Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * User-space Probes (UProbes) for x86
   4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 * Copyright (C) IBM Corporation, 2008-2011
   6 * Authors:
   7 *	Srikar Dronamraju
   8 *	Jim Keniston
   9 */
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/ptrace.h>
  13#include <linux/uprobes.h>
  14#include <linux/uaccess.h>
  15
  16#include <linux/kdebug.h>
  17#include <asm/processor.h>
  18#include <asm/insn.h>
  19#include <asm/mmu_context.h>
  20
  21/* Post-execution fixups. */
  22
  23/* Adjust IP back to vicinity of actual insn */
  24#define UPROBE_FIX_IP		0x01
  25
  26/* Adjust the return address of a call insn */
  27#define UPROBE_FIX_CALL		0x02
  28
  29/* Instruction will modify TF, don't change it */
  30#define UPROBE_FIX_SETF		0x04
  31
  32#define UPROBE_FIX_RIP_SI	0x08
  33#define UPROBE_FIX_RIP_DI	0x10
  34#define UPROBE_FIX_RIP_BX	0x20
  35#define UPROBE_FIX_RIP_MASK	\
  36	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
  37
  38#define	UPROBE_TRAP_NR		UINT_MAX
  39
  40/* Adaptations for mhiramat x86 decoder v14. */
  41#define OPCODE1(insn)		((insn)->opcode.bytes[0])
  42#define OPCODE2(insn)		((insn)->opcode.bytes[1])
  43#define OPCODE3(insn)		((insn)->opcode.bytes[2])
  44#define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
  45
  46#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  47	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  48	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  49	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  50	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  51	 << (row % 32))
  52
  53/*
  54 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
  55 * to keep gcc from statically optimizing it out, as variable_test_bit makes
  56 * some versions of gcc to think only *(unsigned long*) is used.
  57 *
  58 * Opcodes we'll probably never support:
  59 * 6c-6f - ins,outs. SEGVs if used in userspace
  60 * e4-e7 - in,out imm. SEGVs if used in userspace
  61 * ec-ef - in,out acc. SEGVs if used in userspace
  62 * cc - int3. SIGTRAP if used in userspace
  63 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
  64 *	(why we support bound (62) then? it's similar, and similarly unused...)
  65 * f1 - int1. SIGTRAP if used in userspace
  66 * f4 - hlt. SEGVs if used in userspace
  67 * fa - cli. SEGVs if used in userspace
  68 * fb - sti. SEGVs if used in userspace
  69 *
  70 * Opcodes which need some work to be supported:
  71 * 07,17,1f - pop es/ss/ds
  72 *	Normally not used in userspace, but would execute if used.
  73 *	Can cause GP or stack exception if tries to load wrong segment descriptor.
  74 *	We hesitate to run them under single step since kernel's handling
  75 *	of userspace single-stepping (TF flag) is fragile.
  76 *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
  77 *	on the same grounds that they are never used.
  78 * cd - int N.
  79 *	Used by userspace for "int 80" syscall entry. (Other "int N"
  80 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
  81 *	Not supported since kernel's handling of userspace single-stepping
  82 *	(TF flag) is fragile.
  83 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
  84 */
  85#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
  86static volatile u32 good_insns_32[256 / 32] = {
  87	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
  88	/*      ----------------------------------------------         */
  89	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
  90	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
  91	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
  92	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
  93	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  94	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
  95	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
  96	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
  97	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
  98	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  99	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 100	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 101	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 102	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 103	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
 104	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 105	/*      ----------------------------------------------         */
 106	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 107};
 108#else
 109#define good_insns_32	NULL
 110#endif
 111
 112/* Good-instruction tables for 64-bit apps.
 113 *
 114 * Genuinely invalid opcodes:
 115 * 06,07 - formerly push/pop es
 116 * 0e - formerly push cs
 117 * 16,17 - formerly push/pop ss
 118 * 1e,1f - formerly push/pop ds
 119 * 27,2f,37,3f - formerly daa/das/aaa/aas
 120 * 60,61 - formerly pusha/popa
 121 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
 122 * 82 - formerly redundant encoding of Group1
 123 * 9a - formerly call seg:ofs
 124 * ce - formerly into
 125 * d4,d5 - formerly aam/aad
 126 * d6 - formerly undocumented salc
 127 * ea - formerly jmp seg:ofs
 128 *
 129 * Opcodes we'll probably never support:
 130 * 6c-6f - ins,outs. SEGVs if used in userspace
 131 * e4-e7 - in,out imm. SEGVs if used in userspace
 132 * ec-ef - in,out acc. SEGVs if used in userspace
 133 * cc - int3. SIGTRAP if used in userspace
 134 * f1 - int1. SIGTRAP if used in userspace
 135 * f4 - hlt. SEGVs if used in userspace
 136 * fa - cli. SEGVs if used in userspace
 137 * fb - sti. SEGVs if used in userspace
 138 *
 139 * Opcodes which need some work to be supported:
 140 * cd - int N.
 141 *	Used by userspace for "int 80" syscall entry. (Other "int N"
 142 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
 143 *	Not supported since kernel's handling of userspace single-stepping
 144 *	(TF flag) is fragile.
 145 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
 146 */
 147#if defined(CONFIG_X86_64)
 148static volatile u32 good_insns_64[256 / 32] = {
 149	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 150	/*      ----------------------------------------------         */
 151	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
 152	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
 153	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
 154	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
 155	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 156	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 157	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 158	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 159	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 160	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
 161	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 162	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 163	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 164	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 165	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
 166	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 167	/*      ----------------------------------------------         */
 168	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 169};
 170#else
 171#define good_insns_64	NULL
 172#endif
 173
 174/* Using this for both 64-bit and 32-bit apps.
 175 * Opcodes we don't support:
 176 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
 177 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
 178 *	Also encodes tons of other system insns if mod=11.
 179 *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
 180 * 0f 05 - syscall
 181 * 0f 06 - clts (CPL0 insn)
 182 * 0f 07 - sysret
 183 * 0f 08 - invd (CPL0 insn)
 184 * 0f 09 - wbinvd (CPL0 insn)
 185 * 0f 0b - ud2
 186 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
 187 * 0f 34 - sysenter
 188 * 0f 35 - sysexit
 189 * 0f 37 - getsec
 190 * 0f 78 - vmread (Intel VMX. CPL0 insn)
 191 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
 192 *	Note: with prefixes, these two opcodes are
 193 *	extrq/insertq/AVX512 convert vector ops.
 194 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
 195 *	{rd,wr}{fs,gs}base,{s,l,m}fence.
 196 *	Why? They are all user-executable.
 197 */
 198static volatile u32 good_2byte_insns[256 / 32] = {
 199	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 200	/*      ----------------------------------------------         */
 201	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
 202	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
 203	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 204	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
 205	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 206	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 207	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
 208	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
 209	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 210	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 211	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
 212	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 213	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
 214	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 215	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
 216	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
 217	/*      ----------------------------------------------         */
 218	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 219};
 220#undef W
 221
 222/*
 223 * opcodes we may need to refine support for:
 224 *
 225 *  0f - 2-byte instructions: For many of these instructions, the validity
 226 *  depends on the prefix and/or the reg field.  On such instructions, we
 227 *  just consider the opcode combination valid if it corresponds to any
 228 *  valid instruction.
 229 *
 230 *  8f - Group 1 - only reg = 0 is OK
 231 *  c6-c7 - Group 11 - only reg = 0 is OK
 232 *  d9-df - fpu insns with some illegal encodings
 233 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
 234 *  certain floating-point instructions, such as addsd.
 235 *
 236 *  fe - Group 4 - only reg = 0 or 1 is OK
 237 *  ff - Group 5 - only reg = 0-6 is OK
 238 *
 239 * others -- Do we need to support these?
 240 *
 241 *  0f - (floating-point?) prefetch instructions
 242 *  07, 17, 1f - pop es, pop ss, pop ds
 243 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
 244 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
 245 *  67 - addr16 prefix
 246 *  ce - into
 247 *  f0 - lock prefix
 248 */
 249
 250/*
 251 * TODO:
 252 * - Where necessary, examine the modrm byte and allow only valid instructions
 253 * in the different Groups and fpu instructions.
 254 */
 255
 256static bool is_prefix_bad(struct insn *insn)
 257{
 258	int i;
 259
 260	for (i = 0; i < insn->prefixes.nbytes; i++) {
 261		insn_attr_t attr;
 262
 263		attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
 264		switch (attr) {
 265		case INAT_MAKE_PREFIX(INAT_PFX_ES):
 266		case INAT_MAKE_PREFIX(INAT_PFX_CS):
 267		case INAT_MAKE_PREFIX(INAT_PFX_DS):
 268		case INAT_MAKE_PREFIX(INAT_PFX_SS):
 269		case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
 270			return true;
 271		}
 272	}
 273	return false;
 274}
 275
 276static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
 277{
 278	u32 volatile *good_insns;
 279
 280	insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
 281	/* has the side-effect of processing the entire instruction */
 282	insn_get_length(insn);
 283	if (!insn_complete(insn))
 284		return -ENOEXEC;
 285
 286	if (is_prefix_bad(insn))
 287		return -ENOTSUPP;
 288
 289	/* We should not singlestep on the exception masking instructions */
 290	if (insn_masking_exception(insn))
 291		return -ENOTSUPP;
 292
 293	if (x86_64)
 294		good_insns = good_insns_64;
 295	else
 296		good_insns = good_insns_32;
 297
 298	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
 299		return 0;
 300
 301	if (insn->opcode.nbytes == 2) {
 302		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
 303			return 0;
 304	}
 305
 306	return -ENOTSUPP;
 307}
 308
 309#ifdef CONFIG_X86_64
 310/*
 311 * If arch_uprobe->insn doesn't use rip-relative addressing, return
 312 * immediately.  Otherwise, rewrite the instruction so that it accesses
 313 * its memory operand indirectly through a scratch register.  Set
 314 * defparam->fixups accordingly. (The contents of the scratch register
 315 * will be saved before we single-step the modified instruction,
 316 * and restored afterward).
 317 *
 318 * We do this because a rip-relative instruction can access only a
 319 * relatively small area (+/- 2 GB from the instruction), and the XOL
 320 * area typically lies beyond that area.  At least for instructions
 321 * that store to memory, we can't execute the original instruction
 322 * and "fix things up" later, because the misdirected store could be
 323 * disastrous.
 324 *
 325 * Some useful facts about rip-relative instructions:
 326 *
 327 *  - There's always a modrm byte with bit layout "00 reg 101".
 328 *  - There's never a SIB byte.
 329 *  - The displacement is always 4 bytes.
 330 *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
 331 *    has no effect on rip-relative mode. It doesn't make modrm byte
 332 *    with r/m=101 refer to register 1101 = R13.
 333 */
 334static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 335{
 336	u8 *cursor;
 337	u8 reg;
 338	u8 reg2;
 339
 340	if (!insn_rip_relative(insn))
 341		return;
 342
 343	/*
 344	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
 345	 * Clear REX.b bit (extension of MODRM.rm field):
 346	 * we want to encode low numbered reg, not r8+.
 347	 */
 348	if (insn->rex_prefix.nbytes) {
 349		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
 350		/* REX byte has 0100wrxb layout, clearing REX.b bit */
 351		*cursor &= 0xfe;
 352	}
 353	/*
 354	 * Similar treatment for VEX3/EVEX prefix.
 355	 * TODO: add XOP treatment when insn decoder supports them
 356	 */
 357	if (insn->vex_prefix.nbytes >= 3) {
 358		/*
 359		 * vex2:     c5    rvvvvLpp   (has no b bit)
 360		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
 361		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
 362		 * Setting VEX3.b (setting because it has inverted meaning).
 363		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
 364		 * is the 4th bit of MODRM.rm, and needs the same treatment.
 365		 * For VEX3-encoded insns, VEX3.x value has no effect in
 366		 * non-SIB encoding, the change is superfluous but harmless.
 367		 */
 368		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
 369		*cursor |= 0x60;
 370	}
 371
 372	/*
 373	 * Convert from rip-relative addressing to register-relative addressing
 374	 * via a scratch register.
 375	 *
 376	 * This is tricky since there are insns with modrm byte
 377	 * which also use registers not encoded in modrm byte:
 378	 * [i]div/[i]mul: implicitly use dx:ax
 379	 * shift ops: implicitly use cx
 380	 * cmpxchg: implicitly uses ax
 381	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
 382	 *   Encoding: 0f c7/1 modrm
 383	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
 384	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
 385	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
 386	 *   Example where none of bx,cx,dx can be used as scratch reg:
 387	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
 388	 * [v]pcmpistri: implicitly uses cx, xmm0
 389	 * [v]pcmpistrm: implicitly uses xmm0
 390	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
 391	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
 392	 *   Evil SSE4.2 string comparison ops from hell.
 393	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
 394	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
 395	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
 396	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
 397	 *   and that it can have only register operands, not mem
 398	 *   (its modrm byte must have mode=11).
 399	 *   If these restrictions will ever be lifted,
 400	 *   we'll need code to prevent selection of di as scratch reg!
 401	 *
 402	 * Summary: I don't know any insns with modrm byte which
 403	 * use SI register implicitly. DI register is used only
 404	 * by one insn (maskmovq) and BX register is used
 405	 * only by one too (cmpxchg8b).
 406	 * BP is stack-segment based (may be a problem?).
 407	 * AX, DX, CX are off-limits (many implicit users).
 408	 * SP is unusable (it's stack pointer - think about "pop mem";
 409	 * also, rsp+disp32 needs sib encoding -> insn length change).
 410	 */
 411
 412	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
 413	reg2 = 0xff;		/* Fetch vex.vvvv */
 414	if (insn->vex_prefix.nbytes)
 415		reg2 = insn->vex_prefix.bytes[2];
 416	/*
 417	 * TODO: add XOP vvvv reading.
 418	 *
 419	 * vex.vvvv field is in bits 6-3, bits are inverted.
 420	 * But in 32-bit mode, high-order bit may be ignored.
 421	 * Therefore, let's consider only 3 low-order bits.
 422	 */
 423	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
 424	/*
 425	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
 426	 *
 427	 * Choose scratch reg. Order is important: must not select bx
 428	 * if we can use si (cmpxchg8b case!)
 429	 */
 430	if (reg != 6 && reg2 != 6) {
 431		reg2 = 6;
 432		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
 433	} else if (reg != 7 && reg2 != 7) {
 434		reg2 = 7;
 435		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
 436		/* TODO (paranoia): force maskmovq to not use di */
 437	} else {
 438		reg2 = 3;
 439		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
 440	}
 441	/*
 442	 * Point cursor at the modrm byte.  The next 4 bytes are the
 443	 * displacement.  Beyond the displacement, for some instructions,
 444	 * is the immediate operand.
 445	 */
 446	cursor = auprobe->insn + insn_offset_modrm(insn);
 447	/*
 448	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
 449	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
 450	 * 89 86 disp32  mov %eax,disp32(%rsi)
 451	 */
 452	*cursor = 0x80 | (reg << 3) | reg2;
 453}
 454
 455static inline unsigned long *
 456scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
 457{
 458	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
 459		return &regs->si;
 460	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
 461		return &regs->di;
 462	return &regs->bx;
 463}
 464
 465/*
 466 * If we're emulating a rip-relative instruction, save the contents
 467 * of the scratch register and store the target address in that register.
 468 */
 469static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 470{
 471	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 472		struct uprobe_task *utask = current->utask;
 473		unsigned long *sr = scratch_reg(auprobe, regs);
 474
 475		utask->autask.saved_scratch_register = *sr;
 476		*sr = utask->vaddr + auprobe->defparam.ilen;
 477	}
 478}
 479
 480static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 481{
 482	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 483		struct uprobe_task *utask = current->utask;
 484		unsigned long *sr = scratch_reg(auprobe, regs);
 485
 486		*sr = utask->autask.saved_scratch_register;
 487	}
 488}
 489#else /* 32-bit: */
 490/*
 491 * No RIP-relative addressing on 32-bit
 492 */
 493static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 494{
 495}
 496static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 497{
 498}
 499static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 500{
 501}
 502#endif /* CONFIG_X86_64 */
 503
 504struct uprobe_xol_ops {
 505	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
 506	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
 507	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
 508	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
 509};
 510
 511static inline int sizeof_long(struct pt_regs *regs)
 512{
 513	/*
 514	 * Check registers for mode as in_xxx_syscall() does not apply here.
 515	 */
 516	return user_64bit_mode(regs) ? 8 : 4;
 517}
 518
 519static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 520{
 521	riprel_pre_xol(auprobe, regs);
 522	return 0;
 523}
 524
 525static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
 526{
 527	unsigned long new_sp = regs->sp - sizeof_long(regs);
 528
 529	if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
 530		return -EFAULT;
 531
 532	regs->sp = new_sp;
 533	return 0;
 534}
 535
 536/*
 537 * We have to fix things up as follows:
 538 *
 539 * Typically, the new ip is relative to the copied instruction.  We need
 540 * to make it relative to the original instruction (FIX_IP).  Exceptions
 541 * are return instructions and absolute or indirect jump or call instructions.
 542 *
 543 * If the single-stepped instruction was a call, the return address that
 544 * is atop the stack is the address following the copied instruction.  We
 545 * need to make it the address following the original instruction (FIX_CALL).
 546 *
 547 * If the original instruction was a rip-relative instruction such as
 548 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
 549 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
 550 * We need to restore the contents of the scratch register
 551 * (FIX_RIP_reg).
 552 */
 553static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 554{
 555	struct uprobe_task *utask = current->utask;
 556
 557	riprel_post_xol(auprobe, regs);
 558	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
 559		long correction = utask->vaddr - utask->xol_vaddr;
 560		regs->ip += correction;
 561	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
 562		regs->sp += sizeof_long(regs); /* Pop incorrect return address */
 563		if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
 564			return -ERESTART;
 565	}
 566	/* popf; tell the caller to not touch TF */
 567	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
 568		utask->autask.saved_tf = true;
 569
 570	return 0;
 571}
 572
 573static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 574{
 575	riprel_post_xol(auprobe, regs);
 576}
 577
 578static const struct uprobe_xol_ops default_xol_ops = {
 579	.pre_xol  = default_pre_xol_op,
 580	.post_xol = default_post_xol_op,
 581	.abort	  = default_abort_op,
 582};
 583
 584static bool branch_is_call(struct arch_uprobe *auprobe)
 585{
 586	return auprobe->branch.opc1 == 0xe8;
 587}
 588
 589#define CASE_COND					\
 590	COND(70, 71, XF(OF))				\
 591	COND(72, 73, XF(CF))				\
 592	COND(74, 75, XF(ZF))				\
 593	COND(78, 79, XF(SF))				\
 594	COND(7a, 7b, XF(PF))				\
 595	COND(76, 77, XF(CF) || XF(ZF))			\
 596	COND(7c, 7d, XF(SF) != XF(OF))			\
 597	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
 598
 599#define COND(op_y, op_n, expr)				\
 600	case 0x ## op_y: DO((expr) != 0)		\
 601	case 0x ## op_n: DO((expr) == 0)
 602
 603#define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
 604
 605static bool is_cond_jmp_opcode(u8 opcode)
 606{
 607	switch (opcode) {
 608	#define DO(expr)	\
 609		return true;
 610	CASE_COND
 611	#undef	DO
 612
 613	default:
 614		return false;
 615	}
 616}
 617
 618static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
 619{
 620	unsigned long flags = regs->flags;
 621
 622	switch (auprobe->branch.opc1) {
 623	#define DO(expr)	\
 624		return expr;
 625	CASE_COND
 626	#undef	DO
 627
 628	default:	/* not a conditional jmp */
 629		return true;
 630	}
 631}
 632
 633#undef	XF
 634#undef	COND
 635#undef	CASE_COND
 636
 637static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 638{
 639	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
 640	unsigned long offs = (long)auprobe->branch.offs;
 641
 642	if (branch_is_call(auprobe)) {
 643		/*
 644		 * If it fails we execute this (mangled, see the comment in
 645		 * branch_clear_offset) insn out-of-line. In the likely case
 646		 * this should trigger the trap, and the probed application
 647		 * should die or restart the same insn after it handles the
 648		 * signal, arch_uprobe_post_xol() won't be even called.
 649		 *
 650		 * But there is corner case, see the comment in ->post_xol().
 651		 */
 652		if (emulate_push_stack(regs, new_ip))
 653			return false;
 654	} else if (!check_jmp_cond(auprobe, regs)) {
 655		offs = 0;
 656	}
 657
 658	regs->ip = new_ip + offs;
 659	return true;
 660}
 661
 662static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 663{
 664	unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
 665
 666	if (emulate_push_stack(regs, *src_ptr))
 667		return false;
 668	regs->ip += auprobe->push.ilen;
 669	return true;
 670}
 671
 672static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 673{
 674	BUG_ON(!branch_is_call(auprobe));
 675	/*
 676	 * We can only get here if branch_emulate_op() failed to push the ret
 677	 * address _and_ another thread expanded our stack before the (mangled)
 678	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
 679	 * We could also restore ->ip and try to call branch_emulate_op() again.
 680	 */
 681	regs->sp += sizeof_long(regs);
 682	return -ERESTART;
 683}
 684
 685static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
 686{
 687	/*
 688	 * Turn this insn into "call 1f; 1:", this is what we will execute
 689	 * out-of-line if ->emulate() fails. We only need this to generate
 690	 * a trap, so that the probed task receives the correct signal with
 691	 * the properly filled siginfo.
 692	 *
 693	 * But see the comment in ->post_xol(), in the unlikely case it can
 694	 * succeed. So we need to ensure that the new ->ip can not fall into
 695	 * the non-canonical area and trigger #GP.
 696	 *
 697	 * We could turn it into (say) "pushf", but then we would need to
 698	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
 699	 * of ->insn[] for set_orig_insn().
 700	 */
 701	memset(auprobe->insn + insn_offset_immediate(insn),
 702		0, insn->immediate.nbytes);
 703}
 704
 705static const struct uprobe_xol_ops branch_xol_ops = {
 706	.emulate  = branch_emulate_op,
 707	.post_xol = branch_post_xol_op,
 708};
 709
 710static const struct uprobe_xol_ops push_xol_ops = {
 711	.emulate  = push_emulate_op,
 712};
 713
 714/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
 715static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 716{
 717	u8 opc1 = OPCODE1(insn);
 718	int i;
 719
 720	switch (opc1) {
 721	case 0xeb:	/* jmp 8 */
 722	case 0xe9:	/* jmp 32 */
 723	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
 724		break;
 725
 726	case 0xe8:	/* call relative */
 727		branch_clear_offset(auprobe, insn);
 728		break;
 729
 730	case 0x0f:
 731		if (insn->opcode.nbytes != 2)
 732			return -ENOSYS;
 733		/*
 734		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
 735		 * OPCODE1() of the "short" jmp which checks the same condition.
 736		 */
 737		opc1 = OPCODE2(insn) - 0x10;
 738		/* fall through */
 739	default:
 740		if (!is_cond_jmp_opcode(opc1))
 741			return -ENOSYS;
 742	}
 743
 744	/*
 745	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
 746	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
 747	 * No one uses these insns, reject any branch insns with such prefix.
 748	 */
 749	for (i = 0; i < insn->prefixes.nbytes; i++) {
 750		if (insn->prefixes.bytes[i] == 0x66)
 751			return -ENOTSUPP;
 752	}
 753
 754	auprobe->branch.opc1 = opc1;
 755	auprobe->branch.ilen = insn->length;
 756	auprobe->branch.offs = insn->immediate.value;
 757
 758	auprobe->ops = &branch_xol_ops;
 759	return 0;
 760}
 761
 762/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
 763static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 764{
 765	u8 opc1 = OPCODE1(insn), reg_offset = 0;
 766
 767	if (opc1 < 0x50 || opc1 > 0x57)
 768		return -ENOSYS;
 769
 770	if (insn->length > 2)
 771		return -ENOSYS;
 772	if (insn->length == 2) {
 773		/* only support rex_prefix 0x41 (x64 only) */
 774#ifdef CONFIG_X86_64
 775		if (insn->rex_prefix.nbytes != 1 ||
 776		    insn->rex_prefix.bytes[0] != 0x41)
 777			return -ENOSYS;
 778
 779		switch (opc1) {
 780		case 0x50:
 781			reg_offset = offsetof(struct pt_regs, r8);
 782			break;
 783		case 0x51:
 784			reg_offset = offsetof(struct pt_regs, r9);
 785			break;
 786		case 0x52:
 787			reg_offset = offsetof(struct pt_regs, r10);
 788			break;
 789		case 0x53:
 790			reg_offset = offsetof(struct pt_regs, r11);
 791			break;
 792		case 0x54:
 793			reg_offset = offsetof(struct pt_regs, r12);
 794			break;
 795		case 0x55:
 796			reg_offset = offsetof(struct pt_regs, r13);
 797			break;
 798		case 0x56:
 799			reg_offset = offsetof(struct pt_regs, r14);
 800			break;
 801		case 0x57:
 802			reg_offset = offsetof(struct pt_regs, r15);
 803			break;
 804		}
 805#else
 806		return -ENOSYS;
 807#endif
 808	} else {
 809		switch (opc1) {
 810		case 0x50:
 811			reg_offset = offsetof(struct pt_regs, ax);
 812			break;
 813		case 0x51:
 814			reg_offset = offsetof(struct pt_regs, cx);
 815			break;
 816		case 0x52:
 817			reg_offset = offsetof(struct pt_regs, dx);
 818			break;
 819		case 0x53:
 820			reg_offset = offsetof(struct pt_regs, bx);
 821			break;
 822		case 0x54:
 823			reg_offset = offsetof(struct pt_regs, sp);
 824			break;
 825		case 0x55:
 826			reg_offset = offsetof(struct pt_regs, bp);
 827			break;
 828		case 0x56:
 829			reg_offset = offsetof(struct pt_regs, si);
 830			break;
 831		case 0x57:
 832			reg_offset = offsetof(struct pt_regs, di);
 833			break;
 834		}
 835	}
 836
 837	auprobe->push.reg_offset = reg_offset;
 838	auprobe->push.ilen = insn->length;
 839	auprobe->ops = &push_xol_ops;
 840	return 0;
 841}
 842
 843/**
 844 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
 845 * @mm: the probed address space.
 846 * @arch_uprobe: the probepoint information.
 847 * @addr: virtual address at which to install the probepoint
 848 * Return 0 on success or a -ve number on error.
 849 */
 850int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
 851{
 852	struct insn insn;
 853	u8 fix_ip_or_call = UPROBE_FIX_IP;
 854	int ret;
 855
 856	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
 857	if (ret)
 858		return ret;
 859
 860	ret = branch_setup_xol_ops(auprobe, &insn);
 861	if (ret != -ENOSYS)
 862		return ret;
 863
 864	ret = push_setup_xol_ops(auprobe, &insn);
 865	if (ret != -ENOSYS)
 866		return ret;
 867
 868	/*
 869	 * Figure out which fixups default_post_xol_op() will need to perform,
 870	 * and annotate defparam->fixups accordingly.
 871	 */
 872	switch (OPCODE1(&insn)) {
 873	case 0x9d:		/* popf */
 874		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
 875		break;
 876	case 0xc3:		/* ret or lret -- ip is correct */
 877	case 0xcb:
 878	case 0xc2:
 879	case 0xca:
 880	case 0xea:		/* jmp absolute -- ip is correct */
 881		fix_ip_or_call = 0;
 882		break;
 883	case 0x9a:		/* call absolute - Fix return addr, not ip */
 884		fix_ip_or_call = UPROBE_FIX_CALL;
 885		break;
 886	case 0xff:
 887		switch (MODRM_REG(&insn)) {
 888		case 2: case 3:			/* call or lcall, indirect */
 889			fix_ip_or_call = UPROBE_FIX_CALL;
 890			break;
 891		case 4: case 5:			/* jmp or ljmp, indirect */
 892			fix_ip_or_call = 0;
 893			break;
 894		}
 895		/* fall through */
 896	default:
 897		riprel_analyze(auprobe, &insn);
 898	}
 899
 900	auprobe->defparam.ilen = insn.length;
 901	auprobe->defparam.fixups |= fix_ip_or_call;
 902
 903	auprobe->ops = &default_xol_ops;
 904	return 0;
 905}
 906
 907/*
 908 * arch_uprobe_pre_xol - prepare to execute out of line.
 909 * @auprobe: the probepoint information.
 910 * @regs: reflects the saved user state of current task.
 911 */
 912int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 913{
 914	struct uprobe_task *utask = current->utask;
 915
 916	if (auprobe->ops->pre_xol) {
 917		int err = auprobe->ops->pre_xol(auprobe, regs);
 918		if (err)
 919			return err;
 920	}
 921
 922	regs->ip = utask->xol_vaddr;
 923	utask->autask.saved_trap_nr = current->thread.trap_nr;
 924	current->thread.trap_nr = UPROBE_TRAP_NR;
 925
 926	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
 927	regs->flags |= X86_EFLAGS_TF;
 928	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
 929		set_task_blockstep(current, false);
 930
 931	return 0;
 932}
 933
 934/*
 935 * If xol insn itself traps and generates a signal(Say,
 936 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
 937 * instruction jumps back to its own address. It is assumed that anything
 938 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
 939 *
 940 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
 941 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
 942 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
 943 */
 944bool arch_uprobe_xol_was_trapped(struct task_struct *t)
 945{
 946	if (t->thread.trap_nr != UPROBE_TRAP_NR)
 947		return true;
 948
 949	return false;
 950}
 951
 952/*
 953 * Called after single-stepping. To avoid the SMP problems that can
 954 * occur when we temporarily put back the original opcode to
 955 * single-step, we single-stepped a copy of the instruction.
 956 *
 957 * This function prepares to resume execution after the single-step.
 958 */
 959int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 960{
 961	struct uprobe_task *utask = current->utask;
 962	bool send_sigtrap = utask->autask.saved_tf;
 963	int err = 0;
 964
 965	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
 966	current->thread.trap_nr = utask->autask.saved_trap_nr;
 967
 968	if (auprobe->ops->post_xol) {
 969		err = auprobe->ops->post_xol(auprobe, regs);
 970		if (err) {
 971			/*
 972			 * Restore ->ip for restart or post mortem analysis.
 973			 * ->post_xol() must not return -ERESTART unless this
 974			 * is really possible.
 975			 */
 976			regs->ip = utask->vaddr;
 977			if (err == -ERESTART)
 978				err = 0;
 979			send_sigtrap = false;
 980		}
 981	}
 982	/*
 983	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
 984	 * so we can get an extra SIGTRAP if we do not clear TF. We need
 985	 * to examine the opcode to make it right.
 986	 */
 987	if (send_sigtrap)
 988		send_sig(SIGTRAP, current, 0);
 989
 990	if (!utask->autask.saved_tf)
 991		regs->flags &= ~X86_EFLAGS_TF;
 992
 993	return err;
 994}
 995
 996/* callback routine for handling exceptions. */
 997int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
 998{
 999	struct die_args *args = data;
1000	struct pt_regs *regs = args->regs;
1001	int ret = NOTIFY_DONE;
1002
1003	/* We are only interested in userspace traps */
1004	if (regs && !user_mode(regs))
1005		return NOTIFY_DONE;
1006
1007	switch (val) {
1008	case DIE_INT3:
1009		if (uprobe_pre_sstep_notifier(regs))
1010			ret = NOTIFY_STOP;
1011
1012		break;
1013
1014	case DIE_DEBUG:
1015		if (uprobe_post_sstep_notifier(regs))
1016			ret = NOTIFY_STOP;
1017
1018	default:
1019		break;
1020	}
1021
1022	return ret;
1023}
1024
1025/*
1026 * This function gets called when XOL instruction either gets trapped or
1027 * the thread has a fatal signal. Reset the instruction pointer to its
1028 * probed address for the potential restart or for post mortem analysis.
1029 */
1030void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1031{
1032	struct uprobe_task *utask = current->utask;
1033
1034	if (auprobe->ops->abort)
1035		auprobe->ops->abort(auprobe, regs);
1036
1037	current->thread.trap_nr = utask->autask.saved_trap_nr;
1038	regs->ip = utask->vaddr;
1039	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
1040	if (!utask->autask.saved_tf)
1041		regs->flags &= ~X86_EFLAGS_TF;
1042}
1043
1044static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1045{
1046	if (auprobe->ops->emulate)
1047		return auprobe->ops->emulate(auprobe, regs);
1048	return false;
1049}
1050
1051bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1052{
1053	bool ret = __skip_sstep(auprobe, regs);
1054	if (ret && (regs->flags & X86_EFLAGS_TF))
1055		send_sig(SIGTRAP, current, 0);
1056	return ret;
1057}
1058
1059unsigned long
1060arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1061{
1062	int rasize = sizeof_long(regs), nleft;
1063	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1064
1065	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1066		return -1;
1067
1068	/* check whether address has been already hijacked */
1069	if (orig_ret_vaddr == trampoline_vaddr)
1070		return orig_ret_vaddr;
1071
1072	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1073	if (likely(!nleft))
1074		return orig_ret_vaddr;
1075
1076	if (nleft != rasize) {
1077		pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1078		       current->pid, regs->sp, regs->ip);
1079
1080		force_sig(SIGSEGV);
1081	}
1082
1083	return -1;
1084}
1085
1086bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1087				struct pt_regs *regs)
1088{
1089	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1090		return regs->sp < ret->stack;
1091	else
1092		return regs->sp <= ret->stack;
1093}
v4.10.11
 
  1/*
  2 * User-space Probes (UProbes) for x86
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2008-2011
 19 * Authors:
 20 *	Srikar Dronamraju
 21 *	Jim Keniston
 22 */
 23#include <linux/kernel.h>
 24#include <linux/sched.h>
 25#include <linux/ptrace.h>
 26#include <linux/uprobes.h>
 27#include <linux/uaccess.h>
 28
 29#include <linux/kdebug.h>
 30#include <asm/processor.h>
 31#include <asm/insn.h>
 32#include <asm/mmu_context.h>
 33
 34/* Post-execution fixups. */
 35
 36/* Adjust IP back to vicinity of actual insn */
 37#define UPROBE_FIX_IP		0x01
 38
 39/* Adjust the return address of a call insn */
 40#define UPROBE_FIX_CALL		0x02
 41
 42/* Instruction will modify TF, don't change it */
 43#define UPROBE_FIX_SETF		0x04
 44
 45#define UPROBE_FIX_RIP_SI	0x08
 46#define UPROBE_FIX_RIP_DI	0x10
 47#define UPROBE_FIX_RIP_BX	0x20
 48#define UPROBE_FIX_RIP_MASK	\
 49	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
 50
 51#define	UPROBE_TRAP_NR		UINT_MAX
 52
 53/* Adaptations for mhiramat x86 decoder v14. */
 54#define OPCODE1(insn)		((insn)->opcode.bytes[0])
 55#define OPCODE2(insn)		((insn)->opcode.bytes[1])
 56#define OPCODE3(insn)		((insn)->opcode.bytes[2])
 57#define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
 58
 59#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
 60	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
 61	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
 62	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
 63	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
 64	 << (row % 32))
 65
 66/*
 67 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
 68 * to keep gcc from statically optimizing it out, as variable_test_bit makes
 69 * some versions of gcc to think only *(unsigned long*) is used.
 70 *
 71 * Opcodes we'll probably never support:
 72 * 6c-6f - ins,outs. SEGVs if used in userspace
 73 * e4-e7 - in,out imm. SEGVs if used in userspace
 74 * ec-ef - in,out acc. SEGVs if used in userspace
 75 * cc - int3. SIGTRAP if used in userspace
 76 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
 77 *	(why we support bound (62) then? it's similar, and similarly unused...)
 78 * f1 - int1. SIGTRAP if used in userspace
 79 * f4 - hlt. SEGVs if used in userspace
 80 * fa - cli. SEGVs if used in userspace
 81 * fb - sti. SEGVs if used in userspace
 82 *
 83 * Opcodes which need some work to be supported:
 84 * 07,17,1f - pop es/ss/ds
 85 *	Normally not used in userspace, but would execute if used.
 86 *	Can cause GP or stack exception if tries to load wrong segment descriptor.
 87 *	We hesitate to run them under single step since kernel's handling
 88 *	of userspace single-stepping (TF flag) is fragile.
 89 *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
 90 *	on the same grounds that they are never used.
 91 * cd - int N.
 92 *	Used by userspace for "int 80" syscall entry. (Other "int N"
 93 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
 94 *	Not supported since kernel's handling of userspace single-stepping
 95 *	(TF flag) is fragile.
 96 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
 97 */
 98#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
 99static volatile u32 good_insns_32[256 / 32] = {
100	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
101	/*      ----------------------------------------------         */
102	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
103	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
104	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
105	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
106	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
107	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
108	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
109	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
110	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
111	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
112	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
113	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
114	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
115	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
116	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
117	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
118	/*      ----------------------------------------------         */
119	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
120};
121#else
122#define good_insns_32	NULL
123#endif
124
125/* Good-instruction tables for 64-bit apps.
126 *
127 * Genuinely invalid opcodes:
128 * 06,07 - formerly push/pop es
129 * 0e - formerly push cs
130 * 16,17 - formerly push/pop ss
131 * 1e,1f - formerly push/pop ds
132 * 27,2f,37,3f - formerly daa/das/aaa/aas
133 * 60,61 - formerly pusha/popa
134 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
135 * 82 - formerly redundant encoding of Group1
136 * 9a - formerly call seg:ofs
137 * ce - formerly into
138 * d4,d5 - formerly aam/aad
139 * d6 - formerly undocumented salc
140 * ea - formerly jmp seg:ofs
141 *
142 * Opcodes we'll probably never support:
143 * 6c-6f - ins,outs. SEGVs if used in userspace
144 * e4-e7 - in,out imm. SEGVs if used in userspace
145 * ec-ef - in,out acc. SEGVs if used in userspace
146 * cc - int3. SIGTRAP if used in userspace
147 * f1 - int1. SIGTRAP if used in userspace
148 * f4 - hlt. SEGVs if used in userspace
149 * fa - cli. SEGVs if used in userspace
150 * fb - sti. SEGVs if used in userspace
151 *
152 * Opcodes which need some work to be supported:
153 * cd - int N.
154 *	Used by userspace for "int 80" syscall entry. (Other "int N"
155 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
156 *	Not supported since kernel's handling of userspace single-stepping
157 *	(TF flag) is fragile.
158 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
159 */
160#if defined(CONFIG_X86_64)
161static volatile u32 good_insns_64[256 / 32] = {
162	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
163	/*      ----------------------------------------------         */
164	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
165	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
166	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
167	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
168	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
169	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
170	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
171	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
172	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
173	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
174	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
175	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
176	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
177	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
178	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
179	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
180	/*      ----------------------------------------------         */
181	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
182};
183#else
184#define good_insns_64	NULL
185#endif
186
187/* Using this for both 64-bit and 32-bit apps.
188 * Opcodes we don't support:
189 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
190 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
191 *	Also encodes tons of other system insns if mod=11.
192 *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
193 * 0f 05 - syscall
194 * 0f 06 - clts (CPL0 insn)
195 * 0f 07 - sysret
196 * 0f 08 - invd (CPL0 insn)
197 * 0f 09 - wbinvd (CPL0 insn)
198 * 0f 0b - ud2
199 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
200 * 0f 34 - sysenter
201 * 0f 35 - sysexit
202 * 0f 37 - getsec
203 * 0f 78 - vmread (Intel VMX. CPL0 insn)
204 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
205 *	Note: with prefixes, these two opcodes are
206 *	extrq/insertq/AVX512 convert vector ops.
207 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
208 *	{rd,wr}{fs,gs}base,{s,l,m}fence.
209 *	Why? They are all user-executable.
210 */
211static volatile u32 good_2byte_insns[256 / 32] = {
212	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
213	/*      ----------------------------------------------         */
214	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
215	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
216	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
217	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
218	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
219	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
220	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
221	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
222	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
223	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
224	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
225	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
226	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
227	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
228	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
229	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
230	/*      ----------------------------------------------         */
231	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
232};
233#undef W
234
235/*
236 * opcodes we may need to refine support for:
237 *
238 *  0f - 2-byte instructions: For many of these instructions, the validity
239 *  depends on the prefix and/or the reg field.  On such instructions, we
240 *  just consider the opcode combination valid if it corresponds to any
241 *  valid instruction.
242 *
243 *  8f - Group 1 - only reg = 0 is OK
244 *  c6-c7 - Group 11 - only reg = 0 is OK
245 *  d9-df - fpu insns with some illegal encodings
246 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
247 *  certain floating-point instructions, such as addsd.
248 *
249 *  fe - Group 4 - only reg = 0 or 1 is OK
250 *  ff - Group 5 - only reg = 0-6 is OK
251 *
252 * others -- Do we need to support these?
253 *
254 *  0f - (floating-point?) prefetch instructions
255 *  07, 17, 1f - pop es, pop ss, pop ds
256 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
257 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
258 *  67 - addr16 prefix
259 *  ce - into
260 *  f0 - lock prefix
261 */
262
263/*
264 * TODO:
265 * - Where necessary, examine the modrm byte and allow only valid instructions
266 * in the different Groups and fpu instructions.
267 */
268
269static bool is_prefix_bad(struct insn *insn)
270{
271	int i;
272
273	for (i = 0; i < insn->prefixes.nbytes; i++) {
274		switch (insn->prefixes.bytes[i]) {
275		case 0x26:	/* INAT_PFX_ES   */
276		case 0x2E:	/* INAT_PFX_CS   */
277		case 0x36:	/* INAT_PFX_DS   */
278		case 0x3E:	/* INAT_PFX_SS   */
279		case 0xF0:	/* INAT_PFX_LOCK */
 
 
 
280			return true;
281		}
282	}
283	return false;
284}
285
286static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
287{
288	u32 volatile *good_insns;
289
290	insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
291	/* has the side-effect of processing the entire instruction */
292	insn_get_length(insn);
293	if (WARN_ON_ONCE(!insn_complete(insn)))
294		return -ENOEXEC;
295
296	if (is_prefix_bad(insn))
297		return -ENOTSUPP;
298
 
 
 
 
299	if (x86_64)
300		good_insns = good_insns_64;
301	else
302		good_insns = good_insns_32;
303
304	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
305		return 0;
306
307	if (insn->opcode.nbytes == 2) {
308		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
309			return 0;
310	}
311
312	return -ENOTSUPP;
313}
314
315#ifdef CONFIG_X86_64
316/*
317 * If arch_uprobe->insn doesn't use rip-relative addressing, return
318 * immediately.  Otherwise, rewrite the instruction so that it accesses
319 * its memory operand indirectly through a scratch register.  Set
320 * defparam->fixups accordingly. (The contents of the scratch register
321 * will be saved before we single-step the modified instruction,
322 * and restored afterward).
323 *
324 * We do this because a rip-relative instruction can access only a
325 * relatively small area (+/- 2 GB from the instruction), and the XOL
326 * area typically lies beyond that area.  At least for instructions
327 * that store to memory, we can't execute the original instruction
328 * and "fix things up" later, because the misdirected store could be
329 * disastrous.
330 *
331 * Some useful facts about rip-relative instructions:
332 *
333 *  - There's always a modrm byte with bit layout "00 reg 101".
334 *  - There's never a SIB byte.
335 *  - The displacement is always 4 bytes.
336 *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
337 *    has no effect on rip-relative mode. It doesn't make modrm byte
338 *    with r/m=101 refer to register 1101 = R13.
339 */
340static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
341{
342	u8 *cursor;
343	u8 reg;
344	u8 reg2;
345
346	if (!insn_rip_relative(insn))
347		return;
348
349	/*
350	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
351	 * Clear REX.b bit (extension of MODRM.rm field):
352	 * we want to encode low numbered reg, not r8+.
353	 */
354	if (insn->rex_prefix.nbytes) {
355		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
356		/* REX byte has 0100wrxb layout, clearing REX.b bit */
357		*cursor &= 0xfe;
358	}
359	/*
360	 * Similar treatment for VEX3/EVEX prefix.
361	 * TODO: add XOP treatment when insn decoder supports them
362	 */
363	if (insn->vex_prefix.nbytes >= 3) {
364		/*
365		 * vex2:     c5    rvvvvLpp   (has no b bit)
366		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
367		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
368		 * Setting VEX3.b (setting because it has inverted meaning).
369		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
370		 * is the 4th bit of MODRM.rm, and needs the same treatment.
371		 * For VEX3-encoded insns, VEX3.x value has no effect in
372		 * non-SIB encoding, the change is superfluous but harmless.
373		 */
374		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
375		*cursor |= 0x60;
376	}
377
378	/*
379	 * Convert from rip-relative addressing to register-relative addressing
380	 * via a scratch register.
381	 *
382	 * This is tricky since there are insns with modrm byte
383	 * which also use registers not encoded in modrm byte:
384	 * [i]div/[i]mul: implicitly use dx:ax
385	 * shift ops: implicitly use cx
386	 * cmpxchg: implicitly uses ax
387	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
388	 *   Encoding: 0f c7/1 modrm
389	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
390	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
391	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
392	 *   Example where none of bx,cx,dx can be used as scratch reg:
393	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
394	 * [v]pcmpistri: implicitly uses cx, xmm0
395	 * [v]pcmpistrm: implicitly uses xmm0
396	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
397	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
398	 *   Evil SSE4.2 string comparison ops from hell.
399	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
400	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
401	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
402	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
403	 *   and that it can have only register operands, not mem
404	 *   (its modrm byte must have mode=11).
405	 *   If these restrictions will ever be lifted,
406	 *   we'll need code to prevent selection of di as scratch reg!
407	 *
408	 * Summary: I don't know any insns with modrm byte which
409	 * use SI register implicitly. DI register is used only
410	 * by one insn (maskmovq) and BX register is used
411	 * only by one too (cmpxchg8b).
412	 * BP is stack-segment based (may be a problem?).
413	 * AX, DX, CX are off-limits (many implicit users).
414	 * SP is unusable (it's stack pointer - think about "pop mem";
415	 * also, rsp+disp32 needs sib encoding -> insn length change).
416	 */
417
418	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
419	reg2 = 0xff;		/* Fetch vex.vvvv */
420	if (insn->vex_prefix.nbytes)
421		reg2 = insn->vex_prefix.bytes[2];
422	/*
423	 * TODO: add XOP vvvv reading.
424	 *
425	 * vex.vvvv field is in bits 6-3, bits are inverted.
426	 * But in 32-bit mode, high-order bit may be ignored.
427	 * Therefore, let's consider only 3 low-order bits.
428	 */
429	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
430	/*
431	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
432	 *
433	 * Choose scratch reg. Order is important: must not select bx
434	 * if we can use si (cmpxchg8b case!)
435	 */
436	if (reg != 6 && reg2 != 6) {
437		reg2 = 6;
438		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
439	} else if (reg != 7 && reg2 != 7) {
440		reg2 = 7;
441		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
442		/* TODO (paranoia): force maskmovq to not use di */
443	} else {
444		reg2 = 3;
445		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
446	}
447	/*
448	 * Point cursor at the modrm byte.  The next 4 bytes are the
449	 * displacement.  Beyond the displacement, for some instructions,
450	 * is the immediate operand.
451	 */
452	cursor = auprobe->insn + insn_offset_modrm(insn);
453	/*
454	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
455	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
456	 * 89 86 disp32  mov %eax,disp32(%rsi)
457	 */
458	*cursor = 0x80 | (reg << 3) | reg2;
459}
460
461static inline unsigned long *
462scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
463{
464	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
465		return &regs->si;
466	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
467		return &regs->di;
468	return &regs->bx;
469}
470
471/*
472 * If we're emulating a rip-relative instruction, save the contents
473 * of the scratch register and store the target address in that register.
474 */
475static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
476{
477	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
478		struct uprobe_task *utask = current->utask;
479		unsigned long *sr = scratch_reg(auprobe, regs);
480
481		utask->autask.saved_scratch_register = *sr;
482		*sr = utask->vaddr + auprobe->defparam.ilen;
483	}
484}
485
486static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
487{
488	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
489		struct uprobe_task *utask = current->utask;
490		unsigned long *sr = scratch_reg(auprobe, regs);
491
492		*sr = utask->autask.saved_scratch_register;
493	}
494}
495#else /* 32-bit: */
496/*
497 * No RIP-relative addressing on 32-bit
498 */
499static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
500{
501}
502static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
503{
504}
505static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
506{
507}
508#endif /* CONFIG_X86_64 */
509
510struct uprobe_xol_ops {
511	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
512	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
513	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
514	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
515};
516
517static inline int sizeof_long(void)
518{
519	return in_ia32_syscall() ? 4 : 8;
 
 
 
520}
521
522static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
523{
524	riprel_pre_xol(auprobe, regs);
525	return 0;
526}
527
528static int push_ret_address(struct pt_regs *regs, unsigned long ip)
529{
530	unsigned long new_sp = regs->sp - sizeof_long();
531
532	if (copy_to_user((void __user *)new_sp, &ip, sizeof_long()))
533		return -EFAULT;
534
535	regs->sp = new_sp;
536	return 0;
537}
538
539/*
540 * We have to fix things up as follows:
541 *
542 * Typically, the new ip is relative to the copied instruction.  We need
543 * to make it relative to the original instruction (FIX_IP).  Exceptions
544 * are return instructions and absolute or indirect jump or call instructions.
545 *
546 * If the single-stepped instruction was a call, the return address that
547 * is atop the stack is the address following the copied instruction.  We
548 * need to make it the address following the original instruction (FIX_CALL).
549 *
550 * If the original instruction was a rip-relative instruction such as
551 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
552 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
553 * We need to restore the contents of the scratch register
554 * (FIX_RIP_reg).
555 */
556static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
557{
558	struct uprobe_task *utask = current->utask;
559
560	riprel_post_xol(auprobe, regs);
561	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
562		long correction = utask->vaddr - utask->xol_vaddr;
563		regs->ip += correction;
564	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
565		regs->sp += sizeof_long(); /* Pop incorrect return address */
566		if (push_ret_address(regs, utask->vaddr + auprobe->defparam.ilen))
567			return -ERESTART;
568	}
569	/* popf; tell the caller to not touch TF */
570	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
571		utask->autask.saved_tf = true;
572
573	return 0;
574}
575
576static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
577{
578	riprel_post_xol(auprobe, regs);
579}
580
581static const struct uprobe_xol_ops default_xol_ops = {
582	.pre_xol  = default_pre_xol_op,
583	.post_xol = default_post_xol_op,
584	.abort	  = default_abort_op,
585};
586
587static bool branch_is_call(struct arch_uprobe *auprobe)
588{
589	return auprobe->branch.opc1 == 0xe8;
590}
591
592#define CASE_COND					\
593	COND(70, 71, XF(OF))				\
594	COND(72, 73, XF(CF))				\
595	COND(74, 75, XF(ZF))				\
596	COND(78, 79, XF(SF))				\
597	COND(7a, 7b, XF(PF))				\
598	COND(76, 77, XF(CF) || XF(ZF))			\
599	COND(7c, 7d, XF(SF) != XF(OF))			\
600	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
601
602#define COND(op_y, op_n, expr)				\
603	case 0x ## op_y: DO((expr) != 0)		\
604	case 0x ## op_n: DO((expr) == 0)
605
606#define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
607
608static bool is_cond_jmp_opcode(u8 opcode)
609{
610	switch (opcode) {
611	#define DO(expr)	\
612		return true;
613	CASE_COND
614	#undef	DO
615
616	default:
617		return false;
618	}
619}
620
621static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
622{
623	unsigned long flags = regs->flags;
624
625	switch (auprobe->branch.opc1) {
626	#define DO(expr)	\
627		return expr;
628	CASE_COND
629	#undef	DO
630
631	default:	/* not a conditional jmp */
632		return true;
633	}
634}
635
636#undef	XF
637#undef	COND
638#undef	CASE_COND
639
640static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
641{
642	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
643	unsigned long offs = (long)auprobe->branch.offs;
644
645	if (branch_is_call(auprobe)) {
646		/*
647		 * If it fails we execute this (mangled, see the comment in
648		 * branch_clear_offset) insn out-of-line. In the likely case
649		 * this should trigger the trap, and the probed application
650		 * should die or restart the same insn after it handles the
651		 * signal, arch_uprobe_post_xol() won't be even called.
652		 *
653		 * But there is corner case, see the comment in ->post_xol().
654		 */
655		if (push_ret_address(regs, new_ip))
656			return false;
657	} else if (!check_jmp_cond(auprobe, regs)) {
658		offs = 0;
659	}
660
661	regs->ip = new_ip + offs;
662	return true;
663}
664
 
 
 
 
 
 
 
 
 
 
665static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
666{
667	BUG_ON(!branch_is_call(auprobe));
668	/*
669	 * We can only get here if branch_emulate_op() failed to push the ret
670	 * address _and_ another thread expanded our stack before the (mangled)
671	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
672	 * We could also restore ->ip and try to call branch_emulate_op() again.
673	 */
674	regs->sp += sizeof_long();
675	return -ERESTART;
676}
677
678static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
679{
680	/*
681	 * Turn this insn into "call 1f; 1:", this is what we will execute
682	 * out-of-line if ->emulate() fails. We only need this to generate
683	 * a trap, so that the probed task receives the correct signal with
684	 * the properly filled siginfo.
685	 *
686	 * But see the comment in ->post_xol(), in the unlikely case it can
687	 * succeed. So we need to ensure that the new ->ip can not fall into
688	 * the non-canonical area and trigger #GP.
689	 *
690	 * We could turn it into (say) "pushf", but then we would need to
691	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
692	 * of ->insn[] for set_orig_insn().
693	 */
694	memset(auprobe->insn + insn_offset_immediate(insn),
695		0, insn->immediate.nbytes);
696}
697
698static const struct uprobe_xol_ops branch_xol_ops = {
699	.emulate  = branch_emulate_op,
700	.post_xol = branch_post_xol_op,
701};
702
 
 
 
 
703/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
704static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
705{
706	u8 opc1 = OPCODE1(insn);
707	int i;
708
709	switch (opc1) {
710	case 0xeb:	/* jmp 8 */
711	case 0xe9:	/* jmp 32 */
712	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
713		break;
714
715	case 0xe8:	/* call relative */
716		branch_clear_offset(auprobe, insn);
717		break;
718
719	case 0x0f:
720		if (insn->opcode.nbytes != 2)
721			return -ENOSYS;
722		/*
723		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
724		 * OPCODE1() of the "short" jmp which checks the same condition.
725		 */
726		opc1 = OPCODE2(insn) - 0x10;
 
727	default:
728		if (!is_cond_jmp_opcode(opc1))
729			return -ENOSYS;
730	}
731
732	/*
733	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
734	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
735	 * No one uses these insns, reject any branch insns with such prefix.
736	 */
737	for (i = 0; i < insn->prefixes.nbytes; i++) {
738		if (insn->prefixes.bytes[i] == 0x66)
739			return -ENOTSUPP;
740	}
741
742	auprobe->branch.opc1 = opc1;
743	auprobe->branch.ilen = insn->length;
744	auprobe->branch.offs = insn->immediate.value;
745
746	auprobe->ops = &branch_xol_ops;
747	return 0;
748}
749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
750/**
751 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
752 * @mm: the probed address space.
753 * @arch_uprobe: the probepoint information.
754 * @addr: virtual address at which to install the probepoint
755 * Return 0 on success or a -ve number on error.
756 */
757int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
758{
759	struct insn insn;
760	u8 fix_ip_or_call = UPROBE_FIX_IP;
761	int ret;
762
763	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
764	if (ret)
765		return ret;
766
767	ret = branch_setup_xol_ops(auprobe, &insn);
768	if (ret != -ENOSYS)
769		return ret;
770
 
 
 
 
771	/*
772	 * Figure out which fixups default_post_xol_op() will need to perform,
773	 * and annotate defparam->fixups accordingly.
774	 */
775	switch (OPCODE1(&insn)) {
776	case 0x9d:		/* popf */
777		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
778		break;
779	case 0xc3:		/* ret or lret -- ip is correct */
780	case 0xcb:
781	case 0xc2:
782	case 0xca:
783	case 0xea:		/* jmp absolute -- ip is correct */
784		fix_ip_or_call = 0;
785		break;
786	case 0x9a:		/* call absolute - Fix return addr, not ip */
787		fix_ip_or_call = UPROBE_FIX_CALL;
788		break;
789	case 0xff:
790		switch (MODRM_REG(&insn)) {
791		case 2: case 3:			/* call or lcall, indirect */
792			fix_ip_or_call = UPROBE_FIX_CALL;
793			break;
794		case 4: case 5:			/* jmp or ljmp, indirect */
795			fix_ip_or_call = 0;
796			break;
797		}
798		/* fall through */
799	default:
800		riprel_analyze(auprobe, &insn);
801	}
802
803	auprobe->defparam.ilen = insn.length;
804	auprobe->defparam.fixups |= fix_ip_or_call;
805
806	auprobe->ops = &default_xol_ops;
807	return 0;
808}
809
810/*
811 * arch_uprobe_pre_xol - prepare to execute out of line.
812 * @auprobe: the probepoint information.
813 * @regs: reflects the saved user state of current task.
814 */
815int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
816{
817	struct uprobe_task *utask = current->utask;
818
819	if (auprobe->ops->pre_xol) {
820		int err = auprobe->ops->pre_xol(auprobe, regs);
821		if (err)
822			return err;
823	}
824
825	regs->ip = utask->xol_vaddr;
826	utask->autask.saved_trap_nr = current->thread.trap_nr;
827	current->thread.trap_nr = UPROBE_TRAP_NR;
828
829	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
830	regs->flags |= X86_EFLAGS_TF;
831	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
832		set_task_blockstep(current, false);
833
834	return 0;
835}
836
837/*
838 * If xol insn itself traps and generates a signal(Say,
839 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
840 * instruction jumps back to its own address. It is assumed that anything
841 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
842 *
843 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
844 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
845 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
846 */
847bool arch_uprobe_xol_was_trapped(struct task_struct *t)
848{
849	if (t->thread.trap_nr != UPROBE_TRAP_NR)
850		return true;
851
852	return false;
853}
854
855/*
856 * Called after single-stepping. To avoid the SMP problems that can
857 * occur when we temporarily put back the original opcode to
858 * single-step, we single-stepped a copy of the instruction.
859 *
860 * This function prepares to resume execution after the single-step.
861 */
862int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
863{
864	struct uprobe_task *utask = current->utask;
865	bool send_sigtrap = utask->autask.saved_tf;
866	int err = 0;
867
868	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
869	current->thread.trap_nr = utask->autask.saved_trap_nr;
870
871	if (auprobe->ops->post_xol) {
872		err = auprobe->ops->post_xol(auprobe, regs);
873		if (err) {
874			/*
875			 * Restore ->ip for restart or post mortem analysis.
876			 * ->post_xol() must not return -ERESTART unless this
877			 * is really possible.
878			 */
879			regs->ip = utask->vaddr;
880			if (err == -ERESTART)
881				err = 0;
882			send_sigtrap = false;
883		}
884	}
885	/*
886	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
887	 * so we can get an extra SIGTRAP if we do not clear TF. We need
888	 * to examine the opcode to make it right.
889	 */
890	if (send_sigtrap)
891		send_sig(SIGTRAP, current, 0);
892
893	if (!utask->autask.saved_tf)
894		regs->flags &= ~X86_EFLAGS_TF;
895
896	return err;
897}
898
899/* callback routine for handling exceptions. */
900int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
901{
902	struct die_args *args = data;
903	struct pt_regs *regs = args->regs;
904	int ret = NOTIFY_DONE;
905
906	/* We are only interested in userspace traps */
907	if (regs && !user_mode(regs))
908		return NOTIFY_DONE;
909
910	switch (val) {
911	case DIE_INT3:
912		if (uprobe_pre_sstep_notifier(regs))
913			ret = NOTIFY_STOP;
914
915		break;
916
917	case DIE_DEBUG:
918		if (uprobe_post_sstep_notifier(regs))
919			ret = NOTIFY_STOP;
920
921	default:
922		break;
923	}
924
925	return ret;
926}
927
928/*
929 * This function gets called when XOL instruction either gets trapped or
930 * the thread has a fatal signal. Reset the instruction pointer to its
931 * probed address for the potential restart or for post mortem analysis.
932 */
933void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
934{
935	struct uprobe_task *utask = current->utask;
936
937	if (auprobe->ops->abort)
938		auprobe->ops->abort(auprobe, regs);
939
940	current->thread.trap_nr = utask->autask.saved_trap_nr;
941	regs->ip = utask->vaddr;
942	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
943	if (!utask->autask.saved_tf)
944		regs->flags &= ~X86_EFLAGS_TF;
945}
946
947static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
948{
949	if (auprobe->ops->emulate)
950		return auprobe->ops->emulate(auprobe, regs);
951	return false;
952}
953
954bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
955{
956	bool ret = __skip_sstep(auprobe, regs);
957	if (ret && (regs->flags & X86_EFLAGS_TF))
958		send_sig(SIGTRAP, current, 0);
959	return ret;
960}
961
962unsigned long
963arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
964{
965	int rasize = sizeof_long(), nleft;
966	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
967
968	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
969		return -1;
970
971	/* check whether address has been already hijacked */
972	if (orig_ret_vaddr == trampoline_vaddr)
973		return orig_ret_vaddr;
974
975	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
976	if (likely(!nleft))
977		return orig_ret_vaddr;
978
979	if (nleft != rasize) {
980		pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
981			"%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
982
983		force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
984	}
985
986	return -1;
987}
988
989bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
990				struct pt_regs *regs)
991{
992	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
993		return regs->sp < ret->stack;
994	else
995		return regs->sp <= ret->stack;
996}