Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * NSA Security-Enhanced Linux (SELinux) security module
4 *
5 * This file contains the SELinux hook function implementations.
6 *
7 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
8 * Chris Vance, <cvance@nai.com>
9 * Wayne Salamon, <wsalamon@nai.com>
10 * James Morris <jmorris@redhat.com>
11 *
12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14 * Eric Paris <eparis@redhat.com>
15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * <dgoeddel@trustedcs.com>
17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18 * Paul Moore <paul@paul-moore.com>
19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20 * Yuichi Nakamura <ynakam@hitachisoft.jp>
21 * Copyright (C) 2016 Mellanox Technologies
22 */
23
24#include <linux/init.h>
25#include <linux/kd.h>
26#include <linux/kernel.h>
27#include <linux/tracehook.h>
28#include <linux/errno.h>
29#include <linux/sched/signal.h>
30#include <linux/sched/task.h>
31#include <linux/lsm_hooks.h>
32#include <linux/xattr.h>
33#include <linux/capability.h>
34#include <linux/unistd.h>
35#include <linux/mm.h>
36#include <linux/mman.h>
37#include <linux/slab.h>
38#include <linux/pagemap.h>
39#include <linux/proc_fs.h>
40#include <linux/swap.h>
41#include <linux/spinlock.h>
42#include <linux/syscalls.h>
43#include <linux/dcache.h>
44#include <linux/file.h>
45#include <linux/fdtable.h>
46#include <linux/namei.h>
47#include <linux/mount.h>
48#include <linux/fs_context.h>
49#include <linux/fs_parser.h>
50#include <linux/netfilter_ipv4.h>
51#include <linux/netfilter_ipv6.h>
52#include <linux/tty.h>
53#include <net/icmp.h>
54#include <net/ip.h> /* for local_port_range[] */
55#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56#include <net/inet_connection_sock.h>
57#include <net/net_namespace.h>
58#include <net/netlabel.h>
59#include <linux/uaccess.h>
60#include <asm/ioctls.h>
61#include <linux/atomic.h>
62#include <linux/bitops.h>
63#include <linux/interrupt.h>
64#include <linux/netdevice.h> /* for network interface checks */
65#include <net/netlink.h>
66#include <linux/tcp.h>
67#include <linux/udp.h>
68#include <linux/dccp.h>
69#include <linux/sctp.h>
70#include <net/sctp/structs.h>
71#include <linux/quota.h>
72#include <linux/un.h> /* for Unix socket types */
73#include <net/af_unix.h> /* for Unix socket types */
74#include <linux/parser.h>
75#include <linux/nfs_mount.h>
76#include <net/ipv6.h>
77#include <linux/hugetlb.h>
78#include <linux/personality.h>
79#include <linux/audit.h>
80#include <linux/string.h>
81#include <linux/mutex.h>
82#include <linux/posix-timers.h>
83#include <linux/syslog.h>
84#include <linux/user_namespace.h>
85#include <linux/export.h>
86#include <linux/msg.h>
87#include <linux/shm.h>
88#include <linux/bpf.h>
89#include <linux/kernfs.h>
90#include <linux/stringhash.h> /* for hashlen_string() */
91#include <uapi/linux/mount.h>
92#include <linux/fsnotify.h>
93#include <linux/fanotify.h>
94
95#include "avc.h"
96#include "objsec.h"
97#include "netif.h"
98#include "netnode.h"
99#include "netport.h"
100#include "ibpkey.h"
101#include "xfrm.h"
102#include "netlabel.h"
103#include "audit.h"
104#include "avc_ss.h"
105
106struct selinux_state selinux_state;
107
108/* SECMARK reference count */
109static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
110
111#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
112static int selinux_enforcing_boot;
113
114static int __init enforcing_setup(char *str)
115{
116 unsigned long enforcing;
117 if (!kstrtoul(str, 0, &enforcing))
118 selinux_enforcing_boot = enforcing ? 1 : 0;
119 return 1;
120}
121__setup("enforcing=", enforcing_setup);
122#else
123#define selinux_enforcing_boot 1
124#endif
125
126int selinux_enabled __lsm_ro_after_init = 1;
127#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
128static int __init selinux_enabled_setup(char *str)
129{
130 unsigned long enabled;
131 if (!kstrtoul(str, 0, &enabled))
132 selinux_enabled = enabled ? 1 : 0;
133 return 1;
134}
135__setup("selinux=", selinux_enabled_setup);
136#endif
137
138static unsigned int selinux_checkreqprot_boot =
139 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140
141static int __init checkreqprot_setup(char *str)
142{
143 unsigned long checkreqprot;
144
145 if (!kstrtoul(str, 0, &checkreqprot))
146 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147 return 1;
148}
149__setup("checkreqprot=", checkreqprot_setup);
150
151/**
152 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
153 *
154 * Description:
155 * This function checks the SECMARK reference counter to see if any SECMARK
156 * targets are currently configured, if the reference counter is greater than
157 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
158 * enabled, false (0) if SECMARK is disabled. If the always_check_network
159 * policy capability is enabled, SECMARK is always considered enabled.
160 *
161 */
162static int selinux_secmark_enabled(void)
163{
164 return (selinux_policycap_alwaysnetwork() ||
165 atomic_read(&selinux_secmark_refcount));
166}
167
168/**
169 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
170 *
171 * Description:
172 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
173 * (1) if any are enabled or false (0) if neither are enabled. If the
174 * always_check_network policy capability is enabled, peer labeling
175 * is always considered enabled.
176 *
177 */
178static int selinux_peerlbl_enabled(void)
179{
180 return (selinux_policycap_alwaysnetwork() ||
181 netlbl_enabled() || selinux_xfrm_enabled());
182}
183
184static int selinux_netcache_avc_callback(u32 event)
185{
186 if (event == AVC_CALLBACK_RESET) {
187 sel_netif_flush();
188 sel_netnode_flush();
189 sel_netport_flush();
190 synchronize_net();
191 }
192 return 0;
193}
194
195static int selinux_lsm_notifier_avc_callback(u32 event)
196{
197 if (event == AVC_CALLBACK_RESET) {
198 sel_ib_pkey_flush();
199 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
200 }
201
202 return 0;
203}
204
205/*
206 * initialise the security for the init task
207 */
208static void cred_init_security(void)
209{
210 struct cred *cred = (struct cred *) current->real_cred;
211 struct task_security_struct *tsec;
212
213 tsec = selinux_cred(cred);
214 tsec->osid = tsec->sid = SECINITSID_KERNEL;
215}
216
217/*
218 * get the security ID of a set of credentials
219 */
220static inline u32 cred_sid(const struct cred *cred)
221{
222 const struct task_security_struct *tsec;
223
224 tsec = selinux_cred(cred);
225 return tsec->sid;
226}
227
228/*
229 * get the objective security ID of a task
230 */
231static inline u32 task_sid(const struct task_struct *task)
232{
233 u32 sid;
234
235 rcu_read_lock();
236 sid = cred_sid(__task_cred(task));
237 rcu_read_unlock();
238 return sid;
239}
240
241/* Allocate and free functions for each kind of security blob. */
242
243static int inode_alloc_security(struct inode *inode)
244{
245 struct inode_security_struct *isec = selinux_inode(inode);
246 u32 sid = current_sid();
247
248 spin_lock_init(&isec->lock);
249 INIT_LIST_HEAD(&isec->list);
250 isec->inode = inode;
251 isec->sid = SECINITSID_UNLABELED;
252 isec->sclass = SECCLASS_FILE;
253 isec->task_sid = sid;
254 isec->initialized = LABEL_INVALID;
255
256 return 0;
257}
258
259static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
260
261/*
262 * Try reloading inode security labels that have been marked as invalid. The
263 * @may_sleep parameter indicates when sleeping and thus reloading labels is
264 * allowed; when set to false, returns -ECHILD when the label is
265 * invalid. The @dentry parameter should be set to a dentry of the inode.
266 */
267static int __inode_security_revalidate(struct inode *inode,
268 struct dentry *dentry,
269 bool may_sleep)
270{
271 struct inode_security_struct *isec = selinux_inode(inode);
272
273 might_sleep_if(may_sleep);
274
275 if (selinux_state.initialized &&
276 isec->initialized != LABEL_INITIALIZED) {
277 if (!may_sleep)
278 return -ECHILD;
279
280 /*
281 * Try reloading the inode security label. This will fail if
282 * @opt_dentry is NULL and no dentry for this inode can be
283 * found; in that case, continue using the old label.
284 */
285 inode_doinit_with_dentry(inode, dentry);
286 }
287 return 0;
288}
289
290static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
291{
292 return selinux_inode(inode);
293}
294
295static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
296{
297 int error;
298
299 error = __inode_security_revalidate(inode, NULL, !rcu);
300 if (error)
301 return ERR_PTR(error);
302 return selinux_inode(inode);
303}
304
305/*
306 * Get the security label of an inode.
307 */
308static struct inode_security_struct *inode_security(struct inode *inode)
309{
310 __inode_security_revalidate(inode, NULL, true);
311 return selinux_inode(inode);
312}
313
314static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
315{
316 struct inode *inode = d_backing_inode(dentry);
317
318 return selinux_inode(inode);
319}
320
321/*
322 * Get the security label of a dentry's backing inode.
323 */
324static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
325{
326 struct inode *inode = d_backing_inode(dentry);
327
328 __inode_security_revalidate(inode, dentry, true);
329 return selinux_inode(inode);
330}
331
332static void inode_free_security(struct inode *inode)
333{
334 struct inode_security_struct *isec = selinux_inode(inode);
335 struct superblock_security_struct *sbsec;
336
337 if (!isec)
338 return;
339 sbsec = inode->i_sb->s_security;
340 /*
341 * As not all inode security structures are in a list, we check for
342 * empty list outside of the lock to make sure that we won't waste
343 * time taking a lock doing nothing.
344 *
345 * The list_del_init() function can be safely called more than once.
346 * It should not be possible for this function to be called with
347 * concurrent list_add(), but for better safety against future changes
348 * in the code, we use list_empty_careful() here.
349 */
350 if (!list_empty_careful(&isec->list)) {
351 spin_lock(&sbsec->isec_lock);
352 list_del_init(&isec->list);
353 spin_unlock(&sbsec->isec_lock);
354 }
355}
356
357static int file_alloc_security(struct file *file)
358{
359 struct file_security_struct *fsec = selinux_file(file);
360 u32 sid = current_sid();
361
362 fsec->sid = sid;
363 fsec->fown_sid = sid;
364
365 return 0;
366}
367
368static int superblock_alloc_security(struct super_block *sb)
369{
370 struct superblock_security_struct *sbsec;
371
372 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
373 if (!sbsec)
374 return -ENOMEM;
375
376 mutex_init(&sbsec->lock);
377 INIT_LIST_HEAD(&sbsec->isec_head);
378 spin_lock_init(&sbsec->isec_lock);
379 sbsec->sb = sb;
380 sbsec->sid = SECINITSID_UNLABELED;
381 sbsec->def_sid = SECINITSID_FILE;
382 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
383 sb->s_security = sbsec;
384
385 return 0;
386}
387
388static void superblock_free_security(struct super_block *sb)
389{
390 struct superblock_security_struct *sbsec = sb->s_security;
391 sb->s_security = NULL;
392 kfree(sbsec);
393}
394
395struct selinux_mnt_opts {
396 const char *fscontext, *context, *rootcontext, *defcontext;
397};
398
399static void selinux_free_mnt_opts(void *mnt_opts)
400{
401 struct selinux_mnt_opts *opts = mnt_opts;
402 kfree(opts->fscontext);
403 kfree(opts->context);
404 kfree(opts->rootcontext);
405 kfree(opts->defcontext);
406 kfree(opts);
407}
408
409static inline int inode_doinit(struct inode *inode)
410{
411 return inode_doinit_with_dentry(inode, NULL);
412}
413
414enum {
415 Opt_error = -1,
416 Opt_context = 0,
417 Opt_defcontext = 1,
418 Opt_fscontext = 2,
419 Opt_rootcontext = 3,
420 Opt_seclabel = 4,
421};
422
423#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
424static struct {
425 const char *name;
426 int len;
427 int opt;
428 bool has_arg;
429} tokens[] = {
430 A(context, true),
431 A(fscontext, true),
432 A(defcontext, true),
433 A(rootcontext, true),
434 A(seclabel, false),
435};
436#undef A
437
438static int match_opt_prefix(char *s, int l, char **arg)
439{
440 int i;
441
442 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
443 size_t len = tokens[i].len;
444 if (len > l || memcmp(s, tokens[i].name, len))
445 continue;
446 if (tokens[i].has_arg) {
447 if (len == l || s[len] != '=')
448 continue;
449 *arg = s + len + 1;
450 } else if (len != l)
451 continue;
452 return tokens[i].opt;
453 }
454 return Opt_error;
455}
456
457#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
458
459static int may_context_mount_sb_relabel(u32 sid,
460 struct superblock_security_struct *sbsec,
461 const struct cred *cred)
462{
463 const struct task_security_struct *tsec = selinux_cred(cred);
464 int rc;
465
466 rc = avc_has_perm(&selinux_state,
467 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
468 FILESYSTEM__RELABELFROM, NULL);
469 if (rc)
470 return rc;
471
472 rc = avc_has_perm(&selinux_state,
473 tsec->sid, sid, SECCLASS_FILESYSTEM,
474 FILESYSTEM__RELABELTO, NULL);
475 return rc;
476}
477
478static int may_context_mount_inode_relabel(u32 sid,
479 struct superblock_security_struct *sbsec,
480 const struct cred *cred)
481{
482 const struct task_security_struct *tsec = selinux_cred(cred);
483 int rc;
484 rc = avc_has_perm(&selinux_state,
485 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
486 FILESYSTEM__RELABELFROM, NULL);
487 if (rc)
488 return rc;
489
490 rc = avc_has_perm(&selinux_state,
491 sid, sbsec->sid, SECCLASS_FILESYSTEM,
492 FILESYSTEM__ASSOCIATE, NULL);
493 return rc;
494}
495
496static int selinux_is_genfs_special_handling(struct super_block *sb)
497{
498 /* Special handling. Genfs but also in-core setxattr handler */
499 return !strcmp(sb->s_type->name, "sysfs") ||
500 !strcmp(sb->s_type->name, "pstore") ||
501 !strcmp(sb->s_type->name, "debugfs") ||
502 !strcmp(sb->s_type->name, "tracefs") ||
503 !strcmp(sb->s_type->name, "rootfs") ||
504 (selinux_policycap_cgroupseclabel() &&
505 (!strcmp(sb->s_type->name, "cgroup") ||
506 !strcmp(sb->s_type->name, "cgroup2")));
507}
508
509static int selinux_is_sblabel_mnt(struct super_block *sb)
510{
511 struct superblock_security_struct *sbsec = sb->s_security;
512
513 /*
514 * IMPORTANT: Double-check logic in this function when adding a new
515 * SECURITY_FS_USE_* definition!
516 */
517 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
518
519 switch (sbsec->behavior) {
520 case SECURITY_FS_USE_XATTR:
521 case SECURITY_FS_USE_TRANS:
522 case SECURITY_FS_USE_TASK:
523 case SECURITY_FS_USE_NATIVE:
524 return 1;
525
526 case SECURITY_FS_USE_GENFS:
527 return selinux_is_genfs_special_handling(sb);
528
529 /* Never allow relabeling on context mounts */
530 case SECURITY_FS_USE_MNTPOINT:
531 case SECURITY_FS_USE_NONE:
532 default:
533 return 0;
534 }
535}
536
537static int sb_finish_set_opts(struct super_block *sb)
538{
539 struct superblock_security_struct *sbsec = sb->s_security;
540 struct dentry *root = sb->s_root;
541 struct inode *root_inode = d_backing_inode(root);
542 int rc = 0;
543
544 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
545 /* Make sure that the xattr handler exists and that no
546 error other than -ENODATA is returned by getxattr on
547 the root directory. -ENODATA is ok, as this may be
548 the first boot of the SELinux kernel before we have
549 assigned xattr values to the filesystem. */
550 if (!(root_inode->i_opflags & IOP_XATTR)) {
551 pr_warn("SELinux: (dev %s, type %s) has no "
552 "xattr support\n", sb->s_id, sb->s_type->name);
553 rc = -EOPNOTSUPP;
554 goto out;
555 }
556
557 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
558 if (rc < 0 && rc != -ENODATA) {
559 if (rc == -EOPNOTSUPP)
560 pr_warn("SELinux: (dev %s, type "
561 "%s) has no security xattr handler\n",
562 sb->s_id, sb->s_type->name);
563 else
564 pr_warn("SELinux: (dev %s, type "
565 "%s) getxattr errno %d\n", sb->s_id,
566 sb->s_type->name, -rc);
567 goto out;
568 }
569 }
570
571 sbsec->flags |= SE_SBINITIALIZED;
572
573 /*
574 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
575 * leave the flag untouched because sb_clone_mnt_opts might be handing
576 * us a superblock that needs the flag to be cleared.
577 */
578 if (selinux_is_sblabel_mnt(sb))
579 sbsec->flags |= SBLABEL_MNT;
580 else
581 sbsec->flags &= ~SBLABEL_MNT;
582
583 /* Initialize the root inode. */
584 rc = inode_doinit_with_dentry(root_inode, root);
585
586 /* Initialize any other inodes associated with the superblock, e.g.
587 inodes created prior to initial policy load or inodes created
588 during get_sb by a pseudo filesystem that directly
589 populates itself. */
590 spin_lock(&sbsec->isec_lock);
591 while (!list_empty(&sbsec->isec_head)) {
592 struct inode_security_struct *isec =
593 list_first_entry(&sbsec->isec_head,
594 struct inode_security_struct, list);
595 struct inode *inode = isec->inode;
596 list_del_init(&isec->list);
597 spin_unlock(&sbsec->isec_lock);
598 inode = igrab(inode);
599 if (inode) {
600 if (!IS_PRIVATE(inode))
601 inode_doinit(inode);
602 iput(inode);
603 }
604 spin_lock(&sbsec->isec_lock);
605 }
606 spin_unlock(&sbsec->isec_lock);
607out:
608 return rc;
609}
610
611static int bad_option(struct superblock_security_struct *sbsec, char flag,
612 u32 old_sid, u32 new_sid)
613{
614 char mnt_flags = sbsec->flags & SE_MNTMASK;
615
616 /* check if the old mount command had the same options */
617 if (sbsec->flags & SE_SBINITIALIZED)
618 if (!(sbsec->flags & flag) ||
619 (old_sid != new_sid))
620 return 1;
621
622 /* check if we were passed the same options twice,
623 * aka someone passed context=a,context=b
624 */
625 if (!(sbsec->flags & SE_SBINITIALIZED))
626 if (mnt_flags & flag)
627 return 1;
628 return 0;
629}
630
631static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
632{
633 int rc = security_context_str_to_sid(&selinux_state, s,
634 sid, GFP_KERNEL);
635 if (rc)
636 pr_warn("SELinux: security_context_str_to_sid"
637 "(%s) failed for (dev %s, type %s) errno=%d\n",
638 s, sb->s_id, sb->s_type->name, rc);
639 return rc;
640}
641
642/*
643 * Allow filesystems with binary mount data to explicitly set mount point
644 * labeling information.
645 */
646static int selinux_set_mnt_opts(struct super_block *sb,
647 void *mnt_opts,
648 unsigned long kern_flags,
649 unsigned long *set_kern_flags)
650{
651 const struct cred *cred = current_cred();
652 struct superblock_security_struct *sbsec = sb->s_security;
653 struct dentry *root = sbsec->sb->s_root;
654 struct selinux_mnt_opts *opts = mnt_opts;
655 struct inode_security_struct *root_isec;
656 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
657 u32 defcontext_sid = 0;
658 int rc = 0;
659
660 mutex_lock(&sbsec->lock);
661
662 if (!selinux_state.initialized) {
663 if (!opts) {
664 /* Defer initialization until selinux_complete_init,
665 after the initial policy is loaded and the security
666 server is ready to handle calls. */
667 goto out;
668 }
669 rc = -EINVAL;
670 pr_warn("SELinux: Unable to set superblock options "
671 "before the security server is initialized\n");
672 goto out;
673 }
674 if (kern_flags && !set_kern_flags) {
675 /* Specifying internal flags without providing a place to
676 * place the results is not allowed */
677 rc = -EINVAL;
678 goto out;
679 }
680
681 /*
682 * Binary mount data FS will come through this function twice. Once
683 * from an explicit call and once from the generic calls from the vfs.
684 * Since the generic VFS calls will not contain any security mount data
685 * we need to skip the double mount verification.
686 *
687 * This does open a hole in which we will not notice if the first
688 * mount using this sb set explict options and a second mount using
689 * this sb does not set any security options. (The first options
690 * will be used for both mounts)
691 */
692 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
693 && !opts)
694 goto out;
695
696 root_isec = backing_inode_security_novalidate(root);
697
698 /*
699 * parse the mount options, check if they are valid sids.
700 * also check if someone is trying to mount the same sb more
701 * than once with different security options.
702 */
703 if (opts) {
704 if (opts->fscontext) {
705 rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
706 if (rc)
707 goto out;
708 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
709 fscontext_sid))
710 goto out_double_mount;
711 sbsec->flags |= FSCONTEXT_MNT;
712 }
713 if (opts->context) {
714 rc = parse_sid(sb, opts->context, &context_sid);
715 if (rc)
716 goto out;
717 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
718 context_sid))
719 goto out_double_mount;
720 sbsec->flags |= CONTEXT_MNT;
721 }
722 if (opts->rootcontext) {
723 rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
724 if (rc)
725 goto out;
726 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
727 rootcontext_sid))
728 goto out_double_mount;
729 sbsec->flags |= ROOTCONTEXT_MNT;
730 }
731 if (opts->defcontext) {
732 rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
733 if (rc)
734 goto out;
735 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
736 defcontext_sid))
737 goto out_double_mount;
738 sbsec->flags |= DEFCONTEXT_MNT;
739 }
740 }
741
742 if (sbsec->flags & SE_SBINITIALIZED) {
743 /* previously mounted with options, but not on this attempt? */
744 if ((sbsec->flags & SE_MNTMASK) && !opts)
745 goto out_double_mount;
746 rc = 0;
747 goto out;
748 }
749
750 if (strcmp(sb->s_type->name, "proc") == 0)
751 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
752
753 if (!strcmp(sb->s_type->name, "debugfs") ||
754 !strcmp(sb->s_type->name, "tracefs") ||
755 !strcmp(sb->s_type->name, "pstore"))
756 sbsec->flags |= SE_SBGENFS;
757
758 if (!strcmp(sb->s_type->name, "sysfs") ||
759 !strcmp(sb->s_type->name, "cgroup") ||
760 !strcmp(sb->s_type->name, "cgroup2"))
761 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
762
763 if (!sbsec->behavior) {
764 /*
765 * Determine the labeling behavior to use for this
766 * filesystem type.
767 */
768 rc = security_fs_use(&selinux_state, sb);
769 if (rc) {
770 pr_warn("%s: security_fs_use(%s) returned %d\n",
771 __func__, sb->s_type->name, rc);
772 goto out;
773 }
774 }
775
776 /*
777 * If this is a user namespace mount and the filesystem type is not
778 * explicitly whitelisted, then no contexts are allowed on the command
779 * line and security labels must be ignored.
780 */
781 if (sb->s_user_ns != &init_user_ns &&
782 strcmp(sb->s_type->name, "tmpfs") &&
783 strcmp(sb->s_type->name, "ramfs") &&
784 strcmp(sb->s_type->name, "devpts")) {
785 if (context_sid || fscontext_sid || rootcontext_sid ||
786 defcontext_sid) {
787 rc = -EACCES;
788 goto out;
789 }
790 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
791 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
792 rc = security_transition_sid(&selinux_state,
793 current_sid(),
794 current_sid(),
795 SECCLASS_FILE, NULL,
796 &sbsec->mntpoint_sid);
797 if (rc)
798 goto out;
799 }
800 goto out_set_opts;
801 }
802
803 /* sets the context of the superblock for the fs being mounted. */
804 if (fscontext_sid) {
805 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
806 if (rc)
807 goto out;
808
809 sbsec->sid = fscontext_sid;
810 }
811
812 /*
813 * Switch to using mount point labeling behavior.
814 * sets the label used on all file below the mountpoint, and will set
815 * the superblock context if not already set.
816 */
817 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
818 sbsec->behavior = SECURITY_FS_USE_NATIVE;
819 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
820 }
821
822 if (context_sid) {
823 if (!fscontext_sid) {
824 rc = may_context_mount_sb_relabel(context_sid, sbsec,
825 cred);
826 if (rc)
827 goto out;
828 sbsec->sid = context_sid;
829 } else {
830 rc = may_context_mount_inode_relabel(context_sid, sbsec,
831 cred);
832 if (rc)
833 goto out;
834 }
835 if (!rootcontext_sid)
836 rootcontext_sid = context_sid;
837
838 sbsec->mntpoint_sid = context_sid;
839 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
840 }
841
842 if (rootcontext_sid) {
843 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
844 cred);
845 if (rc)
846 goto out;
847
848 root_isec->sid = rootcontext_sid;
849 root_isec->initialized = LABEL_INITIALIZED;
850 }
851
852 if (defcontext_sid) {
853 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
854 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
855 rc = -EINVAL;
856 pr_warn("SELinux: defcontext option is "
857 "invalid for this filesystem type\n");
858 goto out;
859 }
860
861 if (defcontext_sid != sbsec->def_sid) {
862 rc = may_context_mount_inode_relabel(defcontext_sid,
863 sbsec, cred);
864 if (rc)
865 goto out;
866 }
867
868 sbsec->def_sid = defcontext_sid;
869 }
870
871out_set_opts:
872 rc = sb_finish_set_opts(sb);
873out:
874 mutex_unlock(&sbsec->lock);
875 return rc;
876out_double_mount:
877 rc = -EINVAL;
878 pr_warn("SELinux: mount invalid. Same superblock, different "
879 "security settings for (dev %s, type %s)\n", sb->s_id,
880 sb->s_type->name);
881 goto out;
882}
883
884static int selinux_cmp_sb_context(const struct super_block *oldsb,
885 const struct super_block *newsb)
886{
887 struct superblock_security_struct *old = oldsb->s_security;
888 struct superblock_security_struct *new = newsb->s_security;
889 char oldflags = old->flags & SE_MNTMASK;
890 char newflags = new->flags & SE_MNTMASK;
891
892 if (oldflags != newflags)
893 goto mismatch;
894 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
895 goto mismatch;
896 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
897 goto mismatch;
898 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
899 goto mismatch;
900 if (oldflags & ROOTCONTEXT_MNT) {
901 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
902 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
903 if (oldroot->sid != newroot->sid)
904 goto mismatch;
905 }
906 return 0;
907mismatch:
908 pr_warn("SELinux: mount invalid. Same superblock, "
909 "different security settings for (dev %s, "
910 "type %s)\n", newsb->s_id, newsb->s_type->name);
911 return -EBUSY;
912}
913
914static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
915 struct super_block *newsb,
916 unsigned long kern_flags,
917 unsigned long *set_kern_flags)
918{
919 int rc = 0;
920 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
921 struct superblock_security_struct *newsbsec = newsb->s_security;
922
923 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
924 int set_context = (oldsbsec->flags & CONTEXT_MNT);
925 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
926
927 /*
928 * if the parent was able to be mounted it clearly had no special lsm
929 * mount options. thus we can safely deal with this superblock later
930 */
931 if (!selinux_state.initialized)
932 return 0;
933
934 /*
935 * Specifying internal flags without providing a place to
936 * place the results is not allowed.
937 */
938 if (kern_flags && !set_kern_flags)
939 return -EINVAL;
940
941 /* how can we clone if the old one wasn't set up?? */
942 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
943
944 /* if fs is reusing a sb, make sure that the contexts match */
945 if (newsbsec->flags & SE_SBINITIALIZED) {
946 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
947 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
948 return selinux_cmp_sb_context(oldsb, newsb);
949 }
950
951 mutex_lock(&newsbsec->lock);
952
953 newsbsec->flags = oldsbsec->flags;
954
955 newsbsec->sid = oldsbsec->sid;
956 newsbsec->def_sid = oldsbsec->def_sid;
957 newsbsec->behavior = oldsbsec->behavior;
958
959 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
960 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
961 rc = security_fs_use(&selinux_state, newsb);
962 if (rc)
963 goto out;
964 }
965
966 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
967 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
968 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
969 }
970
971 if (set_context) {
972 u32 sid = oldsbsec->mntpoint_sid;
973
974 if (!set_fscontext)
975 newsbsec->sid = sid;
976 if (!set_rootcontext) {
977 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
978 newisec->sid = sid;
979 }
980 newsbsec->mntpoint_sid = sid;
981 }
982 if (set_rootcontext) {
983 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
984 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
985
986 newisec->sid = oldisec->sid;
987 }
988
989 sb_finish_set_opts(newsb);
990out:
991 mutex_unlock(&newsbsec->lock);
992 return rc;
993}
994
995static int selinux_add_opt(int token, const char *s, void **mnt_opts)
996{
997 struct selinux_mnt_opts *opts = *mnt_opts;
998
999 if (token == Opt_seclabel) /* eaten and completely ignored */
1000 return 0;
1001
1002 if (!opts) {
1003 opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
1004 if (!opts)
1005 return -ENOMEM;
1006 *mnt_opts = opts;
1007 }
1008 if (!s)
1009 return -ENOMEM;
1010 switch (token) {
1011 case Opt_context:
1012 if (opts->context || opts->defcontext)
1013 goto Einval;
1014 opts->context = s;
1015 break;
1016 case Opt_fscontext:
1017 if (opts->fscontext)
1018 goto Einval;
1019 opts->fscontext = s;
1020 break;
1021 case Opt_rootcontext:
1022 if (opts->rootcontext)
1023 goto Einval;
1024 opts->rootcontext = s;
1025 break;
1026 case Opt_defcontext:
1027 if (opts->context || opts->defcontext)
1028 goto Einval;
1029 opts->defcontext = s;
1030 break;
1031 }
1032 return 0;
1033Einval:
1034 pr_warn(SEL_MOUNT_FAIL_MSG);
1035 return -EINVAL;
1036}
1037
1038static int selinux_add_mnt_opt(const char *option, const char *val, int len,
1039 void **mnt_opts)
1040{
1041 int token = Opt_error;
1042 int rc, i;
1043
1044 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
1045 if (strcmp(option, tokens[i].name) == 0) {
1046 token = tokens[i].opt;
1047 break;
1048 }
1049 }
1050
1051 if (token == Opt_error)
1052 return -EINVAL;
1053
1054 if (token != Opt_seclabel) {
1055 val = kmemdup_nul(val, len, GFP_KERNEL);
1056 if (!val) {
1057 rc = -ENOMEM;
1058 goto free_opt;
1059 }
1060 }
1061 rc = selinux_add_opt(token, val, mnt_opts);
1062 if (unlikely(rc)) {
1063 kfree(val);
1064 goto free_opt;
1065 }
1066 return rc;
1067
1068free_opt:
1069 if (*mnt_opts) {
1070 selinux_free_mnt_opts(*mnt_opts);
1071 *mnt_opts = NULL;
1072 }
1073 return rc;
1074}
1075
1076static int show_sid(struct seq_file *m, u32 sid)
1077{
1078 char *context = NULL;
1079 u32 len;
1080 int rc;
1081
1082 rc = security_sid_to_context(&selinux_state, sid,
1083 &context, &len);
1084 if (!rc) {
1085 bool has_comma = context && strchr(context, ',');
1086
1087 seq_putc(m, '=');
1088 if (has_comma)
1089 seq_putc(m, '\"');
1090 seq_escape(m, context, "\"\n\\");
1091 if (has_comma)
1092 seq_putc(m, '\"');
1093 }
1094 kfree(context);
1095 return rc;
1096}
1097
1098static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1099{
1100 struct superblock_security_struct *sbsec = sb->s_security;
1101 int rc;
1102
1103 if (!(sbsec->flags & SE_SBINITIALIZED))
1104 return 0;
1105
1106 if (!selinux_state.initialized)
1107 return 0;
1108
1109 if (sbsec->flags & FSCONTEXT_MNT) {
1110 seq_putc(m, ',');
1111 seq_puts(m, FSCONTEXT_STR);
1112 rc = show_sid(m, sbsec->sid);
1113 if (rc)
1114 return rc;
1115 }
1116 if (sbsec->flags & CONTEXT_MNT) {
1117 seq_putc(m, ',');
1118 seq_puts(m, CONTEXT_STR);
1119 rc = show_sid(m, sbsec->mntpoint_sid);
1120 if (rc)
1121 return rc;
1122 }
1123 if (sbsec->flags & DEFCONTEXT_MNT) {
1124 seq_putc(m, ',');
1125 seq_puts(m, DEFCONTEXT_STR);
1126 rc = show_sid(m, sbsec->def_sid);
1127 if (rc)
1128 return rc;
1129 }
1130 if (sbsec->flags & ROOTCONTEXT_MNT) {
1131 struct dentry *root = sbsec->sb->s_root;
1132 struct inode_security_struct *isec = backing_inode_security(root);
1133 seq_putc(m, ',');
1134 seq_puts(m, ROOTCONTEXT_STR);
1135 rc = show_sid(m, isec->sid);
1136 if (rc)
1137 return rc;
1138 }
1139 if (sbsec->flags & SBLABEL_MNT) {
1140 seq_putc(m, ',');
1141 seq_puts(m, SECLABEL_STR);
1142 }
1143 return 0;
1144}
1145
1146static inline u16 inode_mode_to_security_class(umode_t mode)
1147{
1148 switch (mode & S_IFMT) {
1149 case S_IFSOCK:
1150 return SECCLASS_SOCK_FILE;
1151 case S_IFLNK:
1152 return SECCLASS_LNK_FILE;
1153 case S_IFREG:
1154 return SECCLASS_FILE;
1155 case S_IFBLK:
1156 return SECCLASS_BLK_FILE;
1157 case S_IFDIR:
1158 return SECCLASS_DIR;
1159 case S_IFCHR:
1160 return SECCLASS_CHR_FILE;
1161 case S_IFIFO:
1162 return SECCLASS_FIFO_FILE;
1163
1164 }
1165
1166 return SECCLASS_FILE;
1167}
1168
1169static inline int default_protocol_stream(int protocol)
1170{
1171 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1172}
1173
1174static inline int default_protocol_dgram(int protocol)
1175{
1176 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1177}
1178
1179static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1180{
1181 int extsockclass = selinux_policycap_extsockclass();
1182
1183 switch (family) {
1184 case PF_UNIX:
1185 switch (type) {
1186 case SOCK_STREAM:
1187 case SOCK_SEQPACKET:
1188 return SECCLASS_UNIX_STREAM_SOCKET;
1189 case SOCK_DGRAM:
1190 case SOCK_RAW:
1191 return SECCLASS_UNIX_DGRAM_SOCKET;
1192 }
1193 break;
1194 case PF_INET:
1195 case PF_INET6:
1196 switch (type) {
1197 case SOCK_STREAM:
1198 case SOCK_SEQPACKET:
1199 if (default_protocol_stream(protocol))
1200 return SECCLASS_TCP_SOCKET;
1201 else if (extsockclass && protocol == IPPROTO_SCTP)
1202 return SECCLASS_SCTP_SOCKET;
1203 else
1204 return SECCLASS_RAWIP_SOCKET;
1205 case SOCK_DGRAM:
1206 if (default_protocol_dgram(protocol))
1207 return SECCLASS_UDP_SOCKET;
1208 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1209 protocol == IPPROTO_ICMPV6))
1210 return SECCLASS_ICMP_SOCKET;
1211 else
1212 return SECCLASS_RAWIP_SOCKET;
1213 case SOCK_DCCP:
1214 return SECCLASS_DCCP_SOCKET;
1215 default:
1216 return SECCLASS_RAWIP_SOCKET;
1217 }
1218 break;
1219 case PF_NETLINK:
1220 switch (protocol) {
1221 case NETLINK_ROUTE:
1222 return SECCLASS_NETLINK_ROUTE_SOCKET;
1223 case NETLINK_SOCK_DIAG:
1224 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1225 case NETLINK_NFLOG:
1226 return SECCLASS_NETLINK_NFLOG_SOCKET;
1227 case NETLINK_XFRM:
1228 return SECCLASS_NETLINK_XFRM_SOCKET;
1229 case NETLINK_SELINUX:
1230 return SECCLASS_NETLINK_SELINUX_SOCKET;
1231 case NETLINK_ISCSI:
1232 return SECCLASS_NETLINK_ISCSI_SOCKET;
1233 case NETLINK_AUDIT:
1234 return SECCLASS_NETLINK_AUDIT_SOCKET;
1235 case NETLINK_FIB_LOOKUP:
1236 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1237 case NETLINK_CONNECTOR:
1238 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1239 case NETLINK_NETFILTER:
1240 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1241 case NETLINK_DNRTMSG:
1242 return SECCLASS_NETLINK_DNRT_SOCKET;
1243 case NETLINK_KOBJECT_UEVENT:
1244 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1245 case NETLINK_GENERIC:
1246 return SECCLASS_NETLINK_GENERIC_SOCKET;
1247 case NETLINK_SCSITRANSPORT:
1248 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1249 case NETLINK_RDMA:
1250 return SECCLASS_NETLINK_RDMA_SOCKET;
1251 case NETLINK_CRYPTO:
1252 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1253 default:
1254 return SECCLASS_NETLINK_SOCKET;
1255 }
1256 case PF_PACKET:
1257 return SECCLASS_PACKET_SOCKET;
1258 case PF_KEY:
1259 return SECCLASS_KEY_SOCKET;
1260 case PF_APPLETALK:
1261 return SECCLASS_APPLETALK_SOCKET;
1262 }
1263
1264 if (extsockclass) {
1265 switch (family) {
1266 case PF_AX25:
1267 return SECCLASS_AX25_SOCKET;
1268 case PF_IPX:
1269 return SECCLASS_IPX_SOCKET;
1270 case PF_NETROM:
1271 return SECCLASS_NETROM_SOCKET;
1272 case PF_ATMPVC:
1273 return SECCLASS_ATMPVC_SOCKET;
1274 case PF_X25:
1275 return SECCLASS_X25_SOCKET;
1276 case PF_ROSE:
1277 return SECCLASS_ROSE_SOCKET;
1278 case PF_DECnet:
1279 return SECCLASS_DECNET_SOCKET;
1280 case PF_ATMSVC:
1281 return SECCLASS_ATMSVC_SOCKET;
1282 case PF_RDS:
1283 return SECCLASS_RDS_SOCKET;
1284 case PF_IRDA:
1285 return SECCLASS_IRDA_SOCKET;
1286 case PF_PPPOX:
1287 return SECCLASS_PPPOX_SOCKET;
1288 case PF_LLC:
1289 return SECCLASS_LLC_SOCKET;
1290 case PF_CAN:
1291 return SECCLASS_CAN_SOCKET;
1292 case PF_TIPC:
1293 return SECCLASS_TIPC_SOCKET;
1294 case PF_BLUETOOTH:
1295 return SECCLASS_BLUETOOTH_SOCKET;
1296 case PF_IUCV:
1297 return SECCLASS_IUCV_SOCKET;
1298 case PF_RXRPC:
1299 return SECCLASS_RXRPC_SOCKET;
1300 case PF_ISDN:
1301 return SECCLASS_ISDN_SOCKET;
1302 case PF_PHONET:
1303 return SECCLASS_PHONET_SOCKET;
1304 case PF_IEEE802154:
1305 return SECCLASS_IEEE802154_SOCKET;
1306 case PF_CAIF:
1307 return SECCLASS_CAIF_SOCKET;
1308 case PF_ALG:
1309 return SECCLASS_ALG_SOCKET;
1310 case PF_NFC:
1311 return SECCLASS_NFC_SOCKET;
1312 case PF_VSOCK:
1313 return SECCLASS_VSOCK_SOCKET;
1314 case PF_KCM:
1315 return SECCLASS_KCM_SOCKET;
1316 case PF_QIPCRTR:
1317 return SECCLASS_QIPCRTR_SOCKET;
1318 case PF_SMC:
1319 return SECCLASS_SMC_SOCKET;
1320 case PF_XDP:
1321 return SECCLASS_XDP_SOCKET;
1322#if PF_MAX > 45
1323#error New address family defined, please update this function.
1324#endif
1325 }
1326 }
1327
1328 return SECCLASS_SOCKET;
1329}
1330
1331static int selinux_genfs_get_sid(struct dentry *dentry,
1332 u16 tclass,
1333 u16 flags,
1334 u32 *sid)
1335{
1336 int rc;
1337 struct super_block *sb = dentry->d_sb;
1338 char *buffer, *path;
1339
1340 buffer = (char *)__get_free_page(GFP_KERNEL);
1341 if (!buffer)
1342 return -ENOMEM;
1343
1344 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1345 if (IS_ERR(path))
1346 rc = PTR_ERR(path);
1347 else {
1348 if (flags & SE_SBPROC) {
1349 /* each process gets a /proc/PID/ entry. Strip off the
1350 * PID part to get a valid selinux labeling.
1351 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1352 while (path[1] >= '0' && path[1] <= '9') {
1353 path[1] = '/';
1354 path++;
1355 }
1356 }
1357 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1358 path, tclass, sid);
1359 if (rc == -ENOENT) {
1360 /* No match in policy, mark as unlabeled. */
1361 *sid = SECINITSID_UNLABELED;
1362 rc = 0;
1363 }
1364 }
1365 free_page((unsigned long)buffer);
1366 return rc;
1367}
1368
1369static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1370 u32 def_sid, u32 *sid)
1371{
1372#define INITCONTEXTLEN 255
1373 char *context;
1374 unsigned int len;
1375 int rc;
1376
1377 len = INITCONTEXTLEN;
1378 context = kmalloc(len + 1, GFP_NOFS);
1379 if (!context)
1380 return -ENOMEM;
1381
1382 context[len] = '\0';
1383 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1384 if (rc == -ERANGE) {
1385 kfree(context);
1386
1387 /* Need a larger buffer. Query for the right size. */
1388 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1389 if (rc < 0)
1390 return rc;
1391
1392 len = rc;
1393 context = kmalloc(len + 1, GFP_NOFS);
1394 if (!context)
1395 return -ENOMEM;
1396
1397 context[len] = '\0';
1398 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1399 context, len);
1400 }
1401 if (rc < 0) {
1402 kfree(context);
1403 if (rc != -ENODATA) {
1404 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n",
1405 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1406 return rc;
1407 }
1408 *sid = def_sid;
1409 return 0;
1410 }
1411
1412 rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1413 def_sid, GFP_NOFS);
1414 if (rc) {
1415 char *dev = inode->i_sb->s_id;
1416 unsigned long ino = inode->i_ino;
1417
1418 if (rc == -EINVAL) {
1419 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n",
1420 ino, dev, context);
1421 } else {
1422 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1423 __func__, context, -rc, dev, ino);
1424 }
1425 }
1426 kfree(context);
1427 return 0;
1428}
1429
1430/* The inode's security attributes must be initialized before first use. */
1431static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1432{
1433 struct superblock_security_struct *sbsec = NULL;
1434 struct inode_security_struct *isec = selinux_inode(inode);
1435 u32 task_sid, sid = 0;
1436 u16 sclass;
1437 struct dentry *dentry;
1438 int rc = 0;
1439
1440 if (isec->initialized == LABEL_INITIALIZED)
1441 return 0;
1442
1443 spin_lock(&isec->lock);
1444 if (isec->initialized == LABEL_INITIALIZED)
1445 goto out_unlock;
1446
1447 if (isec->sclass == SECCLASS_FILE)
1448 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1449
1450 sbsec = inode->i_sb->s_security;
1451 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1452 /* Defer initialization until selinux_complete_init,
1453 after the initial policy is loaded and the security
1454 server is ready to handle calls. */
1455 spin_lock(&sbsec->isec_lock);
1456 if (list_empty(&isec->list))
1457 list_add(&isec->list, &sbsec->isec_head);
1458 spin_unlock(&sbsec->isec_lock);
1459 goto out_unlock;
1460 }
1461
1462 sclass = isec->sclass;
1463 task_sid = isec->task_sid;
1464 sid = isec->sid;
1465 isec->initialized = LABEL_PENDING;
1466 spin_unlock(&isec->lock);
1467
1468 switch (sbsec->behavior) {
1469 case SECURITY_FS_USE_NATIVE:
1470 break;
1471 case SECURITY_FS_USE_XATTR:
1472 if (!(inode->i_opflags & IOP_XATTR)) {
1473 sid = sbsec->def_sid;
1474 break;
1475 }
1476 /* Need a dentry, since the xattr API requires one.
1477 Life would be simpler if we could just pass the inode. */
1478 if (opt_dentry) {
1479 /* Called from d_instantiate or d_splice_alias. */
1480 dentry = dget(opt_dentry);
1481 } else {
1482 /*
1483 * Called from selinux_complete_init, try to find a dentry.
1484 * Some filesystems really want a connected one, so try
1485 * that first. We could split SECURITY_FS_USE_XATTR in
1486 * two, depending upon that...
1487 */
1488 dentry = d_find_alias(inode);
1489 if (!dentry)
1490 dentry = d_find_any_alias(inode);
1491 }
1492 if (!dentry) {
1493 /*
1494 * this is can be hit on boot when a file is accessed
1495 * before the policy is loaded. When we load policy we
1496 * may find inodes that have no dentry on the
1497 * sbsec->isec_head list. No reason to complain as these
1498 * will get fixed up the next time we go through
1499 * inode_doinit with a dentry, before these inodes could
1500 * be used again by userspace.
1501 */
1502 goto out;
1503 }
1504
1505 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1506 &sid);
1507 dput(dentry);
1508 if (rc)
1509 goto out;
1510 break;
1511 case SECURITY_FS_USE_TASK:
1512 sid = task_sid;
1513 break;
1514 case SECURITY_FS_USE_TRANS:
1515 /* Default to the fs SID. */
1516 sid = sbsec->sid;
1517
1518 /* Try to obtain a transition SID. */
1519 rc = security_transition_sid(&selinux_state, task_sid, sid,
1520 sclass, NULL, &sid);
1521 if (rc)
1522 goto out;
1523 break;
1524 case SECURITY_FS_USE_MNTPOINT:
1525 sid = sbsec->mntpoint_sid;
1526 break;
1527 default:
1528 /* Default to the fs superblock SID. */
1529 sid = sbsec->sid;
1530
1531 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1532 /* We must have a dentry to determine the label on
1533 * procfs inodes */
1534 if (opt_dentry) {
1535 /* Called from d_instantiate or
1536 * d_splice_alias. */
1537 dentry = dget(opt_dentry);
1538 } else {
1539 /* Called from selinux_complete_init, try to
1540 * find a dentry. Some filesystems really want
1541 * a connected one, so try that first.
1542 */
1543 dentry = d_find_alias(inode);
1544 if (!dentry)
1545 dentry = d_find_any_alias(inode);
1546 }
1547 /*
1548 * This can be hit on boot when a file is accessed
1549 * before the policy is loaded. When we load policy we
1550 * may find inodes that have no dentry on the
1551 * sbsec->isec_head list. No reason to complain as
1552 * these will get fixed up the next time we go through
1553 * inode_doinit() with a dentry, before these inodes
1554 * could be used again by userspace.
1555 */
1556 if (!dentry)
1557 goto out;
1558 rc = selinux_genfs_get_sid(dentry, sclass,
1559 sbsec->flags, &sid);
1560 if (rc) {
1561 dput(dentry);
1562 goto out;
1563 }
1564
1565 if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1566 (inode->i_opflags & IOP_XATTR)) {
1567 rc = inode_doinit_use_xattr(inode, dentry,
1568 sid, &sid);
1569 if (rc) {
1570 dput(dentry);
1571 goto out;
1572 }
1573 }
1574 dput(dentry);
1575 }
1576 break;
1577 }
1578
1579out:
1580 spin_lock(&isec->lock);
1581 if (isec->initialized == LABEL_PENDING) {
1582 if (!sid || rc) {
1583 isec->initialized = LABEL_INVALID;
1584 goto out_unlock;
1585 }
1586
1587 isec->initialized = LABEL_INITIALIZED;
1588 isec->sid = sid;
1589 }
1590
1591out_unlock:
1592 spin_unlock(&isec->lock);
1593 return rc;
1594}
1595
1596/* Convert a Linux signal to an access vector. */
1597static inline u32 signal_to_av(int sig)
1598{
1599 u32 perm = 0;
1600
1601 switch (sig) {
1602 case SIGCHLD:
1603 /* Commonly granted from child to parent. */
1604 perm = PROCESS__SIGCHLD;
1605 break;
1606 case SIGKILL:
1607 /* Cannot be caught or ignored */
1608 perm = PROCESS__SIGKILL;
1609 break;
1610 case SIGSTOP:
1611 /* Cannot be caught or ignored */
1612 perm = PROCESS__SIGSTOP;
1613 break;
1614 default:
1615 /* All other signals. */
1616 perm = PROCESS__SIGNAL;
1617 break;
1618 }
1619
1620 return perm;
1621}
1622
1623#if CAP_LAST_CAP > 63
1624#error Fix SELinux to handle capabilities > 63.
1625#endif
1626
1627/* Check whether a task is allowed to use a capability. */
1628static int cred_has_capability(const struct cred *cred,
1629 int cap, unsigned int opts, bool initns)
1630{
1631 struct common_audit_data ad;
1632 struct av_decision avd;
1633 u16 sclass;
1634 u32 sid = cred_sid(cred);
1635 u32 av = CAP_TO_MASK(cap);
1636 int rc;
1637
1638 ad.type = LSM_AUDIT_DATA_CAP;
1639 ad.u.cap = cap;
1640
1641 switch (CAP_TO_INDEX(cap)) {
1642 case 0:
1643 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1644 break;
1645 case 1:
1646 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1647 break;
1648 default:
1649 pr_err("SELinux: out of range capability %d\n", cap);
1650 BUG();
1651 return -EINVAL;
1652 }
1653
1654 rc = avc_has_perm_noaudit(&selinux_state,
1655 sid, sid, sclass, av, 0, &avd);
1656 if (!(opts & CAP_OPT_NOAUDIT)) {
1657 int rc2 = avc_audit(&selinux_state,
1658 sid, sid, sclass, av, &avd, rc, &ad, 0);
1659 if (rc2)
1660 return rc2;
1661 }
1662 return rc;
1663}
1664
1665/* Check whether a task has a particular permission to an inode.
1666 The 'adp' parameter is optional and allows other audit
1667 data to be passed (e.g. the dentry). */
1668static int inode_has_perm(const struct cred *cred,
1669 struct inode *inode,
1670 u32 perms,
1671 struct common_audit_data *adp)
1672{
1673 struct inode_security_struct *isec;
1674 u32 sid;
1675
1676 validate_creds(cred);
1677
1678 if (unlikely(IS_PRIVATE(inode)))
1679 return 0;
1680
1681 sid = cred_sid(cred);
1682 isec = selinux_inode(inode);
1683
1684 return avc_has_perm(&selinux_state,
1685 sid, isec->sid, isec->sclass, perms, adp);
1686}
1687
1688/* Same as inode_has_perm, but pass explicit audit data containing
1689 the dentry to help the auditing code to more easily generate the
1690 pathname if needed. */
1691static inline int dentry_has_perm(const struct cred *cred,
1692 struct dentry *dentry,
1693 u32 av)
1694{
1695 struct inode *inode = d_backing_inode(dentry);
1696 struct common_audit_data ad;
1697
1698 ad.type = LSM_AUDIT_DATA_DENTRY;
1699 ad.u.dentry = dentry;
1700 __inode_security_revalidate(inode, dentry, true);
1701 return inode_has_perm(cred, inode, av, &ad);
1702}
1703
1704/* Same as inode_has_perm, but pass explicit audit data containing
1705 the path to help the auditing code to more easily generate the
1706 pathname if needed. */
1707static inline int path_has_perm(const struct cred *cred,
1708 const struct path *path,
1709 u32 av)
1710{
1711 struct inode *inode = d_backing_inode(path->dentry);
1712 struct common_audit_data ad;
1713
1714 ad.type = LSM_AUDIT_DATA_PATH;
1715 ad.u.path = *path;
1716 __inode_security_revalidate(inode, path->dentry, true);
1717 return inode_has_perm(cred, inode, av, &ad);
1718}
1719
1720/* Same as path_has_perm, but uses the inode from the file struct. */
1721static inline int file_path_has_perm(const struct cred *cred,
1722 struct file *file,
1723 u32 av)
1724{
1725 struct common_audit_data ad;
1726
1727 ad.type = LSM_AUDIT_DATA_FILE;
1728 ad.u.file = file;
1729 return inode_has_perm(cred, file_inode(file), av, &ad);
1730}
1731
1732#ifdef CONFIG_BPF_SYSCALL
1733static int bpf_fd_pass(struct file *file, u32 sid);
1734#endif
1735
1736/* Check whether a task can use an open file descriptor to
1737 access an inode in a given way. Check access to the
1738 descriptor itself, and then use dentry_has_perm to
1739 check a particular permission to the file.
1740 Access to the descriptor is implicitly granted if it
1741 has the same SID as the process. If av is zero, then
1742 access to the file is not checked, e.g. for cases
1743 where only the descriptor is affected like seek. */
1744static int file_has_perm(const struct cred *cred,
1745 struct file *file,
1746 u32 av)
1747{
1748 struct file_security_struct *fsec = selinux_file(file);
1749 struct inode *inode = file_inode(file);
1750 struct common_audit_data ad;
1751 u32 sid = cred_sid(cred);
1752 int rc;
1753
1754 ad.type = LSM_AUDIT_DATA_FILE;
1755 ad.u.file = file;
1756
1757 if (sid != fsec->sid) {
1758 rc = avc_has_perm(&selinux_state,
1759 sid, fsec->sid,
1760 SECCLASS_FD,
1761 FD__USE,
1762 &ad);
1763 if (rc)
1764 goto out;
1765 }
1766
1767#ifdef CONFIG_BPF_SYSCALL
1768 rc = bpf_fd_pass(file, cred_sid(cred));
1769 if (rc)
1770 return rc;
1771#endif
1772
1773 /* av is zero if only checking access to the descriptor. */
1774 rc = 0;
1775 if (av)
1776 rc = inode_has_perm(cred, inode, av, &ad);
1777
1778out:
1779 return rc;
1780}
1781
1782/*
1783 * Determine the label for an inode that might be unioned.
1784 */
1785static int
1786selinux_determine_inode_label(const struct task_security_struct *tsec,
1787 struct inode *dir,
1788 const struct qstr *name, u16 tclass,
1789 u32 *_new_isid)
1790{
1791 const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1792
1793 if ((sbsec->flags & SE_SBINITIALIZED) &&
1794 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1795 *_new_isid = sbsec->mntpoint_sid;
1796 } else if ((sbsec->flags & SBLABEL_MNT) &&
1797 tsec->create_sid) {
1798 *_new_isid = tsec->create_sid;
1799 } else {
1800 const struct inode_security_struct *dsec = inode_security(dir);
1801 return security_transition_sid(&selinux_state, tsec->sid,
1802 dsec->sid, tclass,
1803 name, _new_isid);
1804 }
1805
1806 return 0;
1807}
1808
1809/* Check whether a task can create a file. */
1810static int may_create(struct inode *dir,
1811 struct dentry *dentry,
1812 u16 tclass)
1813{
1814 const struct task_security_struct *tsec = selinux_cred(current_cred());
1815 struct inode_security_struct *dsec;
1816 struct superblock_security_struct *sbsec;
1817 u32 sid, newsid;
1818 struct common_audit_data ad;
1819 int rc;
1820
1821 dsec = inode_security(dir);
1822 sbsec = dir->i_sb->s_security;
1823
1824 sid = tsec->sid;
1825
1826 ad.type = LSM_AUDIT_DATA_DENTRY;
1827 ad.u.dentry = dentry;
1828
1829 rc = avc_has_perm(&selinux_state,
1830 sid, dsec->sid, SECCLASS_DIR,
1831 DIR__ADD_NAME | DIR__SEARCH,
1832 &ad);
1833 if (rc)
1834 return rc;
1835
1836 rc = selinux_determine_inode_label(selinux_cred(current_cred()), dir,
1837 &dentry->d_name, tclass, &newsid);
1838 if (rc)
1839 return rc;
1840
1841 rc = avc_has_perm(&selinux_state,
1842 sid, newsid, tclass, FILE__CREATE, &ad);
1843 if (rc)
1844 return rc;
1845
1846 return avc_has_perm(&selinux_state,
1847 newsid, sbsec->sid,
1848 SECCLASS_FILESYSTEM,
1849 FILESYSTEM__ASSOCIATE, &ad);
1850}
1851
1852#define MAY_LINK 0
1853#define MAY_UNLINK 1
1854#define MAY_RMDIR 2
1855
1856/* Check whether a task can link, unlink, or rmdir a file/directory. */
1857static int may_link(struct inode *dir,
1858 struct dentry *dentry,
1859 int kind)
1860
1861{
1862 struct inode_security_struct *dsec, *isec;
1863 struct common_audit_data ad;
1864 u32 sid = current_sid();
1865 u32 av;
1866 int rc;
1867
1868 dsec = inode_security(dir);
1869 isec = backing_inode_security(dentry);
1870
1871 ad.type = LSM_AUDIT_DATA_DENTRY;
1872 ad.u.dentry = dentry;
1873
1874 av = DIR__SEARCH;
1875 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1876 rc = avc_has_perm(&selinux_state,
1877 sid, dsec->sid, SECCLASS_DIR, av, &ad);
1878 if (rc)
1879 return rc;
1880
1881 switch (kind) {
1882 case MAY_LINK:
1883 av = FILE__LINK;
1884 break;
1885 case MAY_UNLINK:
1886 av = FILE__UNLINK;
1887 break;
1888 case MAY_RMDIR:
1889 av = DIR__RMDIR;
1890 break;
1891 default:
1892 pr_warn("SELinux: %s: unrecognized kind %d\n",
1893 __func__, kind);
1894 return 0;
1895 }
1896
1897 rc = avc_has_perm(&selinux_state,
1898 sid, isec->sid, isec->sclass, av, &ad);
1899 return rc;
1900}
1901
1902static inline int may_rename(struct inode *old_dir,
1903 struct dentry *old_dentry,
1904 struct inode *new_dir,
1905 struct dentry *new_dentry)
1906{
1907 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1908 struct common_audit_data ad;
1909 u32 sid = current_sid();
1910 u32 av;
1911 int old_is_dir, new_is_dir;
1912 int rc;
1913
1914 old_dsec = inode_security(old_dir);
1915 old_isec = backing_inode_security(old_dentry);
1916 old_is_dir = d_is_dir(old_dentry);
1917 new_dsec = inode_security(new_dir);
1918
1919 ad.type = LSM_AUDIT_DATA_DENTRY;
1920
1921 ad.u.dentry = old_dentry;
1922 rc = avc_has_perm(&selinux_state,
1923 sid, old_dsec->sid, SECCLASS_DIR,
1924 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1925 if (rc)
1926 return rc;
1927 rc = avc_has_perm(&selinux_state,
1928 sid, old_isec->sid,
1929 old_isec->sclass, FILE__RENAME, &ad);
1930 if (rc)
1931 return rc;
1932 if (old_is_dir && new_dir != old_dir) {
1933 rc = avc_has_perm(&selinux_state,
1934 sid, old_isec->sid,
1935 old_isec->sclass, DIR__REPARENT, &ad);
1936 if (rc)
1937 return rc;
1938 }
1939
1940 ad.u.dentry = new_dentry;
1941 av = DIR__ADD_NAME | DIR__SEARCH;
1942 if (d_is_positive(new_dentry))
1943 av |= DIR__REMOVE_NAME;
1944 rc = avc_has_perm(&selinux_state,
1945 sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1946 if (rc)
1947 return rc;
1948 if (d_is_positive(new_dentry)) {
1949 new_isec = backing_inode_security(new_dentry);
1950 new_is_dir = d_is_dir(new_dentry);
1951 rc = avc_has_perm(&selinux_state,
1952 sid, new_isec->sid,
1953 new_isec->sclass,
1954 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1955 if (rc)
1956 return rc;
1957 }
1958
1959 return 0;
1960}
1961
1962/* Check whether a task can perform a filesystem operation. */
1963static int superblock_has_perm(const struct cred *cred,
1964 struct super_block *sb,
1965 u32 perms,
1966 struct common_audit_data *ad)
1967{
1968 struct superblock_security_struct *sbsec;
1969 u32 sid = cred_sid(cred);
1970
1971 sbsec = sb->s_security;
1972 return avc_has_perm(&selinux_state,
1973 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1974}
1975
1976/* Convert a Linux mode and permission mask to an access vector. */
1977static inline u32 file_mask_to_av(int mode, int mask)
1978{
1979 u32 av = 0;
1980
1981 if (!S_ISDIR(mode)) {
1982 if (mask & MAY_EXEC)
1983 av |= FILE__EXECUTE;
1984 if (mask & MAY_READ)
1985 av |= FILE__READ;
1986
1987 if (mask & MAY_APPEND)
1988 av |= FILE__APPEND;
1989 else if (mask & MAY_WRITE)
1990 av |= FILE__WRITE;
1991
1992 } else {
1993 if (mask & MAY_EXEC)
1994 av |= DIR__SEARCH;
1995 if (mask & MAY_WRITE)
1996 av |= DIR__WRITE;
1997 if (mask & MAY_READ)
1998 av |= DIR__READ;
1999 }
2000
2001 return av;
2002}
2003
2004/* Convert a Linux file to an access vector. */
2005static inline u32 file_to_av(struct file *file)
2006{
2007 u32 av = 0;
2008
2009 if (file->f_mode & FMODE_READ)
2010 av |= FILE__READ;
2011 if (file->f_mode & FMODE_WRITE) {
2012 if (file->f_flags & O_APPEND)
2013 av |= FILE__APPEND;
2014 else
2015 av |= FILE__WRITE;
2016 }
2017 if (!av) {
2018 /*
2019 * Special file opened with flags 3 for ioctl-only use.
2020 */
2021 av = FILE__IOCTL;
2022 }
2023
2024 return av;
2025}
2026
2027/*
2028 * Convert a file to an access vector and include the correct open
2029 * open permission.
2030 */
2031static inline u32 open_file_to_av(struct file *file)
2032{
2033 u32 av = file_to_av(file);
2034 struct inode *inode = file_inode(file);
2035
2036 if (selinux_policycap_openperm() &&
2037 inode->i_sb->s_magic != SOCKFS_MAGIC)
2038 av |= FILE__OPEN;
2039
2040 return av;
2041}
2042
2043/* Hook functions begin here. */
2044
2045static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2046{
2047 u32 mysid = current_sid();
2048 u32 mgrsid = task_sid(mgr);
2049
2050 return avc_has_perm(&selinux_state,
2051 mysid, mgrsid, SECCLASS_BINDER,
2052 BINDER__SET_CONTEXT_MGR, NULL);
2053}
2054
2055static int selinux_binder_transaction(struct task_struct *from,
2056 struct task_struct *to)
2057{
2058 u32 mysid = current_sid();
2059 u32 fromsid = task_sid(from);
2060 u32 tosid = task_sid(to);
2061 int rc;
2062
2063 if (mysid != fromsid) {
2064 rc = avc_has_perm(&selinux_state,
2065 mysid, fromsid, SECCLASS_BINDER,
2066 BINDER__IMPERSONATE, NULL);
2067 if (rc)
2068 return rc;
2069 }
2070
2071 return avc_has_perm(&selinux_state,
2072 fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2073 NULL);
2074}
2075
2076static int selinux_binder_transfer_binder(struct task_struct *from,
2077 struct task_struct *to)
2078{
2079 u32 fromsid = task_sid(from);
2080 u32 tosid = task_sid(to);
2081
2082 return avc_has_perm(&selinux_state,
2083 fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2084 NULL);
2085}
2086
2087static int selinux_binder_transfer_file(struct task_struct *from,
2088 struct task_struct *to,
2089 struct file *file)
2090{
2091 u32 sid = task_sid(to);
2092 struct file_security_struct *fsec = selinux_file(file);
2093 struct dentry *dentry = file->f_path.dentry;
2094 struct inode_security_struct *isec;
2095 struct common_audit_data ad;
2096 int rc;
2097
2098 ad.type = LSM_AUDIT_DATA_PATH;
2099 ad.u.path = file->f_path;
2100
2101 if (sid != fsec->sid) {
2102 rc = avc_has_perm(&selinux_state,
2103 sid, fsec->sid,
2104 SECCLASS_FD,
2105 FD__USE,
2106 &ad);
2107 if (rc)
2108 return rc;
2109 }
2110
2111#ifdef CONFIG_BPF_SYSCALL
2112 rc = bpf_fd_pass(file, sid);
2113 if (rc)
2114 return rc;
2115#endif
2116
2117 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2118 return 0;
2119
2120 isec = backing_inode_security(dentry);
2121 return avc_has_perm(&selinux_state,
2122 sid, isec->sid, isec->sclass, file_to_av(file),
2123 &ad);
2124}
2125
2126static int selinux_ptrace_access_check(struct task_struct *child,
2127 unsigned int mode)
2128{
2129 u32 sid = current_sid();
2130 u32 csid = task_sid(child);
2131
2132 if (mode & PTRACE_MODE_READ)
2133 return avc_has_perm(&selinux_state,
2134 sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2135
2136 return avc_has_perm(&selinux_state,
2137 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2138}
2139
2140static int selinux_ptrace_traceme(struct task_struct *parent)
2141{
2142 return avc_has_perm(&selinux_state,
2143 task_sid(parent), current_sid(), SECCLASS_PROCESS,
2144 PROCESS__PTRACE, NULL);
2145}
2146
2147static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2148 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2149{
2150 return avc_has_perm(&selinux_state,
2151 current_sid(), task_sid(target), SECCLASS_PROCESS,
2152 PROCESS__GETCAP, NULL);
2153}
2154
2155static int selinux_capset(struct cred *new, const struct cred *old,
2156 const kernel_cap_t *effective,
2157 const kernel_cap_t *inheritable,
2158 const kernel_cap_t *permitted)
2159{
2160 return avc_has_perm(&selinux_state,
2161 cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2162 PROCESS__SETCAP, NULL);
2163}
2164
2165/*
2166 * (This comment used to live with the selinux_task_setuid hook,
2167 * which was removed).
2168 *
2169 * Since setuid only affects the current process, and since the SELinux
2170 * controls are not based on the Linux identity attributes, SELinux does not
2171 * need to control this operation. However, SELinux does control the use of
2172 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2173 */
2174
2175static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2176 int cap, unsigned int opts)
2177{
2178 return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2179}
2180
2181static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2182{
2183 const struct cred *cred = current_cred();
2184 int rc = 0;
2185
2186 if (!sb)
2187 return 0;
2188
2189 switch (cmds) {
2190 case Q_SYNC:
2191 case Q_QUOTAON:
2192 case Q_QUOTAOFF:
2193 case Q_SETINFO:
2194 case Q_SETQUOTA:
2195 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2196 break;
2197 case Q_GETFMT:
2198 case Q_GETINFO:
2199 case Q_GETQUOTA:
2200 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2201 break;
2202 default:
2203 rc = 0; /* let the kernel handle invalid cmds */
2204 break;
2205 }
2206 return rc;
2207}
2208
2209static int selinux_quota_on(struct dentry *dentry)
2210{
2211 const struct cred *cred = current_cred();
2212
2213 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2214}
2215
2216static int selinux_syslog(int type)
2217{
2218 switch (type) {
2219 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2220 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2221 return avc_has_perm(&selinux_state,
2222 current_sid(), SECINITSID_KERNEL,
2223 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2224 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2225 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2226 /* Set level of messages printed to console */
2227 case SYSLOG_ACTION_CONSOLE_LEVEL:
2228 return avc_has_perm(&selinux_state,
2229 current_sid(), SECINITSID_KERNEL,
2230 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2231 NULL);
2232 }
2233 /* All other syslog types */
2234 return avc_has_perm(&selinux_state,
2235 current_sid(), SECINITSID_KERNEL,
2236 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2237}
2238
2239/*
2240 * Check that a process has enough memory to allocate a new virtual
2241 * mapping. 0 means there is enough memory for the allocation to
2242 * succeed and -ENOMEM implies there is not.
2243 *
2244 * Do not audit the selinux permission check, as this is applied to all
2245 * processes that allocate mappings.
2246 */
2247static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2248{
2249 int rc, cap_sys_admin = 0;
2250
2251 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2252 CAP_OPT_NOAUDIT, true);
2253 if (rc == 0)
2254 cap_sys_admin = 1;
2255
2256 return cap_sys_admin;
2257}
2258
2259/* binprm security operations */
2260
2261static u32 ptrace_parent_sid(void)
2262{
2263 u32 sid = 0;
2264 struct task_struct *tracer;
2265
2266 rcu_read_lock();
2267 tracer = ptrace_parent(current);
2268 if (tracer)
2269 sid = task_sid(tracer);
2270 rcu_read_unlock();
2271
2272 return sid;
2273}
2274
2275static int check_nnp_nosuid(const struct linux_binprm *bprm,
2276 const struct task_security_struct *old_tsec,
2277 const struct task_security_struct *new_tsec)
2278{
2279 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2280 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2281 int rc;
2282 u32 av;
2283
2284 if (!nnp && !nosuid)
2285 return 0; /* neither NNP nor nosuid */
2286
2287 if (new_tsec->sid == old_tsec->sid)
2288 return 0; /* No change in credentials */
2289
2290 /*
2291 * If the policy enables the nnp_nosuid_transition policy capability,
2292 * then we permit transitions under NNP or nosuid if the
2293 * policy allows the corresponding permission between
2294 * the old and new contexts.
2295 */
2296 if (selinux_policycap_nnp_nosuid_transition()) {
2297 av = 0;
2298 if (nnp)
2299 av |= PROCESS2__NNP_TRANSITION;
2300 if (nosuid)
2301 av |= PROCESS2__NOSUID_TRANSITION;
2302 rc = avc_has_perm(&selinux_state,
2303 old_tsec->sid, new_tsec->sid,
2304 SECCLASS_PROCESS2, av, NULL);
2305 if (!rc)
2306 return 0;
2307 }
2308
2309 /*
2310 * We also permit NNP or nosuid transitions to bounded SIDs,
2311 * i.e. SIDs that are guaranteed to only be allowed a subset
2312 * of the permissions of the current SID.
2313 */
2314 rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2315 new_tsec->sid);
2316 if (!rc)
2317 return 0;
2318
2319 /*
2320 * On failure, preserve the errno values for NNP vs nosuid.
2321 * NNP: Operation not permitted for caller.
2322 * nosuid: Permission denied to file.
2323 */
2324 if (nnp)
2325 return -EPERM;
2326 return -EACCES;
2327}
2328
2329static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2330{
2331 const struct task_security_struct *old_tsec;
2332 struct task_security_struct *new_tsec;
2333 struct inode_security_struct *isec;
2334 struct common_audit_data ad;
2335 struct inode *inode = file_inode(bprm->file);
2336 int rc;
2337
2338 /* SELinux context only depends on initial program or script and not
2339 * the script interpreter */
2340 if (bprm->called_set_creds)
2341 return 0;
2342
2343 old_tsec = selinux_cred(current_cred());
2344 new_tsec = selinux_cred(bprm->cred);
2345 isec = inode_security(inode);
2346
2347 /* Default to the current task SID. */
2348 new_tsec->sid = old_tsec->sid;
2349 new_tsec->osid = old_tsec->sid;
2350
2351 /* Reset fs, key, and sock SIDs on execve. */
2352 new_tsec->create_sid = 0;
2353 new_tsec->keycreate_sid = 0;
2354 new_tsec->sockcreate_sid = 0;
2355
2356 if (old_tsec->exec_sid) {
2357 new_tsec->sid = old_tsec->exec_sid;
2358 /* Reset exec SID on execve. */
2359 new_tsec->exec_sid = 0;
2360
2361 /* Fail on NNP or nosuid if not an allowed transition. */
2362 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2363 if (rc)
2364 return rc;
2365 } else {
2366 /* Check for a default transition on this program. */
2367 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2368 isec->sid, SECCLASS_PROCESS, NULL,
2369 &new_tsec->sid);
2370 if (rc)
2371 return rc;
2372
2373 /*
2374 * Fallback to old SID on NNP or nosuid if not an allowed
2375 * transition.
2376 */
2377 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2378 if (rc)
2379 new_tsec->sid = old_tsec->sid;
2380 }
2381
2382 ad.type = LSM_AUDIT_DATA_FILE;
2383 ad.u.file = bprm->file;
2384
2385 if (new_tsec->sid == old_tsec->sid) {
2386 rc = avc_has_perm(&selinux_state,
2387 old_tsec->sid, isec->sid,
2388 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2389 if (rc)
2390 return rc;
2391 } else {
2392 /* Check permissions for the transition. */
2393 rc = avc_has_perm(&selinux_state,
2394 old_tsec->sid, new_tsec->sid,
2395 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2396 if (rc)
2397 return rc;
2398
2399 rc = avc_has_perm(&selinux_state,
2400 new_tsec->sid, isec->sid,
2401 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2402 if (rc)
2403 return rc;
2404
2405 /* Check for shared state */
2406 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2407 rc = avc_has_perm(&selinux_state,
2408 old_tsec->sid, new_tsec->sid,
2409 SECCLASS_PROCESS, PROCESS__SHARE,
2410 NULL);
2411 if (rc)
2412 return -EPERM;
2413 }
2414
2415 /* Make sure that anyone attempting to ptrace over a task that
2416 * changes its SID has the appropriate permit */
2417 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2418 u32 ptsid = ptrace_parent_sid();
2419 if (ptsid != 0) {
2420 rc = avc_has_perm(&selinux_state,
2421 ptsid, new_tsec->sid,
2422 SECCLASS_PROCESS,
2423 PROCESS__PTRACE, NULL);
2424 if (rc)
2425 return -EPERM;
2426 }
2427 }
2428
2429 /* Clear any possibly unsafe personality bits on exec: */
2430 bprm->per_clear |= PER_CLEAR_ON_SETID;
2431
2432 /* Enable secure mode for SIDs transitions unless
2433 the noatsecure permission is granted between
2434 the two SIDs, i.e. ahp returns 0. */
2435 rc = avc_has_perm(&selinux_state,
2436 old_tsec->sid, new_tsec->sid,
2437 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2438 NULL);
2439 bprm->secureexec |= !!rc;
2440 }
2441
2442 return 0;
2443}
2444
2445static int match_file(const void *p, struct file *file, unsigned fd)
2446{
2447 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2448}
2449
2450/* Derived from fs/exec.c:flush_old_files. */
2451static inline void flush_unauthorized_files(const struct cred *cred,
2452 struct files_struct *files)
2453{
2454 struct file *file, *devnull = NULL;
2455 struct tty_struct *tty;
2456 int drop_tty = 0;
2457 unsigned n;
2458
2459 tty = get_current_tty();
2460 if (tty) {
2461 spin_lock(&tty->files_lock);
2462 if (!list_empty(&tty->tty_files)) {
2463 struct tty_file_private *file_priv;
2464
2465 /* Revalidate access to controlling tty.
2466 Use file_path_has_perm on the tty path directly
2467 rather than using file_has_perm, as this particular
2468 open file may belong to another process and we are
2469 only interested in the inode-based check here. */
2470 file_priv = list_first_entry(&tty->tty_files,
2471 struct tty_file_private, list);
2472 file = file_priv->file;
2473 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2474 drop_tty = 1;
2475 }
2476 spin_unlock(&tty->files_lock);
2477 tty_kref_put(tty);
2478 }
2479 /* Reset controlling tty. */
2480 if (drop_tty)
2481 no_tty();
2482
2483 /* Revalidate access to inherited open files. */
2484 n = iterate_fd(files, 0, match_file, cred);
2485 if (!n) /* none found? */
2486 return;
2487
2488 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2489 if (IS_ERR(devnull))
2490 devnull = NULL;
2491 /* replace all the matching ones with this */
2492 do {
2493 replace_fd(n - 1, devnull, 0);
2494 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2495 if (devnull)
2496 fput(devnull);
2497}
2498
2499/*
2500 * Prepare a process for imminent new credential changes due to exec
2501 */
2502static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2503{
2504 struct task_security_struct *new_tsec;
2505 struct rlimit *rlim, *initrlim;
2506 int rc, i;
2507
2508 new_tsec = selinux_cred(bprm->cred);
2509 if (new_tsec->sid == new_tsec->osid)
2510 return;
2511
2512 /* Close files for which the new task SID is not authorized. */
2513 flush_unauthorized_files(bprm->cred, current->files);
2514
2515 /* Always clear parent death signal on SID transitions. */
2516 current->pdeath_signal = 0;
2517
2518 /* Check whether the new SID can inherit resource limits from the old
2519 * SID. If not, reset all soft limits to the lower of the current
2520 * task's hard limit and the init task's soft limit.
2521 *
2522 * Note that the setting of hard limits (even to lower them) can be
2523 * controlled by the setrlimit check. The inclusion of the init task's
2524 * soft limit into the computation is to avoid resetting soft limits
2525 * higher than the default soft limit for cases where the default is
2526 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2527 */
2528 rc = avc_has_perm(&selinux_state,
2529 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2530 PROCESS__RLIMITINH, NULL);
2531 if (rc) {
2532 /* protect against do_prlimit() */
2533 task_lock(current);
2534 for (i = 0; i < RLIM_NLIMITS; i++) {
2535 rlim = current->signal->rlim + i;
2536 initrlim = init_task.signal->rlim + i;
2537 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2538 }
2539 task_unlock(current);
2540 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2541 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2542 }
2543}
2544
2545/*
2546 * Clean up the process immediately after the installation of new credentials
2547 * due to exec
2548 */
2549static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2550{
2551 const struct task_security_struct *tsec = selinux_cred(current_cred());
2552 struct itimerval itimer;
2553 u32 osid, sid;
2554 int rc, i;
2555
2556 osid = tsec->osid;
2557 sid = tsec->sid;
2558
2559 if (sid == osid)
2560 return;
2561
2562 /* Check whether the new SID can inherit signal state from the old SID.
2563 * If not, clear itimers to avoid subsequent signal generation and
2564 * flush and unblock signals.
2565 *
2566 * This must occur _after_ the task SID has been updated so that any
2567 * kill done after the flush will be checked against the new SID.
2568 */
2569 rc = avc_has_perm(&selinux_state,
2570 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2571 if (rc) {
2572 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2573 memset(&itimer, 0, sizeof itimer);
2574 for (i = 0; i < 3; i++)
2575 do_setitimer(i, &itimer, NULL);
2576 }
2577 spin_lock_irq(¤t->sighand->siglock);
2578 if (!fatal_signal_pending(current)) {
2579 flush_sigqueue(¤t->pending);
2580 flush_sigqueue(¤t->signal->shared_pending);
2581 flush_signal_handlers(current, 1);
2582 sigemptyset(¤t->blocked);
2583 recalc_sigpending();
2584 }
2585 spin_unlock_irq(¤t->sighand->siglock);
2586 }
2587
2588 /* Wake up the parent if it is waiting so that it can recheck
2589 * wait permission to the new task SID. */
2590 read_lock(&tasklist_lock);
2591 __wake_up_parent(current, current->real_parent);
2592 read_unlock(&tasklist_lock);
2593}
2594
2595/* superblock security operations */
2596
2597static int selinux_sb_alloc_security(struct super_block *sb)
2598{
2599 return superblock_alloc_security(sb);
2600}
2601
2602static void selinux_sb_free_security(struct super_block *sb)
2603{
2604 superblock_free_security(sb);
2605}
2606
2607static inline int opt_len(const char *s)
2608{
2609 bool open_quote = false;
2610 int len;
2611 char c;
2612
2613 for (len = 0; (c = s[len]) != '\0'; len++) {
2614 if (c == '"')
2615 open_quote = !open_quote;
2616 if (c == ',' && !open_quote)
2617 break;
2618 }
2619 return len;
2620}
2621
2622static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2623{
2624 char *from = options;
2625 char *to = options;
2626 bool first = true;
2627 int rc;
2628
2629 while (1) {
2630 int len = opt_len(from);
2631 int token;
2632 char *arg = NULL;
2633
2634 token = match_opt_prefix(from, len, &arg);
2635
2636 if (token != Opt_error) {
2637 char *p, *q;
2638
2639 /* strip quotes */
2640 if (arg) {
2641 for (p = q = arg; p < from + len; p++) {
2642 char c = *p;
2643 if (c != '"')
2644 *q++ = c;
2645 }
2646 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2647 if (!arg) {
2648 rc = -ENOMEM;
2649 goto free_opt;
2650 }
2651 }
2652 rc = selinux_add_opt(token, arg, mnt_opts);
2653 if (unlikely(rc)) {
2654 kfree(arg);
2655 goto free_opt;
2656 }
2657 } else {
2658 if (!first) { // copy with preceding comma
2659 from--;
2660 len++;
2661 }
2662 if (to != from)
2663 memmove(to, from, len);
2664 to += len;
2665 first = false;
2666 }
2667 if (!from[len])
2668 break;
2669 from += len + 1;
2670 }
2671 *to = '\0';
2672 return 0;
2673
2674free_opt:
2675 if (*mnt_opts) {
2676 selinux_free_mnt_opts(*mnt_opts);
2677 *mnt_opts = NULL;
2678 }
2679 return rc;
2680}
2681
2682static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2683{
2684 struct selinux_mnt_opts *opts = mnt_opts;
2685 struct superblock_security_struct *sbsec = sb->s_security;
2686 u32 sid;
2687 int rc;
2688
2689 if (!(sbsec->flags & SE_SBINITIALIZED))
2690 return 0;
2691
2692 if (!opts)
2693 return 0;
2694
2695 if (opts->fscontext) {
2696 rc = parse_sid(sb, opts->fscontext, &sid);
2697 if (rc)
2698 return rc;
2699 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2700 goto out_bad_option;
2701 }
2702 if (opts->context) {
2703 rc = parse_sid(sb, opts->context, &sid);
2704 if (rc)
2705 return rc;
2706 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2707 goto out_bad_option;
2708 }
2709 if (opts->rootcontext) {
2710 struct inode_security_struct *root_isec;
2711 root_isec = backing_inode_security(sb->s_root);
2712 rc = parse_sid(sb, opts->rootcontext, &sid);
2713 if (rc)
2714 return rc;
2715 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2716 goto out_bad_option;
2717 }
2718 if (opts->defcontext) {
2719 rc = parse_sid(sb, opts->defcontext, &sid);
2720 if (rc)
2721 return rc;
2722 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2723 goto out_bad_option;
2724 }
2725 return 0;
2726
2727out_bad_option:
2728 pr_warn("SELinux: unable to change security options "
2729 "during remount (dev %s, type=%s)\n", sb->s_id,
2730 sb->s_type->name);
2731 return -EINVAL;
2732}
2733
2734static int selinux_sb_kern_mount(struct super_block *sb)
2735{
2736 const struct cred *cred = current_cred();
2737 struct common_audit_data ad;
2738
2739 ad.type = LSM_AUDIT_DATA_DENTRY;
2740 ad.u.dentry = sb->s_root;
2741 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2742}
2743
2744static int selinux_sb_statfs(struct dentry *dentry)
2745{
2746 const struct cred *cred = current_cred();
2747 struct common_audit_data ad;
2748
2749 ad.type = LSM_AUDIT_DATA_DENTRY;
2750 ad.u.dentry = dentry->d_sb->s_root;
2751 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2752}
2753
2754static int selinux_mount(const char *dev_name,
2755 const struct path *path,
2756 const char *type,
2757 unsigned long flags,
2758 void *data)
2759{
2760 const struct cred *cred = current_cred();
2761
2762 if (flags & MS_REMOUNT)
2763 return superblock_has_perm(cred, path->dentry->d_sb,
2764 FILESYSTEM__REMOUNT, NULL);
2765 else
2766 return path_has_perm(cred, path, FILE__MOUNTON);
2767}
2768
2769static int selinux_umount(struct vfsmount *mnt, int flags)
2770{
2771 const struct cred *cred = current_cred();
2772
2773 return superblock_has_perm(cred, mnt->mnt_sb,
2774 FILESYSTEM__UNMOUNT, NULL);
2775}
2776
2777static int selinux_fs_context_dup(struct fs_context *fc,
2778 struct fs_context *src_fc)
2779{
2780 const struct selinux_mnt_opts *src = src_fc->security;
2781 struct selinux_mnt_opts *opts;
2782
2783 if (!src)
2784 return 0;
2785
2786 fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2787 if (!fc->security)
2788 return -ENOMEM;
2789
2790 opts = fc->security;
2791
2792 if (src->fscontext) {
2793 opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2794 if (!opts->fscontext)
2795 return -ENOMEM;
2796 }
2797 if (src->context) {
2798 opts->context = kstrdup(src->context, GFP_KERNEL);
2799 if (!opts->context)
2800 return -ENOMEM;
2801 }
2802 if (src->rootcontext) {
2803 opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2804 if (!opts->rootcontext)
2805 return -ENOMEM;
2806 }
2807 if (src->defcontext) {
2808 opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2809 if (!opts->defcontext)
2810 return -ENOMEM;
2811 }
2812 return 0;
2813}
2814
2815static const struct fs_parameter_spec selinux_param_specs[] = {
2816 fsparam_string(CONTEXT_STR, Opt_context),
2817 fsparam_string(DEFCONTEXT_STR, Opt_defcontext),
2818 fsparam_string(FSCONTEXT_STR, Opt_fscontext),
2819 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2820 fsparam_flag (SECLABEL_STR, Opt_seclabel),
2821 {}
2822};
2823
2824static const struct fs_parameter_description selinux_fs_parameters = {
2825 .name = "SELinux",
2826 .specs = selinux_param_specs,
2827};
2828
2829static int selinux_fs_context_parse_param(struct fs_context *fc,
2830 struct fs_parameter *param)
2831{
2832 struct fs_parse_result result;
2833 int opt, rc;
2834
2835 opt = fs_parse(fc, &selinux_fs_parameters, param, &result);
2836 if (opt < 0)
2837 return opt;
2838
2839 rc = selinux_add_opt(opt, param->string, &fc->security);
2840 if (!rc) {
2841 param->string = NULL;
2842 rc = 1;
2843 }
2844 return rc;
2845}
2846
2847/* inode security operations */
2848
2849static int selinux_inode_alloc_security(struct inode *inode)
2850{
2851 return inode_alloc_security(inode);
2852}
2853
2854static void selinux_inode_free_security(struct inode *inode)
2855{
2856 inode_free_security(inode);
2857}
2858
2859static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2860 const struct qstr *name, void **ctx,
2861 u32 *ctxlen)
2862{
2863 u32 newsid;
2864 int rc;
2865
2866 rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2867 d_inode(dentry->d_parent), name,
2868 inode_mode_to_security_class(mode),
2869 &newsid);
2870 if (rc)
2871 return rc;
2872
2873 return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2874 ctxlen);
2875}
2876
2877static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2878 struct qstr *name,
2879 const struct cred *old,
2880 struct cred *new)
2881{
2882 u32 newsid;
2883 int rc;
2884 struct task_security_struct *tsec;
2885
2886 rc = selinux_determine_inode_label(selinux_cred(old),
2887 d_inode(dentry->d_parent), name,
2888 inode_mode_to_security_class(mode),
2889 &newsid);
2890 if (rc)
2891 return rc;
2892
2893 tsec = selinux_cred(new);
2894 tsec->create_sid = newsid;
2895 return 0;
2896}
2897
2898static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2899 const struct qstr *qstr,
2900 const char **name,
2901 void **value, size_t *len)
2902{
2903 const struct task_security_struct *tsec = selinux_cred(current_cred());
2904 struct superblock_security_struct *sbsec;
2905 u32 newsid, clen;
2906 int rc;
2907 char *context;
2908
2909 sbsec = dir->i_sb->s_security;
2910
2911 newsid = tsec->create_sid;
2912
2913 rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2914 dir, qstr,
2915 inode_mode_to_security_class(inode->i_mode),
2916 &newsid);
2917 if (rc)
2918 return rc;
2919
2920 /* Possibly defer initialization to selinux_complete_init. */
2921 if (sbsec->flags & SE_SBINITIALIZED) {
2922 struct inode_security_struct *isec = selinux_inode(inode);
2923 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2924 isec->sid = newsid;
2925 isec->initialized = LABEL_INITIALIZED;
2926 }
2927
2928 if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
2929 return -EOPNOTSUPP;
2930
2931 if (name)
2932 *name = XATTR_SELINUX_SUFFIX;
2933
2934 if (value && len) {
2935 rc = security_sid_to_context_force(&selinux_state, newsid,
2936 &context, &clen);
2937 if (rc)
2938 return rc;
2939 *value = context;
2940 *len = clen;
2941 }
2942
2943 return 0;
2944}
2945
2946static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2947{
2948 return may_create(dir, dentry, SECCLASS_FILE);
2949}
2950
2951static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2952{
2953 return may_link(dir, old_dentry, MAY_LINK);
2954}
2955
2956static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2957{
2958 return may_link(dir, dentry, MAY_UNLINK);
2959}
2960
2961static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2962{
2963 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2964}
2965
2966static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2967{
2968 return may_create(dir, dentry, SECCLASS_DIR);
2969}
2970
2971static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2972{
2973 return may_link(dir, dentry, MAY_RMDIR);
2974}
2975
2976static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2977{
2978 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2979}
2980
2981static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2982 struct inode *new_inode, struct dentry *new_dentry)
2983{
2984 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2985}
2986
2987static int selinux_inode_readlink(struct dentry *dentry)
2988{
2989 const struct cred *cred = current_cred();
2990
2991 return dentry_has_perm(cred, dentry, FILE__READ);
2992}
2993
2994static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2995 bool rcu)
2996{
2997 const struct cred *cred = current_cred();
2998 struct common_audit_data ad;
2999 struct inode_security_struct *isec;
3000 u32 sid;
3001
3002 validate_creds(cred);
3003
3004 ad.type = LSM_AUDIT_DATA_DENTRY;
3005 ad.u.dentry = dentry;
3006 sid = cred_sid(cred);
3007 isec = inode_security_rcu(inode, rcu);
3008 if (IS_ERR(isec))
3009 return PTR_ERR(isec);
3010
3011 return avc_has_perm(&selinux_state,
3012 sid, isec->sid, isec->sclass, FILE__READ, &ad);
3013}
3014
3015static noinline int audit_inode_permission(struct inode *inode,
3016 u32 perms, u32 audited, u32 denied,
3017 int result,
3018 unsigned flags)
3019{
3020 struct common_audit_data ad;
3021 struct inode_security_struct *isec = selinux_inode(inode);
3022 int rc;
3023
3024 ad.type = LSM_AUDIT_DATA_INODE;
3025 ad.u.inode = inode;
3026
3027 rc = slow_avc_audit(&selinux_state,
3028 current_sid(), isec->sid, isec->sclass, perms,
3029 audited, denied, result, &ad, flags);
3030 if (rc)
3031 return rc;
3032 return 0;
3033}
3034
3035static int selinux_inode_permission(struct inode *inode, int mask)
3036{
3037 const struct cred *cred = current_cred();
3038 u32 perms;
3039 bool from_access;
3040 unsigned flags = mask & MAY_NOT_BLOCK;
3041 struct inode_security_struct *isec;
3042 u32 sid;
3043 struct av_decision avd;
3044 int rc, rc2;
3045 u32 audited, denied;
3046
3047 from_access = mask & MAY_ACCESS;
3048 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3049
3050 /* No permission to check. Existence test. */
3051 if (!mask)
3052 return 0;
3053
3054 validate_creds(cred);
3055
3056 if (unlikely(IS_PRIVATE(inode)))
3057 return 0;
3058
3059 perms = file_mask_to_av(inode->i_mode, mask);
3060
3061 sid = cred_sid(cred);
3062 isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3063 if (IS_ERR(isec))
3064 return PTR_ERR(isec);
3065
3066 rc = avc_has_perm_noaudit(&selinux_state,
3067 sid, isec->sid, isec->sclass, perms,
3068 (flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0,
3069 &avd);
3070 audited = avc_audit_required(perms, &avd, rc,
3071 from_access ? FILE__AUDIT_ACCESS : 0,
3072 &denied);
3073 if (likely(!audited))
3074 return rc;
3075
3076 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3077 if (rc2)
3078 return rc2;
3079 return rc;
3080}
3081
3082static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3083{
3084 const struct cred *cred = current_cred();
3085 struct inode *inode = d_backing_inode(dentry);
3086 unsigned int ia_valid = iattr->ia_valid;
3087 __u32 av = FILE__WRITE;
3088
3089 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3090 if (ia_valid & ATTR_FORCE) {
3091 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3092 ATTR_FORCE);
3093 if (!ia_valid)
3094 return 0;
3095 }
3096
3097 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3098 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3099 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3100
3101 if (selinux_policycap_openperm() &&
3102 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3103 (ia_valid & ATTR_SIZE) &&
3104 !(ia_valid & ATTR_FILE))
3105 av |= FILE__OPEN;
3106
3107 return dentry_has_perm(cred, dentry, av);
3108}
3109
3110static int selinux_inode_getattr(const struct path *path)
3111{
3112 return path_has_perm(current_cred(), path, FILE__GETATTR);
3113}
3114
3115static bool has_cap_mac_admin(bool audit)
3116{
3117 const struct cred *cred = current_cred();
3118 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3119
3120 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3121 return false;
3122 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3123 return false;
3124 return true;
3125}
3126
3127static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3128 const void *value, size_t size, int flags)
3129{
3130 struct inode *inode = d_backing_inode(dentry);
3131 struct inode_security_struct *isec;
3132 struct superblock_security_struct *sbsec;
3133 struct common_audit_data ad;
3134 u32 newsid, sid = current_sid();
3135 int rc = 0;
3136
3137 if (strcmp(name, XATTR_NAME_SELINUX)) {
3138 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3139 if (rc)
3140 return rc;
3141
3142 /* Not an attribute we recognize, so just check the
3143 ordinary setattr permission. */
3144 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3145 }
3146
3147 sbsec = inode->i_sb->s_security;
3148 if (!(sbsec->flags & SBLABEL_MNT))
3149 return -EOPNOTSUPP;
3150
3151 if (!inode_owner_or_capable(inode))
3152 return -EPERM;
3153
3154 ad.type = LSM_AUDIT_DATA_DENTRY;
3155 ad.u.dentry = dentry;
3156
3157 isec = backing_inode_security(dentry);
3158 rc = avc_has_perm(&selinux_state,
3159 sid, isec->sid, isec->sclass,
3160 FILE__RELABELFROM, &ad);
3161 if (rc)
3162 return rc;
3163
3164 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3165 GFP_KERNEL);
3166 if (rc == -EINVAL) {
3167 if (!has_cap_mac_admin(true)) {
3168 struct audit_buffer *ab;
3169 size_t audit_size;
3170
3171 /* We strip a nul only if it is at the end, otherwise the
3172 * context contains a nul and we should audit that */
3173 if (value) {
3174 const char *str = value;
3175
3176 if (str[size - 1] == '\0')
3177 audit_size = size - 1;
3178 else
3179 audit_size = size;
3180 } else {
3181 audit_size = 0;
3182 }
3183 ab = audit_log_start(audit_context(),
3184 GFP_ATOMIC, AUDIT_SELINUX_ERR);
3185 audit_log_format(ab, "op=setxattr invalid_context=");
3186 audit_log_n_untrustedstring(ab, value, audit_size);
3187 audit_log_end(ab);
3188
3189 return rc;
3190 }
3191 rc = security_context_to_sid_force(&selinux_state, value,
3192 size, &newsid);
3193 }
3194 if (rc)
3195 return rc;
3196
3197 rc = avc_has_perm(&selinux_state,
3198 sid, newsid, isec->sclass,
3199 FILE__RELABELTO, &ad);
3200 if (rc)
3201 return rc;
3202
3203 rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3204 sid, isec->sclass);
3205 if (rc)
3206 return rc;
3207
3208 return avc_has_perm(&selinux_state,
3209 newsid,
3210 sbsec->sid,
3211 SECCLASS_FILESYSTEM,
3212 FILESYSTEM__ASSOCIATE,
3213 &ad);
3214}
3215
3216static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3217 const void *value, size_t size,
3218 int flags)
3219{
3220 struct inode *inode = d_backing_inode(dentry);
3221 struct inode_security_struct *isec;
3222 u32 newsid;
3223 int rc;
3224
3225 if (strcmp(name, XATTR_NAME_SELINUX)) {
3226 /* Not an attribute we recognize, so nothing to do. */
3227 return;
3228 }
3229
3230 rc = security_context_to_sid_force(&selinux_state, value, size,
3231 &newsid);
3232 if (rc) {
3233 pr_err("SELinux: unable to map context to SID"
3234 "for (%s, %lu), rc=%d\n",
3235 inode->i_sb->s_id, inode->i_ino, -rc);
3236 return;
3237 }
3238
3239 isec = backing_inode_security(dentry);
3240 spin_lock(&isec->lock);
3241 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3242 isec->sid = newsid;
3243 isec->initialized = LABEL_INITIALIZED;
3244 spin_unlock(&isec->lock);
3245
3246 return;
3247}
3248
3249static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3250{
3251 const struct cred *cred = current_cred();
3252
3253 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3254}
3255
3256static int selinux_inode_listxattr(struct dentry *dentry)
3257{
3258 const struct cred *cred = current_cred();
3259
3260 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3261}
3262
3263static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3264{
3265 if (strcmp(name, XATTR_NAME_SELINUX)) {
3266 int rc = cap_inode_removexattr(dentry, name);
3267 if (rc)
3268 return rc;
3269
3270 /* Not an attribute we recognize, so just check the
3271 ordinary setattr permission. */
3272 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3273 }
3274
3275 /* No one is allowed to remove a SELinux security label.
3276 You can change the label, but all data must be labeled. */
3277 return -EACCES;
3278}
3279
3280static int selinux_path_notify(const struct path *path, u64 mask,
3281 unsigned int obj_type)
3282{
3283 int ret;
3284 u32 perm;
3285
3286 struct common_audit_data ad;
3287
3288 ad.type = LSM_AUDIT_DATA_PATH;
3289 ad.u.path = *path;
3290
3291 /*
3292 * Set permission needed based on the type of mark being set.
3293 * Performs an additional check for sb watches.
3294 */
3295 switch (obj_type) {
3296 case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3297 perm = FILE__WATCH_MOUNT;
3298 break;
3299 case FSNOTIFY_OBJ_TYPE_SB:
3300 perm = FILE__WATCH_SB;
3301 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3302 FILESYSTEM__WATCH, &ad);
3303 if (ret)
3304 return ret;
3305 break;
3306 case FSNOTIFY_OBJ_TYPE_INODE:
3307 perm = FILE__WATCH;
3308 break;
3309 default:
3310 return -EINVAL;
3311 }
3312
3313 /* blocking watches require the file:watch_with_perm permission */
3314 if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3315 perm |= FILE__WATCH_WITH_PERM;
3316
3317 /* watches on read-like events need the file:watch_reads permission */
3318 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3319 perm |= FILE__WATCH_READS;
3320
3321 return path_has_perm(current_cred(), path, perm);
3322}
3323
3324/*
3325 * Copy the inode security context value to the user.
3326 *
3327 * Permission check is handled by selinux_inode_getxattr hook.
3328 */
3329static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3330{
3331 u32 size;
3332 int error;
3333 char *context = NULL;
3334 struct inode_security_struct *isec;
3335
3336 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3337 return -EOPNOTSUPP;
3338
3339 /*
3340 * If the caller has CAP_MAC_ADMIN, then get the raw context
3341 * value even if it is not defined by current policy; otherwise,
3342 * use the in-core value under current policy.
3343 * Use the non-auditing forms of the permission checks since
3344 * getxattr may be called by unprivileged processes commonly
3345 * and lack of permission just means that we fall back to the
3346 * in-core context value, not a denial.
3347 */
3348 isec = inode_security(inode);
3349 if (has_cap_mac_admin(false))
3350 error = security_sid_to_context_force(&selinux_state,
3351 isec->sid, &context,
3352 &size);
3353 else
3354 error = security_sid_to_context(&selinux_state, isec->sid,
3355 &context, &size);
3356 if (error)
3357 return error;
3358 error = size;
3359 if (alloc) {
3360 *buffer = context;
3361 goto out_nofree;
3362 }
3363 kfree(context);
3364out_nofree:
3365 return error;
3366}
3367
3368static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3369 const void *value, size_t size, int flags)
3370{
3371 struct inode_security_struct *isec = inode_security_novalidate(inode);
3372 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
3373 u32 newsid;
3374 int rc;
3375
3376 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3377 return -EOPNOTSUPP;
3378
3379 if (!(sbsec->flags & SBLABEL_MNT))
3380 return -EOPNOTSUPP;
3381
3382 if (!value || !size)
3383 return -EACCES;
3384
3385 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3386 GFP_KERNEL);
3387 if (rc)
3388 return rc;
3389
3390 spin_lock(&isec->lock);
3391 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3392 isec->sid = newsid;
3393 isec->initialized = LABEL_INITIALIZED;
3394 spin_unlock(&isec->lock);
3395 return 0;
3396}
3397
3398static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3399{
3400 const int len = sizeof(XATTR_NAME_SELINUX);
3401 if (buffer && len <= buffer_size)
3402 memcpy(buffer, XATTR_NAME_SELINUX, len);
3403 return len;
3404}
3405
3406static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3407{
3408 struct inode_security_struct *isec = inode_security_novalidate(inode);
3409 *secid = isec->sid;
3410}
3411
3412static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3413{
3414 u32 sid;
3415 struct task_security_struct *tsec;
3416 struct cred *new_creds = *new;
3417
3418 if (new_creds == NULL) {
3419 new_creds = prepare_creds();
3420 if (!new_creds)
3421 return -ENOMEM;
3422 }
3423
3424 tsec = selinux_cred(new_creds);
3425 /* Get label from overlay inode and set it in create_sid */
3426 selinux_inode_getsecid(d_inode(src), &sid);
3427 tsec->create_sid = sid;
3428 *new = new_creds;
3429 return 0;
3430}
3431
3432static int selinux_inode_copy_up_xattr(const char *name)
3433{
3434 /* The copy_up hook above sets the initial context on an inode, but we
3435 * don't then want to overwrite it by blindly copying all the lower
3436 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3437 */
3438 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3439 return 1; /* Discard */
3440 /*
3441 * Any other attribute apart from SELINUX is not claimed, supported
3442 * by selinux.
3443 */
3444 return -EOPNOTSUPP;
3445}
3446
3447/* kernfs node operations */
3448
3449static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3450 struct kernfs_node *kn)
3451{
3452 const struct task_security_struct *tsec = selinux_cred(current_cred());
3453 u32 parent_sid, newsid, clen;
3454 int rc;
3455 char *context;
3456
3457 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3458 if (rc == -ENODATA)
3459 return 0;
3460 else if (rc < 0)
3461 return rc;
3462
3463 clen = (u32)rc;
3464 context = kmalloc(clen, GFP_KERNEL);
3465 if (!context)
3466 return -ENOMEM;
3467
3468 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3469 if (rc < 0) {
3470 kfree(context);
3471 return rc;
3472 }
3473
3474 rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3475 GFP_KERNEL);
3476 kfree(context);
3477 if (rc)
3478 return rc;
3479
3480 if (tsec->create_sid) {
3481 newsid = tsec->create_sid;
3482 } else {
3483 u16 secclass = inode_mode_to_security_class(kn->mode);
3484 struct qstr q;
3485
3486 q.name = kn->name;
3487 q.hash_len = hashlen_string(kn_dir, kn->name);
3488
3489 rc = security_transition_sid(&selinux_state, tsec->sid,
3490 parent_sid, secclass, &q,
3491 &newsid);
3492 if (rc)
3493 return rc;
3494 }
3495
3496 rc = security_sid_to_context_force(&selinux_state, newsid,
3497 &context, &clen);
3498 if (rc)
3499 return rc;
3500
3501 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3502 XATTR_CREATE);
3503 kfree(context);
3504 return rc;
3505}
3506
3507
3508/* file security operations */
3509
3510static int selinux_revalidate_file_permission(struct file *file, int mask)
3511{
3512 const struct cred *cred = current_cred();
3513 struct inode *inode = file_inode(file);
3514
3515 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3516 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3517 mask |= MAY_APPEND;
3518
3519 return file_has_perm(cred, file,
3520 file_mask_to_av(inode->i_mode, mask));
3521}
3522
3523static int selinux_file_permission(struct file *file, int mask)
3524{
3525 struct inode *inode = file_inode(file);
3526 struct file_security_struct *fsec = selinux_file(file);
3527 struct inode_security_struct *isec;
3528 u32 sid = current_sid();
3529
3530 if (!mask)
3531 /* No permission to check. Existence test. */
3532 return 0;
3533
3534 isec = inode_security(inode);
3535 if (sid == fsec->sid && fsec->isid == isec->sid &&
3536 fsec->pseqno == avc_policy_seqno(&selinux_state))
3537 /* No change since file_open check. */
3538 return 0;
3539
3540 return selinux_revalidate_file_permission(file, mask);
3541}
3542
3543static int selinux_file_alloc_security(struct file *file)
3544{
3545 return file_alloc_security(file);
3546}
3547
3548/*
3549 * Check whether a task has the ioctl permission and cmd
3550 * operation to an inode.
3551 */
3552static int ioctl_has_perm(const struct cred *cred, struct file *file,
3553 u32 requested, u16 cmd)
3554{
3555 struct common_audit_data ad;
3556 struct file_security_struct *fsec = selinux_file(file);
3557 struct inode *inode = file_inode(file);
3558 struct inode_security_struct *isec;
3559 struct lsm_ioctlop_audit ioctl;
3560 u32 ssid = cred_sid(cred);
3561 int rc;
3562 u8 driver = cmd >> 8;
3563 u8 xperm = cmd & 0xff;
3564
3565 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3566 ad.u.op = &ioctl;
3567 ad.u.op->cmd = cmd;
3568 ad.u.op->path = file->f_path;
3569
3570 if (ssid != fsec->sid) {
3571 rc = avc_has_perm(&selinux_state,
3572 ssid, fsec->sid,
3573 SECCLASS_FD,
3574 FD__USE,
3575 &ad);
3576 if (rc)
3577 goto out;
3578 }
3579
3580 if (unlikely(IS_PRIVATE(inode)))
3581 return 0;
3582
3583 isec = inode_security(inode);
3584 rc = avc_has_extended_perms(&selinux_state,
3585 ssid, isec->sid, isec->sclass,
3586 requested, driver, xperm, &ad);
3587out:
3588 return rc;
3589}
3590
3591static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3592 unsigned long arg)
3593{
3594 const struct cred *cred = current_cred();
3595 int error = 0;
3596
3597 switch (cmd) {
3598 case FIONREAD:
3599 /* fall through */
3600 case FIBMAP:
3601 /* fall through */
3602 case FIGETBSZ:
3603 /* fall through */
3604 case FS_IOC_GETFLAGS:
3605 /* fall through */
3606 case FS_IOC_GETVERSION:
3607 error = file_has_perm(cred, file, FILE__GETATTR);
3608 break;
3609
3610 case FS_IOC_SETFLAGS:
3611 /* fall through */
3612 case FS_IOC_SETVERSION:
3613 error = file_has_perm(cred, file, FILE__SETATTR);
3614 break;
3615
3616 /* sys_ioctl() checks */
3617 case FIONBIO:
3618 /* fall through */
3619 case FIOASYNC:
3620 error = file_has_perm(cred, file, 0);
3621 break;
3622
3623 case KDSKBENT:
3624 case KDSKBSENT:
3625 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3626 CAP_OPT_NONE, true);
3627 break;
3628
3629 /* default case assumes that the command will go
3630 * to the file's ioctl() function.
3631 */
3632 default:
3633 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3634 }
3635 return error;
3636}
3637
3638static int default_noexec;
3639
3640static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3641{
3642 const struct cred *cred = current_cred();
3643 u32 sid = cred_sid(cred);
3644 int rc = 0;
3645
3646 if (default_noexec &&
3647 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3648 (!shared && (prot & PROT_WRITE)))) {
3649 /*
3650 * We are making executable an anonymous mapping or a
3651 * private file mapping that will also be writable.
3652 * This has an additional check.
3653 */
3654 rc = avc_has_perm(&selinux_state,
3655 sid, sid, SECCLASS_PROCESS,
3656 PROCESS__EXECMEM, NULL);
3657 if (rc)
3658 goto error;
3659 }
3660
3661 if (file) {
3662 /* read access is always possible with a mapping */
3663 u32 av = FILE__READ;
3664
3665 /* write access only matters if the mapping is shared */
3666 if (shared && (prot & PROT_WRITE))
3667 av |= FILE__WRITE;
3668
3669 if (prot & PROT_EXEC)
3670 av |= FILE__EXECUTE;
3671
3672 return file_has_perm(cred, file, av);
3673 }
3674
3675error:
3676 return rc;
3677}
3678
3679static int selinux_mmap_addr(unsigned long addr)
3680{
3681 int rc = 0;
3682
3683 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3684 u32 sid = current_sid();
3685 rc = avc_has_perm(&selinux_state,
3686 sid, sid, SECCLASS_MEMPROTECT,
3687 MEMPROTECT__MMAP_ZERO, NULL);
3688 }
3689
3690 return rc;
3691}
3692
3693static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3694 unsigned long prot, unsigned long flags)
3695{
3696 struct common_audit_data ad;
3697 int rc;
3698
3699 if (file) {
3700 ad.type = LSM_AUDIT_DATA_FILE;
3701 ad.u.file = file;
3702 rc = inode_has_perm(current_cred(), file_inode(file),
3703 FILE__MAP, &ad);
3704 if (rc)
3705 return rc;
3706 }
3707
3708 if (selinux_state.checkreqprot)
3709 prot = reqprot;
3710
3711 return file_map_prot_check(file, prot,
3712 (flags & MAP_TYPE) == MAP_SHARED);
3713}
3714
3715static int selinux_file_mprotect(struct vm_area_struct *vma,
3716 unsigned long reqprot,
3717 unsigned long prot)
3718{
3719 const struct cred *cred = current_cred();
3720 u32 sid = cred_sid(cred);
3721
3722 if (selinux_state.checkreqprot)
3723 prot = reqprot;
3724
3725 if (default_noexec &&
3726 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3727 int rc = 0;
3728 if (vma->vm_start >= vma->vm_mm->start_brk &&
3729 vma->vm_end <= vma->vm_mm->brk) {
3730 rc = avc_has_perm(&selinux_state,
3731 sid, sid, SECCLASS_PROCESS,
3732 PROCESS__EXECHEAP, NULL);
3733 } else if (!vma->vm_file &&
3734 ((vma->vm_start <= vma->vm_mm->start_stack &&
3735 vma->vm_end >= vma->vm_mm->start_stack) ||
3736 vma_is_stack_for_current(vma))) {
3737 rc = avc_has_perm(&selinux_state,
3738 sid, sid, SECCLASS_PROCESS,
3739 PROCESS__EXECSTACK, NULL);
3740 } else if (vma->vm_file && vma->anon_vma) {
3741 /*
3742 * We are making executable a file mapping that has
3743 * had some COW done. Since pages might have been
3744 * written, check ability to execute the possibly
3745 * modified content. This typically should only
3746 * occur for text relocations.
3747 */
3748 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3749 }
3750 if (rc)
3751 return rc;
3752 }
3753
3754 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3755}
3756
3757static int selinux_file_lock(struct file *file, unsigned int cmd)
3758{
3759 const struct cred *cred = current_cred();
3760
3761 return file_has_perm(cred, file, FILE__LOCK);
3762}
3763
3764static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3765 unsigned long arg)
3766{
3767 const struct cred *cred = current_cred();
3768 int err = 0;
3769
3770 switch (cmd) {
3771 case F_SETFL:
3772 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3773 err = file_has_perm(cred, file, FILE__WRITE);
3774 break;
3775 }
3776 /* fall through */
3777 case F_SETOWN:
3778 case F_SETSIG:
3779 case F_GETFL:
3780 case F_GETOWN:
3781 case F_GETSIG:
3782 case F_GETOWNER_UIDS:
3783 /* Just check FD__USE permission */
3784 err = file_has_perm(cred, file, 0);
3785 break;
3786 case F_GETLK:
3787 case F_SETLK:
3788 case F_SETLKW:
3789 case F_OFD_GETLK:
3790 case F_OFD_SETLK:
3791 case F_OFD_SETLKW:
3792#if BITS_PER_LONG == 32
3793 case F_GETLK64:
3794 case F_SETLK64:
3795 case F_SETLKW64:
3796#endif
3797 err = file_has_perm(cred, file, FILE__LOCK);
3798 break;
3799 }
3800
3801 return err;
3802}
3803
3804static void selinux_file_set_fowner(struct file *file)
3805{
3806 struct file_security_struct *fsec;
3807
3808 fsec = selinux_file(file);
3809 fsec->fown_sid = current_sid();
3810}
3811
3812static int selinux_file_send_sigiotask(struct task_struct *tsk,
3813 struct fown_struct *fown, int signum)
3814{
3815 struct file *file;
3816 u32 sid = task_sid(tsk);
3817 u32 perm;
3818 struct file_security_struct *fsec;
3819
3820 /* struct fown_struct is never outside the context of a struct file */
3821 file = container_of(fown, struct file, f_owner);
3822
3823 fsec = selinux_file(file);
3824
3825 if (!signum)
3826 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3827 else
3828 perm = signal_to_av(signum);
3829
3830 return avc_has_perm(&selinux_state,
3831 fsec->fown_sid, sid,
3832 SECCLASS_PROCESS, perm, NULL);
3833}
3834
3835static int selinux_file_receive(struct file *file)
3836{
3837 const struct cred *cred = current_cred();
3838
3839 return file_has_perm(cred, file, file_to_av(file));
3840}
3841
3842static int selinux_file_open(struct file *file)
3843{
3844 struct file_security_struct *fsec;
3845 struct inode_security_struct *isec;
3846
3847 fsec = selinux_file(file);
3848 isec = inode_security(file_inode(file));
3849 /*
3850 * Save inode label and policy sequence number
3851 * at open-time so that selinux_file_permission
3852 * can determine whether revalidation is necessary.
3853 * Task label is already saved in the file security
3854 * struct as its SID.
3855 */
3856 fsec->isid = isec->sid;
3857 fsec->pseqno = avc_policy_seqno(&selinux_state);
3858 /*
3859 * Since the inode label or policy seqno may have changed
3860 * between the selinux_inode_permission check and the saving
3861 * of state above, recheck that access is still permitted.
3862 * Otherwise, access might never be revalidated against the
3863 * new inode label or new policy.
3864 * This check is not redundant - do not remove.
3865 */
3866 return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3867}
3868
3869/* task security operations */
3870
3871static int selinux_task_alloc(struct task_struct *task,
3872 unsigned long clone_flags)
3873{
3874 u32 sid = current_sid();
3875
3876 return avc_has_perm(&selinux_state,
3877 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3878}
3879
3880/*
3881 * prepare a new set of credentials for modification
3882 */
3883static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3884 gfp_t gfp)
3885{
3886 const struct task_security_struct *old_tsec = selinux_cred(old);
3887 struct task_security_struct *tsec = selinux_cred(new);
3888
3889 *tsec = *old_tsec;
3890 return 0;
3891}
3892
3893/*
3894 * transfer the SELinux data to a blank set of creds
3895 */
3896static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3897{
3898 const struct task_security_struct *old_tsec = selinux_cred(old);
3899 struct task_security_struct *tsec = selinux_cred(new);
3900
3901 *tsec = *old_tsec;
3902}
3903
3904static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3905{
3906 *secid = cred_sid(c);
3907}
3908
3909/*
3910 * set the security data for a kernel service
3911 * - all the creation contexts are set to unlabelled
3912 */
3913static int selinux_kernel_act_as(struct cred *new, u32 secid)
3914{
3915 struct task_security_struct *tsec = selinux_cred(new);
3916 u32 sid = current_sid();
3917 int ret;
3918
3919 ret = avc_has_perm(&selinux_state,
3920 sid, secid,
3921 SECCLASS_KERNEL_SERVICE,
3922 KERNEL_SERVICE__USE_AS_OVERRIDE,
3923 NULL);
3924 if (ret == 0) {
3925 tsec->sid = secid;
3926 tsec->create_sid = 0;
3927 tsec->keycreate_sid = 0;
3928 tsec->sockcreate_sid = 0;
3929 }
3930 return ret;
3931}
3932
3933/*
3934 * set the file creation context in a security record to the same as the
3935 * objective context of the specified inode
3936 */
3937static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3938{
3939 struct inode_security_struct *isec = inode_security(inode);
3940 struct task_security_struct *tsec = selinux_cred(new);
3941 u32 sid = current_sid();
3942 int ret;
3943
3944 ret = avc_has_perm(&selinux_state,
3945 sid, isec->sid,
3946 SECCLASS_KERNEL_SERVICE,
3947 KERNEL_SERVICE__CREATE_FILES_AS,
3948 NULL);
3949
3950 if (ret == 0)
3951 tsec->create_sid = isec->sid;
3952 return ret;
3953}
3954
3955static int selinux_kernel_module_request(char *kmod_name)
3956{
3957 struct common_audit_data ad;
3958
3959 ad.type = LSM_AUDIT_DATA_KMOD;
3960 ad.u.kmod_name = kmod_name;
3961
3962 return avc_has_perm(&selinux_state,
3963 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3964 SYSTEM__MODULE_REQUEST, &ad);
3965}
3966
3967static int selinux_kernel_module_from_file(struct file *file)
3968{
3969 struct common_audit_data ad;
3970 struct inode_security_struct *isec;
3971 struct file_security_struct *fsec;
3972 u32 sid = current_sid();
3973 int rc;
3974
3975 /* init_module */
3976 if (file == NULL)
3977 return avc_has_perm(&selinux_state,
3978 sid, sid, SECCLASS_SYSTEM,
3979 SYSTEM__MODULE_LOAD, NULL);
3980
3981 /* finit_module */
3982
3983 ad.type = LSM_AUDIT_DATA_FILE;
3984 ad.u.file = file;
3985
3986 fsec = selinux_file(file);
3987 if (sid != fsec->sid) {
3988 rc = avc_has_perm(&selinux_state,
3989 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3990 if (rc)
3991 return rc;
3992 }
3993
3994 isec = inode_security(file_inode(file));
3995 return avc_has_perm(&selinux_state,
3996 sid, isec->sid, SECCLASS_SYSTEM,
3997 SYSTEM__MODULE_LOAD, &ad);
3998}
3999
4000static int selinux_kernel_read_file(struct file *file,
4001 enum kernel_read_file_id id)
4002{
4003 int rc = 0;
4004
4005 switch (id) {
4006 case READING_MODULE:
4007 rc = selinux_kernel_module_from_file(file);
4008 break;
4009 default:
4010 break;
4011 }
4012
4013 return rc;
4014}
4015
4016static int selinux_kernel_load_data(enum kernel_load_data_id id)
4017{
4018 int rc = 0;
4019
4020 switch (id) {
4021 case LOADING_MODULE:
4022 rc = selinux_kernel_module_from_file(NULL);
4023 default:
4024 break;
4025 }
4026
4027 return rc;
4028}
4029
4030static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4031{
4032 return avc_has_perm(&selinux_state,
4033 current_sid(), task_sid(p), SECCLASS_PROCESS,
4034 PROCESS__SETPGID, NULL);
4035}
4036
4037static int selinux_task_getpgid(struct task_struct *p)
4038{
4039 return avc_has_perm(&selinux_state,
4040 current_sid(), task_sid(p), SECCLASS_PROCESS,
4041 PROCESS__GETPGID, NULL);
4042}
4043
4044static int selinux_task_getsid(struct task_struct *p)
4045{
4046 return avc_has_perm(&selinux_state,
4047 current_sid(), task_sid(p), SECCLASS_PROCESS,
4048 PROCESS__GETSESSION, NULL);
4049}
4050
4051static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4052{
4053 *secid = task_sid(p);
4054}
4055
4056static int selinux_task_setnice(struct task_struct *p, int nice)
4057{
4058 return avc_has_perm(&selinux_state,
4059 current_sid(), task_sid(p), SECCLASS_PROCESS,
4060 PROCESS__SETSCHED, NULL);
4061}
4062
4063static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4064{
4065 return avc_has_perm(&selinux_state,
4066 current_sid(), task_sid(p), SECCLASS_PROCESS,
4067 PROCESS__SETSCHED, NULL);
4068}
4069
4070static int selinux_task_getioprio(struct task_struct *p)
4071{
4072 return avc_has_perm(&selinux_state,
4073 current_sid(), task_sid(p), SECCLASS_PROCESS,
4074 PROCESS__GETSCHED, NULL);
4075}
4076
4077static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4078 unsigned int flags)
4079{
4080 u32 av = 0;
4081
4082 if (!flags)
4083 return 0;
4084 if (flags & LSM_PRLIMIT_WRITE)
4085 av |= PROCESS__SETRLIMIT;
4086 if (flags & LSM_PRLIMIT_READ)
4087 av |= PROCESS__GETRLIMIT;
4088 return avc_has_perm(&selinux_state,
4089 cred_sid(cred), cred_sid(tcred),
4090 SECCLASS_PROCESS, av, NULL);
4091}
4092
4093static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4094 struct rlimit *new_rlim)
4095{
4096 struct rlimit *old_rlim = p->signal->rlim + resource;
4097
4098 /* Control the ability to change the hard limit (whether
4099 lowering or raising it), so that the hard limit can
4100 later be used as a safe reset point for the soft limit
4101 upon context transitions. See selinux_bprm_committing_creds. */
4102 if (old_rlim->rlim_max != new_rlim->rlim_max)
4103 return avc_has_perm(&selinux_state,
4104 current_sid(), task_sid(p),
4105 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4106
4107 return 0;
4108}
4109
4110static int selinux_task_setscheduler(struct task_struct *p)
4111{
4112 return avc_has_perm(&selinux_state,
4113 current_sid(), task_sid(p), SECCLASS_PROCESS,
4114 PROCESS__SETSCHED, NULL);
4115}
4116
4117static int selinux_task_getscheduler(struct task_struct *p)
4118{
4119 return avc_has_perm(&selinux_state,
4120 current_sid(), task_sid(p), SECCLASS_PROCESS,
4121 PROCESS__GETSCHED, NULL);
4122}
4123
4124static int selinux_task_movememory(struct task_struct *p)
4125{
4126 return avc_has_perm(&selinux_state,
4127 current_sid(), task_sid(p), SECCLASS_PROCESS,
4128 PROCESS__SETSCHED, NULL);
4129}
4130
4131static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4132 int sig, const struct cred *cred)
4133{
4134 u32 secid;
4135 u32 perm;
4136
4137 if (!sig)
4138 perm = PROCESS__SIGNULL; /* null signal; existence test */
4139 else
4140 perm = signal_to_av(sig);
4141 if (!cred)
4142 secid = current_sid();
4143 else
4144 secid = cred_sid(cred);
4145 return avc_has_perm(&selinux_state,
4146 secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4147}
4148
4149static void selinux_task_to_inode(struct task_struct *p,
4150 struct inode *inode)
4151{
4152 struct inode_security_struct *isec = selinux_inode(inode);
4153 u32 sid = task_sid(p);
4154
4155 spin_lock(&isec->lock);
4156 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4157 isec->sid = sid;
4158 isec->initialized = LABEL_INITIALIZED;
4159 spin_unlock(&isec->lock);
4160}
4161
4162/* Returns error only if unable to parse addresses */
4163static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4164 struct common_audit_data *ad, u8 *proto)
4165{
4166 int offset, ihlen, ret = -EINVAL;
4167 struct iphdr _iph, *ih;
4168
4169 offset = skb_network_offset(skb);
4170 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4171 if (ih == NULL)
4172 goto out;
4173
4174 ihlen = ih->ihl * 4;
4175 if (ihlen < sizeof(_iph))
4176 goto out;
4177
4178 ad->u.net->v4info.saddr = ih->saddr;
4179 ad->u.net->v4info.daddr = ih->daddr;
4180 ret = 0;
4181
4182 if (proto)
4183 *proto = ih->protocol;
4184
4185 switch (ih->protocol) {
4186 case IPPROTO_TCP: {
4187 struct tcphdr _tcph, *th;
4188
4189 if (ntohs(ih->frag_off) & IP_OFFSET)
4190 break;
4191
4192 offset += ihlen;
4193 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4194 if (th == NULL)
4195 break;
4196
4197 ad->u.net->sport = th->source;
4198 ad->u.net->dport = th->dest;
4199 break;
4200 }
4201
4202 case IPPROTO_UDP: {
4203 struct udphdr _udph, *uh;
4204
4205 if (ntohs(ih->frag_off) & IP_OFFSET)
4206 break;
4207
4208 offset += ihlen;
4209 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4210 if (uh == NULL)
4211 break;
4212
4213 ad->u.net->sport = uh->source;
4214 ad->u.net->dport = uh->dest;
4215 break;
4216 }
4217
4218 case IPPROTO_DCCP: {
4219 struct dccp_hdr _dccph, *dh;
4220
4221 if (ntohs(ih->frag_off) & IP_OFFSET)
4222 break;
4223
4224 offset += ihlen;
4225 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4226 if (dh == NULL)
4227 break;
4228
4229 ad->u.net->sport = dh->dccph_sport;
4230 ad->u.net->dport = dh->dccph_dport;
4231 break;
4232 }
4233
4234#if IS_ENABLED(CONFIG_IP_SCTP)
4235 case IPPROTO_SCTP: {
4236 struct sctphdr _sctph, *sh;
4237
4238 if (ntohs(ih->frag_off) & IP_OFFSET)
4239 break;
4240
4241 offset += ihlen;
4242 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4243 if (sh == NULL)
4244 break;
4245
4246 ad->u.net->sport = sh->source;
4247 ad->u.net->dport = sh->dest;
4248 break;
4249 }
4250#endif
4251 default:
4252 break;
4253 }
4254out:
4255 return ret;
4256}
4257
4258#if IS_ENABLED(CONFIG_IPV6)
4259
4260/* Returns error only if unable to parse addresses */
4261static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4262 struct common_audit_data *ad, u8 *proto)
4263{
4264 u8 nexthdr;
4265 int ret = -EINVAL, offset;
4266 struct ipv6hdr _ipv6h, *ip6;
4267 __be16 frag_off;
4268
4269 offset = skb_network_offset(skb);
4270 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4271 if (ip6 == NULL)
4272 goto out;
4273
4274 ad->u.net->v6info.saddr = ip6->saddr;
4275 ad->u.net->v6info.daddr = ip6->daddr;
4276 ret = 0;
4277
4278 nexthdr = ip6->nexthdr;
4279 offset += sizeof(_ipv6h);
4280 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4281 if (offset < 0)
4282 goto out;
4283
4284 if (proto)
4285 *proto = nexthdr;
4286
4287 switch (nexthdr) {
4288 case IPPROTO_TCP: {
4289 struct tcphdr _tcph, *th;
4290
4291 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4292 if (th == NULL)
4293 break;
4294
4295 ad->u.net->sport = th->source;
4296 ad->u.net->dport = th->dest;
4297 break;
4298 }
4299
4300 case IPPROTO_UDP: {
4301 struct udphdr _udph, *uh;
4302
4303 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4304 if (uh == NULL)
4305 break;
4306
4307 ad->u.net->sport = uh->source;
4308 ad->u.net->dport = uh->dest;
4309 break;
4310 }
4311
4312 case IPPROTO_DCCP: {
4313 struct dccp_hdr _dccph, *dh;
4314
4315 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4316 if (dh == NULL)
4317 break;
4318
4319 ad->u.net->sport = dh->dccph_sport;
4320 ad->u.net->dport = dh->dccph_dport;
4321 break;
4322 }
4323
4324#if IS_ENABLED(CONFIG_IP_SCTP)
4325 case IPPROTO_SCTP: {
4326 struct sctphdr _sctph, *sh;
4327
4328 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4329 if (sh == NULL)
4330 break;
4331
4332 ad->u.net->sport = sh->source;
4333 ad->u.net->dport = sh->dest;
4334 break;
4335 }
4336#endif
4337 /* includes fragments */
4338 default:
4339 break;
4340 }
4341out:
4342 return ret;
4343}
4344
4345#endif /* IPV6 */
4346
4347static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4348 char **_addrp, int src, u8 *proto)
4349{
4350 char *addrp;
4351 int ret;
4352
4353 switch (ad->u.net->family) {
4354 case PF_INET:
4355 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4356 if (ret)
4357 goto parse_error;
4358 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4359 &ad->u.net->v4info.daddr);
4360 goto okay;
4361
4362#if IS_ENABLED(CONFIG_IPV6)
4363 case PF_INET6:
4364 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4365 if (ret)
4366 goto parse_error;
4367 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4368 &ad->u.net->v6info.daddr);
4369 goto okay;
4370#endif /* IPV6 */
4371 default:
4372 addrp = NULL;
4373 goto okay;
4374 }
4375
4376parse_error:
4377 pr_warn(
4378 "SELinux: failure in selinux_parse_skb(),"
4379 " unable to parse packet\n");
4380 return ret;
4381
4382okay:
4383 if (_addrp)
4384 *_addrp = addrp;
4385 return 0;
4386}
4387
4388/**
4389 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4390 * @skb: the packet
4391 * @family: protocol family
4392 * @sid: the packet's peer label SID
4393 *
4394 * Description:
4395 * Check the various different forms of network peer labeling and determine
4396 * the peer label/SID for the packet; most of the magic actually occurs in
4397 * the security server function security_net_peersid_cmp(). The function
4398 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4399 * or -EACCES if @sid is invalid due to inconsistencies with the different
4400 * peer labels.
4401 *
4402 */
4403static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4404{
4405 int err;
4406 u32 xfrm_sid;
4407 u32 nlbl_sid;
4408 u32 nlbl_type;
4409
4410 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4411 if (unlikely(err))
4412 return -EACCES;
4413 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4414 if (unlikely(err))
4415 return -EACCES;
4416
4417 err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4418 nlbl_type, xfrm_sid, sid);
4419 if (unlikely(err)) {
4420 pr_warn(
4421 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4422 " unable to determine packet's peer label\n");
4423 return -EACCES;
4424 }
4425
4426 return 0;
4427}
4428
4429/**
4430 * selinux_conn_sid - Determine the child socket label for a connection
4431 * @sk_sid: the parent socket's SID
4432 * @skb_sid: the packet's SID
4433 * @conn_sid: the resulting connection SID
4434 *
4435 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4436 * combined with the MLS information from @skb_sid in order to create
4437 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
4438 * of @sk_sid. Returns zero on success, negative values on failure.
4439 *
4440 */
4441static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4442{
4443 int err = 0;
4444
4445 if (skb_sid != SECSID_NULL)
4446 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4447 conn_sid);
4448 else
4449 *conn_sid = sk_sid;
4450
4451 return err;
4452}
4453
4454/* socket security operations */
4455
4456static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4457 u16 secclass, u32 *socksid)
4458{
4459 if (tsec->sockcreate_sid > SECSID_NULL) {
4460 *socksid = tsec->sockcreate_sid;
4461 return 0;
4462 }
4463
4464 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4465 secclass, NULL, socksid);
4466}
4467
4468static int sock_has_perm(struct sock *sk, u32 perms)
4469{
4470 struct sk_security_struct *sksec = sk->sk_security;
4471 struct common_audit_data ad;
4472 struct lsm_network_audit net = {0,};
4473
4474 if (sksec->sid == SECINITSID_KERNEL)
4475 return 0;
4476
4477 ad.type = LSM_AUDIT_DATA_NET;
4478 ad.u.net = &net;
4479 ad.u.net->sk = sk;
4480
4481 return avc_has_perm(&selinux_state,
4482 current_sid(), sksec->sid, sksec->sclass, perms,
4483 &ad);
4484}
4485
4486static int selinux_socket_create(int family, int type,
4487 int protocol, int kern)
4488{
4489 const struct task_security_struct *tsec = selinux_cred(current_cred());
4490 u32 newsid;
4491 u16 secclass;
4492 int rc;
4493
4494 if (kern)
4495 return 0;
4496
4497 secclass = socket_type_to_security_class(family, type, protocol);
4498 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4499 if (rc)
4500 return rc;
4501
4502 return avc_has_perm(&selinux_state,
4503 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4504}
4505
4506static int selinux_socket_post_create(struct socket *sock, int family,
4507 int type, int protocol, int kern)
4508{
4509 const struct task_security_struct *tsec = selinux_cred(current_cred());
4510 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4511 struct sk_security_struct *sksec;
4512 u16 sclass = socket_type_to_security_class(family, type, protocol);
4513 u32 sid = SECINITSID_KERNEL;
4514 int err = 0;
4515
4516 if (!kern) {
4517 err = socket_sockcreate_sid(tsec, sclass, &sid);
4518 if (err)
4519 return err;
4520 }
4521
4522 isec->sclass = sclass;
4523 isec->sid = sid;
4524 isec->initialized = LABEL_INITIALIZED;
4525
4526 if (sock->sk) {
4527 sksec = sock->sk->sk_security;
4528 sksec->sclass = sclass;
4529 sksec->sid = sid;
4530 /* Allows detection of the first association on this socket */
4531 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4532 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4533
4534 err = selinux_netlbl_socket_post_create(sock->sk, family);
4535 }
4536
4537 return err;
4538}
4539
4540static int selinux_socket_socketpair(struct socket *socka,
4541 struct socket *sockb)
4542{
4543 struct sk_security_struct *sksec_a = socka->sk->sk_security;
4544 struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4545
4546 sksec_a->peer_sid = sksec_b->sid;
4547 sksec_b->peer_sid = sksec_a->sid;
4548
4549 return 0;
4550}
4551
4552/* Range of port numbers used to automatically bind.
4553 Need to determine whether we should perform a name_bind
4554 permission check between the socket and the port number. */
4555
4556static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4557{
4558 struct sock *sk = sock->sk;
4559 struct sk_security_struct *sksec = sk->sk_security;
4560 u16 family;
4561 int err;
4562
4563 err = sock_has_perm(sk, SOCKET__BIND);
4564 if (err)
4565 goto out;
4566
4567 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4568 family = sk->sk_family;
4569 if (family == PF_INET || family == PF_INET6) {
4570 char *addrp;
4571 struct common_audit_data ad;
4572 struct lsm_network_audit net = {0,};
4573 struct sockaddr_in *addr4 = NULL;
4574 struct sockaddr_in6 *addr6 = NULL;
4575 u16 family_sa;
4576 unsigned short snum;
4577 u32 sid, node_perm;
4578
4579 /*
4580 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4581 * that validates multiple binding addresses. Because of this
4582 * need to check address->sa_family as it is possible to have
4583 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4584 */
4585 if (addrlen < offsetofend(struct sockaddr, sa_family))
4586 return -EINVAL;
4587 family_sa = address->sa_family;
4588 switch (family_sa) {
4589 case AF_UNSPEC:
4590 case AF_INET:
4591 if (addrlen < sizeof(struct sockaddr_in))
4592 return -EINVAL;
4593 addr4 = (struct sockaddr_in *)address;
4594 if (family_sa == AF_UNSPEC) {
4595 /* see __inet_bind(), we only want to allow
4596 * AF_UNSPEC if the address is INADDR_ANY
4597 */
4598 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4599 goto err_af;
4600 family_sa = AF_INET;
4601 }
4602 snum = ntohs(addr4->sin_port);
4603 addrp = (char *)&addr4->sin_addr.s_addr;
4604 break;
4605 case AF_INET6:
4606 if (addrlen < SIN6_LEN_RFC2133)
4607 return -EINVAL;
4608 addr6 = (struct sockaddr_in6 *)address;
4609 snum = ntohs(addr6->sin6_port);
4610 addrp = (char *)&addr6->sin6_addr.s6_addr;
4611 break;
4612 default:
4613 goto err_af;
4614 }
4615
4616 ad.type = LSM_AUDIT_DATA_NET;
4617 ad.u.net = &net;
4618 ad.u.net->sport = htons(snum);
4619 ad.u.net->family = family_sa;
4620
4621 if (snum) {
4622 int low, high;
4623
4624 inet_get_local_port_range(sock_net(sk), &low, &high);
4625
4626 if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4627 snum > high) {
4628 err = sel_netport_sid(sk->sk_protocol,
4629 snum, &sid);
4630 if (err)
4631 goto out;
4632 err = avc_has_perm(&selinux_state,
4633 sksec->sid, sid,
4634 sksec->sclass,
4635 SOCKET__NAME_BIND, &ad);
4636 if (err)
4637 goto out;
4638 }
4639 }
4640
4641 switch (sksec->sclass) {
4642 case SECCLASS_TCP_SOCKET:
4643 node_perm = TCP_SOCKET__NODE_BIND;
4644 break;
4645
4646 case SECCLASS_UDP_SOCKET:
4647 node_perm = UDP_SOCKET__NODE_BIND;
4648 break;
4649
4650 case SECCLASS_DCCP_SOCKET:
4651 node_perm = DCCP_SOCKET__NODE_BIND;
4652 break;
4653
4654 case SECCLASS_SCTP_SOCKET:
4655 node_perm = SCTP_SOCKET__NODE_BIND;
4656 break;
4657
4658 default:
4659 node_perm = RAWIP_SOCKET__NODE_BIND;
4660 break;
4661 }
4662
4663 err = sel_netnode_sid(addrp, family_sa, &sid);
4664 if (err)
4665 goto out;
4666
4667 if (family_sa == AF_INET)
4668 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4669 else
4670 ad.u.net->v6info.saddr = addr6->sin6_addr;
4671
4672 err = avc_has_perm(&selinux_state,
4673 sksec->sid, sid,
4674 sksec->sclass, node_perm, &ad);
4675 if (err)
4676 goto out;
4677 }
4678out:
4679 return err;
4680err_af:
4681 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4682 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4683 return -EINVAL;
4684 return -EAFNOSUPPORT;
4685}
4686
4687/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4688 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4689 */
4690static int selinux_socket_connect_helper(struct socket *sock,
4691 struct sockaddr *address, int addrlen)
4692{
4693 struct sock *sk = sock->sk;
4694 struct sk_security_struct *sksec = sk->sk_security;
4695 int err;
4696
4697 err = sock_has_perm(sk, SOCKET__CONNECT);
4698 if (err)
4699 return err;
4700 if (addrlen < offsetofend(struct sockaddr, sa_family))
4701 return -EINVAL;
4702
4703 /* connect(AF_UNSPEC) has special handling, as it is a documented
4704 * way to disconnect the socket
4705 */
4706 if (address->sa_family == AF_UNSPEC)
4707 return 0;
4708
4709 /*
4710 * If a TCP, DCCP or SCTP socket, check name_connect permission
4711 * for the port.
4712 */
4713 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4714 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4715 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4716 struct common_audit_data ad;
4717 struct lsm_network_audit net = {0,};
4718 struct sockaddr_in *addr4 = NULL;
4719 struct sockaddr_in6 *addr6 = NULL;
4720 unsigned short snum;
4721 u32 sid, perm;
4722
4723 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4724 * that validates multiple connect addresses. Because of this
4725 * need to check address->sa_family as it is possible to have
4726 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4727 */
4728 switch (address->sa_family) {
4729 case AF_INET:
4730 addr4 = (struct sockaddr_in *)address;
4731 if (addrlen < sizeof(struct sockaddr_in))
4732 return -EINVAL;
4733 snum = ntohs(addr4->sin_port);
4734 break;
4735 case AF_INET6:
4736 addr6 = (struct sockaddr_in6 *)address;
4737 if (addrlen < SIN6_LEN_RFC2133)
4738 return -EINVAL;
4739 snum = ntohs(addr6->sin6_port);
4740 break;
4741 default:
4742 /* Note that SCTP services expect -EINVAL, whereas
4743 * others expect -EAFNOSUPPORT.
4744 */
4745 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4746 return -EINVAL;
4747 else
4748 return -EAFNOSUPPORT;
4749 }
4750
4751 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4752 if (err)
4753 return err;
4754
4755 switch (sksec->sclass) {
4756 case SECCLASS_TCP_SOCKET:
4757 perm = TCP_SOCKET__NAME_CONNECT;
4758 break;
4759 case SECCLASS_DCCP_SOCKET:
4760 perm = DCCP_SOCKET__NAME_CONNECT;
4761 break;
4762 case SECCLASS_SCTP_SOCKET:
4763 perm = SCTP_SOCKET__NAME_CONNECT;
4764 break;
4765 }
4766
4767 ad.type = LSM_AUDIT_DATA_NET;
4768 ad.u.net = &net;
4769 ad.u.net->dport = htons(snum);
4770 ad.u.net->family = address->sa_family;
4771 err = avc_has_perm(&selinux_state,
4772 sksec->sid, sid, sksec->sclass, perm, &ad);
4773 if (err)
4774 return err;
4775 }
4776
4777 return 0;
4778}
4779
4780/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4781static int selinux_socket_connect(struct socket *sock,
4782 struct sockaddr *address, int addrlen)
4783{
4784 int err;
4785 struct sock *sk = sock->sk;
4786
4787 err = selinux_socket_connect_helper(sock, address, addrlen);
4788 if (err)
4789 return err;
4790
4791 return selinux_netlbl_socket_connect(sk, address);
4792}
4793
4794static int selinux_socket_listen(struct socket *sock, int backlog)
4795{
4796 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4797}
4798
4799static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4800{
4801 int err;
4802 struct inode_security_struct *isec;
4803 struct inode_security_struct *newisec;
4804 u16 sclass;
4805 u32 sid;
4806
4807 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4808 if (err)
4809 return err;
4810
4811 isec = inode_security_novalidate(SOCK_INODE(sock));
4812 spin_lock(&isec->lock);
4813 sclass = isec->sclass;
4814 sid = isec->sid;
4815 spin_unlock(&isec->lock);
4816
4817 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4818 newisec->sclass = sclass;
4819 newisec->sid = sid;
4820 newisec->initialized = LABEL_INITIALIZED;
4821
4822 return 0;
4823}
4824
4825static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4826 int size)
4827{
4828 return sock_has_perm(sock->sk, SOCKET__WRITE);
4829}
4830
4831static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4832 int size, int flags)
4833{
4834 return sock_has_perm(sock->sk, SOCKET__READ);
4835}
4836
4837static int selinux_socket_getsockname(struct socket *sock)
4838{
4839 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4840}
4841
4842static int selinux_socket_getpeername(struct socket *sock)
4843{
4844 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4845}
4846
4847static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4848{
4849 int err;
4850
4851 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4852 if (err)
4853 return err;
4854
4855 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4856}
4857
4858static int selinux_socket_getsockopt(struct socket *sock, int level,
4859 int optname)
4860{
4861 return sock_has_perm(sock->sk, SOCKET__GETOPT);
4862}
4863
4864static int selinux_socket_shutdown(struct socket *sock, int how)
4865{
4866 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4867}
4868
4869static int selinux_socket_unix_stream_connect(struct sock *sock,
4870 struct sock *other,
4871 struct sock *newsk)
4872{
4873 struct sk_security_struct *sksec_sock = sock->sk_security;
4874 struct sk_security_struct *sksec_other = other->sk_security;
4875 struct sk_security_struct *sksec_new = newsk->sk_security;
4876 struct common_audit_data ad;
4877 struct lsm_network_audit net = {0,};
4878 int err;
4879
4880 ad.type = LSM_AUDIT_DATA_NET;
4881 ad.u.net = &net;
4882 ad.u.net->sk = other;
4883
4884 err = avc_has_perm(&selinux_state,
4885 sksec_sock->sid, sksec_other->sid,
4886 sksec_other->sclass,
4887 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4888 if (err)
4889 return err;
4890
4891 /* server child socket */
4892 sksec_new->peer_sid = sksec_sock->sid;
4893 err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4894 sksec_sock->sid, &sksec_new->sid);
4895 if (err)
4896 return err;
4897
4898 /* connecting socket */
4899 sksec_sock->peer_sid = sksec_new->sid;
4900
4901 return 0;
4902}
4903
4904static int selinux_socket_unix_may_send(struct socket *sock,
4905 struct socket *other)
4906{
4907 struct sk_security_struct *ssec = sock->sk->sk_security;
4908 struct sk_security_struct *osec = other->sk->sk_security;
4909 struct common_audit_data ad;
4910 struct lsm_network_audit net = {0,};
4911
4912 ad.type = LSM_AUDIT_DATA_NET;
4913 ad.u.net = &net;
4914 ad.u.net->sk = other->sk;
4915
4916 return avc_has_perm(&selinux_state,
4917 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4918 &ad);
4919}
4920
4921static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4922 char *addrp, u16 family, u32 peer_sid,
4923 struct common_audit_data *ad)
4924{
4925 int err;
4926 u32 if_sid;
4927 u32 node_sid;
4928
4929 err = sel_netif_sid(ns, ifindex, &if_sid);
4930 if (err)
4931 return err;
4932 err = avc_has_perm(&selinux_state,
4933 peer_sid, if_sid,
4934 SECCLASS_NETIF, NETIF__INGRESS, ad);
4935 if (err)
4936 return err;
4937
4938 err = sel_netnode_sid(addrp, family, &node_sid);
4939 if (err)
4940 return err;
4941 return avc_has_perm(&selinux_state,
4942 peer_sid, node_sid,
4943 SECCLASS_NODE, NODE__RECVFROM, ad);
4944}
4945
4946static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4947 u16 family)
4948{
4949 int err = 0;
4950 struct sk_security_struct *sksec = sk->sk_security;
4951 u32 sk_sid = sksec->sid;
4952 struct common_audit_data ad;
4953 struct lsm_network_audit net = {0,};
4954 char *addrp;
4955
4956 ad.type = LSM_AUDIT_DATA_NET;
4957 ad.u.net = &net;
4958 ad.u.net->netif = skb->skb_iif;
4959 ad.u.net->family = family;
4960 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4961 if (err)
4962 return err;
4963
4964 if (selinux_secmark_enabled()) {
4965 err = avc_has_perm(&selinux_state,
4966 sk_sid, skb->secmark, SECCLASS_PACKET,
4967 PACKET__RECV, &ad);
4968 if (err)
4969 return err;
4970 }
4971
4972 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4973 if (err)
4974 return err;
4975 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4976
4977 return err;
4978}
4979
4980static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4981{
4982 int err;
4983 struct sk_security_struct *sksec = sk->sk_security;
4984 u16 family = sk->sk_family;
4985 u32 sk_sid = sksec->sid;
4986 struct common_audit_data ad;
4987 struct lsm_network_audit net = {0,};
4988 char *addrp;
4989 u8 secmark_active;
4990 u8 peerlbl_active;
4991
4992 if (family != PF_INET && family != PF_INET6)
4993 return 0;
4994
4995 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4996 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4997 family = PF_INET;
4998
4999 /* If any sort of compatibility mode is enabled then handoff processing
5000 * to the selinux_sock_rcv_skb_compat() function to deal with the
5001 * special handling. We do this in an attempt to keep this function
5002 * as fast and as clean as possible. */
5003 if (!selinux_policycap_netpeer())
5004 return selinux_sock_rcv_skb_compat(sk, skb, family);
5005
5006 secmark_active = selinux_secmark_enabled();
5007 peerlbl_active = selinux_peerlbl_enabled();
5008 if (!secmark_active && !peerlbl_active)
5009 return 0;
5010
5011 ad.type = LSM_AUDIT_DATA_NET;
5012 ad.u.net = &net;
5013 ad.u.net->netif = skb->skb_iif;
5014 ad.u.net->family = family;
5015 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5016 if (err)
5017 return err;
5018
5019 if (peerlbl_active) {
5020 u32 peer_sid;
5021
5022 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5023 if (err)
5024 return err;
5025 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5026 addrp, family, peer_sid, &ad);
5027 if (err) {
5028 selinux_netlbl_err(skb, family, err, 0);
5029 return err;
5030 }
5031 err = avc_has_perm(&selinux_state,
5032 sk_sid, peer_sid, SECCLASS_PEER,
5033 PEER__RECV, &ad);
5034 if (err) {
5035 selinux_netlbl_err(skb, family, err, 0);
5036 return err;
5037 }
5038 }
5039
5040 if (secmark_active) {
5041 err = avc_has_perm(&selinux_state,
5042 sk_sid, skb->secmark, SECCLASS_PACKET,
5043 PACKET__RECV, &ad);
5044 if (err)
5045 return err;
5046 }
5047
5048 return err;
5049}
5050
5051static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5052 int __user *optlen, unsigned len)
5053{
5054 int err = 0;
5055 char *scontext;
5056 u32 scontext_len;
5057 struct sk_security_struct *sksec = sock->sk->sk_security;
5058 u32 peer_sid = SECSID_NULL;
5059
5060 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5061 sksec->sclass == SECCLASS_TCP_SOCKET ||
5062 sksec->sclass == SECCLASS_SCTP_SOCKET)
5063 peer_sid = sksec->peer_sid;
5064 if (peer_sid == SECSID_NULL)
5065 return -ENOPROTOOPT;
5066
5067 err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5068 &scontext_len);
5069 if (err)
5070 return err;
5071
5072 if (scontext_len > len) {
5073 err = -ERANGE;
5074 goto out_len;
5075 }
5076
5077 if (copy_to_user(optval, scontext, scontext_len))
5078 err = -EFAULT;
5079
5080out_len:
5081 if (put_user(scontext_len, optlen))
5082 err = -EFAULT;
5083 kfree(scontext);
5084 return err;
5085}
5086
5087static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5088{
5089 u32 peer_secid = SECSID_NULL;
5090 u16 family;
5091 struct inode_security_struct *isec;
5092
5093 if (skb && skb->protocol == htons(ETH_P_IP))
5094 family = PF_INET;
5095 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5096 family = PF_INET6;
5097 else if (sock)
5098 family = sock->sk->sk_family;
5099 else
5100 goto out;
5101
5102 if (sock && family == PF_UNIX) {
5103 isec = inode_security_novalidate(SOCK_INODE(sock));
5104 peer_secid = isec->sid;
5105 } else if (skb)
5106 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5107
5108out:
5109 *secid = peer_secid;
5110 if (peer_secid == SECSID_NULL)
5111 return -EINVAL;
5112 return 0;
5113}
5114
5115static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5116{
5117 struct sk_security_struct *sksec;
5118
5119 sksec = kzalloc(sizeof(*sksec), priority);
5120 if (!sksec)
5121 return -ENOMEM;
5122
5123 sksec->peer_sid = SECINITSID_UNLABELED;
5124 sksec->sid = SECINITSID_UNLABELED;
5125 sksec->sclass = SECCLASS_SOCKET;
5126 selinux_netlbl_sk_security_reset(sksec);
5127 sk->sk_security = sksec;
5128
5129 return 0;
5130}
5131
5132static void selinux_sk_free_security(struct sock *sk)
5133{
5134 struct sk_security_struct *sksec = sk->sk_security;
5135
5136 sk->sk_security = NULL;
5137 selinux_netlbl_sk_security_free(sksec);
5138 kfree(sksec);
5139}
5140
5141static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5142{
5143 struct sk_security_struct *sksec = sk->sk_security;
5144 struct sk_security_struct *newsksec = newsk->sk_security;
5145
5146 newsksec->sid = sksec->sid;
5147 newsksec->peer_sid = sksec->peer_sid;
5148 newsksec->sclass = sksec->sclass;
5149
5150 selinux_netlbl_sk_security_reset(newsksec);
5151}
5152
5153static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5154{
5155 if (!sk)
5156 *secid = SECINITSID_ANY_SOCKET;
5157 else {
5158 struct sk_security_struct *sksec = sk->sk_security;
5159
5160 *secid = sksec->sid;
5161 }
5162}
5163
5164static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5165{
5166 struct inode_security_struct *isec =
5167 inode_security_novalidate(SOCK_INODE(parent));
5168 struct sk_security_struct *sksec = sk->sk_security;
5169
5170 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5171 sk->sk_family == PF_UNIX)
5172 isec->sid = sksec->sid;
5173 sksec->sclass = isec->sclass;
5174}
5175
5176/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5177 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5178 * already present).
5179 */
5180static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5181 struct sk_buff *skb)
5182{
5183 struct sk_security_struct *sksec = ep->base.sk->sk_security;
5184 struct common_audit_data ad;
5185 struct lsm_network_audit net = {0,};
5186 u8 peerlbl_active;
5187 u32 peer_sid = SECINITSID_UNLABELED;
5188 u32 conn_sid;
5189 int err = 0;
5190
5191 if (!selinux_policycap_extsockclass())
5192 return 0;
5193
5194 peerlbl_active = selinux_peerlbl_enabled();
5195
5196 if (peerlbl_active) {
5197 /* This will return peer_sid = SECSID_NULL if there are
5198 * no peer labels, see security_net_peersid_resolve().
5199 */
5200 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5201 &peer_sid);
5202 if (err)
5203 return err;
5204
5205 if (peer_sid == SECSID_NULL)
5206 peer_sid = SECINITSID_UNLABELED;
5207 }
5208
5209 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5210 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5211
5212 /* Here as first association on socket. As the peer SID
5213 * was allowed by peer recv (and the netif/node checks),
5214 * then it is approved by policy and used as the primary
5215 * peer SID for getpeercon(3).
5216 */
5217 sksec->peer_sid = peer_sid;
5218 } else if (sksec->peer_sid != peer_sid) {
5219 /* Other association peer SIDs are checked to enforce
5220 * consistency among the peer SIDs.
5221 */
5222 ad.type = LSM_AUDIT_DATA_NET;
5223 ad.u.net = &net;
5224 ad.u.net->sk = ep->base.sk;
5225 err = avc_has_perm(&selinux_state,
5226 sksec->peer_sid, peer_sid, sksec->sclass,
5227 SCTP_SOCKET__ASSOCIATION, &ad);
5228 if (err)
5229 return err;
5230 }
5231
5232 /* Compute the MLS component for the connection and store
5233 * the information in ep. This will be used by SCTP TCP type
5234 * sockets and peeled off connections as they cause a new
5235 * socket to be generated. selinux_sctp_sk_clone() will then
5236 * plug this into the new socket.
5237 */
5238 err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5239 if (err)
5240 return err;
5241
5242 ep->secid = conn_sid;
5243 ep->peer_secid = peer_sid;
5244
5245 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5246 return selinux_netlbl_sctp_assoc_request(ep, skb);
5247}
5248
5249/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5250 * based on their @optname.
5251 */
5252static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5253 struct sockaddr *address,
5254 int addrlen)
5255{
5256 int len, err = 0, walk_size = 0;
5257 void *addr_buf;
5258 struct sockaddr *addr;
5259 struct socket *sock;
5260
5261 if (!selinux_policycap_extsockclass())
5262 return 0;
5263
5264 /* Process one or more addresses that may be IPv4 or IPv6 */
5265 sock = sk->sk_socket;
5266 addr_buf = address;
5267
5268 while (walk_size < addrlen) {
5269 if (walk_size + sizeof(sa_family_t) > addrlen)
5270 return -EINVAL;
5271
5272 addr = addr_buf;
5273 switch (addr->sa_family) {
5274 case AF_UNSPEC:
5275 case AF_INET:
5276 len = sizeof(struct sockaddr_in);
5277 break;
5278 case AF_INET6:
5279 len = sizeof(struct sockaddr_in6);
5280 break;
5281 default:
5282 return -EINVAL;
5283 }
5284
5285 if (walk_size + len > addrlen)
5286 return -EINVAL;
5287
5288 err = -EINVAL;
5289 switch (optname) {
5290 /* Bind checks */
5291 case SCTP_PRIMARY_ADDR:
5292 case SCTP_SET_PEER_PRIMARY_ADDR:
5293 case SCTP_SOCKOPT_BINDX_ADD:
5294 err = selinux_socket_bind(sock, addr, len);
5295 break;
5296 /* Connect checks */
5297 case SCTP_SOCKOPT_CONNECTX:
5298 case SCTP_PARAM_SET_PRIMARY:
5299 case SCTP_PARAM_ADD_IP:
5300 case SCTP_SENDMSG_CONNECT:
5301 err = selinux_socket_connect_helper(sock, addr, len);
5302 if (err)
5303 return err;
5304
5305 /* As selinux_sctp_bind_connect() is called by the
5306 * SCTP protocol layer, the socket is already locked,
5307 * therefore selinux_netlbl_socket_connect_locked() is
5308 * is called here. The situations handled are:
5309 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5310 * whenever a new IP address is added or when a new
5311 * primary address is selected.
5312 * Note that an SCTP connect(2) call happens before
5313 * the SCTP protocol layer and is handled via
5314 * selinux_socket_connect().
5315 */
5316 err = selinux_netlbl_socket_connect_locked(sk, addr);
5317 break;
5318 }
5319
5320 if (err)
5321 return err;
5322
5323 addr_buf += len;
5324 walk_size += len;
5325 }
5326
5327 return 0;
5328}
5329
5330/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5331static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5332 struct sock *newsk)
5333{
5334 struct sk_security_struct *sksec = sk->sk_security;
5335 struct sk_security_struct *newsksec = newsk->sk_security;
5336
5337 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5338 * the non-sctp clone version.
5339 */
5340 if (!selinux_policycap_extsockclass())
5341 return selinux_sk_clone_security(sk, newsk);
5342
5343 newsksec->sid = ep->secid;
5344 newsksec->peer_sid = ep->peer_secid;
5345 newsksec->sclass = sksec->sclass;
5346 selinux_netlbl_sctp_sk_clone(sk, newsk);
5347}
5348
5349static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5350 struct request_sock *req)
5351{
5352 struct sk_security_struct *sksec = sk->sk_security;
5353 int err;
5354 u16 family = req->rsk_ops->family;
5355 u32 connsid;
5356 u32 peersid;
5357
5358 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5359 if (err)
5360 return err;
5361 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5362 if (err)
5363 return err;
5364 req->secid = connsid;
5365 req->peer_secid = peersid;
5366
5367 return selinux_netlbl_inet_conn_request(req, family);
5368}
5369
5370static void selinux_inet_csk_clone(struct sock *newsk,
5371 const struct request_sock *req)
5372{
5373 struct sk_security_struct *newsksec = newsk->sk_security;
5374
5375 newsksec->sid = req->secid;
5376 newsksec->peer_sid = req->peer_secid;
5377 /* NOTE: Ideally, we should also get the isec->sid for the
5378 new socket in sync, but we don't have the isec available yet.
5379 So we will wait until sock_graft to do it, by which
5380 time it will have been created and available. */
5381
5382 /* We don't need to take any sort of lock here as we are the only
5383 * thread with access to newsksec */
5384 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5385}
5386
5387static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5388{
5389 u16 family = sk->sk_family;
5390 struct sk_security_struct *sksec = sk->sk_security;
5391
5392 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5393 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5394 family = PF_INET;
5395
5396 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5397}
5398
5399static int selinux_secmark_relabel_packet(u32 sid)
5400{
5401 const struct task_security_struct *__tsec;
5402 u32 tsid;
5403
5404 __tsec = selinux_cred(current_cred());
5405 tsid = __tsec->sid;
5406
5407 return avc_has_perm(&selinux_state,
5408 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5409 NULL);
5410}
5411
5412static void selinux_secmark_refcount_inc(void)
5413{
5414 atomic_inc(&selinux_secmark_refcount);
5415}
5416
5417static void selinux_secmark_refcount_dec(void)
5418{
5419 atomic_dec(&selinux_secmark_refcount);
5420}
5421
5422static void selinux_req_classify_flow(const struct request_sock *req,
5423 struct flowi *fl)
5424{
5425 fl->flowi_secid = req->secid;
5426}
5427
5428static int selinux_tun_dev_alloc_security(void **security)
5429{
5430 struct tun_security_struct *tunsec;
5431
5432 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5433 if (!tunsec)
5434 return -ENOMEM;
5435 tunsec->sid = current_sid();
5436
5437 *security = tunsec;
5438 return 0;
5439}
5440
5441static void selinux_tun_dev_free_security(void *security)
5442{
5443 kfree(security);
5444}
5445
5446static int selinux_tun_dev_create(void)
5447{
5448 u32 sid = current_sid();
5449
5450 /* we aren't taking into account the "sockcreate" SID since the socket
5451 * that is being created here is not a socket in the traditional sense,
5452 * instead it is a private sock, accessible only to the kernel, and
5453 * representing a wide range of network traffic spanning multiple
5454 * connections unlike traditional sockets - check the TUN driver to
5455 * get a better understanding of why this socket is special */
5456
5457 return avc_has_perm(&selinux_state,
5458 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5459 NULL);
5460}
5461
5462static int selinux_tun_dev_attach_queue(void *security)
5463{
5464 struct tun_security_struct *tunsec = security;
5465
5466 return avc_has_perm(&selinux_state,
5467 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5468 TUN_SOCKET__ATTACH_QUEUE, NULL);
5469}
5470
5471static int selinux_tun_dev_attach(struct sock *sk, void *security)
5472{
5473 struct tun_security_struct *tunsec = security;
5474 struct sk_security_struct *sksec = sk->sk_security;
5475
5476 /* we don't currently perform any NetLabel based labeling here and it
5477 * isn't clear that we would want to do so anyway; while we could apply
5478 * labeling without the support of the TUN user the resulting labeled
5479 * traffic from the other end of the connection would almost certainly
5480 * cause confusion to the TUN user that had no idea network labeling
5481 * protocols were being used */
5482
5483 sksec->sid = tunsec->sid;
5484 sksec->sclass = SECCLASS_TUN_SOCKET;
5485
5486 return 0;
5487}
5488
5489static int selinux_tun_dev_open(void *security)
5490{
5491 struct tun_security_struct *tunsec = security;
5492 u32 sid = current_sid();
5493 int err;
5494
5495 err = avc_has_perm(&selinux_state,
5496 sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5497 TUN_SOCKET__RELABELFROM, NULL);
5498 if (err)
5499 return err;
5500 err = avc_has_perm(&selinux_state,
5501 sid, sid, SECCLASS_TUN_SOCKET,
5502 TUN_SOCKET__RELABELTO, NULL);
5503 if (err)
5504 return err;
5505 tunsec->sid = sid;
5506
5507 return 0;
5508}
5509
5510static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5511{
5512 int err = 0;
5513 u32 perm;
5514 struct nlmsghdr *nlh;
5515 struct sk_security_struct *sksec = sk->sk_security;
5516
5517 if (skb->len < NLMSG_HDRLEN) {
5518 err = -EINVAL;
5519 goto out;
5520 }
5521 nlh = nlmsg_hdr(skb);
5522
5523 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5524 if (err) {
5525 if (err == -EINVAL) {
5526 pr_warn_ratelimited("SELinux: unrecognized netlink"
5527 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5528 " pig=%d comm=%s\n",
5529 sk->sk_protocol, nlh->nlmsg_type,
5530 secclass_map[sksec->sclass - 1].name,
5531 task_pid_nr(current), current->comm);
5532 if (!enforcing_enabled(&selinux_state) ||
5533 security_get_allow_unknown(&selinux_state))
5534 err = 0;
5535 }
5536
5537 /* Ignore */
5538 if (err == -ENOENT)
5539 err = 0;
5540 goto out;
5541 }
5542
5543 err = sock_has_perm(sk, perm);
5544out:
5545 return err;
5546}
5547
5548#ifdef CONFIG_NETFILTER
5549
5550static unsigned int selinux_ip_forward(struct sk_buff *skb,
5551 const struct net_device *indev,
5552 u16 family)
5553{
5554 int err;
5555 char *addrp;
5556 u32 peer_sid;
5557 struct common_audit_data ad;
5558 struct lsm_network_audit net = {0,};
5559 u8 secmark_active;
5560 u8 netlbl_active;
5561 u8 peerlbl_active;
5562
5563 if (!selinux_policycap_netpeer())
5564 return NF_ACCEPT;
5565
5566 secmark_active = selinux_secmark_enabled();
5567 netlbl_active = netlbl_enabled();
5568 peerlbl_active = selinux_peerlbl_enabled();
5569 if (!secmark_active && !peerlbl_active)
5570 return NF_ACCEPT;
5571
5572 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5573 return NF_DROP;
5574
5575 ad.type = LSM_AUDIT_DATA_NET;
5576 ad.u.net = &net;
5577 ad.u.net->netif = indev->ifindex;
5578 ad.u.net->family = family;
5579 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5580 return NF_DROP;
5581
5582 if (peerlbl_active) {
5583 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5584 addrp, family, peer_sid, &ad);
5585 if (err) {
5586 selinux_netlbl_err(skb, family, err, 1);
5587 return NF_DROP;
5588 }
5589 }
5590
5591 if (secmark_active)
5592 if (avc_has_perm(&selinux_state,
5593 peer_sid, skb->secmark,
5594 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5595 return NF_DROP;
5596
5597 if (netlbl_active)
5598 /* we do this in the FORWARD path and not the POST_ROUTING
5599 * path because we want to make sure we apply the necessary
5600 * labeling before IPsec is applied so we can leverage AH
5601 * protection */
5602 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5603 return NF_DROP;
5604
5605 return NF_ACCEPT;
5606}
5607
5608static unsigned int selinux_ipv4_forward(void *priv,
5609 struct sk_buff *skb,
5610 const struct nf_hook_state *state)
5611{
5612 return selinux_ip_forward(skb, state->in, PF_INET);
5613}
5614
5615#if IS_ENABLED(CONFIG_IPV6)
5616static unsigned int selinux_ipv6_forward(void *priv,
5617 struct sk_buff *skb,
5618 const struct nf_hook_state *state)
5619{
5620 return selinux_ip_forward(skb, state->in, PF_INET6);
5621}
5622#endif /* IPV6 */
5623
5624static unsigned int selinux_ip_output(struct sk_buff *skb,
5625 u16 family)
5626{
5627 struct sock *sk;
5628 u32 sid;
5629
5630 if (!netlbl_enabled())
5631 return NF_ACCEPT;
5632
5633 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5634 * because we want to make sure we apply the necessary labeling
5635 * before IPsec is applied so we can leverage AH protection */
5636 sk = skb->sk;
5637 if (sk) {
5638 struct sk_security_struct *sksec;
5639
5640 if (sk_listener(sk))
5641 /* if the socket is the listening state then this
5642 * packet is a SYN-ACK packet which means it needs to
5643 * be labeled based on the connection/request_sock and
5644 * not the parent socket. unfortunately, we can't
5645 * lookup the request_sock yet as it isn't queued on
5646 * the parent socket until after the SYN-ACK is sent.
5647 * the "solution" is to simply pass the packet as-is
5648 * as any IP option based labeling should be copied
5649 * from the initial connection request (in the IP
5650 * layer). it is far from ideal, but until we get a
5651 * security label in the packet itself this is the
5652 * best we can do. */
5653 return NF_ACCEPT;
5654
5655 /* standard practice, label using the parent socket */
5656 sksec = sk->sk_security;
5657 sid = sksec->sid;
5658 } else
5659 sid = SECINITSID_KERNEL;
5660 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5661 return NF_DROP;
5662
5663 return NF_ACCEPT;
5664}
5665
5666static unsigned int selinux_ipv4_output(void *priv,
5667 struct sk_buff *skb,
5668 const struct nf_hook_state *state)
5669{
5670 return selinux_ip_output(skb, PF_INET);
5671}
5672
5673#if IS_ENABLED(CONFIG_IPV6)
5674static unsigned int selinux_ipv6_output(void *priv,
5675 struct sk_buff *skb,
5676 const struct nf_hook_state *state)
5677{
5678 return selinux_ip_output(skb, PF_INET6);
5679}
5680#endif /* IPV6 */
5681
5682static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5683 int ifindex,
5684 u16 family)
5685{
5686 struct sock *sk = skb_to_full_sk(skb);
5687 struct sk_security_struct *sksec;
5688 struct common_audit_data ad;
5689 struct lsm_network_audit net = {0,};
5690 char *addrp;
5691 u8 proto;
5692
5693 if (sk == NULL)
5694 return NF_ACCEPT;
5695 sksec = sk->sk_security;
5696
5697 ad.type = LSM_AUDIT_DATA_NET;
5698 ad.u.net = &net;
5699 ad.u.net->netif = ifindex;
5700 ad.u.net->family = family;
5701 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5702 return NF_DROP;
5703
5704 if (selinux_secmark_enabled())
5705 if (avc_has_perm(&selinux_state,
5706 sksec->sid, skb->secmark,
5707 SECCLASS_PACKET, PACKET__SEND, &ad))
5708 return NF_DROP_ERR(-ECONNREFUSED);
5709
5710 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5711 return NF_DROP_ERR(-ECONNREFUSED);
5712
5713 return NF_ACCEPT;
5714}
5715
5716static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5717 const struct net_device *outdev,
5718 u16 family)
5719{
5720 u32 secmark_perm;
5721 u32 peer_sid;
5722 int ifindex = outdev->ifindex;
5723 struct sock *sk;
5724 struct common_audit_data ad;
5725 struct lsm_network_audit net = {0,};
5726 char *addrp;
5727 u8 secmark_active;
5728 u8 peerlbl_active;
5729
5730 /* If any sort of compatibility mode is enabled then handoff processing
5731 * to the selinux_ip_postroute_compat() function to deal with the
5732 * special handling. We do this in an attempt to keep this function
5733 * as fast and as clean as possible. */
5734 if (!selinux_policycap_netpeer())
5735 return selinux_ip_postroute_compat(skb, ifindex, family);
5736
5737 secmark_active = selinux_secmark_enabled();
5738 peerlbl_active = selinux_peerlbl_enabled();
5739 if (!secmark_active && !peerlbl_active)
5740 return NF_ACCEPT;
5741
5742 sk = skb_to_full_sk(skb);
5743
5744#ifdef CONFIG_XFRM
5745 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5746 * packet transformation so allow the packet to pass without any checks
5747 * since we'll have another chance to perform access control checks
5748 * when the packet is on it's final way out.
5749 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5750 * is NULL, in this case go ahead and apply access control.
5751 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5752 * TCP listening state we cannot wait until the XFRM processing
5753 * is done as we will miss out on the SA label if we do;
5754 * unfortunately, this means more work, but it is only once per
5755 * connection. */
5756 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5757 !(sk && sk_listener(sk)))
5758 return NF_ACCEPT;
5759#endif
5760
5761 if (sk == NULL) {
5762 /* Without an associated socket the packet is either coming
5763 * from the kernel or it is being forwarded; check the packet
5764 * to determine which and if the packet is being forwarded
5765 * query the packet directly to determine the security label. */
5766 if (skb->skb_iif) {
5767 secmark_perm = PACKET__FORWARD_OUT;
5768 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5769 return NF_DROP;
5770 } else {
5771 secmark_perm = PACKET__SEND;
5772 peer_sid = SECINITSID_KERNEL;
5773 }
5774 } else if (sk_listener(sk)) {
5775 /* Locally generated packet but the associated socket is in the
5776 * listening state which means this is a SYN-ACK packet. In
5777 * this particular case the correct security label is assigned
5778 * to the connection/request_sock but unfortunately we can't
5779 * query the request_sock as it isn't queued on the parent
5780 * socket until after the SYN-ACK packet is sent; the only
5781 * viable choice is to regenerate the label like we do in
5782 * selinux_inet_conn_request(). See also selinux_ip_output()
5783 * for similar problems. */
5784 u32 skb_sid;
5785 struct sk_security_struct *sksec;
5786
5787 sksec = sk->sk_security;
5788 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5789 return NF_DROP;
5790 /* At this point, if the returned skb peerlbl is SECSID_NULL
5791 * and the packet has been through at least one XFRM
5792 * transformation then we must be dealing with the "final"
5793 * form of labeled IPsec packet; since we've already applied
5794 * all of our access controls on this packet we can safely
5795 * pass the packet. */
5796 if (skb_sid == SECSID_NULL) {
5797 switch (family) {
5798 case PF_INET:
5799 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5800 return NF_ACCEPT;
5801 break;
5802 case PF_INET6:
5803 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5804 return NF_ACCEPT;
5805 break;
5806 default:
5807 return NF_DROP_ERR(-ECONNREFUSED);
5808 }
5809 }
5810 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5811 return NF_DROP;
5812 secmark_perm = PACKET__SEND;
5813 } else {
5814 /* Locally generated packet, fetch the security label from the
5815 * associated socket. */
5816 struct sk_security_struct *sksec = sk->sk_security;
5817 peer_sid = sksec->sid;
5818 secmark_perm = PACKET__SEND;
5819 }
5820
5821 ad.type = LSM_AUDIT_DATA_NET;
5822 ad.u.net = &net;
5823 ad.u.net->netif = ifindex;
5824 ad.u.net->family = family;
5825 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5826 return NF_DROP;
5827
5828 if (secmark_active)
5829 if (avc_has_perm(&selinux_state,
5830 peer_sid, skb->secmark,
5831 SECCLASS_PACKET, secmark_perm, &ad))
5832 return NF_DROP_ERR(-ECONNREFUSED);
5833
5834 if (peerlbl_active) {
5835 u32 if_sid;
5836 u32 node_sid;
5837
5838 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5839 return NF_DROP;
5840 if (avc_has_perm(&selinux_state,
5841 peer_sid, if_sid,
5842 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5843 return NF_DROP_ERR(-ECONNREFUSED);
5844
5845 if (sel_netnode_sid(addrp, family, &node_sid))
5846 return NF_DROP;
5847 if (avc_has_perm(&selinux_state,
5848 peer_sid, node_sid,
5849 SECCLASS_NODE, NODE__SENDTO, &ad))
5850 return NF_DROP_ERR(-ECONNREFUSED);
5851 }
5852
5853 return NF_ACCEPT;
5854}
5855
5856static unsigned int selinux_ipv4_postroute(void *priv,
5857 struct sk_buff *skb,
5858 const struct nf_hook_state *state)
5859{
5860 return selinux_ip_postroute(skb, state->out, PF_INET);
5861}
5862
5863#if IS_ENABLED(CONFIG_IPV6)
5864static unsigned int selinux_ipv6_postroute(void *priv,
5865 struct sk_buff *skb,
5866 const struct nf_hook_state *state)
5867{
5868 return selinux_ip_postroute(skb, state->out, PF_INET6);
5869}
5870#endif /* IPV6 */
5871
5872#endif /* CONFIG_NETFILTER */
5873
5874static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5875{
5876 return selinux_nlmsg_perm(sk, skb);
5877}
5878
5879static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5880{
5881 isec->sclass = sclass;
5882 isec->sid = current_sid();
5883}
5884
5885static int msg_msg_alloc_security(struct msg_msg *msg)
5886{
5887 struct msg_security_struct *msec;
5888
5889 msec = selinux_msg_msg(msg);
5890 msec->sid = SECINITSID_UNLABELED;
5891
5892 return 0;
5893}
5894
5895static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5896 u32 perms)
5897{
5898 struct ipc_security_struct *isec;
5899 struct common_audit_data ad;
5900 u32 sid = current_sid();
5901
5902 isec = selinux_ipc(ipc_perms);
5903
5904 ad.type = LSM_AUDIT_DATA_IPC;
5905 ad.u.ipc_id = ipc_perms->key;
5906
5907 return avc_has_perm(&selinux_state,
5908 sid, isec->sid, isec->sclass, perms, &ad);
5909}
5910
5911static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5912{
5913 return msg_msg_alloc_security(msg);
5914}
5915
5916/* message queue security operations */
5917static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5918{
5919 struct ipc_security_struct *isec;
5920 struct common_audit_data ad;
5921 u32 sid = current_sid();
5922 int rc;
5923
5924 isec = selinux_ipc(msq);
5925 ipc_init_security(isec, SECCLASS_MSGQ);
5926
5927 ad.type = LSM_AUDIT_DATA_IPC;
5928 ad.u.ipc_id = msq->key;
5929
5930 rc = avc_has_perm(&selinux_state,
5931 sid, isec->sid, SECCLASS_MSGQ,
5932 MSGQ__CREATE, &ad);
5933 return rc;
5934}
5935
5936static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5937{
5938 struct ipc_security_struct *isec;
5939 struct common_audit_data ad;
5940 u32 sid = current_sid();
5941
5942 isec = selinux_ipc(msq);
5943
5944 ad.type = LSM_AUDIT_DATA_IPC;
5945 ad.u.ipc_id = msq->key;
5946
5947 return avc_has_perm(&selinux_state,
5948 sid, isec->sid, SECCLASS_MSGQ,
5949 MSGQ__ASSOCIATE, &ad);
5950}
5951
5952static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5953{
5954 int err;
5955 int perms;
5956
5957 switch (cmd) {
5958 case IPC_INFO:
5959 case MSG_INFO:
5960 /* No specific object, just general system-wide information. */
5961 return avc_has_perm(&selinux_state,
5962 current_sid(), SECINITSID_KERNEL,
5963 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5964 case IPC_STAT:
5965 case MSG_STAT:
5966 case MSG_STAT_ANY:
5967 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5968 break;
5969 case IPC_SET:
5970 perms = MSGQ__SETATTR;
5971 break;
5972 case IPC_RMID:
5973 perms = MSGQ__DESTROY;
5974 break;
5975 default:
5976 return 0;
5977 }
5978
5979 err = ipc_has_perm(msq, perms);
5980 return err;
5981}
5982
5983static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
5984{
5985 struct ipc_security_struct *isec;
5986 struct msg_security_struct *msec;
5987 struct common_audit_data ad;
5988 u32 sid = current_sid();
5989 int rc;
5990
5991 isec = selinux_ipc(msq);
5992 msec = selinux_msg_msg(msg);
5993
5994 /*
5995 * First time through, need to assign label to the message
5996 */
5997 if (msec->sid == SECINITSID_UNLABELED) {
5998 /*
5999 * Compute new sid based on current process and
6000 * message queue this message will be stored in
6001 */
6002 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6003 SECCLASS_MSG, NULL, &msec->sid);
6004 if (rc)
6005 return rc;
6006 }
6007
6008 ad.type = LSM_AUDIT_DATA_IPC;
6009 ad.u.ipc_id = msq->key;
6010
6011 /* Can this process write to the queue? */
6012 rc = avc_has_perm(&selinux_state,
6013 sid, isec->sid, SECCLASS_MSGQ,
6014 MSGQ__WRITE, &ad);
6015 if (!rc)
6016 /* Can this process send the message */
6017 rc = avc_has_perm(&selinux_state,
6018 sid, msec->sid, SECCLASS_MSG,
6019 MSG__SEND, &ad);
6020 if (!rc)
6021 /* Can the message be put in the queue? */
6022 rc = avc_has_perm(&selinux_state,
6023 msec->sid, isec->sid, SECCLASS_MSGQ,
6024 MSGQ__ENQUEUE, &ad);
6025
6026 return rc;
6027}
6028
6029static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6030 struct task_struct *target,
6031 long type, int mode)
6032{
6033 struct ipc_security_struct *isec;
6034 struct msg_security_struct *msec;
6035 struct common_audit_data ad;
6036 u32 sid = task_sid(target);
6037 int rc;
6038
6039 isec = selinux_ipc(msq);
6040 msec = selinux_msg_msg(msg);
6041
6042 ad.type = LSM_AUDIT_DATA_IPC;
6043 ad.u.ipc_id = msq->key;
6044
6045 rc = avc_has_perm(&selinux_state,
6046 sid, isec->sid,
6047 SECCLASS_MSGQ, MSGQ__READ, &ad);
6048 if (!rc)
6049 rc = avc_has_perm(&selinux_state,
6050 sid, msec->sid,
6051 SECCLASS_MSG, MSG__RECEIVE, &ad);
6052 return rc;
6053}
6054
6055/* Shared Memory security operations */
6056static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6057{
6058 struct ipc_security_struct *isec;
6059 struct common_audit_data ad;
6060 u32 sid = current_sid();
6061 int rc;
6062
6063 isec = selinux_ipc(shp);
6064 ipc_init_security(isec, SECCLASS_SHM);
6065
6066 ad.type = LSM_AUDIT_DATA_IPC;
6067 ad.u.ipc_id = shp->key;
6068
6069 rc = avc_has_perm(&selinux_state,
6070 sid, isec->sid, SECCLASS_SHM,
6071 SHM__CREATE, &ad);
6072 return rc;
6073}
6074
6075static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6076{
6077 struct ipc_security_struct *isec;
6078 struct common_audit_data ad;
6079 u32 sid = current_sid();
6080
6081 isec = selinux_ipc(shp);
6082
6083 ad.type = LSM_AUDIT_DATA_IPC;
6084 ad.u.ipc_id = shp->key;
6085
6086 return avc_has_perm(&selinux_state,
6087 sid, isec->sid, SECCLASS_SHM,
6088 SHM__ASSOCIATE, &ad);
6089}
6090
6091/* Note, at this point, shp is locked down */
6092static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6093{
6094 int perms;
6095 int err;
6096
6097 switch (cmd) {
6098 case IPC_INFO:
6099 case SHM_INFO:
6100 /* No specific object, just general system-wide information. */
6101 return avc_has_perm(&selinux_state,
6102 current_sid(), SECINITSID_KERNEL,
6103 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6104 case IPC_STAT:
6105 case SHM_STAT:
6106 case SHM_STAT_ANY:
6107 perms = SHM__GETATTR | SHM__ASSOCIATE;
6108 break;
6109 case IPC_SET:
6110 perms = SHM__SETATTR;
6111 break;
6112 case SHM_LOCK:
6113 case SHM_UNLOCK:
6114 perms = SHM__LOCK;
6115 break;
6116 case IPC_RMID:
6117 perms = SHM__DESTROY;
6118 break;
6119 default:
6120 return 0;
6121 }
6122
6123 err = ipc_has_perm(shp, perms);
6124 return err;
6125}
6126
6127static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6128 char __user *shmaddr, int shmflg)
6129{
6130 u32 perms;
6131
6132 if (shmflg & SHM_RDONLY)
6133 perms = SHM__READ;
6134 else
6135 perms = SHM__READ | SHM__WRITE;
6136
6137 return ipc_has_perm(shp, perms);
6138}
6139
6140/* Semaphore security operations */
6141static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6142{
6143 struct ipc_security_struct *isec;
6144 struct common_audit_data ad;
6145 u32 sid = current_sid();
6146 int rc;
6147
6148 isec = selinux_ipc(sma);
6149 ipc_init_security(isec, SECCLASS_SEM);
6150
6151 ad.type = LSM_AUDIT_DATA_IPC;
6152 ad.u.ipc_id = sma->key;
6153
6154 rc = avc_has_perm(&selinux_state,
6155 sid, isec->sid, SECCLASS_SEM,
6156 SEM__CREATE, &ad);
6157 return rc;
6158}
6159
6160static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6161{
6162 struct ipc_security_struct *isec;
6163 struct common_audit_data ad;
6164 u32 sid = current_sid();
6165
6166 isec = selinux_ipc(sma);
6167
6168 ad.type = LSM_AUDIT_DATA_IPC;
6169 ad.u.ipc_id = sma->key;
6170
6171 return avc_has_perm(&selinux_state,
6172 sid, isec->sid, SECCLASS_SEM,
6173 SEM__ASSOCIATE, &ad);
6174}
6175
6176/* Note, at this point, sma is locked down */
6177static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6178{
6179 int err;
6180 u32 perms;
6181
6182 switch (cmd) {
6183 case IPC_INFO:
6184 case SEM_INFO:
6185 /* No specific object, just general system-wide information. */
6186 return avc_has_perm(&selinux_state,
6187 current_sid(), SECINITSID_KERNEL,
6188 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6189 case GETPID:
6190 case GETNCNT:
6191 case GETZCNT:
6192 perms = SEM__GETATTR;
6193 break;
6194 case GETVAL:
6195 case GETALL:
6196 perms = SEM__READ;
6197 break;
6198 case SETVAL:
6199 case SETALL:
6200 perms = SEM__WRITE;
6201 break;
6202 case IPC_RMID:
6203 perms = SEM__DESTROY;
6204 break;
6205 case IPC_SET:
6206 perms = SEM__SETATTR;
6207 break;
6208 case IPC_STAT:
6209 case SEM_STAT:
6210 case SEM_STAT_ANY:
6211 perms = SEM__GETATTR | SEM__ASSOCIATE;
6212 break;
6213 default:
6214 return 0;
6215 }
6216
6217 err = ipc_has_perm(sma, perms);
6218 return err;
6219}
6220
6221static int selinux_sem_semop(struct kern_ipc_perm *sma,
6222 struct sembuf *sops, unsigned nsops, int alter)
6223{
6224 u32 perms;
6225
6226 if (alter)
6227 perms = SEM__READ | SEM__WRITE;
6228 else
6229 perms = SEM__READ;
6230
6231 return ipc_has_perm(sma, perms);
6232}
6233
6234static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6235{
6236 u32 av = 0;
6237
6238 av = 0;
6239 if (flag & S_IRUGO)
6240 av |= IPC__UNIX_READ;
6241 if (flag & S_IWUGO)
6242 av |= IPC__UNIX_WRITE;
6243
6244 if (av == 0)
6245 return 0;
6246
6247 return ipc_has_perm(ipcp, av);
6248}
6249
6250static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6251{
6252 struct ipc_security_struct *isec = selinux_ipc(ipcp);
6253 *secid = isec->sid;
6254}
6255
6256static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6257{
6258 if (inode)
6259 inode_doinit_with_dentry(inode, dentry);
6260}
6261
6262static int selinux_getprocattr(struct task_struct *p,
6263 char *name, char **value)
6264{
6265 const struct task_security_struct *__tsec;
6266 u32 sid;
6267 int error;
6268 unsigned len;
6269
6270 rcu_read_lock();
6271 __tsec = selinux_cred(__task_cred(p));
6272
6273 if (current != p) {
6274 error = avc_has_perm(&selinux_state,
6275 current_sid(), __tsec->sid,
6276 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6277 if (error)
6278 goto bad;
6279 }
6280
6281 if (!strcmp(name, "current"))
6282 sid = __tsec->sid;
6283 else if (!strcmp(name, "prev"))
6284 sid = __tsec->osid;
6285 else if (!strcmp(name, "exec"))
6286 sid = __tsec->exec_sid;
6287 else if (!strcmp(name, "fscreate"))
6288 sid = __tsec->create_sid;
6289 else if (!strcmp(name, "keycreate"))
6290 sid = __tsec->keycreate_sid;
6291 else if (!strcmp(name, "sockcreate"))
6292 sid = __tsec->sockcreate_sid;
6293 else {
6294 error = -EINVAL;
6295 goto bad;
6296 }
6297 rcu_read_unlock();
6298
6299 if (!sid)
6300 return 0;
6301
6302 error = security_sid_to_context(&selinux_state, sid, value, &len);
6303 if (error)
6304 return error;
6305 return len;
6306
6307bad:
6308 rcu_read_unlock();
6309 return error;
6310}
6311
6312static int selinux_setprocattr(const char *name, void *value, size_t size)
6313{
6314 struct task_security_struct *tsec;
6315 struct cred *new;
6316 u32 mysid = current_sid(), sid = 0, ptsid;
6317 int error;
6318 char *str = value;
6319
6320 /*
6321 * Basic control over ability to set these attributes at all.
6322 */
6323 if (!strcmp(name, "exec"))
6324 error = avc_has_perm(&selinux_state,
6325 mysid, mysid, SECCLASS_PROCESS,
6326 PROCESS__SETEXEC, NULL);
6327 else if (!strcmp(name, "fscreate"))
6328 error = avc_has_perm(&selinux_state,
6329 mysid, mysid, SECCLASS_PROCESS,
6330 PROCESS__SETFSCREATE, NULL);
6331 else if (!strcmp(name, "keycreate"))
6332 error = avc_has_perm(&selinux_state,
6333 mysid, mysid, SECCLASS_PROCESS,
6334 PROCESS__SETKEYCREATE, NULL);
6335 else if (!strcmp(name, "sockcreate"))
6336 error = avc_has_perm(&selinux_state,
6337 mysid, mysid, SECCLASS_PROCESS,
6338 PROCESS__SETSOCKCREATE, NULL);
6339 else if (!strcmp(name, "current"))
6340 error = avc_has_perm(&selinux_state,
6341 mysid, mysid, SECCLASS_PROCESS,
6342 PROCESS__SETCURRENT, NULL);
6343 else
6344 error = -EINVAL;
6345 if (error)
6346 return error;
6347
6348 /* Obtain a SID for the context, if one was specified. */
6349 if (size && str[0] && str[0] != '\n') {
6350 if (str[size-1] == '\n') {
6351 str[size-1] = 0;
6352 size--;
6353 }
6354 error = security_context_to_sid(&selinux_state, value, size,
6355 &sid, GFP_KERNEL);
6356 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6357 if (!has_cap_mac_admin(true)) {
6358 struct audit_buffer *ab;
6359 size_t audit_size;
6360
6361 /* We strip a nul only if it is at the end, otherwise the
6362 * context contains a nul and we should audit that */
6363 if (str[size - 1] == '\0')
6364 audit_size = size - 1;
6365 else
6366 audit_size = size;
6367 ab = audit_log_start(audit_context(),
6368 GFP_ATOMIC,
6369 AUDIT_SELINUX_ERR);
6370 audit_log_format(ab, "op=fscreate invalid_context=");
6371 audit_log_n_untrustedstring(ab, value, audit_size);
6372 audit_log_end(ab);
6373
6374 return error;
6375 }
6376 error = security_context_to_sid_force(
6377 &selinux_state,
6378 value, size, &sid);
6379 }
6380 if (error)
6381 return error;
6382 }
6383
6384 new = prepare_creds();
6385 if (!new)
6386 return -ENOMEM;
6387
6388 /* Permission checking based on the specified context is
6389 performed during the actual operation (execve,
6390 open/mkdir/...), when we know the full context of the
6391 operation. See selinux_bprm_set_creds for the execve
6392 checks and may_create for the file creation checks. The
6393 operation will then fail if the context is not permitted. */
6394 tsec = selinux_cred(new);
6395 if (!strcmp(name, "exec")) {
6396 tsec->exec_sid = sid;
6397 } else if (!strcmp(name, "fscreate")) {
6398 tsec->create_sid = sid;
6399 } else if (!strcmp(name, "keycreate")) {
6400 if (sid) {
6401 error = avc_has_perm(&selinux_state, mysid, sid,
6402 SECCLASS_KEY, KEY__CREATE, NULL);
6403 if (error)
6404 goto abort_change;
6405 }
6406 tsec->keycreate_sid = sid;
6407 } else if (!strcmp(name, "sockcreate")) {
6408 tsec->sockcreate_sid = sid;
6409 } else if (!strcmp(name, "current")) {
6410 error = -EINVAL;
6411 if (sid == 0)
6412 goto abort_change;
6413
6414 /* Only allow single threaded processes to change context */
6415 error = -EPERM;
6416 if (!current_is_single_threaded()) {
6417 error = security_bounded_transition(&selinux_state,
6418 tsec->sid, sid);
6419 if (error)
6420 goto abort_change;
6421 }
6422
6423 /* Check permissions for the transition. */
6424 error = avc_has_perm(&selinux_state,
6425 tsec->sid, sid, SECCLASS_PROCESS,
6426 PROCESS__DYNTRANSITION, NULL);
6427 if (error)
6428 goto abort_change;
6429
6430 /* Check for ptracing, and update the task SID if ok.
6431 Otherwise, leave SID unchanged and fail. */
6432 ptsid = ptrace_parent_sid();
6433 if (ptsid != 0) {
6434 error = avc_has_perm(&selinux_state,
6435 ptsid, sid, SECCLASS_PROCESS,
6436 PROCESS__PTRACE, NULL);
6437 if (error)
6438 goto abort_change;
6439 }
6440
6441 tsec->sid = sid;
6442 } else {
6443 error = -EINVAL;
6444 goto abort_change;
6445 }
6446
6447 commit_creds(new);
6448 return size;
6449
6450abort_change:
6451 abort_creds(new);
6452 return error;
6453}
6454
6455static int selinux_ismaclabel(const char *name)
6456{
6457 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6458}
6459
6460static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6461{
6462 return security_sid_to_context(&selinux_state, secid,
6463 secdata, seclen);
6464}
6465
6466static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6467{
6468 return security_context_to_sid(&selinux_state, secdata, seclen,
6469 secid, GFP_KERNEL);
6470}
6471
6472static void selinux_release_secctx(char *secdata, u32 seclen)
6473{
6474 kfree(secdata);
6475}
6476
6477static void selinux_inode_invalidate_secctx(struct inode *inode)
6478{
6479 struct inode_security_struct *isec = selinux_inode(inode);
6480
6481 spin_lock(&isec->lock);
6482 isec->initialized = LABEL_INVALID;
6483 spin_unlock(&isec->lock);
6484}
6485
6486/*
6487 * called with inode->i_mutex locked
6488 */
6489static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6490{
6491 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6492 ctx, ctxlen, 0);
6493 /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6494 return rc == -EOPNOTSUPP ? 0 : rc;
6495}
6496
6497/*
6498 * called with inode->i_mutex locked
6499 */
6500static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6501{
6502 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6503}
6504
6505static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6506{
6507 int len = 0;
6508 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6509 ctx, true);
6510 if (len < 0)
6511 return len;
6512 *ctxlen = len;
6513 return 0;
6514}
6515#ifdef CONFIG_KEYS
6516
6517static int selinux_key_alloc(struct key *k, const struct cred *cred,
6518 unsigned long flags)
6519{
6520 const struct task_security_struct *tsec;
6521 struct key_security_struct *ksec;
6522
6523 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6524 if (!ksec)
6525 return -ENOMEM;
6526
6527 tsec = selinux_cred(cred);
6528 if (tsec->keycreate_sid)
6529 ksec->sid = tsec->keycreate_sid;
6530 else
6531 ksec->sid = tsec->sid;
6532
6533 k->security = ksec;
6534 return 0;
6535}
6536
6537static void selinux_key_free(struct key *k)
6538{
6539 struct key_security_struct *ksec = k->security;
6540
6541 k->security = NULL;
6542 kfree(ksec);
6543}
6544
6545static int selinux_key_permission(key_ref_t key_ref,
6546 const struct cred *cred,
6547 unsigned perm)
6548{
6549 struct key *key;
6550 struct key_security_struct *ksec;
6551 u32 sid;
6552
6553 /* if no specific permissions are requested, we skip the
6554 permission check. No serious, additional covert channels
6555 appear to be created. */
6556 if (perm == 0)
6557 return 0;
6558
6559 sid = cred_sid(cred);
6560
6561 key = key_ref_to_ptr(key_ref);
6562 ksec = key->security;
6563
6564 return avc_has_perm(&selinux_state,
6565 sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6566}
6567
6568static int selinux_key_getsecurity(struct key *key, char **_buffer)
6569{
6570 struct key_security_struct *ksec = key->security;
6571 char *context = NULL;
6572 unsigned len;
6573 int rc;
6574
6575 rc = security_sid_to_context(&selinux_state, ksec->sid,
6576 &context, &len);
6577 if (!rc)
6578 rc = len;
6579 *_buffer = context;
6580 return rc;
6581}
6582#endif
6583
6584#ifdef CONFIG_SECURITY_INFINIBAND
6585static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6586{
6587 struct common_audit_data ad;
6588 int err;
6589 u32 sid = 0;
6590 struct ib_security_struct *sec = ib_sec;
6591 struct lsm_ibpkey_audit ibpkey;
6592
6593 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6594 if (err)
6595 return err;
6596
6597 ad.type = LSM_AUDIT_DATA_IBPKEY;
6598 ibpkey.subnet_prefix = subnet_prefix;
6599 ibpkey.pkey = pkey_val;
6600 ad.u.ibpkey = &ibpkey;
6601 return avc_has_perm(&selinux_state,
6602 sec->sid, sid,
6603 SECCLASS_INFINIBAND_PKEY,
6604 INFINIBAND_PKEY__ACCESS, &ad);
6605}
6606
6607static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6608 u8 port_num)
6609{
6610 struct common_audit_data ad;
6611 int err;
6612 u32 sid = 0;
6613 struct ib_security_struct *sec = ib_sec;
6614 struct lsm_ibendport_audit ibendport;
6615
6616 err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6617 &sid);
6618
6619 if (err)
6620 return err;
6621
6622 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6623 strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6624 ibendport.port = port_num;
6625 ad.u.ibendport = &ibendport;
6626 return avc_has_perm(&selinux_state,
6627 sec->sid, sid,
6628 SECCLASS_INFINIBAND_ENDPORT,
6629 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6630}
6631
6632static int selinux_ib_alloc_security(void **ib_sec)
6633{
6634 struct ib_security_struct *sec;
6635
6636 sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6637 if (!sec)
6638 return -ENOMEM;
6639 sec->sid = current_sid();
6640
6641 *ib_sec = sec;
6642 return 0;
6643}
6644
6645static void selinux_ib_free_security(void *ib_sec)
6646{
6647 kfree(ib_sec);
6648}
6649#endif
6650
6651#ifdef CONFIG_BPF_SYSCALL
6652static int selinux_bpf(int cmd, union bpf_attr *attr,
6653 unsigned int size)
6654{
6655 u32 sid = current_sid();
6656 int ret;
6657
6658 switch (cmd) {
6659 case BPF_MAP_CREATE:
6660 ret = avc_has_perm(&selinux_state,
6661 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6662 NULL);
6663 break;
6664 case BPF_PROG_LOAD:
6665 ret = avc_has_perm(&selinux_state,
6666 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6667 NULL);
6668 break;
6669 default:
6670 ret = 0;
6671 break;
6672 }
6673
6674 return ret;
6675}
6676
6677static u32 bpf_map_fmode_to_av(fmode_t fmode)
6678{
6679 u32 av = 0;
6680
6681 if (fmode & FMODE_READ)
6682 av |= BPF__MAP_READ;
6683 if (fmode & FMODE_WRITE)
6684 av |= BPF__MAP_WRITE;
6685 return av;
6686}
6687
6688/* This function will check the file pass through unix socket or binder to see
6689 * if it is a bpf related object. And apply correspinding checks on the bpf
6690 * object based on the type. The bpf maps and programs, not like other files and
6691 * socket, are using a shared anonymous inode inside the kernel as their inode.
6692 * So checking that inode cannot identify if the process have privilege to
6693 * access the bpf object and that's why we have to add this additional check in
6694 * selinux_file_receive and selinux_binder_transfer_files.
6695 */
6696static int bpf_fd_pass(struct file *file, u32 sid)
6697{
6698 struct bpf_security_struct *bpfsec;
6699 struct bpf_prog *prog;
6700 struct bpf_map *map;
6701 int ret;
6702
6703 if (file->f_op == &bpf_map_fops) {
6704 map = file->private_data;
6705 bpfsec = map->security;
6706 ret = avc_has_perm(&selinux_state,
6707 sid, bpfsec->sid, SECCLASS_BPF,
6708 bpf_map_fmode_to_av(file->f_mode), NULL);
6709 if (ret)
6710 return ret;
6711 } else if (file->f_op == &bpf_prog_fops) {
6712 prog = file->private_data;
6713 bpfsec = prog->aux->security;
6714 ret = avc_has_perm(&selinux_state,
6715 sid, bpfsec->sid, SECCLASS_BPF,
6716 BPF__PROG_RUN, NULL);
6717 if (ret)
6718 return ret;
6719 }
6720 return 0;
6721}
6722
6723static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6724{
6725 u32 sid = current_sid();
6726 struct bpf_security_struct *bpfsec;
6727
6728 bpfsec = map->security;
6729 return avc_has_perm(&selinux_state,
6730 sid, bpfsec->sid, SECCLASS_BPF,
6731 bpf_map_fmode_to_av(fmode), NULL);
6732}
6733
6734static int selinux_bpf_prog(struct bpf_prog *prog)
6735{
6736 u32 sid = current_sid();
6737 struct bpf_security_struct *bpfsec;
6738
6739 bpfsec = prog->aux->security;
6740 return avc_has_perm(&selinux_state,
6741 sid, bpfsec->sid, SECCLASS_BPF,
6742 BPF__PROG_RUN, NULL);
6743}
6744
6745static int selinux_bpf_map_alloc(struct bpf_map *map)
6746{
6747 struct bpf_security_struct *bpfsec;
6748
6749 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6750 if (!bpfsec)
6751 return -ENOMEM;
6752
6753 bpfsec->sid = current_sid();
6754 map->security = bpfsec;
6755
6756 return 0;
6757}
6758
6759static void selinux_bpf_map_free(struct bpf_map *map)
6760{
6761 struct bpf_security_struct *bpfsec = map->security;
6762
6763 map->security = NULL;
6764 kfree(bpfsec);
6765}
6766
6767static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6768{
6769 struct bpf_security_struct *bpfsec;
6770
6771 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6772 if (!bpfsec)
6773 return -ENOMEM;
6774
6775 bpfsec->sid = current_sid();
6776 aux->security = bpfsec;
6777
6778 return 0;
6779}
6780
6781static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6782{
6783 struct bpf_security_struct *bpfsec = aux->security;
6784
6785 aux->security = NULL;
6786 kfree(bpfsec);
6787}
6788#endif
6789
6790struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6791 .lbs_cred = sizeof(struct task_security_struct),
6792 .lbs_file = sizeof(struct file_security_struct),
6793 .lbs_inode = sizeof(struct inode_security_struct),
6794 .lbs_ipc = sizeof(struct ipc_security_struct),
6795 .lbs_msg_msg = sizeof(struct msg_security_struct),
6796};
6797
6798static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6799 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6800 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6801 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6802 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6803
6804 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6805 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6806 LSM_HOOK_INIT(capget, selinux_capget),
6807 LSM_HOOK_INIT(capset, selinux_capset),
6808 LSM_HOOK_INIT(capable, selinux_capable),
6809 LSM_HOOK_INIT(quotactl, selinux_quotactl),
6810 LSM_HOOK_INIT(quota_on, selinux_quota_on),
6811 LSM_HOOK_INIT(syslog, selinux_syslog),
6812 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6813
6814 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6815
6816 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6817 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6818 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6819
6820 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
6821 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
6822
6823 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6824 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6825 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
6826 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
6827 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6828 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6829 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6830 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6831 LSM_HOOK_INIT(sb_mount, selinux_mount),
6832 LSM_HOOK_INIT(sb_umount, selinux_umount),
6833 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6834 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6835 LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
6836
6837 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6838 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6839
6840 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6841 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6842 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6843 LSM_HOOK_INIT(inode_create, selinux_inode_create),
6844 LSM_HOOK_INIT(inode_link, selinux_inode_link),
6845 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6846 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6847 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6848 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6849 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6850 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6851 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6852 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6853 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6854 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6855 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6856 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6857 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6858 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6859 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6860 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6861 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6862 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6863 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6864 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6865 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6866 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6867 LSM_HOOK_INIT(path_notify, selinux_path_notify),
6868
6869 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
6870
6871 LSM_HOOK_INIT(file_permission, selinux_file_permission),
6872 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6873 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6874 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6875 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6876 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6877 LSM_HOOK_INIT(file_lock, selinux_file_lock),
6878 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6879 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6880 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6881 LSM_HOOK_INIT(file_receive, selinux_file_receive),
6882
6883 LSM_HOOK_INIT(file_open, selinux_file_open),
6884
6885 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6886 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6887 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6888 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6889 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6890 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6891 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6892 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
6893 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6894 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6895 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6896 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6897 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6898 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6899 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6900 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6901 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6902 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6903 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6904 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6905 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6906 LSM_HOOK_INIT(task_kill, selinux_task_kill),
6907 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6908
6909 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6910 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6911
6912 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6913
6914 LSM_HOOK_INIT(msg_queue_alloc_security,
6915 selinux_msg_queue_alloc_security),
6916 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6917 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6918 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6919 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6920
6921 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6922 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6923 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6924 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6925
6926 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6927 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6928 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6929 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6930
6931 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6932
6933 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6934 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6935
6936 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6937 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6938 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6939 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6940 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6941 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6942 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6943 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6944
6945 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6946 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6947
6948 LSM_HOOK_INIT(socket_create, selinux_socket_create),
6949 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6950 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
6951 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6952 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6953 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6954 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6955 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6956 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6957 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6958 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6959 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6960 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6961 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6962 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6963 LSM_HOOK_INIT(socket_getpeersec_stream,
6964 selinux_socket_getpeersec_stream),
6965 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6966 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6967 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6968 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6969 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6970 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6971 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
6972 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
6973 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
6974 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6975 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6976 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6977 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6978 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6979 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6980 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6981 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6982 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6983 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6984 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6985 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6986 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6987#ifdef CONFIG_SECURITY_INFINIBAND
6988 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
6989 LSM_HOOK_INIT(ib_endport_manage_subnet,
6990 selinux_ib_endport_manage_subnet),
6991 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
6992 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
6993#endif
6994#ifdef CONFIG_SECURITY_NETWORK_XFRM
6995 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6996 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6997 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6998 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6999 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7000 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7001 selinux_xfrm_state_alloc_acquire),
7002 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7003 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7004 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7005 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7006 selinux_xfrm_state_pol_flow_match),
7007 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7008#endif
7009
7010#ifdef CONFIG_KEYS
7011 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7012 LSM_HOOK_INIT(key_free, selinux_key_free),
7013 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7014 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7015#endif
7016
7017#ifdef CONFIG_AUDIT
7018 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7019 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7020 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7021 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7022#endif
7023
7024#ifdef CONFIG_BPF_SYSCALL
7025 LSM_HOOK_INIT(bpf, selinux_bpf),
7026 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7027 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7028 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7029 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7030 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7031 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7032#endif
7033};
7034
7035static __init int selinux_init(void)
7036{
7037 pr_info("SELinux: Initializing.\n");
7038
7039 memset(&selinux_state, 0, sizeof(selinux_state));
7040 enforcing_set(&selinux_state, selinux_enforcing_boot);
7041 selinux_state.checkreqprot = selinux_checkreqprot_boot;
7042 selinux_ss_init(&selinux_state.ss);
7043 selinux_avc_init(&selinux_state.avc);
7044
7045 /* Set the security state for the initial task. */
7046 cred_init_security();
7047
7048 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7049
7050 avc_init();
7051
7052 avtab_cache_init();
7053
7054 ebitmap_cache_init();
7055
7056 hashtab_cache_init();
7057
7058 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7059
7060 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7061 panic("SELinux: Unable to register AVC netcache callback\n");
7062
7063 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7064 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7065
7066 if (selinux_enforcing_boot)
7067 pr_debug("SELinux: Starting in enforcing mode\n");
7068 else
7069 pr_debug("SELinux: Starting in permissive mode\n");
7070
7071 fs_validate_description(&selinux_fs_parameters);
7072
7073 return 0;
7074}
7075
7076static void delayed_superblock_init(struct super_block *sb, void *unused)
7077{
7078 selinux_set_mnt_opts(sb, NULL, 0, NULL);
7079}
7080
7081void selinux_complete_init(void)
7082{
7083 pr_debug("SELinux: Completing initialization.\n");
7084
7085 /* Set up any superblocks initialized prior to the policy load. */
7086 pr_debug("SELinux: Setting up existing superblocks.\n");
7087 iterate_supers(delayed_superblock_init, NULL);
7088}
7089
7090/* SELinux requires early initialization in order to label
7091 all processes and objects when they are created. */
7092DEFINE_LSM(selinux) = {
7093 .name = "selinux",
7094 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7095 .enabled = &selinux_enabled,
7096 .blobs = &selinux_blob_sizes,
7097 .init = selinux_init,
7098};
7099
7100#if defined(CONFIG_NETFILTER)
7101
7102static const struct nf_hook_ops selinux_nf_ops[] = {
7103 {
7104 .hook = selinux_ipv4_postroute,
7105 .pf = NFPROTO_IPV4,
7106 .hooknum = NF_INET_POST_ROUTING,
7107 .priority = NF_IP_PRI_SELINUX_LAST,
7108 },
7109 {
7110 .hook = selinux_ipv4_forward,
7111 .pf = NFPROTO_IPV4,
7112 .hooknum = NF_INET_FORWARD,
7113 .priority = NF_IP_PRI_SELINUX_FIRST,
7114 },
7115 {
7116 .hook = selinux_ipv4_output,
7117 .pf = NFPROTO_IPV4,
7118 .hooknum = NF_INET_LOCAL_OUT,
7119 .priority = NF_IP_PRI_SELINUX_FIRST,
7120 },
7121#if IS_ENABLED(CONFIG_IPV6)
7122 {
7123 .hook = selinux_ipv6_postroute,
7124 .pf = NFPROTO_IPV6,
7125 .hooknum = NF_INET_POST_ROUTING,
7126 .priority = NF_IP6_PRI_SELINUX_LAST,
7127 },
7128 {
7129 .hook = selinux_ipv6_forward,
7130 .pf = NFPROTO_IPV6,
7131 .hooknum = NF_INET_FORWARD,
7132 .priority = NF_IP6_PRI_SELINUX_FIRST,
7133 },
7134 {
7135 .hook = selinux_ipv6_output,
7136 .pf = NFPROTO_IPV6,
7137 .hooknum = NF_INET_LOCAL_OUT,
7138 .priority = NF_IP6_PRI_SELINUX_FIRST,
7139 },
7140#endif /* IPV6 */
7141};
7142
7143static int __net_init selinux_nf_register(struct net *net)
7144{
7145 return nf_register_net_hooks(net, selinux_nf_ops,
7146 ARRAY_SIZE(selinux_nf_ops));
7147}
7148
7149static void __net_exit selinux_nf_unregister(struct net *net)
7150{
7151 nf_unregister_net_hooks(net, selinux_nf_ops,
7152 ARRAY_SIZE(selinux_nf_ops));
7153}
7154
7155static struct pernet_operations selinux_net_ops = {
7156 .init = selinux_nf_register,
7157 .exit = selinux_nf_unregister,
7158};
7159
7160static int __init selinux_nf_ip_init(void)
7161{
7162 int err;
7163
7164 if (!selinux_enabled)
7165 return 0;
7166
7167 pr_debug("SELinux: Registering netfilter hooks\n");
7168
7169 err = register_pernet_subsys(&selinux_net_ops);
7170 if (err)
7171 panic("SELinux: register_pernet_subsys: error %d\n", err);
7172
7173 return 0;
7174}
7175__initcall(selinux_nf_ip_init);
7176
7177#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7178static void selinux_nf_ip_exit(void)
7179{
7180 pr_debug("SELinux: Unregistering netfilter hooks\n");
7181
7182 unregister_pernet_subsys(&selinux_net_ops);
7183}
7184#endif
7185
7186#else /* CONFIG_NETFILTER */
7187
7188#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7189#define selinux_nf_ip_exit()
7190#endif
7191
7192#endif /* CONFIG_NETFILTER */
7193
7194#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7195int selinux_disable(struct selinux_state *state)
7196{
7197 if (state->initialized) {
7198 /* Not permitted after initial policy load. */
7199 return -EINVAL;
7200 }
7201
7202 if (state->disabled) {
7203 /* Only do this once. */
7204 return -EINVAL;
7205 }
7206
7207 state->disabled = 1;
7208
7209 pr_info("SELinux: Disabled at runtime.\n");
7210
7211 selinux_enabled = 0;
7212
7213 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7214
7215 /* Try to destroy the avc node cache */
7216 avc_disable();
7217
7218 /* Unregister netfilter hooks. */
7219 selinux_nf_ip_exit();
7220
7221 /* Unregister selinuxfs. */
7222 exit_sel_fs();
7223
7224 return 0;
7225}
7226#endif
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26#include <linux/init.h>
27#include <linux/kd.h>
28#include <linux/kernel.h>
29#include <linux/tracehook.h>
30#include <linux/errno.h>
31#include <linux/sched.h>
32#include <linux/lsm_hooks.h>
33#include <linux/xattr.h>
34#include <linux/capability.h>
35#include <linux/unistd.h>
36#include <linux/mm.h>
37#include <linux/mman.h>
38#include <linux/slab.h>
39#include <linux/pagemap.h>
40#include <linux/proc_fs.h>
41#include <linux/swap.h>
42#include <linux/spinlock.h>
43#include <linux/syscalls.h>
44#include <linux/dcache.h>
45#include <linux/file.h>
46#include <linux/fdtable.h>
47#include <linux/namei.h>
48#include <linux/mount.h>
49#include <linux/netfilter_ipv4.h>
50#include <linux/netfilter_ipv6.h>
51#include <linux/tty.h>
52#include <net/icmp.h>
53#include <net/ip.h> /* for local_port_range[] */
54#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
55#include <net/inet_connection_sock.h>
56#include <net/net_namespace.h>
57#include <net/netlabel.h>
58#include <linux/uaccess.h>
59#include <asm/ioctls.h>
60#include <linux/atomic.h>
61#include <linux/bitops.h>
62#include <linux/interrupt.h>
63#include <linux/netdevice.h> /* for network interface checks */
64#include <net/netlink.h>
65#include <linux/tcp.h>
66#include <linux/udp.h>
67#include <linux/dccp.h>
68#include <linux/quota.h>
69#include <linux/un.h> /* for Unix socket types */
70#include <net/af_unix.h> /* for Unix socket types */
71#include <linux/parser.h>
72#include <linux/nfs_mount.h>
73#include <net/ipv6.h>
74#include <linux/hugetlb.h>
75#include <linux/personality.h>
76#include <linux/audit.h>
77#include <linux/string.h>
78#include <linux/selinux.h>
79#include <linux/mutex.h>
80#include <linux/posix-timers.h>
81#include <linux/syslog.h>
82#include <linux/user_namespace.h>
83#include <linux/export.h>
84#include <linux/msg.h>
85#include <linux/shm.h>
86
87#include "avc.h"
88#include "objsec.h"
89#include "netif.h"
90#include "netnode.h"
91#include "netport.h"
92#include "xfrm.h"
93#include "netlabel.h"
94#include "audit.h"
95#include "avc_ss.h"
96
97/* SECMARK reference count */
98static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
99
100#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
101int selinux_enforcing;
102
103static int __init enforcing_setup(char *str)
104{
105 unsigned long enforcing;
106 if (!kstrtoul(str, 0, &enforcing))
107 selinux_enforcing = enforcing ? 1 : 0;
108 return 1;
109}
110__setup("enforcing=", enforcing_setup);
111#endif
112
113#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
114int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
115
116static int __init selinux_enabled_setup(char *str)
117{
118 unsigned long enabled;
119 if (!kstrtoul(str, 0, &enabled))
120 selinux_enabled = enabled ? 1 : 0;
121 return 1;
122}
123__setup("selinux=", selinux_enabled_setup);
124#else
125int selinux_enabled = 1;
126#endif
127
128static struct kmem_cache *sel_inode_cache;
129static struct kmem_cache *file_security_cache;
130
131/**
132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
133 *
134 * Description:
135 * This function checks the SECMARK reference counter to see if any SECMARK
136 * targets are currently configured, if the reference counter is greater than
137 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
138 * enabled, false (0) if SECMARK is disabled. If the always_check_network
139 * policy capability is enabled, SECMARK is always considered enabled.
140 *
141 */
142static int selinux_secmark_enabled(void)
143{
144 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
145}
146
147/**
148 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
149 *
150 * Description:
151 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
152 * (1) if any are enabled or false (0) if neither are enabled. If the
153 * always_check_network policy capability is enabled, peer labeling
154 * is always considered enabled.
155 *
156 */
157static int selinux_peerlbl_enabled(void)
158{
159 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
160}
161
162static int selinux_netcache_avc_callback(u32 event)
163{
164 if (event == AVC_CALLBACK_RESET) {
165 sel_netif_flush();
166 sel_netnode_flush();
167 sel_netport_flush();
168 synchronize_net();
169 }
170 return 0;
171}
172
173/*
174 * initialise the security for the init task
175 */
176static void cred_init_security(void)
177{
178 struct cred *cred = (struct cred *) current->real_cred;
179 struct task_security_struct *tsec;
180
181 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
182 if (!tsec)
183 panic("SELinux: Failed to initialize initial task.\n");
184
185 tsec->osid = tsec->sid = SECINITSID_KERNEL;
186 cred->security = tsec;
187}
188
189/*
190 * get the security ID of a set of credentials
191 */
192static inline u32 cred_sid(const struct cred *cred)
193{
194 const struct task_security_struct *tsec;
195
196 tsec = cred->security;
197 return tsec->sid;
198}
199
200/*
201 * get the objective security ID of a task
202 */
203static inline u32 task_sid(const struct task_struct *task)
204{
205 u32 sid;
206
207 rcu_read_lock();
208 sid = cred_sid(__task_cred(task));
209 rcu_read_unlock();
210 return sid;
211}
212
213/*
214 * get the subjective security ID of the current task
215 */
216static inline u32 current_sid(void)
217{
218 const struct task_security_struct *tsec = current_security();
219
220 return tsec->sid;
221}
222
223/* Allocate and free functions for each kind of security blob. */
224
225static int inode_alloc_security(struct inode *inode)
226{
227 struct inode_security_struct *isec;
228 u32 sid = current_sid();
229
230 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
231 if (!isec)
232 return -ENOMEM;
233
234 spin_lock_init(&isec->lock);
235 INIT_LIST_HEAD(&isec->list);
236 isec->inode = inode;
237 isec->sid = SECINITSID_UNLABELED;
238 isec->sclass = SECCLASS_FILE;
239 isec->task_sid = sid;
240 isec->initialized = LABEL_INVALID;
241 inode->i_security = isec;
242
243 return 0;
244}
245
246static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
247
248/*
249 * Try reloading inode security labels that have been marked as invalid. The
250 * @may_sleep parameter indicates when sleeping and thus reloading labels is
251 * allowed; when set to false, returns -ECHILD when the label is
252 * invalid. The @opt_dentry parameter should be set to a dentry of the inode;
253 * when no dentry is available, set it to NULL instead.
254 */
255static int __inode_security_revalidate(struct inode *inode,
256 struct dentry *opt_dentry,
257 bool may_sleep)
258{
259 struct inode_security_struct *isec = inode->i_security;
260
261 might_sleep_if(may_sleep);
262
263 if (ss_initialized && isec->initialized != LABEL_INITIALIZED) {
264 if (!may_sleep)
265 return -ECHILD;
266
267 /*
268 * Try reloading the inode security label. This will fail if
269 * @opt_dentry is NULL and no dentry for this inode can be
270 * found; in that case, continue using the old label.
271 */
272 inode_doinit_with_dentry(inode, opt_dentry);
273 }
274 return 0;
275}
276
277static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
278{
279 return inode->i_security;
280}
281
282static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
283{
284 int error;
285
286 error = __inode_security_revalidate(inode, NULL, !rcu);
287 if (error)
288 return ERR_PTR(error);
289 return inode->i_security;
290}
291
292/*
293 * Get the security label of an inode.
294 */
295static struct inode_security_struct *inode_security(struct inode *inode)
296{
297 __inode_security_revalidate(inode, NULL, true);
298 return inode->i_security;
299}
300
301static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
302{
303 struct inode *inode = d_backing_inode(dentry);
304
305 return inode->i_security;
306}
307
308/*
309 * Get the security label of a dentry's backing inode.
310 */
311static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
312{
313 struct inode *inode = d_backing_inode(dentry);
314
315 __inode_security_revalidate(inode, dentry, true);
316 return inode->i_security;
317}
318
319static void inode_free_rcu(struct rcu_head *head)
320{
321 struct inode_security_struct *isec;
322
323 isec = container_of(head, struct inode_security_struct, rcu);
324 kmem_cache_free(sel_inode_cache, isec);
325}
326
327static void inode_free_security(struct inode *inode)
328{
329 struct inode_security_struct *isec = inode->i_security;
330 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
331
332 /*
333 * As not all inode security structures are in a list, we check for
334 * empty list outside of the lock to make sure that we won't waste
335 * time taking a lock doing nothing.
336 *
337 * The list_del_init() function can be safely called more than once.
338 * It should not be possible for this function to be called with
339 * concurrent list_add(), but for better safety against future changes
340 * in the code, we use list_empty_careful() here.
341 */
342 if (!list_empty_careful(&isec->list)) {
343 spin_lock(&sbsec->isec_lock);
344 list_del_init(&isec->list);
345 spin_unlock(&sbsec->isec_lock);
346 }
347
348 /*
349 * The inode may still be referenced in a path walk and
350 * a call to selinux_inode_permission() can be made
351 * after inode_free_security() is called. Ideally, the VFS
352 * wouldn't do this, but fixing that is a much harder
353 * job. For now, simply free the i_security via RCU, and
354 * leave the current inode->i_security pointer intact.
355 * The inode will be freed after the RCU grace period too.
356 */
357 call_rcu(&isec->rcu, inode_free_rcu);
358}
359
360static int file_alloc_security(struct file *file)
361{
362 struct file_security_struct *fsec;
363 u32 sid = current_sid();
364
365 fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
366 if (!fsec)
367 return -ENOMEM;
368
369 fsec->sid = sid;
370 fsec->fown_sid = sid;
371 file->f_security = fsec;
372
373 return 0;
374}
375
376static void file_free_security(struct file *file)
377{
378 struct file_security_struct *fsec = file->f_security;
379 file->f_security = NULL;
380 kmem_cache_free(file_security_cache, fsec);
381}
382
383static int superblock_alloc_security(struct super_block *sb)
384{
385 struct superblock_security_struct *sbsec;
386
387 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
388 if (!sbsec)
389 return -ENOMEM;
390
391 mutex_init(&sbsec->lock);
392 INIT_LIST_HEAD(&sbsec->isec_head);
393 spin_lock_init(&sbsec->isec_lock);
394 sbsec->sb = sb;
395 sbsec->sid = SECINITSID_UNLABELED;
396 sbsec->def_sid = SECINITSID_FILE;
397 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
398 sb->s_security = sbsec;
399
400 return 0;
401}
402
403static void superblock_free_security(struct super_block *sb)
404{
405 struct superblock_security_struct *sbsec = sb->s_security;
406 sb->s_security = NULL;
407 kfree(sbsec);
408}
409
410/* The file system's label must be initialized prior to use. */
411
412static const char *labeling_behaviors[7] = {
413 "uses xattr",
414 "uses transition SIDs",
415 "uses task SIDs",
416 "uses genfs_contexts",
417 "not configured for labeling",
418 "uses mountpoint labeling",
419 "uses native labeling",
420};
421
422static inline int inode_doinit(struct inode *inode)
423{
424 return inode_doinit_with_dentry(inode, NULL);
425}
426
427enum {
428 Opt_error = -1,
429 Opt_context = 1,
430 Opt_fscontext = 2,
431 Opt_defcontext = 3,
432 Opt_rootcontext = 4,
433 Opt_labelsupport = 5,
434 Opt_nextmntopt = 6,
435};
436
437#define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
438
439static const match_table_t tokens = {
440 {Opt_context, CONTEXT_STR "%s"},
441 {Opt_fscontext, FSCONTEXT_STR "%s"},
442 {Opt_defcontext, DEFCONTEXT_STR "%s"},
443 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
444 {Opt_labelsupport, LABELSUPP_STR},
445 {Opt_error, NULL},
446};
447
448#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
449
450static int may_context_mount_sb_relabel(u32 sid,
451 struct superblock_security_struct *sbsec,
452 const struct cred *cred)
453{
454 const struct task_security_struct *tsec = cred->security;
455 int rc;
456
457 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
458 FILESYSTEM__RELABELFROM, NULL);
459 if (rc)
460 return rc;
461
462 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
463 FILESYSTEM__RELABELTO, NULL);
464 return rc;
465}
466
467static int may_context_mount_inode_relabel(u32 sid,
468 struct superblock_security_struct *sbsec,
469 const struct cred *cred)
470{
471 const struct task_security_struct *tsec = cred->security;
472 int rc;
473 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
474 FILESYSTEM__RELABELFROM, NULL);
475 if (rc)
476 return rc;
477
478 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
479 FILESYSTEM__ASSOCIATE, NULL);
480 return rc;
481}
482
483static int selinux_is_sblabel_mnt(struct super_block *sb)
484{
485 struct superblock_security_struct *sbsec = sb->s_security;
486
487 return sbsec->behavior == SECURITY_FS_USE_XATTR ||
488 sbsec->behavior == SECURITY_FS_USE_TRANS ||
489 sbsec->behavior == SECURITY_FS_USE_TASK ||
490 sbsec->behavior == SECURITY_FS_USE_NATIVE ||
491 /* Special handling. Genfs but also in-core setxattr handler */
492 !strcmp(sb->s_type->name, "sysfs") ||
493 !strcmp(sb->s_type->name, "pstore") ||
494 !strcmp(sb->s_type->name, "debugfs") ||
495 !strcmp(sb->s_type->name, "rootfs");
496}
497
498static int sb_finish_set_opts(struct super_block *sb)
499{
500 struct superblock_security_struct *sbsec = sb->s_security;
501 struct dentry *root = sb->s_root;
502 struct inode *root_inode = d_backing_inode(root);
503 int rc = 0;
504
505 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
506 /* Make sure that the xattr handler exists and that no
507 error other than -ENODATA is returned by getxattr on
508 the root directory. -ENODATA is ok, as this may be
509 the first boot of the SELinux kernel before we have
510 assigned xattr values to the filesystem. */
511 if (!(root_inode->i_opflags & IOP_XATTR)) {
512 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
513 "xattr support\n", sb->s_id, sb->s_type->name);
514 rc = -EOPNOTSUPP;
515 goto out;
516 }
517
518 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
519 if (rc < 0 && rc != -ENODATA) {
520 if (rc == -EOPNOTSUPP)
521 printk(KERN_WARNING "SELinux: (dev %s, type "
522 "%s) has no security xattr handler\n",
523 sb->s_id, sb->s_type->name);
524 else
525 printk(KERN_WARNING "SELinux: (dev %s, type "
526 "%s) getxattr errno %d\n", sb->s_id,
527 sb->s_type->name, -rc);
528 goto out;
529 }
530 }
531
532 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
533 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
534 sb->s_id, sb->s_type->name);
535
536 sbsec->flags |= SE_SBINITIALIZED;
537 if (selinux_is_sblabel_mnt(sb))
538 sbsec->flags |= SBLABEL_MNT;
539
540 /* Initialize the root inode. */
541 rc = inode_doinit_with_dentry(root_inode, root);
542
543 /* Initialize any other inodes associated with the superblock, e.g.
544 inodes created prior to initial policy load or inodes created
545 during get_sb by a pseudo filesystem that directly
546 populates itself. */
547 spin_lock(&sbsec->isec_lock);
548next_inode:
549 if (!list_empty(&sbsec->isec_head)) {
550 struct inode_security_struct *isec =
551 list_entry(sbsec->isec_head.next,
552 struct inode_security_struct, list);
553 struct inode *inode = isec->inode;
554 list_del_init(&isec->list);
555 spin_unlock(&sbsec->isec_lock);
556 inode = igrab(inode);
557 if (inode) {
558 if (!IS_PRIVATE(inode))
559 inode_doinit(inode);
560 iput(inode);
561 }
562 spin_lock(&sbsec->isec_lock);
563 goto next_inode;
564 }
565 spin_unlock(&sbsec->isec_lock);
566out:
567 return rc;
568}
569
570/*
571 * This function should allow an FS to ask what it's mount security
572 * options were so it can use those later for submounts, displaying
573 * mount options, or whatever.
574 */
575static int selinux_get_mnt_opts(const struct super_block *sb,
576 struct security_mnt_opts *opts)
577{
578 int rc = 0, i;
579 struct superblock_security_struct *sbsec = sb->s_security;
580 char *context = NULL;
581 u32 len;
582 char tmp;
583
584 security_init_mnt_opts(opts);
585
586 if (!(sbsec->flags & SE_SBINITIALIZED))
587 return -EINVAL;
588
589 if (!ss_initialized)
590 return -EINVAL;
591
592 /* make sure we always check enough bits to cover the mask */
593 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
594
595 tmp = sbsec->flags & SE_MNTMASK;
596 /* count the number of mount options for this sb */
597 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
598 if (tmp & 0x01)
599 opts->num_mnt_opts++;
600 tmp >>= 1;
601 }
602 /* Check if the Label support flag is set */
603 if (sbsec->flags & SBLABEL_MNT)
604 opts->num_mnt_opts++;
605
606 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
607 if (!opts->mnt_opts) {
608 rc = -ENOMEM;
609 goto out_free;
610 }
611
612 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
613 if (!opts->mnt_opts_flags) {
614 rc = -ENOMEM;
615 goto out_free;
616 }
617
618 i = 0;
619 if (sbsec->flags & FSCONTEXT_MNT) {
620 rc = security_sid_to_context(sbsec->sid, &context, &len);
621 if (rc)
622 goto out_free;
623 opts->mnt_opts[i] = context;
624 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
625 }
626 if (sbsec->flags & CONTEXT_MNT) {
627 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
628 if (rc)
629 goto out_free;
630 opts->mnt_opts[i] = context;
631 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
632 }
633 if (sbsec->flags & DEFCONTEXT_MNT) {
634 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
635 if (rc)
636 goto out_free;
637 opts->mnt_opts[i] = context;
638 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
639 }
640 if (sbsec->flags & ROOTCONTEXT_MNT) {
641 struct dentry *root = sbsec->sb->s_root;
642 struct inode_security_struct *isec = backing_inode_security(root);
643
644 rc = security_sid_to_context(isec->sid, &context, &len);
645 if (rc)
646 goto out_free;
647 opts->mnt_opts[i] = context;
648 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
649 }
650 if (sbsec->flags & SBLABEL_MNT) {
651 opts->mnt_opts[i] = NULL;
652 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
653 }
654
655 BUG_ON(i != opts->num_mnt_opts);
656
657 return 0;
658
659out_free:
660 security_free_mnt_opts(opts);
661 return rc;
662}
663
664static int bad_option(struct superblock_security_struct *sbsec, char flag,
665 u32 old_sid, u32 new_sid)
666{
667 char mnt_flags = sbsec->flags & SE_MNTMASK;
668
669 /* check if the old mount command had the same options */
670 if (sbsec->flags & SE_SBINITIALIZED)
671 if (!(sbsec->flags & flag) ||
672 (old_sid != new_sid))
673 return 1;
674
675 /* check if we were passed the same options twice,
676 * aka someone passed context=a,context=b
677 */
678 if (!(sbsec->flags & SE_SBINITIALIZED))
679 if (mnt_flags & flag)
680 return 1;
681 return 0;
682}
683
684/*
685 * Allow filesystems with binary mount data to explicitly set mount point
686 * labeling information.
687 */
688static int selinux_set_mnt_opts(struct super_block *sb,
689 struct security_mnt_opts *opts,
690 unsigned long kern_flags,
691 unsigned long *set_kern_flags)
692{
693 const struct cred *cred = current_cred();
694 int rc = 0, i;
695 struct superblock_security_struct *sbsec = sb->s_security;
696 const char *name = sb->s_type->name;
697 struct dentry *root = sbsec->sb->s_root;
698 struct inode_security_struct *root_isec;
699 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
700 u32 defcontext_sid = 0;
701 char **mount_options = opts->mnt_opts;
702 int *flags = opts->mnt_opts_flags;
703 int num_opts = opts->num_mnt_opts;
704
705 mutex_lock(&sbsec->lock);
706
707 if (!ss_initialized) {
708 if (!num_opts) {
709 /* Defer initialization until selinux_complete_init,
710 after the initial policy is loaded and the security
711 server is ready to handle calls. */
712 goto out;
713 }
714 rc = -EINVAL;
715 printk(KERN_WARNING "SELinux: Unable to set superblock options "
716 "before the security server is initialized\n");
717 goto out;
718 }
719 if (kern_flags && !set_kern_flags) {
720 /* Specifying internal flags without providing a place to
721 * place the results is not allowed */
722 rc = -EINVAL;
723 goto out;
724 }
725
726 /*
727 * Binary mount data FS will come through this function twice. Once
728 * from an explicit call and once from the generic calls from the vfs.
729 * Since the generic VFS calls will not contain any security mount data
730 * we need to skip the double mount verification.
731 *
732 * This does open a hole in which we will not notice if the first
733 * mount using this sb set explict options and a second mount using
734 * this sb does not set any security options. (The first options
735 * will be used for both mounts)
736 */
737 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
738 && (num_opts == 0))
739 goto out;
740
741 root_isec = backing_inode_security_novalidate(root);
742
743 /*
744 * parse the mount options, check if they are valid sids.
745 * also check if someone is trying to mount the same sb more
746 * than once with different security options.
747 */
748 for (i = 0; i < num_opts; i++) {
749 u32 sid;
750
751 if (flags[i] == SBLABEL_MNT)
752 continue;
753 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
754 if (rc) {
755 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
756 "(%s) failed for (dev %s, type %s) errno=%d\n",
757 mount_options[i], sb->s_id, name, rc);
758 goto out;
759 }
760 switch (flags[i]) {
761 case FSCONTEXT_MNT:
762 fscontext_sid = sid;
763
764 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
765 fscontext_sid))
766 goto out_double_mount;
767
768 sbsec->flags |= FSCONTEXT_MNT;
769 break;
770 case CONTEXT_MNT:
771 context_sid = sid;
772
773 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
774 context_sid))
775 goto out_double_mount;
776
777 sbsec->flags |= CONTEXT_MNT;
778 break;
779 case ROOTCONTEXT_MNT:
780 rootcontext_sid = sid;
781
782 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
783 rootcontext_sid))
784 goto out_double_mount;
785
786 sbsec->flags |= ROOTCONTEXT_MNT;
787
788 break;
789 case DEFCONTEXT_MNT:
790 defcontext_sid = sid;
791
792 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
793 defcontext_sid))
794 goto out_double_mount;
795
796 sbsec->flags |= DEFCONTEXT_MNT;
797
798 break;
799 default:
800 rc = -EINVAL;
801 goto out;
802 }
803 }
804
805 if (sbsec->flags & SE_SBINITIALIZED) {
806 /* previously mounted with options, but not on this attempt? */
807 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
808 goto out_double_mount;
809 rc = 0;
810 goto out;
811 }
812
813 if (strcmp(sb->s_type->name, "proc") == 0)
814 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
815
816 if (!strcmp(sb->s_type->name, "debugfs") ||
817 !strcmp(sb->s_type->name, "sysfs") ||
818 !strcmp(sb->s_type->name, "pstore"))
819 sbsec->flags |= SE_SBGENFS;
820
821 if (!sbsec->behavior) {
822 /*
823 * Determine the labeling behavior to use for this
824 * filesystem type.
825 */
826 rc = security_fs_use(sb);
827 if (rc) {
828 printk(KERN_WARNING
829 "%s: security_fs_use(%s) returned %d\n",
830 __func__, sb->s_type->name, rc);
831 goto out;
832 }
833 }
834
835 /*
836 * If this is a user namespace mount, no contexts are allowed
837 * on the command line and security labels must be ignored.
838 */
839 if (sb->s_user_ns != &init_user_ns) {
840 if (context_sid || fscontext_sid || rootcontext_sid ||
841 defcontext_sid) {
842 rc = -EACCES;
843 goto out;
844 }
845 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
846 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
847 rc = security_transition_sid(current_sid(), current_sid(),
848 SECCLASS_FILE, NULL,
849 &sbsec->mntpoint_sid);
850 if (rc)
851 goto out;
852 }
853 goto out_set_opts;
854 }
855
856 /* sets the context of the superblock for the fs being mounted. */
857 if (fscontext_sid) {
858 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
859 if (rc)
860 goto out;
861
862 sbsec->sid = fscontext_sid;
863 }
864
865 /*
866 * Switch to using mount point labeling behavior.
867 * sets the label used on all file below the mountpoint, and will set
868 * the superblock context if not already set.
869 */
870 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
871 sbsec->behavior = SECURITY_FS_USE_NATIVE;
872 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
873 }
874
875 if (context_sid) {
876 if (!fscontext_sid) {
877 rc = may_context_mount_sb_relabel(context_sid, sbsec,
878 cred);
879 if (rc)
880 goto out;
881 sbsec->sid = context_sid;
882 } else {
883 rc = may_context_mount_inode_relabel(context_sid, sbsec,
884 cred);
885 if (rc)
886 goto out;
887 }
888 if (!rootcontext_sid)
889 rootcontext_sid = context_sid;
890
891 sbsec->mntpoint_sid = context_sid;
892 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
893 }
894
895 if (rootcontext_sid) {
896 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
897 cred);
898 if (rc)
899 goto out;
900
901 root_isec->sid = rootcontext_sid;
902 root_isec->initialized = LABEL_INITIALIZED;
903 }
904
905 if (defcontext_sid) {
906 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
907 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
908 rc = -EINVAL;
909 printk(KERN_WARNING "SELinux: defcontext option is "
910 "invalid for this filesystem type\n");
911 goto out;
912 }
913
914 if (defcontext_sid != sbsec->def_sid) {
915 rc = may_context_mount_inode_relabel(defcontext_sid,
916 sbsec, cred);
917 if (rc)
918 goto out;
919 }
920
921 sbsec->def_sid = defcontext_sid;
922 }
923
924out_set_opts:
925 rc = sb_finish_set_opts(sb);
926out:
927 mutex_unlock(&sbsec->lock);
928 return rc;
929out_double_mount:
930 rc = -EINVAL;
931 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
932 "security settings for (dev %s, type %s)\n", sb->s_id, name);
933 goto out;
934}
935
936static int selinux_cmp_sb_context(const struct super_block *oldsb,
937 const struct super_block *newsb)
938{
939 struct superblock_security_struct *old = oldsb->s_security;
940 struct superblock_security_struct *new = newsb->s_security;
941 char oldflags = old->flags & SE_MNTMASK;
942 char newflags = new->flags & SE_MNTMASK;
943
944 if (oldflags != newflags)
945 goto mismatch;
946 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
947 goto mismatch;
948 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
949 goto mismatch;
950 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
951 goto mismatch;
952 if (oldflags & ROOTCONTEXT_MNT) {
953 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
954 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
955 if (oldroot->sid != newroot->sid)
956 goto mismatch;
957 }
958 return 0;
959mismatch:
960 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
961 "different security settings for (dev %s, "
962 "type %s)\n", newsb->s_id, newsb->s_type->name);
963 return -EBUSY;
964}
965
966static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
967 struct super_block *newsb)
968{
969 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
970 struct superblock_security_struct *newsbsec = newsb->s_security;
971
972 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
973 int set_context = (oldsbsec->flags & CONTEXT_MNT);
974 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
975
976 /*
977 * if the parent was able to be mounted it clearly had no special lsm
978 * mount options. thus we can safely deal with this superblock later
979 */
980 if (!ss_initialized)
981 return 0;
982
983 /* how can we clone if the old one wasn't set up?? */
984 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
985
986 /* if fs is reusing a sb, make sure that the contexts match */
987 if (newsbsec->flags & SE_SBINITIALIZED)
988 return selinux_cmp_sb_context(oldsb, newsb);
989
990 mutex_lock(&newsbsec->lock);
991
992 newsbsec->flags = oldsbsec->flags;
993
994 newsbsec->sid = oldsbsec->sid;
995 newsbsec->def_sid = oldsbsec->def_sid;
996 newsbsec->behavior = oldsbsec->behavior;
997
998 if (set_context) {
999 u32 sid = oldsbsec->mntpoint_sid;
1000
1001 if (!set_fscontext)
1002 newsbsec->sid = sid;
1003 if (!set_rootcontext) {
1004 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1005 newisec->sid = sid;
1006 }
1007 newsbsec->mntpoint_sid = sid;
1008 }
1009 if (set_rootcontext) {
1010 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1011 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1012
1013 newisec->sid = oldisec->sid;
1014 }
1015
1016 sb_finish_set_opts(newsb);
1017 mutex_unlock(&newsbsec->lock);
1018 return 0;
1019}
1020
1021static int selinux_parse_opts_str(char *options,
1022 struct security_mnt_opts *opts)
1023{
1024 char *p;
1025 char *context = NULL, *defcontext = NULL;
1026 char *fscontext = NULL, *rootcontext = NULL;
1027 int rc, num_mnt_opts = 0;
1028
1029 opts->num_mnt_opts = 0;
1030
1031 /* Standard string-based options. */
1032 while ((p = strsep(&options, "|")) != NULL) {
1033 int token;
1034 substring_t args[MAX_OPT_ARGS];
1035
1036 if (!*p)
1037 continue;
1038
1039 token = match_token(p, tokens, args);
1040
1041 switch (token) {
1042 case Opt_context:
1043 if (context || defcontext) {
1044 rc = -EINVAL;
1045 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1046 goto out_err;
1047 }
1048 context = match_strdup(&args[0]);
1049 if (!context) {
1050 rc = -ENOMEM;
1051 goto out_err;
1052 }
1053 break;
1054
1055 case Opt_fscontext:
1056 if (fscontext) {
1057 rc = -EINVAL;
1058 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1059 goto out_err;
1060 }
1061 fscontext = match_strdup(&args[0]);
1062 if (!fscontext) {
1063 rc = -ENOMEM;
1064 goto out_err;
1065 }
1066 break;
1067
1068 case Opt_rootcontext:
1069 if (rootcontext) {
1070 rc = -EINVAL;
1071 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1072 goto out_err;
1073 }
1074 rootcontext = match_strdup(&args[0]);
1075 if (!rootcontext) {
1076 rc = -ENOMEM;
1077 goto out_err;
1078 }
1079 break;
1080
1081 case Opt_defcontext:
1082 if (context || defcontext) {
1083 rc = -EINVAL;
1084 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1085 goto out_err;
1086 }
1087 defcontext = match_strdup(&args[0]);
1088 if (!defcontext) {
1089 rc = -ENOMEM;
1090 goto out_err;
1091 }
1092 break;
1093 case Opt_labelsupport:
1094 break;
1095 default:
1096 rc = -EINVAL;
1097 printk(KERN_WARNING "SELinux: unknown mount option\n");
1098 goto out_err;
1099
1100 }
1101 }
1102
1103 rc = -ENOMEM;
1104 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1105 if (!opts->mnt_opts)
1106 goto out_err;
1107
1108 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1109 GFP_KERNEL);
1110 if (!opts->mnt_opts_flags) {
1111 kfree(opts->mnt_opts);
1112 goto out_err;
1113 }
1114
1115 if (fscontext) {
1116 opts->mnt_opts[num_mnt_opts] = fscontext;
1117 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1118 }
1119 if (context) {
1120 opts->mnt_opts[num_mnt_opts] = context;
1121 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1122 }
1123 if (rootcontext) {
1124 opts->mnt_opts[num_mnt_opts] = rootcontext;
1125 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1126 }
1127 if (defcontext) {
1128 opts->mnt_opts[num_mnt_opts] = defcontext;
1129 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1130 }
1131
1132 opts->num_mnt_opts = num_mnt_opts;
1133 return 0;
1134
1135out_err:
1136 kfree(context);
1137 kfree(defcontext);
1138 kfree(fscontext);
1139 kfree(rootcontext);
1140 return rc;
1141}
1142/*
1143 * string mount options parsing and call set the sbsec
1144 */
1145static int superblock_doinit(struct super_block *sb, void *data)
1146{
1147 int rc = 0;
1148 char *options = data;
1149 struct security_mnt_opts opts;
1150
1151 security_init_mnt_opts(&opts);
1152
1153 if (!data)
1154 goto out;
1155
1156 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1157
1158 rc = selinux_parse_opts_str(options, &opts);
1159 if (rc)
1160 goto out_err;
1161
1162out:
1163 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1164
1165out_err:
1166 security_free_mnt_opts(&opts);
1167 return rc;
1168}
1169
1170static void selinux_write_opts(struct seq_file *m,
1171 struct security_mnt_opts *opts)
1172{
1173 int i;
1174 char *prefix;
1175
1176 for (i = 0; i < opts->num_mnt_opts; i++) {
1177 char *has_comma;
1178
1179 if (opts->mnt_opts[i])
1180 has_comma = strchr(opts->mnt_opts[i], ',');
1181 else
1182 has_comma = NULL;
1183
1184 switch (opts->mnt_opts_flags[i]) {
1185 case CONTEXT_MNT:
1186 prefix = CONTEXT_STR;
1187 break;
1188 case FSCONTEXT_MNT:
1189 prefix = FSCONTEXT_STR;
1190 break;
1191 case ROOTCONTEXT_MNT:
1192 prefix = ROOTCONTEXT_STR;
1193 break;
1194 case DEFCONTEXT_MNT:
1195 prefix = DEFCONTEXT_STR;
1196 break;
1197 case SBLABEL_MNT:
1198 seq_putc(m, ',');
1199 seq_puts(m, LABELSUPP_STR);
1200 continue;
1201 default:
1202 BUG();
1203 return;
1204 };
1205 /* we need a comma before each option */
1206 seq_putc(m, ',');
1207 seq_puts(m, prefix);
1208 if (has_comma)
1209 seq_putc(m, '\"');
1210 seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1211 if (has_comma)
1212 seq_putc(m, '\"');
1213 }
1214}
1215
1216static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1217{
1218 struct security_mnt_opts opts;
1219 int rc;
1220
1221 rc = selinux_get_mnt_opts(sb, &opts);
1222 if (rc) {
1223 /* before policy load we may get EINVAL, don't show anything */
1224 if (rc == -EINVAL)
1225 rc = 0;
1226 return rc;
1227 }
1228
1229 selinux_write_opts(m, &opts);
1230
1231 security_free_mnt_opts(&opts);
1232
1233 return rc;
1234}
1235
1236static inline u16 inode_mode_to_security_class(umode_t mode)
1237{
1238 switch (mode & S_IFMT) {
1239 case S_IFSOCK:
1240 return SECCLASS_SOCK_FILE;
1241 case S_IFLNK:
1242 return SECCLASS_LNK_FILE;
1243 case S_IFREG:
1244 return SECCLASS_FILE;
1245 case S_IFBLK:
1246 return SECCLASS_BLK_FILE;
1247 case S_IFDIR:
1248 return SECCLASS_DIR;
1249 case S_IFCHR:
1250 return SECCLASS_CHR_FILE;
1251 case S_IFIFO:
1252 return SECCLASS_FIFO_FILE;
1253
1254 }
1255
1256 return SECCLASS_FILE;
1257}
1258
1259static inline int default_protocol_stream(int protocol)
1260{
1261 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1262}
1263
1264static inline int default_protocol_dgram(int protocol)
1265{
1266 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1267}
1268
1269static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1270{
1271 switch (family) {
1272 case PF_UNIX:
1273 switch (type) {
1274 case SOCK_STREAM:
1275 case SOCK_SEQPACKET:
1276 return SECCLASS_UNIX_STREAM_SOCKET;
1277 case SOCK_DGRAM:
1278 return SECCLASS_UNIX_DGRAM_SOCKET;
1279 }
1280 break;
1281 case PF_INET:
1282 case PF_INET6:
1283 switch (type) {
1284 case SOCK_STREAM:
1285 if (default_protocol_stream(protocol))
1286 return SECCLASS_TCP_SOCKET;
1287 else
1288 return SECCLASS_RAWIP_SOCKET;
1289 case SOCK_DGRAM:
1290 if (default_protocol_dgram(protocol))
1291 return SECCLASS_UDP_SOCKET;
1292 else
1293 return SECCLASS_RAWIP_SOCKET;
1294 case SOCK_DCCP:
1295 return SECCLASS_DCCP_SOCKET;
1296 default:
1297 return SECCLASS_RAWIP_SOCKET;
1298 }
1299 break;
1300 case PF_NETLINK:
1301 switch (protocol) {
1302 case NETLINK_ROUTE:
1303 return SECCLASS_NETLINK_ROUTE_SOCKET;
1304 case NETLINK_SOCK_DIAG:
1305 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1306 case NETLINK_NFLOG:
1307 return SECCLASS_NETLINK_NFLOG_SOCKET;
1308 case NETLINK_XFRM:
1309 return SECCLASS_NETLINK_XFRM_SOCKET;
1310 case NETLINK_SELINUX:
1311 return SECCLASS_NETLINK_SELINUX_SOCKET;
1312 case NETLINK_ISCSI:
1313 return SECCLASS_NETLINK_ISCSI_SOCKET;
1314 case NETLINK_AUDIT:
1315 return SECCLASS_NETLINK_AUDIT_SOCKET;
1316 case NETLINK_FIB_LOOKUP:
1317 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1318 case NETLINK_CONNECTOR:
1319 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1320 case NETLINK_NETFILTER:
1321 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1322 case NETLINK_DNRTMSG:
1323 return SECCLASS_NETLINK_DNRT_SOCKET;
1324 case NETLINK_KOBJECT_UEVENT:
1325 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1326 case NETLINK_GENERIC:
1327 return SECCLASS_NETLINK_GENERIC_SOCKET;
1328 case NETLINK_SCSITRANSPORT:
1329 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1330 case NETLINK_RDMA:
1331 return SECCLASS_NETLINK_RDMA_SOCKET;
1332 case NETLINK_CRYPTO:
1333 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1334 default:
1335 return SECCLASS_NETLINK_SOCKET;
1336 }
1337 case PF_PACKET:
1338 return SECCLASS_PACKET_SOCKET;
1339 case PF_KEY:
1340 return SECCLASS_KEY_SOCKET;
1341 case PF_APPLETALK:
1342 return SECCLASS_APPLETALK_SOCKET;
1343 }
1344
1345 return SECCLASS_SOCKET;
1346}
1347
1348static int selinux_genfs_get_sid(struct dentry *dentry,
1349 u16 tclass,
1350 u16 flags,
1351 u32 *sid)
1352{
1353 int rc;
1354 struct super_block *sb = dentry->d_sb;
1355 char *buffer, *path;
1356
1357 buffer = (char *)__get_free_page(GFP_KERNEL);
1358 if (!buffer)
1359 return -ENOMEM;
1360
1361 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1362 if (IS_ERR(path))
1363 rc = PTR_ERR(path);
1364 else {
1365 if (flags & SE_SBPROC) {
1366 /* each process gets a /proc/PID/ entry. Strip off the
1367 * PID part to get a valid selinux labeling.
1368 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1369 while (path[1] >= '0' && path[1] <= '9') {
1370 path[1] = '/';
1371 path++;
1372 }
1373 }
1374 rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
1375 }
1376 free_page((unsigned long)buffer);
1377 return rc;
1378}
1379
1380/* The inode's security attributes must be initialized before first use. */
1381static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1382{
1383 struct superblock_security_struct *sbsec = NULL;
1384 struct inode_security_struct *isec = inode->i_security;
1385 u32 task_sid, sid = 0;
1386 u16 sclass;
1387 struct dentry *dentry;
1388#define INITCONTEXTLEN 255
1389 char *context = NULL;
1390 unsigned len = 0;
1391 int rc = 0;
1392
1393 if (isec->initialized == LABEL_INITIALIZED)
1394 return 0;
1395
1396 spin_lock(&isec->lock);
1397 if (isec->initialized == LABEL_INITIALIZED)
1398 goto out_unlock;
1399
1400 if (isec->sclass == SECCLASS_FILE)
1401 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1402
1403 sbsec = inode->i_sb->s_security;
1404 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1405 /* Defer initialization until selinux_complete_init,
1406 after the initial policy is loaded and the security
1407 server is ready to handle calls. */
1408 spin_lock(&sbsec->isec_lock);
1409 if (list_empty(&isec->list))
1410 list_add(&isec->list, &sbsec->isec_head);
1411 spin_unlock(&sbsec->isec_lock);
1412 goto out_unlock;
1413 }
1414
1415 sclass = isec->sclass;
1416 task_sid = isec->task_sid;
1417 sid = isec->sid;
1418 isec->initialized = LABEL_PENDING;
1419 spin_unlock(&isec->lock);
1420
1421 switch (sbsec->behavior) {
1422 case SECURITY_FS_USE_NATIVE:
1423 break;
1424 case SECURITY_FS_USE_XATTR:
1425 if (!(inode->i_opflags & IOP_XATTR)) {
1426 sid = sbsec->def_sid;
1427 break;
1428 }
1429 /* Need a dentry, since the xattr API requires one.
1430 Life would be simpler if we could just pass the inode. */
1431 if (opt_dentry) {
1432 /* Called from d_instantiate or d_splice_alias. */
1433 dentry = dget(opt_dentry);
1434 } else {
1435 /* Called from selinux_complete_init, try to find a dentry. */
1436 dentry = d_find_alias(inode);
1437 }
1438 if (!dentry) {
1439 /*
1440 * this is can be hit on boot when a file is accessed
1441 * before the policy is loaded. When we load policy we
1442 * may find inodes that have no dentry on the
1443 * sbsec->isec_head list. No reason to complain as these
1444 * will get fixed up the next time we go through
1445 * inode_doinit with a dentry, before these inodes could
1446 * be used again by userspace.
1447 */
1448 goto out;
1449 }
1450
1451 len = INITCONTEXTLEN;
1452 context = kmalloc(len+1, GFP_NOFS);
1453 if (!context) {
1454 rc = -ENOMEM;
1455 dput(dentry);
1456 goto out;
1457 }
1458 context[len] = '\0';
1459 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1460 if (rc == -ERANGE) {
1461 kfree(context);
1462
1463 /* Need a larger buffer. Query for the right size. */
1464 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1465 if (rc < 0) {
1466 dput(dentry);
1467 goto out;
1468 }
1469 len = rc;
1470 context = kmalloc(len+1, GFP_NOFS);
1471 if (!context) {
1472 rc = -ENOMEM;
1473 dput(dentry);
1474 goto out;
1475 }
1476 context[len] = '\0';
1477 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1478 }
1479 dput(dentry);
1480 if (rc < 0) {
1481 if (rc != -ENODATA) {
1482 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1483 "%d for dev=%s ino=%ld\n", __func__,
1484 -rc, inode->i_sb->s_id, inode->i_ino);
1485 kfree(context);
1486 goto out;
1487 }
1488 /* Map ENODATA to the default file SID */
1489 sid = sbsec->def_sid;
1490 rc = 0;
1491 } else {
1492 rc = security_context_to_sid_default(context, rc, &sid,
1493 sbsec->def_sid,
1494 GFP_NOFS);
1495 if (rc) {
1496 char *dev = inode->i_sb->s_id;
1497 unsigned long ino = inode->i_ino;
1498
1499 if (rc == -EINVAL) {
1500 if (printk_ratelimit())
1501 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1502 "context=%s. This indicates you may need to relabel the inode or the "
1503 "filesystem in question.\n", ino, dev, context);
1504 } else {
1505 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1506 "returned %d for dev=%s ino=%ld\n",
1507 __func__, context, -rc, dev, ino);
1508 }
1509 kfree(context);
1510 /* Leave with the unlabeled SID */
1511 rc = 0;
1512 break;
1513 }
1514 }
1515 kfree(context);
1516 break;
1517 case SECURITY_FS_USE_TASK:
1518 sid = task_sid;
1519 break;
1520 case SECURITY_FS_USE_TRANS:
1521 /* Default to the fs SID. */
1522 sid = sbsec->sid;
1523
1524 /* Try to obtain a transition SID. */
1525 rc = security_transition_sid(task_sid, sid, sclass, NULL, &sid);
1526 if (rc)
1527 goto out;
1528 break;
1529 case SECURITY_FS_USE_MNTPOINT:
1530 sid = sbsec->mntpoint_sid;
1531 break;
1532 default:
1533 /* Default to the fs superblock SID. */
1534 sid = sbsec->sid;
1535
1536 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1537 /* We must have a dentry to determine the label on
1538 * procfs inodes */
1539 if (opt_dentry)
1540 /* Called from d_instantiate or
1541 * d_splice_alias. */
1542 dentry = dget(opt_dentry);
1543 else
1544 /* Called from selinux_complete_init, try to
1545 * find a dentry. */
1546 dentry = d_find_alias(inode);
1547 /*
1548 * This can be hit on boot when a file is accessed
1549 * before the policy is loaded. When we load policy we
1550 * may find inodes that have no dentry on the
1551 * sbsec->isec_head list. No reason to complain as
1552 * these will get fixed up the next time we go through
1553 * inode_doinit() with a dentry, before these inodes
1554 * could be used again by userspace.
1555 */
1556 if (!dentry)
1557 goto out;
1558 rc = selinux_genfs_get_sid(dentry, sclass,
1559 sbsec->flags, &sid);
1560 dput(dentry);
1561 if (rc)
1562 goto out;
1563 }
1564 break;
1565 }
1566
1567out:
1568 spin_lock(&isec->lock);
1569 if (isec->initialized == LABEL_PENDING) {
1570 if (!sid || rc) {
1571 isec->initialized = LABEL_INVALID;
1572 goto out_unlock;
1573 }
1574
1575 isec->initialized = LABEL_INITIALIZED;
1576 isec->sid = sid;
1577 }
1578
1579out_unlock:
1580 spin_unlock(&isec->lock);
1581 return rc;
1582}
1583
1584/* Convert a Linux signal to an access vector. */
1585static inline u32 signal_to_av(int sig)
1586{
1587 u32 perm = 0;
1588
1589 switch (sig) {
1590 case SIGCHLD:
1591 /* Commonly granted from child to parent. */
1592 perm = PROCESS__SIGCHLD;
1593 break;
1594 case SIGKILL:
1595 /* Cannot be caught or ignored */
1596 perm = PROCESS__SIGKILL;
1597 break;
1598 case SIGSTOP:
1599 /* Cannot be caught or ignored */
1600 perm = PROCESS__SIGSTOP;
1601 break;
1602 default:
1603 /* All other signals. */
1604 perm = PROCESS__SIGNAL;
1605 break;
1606 }
1607
1608 return perm;
1609}
1610
1611/*
1612 * Check permission between a pair of credentials
1613 * fork check, ptrace check, etc.
1614 */
1615static int cred_has_perm(const struct cred *actor,
1616 const struct cred *target,
1617 u32 perms)
1618{
1619 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1620
1621 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1622}
1623
1624/*
1625 * Check permission between a pair of tasks, e.g. signal checks,
1626 * fork check, ptrace check, etc.
1627 * tsk1 is the actor and tsk2 is the target
1628 * - this uses the default subjective creds of tsk1
1629 */
1630static int task_has_perm(const struct task_struct *tsk1,
1631 const struct task_struct *tsk2,
1632 u32 perms)
1633{
1634 const struct task_security_struct *__tsec1, *__tsec2;
1635 u32 sid1, sid2;
1636
1637 rcu_read_lock();
1638 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1639 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1640 rcu_read_unlock();
1641 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1642}
1643
1644/*
1645 * Check permission between current and another task, e.g. signal checks,
1646 * fork check, ptrace check, etc.
1647 * current is the actor and tsk2 is the target
1648 * - this uses current's subjective creds
1649 */
1650static int current_has_perm(const struct task_struct *tsk,
1651 u32 perms)
1652{
1653 u32 sid, tsid;
1654
1655 sid = current_sid();
1656 tsid = task_sid(tsk);
1657 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1658}
1659
1660#if CAP_LAST_CAP > 63
1661#error Fix SELinux to handle capabilities > 63.
1662#endif
1663
1664/* Check whether a task is allowed to use a capability. */
1665static int cred_has_capability(const struct cred *cred,
1666 int cap, int audit, bool initns)
1667{
1668 struct common_audit_data ad;
1669 struct av_decision avd;
1670 u16 sclass;
1671 u32 sid = cred_sid(cred);
1672 u32 av = CAP_TO_MASK(cap);
1673 int rc;
1674
1675 ad.type = LSM_AUDIT_DATA_CAP;
1676 ad.u.cap = cap;
1677
1678 switch (CAP_TO_INDEX(cap)) {
1679 case 0:
1680 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1681 break;
1682 case 1:
1683 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1684 break;
1685 default:
1686 printk(KERN_ERR
1687 "SELinux: out of range capability %d\n", cap);
1688 BUG();
1689 return -EINVAL;
1690 }
1691
1692 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1693 if (audit == SECURITY_CAP_AUDIT) {
1694 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1695 if (rc2)
1696 return rc2;
1697 }
1698 return rc;
1699}
1700
1701/* Check whether a task is allowed to use a system operation. */
1702static int task_has_system(struct task_struct *tsk,
1703 u32 perms)
1704{
1705 u32 sid = task_sid(tsk);
1706
1707 return avc_has_perm(sid, SECINITSID_KERNEL,
1708 SECCLASS_SYSTEM, perms, NULL);
1709}
1710
1711/* Check whether a task has a particular permission to an inode.
1712 The 'adp' parameter is optional and allows other audit
1713 data to be passed (e.g. the dentry). */
1714static int inode_has_perm(const struct cred *cred,
1715 struct inode *inode,
1716 u32 perms,
1717 struct common_audit_data *adp)
1718{
1719 struct inode_security_struct *isec;
1720 u32 sid;
1721
1722 validate_creds(cred);
1723
1724 if (unlikely(IS_PRIVATE(inode)))
1725 return 0;
1726
1727 sid = cred_sid(cred);
1728 isec = inode->i_security;
1729
1730 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1731}
1732
1733/* Same as inode_has_perm, but pass explicit audit data containing
1734 the dentry to help the auditing code to more easily generate the
1735 pathname if needed. */
1736static inline int dentry_has_perm(const struct cred *cred,
1737 struct dentry *dentry,
1738 u32 av)
1739{
1740 struct inode *inode = d_backing_inode(dentry);
1741 struct common_audit_data ad;
1742
1743 ad.type = LSM_AUDIT_DATA_DENTRY;
1744 ad.u.dentry = dentry;
1745 __inode_security_revalidate(inode, dentry, true);
1746 return inode_has_perm(cred, inode, av, &ad);
1747}
1748
1749/* Same as inode_has_perm, but pass explicit audit data containing
1750 the path to help the auditing code to more easily generate the
1751 pathname if needed. */
1752static inline int path_has_perm(const struct cred *cred,
1753 const struct path *path,
1754 u32 av)
1755{
1756 struct inode *inode = d_backing_inode(path->dentry);
1757 struct common_audit_data ad;
1758
1759 ad.type = LSM_AUDIT_DATA_PATH;
1760 ad.u.path = *path;
1761 __inode_security_revalidate(inode, path->dentry, true);
1762 return inode_has_perm(cred, inode, av, &ad);
1763}
1764
1765/* Same as path_has_perm, but uses the inode from the file struct. */
1766static inline int file_path_has_perm(const struct cred *cred,
1767 struct file *file,
1768 u32 av)
1769{
1770 struct common_audit_data ad;
1771
1772 ad.type = LSM_AUDIT_DATA_FILE;
1773 ad.u.file = file;
1774 return inode_has_perm(cred, file_inode(file), av, &ad);
1775}
1776
1777/* Check whether a task can use an open file descriptor to
1778 access an inode in a given way. Check access to the
1779 descriptor itself, and then use dentry_has_perm to
1780 check a particular permission to the file.
1781 Access to the descriptor is implicitly granted if it
1782 has the same SID as the process. If av is zero, then
1783 access to the file is not checked, e.g. for cases
1784 where only the descriptor is affected like seek. */
1785static int file_has_perm(const struct cred *cred,
1786 struct file *file,
1787 u32 av)
1788{
1789 struct file_security_struct *fsec = file->f_security;
1790 struct inode *inode = file_inode(file);
1791 struct common_audit_data ad;
1792 u32 sid = cred_sid(cred);
1793 int rc;
1794
1795 ad.type = LSM_AUDIT_DATA_FILE;
1796 ad.u.file = file;
1797
1798 if (sid != fsec->sid) {
1799 rc = avc_has_perm(sid, fsec->sid,
1800 SECCLASS_FD,
1801 FD__USE,
1802 &ad);
1803 if (rc)
1804 goto out;
1805 }
1806
1807 /* av is zero if only checking access to the descriptor. */
1808 rc = 0;
1809 if (av)
1810 rc = inode_has_perm(cred, inode, av, &ad);
1811
1812out:
1813 return rc;
1814}
1815
1816/*
1817 * Determine the label for an inode that might be unioned.
1818 */
1819static int
1820selinux_determine_inode_label(const struct task_security_struct *tsec,
1821 struct inode *dir,
1822 const struct qstr *name, u16 tclass,
1823 u32 *_new_isid)
1824{
1825 const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1826
1827 if ((sbsec->flags & SE_SBINITIALIZED) &&
1828 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1829 *_new_isid = sbsec->mntpoint_sid;
1830 } else if ((sbsec->flags & SBLABEL_MNT) &&
1831 tsec->create_sid) {
1832 *_new_isid = tsec->create_sid;
1833 } else {
1834 const struct inode_security_struct *dsec = inode_security(dir);
1835 return security_transition_sid(tsec->sid, dsec->sid, tclass,
1836 name, _new_isid);
1837 }
1838
1839 return 0;
1840}
1841
1842/* Check whether a task can create a file. */
1843static int may_create(struct inode *dir,
1844 struct dentry *dentry,
1845 u16 tclass)
1846{
1847 const struct task_security_struct *tsec = current_security();
1848 struct inode_security_struct *dsec;
1849 struct superblock_security_struct *sbsec;
1850 u32 sid, newsid;
1851 struct common_audit_data ad;
1852 int rc;
1853
1854 dsec = inode_security(dir);
1855 sbsec = dir->i_sb->s_security;
1856
1857 sid = tsec->sid;
1858
1859 ad.type = LSM_AUDIT_DATA_DENTRY;
1860 ad.u.dentry = dentry;
1861
1862 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1863 DIR__ADD_NAME | DIR__SEARCH,
1864 &ad);
1865 if (rc)
1866 return rc;
1867
1868 rc = selinux_determine_inode_label(current_security(), dir,
1869 &dentry->d_name, tclass, &newsid);
1870 if (rc)
1871 return rc;
1872
1873 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1874 if (rc)
1875 return rc;
1876
1877 return avc_has_perm(newsid, sbsec->sid,
1878 SECCLASS_FILESYSTEM,
1879 FILESYSTEM__ASSOCIATE, &ad);
1880}
1881
1882/* Check whether a task can create a key. */
1883static int may_create_key(u32 ksid,
1884 struct task_struct *ctx)
1885{
1886 u32 sid = task_sid(ctx);
1887
1888 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1889}
1890
1891#define MAY_LINK 0
1892#define MAY_UNLINK 1
1893#define MAY_RMDIR 2
1894
1895/* Check whether a task can link, unlink, or rmdir a file/directory. */
1896static int may_link(struct inode *dir,
1897 struct dentry *dentry,
1898 int kind)
1899
1900{
1901 struct inode_security_struct *dsec, *isec;
1902 struct common_audit_data ad;
1903 u32 sid = current_sid();
1904 u32 av;
1905 int rc;
1906
1907 dsec = inode_security(dir);
1908 isec = backing_inode_security(dentry);
1909
1910 ad.type = LSM_AUDIT_DATA_DENTRY;
1911 ad.u.dentry = dentry;
1912
1913 av = DIR__SEARCH;
1914 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1915 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1916 if (rc)
1917 return rc;
1918
1919 switch (kind) {
1920 case MAY_LINK:
1921 av = FILE__LINK;
1922 break;
1923 case MAY_UNLINK:
1924 av = FILE__UNLINK;
1925 break;
1926 case MAY_RMDIR:
1927 av = DIR__RMDIR;
1928 break;
1929 default:
1930 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1931 __func__, kind);
1932 return 0;
1933 }
1934
1935 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1936 return rc;
1937}
1938
1939static inline int may_rename(struct inode *old_dir,
1940 struct dentry *old_dentry,
1941 struct inode *new_dir,
1942 struct dentry *new_dentry)
1943{
1944 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1945 struct common_audit_data ad;
1946 u32 sid = current_sid();
1947 u32 av;
1948 int old_is_dir, new_is_dir;
1949 int rc;
1950
1951 old_dsec = inode_security(old_dir);
1952 old_isec = backing_inode_security(old_dentry);
1953 old_is_dir = d_is_dir(old_dentry);
1954 new_dsec = inode_security(new_dir);
1955
1956 ad.type = LSM_AUDIT_DATA_DENTRY;
1957
1958 ad.u.dentry = old_dentry;
1959 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1960 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1961 if (rc)
1962 return rc;
1963 rc = avc_has_perm(sid, old_isec->sid,
1964 old_isec->sclass, FILE__RENAME, &ad);
1965 if (rc)
1966 return rc;
1967 if (old_is_dir && new_dir != old_dir) {
1968 rc = avc_has_perm(sid, old_isec->sid,
1969 old_isec->sclass, DIR__REPARENT, &ad);
1970 if (rc)
1971 return rc;
1972 }
1973
1974 ad.u.dentry = new_dentry;
1975 av = DIR__ADD_NAME | DIR__SEARCH;
1976 if (d_is_positive(new_dentry))
1977 av |= DIR__REMOVE_NAME;
1978 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1979 if (rc)
1980 return rc;
1981 if (d_is_positive(new_dentry)) {
1982 new_isec = backing_inode_security(new_dentry);
1983 new_is_dir = d_is_dir(new_dentry);
1984 rc = avc_has_perm(sid, new_isec->sid,
1985 new_isec->sclass,
1986 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1987 if (rc)
1988 return rc;
1989 }
1990
1991 return 0;
1992}
1993
1994/* Check whether a task can perform a filesystem operation. */
1995static int superblock_has_perm(const struct cred *cred,
1996 struct super_block *sb,
1997 u32 perms,
1998 struct common_audit_data *ad)
1999{
2000 struct superblock_security_struct *sbsec;
2001 u32 sid = cred_sid(cred);
2002
2003 sbsec = sb->s_security;
2004 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
2005}
2006
2007/* Convert a Linux mode and permission mask to an access vector. */
2008static inline u32 file_mask_to_av(int mode, int mask)
2009{
2010 u32 av = 0;
2011
2012 if (!S_ISDIR(mode)) {
2013 if (mask & MAY_EXEC)
2014 av |= FILE__EXECUTE;
2015 if (mask & MAY_READ)
2016 av |= FILE__READ;
2017
2018 if (mask & MAY_APPEND)
2019 av |= FILE__APPEND;
2020 else if (mask & MAY_WRITE)
2021 av |= FILE__WRITE;
2022
2023 } else {
2024 if (mask & MAY_EXEC)
2025 av |= DIR__SEARCH;
2026 if (mask & MAY_WRITE)
2027 av |= DIR__WRITE;
2028 if (mask & MAY_READ)
2029 av |= DIR__READ;
2030 }
2031
2032 return av;
2033}
2034
2035/* Convert a Linux file to an access vector. */
2036static inline u32 file_to_av(struct file *file)
2037{
2038 u32 av = 0;
2039
2040 if (file->f_mode & FMODE_READ)
2041 av |= FILE__READ;
2042 if (file->f_mode & FMODE_WRITE) {
2043 if (file->f_flags & O_APPEND)
2044 av |= FILE__APPEND;
2045 else
2046 av |= FILE__WRITE;
2047 }
2048 if (!av) {
2049 /*
2050 * Special file opened with flags 3 for ioctl-only use.
2051 */
2052 av = FILE__IOCTL;
2053 }
2054
2055 return av;
2056}
2057
2058/*
2059 * Convert a file to an access vector and include the correct open
2060 * open permission.
2061 */
2062static inline u32 open_file_to_av(struct file *file)
2063{
2064 u32 av = file_to_av(file);
2065
2066 if (selinux_policycap_openperm)
2067 av |= FILE__OPEN;
2068
2069 return av;
2070}
2071
2072/* Hook functions begin here. */
2073
2074static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2075{
2076 u32 mysid = current_sid();
2077 u32 mgrsid = task_sid(mgr);
2078
2079 return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
2080 BINDER__SET_CONTEXT_MGR, NULL);
2081}
2082
2083static int selinux_binder_transaction(struct task_struct *from,
2084 struct task_struct *to)
2085{
2086 u32 mysid = current_sid();
2087 u32 fromsid = task_sid(from);
2088 u32 tosid = task_sid(to);
2089 int rc;
2090
2091 if (mysid != fromsid) {
2092 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2093 BINDER__IMPERSONATE, NULL);
2094 if (rc)
2095 return rc;
2096 }
2097
2098 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2099 NULL);
2100}
2101
2102static int selinux_binder_transfer_binder(struct task_struct *from,
2103 struct task_struct *to)
2104{
2105 u32 fromsid = task_sid(from);
2106 u32 tosid = task_sid(to);
2107
2108 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2109 NULL);
2110}
2111
2112static int selinux_binder_transfer_file(struct task_struct *from,
2113 struct task_struct *to,
2114 struct file *file)
2115{
2116 u32 sid = task_sid(to);
2117 struct file_security_struct *fsec = file->f_security;
2118 struct dentry *dentry = file->f_path.dentry;
2119 struct inode_security_struct *isec;
2120 struct common_audit_data ad;
2121 int rc;
2122
2123 ad.type = LSM_AUDIT_DATA_PATH;
2124 ad.u.path = file->f_path;
2125
2126 if (sid != fsec->sid) {
2127 rc = avc_has_perm(sid, fsec->sid,
2128 SECCLASS_FD,
2129 FD__USE,
2130 &ad);
2131 if (rc)
2132 return rc;
2133 }
2134
2135 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2136 return 0;
2137
2138 isec = backing_inode_security(dentry);
2139 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2140 &ad);
2141}
2142
2143static int selinux_ptrace_access_check(struct task_struct *child,
2144 unsigned int mode)
2145{
2146 if (mode & PTRACE_MODE_READ) {
2147 u32 sid = current_sid();
2148 u32 csid = task_sid(child);
2149 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2150 }
2151
2152 return current_has_perm(child, PROCESS__PTRACE);
2153}
2154
2155static int selinux_ptrace_traceme(struct task_struct *parent)
2156{
2157 return task_has_perm(parent, current, PROCESS__PTRACE);
2158}
2159
2160static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2161 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2162{
2163 return current_has_perm(target, PROCESS__GETCAP);
2164}
2165
2166static int selinux_capset(struct cred *new, const struct cred *old,
2167 const kernel_cap_t *effective,
2168 const kernel_cap_t *inheritable,
2169 const kernel_cap_t *permitted)
2170{
2171 return cred_has_perm(old, new, PROCESS__SETCAP);
2172}
2173
2174/*
2175 * (This comment used to live with the selinux_task_setuid hook,
2176 * which was removed).
2177 *
2178 * Since setuid only affects the current process, and since the SELinux
2179 * controls are not based on the Linux identity attributes, SELinux does not
2180 * need to control this operation. However, SELinux does control the use of
2181 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2182 */
2183
2184static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2185 int cap, int audit)
2186{
2187 return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2188}
2189
2190static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2191{
2192 const struct cred *cred = current_cred();
2193 int rc = 0;
2194
2195 if (!sb)
2196 return 0;
2197
2198 switch (cmds) {
2199 case Q_SYNC:
2200 case Q_QUOTAON:
2201 case Q_QUOTAOFF:
2202 case Q_SETINFO:
2203 case Q_SETQUOTA:
2204 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2205 break;
2206 case Q_GETFMT:
2207 case Q_GETINFO:
2208 case Q_GETQUOTA:
2209 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2210 break;
2211 default:
2212 rc = 0; /* let the kernel handle invalid cmds */
2213 break;
2214 }
2215 return rc;
2216}
2217
2218static int selinux_quota_on(struct dentry *dentry)
2219{
2220 const struct cred *cred = current_cred();
2221
2222 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2223}
2224
2225static int selinux_syslog(int type)
2226{
2227 int rc;
2228
2229 switch (type) {
2230 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2231 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2232 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2233 break;
2234 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2235 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2236 /* Set level of messages printed to console */
2237 case SYSLOG_ACTION_CONSOLE_LEVEL:
2238 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2239 break;
2240 case SYSLOG_ACTION_CLOSE: /* Close log */
2241 case SYSLOG_ACTION_OPEN: /* Open log */
2242 case SYSLOG_ACTION_READ: /* Read from log */
2243 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
2244 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
2245 default:
2246 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2247 break;
2248 }
2249 return rc;
2250}
2251
2252/*
2253 * Check that a process has enough memory to allocate a new virtual
2254 * mapping. 0 means there is enough memory for the allocation to
2255 * succeed and -ENOMEM implies there is not.
2256 *
2257 * Do not audit the selinux permission check, as this is applied to all
2258 * processes that allocate mappings.
2259 */
2260static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2261{
2262 int rc, cap_sys_admin = 0;
2263
2264 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2265 SECURITY_CAP_NOAUDIT, true);
2266 if (rc == 0)
2267 cap_sys_admin = 1;
2268
2269 return cap_sys_admin;
2270}
2271
2272/* binprm security operations */
2273
2274static u32 ptrace_parent_sid(struct task_struct *task)
2275{
2276 u32 sid = 0;
2277 struct task_struct *tracer;
2278
2279 rcu_read_lock();
2280 tracer = ptrace_parent(task);
2281 if (tracer)
2282 sid = task_sid(tracer);
2283 rcu_read_unlock();
2284
2285 return sid;
2286}
2287
2288static int check_nnp_nosuid(const struct linux_binprm *bprm,
2289 const struct task_security_struct *old_tsec,
2290 const struct task_security_struct *new_tsec)
2291{
2292 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2293 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2294 int rc;
2295
2296 if (!nnp && !nosuid)
2297 return 0; /* neither NNP nor nosuid */
2298
2299 if (new_tsec->sid == old_tsec->sid)
2300 return 0; /* No change in credentials */
2301
2302 /*
2303 * The only transitions we permit under NNP or nosuid
2304 * are transitions to bounded SIDs, i.e. SIDs that are
2305 * guaranteed to only be allowed a subset of the permissions
2306 * of the current SID.
2307 */
2308 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2309 if (rc) {
2310 /*
2311 * On failure, preserve the errno values for NNP vs nosuid.
2312 * NNP: Operation not permitted for caller.
2313 * nosuid: Permission denied to file.
2314 */
2315 if (nnp)
2316 return -EPERM;
2317 else
2318 return -EACCES;
2319 }
2320 return 0;
2321}
2322
2323static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2324{
2325 const struct task_security_struct *old_tsec;
2326 struct task_security_struct *new_tsec;
2327 struct inode_security_struct *isec;
2328 struct common_audit_data ad;
2329 struct inode *inode = file_inode(bprm->file);
2330 int rc;
2331
2332 /* SELinux context only depends on initial program or script and not
2333 * the script interpreter */
2334 if (bprm->cred_prepared)
2335 return 0;
2336
2337 old_tsec = current_security();
2338 new_tsec = bprm->cred->security;
2339 isec = inode_security(inode);
2340
2341 /* Default to the current task SID. */
2342 new_tsec->sid = old_tsec->sid;
2343 new_tsec->osid = old_tsec->sid;
2344
2345 /* Reset fs, key, and sock SIDs on execve. */
2346 new_tsec->create_sid = 0;
2347 new_tsec->keycreate_sid = 0;
2348 new_tsec->sockcreate_sid = 0;
2349
2350 if (old_tsec->exec_sid) {
2351 new_tsec->sid = old_tsec->exec_sid;
2352 /* Reset exec SID on execve. */
2353 new_tsec->exec_sid = 0;
2354
2355 /* Fail on NNP or nosuid if not an allowed transition. */
2356 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2357 if (rc)
2358 return rc;
2359 } else {
2360 /* Check for a default transition on this program. */
2361 rc = security_transition_sid(old_tsec->sid, isec->sid,
2362 SECCLASS_PROCESS, NULL,
2363 &new_tsec->sid);
2364 if (rc)
2365 return rc;
2366
2367 /*
2368 * Fallback to old SID on NNP or nosuid if not an allowed
2369 * transition.
2370 */
2371 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2372 if (rc)
2373 new_tsec->sid = old_tsec->sid;
2374 }
2375
2376 ad.type = LSM_AUDIT_DATA_FILE;
2377 ad.u.file = bprm->file;
2378
2379 if (new_tsec->sid == old_tsec->sid) {
2380 rc = avc_has_perm(old_tsec->sid, isec->sid,
2381 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2382 if (rc)
2383 return rc;
2384 } else {
2385 /* Check permissions for the transition. */
2386 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2387 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2388 if (rc)
2389 return rc;
2390
2391 rc = avc_has_perm(new_tsec->sid, isec->sid,
2392 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2393 if (rc)
2394 return rc;
2395
2396 /* Check for shared state */
2397 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2398 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2399 SECCLASS_PROCESS, PROCESS__SHARE,
2400 NULL);
2401 if (rc)
2402 return -EPERM;
2403 }
2404
2405 /* Make sure that anyone attempting to ptrace over a task that
2406 * changes its SID has the appropriate permit */
2407 if (bprm->unsafe &
2408 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2409 u32 ptsid = ptrace_parent_sid(current);
2410 if (ptsid != 0) {
2411 rc = avc_has_perm(ptsid, new_tsec->sid,
2412 SECCLASS_PROCESS,
2413 PROCESS__PTRACE, NULL);
2414 if (rc)
2415 return -EPERM;
2416 }
2417 }
2418
2419 /* Clear any possibly unsafe personality bits on exec: */
2420 bprm->per_clear |= PER_CLEAR_ON_SETID;
2421 }
2422
2423 return 0;
2424}
2425
2426static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2427{
2428 const struct task_security_struct *tsec = current_security();
2429 u32 sid, osid;
2430 int atsecure = 0;
2431
2432 sid = tsec->sid;
2433 osid = tsec->osid;
2434
2435 if (osid != sid) {
2436 /* Enable secure mode for SIDs transitions unless
2437 the noatsecure permission is granted between
2438 the two SIDs, i.e. ahp returns 0. */
2439 atsecure = avc_has_perm(osid, sid,
2440 SECCLASS_PROCESS,
2441 PROCESS__NOATSECURE, NULL);
2442 }
2443
2444 return !!atsecure;
2445}
2446
2447static int match_file(const void *p, struct file *file, unsigned fd)
2448{
2449 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2450}
2451
2452/* Derived from fs/exec.c:flush_old_files. */
2453static inline void flush_unauthorized_files(const struct cred *cred,
2454 struct files_struct *files)
2455{
2456 struct file *file, *devnull = NULL;
2457 struct tty_struct *tty;
2458 int drop_tty = 0;
2459 unsigned n;
2460
2461 tty = get_current_tty();
2462 if (tty) {
2463 spin_lock(&tty->files_lock);
2464 if (!list_empty(&tty->tty_files)) {
2465 struct tty_file_private *file_priv;
2466
2467 /* Revalidate access to controlling tty.
2468 Use file_path_has_perm on the tty path directly
2469 rather than using file_has_perm, as this particular
2470 open file may belong to another process and we are
2471 only interested in the inode-based check here. */
2472 file_priv = list_first_entry(&tty->tty_files,
2473 struct tty_file_private, list);
2474 file = file_priv->file;
2475 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2476 drop_tty = 1;
2477 }
2478 spin_unlock(&tty->files_lock);
2479 tty_kref_put(tty);
2480 }
2481 /* Reset controlling tty. */
2482 if (drop_tty)
2483 no_tty();
2484
2485 /* Revalidate access to inherited open files. */
2486 n = iterate_fd(files, 0, match_file, cred);
2487 if (!n) /* none found? */
2488 return;
2489
2490 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2491 if (IS_ERR(devnull))
2492 devnull = NULL;
2493 /* replace all the matching ones with this */
2494 do {
2495 replace_fd(n - 1, devnull, 0);
2496 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2497 if (devnull)
2498 fput(devnull);
2499}
2500
2501/*
2502 * Prepare a process for imminent new credential changes due to exec
2503 */
2504static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2505{
2506 struct task_security_struct *new_tsec;
2507 struct rlimit *rlim, *initrlim;
2508 int rc, i;
2509
2510 new_tsec = bprm->cred->security;
2511 if (new_tsec->sid == new_tsec->osid)
2512 return;
2513
2514 /* Close files for which the new task SID is not authorized. */
2515 flush_unauthorized_files(bprm->cred, current->files);
2516
2517 /* Always clear parent death signal on SID transitions. */
2518 current->pdeath_signal = 0;
2519
2520 /* Check whether the new SID can inherit resource limits from the old
2521 * SID. If not, reset all soft limits to the lower of the current
2522 * task's hard limit and the init task's soft limit.
2523 *
2524 * Note that the setting of hard limits (even to lower them) can be
2525 * controlled by the setrlimit check. The inclusion of the init task's
2526 * soft limit into the computation is to avoid resetting soft limits
2527 * higher than the default soft limit for cases where the default is
2528 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2529 */
2530 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2531 PROCESS__RLIMITINH, NULL);
2532 if (rc) {
2533 /* protect against do_prlimit() */
2534 task_lock(current);
2535 for (i = 0; i < RLIM_NLIMITS; i++) {
2536 rlim = current->signal->rlim + i;
2537 initrlim = init_task.signal->rlim + i;
2538 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2539 }
2540 task_unlock(current);
2541 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2542 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2543 }
2544}
2545
2546/*
2547 * Clean up the process immediately after the installation of new credentials
2548 * due to exec
2549 */
2550static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2551{
2552 const struct task_security_struct *tsec = current_security();
2553 struct itimerval itimer;
2554 u32 osid, sid;
2555 int rc, i;
2556
2557 osid = tsec->osid;
2558 sid = tsec->sid;
2559
2560 if (sid == osid)
2561 return;
2562
2563 /* Check whether the new SID can inherit signal state from the old SID.
2564 * If not, clear itimers to avoid subsequent signal generation and
2565 * flush and unblock signals.
2566 *
2567 * This must occur _after_ the task SID has been updated so that any
2568 * kill done after the flush will be checked against the new SID.
2569 */
2570 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2571 if (rc) {
2572 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2573 memset(&itimer, 0, sizeof itimer);
2574 for (i = 0; i < 3; i++)
2575 do_setitimer(i, &itimer, NULL);
2576 }
2577 spin_lock_irq(¤t->sighand->siglock);
2578 if (!fatal_signal_pending(current)) {
2579 flush_sigqueue(¤t->pending);
2580 flush_sigqueue(¤t->signal->shared_pending);
2581 flush_signal_handlers(current, 1);
2582 sigemptyset(¤t->blocked);
2583 recalc_sigpending();
2584 }
2585 spin_unlock_irq(¤t->sighand->siglock);
2586 }
2587
2588 /* Wake up the parent if it is waiting so that it can recheck
2589 * wait permission to the new task SID. */
2590 read_lock(&tasklist_lock);
2591 __wake_up_parent(current, current->real_parent);
2592 read_unlock(&tasklist_lock);
2593}
2594
2595/* superblock security operations */
2596
2597static int selinux_sb_alloc_security(struct super_block *sb)
2598{
2599 return superblock_alloc_security(sb);
2600}
2601
2602static void selinux_sb_free_security(struct super_block *sb)
2603{
2604 superblock_free_security(sb);
2605}
2606
2607static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2608{
2609 if (plen > olen)
2610 return 0;
2611
2612 return !memcmp(prefix, option, plen);
2613}
2614
2615static inline int selinux_option(char *option, int len)
2616{
2617 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2618 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2619 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2620 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2621 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2622}
2623
2624static inline void take_option(char **to, char *from, int *first, int len)
2625{
2626 if (!*first) {
2627 **to = ',';
2628 *to += 1;
2629 } else
2630 *first = 0;
2631 memcpy(*to, from, len);
2632 *to += len;
2633}
2634
2635static inline void take_selinux_option(char **to, char *from, int *first,
2636 int len)
2637{
2638 int current_size = 0;
2639
2640 if (!*first) {
2641 **to = '|';
2642 *to += 1;
2643 } else
2644 *first = 0;
2645
2646 while (current_size < len) {
2647 if (*from != '"') {
2648 **to = *from;
2649 *to += 1;
2650 }
2651 from += 1;
2652 current_size += 1;
2653 }
2654}
2655
2656static int selinux_sb_copy_data(char *orig, char *copy)
2657{
2658 int fnosec, fsec, rc = 0;
2659 char *in_save, *in_curr, *in_end;
2660 char *sec_curr, *nosec_save, *nosec;
2661 int open_quote = 0;
2662
2663 in_curr = orig;
2664 sec_curr = copy;
2665
2666 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2667 if (!nosec) {
2668 rc = -ENOMEM;
2669 goto out;
2670 }
2671
2672 nosec_save = nosec;
2673 fnosec = fsec = 1;
2674 in_save = in_end = orig;
2675
2676 do {
2677 if (*in_end == '"')
2678 open_quote = !open_quote;
2679 if ((*in_end == ',' && open_quote == 0) ||
2680 *in_end == '\0') {
2681 int len = in_end - in_curr;
2682
2683 if (selinux_option(in_curr, len))
2684 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2685 else
2686 take_option(&nosec, in_curr, &fnosec, len);
2687
2688 in_curr = in_end + 1;
2689 }
2690 } while (*in_end++);
2691
2692 strcpy(in_save, nosec_save);
2693 free_page((unsigned long)nosec_save);
2694out:
2695 return rc;
2696}
2697
2698static int selinux_sb_remount(struct super_block *sb, void *data)
2699{
2700 int rc, i, *flags;
2701 struct security_mnt_opts opts;
2702 char *secdata, **mount_options;
2703 struct superblock_security_struct *sbsec = sb->s_security;
2704
2705 if (!(sbsec->flags & SE_SBINITIALIZED))
2706 return 0;
2707
2708 if (!data)
2709 return 0;
2710
2711 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2712 return 0;
2713
2714 security_init_mnt_opts(&opts);
2715 secdata = alloc_secdata();
2716 if (!secdata)
2717 return -ENOMEM;
2718 rc = selinux_sb_copy_data(data, secdata);
2719 if (rc)
2720 goto out_free_secdata;
2721
2722 rc = selinux_parse_opts_str(secdata, &opts);
2723 if (rc)
2724 goto out_free_secdata;
2725
2726 mount_options = opts.mnt_opts;
2727 flags = opts.mnt_opts_flags;
2728
2729 for (i = 0; i < opts.num_mnt_opts; i++) {
2730 u32 sid;
2731
2732 if (flags[i] == SBLABEL_MNT)
2733 continue;
2734 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
2735 if (rc) {
2736 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2737 "(%s) failed for (dev %s, type %s) errno=%d\n",
2738 mount_options[i], sb->s_id, sb->s_type->name, rc);
2739 goto out_free_opts;
2740 }
2741 rc = -EINVAL;
2742 switch (flags[i]) {
2743 case FSCONTEXT_MNT:
2744 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2745 goto out_bad_option;
2746 break;
2747 case CONTEXT_MNT:
2748 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2749 goto out_bad_option;
2750 break;
2751 case ROOTCONTEXT_MNT: {
2752 struct inode_security_struct *root_isec;
2753 root_isec = backing_inode_security(sb->s_root);
2754
2755 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2756 goto out_bad_option;
2757 break;
2758 }
2759 case DEFCONTEXT_MNT:
2760 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2761 goto out_bad_option;
2762 break;
2763 default:
2764 goto out_free_opts;
2765 }
2766 }
2767
2768 rc = 0;
2769out_free_opts:
2770 security_free_mnt_opts(&opts);
2771out_free_secdata:
2772 free_secdata(secdata);
2773 return rc;
2774out_bad_option:
2775 printk(KERN_WARNING "SELinux: unable to change security options "
2776 "during remount (dev %s, type=%s)\n", sb->s_id,
2777 sb->s_type->name);
2778 goto out_free_opts;
2779}
2780
2781static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2782{
2783 const struct cred *cred = current_cred();
2784 struct common_audit_data ad;
2785 int rc;
2786
2787 rc = superblock_doinit(sb, data);
2788 if (rc)
2789 return rc;
2790
2791 /* Allow all mounts performed by the kernel */
2792 if (flags & MS_KERNMOUNT)
2793 return 0;
2794
2795 ad.type = LSM_AUDIT_DATA_DENTRY;
2796 ad.u.dentry = sb->s_root;
2797 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2798}
2799
2800static int selinux_sb_statfs(struct dentry *dentry)
2801{
2802 const struct cred *cred = current_cred();
2803 struct common_audit_data ad;
2804
2805 ad.type = LSM_AUDIT_DATA_DENTRY;
2806 ad.u.dentry = dentry->d_sb->s_root;
2807 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2808}
2809
2810static int selinux_mount(const char *dev_name,
2811 const struct path *path,
2812 const char *type,
2813 unsigned long flags,
2814 void *data)
2815{
2816 const struct cred *cred = current_cred();
2817
2818 if (flags & MS_REMOUNT)
2819 return superblock_has_perm(cred, path->dentry->d_sb,
2820 FILESYSTEM__REMOUNT, NULL);
2821 else
2822 return path_has_perm(cred, path, FILE__MOUNTON);
2823}
2824
2825static int selinux_umount(struct vfsmount *mnt, int flags)
2826{
2827 const struct cred *cred = current_cred();
2828
2829 return superblock_has_perm(cred, mnt->mnt_sb,
2830 FILESYSTEM__UNMOUNT, NULL);
2831}
2832
2833/* inode security operations */
2834
2835static int selinux_inode_alloc_security(struct inode *inode)
2836{
2837 return inode_alloc_security(inode);
2838}
2839
2840static void selinux_inode_free_security(struct inode *inode)
2841{
2842 inode_free_security(inode);
2843}
2844
2845static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2846 const struct qstr *name, void **ctx,
2847 u32 *ctxlen)
2848{
2849 u32 newsid;
2850 int rc;
2851
2852 rc = selinux_determine_inode_label(current_security(),
2853 d_inode(dentry->d_parent), name,
2854 inode_mode_to_security_class(mode),
2855 &newsid);
2856 if (rc)
2857 return rc;
2858
2859 return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2860}
2861
2862static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2863 struct qstr *name,
2864 const struct cred *old,
2865 struct cred *new)
2866{
2867 u32 newsid;
2868 int rc;
2869 struct task_security_struct *tsec;
2870
2871 rc = selinux_determine_inode_label(old->security,
2872 d_inode(dentry->d_parent), name,
2873 inode_mode_to_security_class(mode),
2874 &newsid);
2875 if (rc)
2876 return rc;
2877
2878 tsec = new->security;
2879 tsec->create_sid = newsid;
2880 return 0;
2881}
2882
2883static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2884 const struct qstr *qstr,
2885 const char **name,
2886 void **value, size_t *len)
2887{
2888 const struct task_security_struct *tsec = current_security();
2889 struct superblock_security_struct *sbsec;
2890 u32 sid, newsid, clen;
2891 int rc;
2892 char *context;
2893
2894 sbsec = dir->i_sb->s_security;
2895
2896 sid = tsec->sid;
2897 newsid = tsec->create_sid;
2898
2899 rc = selinux_determine_inode_label(current_security(),
2900 dir, qstr,
2901 inode_mode_to_security_class(inode->i_mode),
2902 &newsid);
2903 if (rc)
2904 return rc;
2905
2906 /* Possibly defer initialization to selinux_complete_init. */
2907 if (sbsec->flags & SE_SBINITIALIZED) {
2908 struct inode_security_struct *isec = inode->i_security;
2909 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2910 isec->sid = newsid;
2911 isec->initialized = LABEL_INITIALIZED;
2912 }
2913
2914 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2915 return -EOPNOTSUPP;
2916
2917 if (name)
2918 *name = XATTR_SELINUX_SUFFIX;
2919
2920 if (value && len) {
2921 rc = security_sid_to_context_force(newsid, &context, &clen);
2922 if (rc)
2923 return rc;
2924 *value = context;
2925 *len = clen;
2926 }
2927
2928 return 0;
2929}
2930
2931static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2932{
2933 return may_create(dir, dentry, SECCLASS_FILE);
2934}
2935
2936static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2937{
2938 return may_link(dir, old_dentry, MAY_LINK);
2939}
2940
2941static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2942{
2943 return may_link(dir, dentry, MAY_UNLINK);
2944}
2945
2946static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2947{
2948 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2949}
2950
2951static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2952{
2953 return may_create(dir, dentry, SECCLASS_DIR);
2954}
2955
2956static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2957{
2958 return may_link(dir, dentry, MAY_RMDIR);
2959}
2960
2961static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2962{
2963 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2964}
2965
2966static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2967 struct inode *new_inode, struct dentry *new_dentry)
2968{
2969 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2970}
2971
2972static int selinux_inode_readlink(struct dentry *dentry)
2973{
2974 const struct cred *cred = current_cred();
2975
2976 return dentry_has_perm(cred, dentry, FILE__READ);
2977}
2978
2979static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2980 bool rcu)
2981{
2982 const struct cred *cred = current_cred();
2983 struct common_audit_data ad;
2984 struct inode_security_struct *isec;
2985 u32 sid;
2986
2987 validate_creds(cred);
2988
2989 ad.type = LSM_AUDIT_DATA_DENTRY;
2990 ad.u.dentry = dentry;
2991 sid = cred_sid(cred);
2992 isec = inode_security_rcu(inode, rcu);
2993 if (IS_ERR(isec))
2994 return PTR_ERR(isec);
2995
2996 return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
2997 rcu ? MAY_NOT_BLOCK : 0);
2998}
2999
3000static noinline int audit_inode_permission(struct inode *inode,
3001 u32 perms, u32 audited, u32 denied,
3002 int result,
3003 unsigned flags)
3004{
3005 struct common_audit_data ad;
3006 struct inode_security_struct *isec = inode->i_security;
3007 int rc;
3008
3009 ad.type = LSM_AUDIT_DATA_INODE;
3010 ad.u.inode = inode;
3011
3012 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3013 audited, denied, result, &ad, flags);
3014 if (rc)
3015 return rc;
3016 return 0;
3017}
3018
3019static int selinux_inode_permission(struct inode *inode, int mask)
3020{
3021 const struct cred *cred = current_cred();
3022 u32 perms;
3023 bool from_access;
3024 unsigned flags = mask & MAY_NOT_BLOCK;
3025 struct inode_security_struct *isec;
3026 u32 sid;
3027 struct av_decision avd;
3028 int rc, rc2;
3029 u32 audited, denied;
3030
3031 from_access = mask & MAY_ACCESS;
3032 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3033
3034 /* No permission to check. Existence test. */
3035 if (!mask)
3036 return 0;
3037
3038 validate_creds(cred);
3039
3040 if (unlikely(IS_PRIVATE(inode)))
3041 return 0;
3042
3043 perms = file_mask_to_av(inode->i_mode, mask);
3044
3045 sid = cred_sid(cred);
3046 isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3047 if (IS_ERR(isec))
3048 return PTR_ERR(isec);
3049
3050 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
3051 audited = avc_audit_required(perms, &avd, rc,
3052 from_access ? FILE__AUDIT_ACCESS : 0,
3053 &denied);
3054 if (likely(!audited))
3055 return rc;
3056
3057 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3058 if (rc2)
3059 return rc2;
3060 return rc;
3061}
3062
3063static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3064{
3065 const struct cred *cred = current_cred();
3066 unsigned int ia_valid = iattr->ia_valid;
3067 __u32 av = FILE__WRITE;
3068
3069 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3070 if (ia_valid & ATTR_FORCE) {
3071 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3072 ATTR_FORCE);
3073 if (!ia_valid)
3074 return 0;
3075 }
3076
3077 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3078 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3079 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3080
3081 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)
3082 && !(ia_valid & ATTR_FILE))
3083 av |= FILE__OPEN;
3084
3085 return dentry_has_perm(cred, dentry, av);
3086}
3087
3088static int selinux_inode_getattr(const struct path *path)
3089{
3090 return path_has_perm(current_cred(), path, FILE__GETATTR);
3091}
3092
3093static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
3094{
3095 const struct cred *cred = current_cred();
3096
3097 if (!strncmp(name, XATTR_SECURITY_PREFIX,
3098 sizeof XATTR_SECURITY_PREFIX - 1)) {
3099 if (!strcmp(name, XATTR_NAME_CAPS)) {
3100 if (!capable(CAP_SETFCAP))
3101 return -EPERM;
3102 } else if (!capable(CAP_SYS_ADMIN)) {
3103 /* A different attribute in the security namespace.
3104 Restrict to administrator. */
3105 return -EPERM;
3106 }
3107 }
3108
3109 /* Not an attribute we recognize, so just check the
3110 ordinary setattr permission. */
3111 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3112}
3113
3114static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3115 const void *value, size_t size, int flags)
3116{
3117 struct inode *inode = d_backing_inode(dentry);
3118 struct inode_security_struct *isec;
3119 struct superblock_security_struct *sbsec;
3120 struct common_audit_data ad;
3121 u32 newsid, sid = current_sid();
3122 int rc = 0;
3123
3124 if (strcmp(name, XATTR_NAME_SELINUX))
3125 return selinux_inode_setotherxattr(dentry, name);
3126
3127 sbsec = inode->i_sb->s_security;
3128 if (!(sbsec->flags & SBLABEL_MNT))
3129 return -EOPNOTSUPP;
3130
3131 if (!inode_owner_or_capable(inode))
3132 return -EPERM;
3133
3134 ad.type = LSM_AUDIT_DATA_DENTRY;
3135 ad.u.dentry = dentry;
3136
3137 isec = backing_inode_security(dentry);
3138 rc = avc_has_perm(sid, isec->sid, isec->sclass,
3139 FILE__RELABELFROM, &ad);
3140 if (rc)
3141 return rc;
3142
3143 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3144 if (rc == -EINVAL) {
3145 if (!capable(CAP_MAC_ADMIN)) {
3146 struct audit_buffer *ab;
3147 size_t audit_size;
3148 const char *str;
3149
3150 /* We strip a nul only if it is at the end, otherwise the
3151 * context contains a nul and we should audit that */
3152 if (value) {
3153 str = value;
3154 if (str[size - 1] == '\0')
3155 audit_size = size - 1;
3156 else
3157 audit_size = size;
3158 } else {
3159 str = "";
3160 audit_size = 0;
3161 }
3162 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3163 audit_log_format(ab, "op=setxattr invalid_context=");
3164 audit_log_n_untrustedstring(ab, value, audit_size);
3165 audit_log_end(ab);
3166
3167 return rc;
3168 }
3169 rc = security_context_to_sid_force(value, size, &newsid);
3170 }
3171 if (rc)
3172 return rc;
3173
3174 rc = avc_has_perm(sid, newsid, isec->sclass,
3175 FILE__RELABELTO, &ad);
3176 if (rc)
3177 return rc;
3178
3179 rc = security_validate_transition(isec->sid, newsid, sid,
3180 isec->sclass);
3181 if (rc)
3182 return rc;
3183
3184 return avc_has_perm(newsid,
3185 sbsec->sid,
3186 SECCLASS_FILESYSTEM,
3187 FILESYSTEM__ASSOCIATE,
3188 &ad);
3189}
3190
3191static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3192 const void *value, size_t size,
3193 int flags)
3194{
3195 struct inode *inode = d_backing_inode(dentry);
3196 struct inode_security_struct *isec;
3197 u32 newsid;
3198 int rc;
3199
3200 if (strcmp(name, XATTR_NAME_SELINUX)) {
3201 /* Not an attribute we recognize, so nothing to do. */
3202 return;
3203 }
3204
3205 rc = security_context_to_sid_force(value, size, &newsid);
3206 if (rc) {
3207 printk(KERN_ERR "SELinux: unable to map context to SID"
3208 "for (%s, %lu), rc=%d\n",
3209 inode->i_sb->s_id, inode->i_ino, -rc);
3210 return;
3211 }
3212
3213 isec = backing_inode_security(dentry);
3214 spin_lock(&isec->lock);
3215 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3216 isec->sid = newsid;
3217 isec->initialized = LABEL_INITIALIZED;
3218 spin_unlock(&isec->lock);
3219
3220 return;
3221}
3222
3223static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3224{
3225 const struct cred *cred = current_cred();
3226
3227 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3228}
3229
3230static int selinux_inode_listxattr(struct dentry *dentry)
3231{
3232 const struct cred *cred = current_cred();
3233
3234 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3235}
3236
3237static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3238{
3239 if (strcmp(name, XATTR_NAME_SELINUX))
3240 return selinux_inode_setotherxattr(dentry, name);
3241
3242 /* No one is allowed to remove a SELinux security label.
3243 You can change the label, but all data must be labeled. */
3244 return -EACCES;
3245}
3246
3247/*
3248 * Copy the inode security context value to the user.
3249 *
3250 * Permission check is handled by selinux_inode_getxattr hook.
3251 */
3252static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3253{
3254 u32 size;
3255 int error;
3256 char *context = NULL;
3257 struct inode_security_struct *isec;
3258
3259 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3260 return -EOPNOTSUPP;
3261
3262 /*
3263 * If the caller has CAP_MAC_ADMIN, then get the raw context
3264 * value even if it is not defined by current policy; otherwise,
3265 * use the in-core value under current policy.
3266 * Use the non-auditing forms of the permission checks since
3267 * getxattr may be called by unprivileged processes commonly
3268 * and lack of permission just means that we fall back to the
3269 * in-core context value, not a denial.
3270 */
3271 error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3272 SECURITY_CAP_NOAUDIT);
3273 if (!error)
3274 error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3275 SECURITY_CAP_NOAUDIT, true);
3276 isec = inode_security(inode);
3277 if (!error)
3278 error = security_sid_to_context_force(isec->sid, &context,
3279 &size);
3280 else
3281 error = security_sid_to_context(isec->sid, &context, &size);
3282 if (error)
3283 return error;
3284 error = size;
3285 if (alloc) {
3286 *buffer = context;
3287 goto out_nofree;
3288 }
3289 kfree(context);
3290out_nofree:
3291 return error;
3292}
3293
3294static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3295 const void *value, size_t size, int flags)
3296{
3297 struct inode_security_struct *isec = inode_security_novalidate(inode);
3298 u32 newsid;
3299 int rc;
3300
3301 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3302 return -EOPNOTSUPP;
3303
3304 if (!value || !size)
3305 return -EACCES;
3306
3307 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3308 if (rc)
3309 return rc;
3310
3311 spin_lock(&isec->lock);
3312 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3313 isec->sid = newsid;
3314 isec->initialized = LABEL_INITIALIZED;
3315 spin_unlock(&isec->lock);
3316 return 0;
3317}
3318
3319static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3320{
3321 const int len = sizeof(XATTR_NAME_SELINUX);
3322 if (buffer && len <= buffer_size)
3323 memcpy(buffer, XATTR_NAME_SELINUX, len);
3324 return len;
3325}
3326
3327static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3328{
3329 struct inode_security_struct *isec = inode_security_novalidate(inode);
3330 *secid = isec->sid;
3331}
3332
3333static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3334{
3335 u32 sid;
3336 struct task_security_struct *tsec;
3337 struct cred *new_creds = *new;
3338
3339 if (new_creds == NULL) {
3340 new_creds = prepare_creds();
3341 if (!new_creds)
3342 return -ENOMEM;
3343 }
3344
3345 tsec = new_creds->security;
3346 /* Get label from overlay inode and set it in create_sid */
3347 selinux_inode_getsecid(d_inode(src), &sid);
3348 tsec->create_sid = sid;
3349 *new = new_creds;
3350 return 0;
3351}
3352
3353static int selinux_inode_copy_up_xattr(const char *name)
3354{
3355 /* The copy_up hook above sets the initial context on an inode, but we
3356 * don't then want to overwrite it by blindly copying all the lower
3357 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3358 */
3359 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3360 return 1; /* Discard */
3361 /*
3362 * Any other attribute apart from SELINUX is not claimed, supported
3363 * by selinux.
3364 */
3365 return -EOPNOTSUPP;
3366}
3367
3368/* file security operations */
3369
3370static int selinux_revalidate_file_permission(struct file *file, int mask)
3371{
3372 const struct cred *cred = current_cred();
3373 struct inode *inode = file_inode(file);
3374
3375 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3376 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3377 mask |= MAY_APPEND;
3378
3379 return file_has_perm(cred, file,
3380 file_mask_to_av(inode->i_mode, mask));
3381}
3382
3383static int selinux_file_permission(struct file *file, int mask)
3384{
3385 struct inode *inode = file_inode(file);
3386 struct file_security_struct *fsec = file->f_security;
3387 struct inode_security_struct *isec;
3388 u32 sid = current_sid();
3389
3390 if (!mask)
3391 /* No permission to check. Existence test. */
3392 return 0;
3393
3394 isec = inode_security(inode);
3395 if (sid == fsec->sid && fsec->isid == isec->sid &&
3396 fsec->pseqno == avc_policy_seqno())
3397 /* No change since file_open check. */
3398 return 0;
3399
3400 return selinux_revalidate_file_permission(file, mask);
3401}
3402
3403static int selinux_file_alloc_security(struct file *file)
3404{
3405 return file_alloc_security(file);
3406}
3407
3408static void selinux_file_free_security(struct file *file)
3409{
3410 file_free_security(file);
3411}
3412
3413/*
3414 * Check whether a task has the ioctl permission and cmd
3415 * operation to an inode.
3416 */
3417static int ioctl_has_perm(const struct cred *cred, struct file *file,
3418 u32 requested, u16 cmd)
3419{
3420 struct common_audit_data ad;
3421 struct file_security_struct *fsec = file->f_security;
3422 struct inode *inode = file_inode(file);
3423 struct inode_security_struct *isec;
3424 struct lsm_ioctlop_audit ioctl;
3425 u32 ssid = cred_sid(cred);
3426 int rc;
3427 u8 driver = cmd >> 8;
3428 u8 xperm = cmd & 0xff;
3429
3430 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3431 ad.u.op = &ioctl;
3432 ad.u.op->cmd = cmd;
3433 ad.u.op->path = file->f_path;
3434
3435 if (ssid != fsec->sid) {
3436 rc = avc_has_perm(ssid, fsec->sid,
3437 SECCLASS_FD,
3438 FD__USE,
3439 &ad);
3440 if (rc)
3441 goto out;
3442 }
3443
3444 if (unlikely(IS_PRIVATE(inode)))
3445 return 0;
3446
3447 isec = inode_security(inode);
3448 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3449 requested, driver, xperm, &ad);
3450out:
3451 return rc;
3452}
3453
3454static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3455 unsigned long arg)
3456{
3457 const struct cred *cred = current_cred();
3458 int error = 0;
3459
3460 switch (cmd) {
3461 case FIONREAD:
3462 /* fall through */
3463 case FIBMAP:
3464 /* fall through */
3465 case FIGETBSZ:
3466 /* fall through */
3467 case FS_IOC_GETFLAGS:
3468 /* fall through */
3469 case FS_IOC_GETVERSION:
3470 error = file_has_perm(cred, file, FILE__GETATTR);
3471 break;
3472
3473 case FS_IOC_SETFLAGS:
3474 /* fall through */
3475 case FS_IOC_SETVERSION:
3476 error = file_has_perm(cred, file, FILE__SETATTR);
3477 break;
3478
3479 /* sys_ioctl() checks */
3480 case FIONBIO:
3481 /* fall through */
3482 case FIOASYNC:
3483 error = file_has_perm(cred, file, 0);
3484 break;
3485
3486 case KDSKBENT:
3487 case KDSKBSENT:
3488 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3489 SECURITY_CAP_AUDIT, true);
3490 break;
3491
3492 /* default case assumes that the command will go
3493 * to the file's ioctl() function.
3494 */
3495 default:
3496 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3497 }
3498 return error;
3499}
3500
3501static int default_noexec;
3502
3503static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3504{
3505 const struct cred *cred = current_cred();
3506 int rc = 0;
3507
3508 if (default_noexec &&
3509 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3510 (!shared && (prot & PROT_WRITE)))) {
3511 /*
3512 * We are making executable an anonymous mapping or a
3513 * private file mapping that will also be writable.
3514 * This has an additional check.
3515 */
3516 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3517 if (rc)
3518 goto error;
3519 }
3520
3521 if (file) {
3522 /* read access is always possible with a mapping */
3523 u32 av = FILE__READ;
3524
3525 /* write access only matters if the mapping is shared */
3526 if (shared && (prot & PROT_WRITE))
3527 av |= FILE__WRITE;
3528
3529 if (prot & PROT_EXEC)
3530 av |= FILE__EXECUTE;
3531
3532 return file_has_perm(cred, file, av);
3533 }
3534
3535error:
3536 return rc;
3537}
3538
3539static int selinux_mmap_addr(unsigned long addr)
3540{
3541 int rc = 0;
3542
3543 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3544 u32 sid = current_sid();
3545 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3546 MEMPROTECT__MMAP_ZERO, NULL);
3547 }
3548
3549 return rc;
3550}
3551
3552static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3553 unsigned long prot, unsigned long flags)
3554{
3555 if (selinux_checkreqprot)
3556 prot = reqprot;
3557
3558 return file_map_prot_check(file, prot,
3559 (flags & MAP_TYPE) == MAP_SHARED);
3560}
3561
3562static int selinux_file_mprotect(struct vm_area_struct *vma,
3563 unsigned long reqprot,
3564 unsigned long prot)
3565{
3566 const struct cred *cred = current_cred();
3567
3568 if (selinux_checkreqprot)
3569 prot = reqprot;
3570
3571 if (default_noexec &&
3572 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3573 int rc = 0;
3574 if (vma->vm_start >= vma->vm_mm->start_brk &&
3575 vma->vm_end <= vma->vm_mm->brk) {
3576 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3577 } else if (!vma->vm_file &&
3578 ((vma->vm_start <= vma->vm_mm->start_stack &&
3579 vma->vm_end >= vma->vm_mm->start_stack) ||
3580 vma_is_stack_for_current(vma))) {
3581 rc = current_has_perm(current, PROCESS__EXECSTACK);
3582 } else if (vma->vm_file && vma->anon_vma) {
3583 /*
3584 * We are making executable a file mapping that has
3585 * had some COW done. Since pages might have been
3586 * written, check ability to execute the possibly
3587 * modified content. This typically should only
3588 * occur for text relocations.
3589 */
3590 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3591 }
3592 if (rc)
3593 return rc;
3594 }
3595
3596 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3597}
3598
3599static int selinux_file_lock(struct file *file, unsigned int cmd)
3600{
3601 const struct cred *cred = current_cred();
3602
3603 return file_has_perm(cred, file, FILE__LOCK);
3604}
3605
3606static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3607 unsigned long arg)
3608{
3609 const struct cred *cred = current_cred();
3610 int err = 0;
3611
3612 switch (cmd) {
3613 case F_SETFL:
3614 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3615 err = file_has_perm(cred, file, FILE__WRITE);
3616 break;
3617 }
3618 /* fall through */
3619 case F_SETOWN:
3620 case F_SETSIG:
3621 case F_GETFL:
3622 case F_GETOWN:
3623 case F_GETSIG:
3624 case F_GETOWNER_UIDS:
3625 /* Just check FD__USE permission */
3626 err = file_has_perm(cred, file, 0);
3627 break;
3628 case F_GETLK:
3629 case F_SETLK:
3630 case F_SETLKW:
3631 case F_OFD_GETLK:
3632 case F_OFD_SETLK:
3633 case F_OFD_SETLKW:
3634#if BITS_PER_LONG == 32
3635 case F_GETLK64:
3636 case F_SETLK64:
3637 case F_SETLKW64:
3638#endif
3639 err = file_has_perm(cred, file, FILE__LOCK);
3640 break;
3641 }
3642
3643 return err;
3644}
3645
3646static void selinux_file_set_fowner(struct file *file)
3647{
3648 struct file_security_struct *fsec;
3649
3650 fsec = file->f_security;
3651 fsec->fown_sid = current_sid();
3652}
3653
3654static int selinux_file_send_sigiotask(struct task_struct *tsk,
3655 struct fown_struct *fown, int signum)
3656{
3657 struct file *file;
3658 u32 sid = task_sid(tsk);
3659 u32 perm;
3660 struct file_security_struct *fsec;
3661
3662 /* struct fown_struct is never outside the context of a struct file */
3663 file = container_of(fown, struct file, f_owner);
3664
3665 fsec = file->f_security;
3666
3667 if (!signum)
3668 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3669 else
3670 perm = signal_to_av(signum);
3671
3672 return avc_has_perm(fsec->fown_sid, sid,
3673 SECCLASS_PROCESS, perm, NULL);
3674}
3675
3676static int selinux_file_receive(struct file *file)
3677{
3678 const struct cred *cred = current_cred();
3679
3680 return file_has_perm(cred, file, file_to_av(file));
3681}
3682
3683static int selinux_file_open(struct file *file, const struct cred *cred)
3684{
3685 struct file_security_struct *fsec;
3686 struct inode_security_struct *isec;
3687
3688 fsec = file->f_security;
3689 isec = inode_security(file_inode(file));
3690 /*
3691 * Save inode label and policy sequence number
3692 * at open-time so that selinux_file_permission
3693 * can determine whether revalidation is necessary.
3694 * Task label is already saved in the file security
3695 * struct as its SID.
3696 */
3697 fsec->isid = isec->sid;
3698 fsec->pseqno = avc_policy_seqno();
3699 /*
3700 * Since the inode label or policy seqno may have changed
3701 * between the selinux_inode_permission check and the saving
3702 * of state above, recheck that access is still permitted.
3703 * Otherwise, access might never be revalidated against the
3704 * new inode label or new policy.
3705 * This check is not redundant - do not remove.
3706 */
3707 return file_path_has_perm(cred, file, open_file_to_av(file));
3708}
3709
3710/* task security operations */
3711
3712static int selinux_task_create(unsigned long clone_flags)
3713{
3714 return current_has_perm(current, PROCESS__FORK);
3715}
3716
3717/*
3718 * allocate the SELinux part of blank credentials
3719 */
3720static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3721{
3722 struct task_security_struct *tsec;
3723
3724 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3725 if (!tsec)
3726 return -ENOMEM;
3727
3728 cred->security = tsec;
3729 return 0;
3730}
3731
3732/*
3733 * detach and free the LSM part of a set of credentials
3734 */
3735static void selinux_cred_free(struct cred *cred)
3736{
3737 struct task_security_struct *tsec = cred->security;
3738
3739 /*
3740 * cred->security == NULL if security_cred_alloc_blank() or
3741 * security_prepare_creds() returned an error.
3742 */
3743 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3744 cred->security = (void *) 0x7UL;
3745 kfree(tsec);
3746}
3747
3748/*
3749 * prepare a new set of credentials for modification
3750 */
3751static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3752 gfp_t gfp)
3753{
3754 const struct task_security_struct *old_tsec;
3755 struct task_security_struct *tsec;
3756
3757 old_tsec = old->security;
3758
3759 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3760 if (!tsec)
3761 return -ENOMEM;
3762
3763 new->security = tsec;
3764 return 0;
3765}
3766
3767/*
3768 * transfer the SELinux data to a blank set of creds
3769 */
3770static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3771{
3772 const struct task_security_struct *old_tsec = old->security;
3773 struct task_security_struct *tsec = new->security;
3774
3775 *tsec = *old_tsec;
3776}
3777
3778/*
3779 * set the security data for a kernel service
3780 * - all the creation contexts are set to unlabelled
3781 */
3782static int selinux_kernel_act_as(struct cred *new, u32 secid)
3783{
3784 struct task_security_struct *tsec = new->security;
3785 u32 sid = current_sid();
3786 int ret;
3787
3788 ret = avc_has_perm(sid, secid,
3789 SECCLASS_KERNEL_SERVICE,
3790 KERNEL_SERVICE__USE_AS_OVERRIDE,
3791 NULL);
3792 if (ret == 0) {
3793 tsec->sid = secid;
3794 tsec->create_sid = 0;
3795 tsec->keycreate_sid = 0;
3796 tsec->sockcreate_sid = 0;
3797 }
3798 return ret;
3799}
3800
3801/*
3802 * set the file creation context in a security record to the same as the
3803 * objective context of the specified inode
3804 */
3805static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3806{
3807 struct inode_security_struct *isec = inode_security(inode);
3808 struct task_security_struct *tsec = new->security;
3809 u32 sid = current_sid();
3810 int ret;
3811
3812 ret = avc_has_perm(sid, isec->sid,
3813 SECCLASS_KERNEL_SERVICE,
3814 KERNEL_SERVICE__CREATE_FILES_AS,
3815 NULL);
3816
3817 if (ret == 0)
3818 tsec->create_sid = isec->sid;
3819 return ret;
3820}
3821
3822static int selinux_kernel_module_request(char *kmod_name)
3823{
3824 u32 sid;
3825 struct common_audit_data ad;
3826
3827 sid = task_sid(current);
3828
3829 ad.type = LSM_AUDIT_DATA_KMOD;
3830 ad.u.kmod_name = kmod_name;
3831
3832 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3833 SYSTEM__MODULE_REQUEST, &ad);
3834}
3835
3836static int selinux_kernel_module_from_file(struct file *file)
3837{
3838 struct common_audit_data ad;
3839 struct inode_security_struct *isec;
3840 struct file_security_struct *fsec;
3841 u32 sid = current_sid();
3842 int rc;
3843
3844 /* init_module */
3845 if (file == NULL)
3846 return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
3847 SYSTEM__MODULE_LOAD, NULL);
3848
3849 /* finit_module */
3850
3851 ad.type = LSM_AUDIT_DATA_FILE;
3852 ad.u.file = file;
3853
3854 fsec = file->f_security;
3855 if (sid != fsec->sid) {
3856 rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3857 if (rc)
3858 return rc;
3859 }
3860
3861 isec = inode_security(file_inode(file));
3862 return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
3863 SYSTEM__MODULE_LOAD, &ad);
3864}
3865
3866static int selinux_kernel_read_file(struct file *file,
3867 enum kernel_read_file_id id)
3868{
3869 int rc = 0;
3870
3871 switch (id) {
3872 case READING_MODULE:
3873 rc = selinux_kernel_module_from_file(file);
3874 break;
3875 default:
3876 break;
3877 }
3878
3879 return rc;
3880}
3881
3882static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3883{
3884 return current_has_perm(p, PROCESS__SETPGID);
3885}
3886
3887static int selinux_task_getpgid(struct task_struct *p)
3888{
3889 return current_has_perm(p, PROCESS__GETPGID);
3890}
3891
3892static int selinux_task_getsid(struct task_struct *p)
3893{
3894 return current_has_perm(p, PROCESS__GETSESSION);
3895}
3896
3897static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3898{
3899 *secid = task_sid(p);
3900}
3901
3902static int selinux_task_setnice(struct task_struct *p, int nice)
3903{
3904 return current_has_perm(p, PROCESS__SETSCHED);
3905}
3906
3907static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3908{
3909 return current_has_perm(p, PROCESS__SETSCHED);
3910}
3911
3912static int selinux_task_getioprio(struct task_struct *p)
3913{
3914 return current_has_perm(p, PROCESS__GETSCHED);
3915}
3916
3917static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3918 struct rlimit *new_rlim)
3919{
3920 struct rlimit *old_rlim = p->signal->rlim + resource;
3921
3922 /* Control the ability to change the hard limit (whether
3923 lowering or raising it), so that the hard limit can
3924 later be used as a safe reset point for the soft limit
3925 upon context transitions. See selinux_bprm_committing_creds. */
3926 if (old_rlim->rlim_max != new_rlim->rlim_max)
3927 return current_has_perm(p, PROCESS__SETRLIMIT);
3928
3929 return 0;
3930}
3931
3932static int selinux_task_setscheduler(struct task_struct *p)
3933{
3934 return current_has_perm(p, PROCESS__SETSCHED);
3935}
3936
3937static int selinux_task_getscheduler(struct task_struct *p)
3938{
3939 return current_has_perm(p, PROCESS__GETSCHED);
3940}
3941
3942static int selinux_task_movememory(struct task_struct *p)
3943{
3944 return current_has_perm(p, PROCESS__SETSCHED);
3945}
3946
3947static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3948 int sig, u32 secid)
3949{
3950 u32 perm;
3951 int rc;
3952
3953 if (!sig)
3954 perm = PROCESS__SIGNULL; /* null signal; existence test */
3955 else
3956 perm = signal_to_av(sig);
3957 if (secid)
3958 rc = avc_has_perm(secid, task_sid(p),
3959 SECCLASS_PROCESS, perm, NULL);
3960 else
3961 rc = current_has_perm(p, perm);
3962 return rc;
3963}
3964
3965static int selinux_task_wait(struct task_struct *p)
3966{
3967 return task_has_perm(p, current, PROCESS__SIGCHLD);
3968}
3969
3970static void selinux_task_to_inode(struct task_struct *p,
3971 struct inode *inode)
3972{
3973 struct inode_security_struct *isec = inode->i_security;
3974 u32 sid = task_sid(p);
3975
3976 spin_lock(&isec->lock);
3977 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3978 isec->sid = sid;
3979 isec->initialized = LABEL_INITIALIZED;
3980 spin_unlock(&isec->lock);
3981}
3982
3983/* Returns error only if unable to parse addresses */
3984static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3985 struct common_audit_data *ad, u8 *proto)
3986{
3987 int offset, ihlen, ret = -EINVAL;
3988 struct iphdr _iph, *ih;
3989
3990 offset = skb_network_offset(skb);
3991 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3992 if (ih == NULL)
3993 goto out;
3994
3995 ihlen = ih->ihl * 4;
3996 if (ihlen < sizeof(_iph))
3997 goto out;
3998
3999 ad->u.net->v4info.saddr = ih->saddr;
4000 ad->u.net->v4info.daddr = ih->daddr;
4001 ret = 0;
4002
4003 if (proto)
4004 *proto = ih->protocol;
4005
4006 switch (ih->protocol) {
4007 case IPPROTO_TCP: {
4008 struct tcphdr _tcph, *th;
4009
4010 if (ntohs(ih->frag_off) & IP_OFFSET)
4011 break;
4012
4013 offset += ihlen;
4014 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4015 if (th == NULL)
4016 break;
4017
4018 ad->u.net->sport = th->source;
4019 ad->u.net->dport = th->dest;
4020 break;
4021 }
4022
4023 case IPPROTO_UDP: {
4024 struct udphdr _udph, *uh;
4025
4026 if (ntohs(ih->frag_off) & IP_OFFSET)
4027 break;
4028
4029 offset += ihlen;
4030 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4031 if (uh == NULL)
4032 break;
4033
4034 ad->u.net->sport = uh->source;
4035 ad->u.net->dport = uh->dest;
4036 break;
4037 }
4038
4039 case IPPROTO_DCCP: {
4040 struct dccp_hdr _dccph, *dh;
4041
4042 if (ntohs(ih->frag_off) & IP_OFFSET)
4043 break;
4044
4045 offset += ihlen;
4046 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4047 if (dh == NULL)
4048 break;
4049
4050 ad->u.net->sport = dh->dccph_sport;
4051 ad->u.net->dport = dh->dccph_dport;
4052 break;
4053 }
4054
4055 default:
4056 break;
4057 }
4058out:
4059 return ret;
4060}
4061
4062#if IS_ENABLED(CONFIG_IPV6)
4063
4064/* Returns error only if unable to parse addresses */
4065static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4066 struct common_audit_data *ad, u8 *proto)
4067{
4068 u8 nexthdr;
4069 int ret = -EINVAL, offset;
4070 struct ipv6hdr _ipv6h, *ip6;
4071 __be16 frag_off;
4072
4073 offset = skb_network_offset(skb);
4074 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4075 if (ip6 == NULL)
4076 goto out;
4077
4078 ad->u.net->v6info.saddr = ip6->saddr;
4079 ad->u.net->v6info.daddr = ip6->daddr;
4080 ret = 0;
4081
4082 nexthdr = ip6->nexthdr;
4083 offset += sizeof(_ipv6h);
4084 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4085 if (offset < 0)
4086 goto out;
4087
4088 if (proto)
4089 *proto = nexthdr;
4090
4091 switch (nexthdr) {
4092 case IPPROTO_TCP: {
4093 struct tcphdr _tcph, *th;
4094
4095 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4096 if (th == NULL)
4097 break;
4098
4099 ad->u.net->sport = th->source;
4100 ad->u.net->dport = th->dest;
4101 break;
4102 }
4103
4104 case IPPROTO_UDP: {
4105 struct udphdr _udph, *uh;
4106
4107 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4108 if (uh == NULL)
4109 break;
4110
4111 ad->u.net->sport = uh->source;
4112 ad->u.net->dport = uh->dest;
4113 break;
4114 }
4115
4116 case IPPROTO_DCCP: {
4117 struct dccp_hdr _dccph, *dh;
4118
4119 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4120 if (dh == NULL)
4121 break;
4122
4123 ad->u.net->sport = dh->dccph_sport;
4124 ad->u.net->dport = dh->dccph_dport;
4125 break;
4126 }
4127
4128 /* includes fragments */
4129 default:
4130 break;
4131 }
4132out:
4133 return ret;
4134}
4135
4136#endif /* IPV6 */
4137
4138static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4139 char **_addrp, int src, u8 *proto)
4140{
4141 char *addrp;
4142 int ret;
4143
4144 switch (ad->u.net->family) {
4145 case PF_INET:
4146 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4147 if (ret)
4148 goto parse_error;
4149 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4150 &ad->u.net->v4info.daddr);
4151 goto okay;
4152
4153#if IS_ENABLED(CONFIG_IPV6)
4154 case PF_INET6:
4155 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4156 if (ret)
4157 goto parse_error;
4158 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4159 &ad->u.net->v6info.daddr);
4160 goto okay;
4161#endif /* IPV6 */
4162 default:
4163 addrp = NULL;
4164 goto okay;
4165 }
4166
4167parse_error:
4168 printk(KERN_WARNING
4169 "SELinux: failure in selinux_parse_skb(),"
4170 " unable to parse packet\n");
4171 return ret;
4172
4173okay:
4174 if (_addrp)
4175 *_addrp = addrp;
4176 return 0;
4177}
4178
4179/**
4180 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4181 * @skb: the packet
4182 * @family: protocol family
4183 * @sid: the packet's peer label SID
4184 *
4185 * Description:
4186 * Check the various different forms of network peer labeling and determine
4187 * the peer label/SID for the packet; most of the magic actually occurs in
4188 * the security server function security_net_peersid_cmp(). The function
4189 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4190 * or -EACCES if @sid is invalid due to inconsistencies with the different
4191 * peer labels.
4192 *
4193 */
4194static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4195{
4196 int err;
4197 u32 xfrm_sid;
4198 u32 nlbl_sid;
4199 u32 nlbl_type;
4200
4201 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4202 if (unlikely(err))
4203 return -EACCES;
4204 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4205 if (unlikely(err))
4206 return -EACCES;
4207
4208 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
4209 if (unlikely(err)) {
4210 printk(KERN_WARNING
4211 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4212 " unable to determine packet's peer label\n");
4213 return -EACCES;
4214 }
4215
4216 return 0;
4217}
4218
4219/**
4220 * selinux_conn_sid - Determine the child socket label for a connection
4221 * @sk_sid: the parent socket's SID
4222 * @skb_sid: the packet's SID
4223 * @conn_sid: the resulting connection SID
4224 *
4225 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4226 * combined with the MLS information from @skb_sid in order to create
4227 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
4228 * of @sk_sid. Returns zero on success, negative values on failure.
4229 *
4230 */
4231static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4232{
4233 int err = 0;
4234
4235 if (skb_sid != SECSID_NULL)
4236 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
4237 else
4238 *conn_sid = sk_sid;
4239
4240 return err;
4241}
4242
4243/* socket security operations */
4244
4245static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4246 u16 secclass, u32 *socksid)
4247{
4248 if (tsec->sockcreate_sid > SECSID_NULL) {
4249 *socksid = tsec->sockcreate_sid;
4250 return 0;
4251 }
4252
4253 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4254 socksid);
4255}
4256
4257static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4258{
4259 struct sk_security_struct *sksec = sk->sk_security;
4260 struct common_audit_data ad;
4261 struct lsm_network_audit net = {0,};
4262 u32 tsid = task_sid(task);
4263
4264 if (sksec->sid == SECINITSID_KERNEL)
4265 return 0;
4266
4267 ad.type = LSM_AUDIT_DATA_NET;
4268 ad.u.net = &net;
4269 ad.u.net->sk = sk;
4270
4271 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
4272}
4273
4274static int selinux_socket_create(int family, int type,
4275 int protocol, int kern)
4276{
4277 const struct task_security_struct *tsec = current_security();
4278 u32 newsid;
4279 u16 secclass;
4280 int rc;
4281
4282 if (kern)
4283 return 0;
4284
4285 secclass = socket_type_to_security_class(family, type, protocol);
4286 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4287 if (rc)
4288 return rc;
4289
4290 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4291}
4292
4293static int selinux_socket_post_create(struct socket *sock, int family,
4294 int type, int protocol, int kern)
4295{
4296 const struct task_security_struct *tsec = current_security();
4297 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4298 struct sk_security_struct *sksec;
4299 u16 sclass = socket_type_to_security_class(family, type, protocol);
4300 u32 sid = SECINITSID_KERNEL;
4301 int err = 0;
4302
4303 if (!kern) {
4304 err = socket_sockcreate_sid(tsec, sclass, &sid);
4305 if (err)
4306 return err;
4307 }
4308
4309 isec->sclass = sclass;
4310 isec->sid = sid;
4311 isec->initialized = LABEL_INITIALIZED;
4312
4313 if (sock->sk) {
4314 sksec = sock->sk->sk_security;
4315 sksec->sclass = sclass;
4316 sksec->sid = sid;
4317 err = selinux_netlbl_socket_post_create(sock->sk, family);
4318 }
4319
4320 return err;
4321}
4322
4323/* Range of port numbers used to automatically bind.
4324 Need to determine whether we should perform a name_bind
4325 permission check between the socket and the port number. */
4326
4327static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4328{
4329 struct sock *sk = sock->sk;
4330 u16 family;
4331 int err;
4332
4333 err = sock_has_perm(current, sk, SOCKET__BIND);
4334 if (err)
4335 goto out;
4336
4337 /*
4338 * If PF_INET or PF_INET6, check name_bind permission for the port.
4339 * Multiple address binding for SCTP is not supported yet: we just
4340 * check the first address now.
4341 */
4342 family = sk->sk_family;
4343 if (family == PF_INET || family == PF_INET6) {
4344 char *addrp;
4345 struct sk_security_struct *sksec = sk->sk_security;
4346 struct common_audit_data ad;
4347 struct lsm_network_audit net = {0,};
4348 struct sockaddr_in *addr4 = NULL;
4349 struct sockaddr_in6 *addr6 = NULL;
4350 unsigned short snum;
4351 u32 sid, node_perm;
4352
4353 if (family == PF_INET) {
4354 addr4 = (struct sockaddr_in *)address;
4355 snum = ntohs(addr4->sin_port);
4356 addrp = (char *)&addr4->sin_addr.s_addr;
4357 } else {
4358 addr6 = (struct sockaddr_in6 *)address;
4359 snum = ntohs(addr6->sin6_port);
4360 addrp = (char *)&addr6->sin6_addr.s6_addr;
4361 }
4362
4363 if (snum) {
4364 int low, high;
4365
4366 inet_get_local_port_range(sock_net(sk), &low, &high);
4367
4368 if (snum < max(PROT_SOCK, low) || snum > high) {
4369 err = sel_netport_sid(sk->sk_protocol,
4370 snum, &sid);
4371 if (err)
4372 goto out;
4373 ad.type = LSM_AUDIT_DATA_NET;
4374 ad.u.net = &net;
4375 ad.u.net->sport = htons(snum);
4376 ad.u.net->family = family;
4377 err = avc_has_perm(sksec->sid, sid,
4378 sksec->sclass,
4379 SOCKET__NAME_BIND, &ad);
4380 if (err)
4381 goto out;
4382 }
4383 }
4384
4385 switch (sksec->sclass) {
4386 case SECCLASS_TCP_SOCKET:
4387 node_perm = TCP_SOCKET__NODE_BIND;
4388 break;
4389
4390 case SECCLASS_UDP_SOCKET:
4391 node_perm = UDP_SOCKET__NODE_BIND;
4392 break;
4393
4394 case SECCLASS_DCCP_SOCKET:
4395 node_perm = DCCP_SOCKET__NODE_BIND;
4396 break;
4397
4398 default:
4399 node_perm = RAWIP_SOCKET__NODE_BIND;
4400 break;
4401 }
4402
4403 err = sel_netnode_sid(addrp, family, &sid);
4404 if (err)
4405 goto out;
4406
4407 ad.type = LSM_AUDIT_DATA_NET;
4408 ad.u.net = &net;
4409 ad.u.net->sport = htons(snum);
4410 ad.u.net->family = family;
4411
4412 if (family == PF_INET)
4413 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4414 else
4415 ad.u.net->v6info.saddr = addr6->sin6_addr;
4416
4417 err = avc_has_perm(sksec->sid, sid,
4418 sksec->sclass, node_perm, &ad);
4419 if (err)
4420 goto out;
4421 }
4422out:
4423 return err;
4424}
4425
4426static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4427{
4428 struct sock *sk = sock->sk;
4429 struct sk_security_struct *sksec = sk->sk_security;
4430 int err;
4431
4432 err = sock_has_perm(current, sk, SOCKET__CONNECT);
4433 if (err)
4434 return err;
4435
4436 /*
4437 * If a TCP or DCCP socket, check name_connect permission for the port.
4438 */
4439 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4440 sksec->sclass == SECCLASS_DCCP_SOCKET) {
4441 struct common_audit_data ad;
4442 struct lsm_network_audit net = {0,};
4443 struct sockaddr_in *addr4 = NULL;
4444 struct sockaddr_in6 *addr6 = NULL;
4445 unsigned short snum;
4446 u32 sid, perm;
4447
4448 if (sk->sk_family == PF_INET) {
4449 addr4 = (struct sockaddr_in *)address;
4450 if (addrlen < sizeof(struct sockaddr_in))
4451 return -EINVAL;
4452 snum = ntohs(addr4->sin_port);
4453 } else {
4454 addr6 = (struct sockaddr_in6 *)address;
4455 if (addrlen < SIN6_LEN_RFC2133)
4456 return -EINVAL;
4457 snum = ntohs(addr6->sin6_port);
4458 }
4459
4460 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4461 if (err)
4462 goto out;
4463
4464 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4465 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4466
4467 ad.type = LSM_AUDIT_DATA_NET;
4468 ad.u.net = &net;
4469 ad.u.net->dport = htons(snum);
4470 ad.u.net->family = sk->sk_family;
4471 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4472 if (err)
4473 goto out;
4474 }
4475
4476 err = selinux_netlbl_socket_connect(sk, address);
4477
4478out:
4479 return err;
4480}
4481
4482static int selinux_socket_listen(struct socket *sock, int backlog)
4483{
4484 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4485}
4486
4487static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4488{
4489 int err;
4490 struct inode_security_struct *isec;
4491 struct inode_security_struct *newisec;
4492 u16 sclass;
4493 u32 sid;
4494
4495 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4496 if (err)
4497 return err;
4498
4499 isec = inode_security_novalidate(SOCK_INODE(sock));
4500 spin_lock(&isec->lock);
4501 sclass = isec->sclass;
4502 sid = isec->sid;
4503 spin_unlock(&isec->lock);
4504
4505 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4506 newisec->sclass = sclass;
4507 newisec->sid = sid;
4508 newisec->initialized = LABEL_INITIALIZED;
4509
4510 return 0;
4511}
4512
4513static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4514 int size)
4515{
4516 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4517}
4518
4519static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4520 int size, int flags)
4521{
4522 return sock_has_perm(current, sock->sk, SOCKET__READ);
4523}
4524
4525static int selinux_socket_getsockname(struct socket *sock)
4526{
4527 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4528}
4529
4530static int selinux_socket_getpeername(struct socket *sock)
4531{
4532 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4533}
4534
4535static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4536{
4537 int err;
4538
4539 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4540 if (err)
4541 return err;
4542
4543 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4544}
4545
4546static int selinux_socket_getsockopt(struct socket *sock, int level,
4547 int optname)
4548{
4549 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4550}
4551
4552static int selinux_socket_shutdown(struct socket *sock, int how)
4553{
4554 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4555}
4556
4557static int selinux_socket_unix_stream_connect(struct sock *sock,
4558 struct sock *other,
4559 struct sock *newsk)
4560{
4561 struct sk_security_struct *sksec_sock = sock->sk_security;
4562 struct sk_security_struct *sksec_other = other->sk_security;
4563 struct sk_security_struct *sksec_new = newsk->sk_security;
4564 struct common_audit_data ad;
4565 struct lsm_network_audit net = {0,};
4566 int err;
4567
4568 ad.type = LSM_AUDIT_DATA_NET;
4569 ad.u.net = &net;
4570 ad.u.net->sk = other;
4571
4572 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4573 sksec_other->sclass,
4574 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4575 if (err)
4576 return err;
4577
4578 /* server child socket */
4579 sksec_new->peer_sid = sksec_sock->sid;
4580 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4581 &sksec_new->sid);
4582 if (err)
4583 return err;
4584
4585 /* connecting socket */
4586 sksec_sock->peer_sid = sksec_new->sid;
4587
4588 return 0;
4589}
4590
4591static int selinux_socket_unix_may_send(struct socket *sock,
4592 struct socket *other)
4593{
4594 struct sk_security_struct *ssec = sock->sk->sk_security;
4595 struct sk_security_struct *osec = other->sk->sk_security;
4596 struct common_audit_data ad;
4597 struct lsm_network_audit net = {0,};
4598
4599 ad.type = LSM_AUDIT_DATA_NET;
4600 ad.u.net = &net;
4601 ad.u.net->sk = other->sk;
4602
4603 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4604 &ad);
4605}
4606
4607static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4608 char *addrp, u16 family, u32 peer_sid,
4609 struct common_audit_data *ad)
4610{
4611 int err;
4612 u32 if_sid;
4613 u32 node_sid;
4614
4615 err = sel_netif_sid(ns, ifindex, &if_sid);
4616 if (err)
4617 return err;
4618 err = avc_has_perm(peer_sid, if_sid,
4619 SECCLASS_NETIF, NETIF__INGRESS, ad);
4620 if (err)
4621 return err;
4622
4623 err = sel_netnode_sid(addrp, family, &node_sid);
4624 if (err)
4625 return err;
4626 return avc_has_perm(peer_sid, node_sid,
4627 SECCLASS_NODE, NODE__RECVFROM, ad);
4628}
4629
4630static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4631 u16 family)
4632{
4633 int err = 0;
4634 struct sk_security_struct *sksec = sk->sk_security;
4635 u32 sk_sid = sksec->sid;
4636 struct common_audit_data ad;
4637 struct lsm_network_audit net = {0,};
4638 char *addrp;
4639
4640 ad.type = LSM_AUDIT_DATA_NET;
4641 ad.u.net = &net;
4642 ad.u.net->netif = skb->skb_iif;
4643 ad.u.net->family = family;
4644 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4645 if (err)
4646 return err;
4647
4648 if (selinux_secmark_enabled()) {
4649 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4650 PACKET__RECV, &ad);
4651 if (err)
4652 return err;
4653 }
4654
4655 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4656 if (err)
4657 return err;
4658 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4659
4660 return err;
4661}
4662
4663static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4664{
4665 int err;
4666 struct sk_security_struct *sksec = sk->sk_security;
4667 u16 family = sk->sk_family;
4668 u32 sk_sid = sksec->sid;
4669 struct common_audit_data ad;
4670 struct lsm_network_audit net = {0,};
4671 char *addrp;
4672 u8 secmark_active;
4673 u8 peerlbl_active;
4674
4675 if (family != PF_INET && family != PF_INET6)
4676 return 0;
4677
4678 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4679 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4680 family = PF_INET;
4681
4682 /* If any sort of compatibility mode is enabled then handoff processing
4683 * to the selinux_sock_rcv_skb_compat() function to deal with the
4684 * special handling. We do this in an attempt to keep this function
4685 * as fast and as clean as possible. */
4686 if (!selinux_policycap_netpeer)
4687 return selinux_sock_rcv_skb_compat(sk, skb, family);
4688
4689 secmark_active = selinux_secmark_enabled();
4690 peerlbl_active = selinux_peerlbl_enabled();
4691 if (!secmark_active && !peerlbl_active)
4692 return 0;
4693
4694 ad.type = LSM_AUDIT_DATA_NET;
4695 ad.u.net = &net;
4696 ad.u.net->netif = skb->skb_iif;
4697 ad.u.net->family = family;
4698 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4699 if (err)
4700 return err;
4701
4702 if (peerlbl_active) {
4703 u32 peer_sid;
4704
4705 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4706 if (err)
4707 return err;
4708 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4709 addrp, family, peer_sid, &ad);
4710 if (err) {
4711 selinux_netlbl_err(skb, family, err, 0);
4712 return err;
4713 }
4714 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4715 PEER__RECV, &ad);
4716 if (err) {
4717 selinux_netlbl_err(skb, family, err, 0);
4718 return err;
4719 }
4720 }
4721
4722 if (secmark_active) {
4723 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4724 PACKET__RECV, &ad);
4725 if (err)
4726 return err;
4727 }
4728
4729 return err;
4730}
4731
4732static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4733 int __user *optlen, unsigned len)
4734{
4735 int err = 0;
4736 char *scontext;
4737 u32 scontext_len;
4738 struct sk_security_struct *sksec = sock->sk->sk_security;
4739 u32 peer_sid = SECSID_NULL;
4740
4741 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4742 sksec->sclass == SECCLASS_TCP_SOCKET)
4743 peer_sid = sksec->peer_sid;
4744 if (peer_sid == SECSID_NULL)
4745 return -ENOPROTOOPT;
4746
4747 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4748 if (err)
4749 return err;
4750
4751 if (scontext_len > len) {
4752 err = -ERANGE;
4753 goto out_len;
4754 }
4755
4756 if (copy_to_user(optval, scontext, scontext_len))
4757 err = -EFAULT;
4758
4759out_len:
4760 if (put_user(scontext_len, optlen))
4761 err = -EFAULT;
4762 kfree(scontext);
4763 return err;
4764}
4765
4766static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4767{
4768 u32 peer_secid = SECSID_NULL;
4769 u16 family;
4770 struct inode_security_struct *isec;
4771
4772 if (skb && skb->protocol == htons(ETH_P_IP))
4773 family = PF_INET;
4774 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4775 family = PF_INET6;
4776 else if (sock)
4777 family = sock->sk->sk_family;
4778 else
4779 goto out;
4780
4781 if (sock && family == PF_UNIX) {
4782 isec = inode_security_novalidate(SOCK_INODE(sock));
4783 peer_secid = isec->sid;
4784 } else if (skb)
4785 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4786
4787out:
4788 *secid = peer_secid;
4789 if (peer_secid == SECSID_NULL)
4790 return -EINVAL;
4791 return 0;
4792}
4793
4794static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4795{
4796 struct sk_security_struct *sksec;
4797
4798 sksec = kzalloc(sizeof(*sksec), priority);
4799 if (!sksec)
4800 return -ENOMEM;
4801
4802 sksec->peer_sid = SECINITSID_UNLABELED;
4803 sksec->sid = SECINITSID_UNLABELED;
4804 sksec->sclass = SECCLASS_SOCKET;
4805 selinux_netlbl_sk_security_reset(sksec);
4806 sk->sk_security = sksec;
4807
4808 return 0;
4809}
4810
4811static void selinux_sk_free_security(struct sock *sk)
4812{
4813 struct sk_security_struct *sksec = sk->sk_security;
4814
4815 sk->sk_security = NULL;
4816 selinux_netlbl_sk_security_free(sksec);
4817 kfree(sksec);
4818}
4819
4820static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4821{
4822 struct sk_security_struct *sksec = sk->sk_security;
4823 struct sk_security_struct *newsksec = newsk->sk_security;
4824
4825 newsksec->sid = sksec->sid;
4826 newsksec->peer_sid = sksec->peer_sid;
4827 newsksec->sclass = sksec->sclass;
4828
4829 selinux_netlbl_sk_security_reset(newsksec);
4830}
4831
4832static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4833{
4834 if (!sk)
4835 *secid = SECINITSID_ANY_SOCKET;
4836 else {
4837 struct sk_security_struct *sksec = sk->sk_security;
4838
4839 *secid = sksec->sid;
4840 }
4841}
4842
4843static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4844{
4845 struct inode_security_struct *isec =
4846 inode_security_novalidate(SOCK_INODE(parent));
4847 struct sk_security_struct *sksec = sk->sk_security;
4848
4849 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4850 sk->sk_family == PF_UNIX)
4851 isec->sid = sksec->sid;
4852 sksec->sclass = isec->sclass;
4853}
4854
4855static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4856 struct request_sock *req)
4857{
4858 struct sk_security_struct *sksec = sk->sk_security;
4859 int err;
4860 u16 family = req->rsk_ops->family;
4861 u32 connsid;
4862 u32 peersid;
4863
4864 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4865 if (err)
4866 return err;
4867 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4868 if (err)
4869 return err;
4870 req->secid = connsid;
4871 req->peer_secid = peersid;
4872
4873 return selinux_netlbl_inet_conn_request(req, family);
4874}
4875
4876static void selinux_inet_csk_clone(struct sock *newsk,
4877 const struct request_sock *req)
4878{
4879 struct sk_security_struct *newsksec = newsk->sk_security;
4880
4881 newsksec->sid = req->secid;
4882 newsksec->peer_sid = req->peer_secid;
4883 /* NOTE: Ideally, we should also get the isec->sid for the
4884 new socket in sync, but we don't have the isec available yet.
4885 So we will wait until sock_graft to do it, by which
4886 time it will have been created and available. */
4887
4888 /* We don't need to take any sort of lock here as we are the only
4889 * thread with access to newsksec */
4890 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4891}
4892
4893static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4894{
4895 u16 family = sk->sk_family;
4896 struct sk_security_struct *sksec = sk->sk_security;
4897
4898 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4899 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4900 family = PF_INET;
4901
4902 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4903}
4904
4905static int selinux_secmark_relabel_packet(u32 sid)
4906{
4907 const struct task_security_struct *__tsec;
4908 u32 tsid;
4909
4910 __tsec = current_security();
4911 tsid = __tsec->sid;
4912
4913 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4914}
4915
4916static void selinux_secmark_refcount_inc(void)
4917{
4918 atomic_inc(&selinux_secmark_refcount);
4919}
4920
4921static void selinux_secmark_refcount_dec(void)
4922{
4923 atomic_dec(&selinux_secmark_refcount);
4924}
4925
4926static void selinux_req_classify_flow(const struct request_sock *req,
4927 struct flowi *fl)
4928{
4929 fl->flowi_secid = req->secid;
4930}
4931
4932static int selinux_tun_dev_alloc_security(void **security)
4933{
4934 struct tun_security_struct *tunsec;
4935
4936 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4937 if (!tunsec)
4938 return -ENOMEM;
4939 tunsec->sid = current_sid();
4940
4941 *security = tunsec;
4942 return 0;
4943}
4944
4945static void selinux_tun_dev_free_security(void *security)
4946{
4947 kfree(security);
4948}
4949
4950static int selinux_tun_dev_create(void)
4951{
4952 u32 sid = current_sid();
4953
4954 /* we aren't taking into account the "sockcreate" SID since the socket
4955 * that is being created here is not a socket in the traditional sense,
4956 * instead it is a private sock, accessible only to the kernel, and
4957 * representing a wide range of network traffic spanning multiple
4958 * connections unlike traditional sockets - check the TUN driver to
4959 * get a better understanding of why this socket is special */
4960
4961 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4962 NULL);
4963}
4964
4965static int selinux_tun_dev_attach_queue(void *security)
4966{
4967 struct tun_security_struct *tunsec = security;
4968
4969 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4970 TUN_SOCKET__ATTACH_QUEUE, NULL);
4971}
4972
4973static int selinux_tun_dev_attach(struct sock *sk, void *security)
4974{
4975 struct tun_security_struct *tunsec = security;
4976 struct sk_security_struct *sksec = sk->sk_security;
4977
4978 /* we don't currently perform any NetLabel based labeling here and it
4979 * isn't clear that we would want to do so anyway; while we could apply
4980 * labeling without the support of the TUN user the resulting labeled
4981 * traffic from the other end of the connection would almost certainly
4982 * cause confusion to the TUN user that had no idea network labeling
4983 * protocols were being used */
4984
4985 sksec->sid = tunsec->sid;
4986 sksec->sclass = SECCLASS_TUN_SOCKET;
4987
4988 return 0;
4989}
4990
4991static int selinux_tun_dev_open(void *security)
4992{
4993 struct tun_security_struct *tunsec = security;
4994 u32 sid = current_sid();
4995 int err;
4996
4997 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4998 TUN_SOCKET__RELABELFROM, NULL);
4999 if (err)
5000 return err;
5001 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5002 TUN_SOCKET__RELABELTO, NULL);
5003 if (err)
5004 return err;
5005 tunsec->sid = sid;
5006
5007 return 0;
5008}
5009
5010static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5011{
5012 int err = 0;
5013 u32 perm;
5014 struct nlmsghdr *nlh;
5015 struct sk_security_struct *sksec = sk->sk_security;
5016
5017 if (skb->len < NLMSG_HDRLEN) {
5018 err = -EINVAL;
5019 goto out;
5020 }
5021 nlh = nlmsg_hdr(skb);
5022
5023 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5024 if (err) {
5025 if (err == -EINVAL) {
5026 pr_warn_ratelimited("SELinux: unrecognized netlink"
5027 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5028 " pig=%d comm=%s\n",
5029 sk->sk_protocol, nlh->nlmsg_type,
5030 secclass_map[sksec->sclass - 1].name,
5031 task_pid_nr(current), current->comm);
5032 if (!selinux_enforcing || security_get_allow_unknown())
5033 err = 0;
5034 }
5035
5036 /* Ignore */
5037 if (err == -ENOENT)
5038 err = 0;
5039 goto out;
5040 }
5041
5042 err = sock_has_perm(current, sk, perm);
5043out:
5044 return err;
5045}
5046
5047#ifdef CONFIG_NETFILTER
5048
5049static unsigned int selinux_ip_forward(struct sk_buff *skb,
5050 const struct net_device *indev,
5051 u16 family)
5052{
5053 int err;
5054 char *addrp;
5055 u32 peer_sid;
5056 struct common_audit_data ad;
5057 struct lsm_network_audit net = {0,};
5058 u8 secmark_active;
5059 u8 netlbl_active;
5060 u8 peerlbl_active;
5061
5062 if (!selinux_policycap_netpeer)
5063 return NF_ACCEPT;
5064
5065 secmark_active = selinux_secmark_enabled();
5066 netlbl_active = netlbl_enabled();
5067 peerlbl_active = selinux_peerlbl_enabled();
5068 if (!secmark_active && !peerlbl_active)
5069 return NF_ACCEPT;
5070
5071 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5072 return NF_DROP;
5073
5074 ad.type = LSM_AUDIT_DATA_NET;
5075 ad.u.net = &net;
5076 ad.u.net->netif = indev->ifindex;
5077 ad.u.net->family = family;
5078 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5079 return NF_DROP;
5080
5081 if (peerlbl_active) {
5082 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5083 addrp, family, peer_sid, &ad);
5084 if (err) {
5085 selinux_netlbl_err(skb, family, err, 1);
5086 return NF_DROP;
5087 }
5088 }
5089
5090 if (secmark_active)
5091 if (avc_has_perm(peer_sid, skb->secmark,
5092 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5093 return NF_DROP;
5094
5095 if (netlbl_active)
5096 /* we do this in the FORWARD path and not the POST_ROUTING
5097 * path because we want to make sure we apply the necessary
5098 * labeling before IPsec is applied so we can leverage AH
5099 * protection */
5100 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5101 return NF_DROP;
5102
5103 return NF_ACCEPT;
5104}
5105
5106static unsigned int selinux_ipv4_forward(void *priv,
5107 struct sk_buff *skb,
5108 const struct nf_hook_state *state)
5109{
5110 return selinux_ip_forward(skb, state->in, PF_INET);
5111}
5112
5113#if IS_ENABLED(CONFIG_IPV6)
5114static unsigned int selinux_ipv6_forward(void *priv,
5115 struct sk_buff *skb,
5116 const struct nf_hook_state *state)
5117{
5118 return selinux_ip_forward(skb, state->in, PF_INET6);
5119}
5120#endif /* IPV6 */
5121
5122static unsigned int selinux_ip_output(struct sk_buff *skb,
5123 u16 family)
5124{
5125 struct sock *sk;
5126 u32 sid;
5127
5128 if (!netlbl_enabled())
5129 return NF_ACCEPT;
5130
5131 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5132 * because we want to make sure we apply the necessary labeling
5133 * before IPsec is applied so we can leverage AH protection */
5134 sk = skb->sk;
5135 if (sk) {
5136 struct sk_security_struct *sksec;
5137
5138 if (sk_listener(sk))
5139 /* if the socket is the listening state then this
5140 * packet is a SYN-ACK packet which means it needs to
5141 * be labeled based on the connection/request_sock and
5142 * not the parent socket. unfortunately, we can't
5143 * lookup the request_sock yet as it isn't queued on
5144 * the parent socket until after the SYN-ACK is sent.
5145 * the "solution" is to simply pass the packet as-is
5146 * as any IP option based labeling should be copied
5147 * from the initial connection request (in the IP
5148 * layer). it is far from ideal, but until we get a
5149 * security label in the packet itself this is the
5150 * best we can do. */
5151 return NF_ACCEPT;
5152
5153 /* standard practice, label using the parent socket */
5154 sksec = sk->sk_security;
5155 sid = sksec->sid;
5156 } else
5157 sid = SECINITSID_KERNEL;
5158 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5159 return NF_DROP;
5160
5161 return NF_ACCEPT;
5162}
5163
5164static unsigned int selinux_ipv4_output(void *priv,
5165 struct sk_buff *skb,
5166 const struct nf_hook_state *state)
5167{
5168 return selinux_ip_output(skb, PF_INET);
5169}
5170
5171#if IS_ENABLED(CONFIG_IPV6)
5172static unsigned int selinux_ipv6_output(void *priv,
5173 struct sk_buff *skb,
5174 const struct nf_hook_state *state)
5175{
5176 return selinux_ip_output(skb, PF_INET6);
5177}
5178#endif /* IPV6 */
5179
5180static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5181 int ifindex,
5182 u16 family)
5183{
5184 struct sock *sk = skb_to_full_sk(skb);
5185 struct sk_security_struct *sksec;
5186 struct common_audit_data ad;
5187 struct lsm_network_audit net = {0,};
5188 char *addrp;
5189 u8 proto;
5190
5191 if (sk == NULL)
5192 return NF_ACCEPT;
5193 sksec = sk->sk_security;
5194
5195 ad.type = LSM_AUDIT_DATA_NET;
5196 ad.u.net = &net;
5197 ad.u.net->netif = ifindex;
5198 ad.u.net->family = family;
5199 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5200 return NF_DROP;
5201
5202 if (selinux_secmark_enabled())
5203 if (avc_has_perm(sksec->sid, skb->secmark,
5204 SECCLASS_PACKET, PACKET__SEND, &ad))
5205 return NF_DROP_ERR(-ECONNREFUSED);
5206
5207 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5208 return NF_DROP_ERR(-ECONNREFUSED);
5209
5210 return NF_ACCEPT;
5211}
5212
5213static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5214 const struct net_device *outdev,
5215 u16 family)
5216{
5217 u32 secmark_perm;
5218 u32 peer_sid;
5219 int ifindex = outdev->ifindex;
5220 struct sock *sk;
5221 struct common_audit_data ad;
5222 struct lsm_network_audit net = {0,};
5223 char *addrp;
5224 u8 secmark_active;
5225 u8 peerlbl_active;
5226
5227 /* If any sort of compatibility mode is enabled then handoff processing
5228 * to the selinux_ip_postroute_compat() function to deal with the
5229 * special handling. We do this in an attempt to keep this function
5230 * as fast and as clean as possible. */
5231 if (!selinux_policycap_netpeer)
5232 return selinux_ip_postroute_compat(skb, ifindex, family);
5233
5234 secmark_active = selinux_secmark_enabled();
5235 peerlbl_active = selinux_peerlbl_enabled();
5236 if (!secmark_active && !peerlbl_active)
5237 return NF_ACCEPT;
5238
5239 sk = skb_to_full_sk(skb);
5240
5241#ifdef CONFIG_XFRM
5242 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5243 * packet transformation so allow the packet to pass without any checks
5244 * since we'll have another chance to perform access control checks
5245 * when the packet is on it's final way out.
5246 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5247 * is NULL, in this case go ahead and apply access control.
5248 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5249 * TCP listening state we cannot wait until the XFRM processing
5250 * is done as we will miss out on the SA label if we do;
5251 * unfortunately, this means more work, but it is only once per
5252 * connection. */
5253 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5254 !(sk && sk_listener(sk)))
5255 return NF_ACCEPT;
5256#endif
5257
5258 if (sk == NULL) {
5259 /* Without an associated socket the packet is either coming
5260 * from the kernel or it is being forwarded; check the packet
5261 * to determine which and if the packet is being forwarded
5262 * query the packet directly to determine the security label. */
5263 if (skb->skb_iif) {
5264 secmark_perm = PACKET__FORWARD_OUT;
5265 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5266 return NF_DROP;
5267 } else {
5268 secmark_perm = PACKET__SEND;
5269 peer_sid = SECINITSID_KERNEL;
5270 }
5271 } else if (sk_listener(sk)) {
5272 /* Locally generated packet but the associated socket is in the
5273 * listening state which means this is a SYN-ACK packet. In
5274 * this particular case the correct security label is assigned
5275 * to the connection/request_sock but unfortunately we can't
5276 * query the request_sock as it isn't queued on the parent
5277 * socket until after the SYN-ACK packet is sent; the only
5278 * viable choice is to regenerate the label like we do in
5279 * selinux_inet_conn_request(). See also selinux_ip_output()
5280 * for similar problems. */
5281 u32 skb_sid;
5282 struct sk_security_struct *sksec;
5283
5284 sksec = sk->sk_security;
5285 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5286 return NF_DROP;
5287 /* At this point, if the returned skb peerlbl is SECSID_NULL
5288 * and the packet has been through at least one XFRM
5289 * transformation then we must be dealing with the "final"
5290 * form of labeled IPsec packet; since we've already applied
5291 * all of our access controls on this packet we can safely
5292 * pass the packet. */
5293 if (skb_sid == SECSID_NULL) {
5294 switch (family) {
5295 case PF_INET:
5296 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5297 return NF_ACCEPT;
5298 break;
5299 case PF_INET6:
5300 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5301 return NF_ACCEPT;
5302 break;
5303 default:
5304 return NF_DROP_ERR(-ECONNREFUSED);
5305 }
5306 }
5307 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5308 return NF_DROP;
5309 secmark_perm = PACKET__SEND;
5310 } else {
5311 /* Locally generated packet, fetch the security label from the
5312 * associated socket. */
5313 struct sk_security_struct *sksec = sk->sk_security;
5314 peer_sid = sksec->sid;
5315 secmark_perm = PACKET__SEND;
5316 }
5317
5318 ad.type = LSM_AUDIT_DATA_NET;
5319 ad.u.net = &net;
5320 ad.u.net->netif = ifindex;
5321 ad.u.net->family = family;
5322 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5323 return NF_DROP;
5324
5325 if (secmark_active)
5326 if (avc_has_perm(peer_sid, skb->secmark,
5327 SECCLASS_PACKET, secmark_perm, &ad))
5328 return NF_DROP_ERR(-ECONNREFUSED);
5329
5330 if (peerlbl_active) {
5331 u32 if_sid;
5332 u32 node_sid;
5333
5334 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5335 return NF_DROP;
5336 if (avc_has_perm(peer_sid, if_sid,
5337 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5338 return NF_DROP_ERR(-ECONNREFUSED);
5339
5340 if (sel_netnode_sid(addrp, family, &node_sid))
5341 return NF_DROP;
5342 if (avc_has_perm(peer_sid, node_sid,
5343 SECCLASS_NODE, NODE__SENDTO, &ad))
5344 return NF_DROP_ERR(-ECONNREFUSED);
5345 }
5346
5347 return NF_ACCEPT;
5348}
5349
5350static unsigned int selinux_ipv4_postroute(void *priv,
5351 struct sk_buff *skb,
5352 const struct nf_hook_state *state)
5353{
5354 return selinux_ip_postroute(skb, state->out, PF_INET);
5355}
5356
5357#if IS_ENABLED(CONFIG_IPV6)
5358static unsigned int selinux_ipv6_postroute(void *priv,
5359 struct sk_buff *skb,
5360 const struct nf_hook_state *state)
5361{
5362 return selinux_ip_postroute(skb, state->out, PF_INET6);
5363}
5364#endif /* IPV6 */
5365
5366#endif /* CONFIG_NETFILTER */
5367
5368static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5369{
5370 return selinux_nlmsg_perm(sk, skb);
5371}
5372
5373static int ipc_alloc_security(struct task_struct *task,
5374 struct kern_ipc_perm *perm,
5375 u16 sclass)
5376{
5377 struct ipc_security_struct *isec;
5378 u32 sid;
5379
5380 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5381 if (!isec)
5382 return -ENOMEM;
5383
5384 sid = task_sid(task);
5385 isec->sclass = sclass;
5386 isec->sid = sid;
5387 perm->security = isec;
5388
5389 return 0;
5390}
5391
5392static void ipc_free_security(struct kern_ipc_perm *perm)
5393{
5394 struct ipc_security_struct *isec = perm->security;
5395 perm->security = NULL;
5396 kfree(isec);
5397}
5398
5399static int msg_msg_alloc_security(struct msg_msg *msg)
5400{
5401 struct msg_security_struct *msec;
5402
5403 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5404 if (!msec)
5405 return -ENOMEM;
5406
5407 msec->sid = SECINITSID_UNLABELED;
5408 msg->security = msec;
5409
5410 return 0;
5411}
5412
5413static void msg_msg_free_security(struct msg_msg *msg)
5414{
5415 struct msg_security_struct *msec = msg->security;
5416
5417 msg->security = NULL;
5418 kfree(msec);
5419}
5420
5421static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5422 u32 perms)
5423{
5424 struct ipc_security_struct *isec;
5425 struct common_audit_data ad;
5426 u32 sid = current_sid();
5427
5428 isec = ipc_perms->security;
5429
5430 ad.type = LSM_AUDIT_DATA_IPC;
5431 ad.u.ipc_id = ipc_perms->key;
5432
5433 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5434}
5435
5436static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5437{
5438 return msg_msg_alloc_security(msg);
5439}
5440
5441static void selinux_msg_msg_free_security(struct msg_msg *msg)
5442{
5443 msg_msg_free_security(msg);
5444}
5445
5446/* message queue security operations */
5447static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5448{
5449 struct ipc_security_struct *isec;
5450 struct common_audit_data ad;
5451 u32 sid = current_sid();
5452 int rc;
5453
5454 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5455 if (rc)
5456 return rc;
5457
5458 isec = msq->q_perm.security;
5459
5460 ad.type = LSM_AUDIT_DATA_IPC;
5461 ad.u.ipc_id = msq->q_perm.key;
5462
5463 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5464 MSGQ__CREATE, &ad);
5465 if (rc) {
5466 ipc_free_security(&msq->q_perm);
5467 return rc;
5468 }
5469 return 0;
5470}
5471
5472static void selinux_msg_queue_free_security(struct msg_queue *msq)
5473{
5474 ipc_free_security(&msq->q_perm);
5475}
5476
5477static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5478{
5479 struct ipc_security_struct *isec;
5480 struct common_audit_data ad;
5481 u32 sid = current_sid();
5482
5483 isec = msq->q_perm.security;
5484
5485 ad.type = LSM_AUDIT_DATA_IPC;
5486 ad.u.ipc_id = msq->q_perm.key;
5487
5488 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5489 MSGQ__ASSOCIATE, &ad);
5490}
5491
5492static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5493{
5494 int err;
5495 int perms;
5496
5497 switch (cmd) {
5498 case IPC_INFO:
5499 case MSG_INFO:
5500 /* No specific object, just general system-wide information. */
5501 return task_has_system(current, SYSTEM__IPC_INFO);
5502 case IPC_STAT:
5503 case MSG_STAT:
5504 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5505 break;
5506 case IPC_SET:
5507 perms = MSGQ__SETATTR;
5508 break;
5509 case IPC_RMID:
5510 perms = MSGQ__DESTROY;
5511 break;
5512 default:
5513 return 0;
5514 }
5515
5516 err = ipc_has_perm(&msq->q_perm, perms);
5517 return err;
5518}
5519
5520static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5521{
5522 struct ipc_security_struct *isec;
5523 struct msg_security_struct *msec;
5524 struct common_audit_data ad;
5525 u32 sid = current_sid();
5526 int rc;
5527
5528 isec = msq->q_perm.security;
5529 msec = msg->security;
5530
5531 /*
5532 * First time through, need to assign label to the message
5533 */
5534 if (msec->sid == SECINITSID_UNLABELED) {
5535 /*
5536 * Compute new sid based on current process and
5537 * message queue this message will be stored in
5538 */
5539 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5540 NULL, &msec->sid);
5541 if (rc)
5542 return rc;
5543 }
5544
5545 ad.type = LSM_AUDIT_DATA_IPC;
5546 ad.u.ipc_id = msq->q_perm.key;
5547
5548 /* Can this process write to the queue? */
5549 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5550 MSGQ__WRITE, &ad);
5551 if (!rc)
5552 /* Can this process send the message */
5553 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5554 MSG__SEND, &ad);
5555 if (!rc)
5556 /* Can the message be put in the queue? */
5557 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5558 MSGQ__ENQUEUE, &ad);
5559
5560 return rc;
5561}
5562
5563static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5564 struct task_struct *target,
5565 long type, int mode)
5566{
5567 struct ipc_security_struct *isec;
5568 struct msg_security_struct *msec;
5569 struct common_audit_data ad;
5570 u32 sid = task_sid(target);
5571 int rc;
5572
5573 isec = msq->q_perm.security;
5574 msec = msg->security;
5575
5576 ad.type = LSM_AUDIT_DATA_IPC;
5577 ad.u.ipc_id = msq->q_perm.key;
5578
5579 rc = avc_has_perm(sid, isec->sid,
5580 SECCLASS_MSGQ, MSGQ__READ, &ad);
5581 if (!rc)
5582 rc = avc_has_perm(sid, msec->sid,
5583 SECCLASS_MSG, MSG__RECEIVE, &ad);
5584 return rc;
5585}
5586
5587/* Shared Memory security operations */
5588static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5589{
5590 struct ipc_security_struct *isec;
5591 struct common_audit_data ad;
5592 u32 sid = current_sid();
5593 int rc;
5594
5595 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5596 if (rc)
5597 return rc;
5598
5599 isec = shp->shm_perm.security;
5600
5601 ad.type = LSM_AUDIT_DATA_IPC;
5602 ad.u.ipc_id = shp->shm_perm.key;
5603
5604 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5605 SHM__CREATE, &ad);
5606 if (rc) {
5607 ipc_free_security(&shp->shm_perm);
5608 return rc;
5609 }
5610 return 0;
5611}
5612
5613static void selinux_shm_free_security(struct shmid_kernel *shp)
5614{
5615 ipc_free_security(&shp->shm_perm);
5616}
5617
5618static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5619{
5620 struct ipc_security_struct *isec;
5621 struct common_audit_data ad;
5622 u32 sid = current_sid();
5623
5624 isec = shp->shm_perm.security;
5625
5626 ad.type = LSM_AUDIT_DATA_IPC;
5627 ad.u.ipc_id = shp->shm_perm.key;
5628
5629 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5630 SHM__ASSOCIATE, &ad);
5631}
5632
5633/* Note, at this point, shp is locked down */
5634static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5635{
5636 int perms;
5637 int err;
5638
5639 switch (cmd) {
5640 case IPC_INFO:
5641 case SHM_INFO:
5642 /* No specific object, just general system-wide information. */
5643 return task_has_system(current, SYSTEM__IPC_INFO);
5644 case IPC_STAT:
5645 case SHM_STAT:
5646 perms = SHM__GETATTR | SHM__ASSOCIATE;
5647 break;
5648 case IPC_SET:
5649 perms = SHM__SETATTR;
5650 break;
5651 case SHM_LOCK:
5652 case SHM_UNLOCK:
5653 perms = SHM__LOCK;
5654 break;
5655 case IPC_RMID:
5656 perms = SHM__DESTROY;
5657 break;
5658 default:
5659 return 0;
5660 }
5661
5662 err = ipc_has_perm(&shp->shm_perm, perms);
5663 return err;
5664}
5665
5666static int selinux_shm_shmat(struct shmid_kernel *shp,
5667 char __user *shmaddr, int shmflg)
5668{
5669 u32 perms;
5670
5671 if (shmflg & SHM_RDONLY)
5672 perms = SHM__READ;
5673 else
5674 perms = SHM__READ | SHM__WRITE;
5675
5676 return ipc_has_perm(&shp->shm_perm, perms);
5677}
5678
5679/* Semaphore security operations */
5680static int selinux_sem_alloc_security(struct sem_array *sma)
5681{
5682 struct ipc_security_struct *isec;
5683 struct common_audit_data ad;
5684 u32 sid = current_sid();
5685 int rc;
5686
5687 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5688 if (rc)
5689 return rc;
5690
5691 isec = sma->sem_perm.security;
5692
5693 ad.type = LSM_AUDIT_DATA_IPC;
5694 ad.u.ipc_id = sma->sem_perm.key;
5695
5696 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5697 SEM__CREATE, &ad);
5698 if (rc) {
5699 ipc_free_security(&sma->sem_perm);
5700 return rc;
5701 }
5702 return 0;
5703}
5704
5705static void selinux_sem_free_security(struct sem_array *sma)
5706{
5707 ipc_free_security(&sma->sem_perm);
5708}
5709
5710static int selinux_sem_associate(struct sem_array *sma, int semflg)
5711{
5712 struct ipc_security_struct *isec;
5713 struct common_audit_data ad;
5714 u32 sid = current_sid();
5715
5716 isec = sma->sem_perm.security;
5717
5718 ad.type = LSM_AUDIT_DATA_IPC;
5719 ad.u.ipc_id = sma->sem_perm.key;
5720
5721 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5722 SEM__ASSOCIATE, &ad);
5723}
5724
5725/* Note, at this point, sma is locked down */
5726static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5727{
5728 int err;
5729 u32 perms;
5730
5731 switch (cmd) {
5732 case IPC_INFO:
5733 case SEM_INFO:
5734 /* No specific object, just general system-wide information. */
5735 return task_has_system(current, SYSTEM__IPC_INFO);
5736 case GETPID:
5737 case GETNCNT:
5738 case GETZCNT:
5739 perms = SEM__GETATTR;
5740 break;
5741 case GETVAL:
5742 case GETALL:
5743 perms = SEM__READ;
5744 break;
5745 case SETVAL:
5746 case SETALL:
5747 perms = SEM__WRITE;
5748 break;
5749 case IPC_RMID:
5750 perms = SEM__DESTROY;
5751 break;
5752 case IPC_SET:
5753 perms = SEM__SETATTR;
5754 break;
5755 case IPC_STAT:
5756 case SEM_STAT:
5757 perms = SEM__GETATTR | SEM__ASSOCIATE;
5758 break;
5759 default:
5760 return 0;
5761 }
5762
5763 err = ipc_has_perm(&sma->sem_perm, perms);
5764 return err;
5765}
5766
5767static int selinux_sem_semop(struct sem_array *sma,
5768 struct sembuf *sops, unsigned nsops, int alter)
5769{
5770 u32 perms;
5771
5772 if (alter)
5773 perms = SEM__READ | SEM__WRITE;
5774 else
5775 perms = SEM__READ;
5776
5777 return ipc_has_perm(&sma->sem_perm, perms);
5778}
5779
5780static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5781{
5782 u32 av = 0;
5783
5784 av = 0;
5785 if (flag & S_IRUGO)
5786 av |= IPC__UNIX_READ;
5787 if (flag & S_IWUGO)
5788 av |= IPC__UNIX_WRITE;
5789
5790 if (av == 0)
5791 return 0;
5792
5793 return ipc_has_perm(ipcp, av);
5794}
5795
5796static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5797{
5798 struct ipc_security_struct *isec = ipcp->security;
5799 *secid = isec->sid;
5800}
5801
5802static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5803{
5804 if (inode)
5805 inode_doinit_with_dentry(inode, dentry);
5806}
5807
5808static int selinux_getprocattr(struct task_struct *p,
5809 char *name, char **value)
5810{
5811 const struct task_security_struct *__tsec;
5812 u32 sid;
5813 int error;
5814 unsigned len;
5815
5816 if (current != p) {
5817 error = current_has_perm(p, PROCESS__GETATTR);
5818 if (error)
5819 return error;
5820 }
5821
5822 rcu_read_lock();
5823 __tsec = __task_cred(p)->security;
5824
5825 if (!strcmp(name, "current"))
5826 sid = __tsec->sid;
5827 else if (!strcmp(name, "prev"))
5828 sid = __tsec->osid;
5829 else if (!strcmp(name, "exec"))
5830 sid = __tsec->exec_sid;
5831 else if (!strcmp(name, "fscreate"))
5832 sid = __tsec->create_sid;
5833 else if (!strcmp(name, "keycreate"))
5834 sid = __tsec->keycreate_sid;
5835 else if (!strcmp(name, "sockcreate"))
5836 sid = __tsec->sockcreate_sid;
5837 else
5838 goto invalid;
5839 rcu_read_unlock();
5840
5841 if (!sid)
5842 return 0;
5843
5844 error = security_sid_to_context(sid, value, &len);
5845 if (error)
5846 return error;
5847 return len;
5848
5849invalid:
5850 rcu_read_unlock();
5851 return -EINVAL;
5852}
5853
5854static int selinux_setprocattr(struct task_struct *p,
5855 char *name, void *value, size_t size)
5856{
5857 struct task_security_struct *tsec;
5858 struct cred *new;
5859 u32 sid = 0, ptsid;
5860 int error;
5861 char *str = value;
5862
5863 if (current != p) {
5864 /* SELinux only allows a process to change its own
5865 security attributes. */
5866 return -EACCES;
5867 }
5868
5869 /*
5870 * Basic control over ability to set these attributes at all.
5871 * current == p, but we'll pass them separately in case the
5872 * above restriction is ever removed.
5873 */
5874 if (!strcmp(name, "exec"))
5875 error = current_has_perm(p, PROCESS__SETEXEC);
5876 else if (!strcmp(name, "fscreate"))
5877 error = current_has_perm(p, PROCESS__SETFSCREATE);
5878 else if (!strcmp(name, "keycreate"))
5879 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5880 else if (!strcmp(name, "sockcreate"))
5881 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5882 else if (!strcmp(name, "current"))
5883 error = current_has_perm(p, PROCESS__SETCURRENT);
5884 else
5885 error = -EINVAL;
5886 if (error)
5887 return error;
5888
5889 /* Obtain a SID for the context, if one was specified. */
5890 if (size && str[0] && str[0] != '\n') {
5891 if (str[size-1] == '\n') {
5892 str[size-1] = 0;
5893 size--;
5894 }
5895 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5896 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5897 if (!capable(CAP_MAC_ADMIN)) {
5898 struct audit_buffer *ab;
5899 size_t audit_size;
5900
5901 /* We strip a nul only if it is at the end, otherwise the
5902 * context contains a nul and we should audit that */
5903 if (str[size - 1] == '\0')
5904 audit_size = size - 1;
5905 else
5906 audit_size = size;
5907 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5908 audit_log_format(ab, "op=fscreate invalid_context=");
5909 audit_log_n_untrustedstring(ab, value, audit_size);
5910 audit_log_end(ab);
5911
5912 return error;
5913 }
5914 error = security_context_to_sid_force(value, size,
5915 &sid);
5916 }
5917 if (error)
5918 return error;
5919 }
5920
5921 new = prepare_creds();
5922 if (!new)
5923 return -ENOMEM;
5924
5925 /* Permission checking based on the specified context is
5926 performed during the actual operation (execve,
5927 open/mkdir/...), when we know the full context of the
5928 operation. See selinux_bprm_set_creds for the execve
5929 checks and may_create for the file creation checks. The
5930 operation will then fail if the context is not permitted. */
5931 tsec = new->security;
5932 if (!strcmp(name, "exec")) {
5933 tsec->exec_sid = sid;
5934 } else if (!strcmp(name, "fscreate")) {
5935 tsec->create_sid = sid;
5936 } else if (!strcmp(name, "keycreate")) {
5937 error = may_create_key(sid, p);
5938 if (error)
5939 goto abort_change;
5940 tsec->keycreate_sid = sid;
5941 } else if (!strcmp(name, "sockcreate")) {
5942 tsec->sockcreate_sid = sid;
5943 } else if (!strcmp(name, "current")) {
5944 error = -EINVAL;
5945 if (sid == 0)
5946 goto abort_change;
5947
5948 /* Only allow single threaded processes to change context */
5949 error = -EPERM;
5950 if (!current_is_single_threaded()) {
5951 error = security_bounded_transition(tsec->sid, sid);
5952 if (error)
5953 goto abort_change;
5954 }
5955
5956 /* Check permissions for the transition. */
5957 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5958 PROCESS__DYNTRANSITION, NULL);
5959 if (error)
5960 goto abort_change;
5961
5962 /* Check for ptracing, and update the task SID if ok.
5963 Otherwise, leave SID unchanged and fail. */
5964 ptsid = ptrace_parent_sid(p);
5965 if (ptsid != 0) {
5966 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5967 PROCESS__PTRACE, NULL);
5968 if (error)
5969 goto abort_change;
5970 }
5971
5972 tsec->sid = sid;
5973 } else {
5974 error = -EINVAL;
5975 goto abort_change;
5976 }
5977
5978 commit_creds(new);
5979 return size;
5980
5981abort_change:
5982 abort_creds(new);
5983 return error;
5984}
5985
5986static int selinux_ismaclabel(const char *name)
5987{
5988 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5989}
5990
5991static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5992{
5993 return security_sid_to_context(secid, secdata, seclen);
5994}
5995
5996static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5997{
5998 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5999}
6000
6001static void selinux_release_secctx(char *secdata, u32 seclen)
6002{
6003 kfree(secdata);
6004}
6005
6006static void selinux_inode_invalidate_secctx(struct inode *inode)
6007{
6008 struct inode_security_struct *isec = inode->i_security;
6009
6010 spin_lock(&isec->lock);
6011 isec->initialized = LABEL_INVALID;
6012 spin_unlock(&isec->lock);
6013}
6014
6015/*
6016 * called with inode->i_mutex locked
6017 */
6018static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6019{
6020 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
6021}
6022
6023/*
6024 * called with inode->i_mutex locked
6025 */
6026static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6027{
6028 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6029}
6030
6031static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6032{
6033 int len = 0;
6034 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6035 ctx, true);
6036 if (len < 0)
6037 return len;
6038 *ctxlen = len;
6039 return 0;
6040}
6041#ifdef CONFIG_KEYS
6042
6043static int selinux_key_alloc(struct key *k, const struct cred *cred,
6044 unsigned long flags)
6045{
6046 const struct task_security_struct *tsec;
6047 struct key_security_struct *ksec;
6048
6049 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6050 if (!ksec)
6051 return -ENOMEM;
6052
6053 tsec = cred->security;
6054 if (tsec->keycreate_sid)
6055 ksec->sid = tsec->keycreate_sid;
6056 else
6057 ksec->sid = tsec->sid;
6058
6059 k->security = ksec;
6060 return 0;
6061}
6062
6063static void selinux_key_free(struct key *k)
6064{
6065 struct key_security_struct *ksec = k->security;
6066
6067 k->security = NULL;
6068 kfree(ksec);
6069}
6070
6071static int selinux_key_permission(key_ref_t key_ref,
6072 const struct cred *cred,
6073 unsigned perm)
6074{
6075 struct key *key;
6076 struct key_security_struct *ksec;
6077 u32 sid;
6078
6079 /* if no specific permissions are requested, we skip the
6080 permission check. No serious, additional covert channels
6081 appear to be created. */
6082 if (perm == 0)
6083 return 0;
6084
6085 sid = cred_sid(cred);
6086
6087 key = key_ref_to_ptr(key_ref);
6088 ksec = key->security;
6089
6090 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6091}
6092
6093static int selinux_key_getsecurity(struct key *key, char **_buffer)
6094{
6095 struct key_security_struct *ksec = key->security;
6096 char *context = NULL;
6097 unsigned len;
6098 int rc;
6099
6100 rc = security_sid_to_context(ksec->sid, &context, &len);
6101 if (!rc)
6102 rc = len;
6103 *_buffer = context;
6104 return rc;
6105}
6106
6107#endif
6108
6109static struct security_hook_list selinux_hooks[] = {
6110 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6111 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6112 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6113 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6114
6115 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6116 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6117 LSM_HOOK_INIT(capget, selinux_capget),
6118 LSM_HOOK_INIT(capset, selinux_capset),
6119 LSM_HOOK_INIT(capable, selinux_capable),
6120 LSM_HOOK_INIT(quotactl, selinux_quotactl),
6121 LSM_HOOK_INIT(quota_on, selinux_quota_on),
6122 LSM_HOOK_INIT(syslog, selinux_syslog),
6123 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6124
6125 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6126
6127 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6128 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6129 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6130 LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
6131
6132 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6133 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6134 LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6135 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6136 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6137 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6138 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6139 LSM_HOOK_INIT(sb_mount, selinux_mount),
6140 LSM_HOOK_INIT(sb_umount, selinux_umount),
6141 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6142 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6143 LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
6144
6145 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6146 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6147
6148 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6149 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6150 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6151 LSM_HOOK_INIT(inode_create, selinux_inode_create),
6152 LSM_HOOK_INIT(inode_link, selinux_inode_link),
6153 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6154 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6155 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6156 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6157 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6158 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6159 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6160 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6161 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6162 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6163 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6164 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6165 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6166 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6167 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6168 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6169 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6170 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6171 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6172 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6173 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6174 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6175
6176 LSM_HOOK_INIT(file_permission, selinux_file_permission),
6177 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6178 LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6179 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6180 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6181 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6182 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6183 LSM_HOOK_INIT(file_lock, selinux_file_lock),
6184 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6185 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6186 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6187 LSM_HOOK_INIT(file_receive, selinux_file_receive),
6188
6189 LSM_HOOK_INIT(file_open, selinux_file_open),
6190
6191 LSM_HOOK_INIT(task_create, selinux_task_create),
6192 LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6193 LSM_HOOK_INIT(cred_free, selinux_cred_free),
6194 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6195 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6196 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6197 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6198 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6199 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6200 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6201 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6202 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6203 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6204 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6205 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6206 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6207 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6208 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6209 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6210 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6211 LSM_HOOK_INIT(task_kill, selinux_task_kill),
6212 LSM_HOOK_INIT(task_wait, selinux_task_wait),
6213 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6214
6215 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6216 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6217
6218 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6219 LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6220
6221 LSM_HOOK_INIT(msg_queue_alloc_security,
6222 selinux_msg_queue_alloc_security),
6223 LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6224 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6225 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6226 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6227 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6228
6229 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6230 LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6231 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6232 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6233 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6234
6235 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6236 LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6237 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6238 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6239 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6240
6241 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6242
6243 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6244 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6245
6246 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6247 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6248 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6249 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6250 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6251 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6252 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6253 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6254
6255 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6256 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6257
6258 LSM_HOOK_INIT(socket_create, selinux_socket_create),
6259 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6260 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6261 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6262 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6263 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6264 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6265 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6266 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6267 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6268 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6269 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6270 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6271 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6272 LSM_HOOK_INIT(socket_getpeersec_stream,
6273 selinux_socket_getpeersec_stream),
6274 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6275 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6276 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6277 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6278 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6279 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6280 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6281 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6282 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6283 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6284 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6285 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6286 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6287 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6288 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6289 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6290 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6291 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6292 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6293
6294#ifdef CONFIG_SECURITY_NETWORK_XFRM
6295 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6296 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6297 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6298 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6299 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6300 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6301 selinux_xfrm_state_alloc_acquire),
6302 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6303 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6304 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6305 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6306 selinux_xfrm_state_pol_flow_match),
6307 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6308#endif
6309
6310#ifdef CONFIG_KEYS
6311 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6312 LSM_HOOK_INIT(key_free, selinux_key_free),
6313 LSM_HOOK_INIT(key_permission, selinux_key_permission),
6314 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
6315#endif
6316
6317#ifdef CONFIG_AUDIT
6318 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6319 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6320 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6321 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6322#endif
6323};
6324
6325static __init int selinux_init(void)
6326{
6327 if (!security_module_enable("selinux")) {
6328 selinux_enabled = 0;
6329 return 0;
6330 }
6331
6332 if (!selinux_enabled) {
6333 printk(KERN_INFO "SELinux: Disabled at boot.\n");
6334 return 0;
6335 }
6336
6337 printk(KERN_INFO "SELinux: Initializing.\n");
6338
6339 /* Set the security state for the initial task. */
6340 cred_init_security();
6341
6342 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6343
6344 sel_inode_cache = kmem_cache_create("selinux_inode_security",
6345 sizeof(struct inode_security_struct),
6346 0, SLAB_PANIC, NULL);
6347 file_security_cache = kmem_cache_create("selinux_file_security",
6348 sizeof(struct file_security_struct),
6349 0, SLAB_PANIC, NULL);
6350 avc_init();
6351
6352 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6353
6354 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6355 panic("SELinux: Unable to register AVC netcache callback\n");
6356
6357 if (selinux_enforcing)
6358 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
6359 else
6360 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
6361
6362 return 0;
6363}
6364
6365static void delayed_superblock_init(struct super_block *sb, void *unused)
6366{
6367 superblock_doinit(sb, NULL);
6368}
6369
6370void selinux_complete_init(void)
6371{
6372 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
6373
6374 /* Set up any superblocks initialized prior to the policy load. */
6375 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
6376 iterate_supers(delayed_superblock_init, NULL);
6377}
6378
6379/* SELinux requires early initialization in order to label
6380 all processes and objects when they are created. */
6381security_initcall(selinux_init);
6382
6383#if defined(CONFIG_NETFILTER)
6384
6385static struct nf_hook_ops selinux_nf_ops[] = {
6386 {
6387 .hook = selinux_ipv4_postroute,
6388 .pf = NFPROTO_IPV4,
6389 .hooknum = NF_INET_POST_ROUTING,
6390 .priority = NF_IP_PRI_SELINUX_LAST,
6391 },
6392 {
6393 .hook = selinux_ipv4_forward,
6394 .pf = NFPROTO_IPV4,
6395 .hooknum = NF_INET_FORWARD,
6396 .priority = NF_IP_PRI_SELINUX_FIRST,
6397 },
6398 {
6399 .hook = selinux_ipv4_output,
6400 .pf = NFPROTO_IPV4,
6401 .hooknum = NF_INET_LOCAL_OUT,
6402 .priority = NF_IP_PRI_SELINUX_FIRST,
6403 },
6404#if IS_ENABLED(CONFIG_IPV6)
6405 {
6406 .hook = selinux_ipv6_postroute,
6407 .pf = NFPROTO_IPV6,
6408 .hooknum = NF_INET_POST_ROUTING,
6409 .priority = NF_IP6_PRI_SELINUX_LAST,
6410 },
6411 {
6412 .hook = selinux_ipv6_forward,
6413 .pf = NFPROTO_IPV6,
6414 .hooknum = NF_INET_FORWARD,
6415 .priority = NF_IP6_PRI_SELINUX_FIRST,
6416 },
6417 {
6418 .hook = selinux_ipv6_output,
6419 .pf = NFPROTO_IPV6,
6420 .hooknum = NF_INET_LOCAL_OUT,
6421 .priority = NF_IP6_PRI_SELINUX_FIRST,
6422 },
6423#endif /* IPV6 */
6424};
6425
6426static int __init selinux_nf_ip_init(void)
6427{
6428 int err;
6429
6430 if (!selinux_enabled)
6431 return 0;
6432
6433 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
6434
6435 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6436 if (err)
6437 panic("SELinux: nf_register_hooks: error %d\n", err);
6438
6439 return 0;
6440}
6441
6442__initcall(selinux_nf_ip_init);
6443
6444#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6445static void selinux_nf_ip_exit(void)
6446{
6447 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
6448
6449 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6450}
6451#endif
6452
6453#else /* CONFIG_NETFILTER */
6454
6455#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6456#define selinux_nf_ip_exit()
6457#endif
6458
6459#endif /* CONFIG_NETFILTER */
6460
6461#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6462static int selinux_disabled;
6463
6464int selinux_disable(void)
6465{
6466 if (ss_initialized) {
6467 /* Not permitted after initial policy load. */
6468 return -EINVAL;
6469 }
6470
6471 if (selinux_disabled) {
6472 /* Only do this once. */
6473 return -EINVAL;
6474 }
6475
6476 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
6477
6478 selinux_disabled = 1;
6479 selinux_enabled = 0;
6480
6481 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6482
6483 /* Try to destroy the avc node cache */
6484 avc_disable();
6485
6486 /* Unregister netfilter hooks. */
6487 selinux_nf_ip_exit();
6488
6489 /* Unregister selinuxfs. */
6490 exit_sel_fs();
6491
6492 return 0;
6493}
6494#endif