_PTR(-ERANGE);
2083
2084 if (!bitmap_size)
2085 return ERR_PTR(-EINVAL);
2086
2087 if (bitmap_size > PAGE_SIZE) {
2088 extensions = bitmap_size / PAGE_SIZE;
2089 bitmap_size = PAGE_SIZE;
2090 }
2091
2092 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2093 if (!mapping)
2094 goto err;
2095
2096 mapping->bitmap_size = bitmap_size;
2097 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2098 GFP_KERNEL);
2099 if (!mapping->bitmaps)
2100 goto err2;
2101
2102 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2103 if (!mapping->bitmaps[0])
2104 goto err3;
2105
2106 mapping->nr_bitmaps = 1;
2107 mapping->extensions = extensions;
2108 mapping->base = base;
2109 mapping->bits = BITS_PER_BYTE * bitmap_size;
2110
2111 spin_lock_init(&mapping->lock);
2112
2113 mapping->domain = iommu_domain_alloc(bus);
2114 if (!mapping->domain)
2115 goto err4;
2116
2117 kref_init(&mapping->kref);
2118 return mapping;
2119err4:
2120 kfree(mapping->bitmaps[0]);
2121err3:
2122 kfree(mapping->bitmaps);
2123err2:
2124 kfree(mapping);
2125err:
2126 return ERR_PTR(err);
2127}
2128EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2129
2130static void release_iommu_mapping(struct kref *kref)
2131{
2132 int i;
2133 struct dma_iommu_mapping *mapping =
2134 container_of(kref, struct dma_iommu_mapping, kref);
2135
2136 iommu_domain_free(mapping->domain);
2137 for (i = 0; i < mapping->nr_bitmaps; i++)
2138 kfree(mapping->bitmaps[i]);
2139 kfree(mapping->bitmaps);
2140 kfree(mapping);
2141}
2142
2143static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2144{
2145 int next_bitmap;
2146
2147 if (mapping->nr_bitmaps >= mapping->extensions)
2148 return -EINVAL;
2149
2150 next_bitmap = mapping->nr_bitmaps;
2151 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2152 GFP_ATOMIC);
2153 if (!mapping->bitmaps[next_bitmap])
2154 return -ENOMEM;
2155
2156 mapping->nr_bitmaps++;
2157
2158 return 0;
2159}
2160
2161void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2162{
2163 if (mapping)
2164 kref_put(&mapping->kref, release_iommu_mapping);
2165}
2166EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2167
2168static int __arm_iommu_attach_device(struct device *dev,
2169 struct dma_iommu_mapping *mapping)
2170{
2171 int err;
2172
2173 err = iommu_attach_device(mapping->domain, dev);
2174 if (err)
2175 return err;
2176
2177 kref_get(&mapping->kref);
2178 to_dma_iommu_mapping(dev) = mapping;
2179
2180 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2181 return 0;
2182}
2183
2184/**
2185 * arm_iommu_attach_device
2186 * @dev: valid struct device pointer
2187 * @mapping: io address space mapping structure (returned from
2188 * arm_iommu_create_mapping)
2189 *
2190 * Attaches specified io address space mapping to the provided device.
2191 * This replaces the dma operations (dma_map_ops pointer) with the
2192 * IOMMU aware version.
2193 *
2194 * More than one client might be attached to the same io address space
2195 * mapping.
2196 */
2197int arm_iommu_attach_device(struct device *dev,
2198 struct dma_iommu_mapping *mapping)
2199{
2200 int err;
2201
2202 err = __arm_iommu_attach_device(dev, mapping);
2203 if (err)
2204 return err;
2205
2206 set_dma_ops(dev, &iommu_ops);
2207 return 0;
2208}
2209EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2210
2211/**
2212 * arm_iommu_detach_device
2213 * @dev: valid struct device pointer
2214 *
2215 * Detaches the provided device from a previously attached map.
2216 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2217 */
2218void arm_iommu_detach_device(struct device *dev)
2219{
2220 struct dma_iommu_mapping *mapping;
2221
2222 mapping = to_dma_iommu_mapping(dev);
2223 if (!mapping) {
2224 dev_warn(dev, "Not attached\n");
2225 return;
2226 }
2227
2228 iommu_detach_device(mapping->domain, dev);
2229 kref_put(&mapping->kref, release_iommu_mapping);
2230 to_dma_iommu_mapping(dev) = NULL;
2231 set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2232
2233 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2234}
2235EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2236
2237static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2238{
2239 return coherent ? &iommu_coherent_ops : &iommu_ops;
2240}
2241
2242static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2243 const struct iommu_ops *iommu)
2244{
2245 struct dma_iommu_mapping *mapping;
2246
2247 if (!iommu)
2248 return false;
2249
2250 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2251 if (IS_ERR(mapping)) {
2252 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2253 size, dev_name(dev));
2254 return false;
2255 }
2256
2257 if (__arm_iommu_attach_device(dev, mapping)) {
2258 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2259 dev_name(dev));
2260 arm_iommu_release_mapping(mapping);
2261 return false;
2262 }
2263
2264 return true;
2265}
2266
2267static void arm_teardown_iommu_dma_ops(struct device *dev)
2268{
2269 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2270
2271 if (!mapping)
2272 return;
2273
2274 arm_iommu_detach_device(dev);
2275 arm_iommu_release_mapping(mapping);
2276}
2277
2278#else
2279
2280static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2281 const struct iommu_ops *iommu)
2282{
2283 return false;
2284}
2285
2286static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2287
2288#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2289
2290#endif /* CONFIG_ARM_DMA_USE_IOMMU */
2291
2292void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2293 const struct iommu_ops *iommu, bool coherent)
2294{
2295 const struct dma_map_ops *dma_ops;
2296
2297 dev->archdata.dma_coherent = coherent;
2298#ifdef CONFIG_SWIOTLB
2299 dev->dma_coherent = coherent;
2300#endif
2301
2302 /*
2303 * Don't override the dma_ops if they have already been set. Ideally
2304 * this should be the only location where dma_ops are set, remove this
2305 * check when all other callers of set_dma_ops will have disappeared.
2306 */
2307 if (dev->dma_ops)
2308 return;
2309
2310 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2311 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2312 else
2313 dma_ops = arm_get_dma_map_ops(coherent);
2314
2315 set_dma_ops(dev, dma_ops);
2316
2317#ifdef CONFIG_XEN
2318 if (xen_initial_domain())
2319 dev->dma_ops = &xen_swiotlb_dma_ops;
2320#endif
2321 dev->archdata.dma_ops_setup = true;
2322}
2323
2324void arch_teardown_dma_ops(struct device *dev)
2325{
2326 if (!dev->archdata.dma_ops_setup)
2327 return;
2328
2329 arm_teardown_iommu_dma_ops(dev);
2330 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2331 set_dma_ops(dev, NULL);
2332}
2333
2334#ifdef CONFIG_SWIOTLB
2335void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
2336 size_t size, enum dma_data_direction dir)
2337{
2338 __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2339 size, dir);
2340}
2341
2342void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
2343 size_t size, enum dma_data_direction dir)
2344{
2345 __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2346 size, dir);
2347}
2348
2349long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr,
2350 dma_addr_t dma_addr)
2351{
2352 return dma_to_pfn(dev, dma_addr);
2353}
2354
2355void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2356 gfp_t gfp, unsigned long attrs)
2357{
2358 return __dma_alloc(dev, size, dma_handle, gfp,
2359 __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2360 attrs, __builtin_return_address(0));
2361}
2362
2363void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2364 dma_addr_t dma_handle, unsigned long attrs)
2365{
2366 __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2367}
2368#endif /* CONFIG_SWIOTLB */
1/*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/bootmem.h>
13#include <linux/module.h>
14#include <linux/mm.h>
15#include <linux/gfp.h>
16#include <linux/errno.h>
17#include <linux/list.h>
18#include <linux/init.h>
19#include <linux/device.h>
20#include <linux/dma-mapping.h>
21#include <linux/dma-contiguous.h>
22#include <linux/highmem.h>
23#include <linux/memblock.h>
24#include <linux/slab.h>
25#include <linux/iommu.h>
26#include <linux/io.h>
27#include <linux/vmalloc.h>
28#include <linux/sizes.h>
29
30#include <asm/memory.h>
31#include <asm/highmem.h>
32#include <asm/cacheflush.h>
33#include <asm/tlbflush.h>
34#include <asm/mach/arch.h>
35#include <asm/dma-iommu.h>
36#include <asm/mach/map.h>
37#include <asm/system_info.h>
38#include <asm/dma-contiguous.h>
39
40#include "mm.h"
41
42/*
43 * The DMA API is built upon the notion of "buffer ownership". A buffer
44 * is either exclusively owned by the CPU (and therefore may be accessed
45 * by it) or exclusively owned by the DMA device. These helper functions
46 * represent the transitions between these two ownership states.
47 *
48 * Note, however, that on later ARMs, this notion does not work due to
49 * speculative prefetches. We model our approach on the assumption that
50 * the CPU does do speculative prefetches, which means we clean caches
51 * before transfers and delay cache invalidation until transfer completion.
52 *
53 */
54static void __dma_page_cpu_to_dev(struct page *, unsigned long,
55 size_t, enum dma_data_direction);
56static void __dma_page_dev_to_cpu(struct page *, unsigned long,
57 size_t, enum dma_data_direction);
58
59/**
60 * arm_dma_map_page - map a portion of a page for streaming DMA
61 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
62 * @page: page that buffer resides in
63 * @offset: offset into page for start of buffer
64 * @size: size of buffer to map
65 * @dir: DMA transfer direction
66 *
67 * Ensure that any data held in the cache is appropriately discarded
68 * or written back.
69 *
70 * The device owns this memory once this call has completed. The CPU
71 * can regain ownership by calling dma_unmap_page().
72 */
73static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
74 unsigned long offset, size_t size, enum dma_data_direction dir,
75 struct dma_attrs *attrs)
76{
77 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
78 __dma_page_cpu_to_dev(page, offset, size, dir);
79 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
80}
81
82static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
83 unsigned long offset, size_t size, enum dma_data_direction dir,
84 struct dma_attrs *attrs)
85{
86 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
87}
88
89/**
90 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
91 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
92 * @handle: DMA address of buffer
93 * @size: size of buffer (same as passed to dma_map_page)
94 * @dir: DMA transfer direction (same as passed to dma_map_page)
95 *
96 * Unmap a page streaming mode DMA translation. The handle and size
97 * must match what was provided in the previous dma_map_page() call.
98 * All other usages are undefined.
99 *
100 * After this call, reads by the CPU to the buffer are guaranteed to see
101 * whatever the device wrote there.
102 */
103static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
104 size_t size, enum dma_data_direction dir,
105 struct dma_attrs *attrs)
106{
107 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
108 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
109 handle & ~PAGE_MASK, size, dir);
110}
111
112static void arm_dma_sync_single_for_cpu(struct device *dev,
113 dma_addr_t handle, size_t size, enum dma_data_direction dir)
114{
115 unsigned int offset = handle & (PAGE_SIZE - 1);
116 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
117 __dma_page_dev_to_cpu(page, offset, size, dir);
118}
119
120static void arm_dma_sync_single_for_device(struct device *dev,
121 dma_addr_t handle, size_t size, enum dma_data_direction dir)
122{
123 unsigned int offset = handle & (PAGE_SIZE - 1);
124 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
125 __dma_page_cpu_to_dev(page, offset, size, dir);
126}
127
128struct dma_map_ops arm_dma_ops = {
129 .alloc = arm_dma_alloc,
130 .free = arm_dma_free,
131 .mmap = arm_dma_mmap,
132 .get_sgtable = arm_dma_get_sgtable,
133 .map_page = arm_dma_map_page,
134 .unmap_page = arm_dma_unmap_page,
135 .map_sg = arm_dma_map_sg,
136 .unmap_sg = arm_dma_unmap_sg,
137 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
138 .sync_single_for_device = arm_dma_sync_single_for_device,
139 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
140 .sync_sg_for_device = arm_dma_sync_sg_for_device,
141 .set_dma_mask = arm_dma_set_mask,
142};
143EXPORT_SYMBOL(arm_dma_ops);
144
145static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
146 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
147static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
148 dma_addr_t handle, struct dma_attrs *attrs);
149
150struct dma_map_ops arm_coherent_dma_ops = {
151 .alloc = arm_coherent_dma_alloc,
152 .free = arm_coherent_dma_free,
153 .mmap = arm_dma_mmap,
154 .get_sgtable = arm_dma_get_sgtable,
155 .map_page = arm_coherent_dma_map_page,
156 .map_sg = arm_dma_map_sg,
157 .set_dma_mask = arm_dma_set_mask,
158};
159EXPORT_SYMBOL(arm_coherent_dma_ops);
160
161static int __dma_supported(struct device *dev, u64 mask, bool warn)
162{
163 unsigned long max_dma_pfn;
164
165 /*
166 * If the mask allows for more memory than we can address,
167 * and we actually have that much memory, then we must
168 * indicate that DMA to this device is not supported.
169 */
170 if (sizeof(mask) != sizeof(dma_addr_t) &&
171 mask > (dma_addr_t)~0 &&
172 dma_to_pfn(dev, ~0) < max_pfn) {
173 if (warn) {
174 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
175 mask);
176 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
177 }
178 return 0;
179 }
180
181 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
182
183 /*
184 * Translate the device's DMA mask to a PFN limit. This
185 * PFN number includes the page which we can DMA to.
186 */
187 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
188 if (warn)
189 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
190 mask,
191 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
192 max_dma_pfn + 1);
193 return 0;
194 }
195
196 return 1;
197}
198
199static u64 get_coherent_dma_mask(struct device *dev)
200{
201 u64 mask = (u64)DMA_BIT_MASK(32);
202
203 if (dev) {
204 mask = dev->coherent_dma_mask;
205
206 /*
207 * Sanity check the DMA mask - it must be non-zero, and
208 * must be able to be satisfied by a DMA allocation.
209 */
210 if (mask == 0) {
211 dev_warn(dev, "coherent DMA mask is unset\n");
212 return 0;
213 }
214
215 if (!__dma_supported(dev, mask, true))
216 return 0;
217 }
218
219 return mask;
220}
221
222static void __dma_clear_buffer(struct page *page, size_t size)
223{
224 /*
225 * Ensure that the allocated pages are zeroed, and that any data
226 * lurking in the kernel direct-mapped region is invalidated.
227 */
228 if (PageHighMem(page)) {
229 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
230 phys_addr_t end = base + size;
231 while (size > 0) {
232 void *ptr = kmap_atomic(page);
233 memset(ptr, 0, PAGE_SIZE);
234 dmac_flush_range(ptr, ptr + PAGE_SIZE);
235 kunmap_atomic(ptr);
236 page++;
237 size -= PAGE_SIZE;
238 }
239 outer_flush_range(base, end);
240 } else {
241 void *ptr = page_address(page);
242 memset(ptr, 0, size);
243 dmac_flush_range(ptr, ptr + size);
244 outer_flush_range(__pa(ptr), __pa(ptr) + size);
245 }
246}
247
248/*
249 * Allocate a DMA buffer for 'dev' of size 'size' using the
250 * specified gfp mask. Note that 'size' must be page aligned.
251 */
252static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
253{
254 unsigned long order = get_order(size);
255 struct page *page, *p, *e;
256
257 page = alloc_pages(gfp, order);
258 if (!page)
259 return NULL;
260
261 /*
262 * Now split the huge page and free the excess pages
263 */
264 split_page(page, order);
265 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
266 __free_page(p);
267
268 __dma_clear_buffer(page, size);
269
270 return page;
271}
272
273/*
274 * Free a DMA buffer. 'size' must be page aligned.
275 */
276static void __dma_free_buffer(struct page *page, size_t size)
277{
278 struct page *e = page + (size >> PAGE_SHIFT);
279
280 while (page < e) {
281 __free_page(page);
282 page++;
283 }
284}
285
286#ifdef CONFIG_MMU
287
288static void *__alloc_from_contiguous(struct device *dev, size_t size,
289 pgprot_t prot, struct page **ret_page,
290 const void *caller);
291
292static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
293 pgprot_t prot, struct page **ret_page,
294 const void *caller);
295
296static void *
297__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
298 const void *caller)
299{
300 struct vm_struct *area;
301 unsigned long addr;
302
303 /*
304 * DMA allocation can be mapped to user space, so lets
305 * set VM_USERMAP flags too.
306 */
307 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
308 caller);
309 if (!area)
310 return NULL;
311 addr = (unsigned long)area->addr;
312 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
313
314 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
315 vunmap((void *)addr);
316 return NULL;
317 }
318 return (void *)addr;
319}
320
321static void __dma_free_remap(void *cpu_addr, size_t size)
322{
323 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
324 struct vm_struct *area = find_vm_area(cpu_addr);
325 if (!area || (area->flags & flags) != flags) {
326 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
327 return;
328 }
329 unmap_kernel_range((unsigned long)cpu_addr, size);
330 vunmap(cpu_addr);
331}
332
333#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
334
335struct dma_pool {
336 size_t size;
337 spinlock_t lock;
338 unsigned long *bitmap;
339 unsigned long nr_pages;
340 void *vaddr;
341 struct page **pages;
342};
343
344static struct dma_pool atomic_pool = {
345 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
346};
347
348static int __init early_coherent_pool(char *p)
349{
350 atomic_pool.size = memparse(p, &p);
351 return 0;
352}
353early_param("coherent_pool", early_coherent_pool);
354
355void __init init_dma_coherent_pool_size(unsigned long size)
356{
357 /*
358 * Catch any attempt to set the pool size too late.
359 */
360 BUG_ON(atomic_pool.vaddr);
361
362 /*
363 * Set architecture specific coherent pool size only if
364 * it has not been changed by kernel command line parameter.
365 */
366 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
367 atomic_pool.size = size;
368}
369
370/*
371 * Initialise the coherent pool for atomic allocations.
372 */
373static int __init atomic_pool_init(void)
374{
375 struct dma_pool *pool = &atomic_pool;
376 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
377 gfp_t gfp = GFP_KERNEL | GFP_DMA;
378 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
379 unsigned long *bitmap;
380 struct page *page;
381 struct page **pages;
382 void *ptr;
383 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
384
385 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
386 if (!bitmap)
387 goto no_bitmap;
388
389 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
390 if (!pages)
391 goto no_pages;
392
393 if (IS_ENABLED(CONFIG_DMA_CMA))
394 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
395 atomic_pool_init);
396 else
397 ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
398 atomic_pool_init);
399 if (ptr) {
400 int i;
401
402 for (i = 0; i < nr_pages; i++)
403 pages[i] = page + i;
404
405 spin_lock_init(&pool->lock);
406 pool->vaddr = ptr;
407 pool->pages = pages;
408 pool->bitmap = bitmap;
409 pool->nr_pages = nr_pages;
410 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
411 (unsigned)pool->size / 1024);
412 return 0;
413 }
414
415 kfree(pages);
416no_pages:
417 kfree(bitmap);
418no_bitmap:
419 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
420 (unsigned)pool->size / 1024);
421 return -ENOMEM;
422}
423/*
424 * CMA is activated by core_initcall, so we must be called after it.
425 */
426postcore_initcall(atomic_pool_init);
427
428struct dma_contig_early_reserve {
429 phys_addr_t base;
430 unsigned long size;
431};
432
433static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
434
435static int dma_mmu_remap_num __initdata;
436
437void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
438{
439 dma_mmu_remap[dma_mmu_remap_num].base = base;
440 dma_mmu_remap[dma_mmu_remap_num].size = size;
441 dma_mmu_remap_num++;
442}
443
444void __init dma_contiguous_remap(void)
445{
446 int i;
447 for (i = 0; i < dma_mmu_remap_num; i++) {
448 phys_addr_t start = dma_mmu_remap[i].base;
449 phys_addr_t end = start + dma_mmu_remap[i].size;
450 struct map_desc map;
451 unsigned long addr;
452
453 if (end > arm_lowmem_limit)
454 end = arm_lowmem_limit;
455 if (start >= end)
456 continue;
457
458 map.pfn = __phys_to_pfn(start);
459 map.virtual = __phys_to_virt(start);
460 map.length = end - start;
461 map.type = MT_MEMORY_DMA_READY;
462
463 /*
464 * Clear previous low-memory mapping
465 */
466 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
467 addr += PMD_SIZE)
468 pmd_clear(pmd_off_k(addr));
469
470 iotable_init(&map, 1);
471 }
472}
473
474static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
475 void *data)
476{
477 struct page *page = virt_to_page(addr);
478 pgprot_t prot = *(pgprot_t *)data;
479
480 set_pte_ext(pte, mk_pte(page, prot), 0);
481 return 0;
482}
483
484static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
485{
486 unsigned long start = (unsigned long) page_address(page);
487 unsigned end = start + size;
488
489 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
490 flush_tlb_kernel_range(start, end);
491}
492
493static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
494 pgprot_t prot, struct page **ret_page,
495 const void *caller)
496{
497 struct page *page;
498 void *ptr;
499 page = __dma_alloc_buffer(dev, size, gfp);
500 if (!page)
501 return NULL;
502
503 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
504 if (!ptr) {
505 __dma_free_buffer(page, size);
506 return NULL;
507 }
508
509 *ret_page = page;
510 return ptr;
511}
512
513static void *__alloc_from_pool(size_t size, struct page **ret_page)
514{
515 struct dma_pool *pool = &atomic_pool;
516 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
517 unsigned int pageno;
518 unsigned long flags;
519 void *ptr = NULL;
520 unsigned long align_mask;
521
522 if (!pool->vaddr) {
523 WARN(1, "coherent pool not initialised!\n");
524 return NULL;
525 }
526
527 /*
528 * Align the region allocation - allocations from pool are rather
529 * small, so align them to their order in pages, minimum is a page
530 * size. This helps reduce fragmentation of the DMA space.
531 */
532 align_mask = (1 << get_order(size)) - 1;
533
534 spin_lock_irqsave(&pool->lock, flags);
535 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
536 0, count, align_mask);
537 if (pageno < pool->nr_pages) {
538 bitmap_set(pool->bitmap, pageno, count);
539 ptr = pool->vaddr + PAGE_SIZE * pageno;
540 *ret_page = pool->pages[pageno];
541 } else {
542 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
543 "Please increase it with coherent_pool= kernel parameter!\n",
544 (unsigned)pool->size / 1024);
545 }
546 spin_unlock_irqrestore(&pool->lock, flags);
547
548 return ptr;
549}
550
551static bool __in_atomic_pool(void *start, size_t size)
552{
553 struct dma_pool *pool = &atomic_pool;
554 void *end = start + size;
555 void *pool_start = pool->vaddr;
556 void *pool_end = pool->vaddr + pool->size;
557
558 if (start < pool_start || start >= pool_end)
559 return false;
560
561 if (end <= pool_end)
562 return true;
563
564 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
565 start, end - 1, pool_start, pool_end - 1);
566
567 return false;
568}
569
570static int __free_from_pool(void *start, size_t size)
571{
572 struct dma_pool *pool = &atomic_pool;
573 unsigned long pageno, count;
574 unsigned long flags;
575
576 if (!__in_atomic_pool(start, size))
577 return 0;
578
579 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
580 count = size >> PAGE_SHIFT;
581
582 spin_lock_irqsave(&pool->lock, flags);
583 bitmap_clear(pool->bitmap, pageno, count);
584 spin_unlock_irqrestore(&pool->lock, flags);
585
586 return 1;
587}
588
589static void *__alloc_from_contiguous(struct device *dev, size_t size,
590 pgprot_t prot, struct page **ret_page,
591 const void *caller)
592{
593 unsigned long order = get_order(size);
594 size_t count = size >> PAGE_SHIFT;
595 struct page *page;
596 void *ptr;
597
598 page = dma_alloc_from_contiguous(dev, count, order);
599 if (!page)
600 return NULL;
601
602 __dma_clear_buffer(page, size);
603
604 if (PageHighMem(page)) {
605 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
606 if (!ptr) {
607 dma_release_from_contiguous(dev, page, count);
608 return NULL;
609 }
610 } else {
611 __dma_remap(page, size, prot);
612 ptr = page_address(page);
613 }
614 *ret_page = page;
615 return ptr;
616}
617
618static void __free_from_contiguous(struct device *dev, struct page *page,
619 void *cpu_addr, size_t size)
620{
621 if (PageHighMem(page))
622 __dma_free_remap(cpu_addr, size);
623 else
624 __dma_remap(page, size, PAGE_KERNEL);
625 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
626}
627
628static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
629{
630 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
631 pgprot_writecombine(prot) :
632 pgprot_dmacoherent(prot);
633 return prot;
634}
635
636#define nommu() 0
637
638#else /* !CONFIG_MMU */
639
640#define nommu() 1
641
642#define __get_dma_pgprot(attrs, prot) __pgprot(0)
643#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
644#define __alloc_from_pool(size, ret_page) NULL
645#define __alloc_from_contiguous(dev, size, prot, ret, c) NULL
646#define __free_from_pool(cpu_addr, size) 0
647#define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0)
648#define __dma_free_remap(cpu_addr, size) do { } while (0)
649
650#endif /* CONFIG_MMU */
651
652static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
653 struct page **ret_page)
654{
655 struct page *page;
656 page = __dma_alloc_buffer(dev, size, gfp);
657 if (!page)
658 return NULL;
659
660 *ret_page = page;
661 return page_address(page);
662}
663
664
665
666static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
667 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
668{
669 u64 mask = get_coherent_dma_mask(dev);
670 struct page *page = NULL;
671 void *addr;
672
673#ifdef CONFIG_DMA_API_DEBUG
674 u64 limit = (mask + 1) & ~mask;
675 if (limit && size >= limit) {
676 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
677 size, mask);
678 return NULL;
679 }
680#endif
681
682 if (!mask)
683 return NULL;
684
685 if (mask < 0xffffffffULL)
686 gfp |= GFP_DMA;
687
688 /*
689 * Following is a work-around (a.k.a. hack) to prevent pages
690 * with __GFP_COMP being passed to split_page() which cannot
691 * handle them. The real problem is that this flag probably
692 * should be 0 on ARM as it is not supported on this
693 * platform; see CONFIG_HUGETLBFS.
694 */
695 gfp &= ~(__GFP_COMP);
696
697 *handle = DMA_ERROR_CODE;
698 size = PAGE_ALIGN(size);
699
700 if (is_coherent || nommu())
701 addr = __alloc_simple_buffer(dev, size, gfp, &page);
702 else if (!(gfp & __GFP_WAIT))
703 addr = __alloc_from_pool(size, &page);
704 else if (!IS_ENABLED(CONFIG_DMA_CMA))
705 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
706 else
707 addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
708
709 if (addr)
710 *handle = pfn_to_dma(dev, page_to_pfn(page));
711
712 return addr;
713}
714
715/*
716 * Allocate DMA-coherent memory space and return both the kernel remapped
717 * virtual and bus address for that space.
718 */
719void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
720 gfp_t gfp, struct dma_attrs *attrs)
721{
722 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
723 void *memory;
724
725 if (dma_alloc_from_coherent(dev, size, handle, &memory))
726 return memory;
727
728 return __dma_alloc(dev, size, handle, gfp, prot, false,
729 __builtin_return_address(0));
730}
731
732static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
733 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
734{
735 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
736 void *memory;
737
738 if (dma_alloc_from_coherent(dev, size, handle, &memory))
739 return memory;
740
741 return __dma_alloc(dev, size, handle, gfp, prot, true,
742 __builtin_return_address(0));
743}
744
745/*
746 * Create userspace mapping for the DMA-coherent memory.
747 */
748int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
749 void *cpu_addr, dma_addr_t dma_addr, size_t size,
750 struct dma_attrs *attrs)
751{
752 int ret = -ENXIO;
753#ifdef CONFIG_MMU
754 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
755 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
756 unsigned long pfn = dma_to_pfn(dev, dma_addr);
757 unsigned long off = vma->vm_pgoff;
758
759 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
760
761 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
762 return ret;
763
764 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
765 ret = remap_pfn_range(vma, vma->vm_start,
766 pfn + off,
767 vma->vm_end - vma->vm_start,
768 vma->vm_page_prot);
769 }
770#endif /* CONFIG_MMU */
771
772 return ret;
773}
774
775/*
776 * Free a buffer as defined by the above mapping.
777 */
778static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
779 dma_addr_t handle, struct dma_attrs *attrs,
780 bool is_coherent)
781{
782 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
783
784 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
785 return;
786
787 size = PAGE_ALIGN(size);
788
789 if (is_coherent || nommu()) {
790 __dma_free_buffer(page, size);
791 } else if (__free_from_pool(cpu_addr, size)) {
792 return;
793 } else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
794 __dma_free_remap(cpu_addr, size);
795 __dma_free_buffer(page, size);
796 } else {
797 /*
798 * Non-atomic allocations cannot be freed with IRQs disabled
799 */
800 WARN_ON(irqs_disabled());
801 __free_from_contiguous(dev, page, cpu_addr, size);
802 }
803}
804
805void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
806 dma_addr_t handle, struct dma_attrs *attrs)
807{
808 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
809}
810
811static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
812 dma_addr_t handle, struct dma_attrs *attrs)
813{
814 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
815}
816
817int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
818 void *cpu_addr, dma_addr_t handle, size_t size,
819 struct dma_attrs *attrs)
820{
821 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
822 int ret;
823
824 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
825 if (unlikely(ret))
826 return ret;
827
828 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
829 return 0;
830}
831
832static void dma_cache_maint_page(struct page *page, unsigned long offset,
833 size_t size, enum dma_data_direction dir,
834 void (*op)(const void *, size_t, int))
835{
836 unsigned long pfn;
837 size_t left = size;
838
839 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
840 offset %= PAGE_SIZE;
841
842 /*
843 * A single sg entry may refer to multiple physically contiguous
844 * pages. But we still need to process highmem pages individually.
845 * If highmem is not configured then the bulk of this loop gets
846 * optimized out.
847 */
848 do {
849 size_t len = left;
850 void *vaddr;
851
852 page = pfn_to_page(pfn);
853
854 if (PageHighMem(page)) {
855 if (len + offset > PAGE_SIZE)
856 len = PAGE_SIZE - offset;
857
858 if (cache_is_vipt_nonaliasing()) {
859 vaddr = kmap_atomic(page);
860 op(vaddr + offset, len, dir);
861 kunmap_atomic(vaddr);
862 } else {
863 vaddr = kmap_high_get(page);
864 if (vaddr) {
865 op(vaddr + offset, len, dir);
866 kunmap_high(page);
867 }
868 }
869 } else {
870 vaddr = page_address(page) + offset;
871 op(vaddr, len, dir);
872 }
873 offset = 0;
874 pfn++;
875 left -= len;
876 } while (left);
877}
878
879/*
880 * Make an area consistent for devices.
881 * Note: Drivers should NOT use this function directly, as it will break
882 * platforms with CONFIG_DMABOUNCE.
883 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
884 */
885static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
886 size_t size, enum dma_data_direction dir)
887{
888 unsigned long paddr;
889
890 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
891
892 paddr = page_to_phys(page) + off;
893 if (dir == DMA_FROM_DEVICE) {
894 outer_inv_range(paddr, paddr + size);
895 } else {
896 outer_clean_range(paddr, paddr + size);
897 }
898 /* FIXME: non-speculating: flush on bidirectional mappings? */
899}
900
901static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
902 size_t size, enum dma_data_direction dir)
903{
904 unsigned long paddr = page_to_phys(page) + off;
905
906 /* FIXME: non-speculating: not required */
907 /* don't bother invalidating if DMA to device */
908 if (dir != DMA_TO_DEVICE)
909 outer_inv_range(paddr, paddr + size);
910
911 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
912
913 /*
914 * Mark the D-cache clean for these pages to avoid extra flushing.
915 */
916 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
917 unsigned long pfn;
918 size_t left = size;
919
920 pfn = page_to_pfn(page) + off / PAGE_SIZE;
921 off %= PAGE_SIZE;
922 if (off) {
923 pfn++;
924 left -= PAGE_SIZE - off;
925 }
926 while (left >= PAGE_SIZE) {
927 page = pfn_to_page(pfn++);
928 set_bit(PG_dcache_clean, &page->flags);
929 left -= PAGE_SIZE;
930 }
931 }
932}
933
934/**
935 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
936 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
937 * @sg: list of buffers
938 * @nents: number of buffers to map
939 * @dir: DMA transfer direction
940 *
941 * Map a set of buffers described by scatterlist in streaming mode for DMA.
942 * This is the scatter-gather version of the dma_map_single interface.
943 * Here the scatter gather list elements are each tagged with the
944 * appropriate dma address and length. They are obtained via
945 * sg_dma_{address,length}.
946 *
947 * Device ownership issues as mentioned for dma_map_single are the same
948 * here.
949 */
950int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
951 enum dma_data_direction dir, struct dma_attrs *attrs)
952{
953 struct dma_map_ops *ops = get_dma_ops(dev);
954 struct scatterlist *s;
955 int i, j;
956
957 for_each_sg(sg, s, nents, i) {
958#ifdef CONFIG_NEED_SG_DMA_LENGTH
959 s->dma_length = s->length;
960#endif
961 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
962 s->length, dir, attrs);
963 if (dma_mapping_error(dev, s->dma_address))
964 goto bad_mapping;
965 }
966 return nents;
967
968 bad_mapping:
969 for_each_sg(sg, s, i, j)
970 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
971 return 0;
972}
973
974/**
975 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
976 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
977 * @sg: list of buffers
978 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
979 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
980 *
981 * Unmap a set of streaming mode DMA translations. Again, CPU access
982 * rules concerning calls here are the same as for dma_unmap_single().
983 */
984void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
985 enum dma_data_direction dir, struct dma_attrs *attrs)
986{
987 struct dma_map_ops *ops = get_dma_ops(dev);
988 struct scatterlist *s;
989
990 int i;
991
992 for_each_sg(sg, s, nents, i)
993 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
994}
995
996/**
997 * arm_dma_sync_sg_for_cpu
998 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
999 * @sg: list of buffers
1000 * @nents: number of buffers to map (returned from dma_map_sg)
1001 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1002 */
1003void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1004 int nents, enum dma_data_direction dir)
1005{
1006 struct dma_map_ops *ops = get_dma_ops(dev);
1007 struct scatterlist *s;
1008 int i;
1009
1010 for_each_sg(sg, s, nents, i)
1011 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1012 dir);
1013}
1014
1015/**
1016 * arm_dma_sync_sg_for_device
1017 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1018 * @sg: list of buffers
1019 * @nents: number of buffers to map (returned from dma_map_sg)
1020 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1021 */
1022void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1023 int nents, enum dma_data_direction dir)
1024{
1025 struct dma_map_ops *ops = get_dma_ops(dev);
1026 struct scatterlist *s;
1027 int i;
1028
1029 for_each_sg(sg, s, nents, i)
1030 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1031 dir);
1032}
1033
1034/*
1035 * Return whether the given device DMA address mask can be supported
1036 * properly. For example, if your device can only drive the low 24-bits
1037 * during bus mastering, then you would pass 0x00ffffff as the mask
1038 * to this function.
1039 */
1040int dma_supported(struct device *dev, u64 mask)
1041{
1042 return __dma_supported(dev, mask, false);
1043}
1044EXPORT_SYMBOL(dma_supported);
1045
1046int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1047{
1048 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1049 return -EIO;
1050
1051 *dev->dma_mask = dma_mask;
1052
1053 return 0;
1054}
1055
1056#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1057
1058static int __init dma_debug_do_init(void)
1059{
1060 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1061 return 0;
1062}
1063fs_initcall(dma_debug_do_init);
1064
1065#ifdef CONFIG_ARM_DMA_USE_IOMMU
1066
1067/* IOMMU */
1068
1069static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1070
1071static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1072 size_t size)
1073{
1074 unsigned int order = get_order(size);
1075 unsigned int align = 0;
1076 unsigned int count, start;
1077 unsigned long flags;
1078 dma_addr_t iova;
1079 int i;
1080
1081 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1082 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1083
1084 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1085 align = (1 << order) - 1;
1086
1087 spin_lock_irqsave(&mapping->lock, flags);
1088 for (i = 0; i < mapping->nr_bitmaps; i++) {
1089 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1090 mapping->bits, 0, count, align);
1091
1092 if (start > mapping->bits)
1093 continue;
1094
1095 bitmap_set(mapping->bitmaps[i], start, count);
1096 break;
1097 }
1098
1099 /*
1100 * No unused range found. Try to extend the existing mapping
1101 * and perform a second attempt to reserve an IO virtual
1102 * address range of size bytes.
1103 */
1104 if (i == mapping->nr_bitmaps) {
1105 if (extend_iommu_mapping(mapping)) {
1106 spin_unlock_irqrestore(&mapping->lock, flags);
1107 return DMA_ERROR_CODE;
1108 }
1109
1110 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1111 mapping->bits, 0, count, align);
1112
1113 if (start > mapping->bits) {
1114 spin_unlock_irqrestore(&mapping->lock, flags);
1115 return DMA_ERROR_CODE;
1116 }
1117
1118 bitmap_set(mapping->bitmaps[i], start, count);
1119 }
1120 spin_unlock_irqrestore(&mapping->lock, flags);
1121
1122 iova = mapping->base + (mapping->size * i);
1123 iova += start << PAGE_SHIFT;
1124
1125 return iova;
1126}
1127
1128static inline void __free_iova(struct dma_iommu_mapping *mapping,
1129 dma_addr_t addr, size_t size)
1130{
1131 unsigned int start, count;
1132 unsigned long flags;
1133 dma_addr_t bitmap_base;
1134 u32 bitmap_index;
1135
1136 if (!size)
1137 return;
1138
1139 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping->size;
1140 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1141
1142 bitmap_base = mapping->base + mapping->size * bitmap_index;
1143
1144 start = (addr - bitmap_base) >> PAGE_SHIFT;
1145
1146 if (addr + size > bitmap_base + mapping->size) {
1147 /*
1148 * The address range to be freed reaches into the iova
1149 * range of the next bitmap. This should not happen as
1150 * we don't allow this in __alloc_iova (at the
1151 * moment).
1152 */
1153 BUG();
1154 } else
1155 count = size >> PAGE_SHIFT;
1156
1157 spin_lock_irqsave(&mapping->lock, flags);
1158 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1159 spin_unlock_irqrestore(&mapping->lock, flags);
1160}
1161
1162static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1163 gfp_t gfp, struct dma_attrs *attrs)
1164{
1165 struct page **pages;
1166 int count = size >> PAGE_SHIFT;
1167 int array_size = count * sizeof(struct page *);
1168 int i = 0;
1169
1170 if (array_size <= PAGE_SIZE)
1171 pages = kzalloc(array_size, gfp);
1172 else
1173 pages = vzalloc(array_size);
1174 if (!pages)
1175 return NULL;
1176
1177 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1178 {
1179 unsigned long order = get_order(size);
1180 struct page *page;
1181
1182 page = dma_alloc_from_contiguous(dev, count, order);
1183 if (!page)
1184 goto error;
1185
1186 __dma_clear_buffer(page, size);
1187
1188 for (i = 0; i < count; i++)
1189 pages[i] = page + i;
1190
1191 return pages;
1192 }
1193
1194 /*
1195 * IOMMU can map any pages, so himem can also be used here
1196 */
1197 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1198
1199 while (count) {
1200 int j, order = __fls(count);
1201
1202 pages[i] = alloc_pages(gfp, order);
1203 while (!pages[i] && order)
1204 pages[i] = alloc_pages(gfp, --order);
1205 if (!pages[i])
1206 goto error;
1207
1208 if (order) {
1209 split_page(pages[i], order);
1210 j = 1 << order;
1211 while (--j)
1212 pages[i + j] = pages[i] + j;
1213 }
1214
1215 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1216 i += 1 << order;
1217 count -= 1 << order;
1218 }
1219
1220 return pages;
1221error:
1222 while (i--)
1223 if (pages[i])
1224 __free_pages(pages[i], 0);
1225 if (array_size <= PAGE_SIZE)
1226 kfree(pages);
1227 else
1228 vfree(pages);
1229 return NULL;
1230}
1231
1232static int __iommu_free_buffer(struct device *dev, struct page **pages,
1233 size_t size, struct dma_attrs *attrs)
1234{
1235 int count = size >> PAGE_SHIFT;
1236 int array_size = count * sizeof(struct page *);
1237 int i;
1238
1239 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1240 dma_release_from_contiguous(dev, pages[0], count);
1241 } else {
1242 for (i = 0; i < count; i++)
1243 if (pages[i])
1244 __free_pages(pages[i], 0);
1245 }
1246
1247 if (array_size <= PAGE_SIZE)
1248 kfree(pages);
1249 else
1250 vfree(pages);
1251 return 0;
1252}
1253
1254/*
1255 * Create a CPU mapping for a specified pages
1256 */
1257static void *
1258__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1259 const void *caller)
1260{
1261 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1262 struct vm_struct *area;
1263 unsigned long p;
1264
1265 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1266 caller);
1267 if (!area)
1268 return NULL;
1269
1270 area->pages = pages;
1271 area->nr_pages = nr_pages;
1272 p = (unsigned long)area->addr;
1273
1274 for (i = 0; i < nr_pages; i++) {
1275 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1276 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1277 goto err;
1278 p += PAGE_SIZE;
1279 }
1280 return area->addr;
1281err:
1282 unmap_kernel_range((unsigned long)area->addr, size);
1283 vunmap(area->addr);
1284 return NULL;
1285}
1286
1287/*
1288 * Create a mapping in device IO address space for specified pages
1289 */
1290static dma_addr_t
1291__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1292{
1293 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1294 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1295 dma_addr_t dma_addr, iova;
1296 int i, ret = DMA_ERROR_CODE;
1297
1298 dma_addr = __alloc_iova(mapping, size);
1299 if (dma_addr == DMA_ERROR_CODE)
1300 return dma_addr;
1301
1302 iova = dma_addr;
1303 for (i = 0; i < count; ) {
1304 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1305 phys_addr_t phys = page_to_phys(pages[i]);
1306 unsigned int len, j;
1307
1308 for (j = i + 1; j < count; j++, next_pfn++)
1309 if (page_to_pfn(pages[j]) != next_pfn)
1310 break;
1311
1312 len = (j - i) << PAGE_SHIFT;
1313 ret = iommu_map(mapping->domain, iova, phys, len,
1314 IOMMU_READ|IOMMU_WRITE);
1315 if (ret < 0)
1316 goto fail;
1317 iova += len;
1318 i = j;
1319 }
1320 return dma_addr;
1321fail:
1322 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1323 __free_iova(mapping, dma_addr, size);
1324 return DMA_ERROR_CODE;
1325}
1326
1327static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1328{
1329 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1330
1331 /*
1332 * add optional in-page offset from iova to size and align
1333 * result to page size
1334 */
1335 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1336 iova &= PAGE_MASK;
1337
1338 iommu_unmap(mapping->domain, iova, size);
1339 __free_iova(mapping, iova, size);
1340 return 0;
1341}
1342
1343static struct page **__atomic_get_pages(void *addr)
1344{
1345 struct dma_pool *pool = &atomic_pool;
1346 struct page **pages = pool->pages;
1347 int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1348
1349 return pages + offs;
1350}
1351
1352static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1353{
1354 struct vm_struct *area;
1355
1356 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1357 return __atomic_get_pages(cpu_addr);
1358
1359 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1360 return cpu_addr;
1361
1362 area = find_vm_area(cpu_addr);
1363 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1364 return area->pages;
1365 return NULL;
1366}
1367
1368static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1369 dma_addr_t *handle)
1370{
1371 struct page *page;
1372 void *addr;
1373
1374 addr = __alloc_from_pool(size, &page);
1375 if (!addr)
1376 return NULL;
1377
1378 *handle = __iommu_create_mapping(dev, &page, size);
1379 if (*handle == DMA_ERROR_CODE)
1380 goto err_mapping;
1381
1382 return addr;
1383
1384err_mapping:
1385 __free_from_pool(addr, size);
1386 return NULL;
1387}
1388
1389static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1390 dma_addr_t handle, size_t size)
1391{
1392 __iommu_remove_mapping(dev, handle, size);
1393 __free_from_pool(cpu_addr, size);
1394}
1395
1396static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1397 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1398{
1399 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1400 struct page **pages;
1401 void *addr = NULL;
1402
1403 *handle = DMA_ERROR_CODE;
1404 size = PAGE_ALIGN(size);
1405
1406 if (!(gfp & __GFP_WAIT))
1407 return __iommu_alloc_atomic(dev, size, handle);
1408
1409 /*
1410 * Following is a work-around (a.k.a. hack) to prevent pages
1411 * with __GFP_COMP being passed to split_page() which cannot
1412 * handle them. The real problem is that this flag probably
1413 * should be 0 on ARM as it is not supported on this
1414 * platform; see CONFIG_HUGETLBFS.
1415 */
1416 gfp &= ~(__GFP_COMP);
1417
1418 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1419 if (!pages)
1420 return NULL;
1421
1422 *handle = __iommu_create_mapping(dev, pages, size);
1423 if (*handle == DMA_ERROR_CODE)
1424 goto err_buffer;
1425
1426 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1427 return pages;
1428
1429 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1430 __builtin_return_address(0));
1431 if (!addr)
1432 goto err_mapping;
1433
1434 return addr;
1435
1436err_mapping:
1437 __iommu_remove_mapping(dev, *handle, size);
1438err_buffer:
1439 __iommu_free_buffer(dev, pages, size, attrs);
1440 return NULL;
1441}
1442
1443static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1444 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1445 struct dma_attrs *attrs)
1446{
1447 unsigned long uaddr = vma->vm_start;
1448 unsigned long usize = vma->vm_end - vma->vm_start;
1449 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1450
1451 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1452
1453 if (!pages)
1454 return -ENXIO;
1455
1456 do {
1457 int ret = vm_insert_page(vma, uaddr, *pages++);
1458 if (ret) {
1459 pr_err("Remapping memory failed: %d\n", ret);
1460 return ret;
1461 }
1462 uaddr += PAGE_SIZE;
1463 usize -= PAGE_SIZE;
1464 } while (usize > 0);
1465
1466 return 0;
1467}
1468
1469/*
1470 * free a page as defined by the above mapping.
1471 * Must not be called with IRQs disabled.
1472 */
1473void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1474 dma_addr_t handle, struct dma_attrs *attrs)
1475{
1476 struct page **pages;
1477 size = PAGE_ALIGN(size);
1478
1479 if (__in_atomic_pool(cpu_addr, size)) {
1480 __iommu_free_atomic(dev, cpu_addr, handle, size);
1481 return;
1482 }
1483
1484 pages = __iommu_get_pages(cpu_addr, attrs);
1485 if (!pages) {
1486 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1487 return;
1488 }
1489
1490 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1491 unmap_kernel_range((unsigned long)cpu_addr, size);
1492 vunmap(cpu_addr);
1493 }
1494
1495 __iommu_remove_mapping(dev, handle, size);
1496 __iommu_free_buffer(dev, pages, size, attrs);
1497}
1498
1499static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1500 void *cpu_addr, dma_addr_t dma_addr,
1501 size_t size, struct dma_attrs *attrs)
1502{
1503 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1504 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1505
1506 if (!pages)
1507 return -ENXIO;
1508
1509 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1510 GFP_KERNEL);
1511}
1512
1513static int __dma_direction_to_prot(enum dma_data_direction dir)
1514{
1515 int prot;
1516
1517 switch (dir) {
1518 case DMA_BIDIRECTIONAL:
1519 prot = IOMMU_READ | IOMMU_WRITE;
1520 break;
1521 case DMA_TO_DEVICE:
1522 prot = IOMMU_READ;
1523 break;
1524 case DMA_FROM_DEVICE:
1525 prot = IOMMU_WRITE;
1526 break;
1527 default:
1528 prot = 0;
1529 }
1530
1531 return prot;
1532}
1533
1534/*
1535 * Map a part of the scatter-gather list into contiguous io address space
1536 */
1537static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1538 size_t size, dma_addr_t *handle,
1539 enum dma_data_direction dir, struct dma_attrs *attrs,
1540 bool is_coherent)
1541{
1542 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1543 dma_addr_t iova, iova_base;
1544 int ret = 0;
1545 unsigned int count;
1546 struct scatterlist *s;
1547 int prot;
1548
1549 size = PAGE_ALIGN(size);
1550 *handle = DMA_ERROR_CODE;
1551
1552 iova_base = iova = __alloc_iova(mapping, size);
1553 if (iova == DMA_ERROR_CODE)
1554 return -ENOMEM;
1555
1556 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1557 phys_addr_t phys = page_to_phys(sg_page(s));
1558 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1559
1560 if (!is_coherent &&
1561 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1562 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1563
1564 prot = __dma_direction_to_prot(dir);
1565
1566 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1567 if (ret < 0)
1568 goto fail;
1569 count += len >> PAGE_SHIFT;
1570 iova += len;
1571 }
1572 *handle = iova_base;
1573
1574 return 0;
1575fail:
1576 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1577 __free_iova(mapping, iova_base, size);
1578 return ret;
1579}
1580
1581static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1582 enum dma_data_direction dir, struct dma_attrs *attrs,
1583 bool is_coherent)
1584{
1585 struct scatterlist *s = sg, *dma = sg, *start = sg;
1586 int i, count = 0;
1587 unsigned int offset = s->offset;
1588 unsigned int size = s->offset + s->length;
1589 unsigned int max = dma_get_max_seg_size(dev);
1590
1591 for (i = 1; i < nents; i++) {
1592 s = sg_next(s);
1593
1594 s->dma_address = DMA_ERROR_CODE;
1595 s->dma_length = 0;
1596
1597 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1598 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1599 dir, attrs, is_coherent) < 0)
1600 goto bad_mapping;
1601
1602 dma->dma_address += offset;
1603 dma->dma_length = size - offset;
1604
1605 size = offset = s->offset;
1606 start = s;
1607 dma = sg_next(dma);
1608 count += 1;
1609 }
1610 size += s->length;
1611 }
1612 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1613 is_coherent) < 0)
1614 goto bad_mapping;
1615
1616 dma->dma_address += offset;
1617 dma->dma_length = size - offset;
1618
1619 return count+1;
1620
1621bad_mapping:
1622 for_each_sg(sg, s, count, i)
1623 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1624 return 0;
1625}
1626
1627/**
1628 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1629 * @dev: valid struct device pointer
1630 * @sg: list of buffers
1631 * @nents: number of buffers to map
1632 * @dir: DMA transfer direction
1633 *
1634 * Map a set of i/o coherent buffers described by scatterlist in streaming
1635 * mode for DMA. The scatter gather list elements are merged together (if
1636 * possible) and tagged with the appropriate dma address and length. They are
1637 * obtained via sg_dma_{address,length}.
1638 */
1639int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1640 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1641{
1642 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1643}
1644
1645/**
1646 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1647 * @dev: valid struct device pointer
1648 * @sg: list of buffers
1649 * @nents: number of buffers to map
1650 * @dir: DMA transfer direction
1651 *
1652 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1653 * The scatter gather list elements are merged together (if possible) and
1654 * tagged with the appropriate dma address and length. They are obtained via
1655 * sg_dma_{address,length}.
1656 */
1657int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1658 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1659{
1660 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1661}
1662
1663static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1664 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1665 bool is_coherent)
1666{
1667 struct scatterlist *s;
1668 int i;
1669
1670 for_each_sg(sg, s, nents, i) {
1671 if (sg_dma_len(s))
1672 __iommu_remove_mapping(dev, sg_dma_address(s),
1673 sg_dma_len(s));
1674 if (!is_coherent &&
1675 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1676 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1677 s->length, dir);
1678 }
1679}
1680
1681/**
1682 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1683 * @dev: valid struct device pointer
1684 * @sg: list of buffers
1685 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1686 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1687 *
1688 * Unmap a set of streaming mode DMA translations. Again, CPU access
1689 * rules concerning calls here are the same as for dma_unmap_single().
1690 */
1691void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1692 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1693{
1694 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1695}
1696
1697/**
1698 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1699 * @dev: valid struct device pointer
1700 * @sg: list of buffers
1701 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1702 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1703 *
1704 * Unmap a set of streaming mode DMA translations. Again, CPU access
1705 * rules concerning calls here are the same as for dma_unmap_single().
1706 */
1707void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1708 enum dma_data_direction dir, struct dma_attrs *attrs)
1709{
1710 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1711}
1712
1713/**
1714 * arm_iommu_sync_sg_for_cpu
1715 * @dev: valid struct device pointer
1716 * @sg: list of buffers
1717 * @nents: number of buffers to map (returned from dma_map_sg)
1718 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1719 */
1720void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1721 int nents, enum dma_data_direction dir)
1722{
1723 struct scatterlist *s;
1724 int i;
1725
1726 for_each_sg(sg, s, nents, i)
1727 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1728
1729}
1730
1731/**
1732 * arm_iommu_sync_sg_for_device
1733 * @dev: valid struct device pointer
1734 * @sg: list of buffers
1735 * @nents: number of buffers to map (returned from dma_map_sg)
1736 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1737 */
1738void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1739 int nents, enum dma_data_direction dir)
1740{
1741 struct scatterlist *s;
1742 int i;
1743
1744 for_each_sg(sg, s, nents, i)
1745 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1746}
1747
1748
1749/**
1750 * arm_coherent_iommu_map_page
1751 * @dev: valid struct device pointer
1752 * @page: page that buffer resides in
1753 * @offset: offset into page for start of buffer
1754 * @size: size of buffer to map
1755 * @dir: DMA transfer direction
1756 *
1757 * Coherent IOMMU aware version of arm_dma_map_page()
1758 */
1759static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1760 unsigned long offset, size_t size, enum dma_data_direction dir,
1761 struct dma_attrs *attrs)
1762{
1763 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1764 dma_addr_t dma_addr;
1765 int ret, prot, len = PAGE_ALIGN(size + offset);
1766
1767 dma_addr = __alloc_iova(mapping, len);
1768 if (dma_addr == DMA_ERROR_CODE)
1769 return dma_addr;
1770
1771 prot = __dma_direction_to_prot(dir);
1772
1773 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1774 if (ret < 0)
1775 goto fail;
1776
1777 return dma_addr + offset;
1778fail:
1779 __free_iova(mapping, dma_addr, len);
1780 return DMA_ERROR_CODE;
1781}
1782
1783/**
1784 * arm_iommu_map_page
1785 * @dev: valid struct device pointer
1786 * @page: page that buffer resides in
1787 * @offset: offset into page for start of buffer
1788 * @size: size of buffer to map
1789 * @dir: DMA transfer direction
1790 *
1791 * IOMMU aware version of arm_dma_map_page()
1792 */
1793static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1794 unsigned long offset, size_t size, enum dma_data_direction dir,
1795 struct dma_attrs *attrs)
1796{
1797 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1798 __dma_page_cpu_to_dev(page, offset, size, dir);
1799
1800 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1801}
1802
1803/**
1804 * arm_coherent_iommu_unmap_page
1805 * @dev: valid struct device pointer
1806 * @handle: DMA address of buffer
1807 * @size: size of buffer (same as passed to dma_map_page)
1808 * @dir: DMA transfer direction (same as passed to dma_map_page)
1809 *
1810 * Coherent IOMMU aware version of arm_dma_unmap_page()
1811 */
1812static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1813 size_t size, enum dma_data_direction dir,
1814 struct dma_attrs *attrs)
1815{
1816 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1817 dma_addr_t iova = handle & PAGE_MASK;
1818 int offset = handle & ~PAGE_MASK;
1819 int len = PAGE_ALIGN(size + offset);
1820
1821 if (!iova)
1822 return;
1823
1824 iommu_unmap(mapping->domain, iova, len);
1825 __free_iova(mapping, iova, len);
1826}
1827
1828/**
1829 * arm_iommu_unmap_page
1830 * @dev: valid struct device pointer
1831 * @handle: DMA address of buffer
1832 * @size: size of buffer (same as passed to dma_map_page)
1833 * @dir: DMA transfer direction (same as passed to dma_map_page)
1834 *
1835 * IOMMU aware version of arm_dma_unmap_page()
1836 */
1837static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1838 size_t size, enum dma_data_direction dir,
1839 struct dma_attrs *attrs)
1840{
1841 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1842 dma_addr_t iova = handle & PAGE_MASK;
1843 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1844 int offset = handle & ~PAGE_MASK;
1845 int len = PAGE_ALIGN(size + offset);
1846
1847 if (!iova)
1848 return;
1849
1850 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1851 __dma_page_dev_to_cpu(page, offset, size, dir);
1852
1853 iommu_unmap(mapping->domain, iova, len);
1854 __free_iova(mapping, iova, len);
1855}
1856
1857static void arm_iommu_sync_single_for_cpu(struct device *dev,
1858 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1859{
1860 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1861 dma_addr_t iova = handle & PAGE_MASK;
1862 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1863 unsigned int offset = handle & ~PAGE_MASK;
1864
1865 if (!iova)
1866 return;
1867
1868 __dma_page_dev_to_cpu(page, offset, size, dir);
1869}
1870
1871static void arm_iommu_sync_single_for_device(struct device *dev,
1872 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1873{
1874 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1875 dma_addr_t iova = handle & PAGE_MASK;
1876 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1877 unsigned int offset = handle & ~PAGE_MASK;
1878
1879 if (!iova)
1880 return;
1881
1882 __dma_page_cpu_to_dev(page, offset, size, dir);
1883}
1884
1885struct dma_map_ops iommu_ops = {
1886 .alloc = arm_iommu_alloc_attrs,
1887 .free = arm_iommu_free_attrs,
1888 .mmap = arm_iommu_mmap_attrs,
1889 .get_sgtable = arm_iommu_get_sgtable,
1890
1891 .map_page = arm_iommu_map_page,
1892 .unmap_page = arm_iommu_unmap_page,
1893 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1894 .sync_single_for_device = arm_iommu_sync_single_for_device,
1895
1896 .map_sg = arm_iommu_map_sg,
1897 .unmap_sg = arm_iommu_unmap_sg,
1898 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1899 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1900
1901 .set_dma_mask = arm_dma_set_mask,
1902};
1903
1904struct dma_map_ops iommu_coherent_ops = {
1905 .alloc = arm_iommu_alloc_attrs,
1906 .free = arm_iommu_free_attrs,
1907 .mmap = arm_iommu_mmap_attrs,
1908 .get_sgtable = arm_iommu_get_sgtable,
1909
1910 .map_page = arm_coherent_iommu_map_page,
1911 .unmap_page = arm_coherent_iommu_unmap_page,
1912
1913 .map_sg = arm_coherent_iommu_map_sg,
1914 .unmap_sg = arm_coherent_iommu_unmap_sg,
1915
1916 .set_dma_mask = arm_dma_set_mask,
1917};
1918
1919/**
1920 * arm_iommu_create_mapping
1921 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1922 * @base: start address of the valid IO address space
1923 * @size: maximum size of the valid IO address space
1924 *
1925 * Creates a mapping structure which holds information about used/unused
1926 * IO address ranges, which is required to perform memory allocation and
1927 * mapping with IOMMU aware functions.
1928 *
1929 * The client device need to be attached to the mapping with
1930 * arm_iommu_attach_device function.
1931 */
1932struct dma_iommu_mapping *
1933arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
1934{
1935 unsigned int bits = size >> PAGE_SHIFT;
1936 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1937 struct dma_iommu_mapping *mapping;
1938 int extensions = 1;
1939 int err = -ENOMEM;
1940
1941 if (!bitmap_size)
1942 return ERR_PTR(-EINVAL);
1943
1944 if (bitmap_size > PAGE_SIZE) {
1945 extensions = bitmap_size / PAGE_SIZE;
1946 bitmap_size = PAGE_SIZE;
1947 }
1948
1949 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1950 if (!mapping)
1951 goto err;
1952
1953 mapping->bitmap_size = bitmap_size;
1954 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1955 GFP_KERNEL);
1956 if (!mapping->bitmaps)
1957 goto err2;
1958
1959 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1960 if (!mapping->bitmaps[0])
1961 goto err3;
1962
1963 mapping->nr_bitmaps = 1;
1964 mapping->extensions = extensions;
1965 mapping->base = base;
1966 mapping->bits = BITS_PER_BYTE * bitmap_size;
1967 mapping->size = mapping->bits << PAGE_SHIFT;
1968
1969 spin_lock_init(&mapping->lock);
1970
1971 mapping->domain = iommu_domain_alloc(bus);
1972 if (!mapping->domain)
1973 goto err4;
1974
1975 kref_init(&mapping->kref);
1976 return mapping;
1977err4:
1978 kfree(mapping->bitmaps[0]);
1979err3:
1980 kfree(mapping->bitmaps);
1981err2:
1982 kfree(mapping);
1983err:
1984 return ERR_PTR(err);
1985}
1986EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1987
1988static void release_iommu_mapping(struct kref *kref)
1989{
1990 int i;
1991 struct dma_iommu_mapping *mapping =
1992 container_of(kref, struct dma_iommu_mapping, kref);
1993
1994 iommu_domain_free(mapping->domain);
1995 for (i = 0; i < mapping->nr_bitmaps; i++)
1996 kfree(mapping->bitmaps[i]);
1997 kfree(mapping->bitmaps);
1998 kfree(mapping);
1999}
2000
2001static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2002{
2003 int next_bitmap;
2004
2005 if (mapping->nr_bitmaps > mapping->extensions)
2006 return -EINVAL;
2007
2008 next_bitmap = mapping->nr_bitmaps;
2009 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2010 GFP_ATOMIC);
2011 if (!mapping->bitmaps[next_bitmap])
2012 return -ENOMEM;
2013
2014 mapping->nr_bitmaps++;
2015
2016 return 0;
2017}
2018
2019void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2020{
2021 if (mapping)
2022 kref_put(&mapping->kref, release_iommu_mapping);
2023}
2024EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2025
2026/**
2027 * arm_iommu_attach_device
2028 * @dev: valid struct device pointer
2029 * @mapping: io address space mapping structure (returned from
2030 * arm_iommu_create_mapping)
2031 *
2032 * Attaches specified io address space mapping to the provided device,
2033 * this replaces the dma operations (dma_map_ops pointer) with the
2034 * IOMMU aware version. More than one client might be attached to
2035 * the same io address space mapping.
2036 */
2037int arm_iommu_attach_device(struct device *dev,
2038 struct dma_iommu_mapping *mapping)
2039{
2040 int err;
2041
2042 err = iommu_attach_device(mapping->domain, dev);
2043 if (err)
2044 return err;
2045
2046 kref_get(&mapping->kref);
2047 dev->archdata.mapping = mapping;
2048 set_dma_ops(dev, &iommu_ops);
2049
2050 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2051 return 0;
2052}
2053EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2054
2055/**
2056 * arm_iommu_detach_device
2057 * @dev: valid struct device pointer
2058 *
2059 * Detaches the provided device from a previously attached map.
2060 * This voids the dma operations (dma_map_ops pointer)
2061 */
2062void arm_iommu_detach_device(struct device *dev)
2063{
2064 struct dma_iommu_mapping *mapping;
2065
2066 mapping = to_dma_iommu_mapping(dev);
2067 if (!mapping) {
2068 dev_warn(dev, "Not attached\n");
2069 return;
2070 }
2071
2072 iommu_detach_device(mapping->domain, dev);
2073 kref_put(&mapping->kref, release_iommu_mapping);
2074 dev->archdata.mapping = NULL;
2075 set_dma_ops(dev, NULL);
2076
2077 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2078}
2079EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2080
2081#endif