Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 *
8 * X86-64 port
9 * Andi Kleen.
10 *
11 * CPU hotplug support - ashok.raj@intel.com
12 */
13
14/*
15 * This file handles the architecture-dependent parts of process handling..
16 */
17
18#include <linux/cpu.h>
19#include <linux/errno.h>
20#include <linux/sched.h>
21#include <linux/sched/task.h>
22#include <linux/sched/task_stack.h>
23#include <linux/fs.h>
24#include <linux/kernel.h>
25#include <linux/mm.h>
26#include <linux/elfcore.h>
27#include <linux/smp.h>
28#include <linux/slab.h>
29#include <linux/user.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/export.h>
33#include <linux/ptrace.h>
34#include <linux/notifier.h>
35#include <linux/kprobes.h>
36#include <linux/kdebug.h>
37#include <linux/prctl.h>
38#include <linux/uaccess.h>
39#include <linux/io.h>
40#include <linux/ftrace.h>
41#include <linux/syscalls.h>
42
43#include <asm/pgtable.h>
44#include <asm/processor.h>
45#include <asm/fpu/internal.h>
46#include <asm/mmu_context.h>
47#include <asm/prctl.h>
48#include <asm/desc.h>
49#include <asm/proto.h>
50#include <asm/ia32.h>
51#include <asm/syscalls.h>
52#include <asm/debugreg.h>
53#include <asm/switch_to.h>
54#include <asm/xen/hypervisor.h>
55#include <asm/vdso.h>
56#include <asm/resctrl_sched.h>
57#include <asm/unistd.h>
58#include <asm/fsgsbase.h>
59#ifdef CONFIG_IA32_EMULATION
60/* Not included via unistd.h */
61#include <asm/unistd_32_ia32.h>
62#endif
63
64#include "process.h"
65
66/* Prints also some state that isn't saved in the pt_regs */
67void __show_regs(struct pt_regs *regs, enum show_regs_mode mode)
68{
69 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
70 unsigned long d0, d1, d2, d3, d6, d7;
71 unsigned int fsindex, gsindex;
72 unsigned int ds, es;
73
74 show_iret_regs(regs);
75
76 if (regs->orig_ax != -1)
77 pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
78 else
79 pr_cont("\n");
80
81 printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
82 regs->ax, regs->bx, regs->cx);
83 printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
84 regs->dx, regs->si, regs->di);
85 printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
86 regs->bp, regs->r8, regs->r9);
87 printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
88 regs->r10, regs->r11, regs->r12);
89 printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
90 regs->r13, regs->r14, regs->r15);
91
92 if (mode == SHOW_REGS_SHORT)
93 return;
94
95 if (mode == SHOW_REGS_USER) {
96 rdmsrl(MSR_FS_BASE, fs);
97 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
98 printk(KERN_DEFAULT "FS: %016lx GS: %016lx\n",
99 fs, shadowgs);
100 return;
101 }
102
103 asm("movl %%ds,%0" : "=r" (ds));
104 asm("movl %%es,%0" : "=r" (es));
105 asm("movl %%fs,%0" : "=r" (fsindex));
106 asm("movl %%gs,%0" : "=r" (gsindex));
107
108 rdmsrl(MSR_FS_BASE, fs);
109 rdmsrl(MSR_GS_BASE, gs);
110 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
111
112 cr0 = read_cr0();
113 cr2 = read_cr2();
114 cr3 = __read_cr3();
115 cr4 = __read_cr4();
116
117 printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
118 fs, fsindex, gs, gsindex, shadowgs);
119 printk(KERN_DEFAULT "CS: %04lx DS: %04x ES: %04x CR0: %016lx\n", regs->cs, ds,
120 es, cr0);
121 printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
122 cr4);
123
124 get_debugreg(d0, 0);
125 get_debugreg(d1, 1);
126 get_debugreg(d2, 2);
127 get_debugreg(d3, 3);
128 get_debugreg(d6, 6);
129 get_debugreg(d7, 7);
130
131 /* Only print out debug registers if they are in their non-default state. */
132 if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
133 (d6 == DR6_RESERVED) && (d7 == 0x400))) {
134 printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n",
135 d0, d1, d2);
136 printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n",
137 d3, d6, d7);
138 }
139
140 if (boot_cpu_has(X86_FEATURE_OSPKE))
141 printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
142}
143
144void release_thread(struct task_struct *dead_task)
145{
146 WARN_ON(dead_task->mm);
147}
148
149enum which_selector {
150 FS,
151 GS
152};
153
154/*
155 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
156 * not available. The goal is to be reasonably fast on non-FSGSBASE systems.
157 * It's forcibly inlined because it'll generate better code and this function
158 * is hot.
159 */
160static __always_inline void save_base_legacy(struct task_struct *prev_p,
161 unsigned short selector,
162 enum which_selector which)
163{
164 if (likely(selector == 0)) {
165 /*
166 * On Intel (without X86_BUG_NULL_SEG), the segment base could
167 * be the pre-existing saved base or it could be zero. On AMD
168 * (with X86_BUG_NULL_SEG), the segment base could be almost
169 * anything.
170 *
171 * This branch is very hot (it's hit twice on almost every
172 * context switch between 64-bit programs), and avoiding
173 * the RDMSR helps a lot, so we just assume that whatever
174 * value is already saved is correct. This matches historical
175 * Linux behavior, so it won't break existing applications.
176 *
177 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
178 * report that the base is zero, it needs to actually be zero:
179 * see the corresponding logic in load_seg_legacy.
180 */
181 } else {
182 /*
183 * If the selector is 1, 2, or 3, then the base is zero on
184 * !X86_BUG_NULL_SEG CPUs and could be anything on
185 * X86_BUG_NULL_SEG CPUs. In the latter case, Linux
186 * has never attempted to preserve the base across context
187 * switches.
188 *
189 * If selector > 3, then it refers to a real segment, and
190 * saving the base isn't necessary.
191 */
192 if (which == FS)
193 prev_p->thread.fsbase = 0;
194 else
195 prev_p->thread.gsbase = 0;
196 }
197}
198
199static __always_inline void save_fsgs(struct task_struct *task)
200{
201 savesegment(fs, task->thread.fsindex);
202 savesegment(gs, task->thread.gsindex);
203 save_base_legacy(task, task->thread.fsindex, FS);
204 save_base_legacy(task, task->thread.gsindex, GS);
205}
206
207#if IS_ENABLED(CONFIG_KVM)
208/*
209 * While a process is running,current->thread.fsbase and current->thread.gsbase
210 * may not match the corresponding CPU registers (see save_base_legacy()). KVM
211 * wants an efficient way to save and restore FSBASE and GSBASE.
212 * When FSGSBASE extensions are enabled, this will have to use RD{FS,GS}BASE.
213 */
214void save_fsgs_for_kvm(void)
215{
216 save_fsgs(current);
217}
218EXPORT_SYMBOL_GPL(save_fsgs_for_kvm);
219#endif
220
221static __always_inline void loadseg(enum which_selector which,
222 unsigned short sel)
223{
224 if (which == FS)
225 loadsegment(fs, sel);
226 else
227 load_gs_index(sel);
228}
229
230static __always_inline void load_seg_legacy(unsigned short prev_index,
231 unsigned long prev_base,
232 unsigned short next_index,
233 unsigned long next_base,
234 enum which_selector which)
235{
236 if (likely(next_index <= 3)) {
237 /*
238 * The next task is using 64-bit TLS, is not using this
239 * segment at all, or is having fun with arcane CPU features.
240 */
241 if (next_base == 0) {
242 /*
243 * Nasty case: on AMD CPUs, we need to forcibly zero
244 * the base.
245 */
246 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
247 loadseg(which, __USER_DS);
248 loadseg(which, next_index);
249 } else {
250 /*
251 * We could try to exhaustively detect cases
252 * under which we can skip the segment load,
253 * but there's really only one case that matters
254 * for performance: if both the previous and
255 * next states are fully zeroed, we can skip
256 * the load.
257 *
258 * (This assumes that prev_base == 0 has no
259 * false positives. This is the case on
260 * Intel-style CPUs.)
261 */
262 if (likely(prev_index | next_index | prev_base))
263 loadseg(which, next_index);
264 }
265 } else {
266 if (prev_index != next_index)
267 loadseg(which, next_index);
268 wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
269 next_base);
270 }
271 } else {
272 /*
273 * The next task is using a real segment. Loading the selector
274 * is sufficient.
275 */
276 loadseg(which, next_index);
277 }
278}
279
280static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
281 struct thread_struct *next)
282{
283 load_seg_legacy(prev->fsindex, prev->fsbase,
284 next->fsindex, next->fsbase, FS);
285 load_seg_legacy(prev->gsindex, prev->gsbase,
286 next->gsindex, next->gsbase, GS);
287}
288
289static unsigned long x86_fsgsbase_read_task(struct task_struct *task,
290 unsigned short selector)
291{
292 unsigned short idx = selector >> 3;
293 unsigned long base;
294
295 if (likely((selector & SEGMENT_TI_MASK) == 0)) {
296 if (unlikely(idx >= GDT_ENTRIES))
297 return 0;
298
299 /*
300 * There are no user segments in the GDT with nonzero bases
301 * other than the TLS segments.
302 */
303 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
304 return 0;
305
306 idx -= GDT_ENTRY_TLS_MIN;
307 base = get_desc_base(&task->thread.tls_array[idx]);
308 } else {
309#ifdef CONFIG_MODIFY_LDT_SYSCALL
310 struct ldt_struct *ldt;
311
312 /*
313 * If performance here mattered, we could protect the LDT
314 * with RCU. This is a slow path, though, so we can just
315 * take the mutex.
316 */
317 mutex_lock(&task->mm->context.lock);
318 ldt = task->mm->context.ldt;
319 if (unlikely(idx >= ldt->nr_entries))
320 base = 0;
321 else
322 base = get_desc_base(ldt->entries + idx);
323 mutex_unlock(&task->mm->context.lock);
324#else
325 base = 0;
326#endif
327 }
328
329 return base;
330}
331
332unsigned long x86_fsbase_read_task(struct task_struct *task)
333{
334 unsigned long fsbase;
335
336 if (task == current)
337 fsbase = x86_fsbase_read_cpu();
338 else if (task->thread.fsindex == 0)
339 fsbase = task->thread.fsbase;
340 else
341 fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
342
343 return fsbase;
344}
345
346unsigned long x86_gsbase_read_task(struct task_struct *task)
347{
348 unsigned long gsbase;
349
350 if (task == current)
351 gsbase = x86_gsbase_read_cpu_inactive();
352 else if (task->thread.gsindex == 0)
353 gsbase = task->thread.gsbase;
354 else
355 gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
356
357 return gsbase;
358}
359
360void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
361{
362 WARN_ON_ONCE(task == current);
363
364 task->thread.fsbase = fsbase;
365}
366
367void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
368{
369 WARN_ON_ONCE(task == current);
370
371 task->thread.gsbase = gsbase;
372}
373
374int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
375 unsigned long arg, struct task_struct *p, unsigned long tls)
376{
377 int err;
378 struct pt_regs *childregs;
379 struct fork_frame *fork_frame;
380 struct inactive_task_frame *frame;
381 struct task_struct *me = current;
382
383 childregs = task_pt_regs(p);
384 fork_frame = container_of(childregs, struct fork_frame, regs);
385 frame = &fork_frame->frame;
386
387 frame->bp = 0;
388 frame->ret_addr = (unsigned long) ret_from_fork;
389 p->thread.sp = (unsigned long) fork_frame;
390 p->thread.io_bitmap_ptr = NULL;
391
392 savesegment(gs, p->thread.gsindex);
393 p->thread.gsbase = p->thread.gsindex ? 0 : me->thread.gsbase;
394 savesegment(fs, p->thread.fsindex);
395 p->thread.fsbase = p->thread.fsindex ? 0 : me->thread.fsbase;
396 savesegment(es, p->thread.es);
397 savesegment(ds, p->thread.ds);
398 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
399
400 if (unlikely(p->flags & PF_KTHREAD)) {
401 /* kernel thread */
402 memset(childregs, 0, sizeof(struct pt_regs));
403 frame->bx = sp; /* function */
404 frame->r12 = arg;
405 return 0;
406 }
407 frame->bx = 0;
408 *childregs = *current_pt_regs();
409
410 childregs->ax = 0;
411 if (sp)
412 childregs->sp = sp;
413
414 err = -ENOMEM;
415 if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
416 p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
417 IO_BITMAP_BYTES, GFP_KERNEL);
418 if (!p->thread.io_bitmap_ptr) {
419 p->thread.io_bitmap_max = 0;
420 return -ENOMEM;
421 }
422 set_tsk_thread_flag(p, TIF_IO_BITMAP);
423 }
424
425 /*
426 * Set a new TLS for the child thread?
427 */
428 if (clone_flags & CLONE_SETTLS) {
429#ifdef CONFIG_IA32_EMULATION
430 if (in_ia32_syscall())
431 err = do_set_thread_area(p, -1,
432 (struct user_desc __user *)tls, 0);
433 else
434#endif
435 err = do_arch_prctl_64(p, ARCH_SET_FS, tls);
436 if (err)
437 goto out;
438 }
439 err = 0;
440out:
441 if (err && p->thread.io_bitmap_ptr) {
442 kfree(p->thread.io_bitmap_ptr);
443 p->thread.io_bitmap_max = 0;
444 }
445
446 return err;
447}
448
449static void
450start_thread_common(struct pt_regs *regs, unsigned long new_ip,
451 unsigned long new_sp,
452 unsigned int _cs, unsigned int _ss, unsigned int _ds)
453{
454 WARN_ON_ONCE(regs != current_pt_regs());
455
456 if (static_cpu_has(X86_BUG_NULL_SEG)) {
457 /* Loading zero below won't clear the base. */
458 loadsegment(fs, __USER_DS);
459 load_gs_index(__USER_DS);
460 }
461
462 loadsegment(fs, 0);
463 loadsegment(es, _ds);
464 loadsegment(ds, _ds);
465 load_gs_index(0);
466
467 regs->ip = new_ip;
468 regs->sp = new_sp;
469 regs->cs = _cs;
470 regs->ss = _ss;
471 regs->flags = X86_EFLAGS_IF;
472 force_iret();
473}
474
475void
476start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
477{
478 start_thread_common(regs, new_ip, new_sp,
479 __USER_CS, __USER_DS, 0);
480}
481EXPORT_SYMBOL_GPL(start_thread);
482
483#ifdef CONFIG_COMPAT
484void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
485{
486 start_thread_common(regs, new_ip, new_sp,
487 test_thread_flag(TIF_X32)
488 ? __USER_CS : __USER32_CS,
489 __USER_DS, __USER_DS);
490}
491#endif
492
493/*
494 * switch_to(x,y) should switch tasks from x to y.
495 *
496 * This could still be optimized:
497 * - fold all the options into a flag word and test it with a single test.
498 * - could test fs/gs bitsliced
499 *
500 * Kprobes not supported here. Set the probe on schedule instead.
501 * Function graph tracer not supported too.
502 */
503__visible __notrace_funcgraph struct task_struct *
504__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
505{
506 struct thread_struct *prev = &prev_p->thread;
507 struct thread_struct *next = &next_p->thread;
508 struct fpu *prev_fpu = &prev->fpu;
509 struct fpu *next_fpu = &next->fpu;
510 int cpu = smp_processor_id();
511
512 WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
513 this_cpu_read(irq_count) != -1);
514
515 if (!test_thread_flag(TIF_NEED_FPU_LOAD))
516 switch_fpu_prepare(prev_fpu, cpu);
517
518 /* We must save %fs and %gs before load_TLS() because
519 * %fs and %gs may be cleared by load_TLS().
520 *
521 * (e.g. xen_load_tls())
522 */
523 save_fsgs(prev_p);
524
525 /*
526 * Load TLS before restoring any segments so that segment loads
527 * reference the correct GDT entries.
528 */
529 load_TLS(next, cpu);
530
531 /*
532 * Leave lazy mode, flushing any hypercalls made here. This
533 * must be done after loading TLS entries in the GDT but before
534 * loading segments that might reference them.
535 */
536 arch_end_context_switch(next_p);
537
538 /* Switch DS and ES.
539 *
540 * Reading them only returns the selectors, but writing them (if
541 * nonzero) loads the full descriptor from the GDT or LDT. The
542 * LDT for next is loaded in switch_mm, and the GDT is loaded
543 * above.
544 *
545 * We therefore need to write new values to the segment
546 * registers on every context switch unless both the new and old
547 * values are zero.
548 *
549 * Note that we don't need to do anything for CS and SS, as
550 * those are saved and restored as part of pt_regs.
551 */
552 savesegment(es, prev->es);
553 if (unlikely(next->es | prev->es))
554 loadsegment(es, next->es);
555
556 savesegment(ds, prev->ds);
557 if (unlikely(next->ds | prev->ds))
558 loadsegment(ds, next->ds);
559
560 x86_fsgsbase_load(prev, next);
561
562 /*
563 * Switch the PDA and FPU contexts.
564 */
565 this_cpu_write(current_task, next_p);
566 this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p));
567
568 switch_fpu_finish(next_fpu);
569
570 /* Reload sp0. */
571 update_task_stack(next_p);
572
573 switch_to_extra(prev_p, next_p);
574
575#ifdef CONFIG_XEN_PV
576 /*
577 * On Xen PV, IOPL bits in pt_regs->flags have no effect, and
578 * current_pt_regs()->flags may not match the current task's
579 * intended IOPL. We need to switch it manually.
580 */
581 if (unlikely(static_cpu_has(X86_FEATURE_XENPV) &&
582 prev->iopl != next->iopl))
583 xen_set_iopl_mask(next->iopl);
584#endif
585
586 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
587 /*
588 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
589 * does not update the cached descriptor. As a result, if we
590 * do SYSRET while SS is NULL, we'll end up in user mode with
591 * SS apparently equal to __USER_DS but actually unusable.
592 *
593 * The straightforward workaround would be to fix it up just
594 * before SYSRET, but that would slow down the system call
595 * fast paths. Instead, we ensure that SS is never NULL in
596 * system call context. We do this by replacing NULL SS
597 * selectors at every context switch. SYSCALL sets up a valid
598 * SS, so the only way to get NULL is to re-enter the kernel
599 * from CPL 3 through an interrupt. Since that can't happen
600 * in the same task as a running syscall, we are guaranteed to
601 * context switch between every interrupt vector entry and a
602 * subsequent SYSRET.
603 *
604 * We read SS first because SS reads are much faster than
605 * writes. Out of caution, we force SS to __KERNEL_DS even if
606 * it previously had a different non-NULL value.
607 */
608 unsigned short ss_sel;
609 savesegment(ss, ss_sel);
610 if (ss_sel != __KERNEL_DS)
611 loadsegment(ss, __KERNEL_DS);
612 }
613
614 /* Load the Intel cache allocation PQR MSR. */
615 resctrl_sched_in();
616
617 return prev_p;
618}
619
620void set_personality_64bit(void)
621{
622 /* inherit personality from parent */
623
624 /* Make sure to be in 64bit mode */
625 clear_thread_flag(TIF_IA32);
626 clear_thread_flag(TIF_ADDR32);
627 clear_thread_flag(TIF_X32);
628 /* Pretend that this comes from a 64bit execve */
629 task_pt_regs(current)->orig_ax = __NR_execve;
630 current_thread_info()->status &= ~TS_COMPAT;
631
632 /* Ensure the corresponding mm is not marked. */
633 if (current->mm)
634 current->mm->context.ia32_compat = 0;
635
636 /* TBD: overwrites user setup. Should have two bits.
637 But 64bit processes have always behaved this way,
638 so it's not too bad. The main problem is just that
639 32bit children are affected again. */
640 current->personality &= ~READ_IMPLIES_EXEC;
641}
642
643static void __set_personality_x32(void)
644{
645#ifdef CONFIG_X86_X32
646 clear_thread_flag(TIF_IA32);
647 set_thread_flag(TIF_X32);
648 if (current->mm)
649 current->mm->context.ia32_compat = TIF_X32;
650 current->personality &= ~READ_IMPLIES_EXEC;
651 /*
652 * in_32bit_syscall() uses the presence of the x32 syscall bit
653 * flag to determine compat status. The x86 mmap() code relies on
654 * the syscall bitness so set x32 syscall bit right here to make
655 * in_32bit_syscall() work during exec().
656 *
657 * Pretend to come from a x32 execve.
658 */
659 task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
660 current_thread_info()->status &= ~TS_COMPAT;
661#endif
662}
663
664static void __set_personality_ia32(void)
665{
666#ifdef CONFIG_IA32_EMULATION
667 set_thread_flag(TIF_IA32);
668 clear_thread_flag(TIF_X32);
669 if (current->mm)
670 current->mm->context.ia32_compat = TIF_IA32;
671 current->personality |= force_personality32;
672 /* Prepare the first "return" to user space */
673 task_pt_regs(current)->orig_ax = __NR_ia32_execve;
674 current_thread_info()->status |= TS_COMPAT;
675#endif
676}
677
678void set_personality_ia32(bool x32)
679{
680 /* Make sure to be in 32bit mode */
681 set_thread_flag(TIF_ADDR32);
682
683 if (x32)
684 __set_personality_x32();
685 else
686 __set_personality_ia32();
687}
688EXPORT_SYMBOL_GPL(set_personality_ia32);
689
690#ifdef CONFIG_CHECKPOINT_RESTORE
691static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
692{
693 int ret;
694
695 ret = map_vdso_once(image, addr);
696 if (ret)
697 return ret;
698
699 return (long)image->size;
700}
701#endif
702
703long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
704{
705 int ret = 0;
706
707 switch (option) {
708 case ARCH_SET_GS: {
709 if (unlikely(arg2 >= TASK_SIZE_MAX))
710 return -EPERM;
711
712 preempt_disable();
713 /*
714 * ARCH_SET_GS has always overwritten the index
715 * and the base. Zero is the most sensible value
716 * to put in the index, and is the only value that
717 * makes any sense if FSGSBASE is unavailable.
718 */
719 if (task == current) {
720 loadseg(GS, 0);
721 x86_gsbase_write_cpu_inactive(arg2);
722
723 /*
724 * On non-FSGSBASE systems, save_base_legacy() expects
725 * that we also fill in thread.gsbase.
726 */
727 task->thread.gsbase = arg2;
728
729 } else {
730 task->thread.gsindex = 0;
731 x86_gsbase_write_task(task, arg2);
732 }
733 preempt_enable();
734 break;
735 }
736 case ARCH_SET_FS: {
737 /*
738 * Not strictly needed for %fs, but do it for symmetry
739 * with %gs
740 */
741 if (unlikely(arg2 >= TASK_SIZE_MAX))
742 return -EPERM;
743
744 preempt_disable();
745 /*
746 * Set the selector to 0 for the same reason
747 * as %gs above.
748 */
749 if (task == current) {
750 loadseg(FS, 0);
751 x86_fsbase_write_cpu(arg2);
752
753 /*
754 * On non-FSGSBASE systems, save_base_legacy() expects
755 * that we also fill in thread.fsbase.
756 */
757 task->thread.fsbase = arg2;
758 } else {
759 task->thread.fsindex = 0;
760 x86_fsbase_write_task(task, arg2);
761 }
762 preempt_enable();
763 break;
764 }
765 case ARCH_GET_FS: {
766 unsigned long base = x86_fsbase_read_task(task);
767
768 ret = put_user(base, (unsigned long __user *)arg2);
769 break;
770 }
771 case ARCH_GET_GS: {
772 unsigned long base = x86_gsbase_read_task(task);
773
774 ret = put_user(base, (unsigned long __user *)arg2);
775 break;
776 }
777
778#ifdef CONFIG_CHECKPOINT_RESTORE
779# ifdef CONFIG_X86_X32_ABI
780 case ARCH_MAP_VDSO_X32:
781 return prctl_map_vdso(&vdso_image_x32, arg2);
782# endif
783# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
784 case ARCH_MAP_VDSO_32:
785 return prctl_map_vdso(&vdso_image_32, arg2);
786# endif
787 case ARCH_MAP_VDSO_64:
788 return prctl_map_vdso(&vdso_image_64, arg2);
789#endif
790
791 default:
792 ret = -EINVAL;
793 break;
794 }
795
796 return ret;
797}
798
799SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
800{
801 long ret;
802
803 ret = do_arch_prctl_64(current, option, arg2);
804 if (ret == -EINVAL)
805 ret = do_arch_prctl_common(current, option, arg2);
806
807 return ret;
808}
809
810#ifdef CONFIG_IA32_EMULATION
811COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
812{
813 return do_arch_prctl_common(current, option, arg2);
814}
815#endif
816
817unsigned long KSTK_ESP(struct task_struct *task)
818{
819 return task_pt_regs(task)->sp;
820}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 *
8 * X86-64 port
9 * Andi Kleen.
10 *
11 * CPU hotplug support - ashok.raj@intel.com
12 */
13
14/*
15 * This file handles the architecture-dependent parts of process handling..
16 */
17
18#include <linux/cpu.h>
19#include <linux/errno.h>
20#include <linux/sched.h>
21#include <linux/sched/task.h>
22#include <linux/sched/task_stack.h>
23#include <linux/fs.h>
24#include <linux/kernel.h>
25#include <linux/mm.h>
26#include <linux/elfcore.h>
27#include <linux/smp.h>
28#include <linux/slab.h>
29#include <linux/user.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/export.h>
33#include <linux/ptrace.h>
34#include <linux/notifier.h>
35#include <linux/kprobes.h>
36#include <linux/kdebug.h>
37#include <linux/prctl.h>
38#include <linux/uaccess.h>
39#include <linux/io.h>
40#include <linux/ftrace.h>
41#include <linux/syscalls.h>
42
43#include <asm/processor.h>
44#include <asm/fpu/internal.h>
45#include <asm/mmu_context.h>
46#include <asm/prctl.h>
47#include <asm/desc.h>
48#include <asm/proto.h>
49#include <asm/ia32.h>
50#include <asm/debugreg.h>
51#include <asm/switch_to.h>
52#include <asm/xen/hypervisor.h>
53#include <asm/vdso.h>
54#include <asm/resctrl.h>
55#include <asm/unistd.h>
56#include <asm/fsgsbase.h>
57#ifdef CONFIG_IA32_EMULATION
58/* Not included via unistd.h */
59#include <asm/unistd_32_ia32.h>
60#endif
61
62#include "process.h"
63
64/* Prints also some state that isn't saved in the pt_regs */
65void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
66 const char *log_lvl)
67{
68 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
69 unsigned long d0, d1, d2, d3, d6, d7;
70 unsigned int fsindex, gsindex;
71 unsigned int ds, es;
72
73 show_iret_regs(regs, log_lvl);
74
75 if (regs->orig_ax != -1)
76 pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
77 else
78 pr_cont("\n");
79
80 printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
81 log_lvl, regs->ax, regs->bx, regs->cx);
82 printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
83 log_lvl, regs->dx, regs->si, regs->di);
84 printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
85 log_lvl, regs->bp, regs->r8, regs->r9);
86 printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
87 log_lvl, regs->r10, regs->r11, regs->r12);
88 printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
89 log_lvl, regs->r13, regs->r14, regs->r15);
90
91 if (mode == SHOW_REGS_SHORT)
92 return;
93
94 if (mode == SHOW_REGS_USER) {
95 rdmsrl(MSR_FS_BASE, fs);
96 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
97 printk("%sFS: %016lx GS: %016lx\n",
98 log_lvl, fs, shadowgs);
99 return;
100 }
101
102 asm("movl %%ds,%0" : "=r" (ds));
103 asm("movl %%es,%0" : "=r" (es));
104 asm("movl %%fs,%0" : "=r" (fsindex));
105 asm("movl %%gs,%0" : "=r" (gsindex));
106
107 rdmsrl(MSR_FS_BASE, fs);
108 rdmsrl(MSR_GS_BASE, gs);
109 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
110
111 cr0 = read_cr0();
112 cr2 = read_cr2();
113 cr3 = __read_cr3();
114 cr4 = __read_cr4();
115
116 printk("%sFS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
117 log_lvl, fs, fsindex, gs, gsindex, shadowgs);
118 printk("%sCS: %04lx DS: %04x ES: %04x CR0: %016lx\n",
119 log_lvl, regs->cs, ds, es, cr0);
120 printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
121 log_lvl, cr2, cr3, cr4);
122
123 get_debugreg(d0, 0);
124 get_debugreg(d1, 1);
125 get_debugreg(d2, 2);
126 get_debugreg(d3, 3);
127 get_debugreg(d6, 6);
128 get_debugreg(d7, 7);
129
130 /* Only print out debug registers if they are in their non-default state. */
131 if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
132 (d6 == DR6_RESERVED) && (d7 == 0x400))) {
133 printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
134 log_lvl, d0, d1, d2);
135 printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
136 log_lvl, d3, d6, d7);
137 }
138
139 if (boot_cpu_has(X86_FEATURE_OSPKE))
140 printk("%sPKRU: %08x\n", log_lvl, read_pkru());
141}
142
143void release_thread(struct task_struct *dead_task)
144{
145 WARN_ON(dead_task->mm);
146}
147
148enum which_selector {
149 FS,
150 GS
151};
152
153/*
154 * Out of line to be protected from kprobes and tracing. If this would be
155 * traced or probed than any access to a per CPU variable happens with
156 * the wrong GS.
157 *
158 * It is not used on Xen paravirt. When paravirt support is needed, it
159 * needs to be renamed with native_ prefix.
160 */
161static noinstr unsigned long __rdgsbase_inactive(void)
162{
163 unsigned long gsbase;
164
165 lockdep_assert_irqs_disabled();
166
167 if (!static_cpu_has(X86_FEATURE_XENPV)) {
168 native_swapgs();
169 gsbase = rdgsbase();
170 native_swapgs();
171 } else {
172 instrumentation_begin();
173 rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
174 instrumentation_end();
175 }
176
177 return gsbase;
178}
179
180/*
181 * Out of line to be protected from kprobes and tracing. If this would be
182 * traced or probed than any access to a per CPU variable happens with
183 * the wrong GS.
184 *
185 * It is not used on Xen paravirt. When paravirt support is needed, it
186 * needs to be renamed with native_ prefix.
187 */
188static noinstr void __wrgsbase_inactive(unsigned long gsbase)
189{
190 lockdep_assert_irqs_disabled();
191
192 if (!static_cpu_has(X86_FEATURE_XENPV)) {
193 native_swapgs();
194 wrgsbase(gsbase);
195 native_swapgs();
196 } else {
197 instrumentation_begin();
198 wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
199 instrumentation_end();
200 }
201}
202
203/*
204 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
205 * not available. The goal is to be reasonably fast on non-FSGSBASE systems.
206 * It's forcibly inlined because it'll generate better code and this function
207 * is hot.
208 */
209static __always_inline void save_base_legacy(struct task_struct *prev_p,
210 unsigned short selector,
211 enum which_selector which)
212{
213 if (likely(selector == 0)) {
214 /*
215 * On Intel (without X86_BUG_NULL_SEG), the segment base could
216 * be the pre-existing saved base or it could be zero. On AMD
217 * (with X86_BUG_NULL_SEG), the segment base could be almost
218 * anything.
219 *
220 * This branch is very hot (it's hit twice on almost every
221 * context switch between 64-bit programs), and avoiding
222 * the RDMSR helps a lot, so we just assume that whatever
223 * value is already saved is correct. This matches historical
224 * Linux behavior, so it won't break existing applications.
225 *
226 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
227 * report that the base is zero, it needs to actually be zero:
228 * see the corresponding logic in load_seg_legacy.
229 */
230 } else {
231 /*
232 * If the selector is 1, 2, or 3, then the base is zero on
233 * !X86_BUG_NULL_SEG CPUs and could be anything on
234 * X86_BUG_NULL_SEG CPUs. In the latter case, Linux
235 * has never attempted to preserve the base across context
236 * switches.
237 *
238 * If selector > 3, then it refers to a real segment, and
239 * saving the base isn't necessary.
240 */
241 if (which == FS)
242 prev_p->thread.fsbase = 0;
243 else
244 prev_p->thread.gsbase = 0;
245 }
246}
247
248static __always_inline void save_fsgs(struct task_struct *task)
249{
250 savesegment(fs, task->thread.fsindex);
251 savesegment(gs, task->thread.gsindex);
252 if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
253 /*
254 * If FSGSBASE is enabled, we can't make any useful guesses
255 * about the base, and user code expects us to save the current
256 * value. Fortunately, reading the base directly is efficient.
257 */
258 task->thread.fsbase = rdfsbase();
259 task->thread.gsbase = __rdgsbase_inactive();
260 } else {
261 save_base_legacy(task, task->thread.fsindex, FS);
262 save_base_legacy(task, task->thread.gsindex, GS);
263 }
264}
265
266/*
267 * While a process is running,current->thread.fsbase and current->thread.gsbase
268 * may not match the corresponding CPU registers (see save_base_legacy()).
269 */
270void current_save_fsgs(void)
271{
272 unsigned long flags;
273
274 /* Interrupts need to be off for FSGSBASE */
275 local_irq_save(flags);
276 save_fsgs(current);
277 local_irq_restore(flags);
278}
279#if IS_ENABLED(CONFIG_KVM)
280EXPORT_SYMBOL_GPL(current_save_fsgs);
281#endif
282
283static __always_inline void loadseg(enum which_selector which,
284 unsigned short sel)
285{
286 if (which == FS)
287 loadsegment(fs, sel);
288 else
289 load_gs_index(sel);
290}
291
292static __always_inline void load_seg_legacy(unsigned short prev_index,
293 unsigned long prev_base,
294 unsigned short next_index,
295 unsigned long next_base,
296 enum which_selector which)
297{
298 if (likely(next_index <= 3)) {
299 /*
300 * The next task is using 64-bit TLS, is not using this
301 * segment at all, or is having fun with arcane CPU features.
302 */
303 if (next_base == 0) {
304 /*
305 * Nasty case: on AMD CPUs, we need to forcibly zero
306 * the base.
307 */
308 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
309 loadseg(which, __USER_DS);
310 loadseg(which, next_index);
311 } else {
312 /*
313 * We could try to exhaustively detect cases
314 * under which we can skip the segment load,
315 * but there's really only one case that matters
316 * for performance: if both the previous and
317 * next states are fully zeroed, we can skip
318 * the load.
319 *
320 * (This assumes that prev_base == 0 has no
321 * false positives. This is the case on
322 * Intel-style CPUs.)
323 */
324 if (likely(prev_index | next_index | prev_base))
325 loadseg(which, next_index);
326 }
327 } else {
328 if (prev_index != next_index)
329 loadseg(which, next_index);
330 wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
331 next_base);
332 }
333 } else {
334 /*
335 * The next task is using a real segment. Loading the selector
336 * is sufficient.
337 */
338 loadseg(which, next_index);
339 }
340}
341
342static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
343 struct thread_struct *next)
344{
345 if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
346 /* Update the FS and GS selectors if they could have changed. */
347 if (unlikely(prev->fsindex || next->fsindex))
348 loadseg(FS, next->fsindex);
349 if (unlikely(prev->gsindex || next->gsindex))
350 loadseg(GS, next->gsindex);
351
352 /* Update the bases. */
353 wrfsbase(next->fsbase);
354 __wrgsbase_inactive(next->gsbase);
355 } else {
356 load_seg_legacy(prev->fsindex, prev->fsbase,
357 next->fsindex, next->fsbase, FS);
358 load_seg_legacy(prev->gsindex, prev->gsbase,
359 next->gsindex, next->gsbase, GS);
360 }
361}
362
363unsigned long x86_fsgsbase_read_task(struct task_struct *task,
364 unsigned short selector)
365{
366 unsigned short idx = selector >> 3;
367 unsigned long base;
368
369 if (likely((selector & SEGMENT_TI_MASK) == 0)) {
370 if (unlikely(idx >= GDT_ENTRIES))
371 return 0;
372
373 /*
374 * There are no user segments in the GDT with nonzero bases
375 * other than the TLS segments.
376 */
377 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
378 return 0;
379
380 idx -= GDT_ENTRY_TLS_MIN;
381 base = get_desc_base(&task->thread.tls_array[idx]);
382 } else {
383#ifdef CONFIG_MODIFY_LDT_SYSCALL
384 struct ldt_struct *ldt;
385
386 /*
387 * If performance here mattered, we could protect the LDT
388 * with RCU. This is a slow path, though, so we can just
389 * take the mutex.
390 */
391 mutex_lock(&task->mm->context.lock);
392 ldt = task->mm->context.ldt;
393 if (unlikely(!ldt || idx >= ldt->nr_entries))
394 base = 0;
395 else
396 base = get_desc_base(ldt->entries + idx);
397 mutex_unlock(&task->mm->context.lock);
398#else
399 base = 0;
400#endif
401 }
402
403 return base;
404}
405
406unsigned long x86_gsbase_read_cpu_inactive(void)
407{
408 unsigned long gsbase;
409
410 if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
411 unsigned long flags;
412
413 local_irq_save(flags);
414 gsbase = __rdgsbase_inactive();
415 local_irq_restore(flags);
416 } else {
417 rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
418 }
419
420 return gsbase;
421}
422
423void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
424{
425 if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
426 unsigned long flags;
427
428 local_irq_save(flags);
429 __wrgsbase_inactive(gsbase);
430 local_irq_restore(flags);
431 } else {
432 wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
433 }
434}
435
436unsigned long x86_fsbase_read_task(struct task_struct *task)
437{
438 unsigned long fsbase;
439
440 if (task == current)
441 fsbase = x86_fsbase_read_cpu();
442 else if (static_cpu_has(X86_FEATURE_FSGSBASE) ||
443 (task->thread.fsindex == 0))
444 fsbase = task->thread.fsbase;
445 else
446 fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
447
448 return fsbase;
449}
450
451unsigned long x86_gsbase_read_task(struct task_struct *task)
452{
453 unsigned long gsbase;
454
455 if (task == current)
456 gsbase = x86_gsbase_read_cpu_inactive();
457 else if (static_cpu_has(X86_FEATURE_FSGSBASE) ||
458 (task->thread.gsindex == 0))
459 gsbase = task->thread.gsbase;
460 else
461 gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
462
463 return gsbase;
464}
465
466void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
467{
468 WARN_ON_ONCE(task == current);
469
470 task->thread.fsbase = fsbase;
471}
472
473void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
474{
475 WARN_ON_ONCE(task == current);
476
477 task->thread.gsbase = gsbase;
478}
479
480static void
481start_thread_common(struct pt_regs *regs, unsigned long new_ip,
482 unsigned long new_sp,
483 unsigned int _cs, unsigned int _ss, unsigned int _ds)
484{
485 WARN_ON_ONCE(regs != current_pt_regs());
486
487 if (static_cpu_has(X86_BUG_NULL_SEG)) {
488 /* Loading zero below won't clear the base. */
489 loadsegment(fs, __USER_DS);
490 load_gs_index(__USER_DS);
491 }
492
493 loadsegment(fs, 0);
494 loadsegment(es, _ds);
495 loadsegment(ds, _ds);
496 load_gs_index(0);
497
498 regs->ip = new_ip;
499 regs->sp = new_sp;
500 regs->cs = _cs;
501 regs->ss = _ss;
502 regs->flags = X86_EFLAGS_IF;
503}
504
505void
506start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
507{
508 start_thread_common(regs, new_ip, new_sp,
509 __USER_CS, __USER_DS, 0);
510}
511EXPORT_SYMBOL_GPL(start_thread);
512
513#ifdef CONFIG_COMPAT
514void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
515{
516 start_thread_common(regs, new_ip, new_sp,
517 test_thread_flag(TIF_X32)
518 ? __USER_CS : __USER32_CS,
519 __USER_DS, __USER_DS);
520}
521#endif
522
523/*
524 * switch_to(x,y) should switch tasks from x to y.
525 *
526 * This could still be optimized:
527 * - fold all the options into a flag word and test it with a single test.
528 * - could test fs/gs bitsliced
529 *
530 * Kprobes not supported here. Set the probe on schedule instead.
531 * Function graph tracer not supported too.
532 */
533__visible __notrace_funcgraph struct task_struct *
534__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
535{
536 struct thread_struct *prev = &prev_p->thread;
537 struct thread_struct *next = &next_p->thread;
538 struct fpu *prev_fpu = &prev->fpu;
539 struct fpu *next_fpu = &next->fpu;
540 int cpu = smp_processor_id();
541
542 WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
543 this_cpu_read(irq_count) != -1);
544
545 if (!test_thread_flag(TIF_NEED_FPU_LOAD))
546 switch_fpu_prepare(prev_fpu, cpu);
547
548 /* We must save %fs and %gs before load_TLS() because
549 * %fs and %gs may be cleared by load_TLS().
550 *
551 * (e.g. xen_load_tls())
552 */
553 save_fsgs(prev_p);
554
555 /*
556 * Load TLS before restoring any segments so that segment loads
557 * reference the correct GDT entries.
558 */
559 load_TLS(next, cpu);
560
561 /*
562 * Leave lazy mode, flushing any hypercalls made here. This
563 * must be done after loading TLS entries in the GDT but before
564 * loading segments that might reference them.
565 */
566 arch_end_context_switch(next_p);
567
568 /* Switch DS and ES.
569 *
570 * Reading them only returns the selectors, but writing them (if
571 * nonzero) loads the full descriptor from the GDT or LDT. The
572 * LDT for next is loaded in switch_mm, and the GDT is loaded
573 * above.
574 *
575 * We therefore need to write new values to the segment
576 * registers on every context switch unless both the new and old
577 * values are zero.
578 *
579 * Note that we don't need to do anything for CS and SS, as
580 * those are saved and restored as part of pt_regs.
581 */
582 savesegment(es, prev->es);
583 if (unlikely(next->es | prev->es))
584 loadsegment(es, next->es);
585
586 savesegment(ds, prev->ds);
587 if (unlikely(next->ds | prev->ds))
588 loadsegment(ds, next->ds);
589
590 x86_fsgsbase_load(prev, next);
591
592 /*
593 * Switch the PDA and FPU contexts.
594 */
595 this_cpu_write(current_task, next_p);
596 this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p));
597
598 switch_fpu_finish(next_fpu);
599
600 /* Reload sp0. */
601 update_task_stack(next_p);
602
603 switch_to_extra(prev_p, next_p);
604
605 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
606 /*
607 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
608 * does not update the cached descriptor. As a result, if we
609 * do SYSRET while SS is NULL, we'll end up in user mode with
610 * SS apparently equal to __USER_DS but actually unusable.
611 *
612 * The straightforward workaround would be to fix it up just
613 * before SYSRET, but that would slow down the system call
614 * fast paths. Instead, we ensure that SS is never NULL in
615 * system call context. We do this by replacing NULL SS
616 * selectors at every context switch. SYSCALL sets up a valid
617 * SS, so the only way to get NULL is to re-enter the kernel
618 * from CPL 3 through an interrupt. Since that can't happen
619 * in the same task as a running syscall, we are guaranteed to
620 * context switch between every interrupt vector entry and a
621 * subsequent SYSRET.
622 *
623 * We read SS first because SS reads are much faster than
624 * writes. Out of caution, we force SS to __KERNEL_DS even if
625 * it previously had a different non-NULL value.
626 */
627 unsigned short ss_sel;
628 savesegment(ss, ss_sel);
629 if (ss_sel != __KERNEL_DS)
630 loadsegment(ss, __KERNEL_DS);
631 }
632
633 /* Load the Intel cache allocation PQR MSR. */
634 resctrl_sched_in();
635
636 return prev_p;
637}
638
639void set_personality_64bit(void)
640{
641 /* inherit personality from parent */
642
643 /* Make sure to be in 64bit mode */
644 clear_thread_flag(TIF_IA32);
645 clear_thread_flag(TIF_ADDR32);
646 clear_thread_flag(TIF_X32);
647 /* Pretend that this comes from a 64bit execve */
648 task_pt_regs(current)->orig_ax = __NR_execve;
649 current_thread_info()->status &= ~TS_COMPAT;
650
651 /* Ensure the corresponding mm is not marked. */
652 if (current->mm)
653 current->mm->context.ia32_compat = 0;
654
655 /* TBD: overwrites user setup. Should have two bits.
656 But 64bit processes have always behaved this way,
657 so it's not too bad. The main problem is just that
658 32bit children are affected again. */
659 current->personality &= ~READ_IMPLIES_EXEC;
660}
661
662static void __set_personality_x32(void)
663{
664#ifdef CONFIG_X86_X32
665 clear_thread_flag(TIF_IA32);
666 set_thread_flag(TIF_X32);
667 if (current->mm)
668 current->mm->context.ia32_compat = TIF_X32;
669 current->personality &= ~READ_IMPLIES_EXEC;
670 /*
671 * in_32bit_syscall() uses the presence of the x32 syscall bit
672 * flag to determine compat status. The x86 mmap() code relies on
673 * the syscall bitness so set x32 syscall bit right here to make
674 * in_32bit_syscall() work during exec().
675 *
676 * Pretend to come from a x32 execve.
677 */
678 task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
679 current_thread_info()->status &= ~TS_COMPAT;
680#endif
681}
682
683static void __set_personality_ia32(void)
684{
685#ifdef CONFIG_IA32_EMULATION
686 set_thread_flag(TIF_IA32);
687 clear_thread_flag(TIF_X32);
688 if (current->mm)
689 current->mm->context.ia32_compat = TIF_IA32;
690 current->personality |= force_personality32;
691 /* Prepare the first "return" to user space */
692 task_pt_regs(current)->orig_ax = __NR_ia32_execve;
693 current_thread_info()->status |= TS_COMPAT;
694#endif
695}
696
697void set_personality_ia32(bool x32)
698{
699 /* Make sure to be in 32bit mode */
700 set_thread_flag(TIF_ADDR32);
701
702 if (x32)
703 __set_personality_x32();
704 else
705 __set_personality_ia32();
706}
707EXPORT_SYMBOL_GPL(set_personality_ia32);
708
709#ifdef CONFIG_CHECKPOINT_RESTORE
710static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
711{
712 int ret;
713
714 ret = map_vdso_once(image, addr);
715 if (ret)
716 return ret;
717
718 return (long)image->size;
719}
720#endif
721
722long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
723{
724 int ret = 0;
725
726 switch (option) {
727 case ARCH_SET_GS: {
728 if (unlikely(arg2 >= TASK_SIZE_MAX))
729 return -EPERM;
730
731 preempt_disable();
732 /*
733 * ARCH_SET_GS has always overwritten the index
734 * and the base. Zero is the most sensible value
735 * to put in the index, and is the only value that
736 * makes any sense if FSGSBASE is unavailable.
737 */
738 if (task == current) {
739 loadseg(GS, 0);
740 x86_gsbase_write_cpu_inactive(arg2);
741
742 /*
743 * On non-FSGSBASE systems, save_base_legacy() expects
744 * that we also fill in thread.gsbase.
745 */
746 task->thread.gsbase = arg2;
747
748 } else {
749 task->thread.gsindex = 0;
750 x86_gsbase_write_task(task, arg2);
751 }
752 preempt_enable();
753 break;
754 }
755 case ARCH_SET_FS: {
756 /*
757 * Not strictly needed for %fs, but do it for symmetry
758 * with %gs
759 */
760 if (unlikely(arg2 >= TASK_SIZE_MAX))
761 return -EPERM;
762
763 preempt_disable();
764 /*
765 * Set the selector to 0 for the same reason
766 * as %gs above.
767 */
768 if (task == current) {
769 loadseg(FS, 0);
770 x86_fsbase_write_cpu(arg2);
771
772 /*
773 * On non-FSGSBASE systems, save_base_legacy() expects
774 * that we also fill in thread.fsbase.
775 */
776 task->thread.fsbase = arg2;
777 } else {
778 task->thread.fsindex = 0;
779 x86_fsbase_write_task(task, arg2);
780 }
781 preempt_enable();
782 break;
783 }
784 case ARCH_GET_FS: {
785 unsigned long base = x86_fsbase_read_task(task);
786
787 ret = put_user(base, (unsigned long __user *)arg2);
788 break;
789 }
790 case ARCH_GET_GS: {
791 unsigned long base = x86_gsbase_read_task(task);
792
793 ret = put_user(base, (unsigned long __user *)arg2);
794 break;
795 }
796
797#ifdef CONFIG_CHECKPOINT_RESTORE
798# ifdef CONFIG_X86_X32_ABI
799 case ARCH_MAP_VDSO_X32:
800 return prctl_map_vdso(&vdso_image_x32, arg2);
801# endif
802# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
803 case ARCH_MAP_VDSO_32:
804 return prctl_map_vdso(&vdso_image_32, arg2);
805# endif
806 case ARCH_MAP_VDSO_64:
807 return prctl_map_vdso(&vdso_image_64, arg2);
808#endif
809
810 default:
811 ret = -EINVAL;
812 break;
813 }
814
815 return ret;
816}
817
818SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
819{
820 long ret;
821
822 ret = do_arch_prctl_64(current, option, arg2);
823 if (ret == -EINVAL)
824 ret = do_arch_prctl_common(current, option, arg2);
825
826 return ret;
827}
828
829#ifdef CONFIG_IA32_EMULATION
830COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
831{
832 return do_arch_prctl_common(current, option, arg2);
833}
834#endif
835
836unsigned long KSTK_ESP(struct task_struct *task)
837{
838 return task_pt_regs(task)->sp;
839}