Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright (C) 1995  Linus Torvalds
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 *
  8 *  X86-64 port
  9 *	Andi Kleen.
 10 *
 11 *	CPU hotplug support - ashok.raj@intel.com
 12 */
 13
 14/*
 15 * This file handles the architecture-dependent parts of process handling..
 16 */
 17
 18#include <linux/cpu.h>
 19#include <linux/errno.h>
 20#include <linux/sched.h>
 21#include <linux/sched/task.h>
 22#include <linux/sched/task_stack.h>
 23#include <linux/fs.h>
 24#include <linux/kernel.h>
 25#include <linux/mm.h>
 26#include <linux/elfcore.h>
 27#include <linux/smp.h>
 28#include <linux/slab.h>
 29#include <linux/user.h>
 30#include <linux/interrupt.h>
 31#include <linux/delay.h>
 32#include <linux/export.h>
 33#include <linux/ptrace.h>
 34#include <linux/notifier.h>
 35#include <linux/kprobes.h>
 36#include <linux/kdebug.h>
 37#include <linux/prctl.h>
 38#include <linux/uaccess.h>
 39#include <linux/io.h>
 40#include <linux/ftrace.h>
 41#include <linux/syscalls.h>
 42
 43#include <asm/pgtable.h>
 44#include <asm/processor.h>
 45#include <asm/fpu/internal.h>
 46#include <asm/mmu_context.h>
 47#include <asm/prctl.h>
 48#include <asm/desc.h>
 49#include <asm/proto.h>
 50#include <asm/ia32.h>
 51#include <asm/syscalls.h>
 52#include <asm/debugreg.h>
 53#include <asm/switch_to.h>
 54#include <asm/xen/hypervisor.h>
 55#include <asm/vdso.h>
 56#include <asm/resctrl_sched.h>
 57#include <asm/unistd.h>
 58#include <asm/fsgsbase.h>
 59#ifdef CONFIG_IA32_EMULATION
 60/* Not included via unistd.h */
 61#include <asm/unistd_32_ia32.h>
 62#endif
 63
 64#include "process.h"
 65
 66/* Prints also some state that isn't saved in the pt_regs */
 67void __show_regs(struct pt_regs *regs, enum show_regs_mode mode)
 68{
 69	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
 70	unsigned long d0, d1, d2, d3, d6, d7;
 71	unsigned int fsindex, gsindex;
 72	unsigned int ds, es;
 73
 74	show_iret_regs(regs);
 75
 
 
 
 
 76	if (regs->orig_ax != -1)
 77		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
 78	else
 79		pr_cont("\n");
 80
 81	printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
 82	       regs->ax, regs->bx, regs->cx);
 83	printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
 84	       regs->dx, regs->si, regs->di);
 85	printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
 86	       regs->bp, regs->r8, regs->r9);
 87	printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
 88	       regs->r10, regs->r11, regs->r12);
 89	printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
 90	       regs->r13, regs->r14, regs->r15);
 91
 92	if (mode == SHOW_REGS_SHORT)
 93		return;
 94
 95	if (mode == SHOW_REGS_USER) {
 96		rdmsrl(MSR_FS_BASE, fs);
 97		rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
 98		printk(KERN_DEFAULT "FS:  %016lx GS:  %016lx\n",
 99		       fs, shadowgs);
100		return;
101	}
102
103	asm("movl %%ds,%0" : "=r" (ds));
 
104	asm("movl %%es,%0" : "=r" (es));
105	asm("movl %%fs,%0" : "=r" (fsindex));
106	asm("movl %%gs,%0" : "=r" (gsindex));
107
108	rdmsrl(MSR_FS_BASE, fs);
109	rdmsrl(MSR_GS_BASE, gs);
110	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
111
 
 
 
112	cr0 = read_cr0();
113	cr2 = read_cr2();
114	cr3 = __read_cr3();
115	cr4 = __read_cr4();
116
117	printk(KERN_DEFAULT "FS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
118	       fs, fsindex, gs, gsindex, shadowgs);
119	printk(KERN_DEFAULT "CS:  %04lx DS: %04x ES: %04x CR0: %016lx\n", regs->cs, ds,
120			es, cr0);
121	printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
122			cr4);
123
124	get_debugreg(d0, 0);
125	get_debugreg(d1, 1);
126	get_debugreg(d2, 2);
127	get_debugreg(d3, 3);
128	get_debugreg(d6, 6);
129	get_debugreg(d7, 7);
130
131	/* Only print out debug registers if they are in their non-default state. */
132	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
133	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
134		printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n",
135		       d0, d1, d2);
136		printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n",
137		       d3, d6, d7);
138	}
139
140	if (boot_cpu_has(X86_FEATURE_OSPKE))
141		printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
142}
143
144void release_thread(struct task_struct *dead_task)
145{
146	WARN_ON(dead_task->mm);
147}
148
149enum which_selector {
150	FS,
151	GS
152};
153
154/*
155 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
156 * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
157 * It's forcibly inlined because it'll generate better code and this function
158 * is hot.
159 */
160static __always_inline void save_base_legacy(struct task_struct *prev_p,
161					     unsigned short selector,
162					     enum which_selector which)
163{
164	if (likely(selector == 0)) {
165		/*
166		 * On Intel (without X86_BUG_NULL_SEG), the segment base could
167		 * be the pre-existing saved base or it could be zero.  On AMD
168		 * (with X86_BUG_NULL_SEG), the segment base could be almost
169		 * anything.
170		 *
171		 * This branch is very hot (it's hit twice on almost every
172		 * context switch between 64-bit programs), and avoiding
173		 * the RDMSR helps a lot, so we just assume that whatever
174		 * value is already saved is correct.  This matches historical
175		 * Linux behavior, so it won't break existing applications.
176		 *
177		 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
178		 * report that the base is zero, it needs to actually be zero:
179		 * see the corresponding logic in load_seg_legacy.
180		 */
181	} else {
182		/*
183		 * If the selector is 1, 2, or 3, then the base is zero on
184		 * !X86_BUG_NULL_SEG CPUs and could be anything on
185		 * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
186		 * has never attempted to preserve the base across context
187		 * switches.
188		 *
189		 * If selector > 3, then it refers to a real segment, and
190		 * saving the base isn't necessary.
191		 */
192		if (which == FS)
193			prev_p->thread.fsbase = 0;
194		else
195			prev_p->thread.gsbase = 0;
196	}
197}
198
199static __always_inline void save_fsgs(struct task_struct *task)
200{
201	savesegment(fs, task->thread.fsindex);
202	savesegment(gs, task->thread.gsindex);
203	save_base_legacy(task, task->thread.fsindex, FS);
204	save_base_legacy(task, task->thread.gsindex, GS);
205}
206
207#if IS_ENABLED(CONFIG_KVM)
208/*
209 * While a process is running,current->thread.fsbase and current->thread.gsbase
210 * may not match the corresponding CPU registers (see save_base_legacy()). KVM
211 * wants an efficient way to save and restore FSBASE and GSBASE.
212 * When FSGSBASE extensions are enabled, this will have to use RD{FS,GS}BASE.
213 */
214void save_fsgs_for_kvm(void)
215{
216	save_fsgs(current);
217}
218EXPORT_SYMBOL_GPL(save_fsgs_for_kvm);
219#endif
220
221static __always_inline void loadseg(enum which_selector which,
222				    unsigned short sel)
223{
224	if (which == FS)
225		loadsegment(fs, sel);
226	else
227		load_gs_index(sel);
228}
229
230static __always_inline void load_seg_legacy(unsigned short prev_index,
231					    unsigned long prev_base,
232					    unsigned short next_index,
233					    unsigned long next_base,
234					    enum which_selector which)
235{
236	if (likely(next_index <= 3)) {
237		/*
238		 * The next task is using 64-bit TLS, is not using this
239		 * segment at all, or is having fun with arcane CPU features.
240		 */
241		if (next_base == 0) {
242			/*
243			 * Nasty case: on AMD CPUs, we need to forcibly zero
244			 * the base.
245			 */
246			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
247				loadseg(which, __USER_DS);
248				loadseg(which, next_index);
249			} else {
250				/*
251				 * We could try to exhaustively detect cases
252				 * under which we can skip the segment load,
253				 * but there's really only one case that matters
254				 * for performance: if both the previous and
255				 * next states are fully zeroed, we can skip
256				 * the load.
257				 *
258				 * (This assumes that prev_base == 0 has no
259				 * false positives.  This is the case on
260				 * Intel-style CPUs.)
261				 */
262				if (likely(prev_index | next_index | prev_base))
263					loadseg(which, next_index);
264			}
265		} else {
266			if (prev_index != next_index)
267				loadseg(which, next_index);
268			wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
269			       next_base);
270		}
271	} else {
272		/*
273		 * The next task is using a real segment.  Loading the selector
274		 * is sufficient.
275		 */
276		loadseg(which, next_index);
277	}
278}
279
280static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
281					      struct thread_struct *next)
282{
283	load_seg_legacy(prev->fsindex, prev->fsbase,
284			next->fsindex, next->fsbase, FS);
285	load_seg_legacy(prev->gsindex, prev->gsbase,
286			next->gsindex, next->gsbase, GS);
287}
288
289static unsigned long x86_fsgsbase_read_task(struct task_struct *task,
290					    unsigned short selector)
291{
292	unsigned short idx = selector >> 3;
293	unsigned long base;
294
295	if (likely((selector & SEGMENT_TI_MASK) == 0)) {
296		if (unlikely(idx >= GDT_ENTRIES))
297			return 0;
298
299		/*
300		 * There are no user segments in the GDT with nonzero bases
301		 * other than the TLS segments.
302		 */
303		if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
304			return 0;
305
306		idx -= GDT_ENTRY_TLS_MIN;
307		base = get_desc_base(&task->thread.tls_array[idx]);
308	} else {
309#ifdef CONFIG_MODIFY_LDT_SYSCALL
310		struct ldt_struct *ldt;
311
312		/*
313		 * If performance here mattered, we could protect the LDT
314		 * with RCU.  This is a slow path, though, so we can just
315		 * take the mutex.
316		 */
317		mutex_lock(&task->mm->context.lock);
318		ldt = task->mm->context.ldt;
319		if (unlikely(idx >= ldt->nr_entries))
320			base = 0;
321		else
322			base = get_desc_base(ldt->entries + idx);
323		mutex_unlock(&task->mm->context.lock);
324#else
325		base = 0;
326#endif
327	}
328
329	return base;
330}
331
332unsigned long x86_fsbase_read_task(struct task_struct *task)
333{
334	unsigned long fsbase;
335
336	if (task == current)
337		fsbase = x86_fsbase_read_cpu();
338	else if (task->thread.fsindex == 0)
339		fsbase = task->thread.fsbase;
340	else
341		fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
342
343	return fsbase;
344}
345
346unsigned long x86_gsbase_read_task(struct task_struct *task)
347{
348	unsigned long gsbase;
349
350	if (task == current)
351		gsbase = x86_gsbase_read_cpu_inactive();
352	else if (task->thread.gsindex == 0)
353		gsbase = task->thread.gsbase;
354	else
355		gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
356
357	return gsbase;
358}
359
360void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
361{
362	WARN_ON_ONCE(task == current);
363
364	task->thread.fsbase = fsbase;
365}
366
367void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
368{
369	WARN_ON_ONCE(task == current);
370
371	task->thread.gsbase = gsbase;
372}
373
374int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
375		unsigned long arg, struct task_struct *p, unsigned long tls)
376{
377	int err;
378	struct pt_regs *childregs;
379	struct fork_frame *fork_frame;
380	struct inactive_task_frame *frame;
381	struct task_struct *me = current;
382
 
383	childregs = task_pt_regs(p);
384	fork_frame = container_of(childregs, struct fork_frame, regs);
385	frame = &fork_frame->frame;
386
387	frame->bp = 0;
388	frame->ret_addr = (unsigned long) ret_from_fork;
389	p->thread.sp = (unsigned long) fork_frame;
390	p->thread.io_bitmap_ptr = NULL;
391
392	savesegment(gs, p->thread.gsindex);
393	p->thread.gsbase = p->thread.gsindex ? 0 : me->thread.gsbase;
394	savesegment(fs, p->thread.fsindex);
395	p->thread.fsbase = p->thread.fsindex ? 0 : me->thread.fsbase;
396	savesegment(es, p->thread.es);
397	savesegment(ds, p->thread.ds);
398	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
399
400	if (unlikely(p->flags & PF_KTHREAD)) {
401		/* kernel thread */
402		memset(childregs, 0, sizeof(struct pt_regs));
403		frame->bx = sp;		/* function */
404		frame->r12 = arg;
405		return 0;
406	}
407	frame->bx = 0;
408	*childregs = *current_pt_regs();
409
410	childregs->ax = 0;
411	if (sp)
412		childregs->sp = sp;
413
414	err = -ENOMEM;
415	if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
416		p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
417						  IO_BITMAP_BYTES, GFP_KERNEL);
418		if (!p->thread.io_bitmap_ptr) {
419			p->thread.io_bitmap_max = 0;
420			return -ENOMEM;
421		}
422		set_tsk_thread_flag(p, TIF_IO_BITMAP);
423	}
424
425	/*
426	 * Set a new TLS for the child thread?
427	 */
428	if (clone_flags & CLONE_SETTLS) {
429#ifdef CONFIG_IA32_EMULATION
430		if (in_ia32_syscall())
431			err = do_set_thread_area(p, -1,
432				(struct user_desc __user *)tls, 0);
433		else
434#endif
435			err = do_arch_prctl_64(p, ARCH_SET_FS, tls);
436		if (err)
437			goto out;
438	}
439	err = 0;
440out:
441	if (err && p->thread.io_bitmap_ptr) {
442		kfree(p->thread.io_bitmap_ptr);
443		p->thread.io_bitmap_max = 0;
444	}
445
446	return err;
447}
448
449static void
450start_thread_common(struct pt_regs *regs, unsigned long new_ip,
451		    unsigned long new_sp,
452		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
453{
454	WARN_ON_ONCE(regs != current_pt_regs());
455
456	if (static_cpu_has(X86_BUG_NULL_SEG)) {
457		/* Loading zero below won't clear the base. */
458		loadsegment(fs, __USER_DS);
459		load_gs_index(__USER_DS);
460	}
461
462	loadsegment(fs, 0);
463	loadsegment(es, _ds);
464	loadsegment(ds, _ds);
465	load_gs_index(0);
466
467	regs->ip		= new_ip;
468	regs->sp		= new_sp;
469	regs->cs		= _cs;
470	regs->ss		= _ss;
471	regs->flags		= X86_EFLAGS_IF;
472	force_iret();
473}
474
475void
476start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
477{
478	start_thread_common(regs, new_ip, new_sp,
479			    __USER_CS, __USER_DS, 0);
480}
481EXPORT_SYMBOL_GPL(start_thread);
482
483#ifdef CONFIG_COMPAT
484void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
485{
486	start_thread_common(regs, new_ip, new_sp,
487			    test_thread_flag(TIF_X32)
488			    ? __USER_CS : __USER32_CS,
489			    __USER_DS, __USER_DS);
490}
491#endif
492
493/*
494 *	switch_to(x,y) should switch tasks from x to y.
495 *
496 * This could still be optimized:
497 * - fold all the options into a flag word and test it with a single test.
498 * - could test fs/gs bitsliced
499 *
500 * Kprobes not supported here. Set the probe on schedule instead.
501 * Function graph tracer not supported too.
502 */
503__visible __notrace_funcgraph struct task_struct *
504__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
505{
506	struct thread_struct *prev = &prev_p->thread;
507	struct thread_struct *next = &next_p->thread;
508	struct fpu *prev_fpu = &prev->fpu;
509	struct fpu *next_fpu = &next->fpu;
510	int cpu = smp_processor_id();
 
 
511
512	WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
513		     this_cpu_read(irq_count) != -1);
514
515	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
516		switch_fpu_prepare(prev_fpu, cpu);
517
518	/* We must save %fs and %gs before load_TLS() because
519	 * %fs and %gs may be cleared by load_TLS().
520	 *
521	 * (e.g. xen_load_tls())
522	 */
523	save_fsgs(prev_p);
 
524
525	/*
526	 * Load TLS before restoring any segments so that segment loads
527	 * reference the correct GDT entries.
528	 */
529	load_TLS(next, cpu);
530
531	/*
532	 * Leave lazy mode, flushing any hypercalls made here.  This
533	 * must be done after loading TLS entries in the GDT but before
534	 * loading segments that might reference them.
 
 
535	 */
536	arch_end_context_switch(next_p);
537
538	/* Switch DS and ES.
539	 *
540	 * Reading them only returns the selectors, but writing them (if
541	 * nonzero) loads the full descriptor from the GDT or LDT.  The
542	 * LDT for next is loaded in switch_mm, and the GDT is loaded
543	 * above.
544	 *
545	 * We therefore need to write new values to the segment
546	 * registers on every context switch unless both the new and old
547	 * values are zero.
548	 *
549	 * Note that we don't need to do anything for CS and SS, as
550	 * those are saved and restored as part of pt_regs.
551	 */
552	savesegment(es, prev->es);
553	if (unlikely(next->es | prev->es))
554		loadsegment(es, next->es);
555
556	savesegment(ds, prev->ds);
557	if (unlikely(next->ds | prev->ds))
558		loadsegment(ds, next->ds);
559
560	x86_fsgsbase_load(prev, next);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
561
562	/*
563	 * Switch the PDA and FPU contexts.
564	 */
565	this_cpu_write(current_task, next_p);
566	this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p));
567
568	switch_fpu_finish(next_fpu);
 
569
570	/* Reload sp0. */
571	update_task_stack(next_p);
572
573	switch_to_extra(prev_p, next_p);
 
 
574
575#ifdef CONFIG_XEN_PV
576	/*
577	 * On Xen PV, IOPL bits in pt_regs->flags have no effect, and
578	 * current_pt_regs()->flags may not match the current task's
579	 * intended IOPL.  We need to switch it manually.
580	 */
581	if (unlikely(static_cpu_has(X86_FEATURE_XENPV) &&
582		     prev->iopl != next->iopl))
583		xen_set_iopl_mask(next->iopl);
584#endif
585
586	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
587		/*
588		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
589		 * does not update the cached descriptor.  As a result, if we
590		 * do SYSRET while SS is NULL, we'll end up in user mode with
591		 * SS apparently equal to __USER_DS but actually unusable.
592		 *
593		 * The straightforward workaround would be to fix it up just
594		 * before SYSRET, but that would slow down the system call
595		 * fast paths.  Instead, we ensure that SS is never NULL in
596		 * system call context.  We do this by replacing NULL SS
597		 * selectors at every context switch.  SYSCALL sets up a valid
598		 * SS, so the only way to get NULL is to re-enter the kernel
599		 * from CPL 3 through an interrupt.  Since that can't happen
600		 * in the same task as a running syscall, we are guaranteed to
601		 * context switch between every interrupt vector entry and a
602		 * subsequent SYSRET.
603		 *
604		 * We read SS first because SS reads are much faster than
605		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
606		 * it previously had a different non-NULL value.
607		 */
608		unsigned short ss_sel;
609		savesegment(ss, ss_sel);
610		if (ss_sel != __KERNEL_DS)
611			loadsegment(ss, __KERNEL_DS);
612	}
613
614	/* Load the Intel cache allocation PQR MSR. */
615	resctrl_sched_in();
616
617	return prev_p;
618}
619
620void set_personality_64bit(void)
621{
622	/* inherit personality from parent */
623
624	/* Make sure to be in 64bit mode */
625	clear_thread_flag(TIF_IA32);
626	clear_thread_flag(TIF_ADDR32);
627	clear_thread_flag(TIF_X32);
628	/* Pretend that this comes from a 64bit execve */
629	task_pt_regs(current)->orig_ax = __NR_execve;
630	current_thread_info()->status &= ~TS_COMPAT;
631
632	/* Ensure the corresponding mm is not marked. */
633	if (current->mm)
634		current->mm->context.ia32_compat = 0;
635
636	/* TBD: overwrites user setup. Should have two bits.
637	   But 64bit processes have always behaved this way,
638	   so it's not too bad. The main problem is just that
639	   32bit children are affected again. */
640	current->personality &= ~READ_IMPLIES_EXEC;
641}
642
643static void __set_personality_x32(void)
644{
645#ifdef CONFIG_X86_X32
646	clear_thread_flag(TIF_IA32);
647	set_thread_flag(TIF_X32);
648	if (current->mm)
649		current->mm->context.ia32_compat = TIF_X32;
650	current->personality &= ~READ_IMPLIES_EXEC;
651	/*
652	 * in_32bit_syscall() uses the presence of the x32 syscall bit
653	 * flag to determine compat status.  The x86 mmap() code relies on
654	 * the syscall bitness so set x32 syscall bit right here to make
655	 * in_32bit_syscall() work during exec().
656	 *
657	 * Pretend to come from a x32 execve.
658	 */
659	task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
660	current_thread_info()->status &= ~TS_COMPAT;
661#endif
662}
663
664static void __set_personality_ia32(void)
665{
666#ifdef CONFIG_IA32_EMULATION
667	set_thread_flag(TIF_IA32);
668	clear_thread_flag(TIF_X32);
669	if (current->mm)
670		current->mm->context.ia32_compat = TIF_IA32;
671	current->personality |= force_personality32;
672	/* Prepare the first "return" to user space */
673	task_pt_regs(current)->orig_ax = __NR_ia32_execve;
674	current_thread_info()->status |= TS_COMPAT;
675#endif
676}
677
678void set_personality_ia32(bool x32)
679{
 
 
680	/* Make sure to be in 32bit mode */
681	set_thread_flag(TIF_ADDR32);
682
683	if (x32)
684		__set_personality_x32();
685	else
686		__set_personality_ia32();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
687}
688EXPORT_SYMBOL_GPL(set_personality_ia32);
689
690#ifdef CONFIG_CHECKPOINT_RESTORE
691static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
692{
693	int ret;
694
695	ret = map_vdso_once(image, addr);
696	if (ret)
697		return ret;
698
699	return (long)image->size;
700}
701#endif
702
703long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
704{
705	int ret = 0;
 
 
706
707	switch (option) {
708	case ARCH_SET_GS: {
709		if (unlikely(arg2 >= TASK_SIZE_MAX))
710			return -EPERM;
711
712		preempt_disable();
713		/*
714		 * ARCH_SET_GS has always overwritten the index
715		 * and the base. Zero is the most sensible value
716		 * to put in the index, and is the only value that
717		 * makes any sense if FSGSBASE is unavailable.
718		 */
719		if (task == current) {
720			loadseg(GS, 0);
721			x86_gsbase_write_cpu_inactive(arg2);
722
723			/*
724			 * On non-FSGSBASE systems, save_base_legacy() expects
725			 * that we also fill in thread.gsbase.
726			 */
727			task->thread.gsbase = arg2;
728
729		} else {
730			task->thread.gsindex = 0;
731			x86_gsbase_write_task(task, arg2);
732		}
733		preempt_enable();
734		break;
735	}
736	case ARCH_SET_FS: {
737		/*
738		 * Not strictly needed for %fs, but do it for symmetry
739		 * with %gs
740		 */
741		if (unlikely(arg2 >= TASK_SIZE_MAX))
742			return -EPERM;
743
744		preempt_disable();
745		/*
746		 * Set the selector to 0 for the same reason
747		 * as %gs above.
748		 */
749		if (task == current) {
750			loadseg(FS, 0);
751			x86_fsbase_write_cpu(arg2);
752
753			/*
754			 * On non-FSGSBASE systems, save_base_legacy() expects
755			 * that we also fill in thread.fsbase.
756			 */
757			task->thread.fsbase = arg2;
758		} else {
759			task->thread.fsindex = 0;
760			x86_fsbase_write_task(task, arg2);
761		}
762		preempt_enable();
763		break;
764	}
765	case ARCH_GET_FS: {
766		unsigned long base = x86_fsbase_read_task(task);
767
768		ret = put_user(base, (unsigned long __user *)arg2);
 
 
 
769		break;
770	}
771	case ARCH_GET_GS: {
772		unsigned long base = x86_gsbase_read_task(task);
773
774		ret = put_user(base, (unsigned long __user *)arg2);
 
 
 
775		break;
776	}
777
778#ifdef CONFIG_CHECKPOINT_RESTORE
779# ifdef CONFIG_X86_X32_ABI
780	case ARCH_MAP_VDSO_X32:
781		return prctl_map_vdso(&vdso_image_x32, arg2);
782# endif
783# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
784	case ARCH_MAP_VDSO_32:
785		return prctl_map_vdso(&vdso_image_32, arg2);
786# endif
787	case ARCH_MAP_VDSO_64:
788		return prctl_map_vdso(&vdso_image_64, arg2);
789#endif
790
791	default:
792		ret = -EINVAL;
793		break;
794	}
795
796	return ret;
797}
798
799SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
800{
801	long ret;
802
803	ret = do_arch_prctl_64(current, option, arg2);
804	if (ret == -EINVAL)
805		ret = do_arch_prctl_common(current, option, arg2);
806
807	return ret;
808}
809
810#ifdef CONFIG_IA32_EMULATION
811COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
812{
813	return do_arch_prctl_common(current, option, arg2);
814}
815#endif
816
817unsigned long KSTK_ESP(struct task_struct *task)
818{
819	return task_pt_regs(task)->sp;
820}
v4.10.11
 
  1/*
  2 *  Copyright (C) 1995  Linus Torvalds
  3 *
  4 *  Pentium III FXSR, SSE support
  5 *	Gareth Hughes <gareth@valinux.com>, May 2000
  6 *
  7 *  X86-64 port
  8 *	Andi Kleen.
  9 *
 10 *	CPU hotplug support - ashok.raj@intel.com
 11 */
 12
 13/*
 14 * This file handles the architecture-dependent parts of process handling..
 15 */
 16
 17#include <linux/cpu.h>
 18#include <linux/errno.h>
 19#include <linux/sched.h>
 
 
 20#include <linux/fs.h>
 21#include <linux/kernel.h>
 22#include <linux/mm.h>
 23#include <linux/elfcore.h>
 24#include <linux/smp.h>
 25#include <linux/slab.h>
 26#include <linux/user.h>
 27#include <linux/interrupt.h>
 28#include <linux/delay.h>
 29#include <linux/export.h>
 30#include <linux/ptrace.h>
 31#include <linux/notifier.h>
 32#include <linux/kprobes.h>
 33#include <linux/kdebug.h>
 34#include <linux/prctl.h>
 35#include <linux/uaccess.h>
 36#include <linux/io.h>
 37#include <linux/ftrace.h>
 
 38
 39#include <asm/pgtable.h>
 40#include <asm/processor.h>
 41#include <asm/fpu/internal.h>
 42#include <asm/mmu_context.h>
 43#include <asm/prctl.h>
 44#include <asm/desc.h>
 45#include <asm/proto.h>
 46#include <asm/ia32.h>
 47#include <asm/syscalls.h>
 48#include <asm/debugreg.h>
 49#include <asm/switch_to.h>
 50#include <asm/xen/hypervisor.h>
 51#include <asm/vdso.h>
 52#include <asm/intel_rdt.h>
 
 
 
 
 
 
 53
 54__visible DEFINE_PER_CPU(unsigned long, rsp_scratch);
 55
 56/* Prints also some state that isn't saved in the pt_regs */
 57void __show_regs(struct pt_regs *regs, int all)
 58{
 59	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
 60	unsigned long d0, d1, d2, d3, d6, d7;
 61	unsigned int fsindex, gsindex;
 62	unsigned int ds, cs, es;
 
 
 63
 64	printk(KERN_DEFAULT "RIP: %04lx:%pS\n", regs->cs & 0xffff,
 65		(void *)regs->ip);
 66	printk(KERN_DEFAULT "RSP: %04lx:%016lx EFLAGS: %08lx", regs->ss,
 67		regs->sp, regs->flags);
 68	if (regs->orig_ax != -1)
 69		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
 70	else
 71		pr_cont("\n");
 72
 73	printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
 74	       regs->ax, regs->bx, regs->cx);
 75	printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
 76	       regs->dx, regs->si, regs->di);
 77	printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
 78	       regs->bp, regs->r8, regs->r9);
 79	printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
 80	       regs->r10, regs->r11, regs->r12);
 81	printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
 82	       regs->r13, regs->r14, regs->r15);
 83
 
 
 
 
 
 
 
 
 
 
 
 84	asm("movl %%ds,%0" : "=r" (ds));
 85	asm("movl %%cs,%0" : "=r" (cs));
 86	asm("movl %%es,%0" : "=r" (es));
 87	asm("movl %%fs,%0" : "=r" (fsindex));
 88	asm("movl %%gs,%0" : "=r" (gsindex));
 89
 90	rdmsrl(MSR_FS_BASE, fs);
 91	rdmsrl(MSR_GS_BASE, gs);
 92	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
 93
 94	if (!all)
 95		return;
 96
 97	cr0 = read_cr0();
 98	cr2 = read_cr2();
 99	cr3 = read_cr3();
100	cr4 = __read_cr4();
101
102	printk(KERN_DEFAULT "FS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
103	       fs, fsindex, gs, gsindex, shadowgs);
104	printk(KERN_DEFAULT "CS:  %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
105			es, cr0);
106	printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
107			cr4);
108
109	get_debugreg(d0, 0);
110	get_debugreg(d1, 1);
111	get_debugreg(d2, 2);
112	get_debugreg(d3, 3);
113	get_debugreg(d6, 6);
114	get_debugreg(d7, 7);
115
116	/* Only print out debug registers if they are in their non-default state. */
117	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
118	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
119		printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n",
120		       d0, d1, d2);
121		printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n",
122		       d3, d6, d7);
123	}
124
125	if (boot_cpu_has(X86_FEATURE_OSPKE))
126		printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
127}
128
129void release_thread(struct task_struct *dead_task)
130{
131	if (dead_task->mm) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132#ifdef CONFIG_MODIFY_LDT_SYSCALL
133		if (dead_task->mm->context.ldt) {
134			pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
135				dead_task->comm,
136				dead_task->mm->context.ldt->entries,
137				dead_task->mm->context.ldt->size);
138			BUG();
139		}
 
 
 
 
 
 
 
 
 
140#endif
141	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142}
143
144int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
145		unsigned long arg, struct task_struct *p, unsigned long tls)
146{
147	int err;
148	struct pt_regs *childregs;
149	struct fork_frame *fork_frame;
150	struct inactive_task_frame *frame;
151	struct task_struct *me = current;
152
153	p->thread.sp0 = (unsigned long)task_stack_page(p) + THREAD_SIZE;
154	childregs = task_pt_regs(p);
155	fork_frame = container_of(childregs, struct fork_frame, regs);
156	frame = &fork_frame->frame;
 
157	frame->bp = 0;
158	frame->ret_addr = (unsigned long) ret_from_fork;
159	p->thread.sp = (unsigned long) fork_frame;
160	p->thread.io_bitmap_ptr = NULL;
161
162	savesegment(gs, p->thread.gsindex);
163	p->thread.gsbase = p->thread.gsindex ? 0 : me->thread.gsbase;
164	savesegment(fs, p->thread.fsindex);
165	p->thread.fsbase = p->thread.fsindex ? 0 : me->thread.fsbase;
166	savesegment(es, p->thread.es);
167	savesegment(ds, p->thread.ds);
168	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
169
170	if (unlikely(p->flags & PF_KTHREAD)) {
171		/* kernel thread */
172		memset(childregs, 0, sizeof(struct pt_regs));
173		frame->bx = sp;		/* function */
174		frame->r12 = arg;
175		return 0;
176	}
177	frame->bx = 0;
178	*childregs = *current_pt_regs();
179
180	childregs->ax = 0;
181	if (sp)
182		childregs->sp = sp;
183
184	err = -ENOMEM;
185	if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
186		p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
187						  IO_BITMAP_BYTES, GFP_KERNEL);
188		if (!p->thread.io_bitmap_ptr) {
189			p->thread.io_bitmap_max = 0;
190			return -ENOMEM;
191		}
192		set_tsk_thread_flag(p, TIF_IO_BITMAP);
193	}
194
195	/*
196	 * Set a new TLS for the child thread?
197	 */
198	if (clone_flags & CLONE_SETTLS) {
199#ifdef CONFIG_IA32_EMULATION
200		if (in_ia32_syscall())
201			err = do_set_thread_area(p, -1,
202				(struct user_desc __user *)tls, 0);
203		else
204#endif
205			err = do_arch_prctl(p, ARCH_SET_FS, tls);
206		if (err)
207			goto out;
208	}
209	err = 0;
210out:
211	if (err && p->thread.io_bitmap_ptr) {
212		kfree(p->thread.io_bitmap_ptr);
213		p->thread.io_bitmap_max = 0;
214	}
215
216	return err;
217}
218
219static void
220start_thread_common(struct pt_regs *regs, unsigned long new_ip,
221		    unsigned long new_sp,
222		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
223{
 
 
 
 
 
 
 
 
224	loadsegment(fs, 0);
225	loadsegment(es, _ds);
226	loadsegment(ds, _ds);
227	load_gs_index(0);
 
228	regs->ip		= new_ip;
229	regs->sp		= new_sp;
230	regs->cs		= _cs;
231	regs->ss		= _ss;
232	regs->flags		= X86_EFLAGS_IF;
233	force_iret();
234}
235
236void
237start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
238{
239	start_thread_common(regs, new_ip, new_sp,
240			    __USER_CS, __USER_DS, 0);
241}
 
242
243#ifdef CONFIG_COMPAT
244void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
245{
246	start_thread_common(regs, new_ip, new_sp,
247			    test_thread_flag(TIF_X32)
248			    ? __USER_CS : __USER32_CS,
249			    __USER_DS, __USER_DS);
250}
251#endif
252
253/*
254 *	switch_to(x,y) should switch tasks from x to y.
255 *
256 * This could still be optimized:
257 * - fold all the options into a flag word and test it with a single test.
258 * - could test fs/gs bitsliced
259 *
260 * Kprobes not supported here. Set the probe on schedule instead.
261 * Function graph tracer not supported too.
262 */
263__visible __notrace_funcgraph struct task_struct *
264__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
265{
266	struct thread_struct *prev = &prev_p->thread;
267	struct thread_struct *next = &next_p->thread;
268	struct fpu *prev_fpu = &prev->fpu;
269	struct fpu *next_fpu = &next->fpu;
270	int cpu = smp_processor_id();
271	struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
272	unsigned prev_fsindex, prev_gsindex;
273
274	switch_fpu_prepare(prev_fpu, cpu);
 
 
 
 
275
276	/* We must save %fs and %gs before load_TLS() because
277	 * %fs and %gs may be cleared by load_TLS().
278	 *
279	 * (e.g. xen_load_tls())
280	 */
281	savesegment(fs, prev_fsindex);
282	savesegment(gs, prev_gsindex);
283
284	/*
285	 * Load TLS before restoring any segments so that segment loads
286	 * reference the correct GDT entries.
287	 */
288	load_TLS(next, cpu);
289
290	/*
291	 * Leave lazy mode, flushing any hypercalls made here.  This
292	 * must be done after loading TLS entries in the GDT but before
293	 * loading segments that might reference them, and and it must
294	 * be done before fpu__restore(), so the TS bit is up to
295	 * date.
296	 */
297	arch_end_context_switch(next_p);
298
299	/* Switch DS and ES.
300	 *
301	 * Reading them only returns the selectors, but writing them (if
302	 * nonzero) loads the full descriptor from the GDT or LDT.  The
303	 * LDT for next is loaded in switch_mm, and the GDT is loaded
304	 * above.
305	 *
306	 * We therefore need to write new values to the segment
307	 * registers on every context switch unless both the new and old
308	 * values are zero.
309	 *
310	 * Note that we don't need to do anything for CS and SS, as
311	 * those are saved and restored as part of pt_regs.
312	 */
313	savesegment(es, prev->es);
314	if (unlikely(next->es | prev->es))
315		loadsegment(es, next->es);
316
317	savesegment(ds, prev->ds);
318	if (unlikely(next->ds | prev->ds))
319		loadsegment(ds, next->ds);
320
321	/*
322	 * Switch FS and GS.
323	 *
324	 * These are even more complicated than DS and ES: they have
325	 * 64-bit bases are that controlled by arch_prctl.  The bases
326	 * don't necessarily match the selectors, as user code can do
327	 * any number of things to cause them to be inconsistent.
328	 *
329	 * We don't promise to preserve the bases if the selectors are
330	 * nonzero.  We also don't promise to preserve the base if the
331	 * selector is zero and the base doesn't match whatever was
332	 * most recently passed to ARCH_SET_FS/GS.  (If/when the
333	 * FSGSBASE instructions are enabled, we'll need to offer
334	 * stronger guarantees.)
335	 *
336	 * As an invariant,
337	 * (fsbase != 0 && fsindex != 0) || (gsbase != 0 && gsindex != 0) is
338	 * impossible.
339	 */
340	if (next->fsindex) {
341		/* Loading a nonzero value into FS sets the index and base. */
342		loadsegment(fs, next->fsindex);
343	} else {
344		if (next->fsbase) {
345			/* Next index is zero but next base is nonzero. */
346			if (prev_fsindex)
347				loadsegment(fs, 0);
348			wrmsrl(MSR_FS_BASE, next->fsbase);
349		} else {
350			/* Next base and index are both zero. */
351			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
352				/*
353				 * We don't know the previous base and can't
354				 * find out without RDMSR.  Forcibly clear it.
355				 */
356				loadsegment(fs, __USER_DS);
357				loadsegment(fs, 0);
358			} else {
359				/*
360				 * If the previous index is zero and ARCH_SET_FS
361				 * didn't change the base, then the base is
362				 * also zero and we don't need to do anything.
363				 */
364				if (prev->fsbase || prev_fsindex)
365					loadsegment(fs, 0);
366			}
367		}
368	}
369	/*
370	 * Save the old state and preserve the invariant.
371	 * NB: if prev_fsindex == 0, then we can't reliably learn the base
372	 * without RDMSR because Intel user code can zero it without telling
373	 * us and AMD user code can program any 32-bit value without telling
374	 * us.
375	 */
376	if (prev_fsindex)
377		prev->fsbase = 0;
378	prev->fsindex = prev_fsindex;
379
380	if (next->gsindex) {
381		/* Loading a nonzero value into GS sets the index and base. */
382		load_gs_index(next->gsindex);
383	} else {
384		if (next->gsbase) {
385			/* Next index is zero but next base is nonzero. */
386			if (prev_gsindex)
387				load_gs_index(0);
388			wrmsrl(MSR_KERNEL_GS_BASE, next->gsbase);
389		} else {
390			/* Next base and index are both zero. */
391			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
392				/*
393				 * We don't know the previous base and can't
394				 * find out without RDMSR.  Forcibly clear it.
395				 *
396				 * This contains a pointless SWAPGS pair.
397				 * Fixing it would involve an explicit check
398				 * for Xen or a new pvop.
399				 */
400				load_gs_index(__USER_DS);
401				load_gs_index(0);
402			} else {
403				/*
404				 * If the previous index is zero and ARCH_SET_GS
405				 * didn't change the base, then the base is
406				 * also zero and we don't need to do anything.
407				 */
408				if (prev->gsbase || prev_gsindex)
409					load_gs_index(0);
410			}
411		}
412	}
413	/*
414	 * Save the old state and preserve the invariant.
415	 * NB: if prev_gsindex == 0, then we can't reliably learn the base
416	 * without RDMSR because Intel user code can zero it without telling
417	 * us and AMD user code can program any 32-bit value without telling
418	 * us.
419	 */
420	if (prev_gsindex)
421		prev->gsbase = 0;
422	prev->gsindex = prev_gsindex;
423
424	switch_fpu_finish(next_fpu, cpu);
425
426	/*
427	 * Switch the PDA and FPU contexts.
428	 */
429	this_cpu_write(current_task, next_p);
 
430
431	/* Reload esp0 and ss1.  This changes current_thread_info(). */
432	load_sp0(tss, next);
433
434	/*
435	 * Now maybe reload the debug registers and handle I/O bitmaps
436	 */
437	if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
438		     task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
439		__switch_to_xtra(prev_p, next_p, tss);
440
441#ifdef CONFIG_XEN
442	/*
443	 * On Xen PV, IOPL bits in pt_regs->flags have no effect, and
444	 * current_pt_regs()->flags may not match the current task's
445	 * intended IOPL.  We need to switch it manually.
446	 */
447	if (unlikely(static_cpu_has(X86_FEATURE_XENPV) &&
448		     prev->iopl != next->iopl))
449		xen_set_iopl_mask(next->iopl);
450#endif
451
452	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
453		/*
454		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
455		 * does not update the cached descriptor.  As a result, if we
456		 * do SYSRET while SS is NULL, we'll end up in user mode with
457		 * SS apparently equal to __USER_DS but actually unusable.
458		 *
459		 * The straightforward workaround would be to fix it up just
460		 * before SYSRET, but that would slow down the system call
461		 * fast paths.  Instead, we ensure that SS is never NULL in
462		 * system call context.  We do this by replacing NULL SS
463		 * selectors at every context switch.  SYSCALL sets up a valid
464		 * SS, so the only way to get NULL is to re-enter the kernel
465		 * from CPL 3 through an interrupt.  Since that can't happen
466		 * in the same task as a running syscall, we are guaranteed to
467		 * context switch between every interrupt vector entry and a
468		 * subsequent SYSRET.
469		 *
470		 * We read SS first because SS reads are much faster than
471		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
472		 * it previously had a different non-NULL value.
473		 */
474		unsigned short ss_sel;
475		savesegment(ss, ss_sel);
476		if (ss_sel != __KERNEL_DS)
477			loadsegment(ss, __KERNEL_DS);
478	}
479
480	/* Load the Intel cache allocation PQR MSR. */
481	intel_rdt_sched_in();
482
483	return prev_p;
484}
485
486void set_personality_64bit(void)
487{
488	/* inherit personality from parent */
489
490	/* Make sure to be in 64bit mode */
491	clear_thread_flag(TIF_IA32);
492	clear_thread_flag(TIF_ADDR32);
493	clear_thread_flag(TIF_X32);
 
 
 
494
495	/* Ensure the corresponding mm is not marked. */
496	if (current->mm)
497		current->mm->context.ia32_compat = 0;
498
499	/* TBD: overwrites user setup. Should have two bits.
500	   But 64bit processes have always behaved this way,
501	   so it's not too bad. The main problem is just that
502	   32bit childs are affected again. */
503	current->personality &= ~READ_IMPLIES_EXEC;
504}
505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
506void set_personality_ia32(bool x32)
507{
508	/* inherit personality from parent */
509
510	/* Make sure to be in 32bit mode */
511	set_thread_flag(TIF_ADDR32);
512
513	/* Mark the associated mm as containing 32-bit tasks. */
514	if (x32) {
515		clear_thread_flag(TIF_IA32);
516		set_thread_flag(TIF_X32);
517		if (current->mm)
518			current->mm->context.ia32_compat = TIF_X32;
519		current->personality &= ~READ_IMPLIES_EXEC;
520		/* in_compat_syscall() uses the presence of the x32
521		   syscall bit flag to determine compat status */
522		current->thread.status &= ~TS_COMPAT;
523	} else {
524		set_thread_flag(TIF_IA32);
525		clear_thread_flag(TIF_X32);
526		if (current->mm)
527			current->mm->context.ia32_compat = TIF_IA32;
528		current->personality |= force_personality32;
529		/* Prepare the first "return" to user space */
530		current->thread.status |= TS_COMPAT;
531	}
532}
533EXPORT_SYMBOL_GPL(set_personality_ia32);
534
535#ifdef CONFIG_CHECKPOINT_RESTORE
536static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
537{
538	int ret;
539
540	ret = map_vdso_once(image, addr);
541	if (ret)
542		return ret;
543
544	return (long)image->size;
545}
546#endif
547
548long do_arch_prctl(struct task_struct *task, int code, unsigned long addr)
549{
550	int ret = 0;
551	int doit = task == current;
552	int cpu;
553
554	switch (code) {
555	case ARCH_SET_GS:
556		if (addr >= TASK_SIZE_MAX)
557			return -EPERM;
558		cpu = get_cpu();
559		task->thread.gsindex = 0;
560		task->thread.gsbase = addr;
561		if (doit) {
562			load_gs_index(0);
563			ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
564		}
565		put_cpu();
566		break;
567	case ARCH_SET_FS:
568		/* Not strictly needed for fs, but do it for symmetry
569		   with gs */
570		if (addr >= TASK_SIZE_MAX)
 
 
 
571			return -EPERM;
572		cpu = get_cpu();
573		task->thread.fsindex = 0;
574		task->thread.fsbase = addr;
575		if (doit) {
576			/* set the selector to 0 to not confuse __switch_to */
577			loadsegment(fs, 0);
578			ret = wrmsrl_safe(MSR_FS_BASE, addr);
 
 
 
 
 
 
 
 
 
 
 
579		}
580		put_cpu();
581		break;
 
582	case ARCH_GET_FS: {
583		unsigned long base;
584		if (doit)
585			rdmsrl(MSR_FS_BASE, base);
586		else
587			base = task->thread.fsbase;
588		ret = put_user(base, (unsigned long __user *)addr);
589		break;
590	}
591	case ARCH_GET_GS: {
592		unsigned long base;
593		if (doit)
594			rdmsrl(MSR_KERNEL_GS_BASE, base);
595		else
596			base = task->thread.gsbase;
597		ret = put_user(base, (unsigned long __user *)addr);
598		break;
599	}
600
601#ifdef CONFIG_CHECKPOINT_RESTORE
602# ifdef CONFIG_X86_X32_ABI
603	case ARCH_MAP_VDSO_X32:
604		return prctl_map_vdso(&vdso_image_x32, addr);
605# endif
606# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
607	case ARCH_MAP_VDSO_32:
608		return prctl_map_vdso(&vdso_image_32, addr);
609# endif
610	case ARCH_MAP_VDSO_64:
611		return prctl_map_vdso(&vdso_image_64, addr);
612#endif
613
614	default:
615		ret = -EINVAL;
616		break;
617	}
618
619	return ret;
620}
621
622long sys_arch_prctl(int code, unsigned long addr)
623{
624	return do_arch_prctl(current, code, addr);
 
 
 
 
 
 
625}
 
 
 
 
 
 
 
626
627unsigned long KSTK_ESP(struct task_struct *task)
628{
629	return task_pt_regs(task)->sp;
630}