Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  NSA Security-Enhanced Linux (SELinux) security module
   4 *
   5 *  This file contains the SELinux hook function implementations.
   6 *
   7 *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   8 *	      Chris Vance, <cvance@nai.com>
   9 *	      Wayne Salamon, <wsalamon@nai.com>
  10 *	      James Morris <jmorris@redhat.com>
  11 *
  12 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  13 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  14 *					   Eric Paris <eparis@redhat.com>
  15 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  16 *			    <dgoeddel@trustedcs.com>
  17 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  18 *	Paul Moore <paul@paul-moore.com>
  19 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  20 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  21 *  Copyright (C) 2016 Mellanox Technologies
 
 
 
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/kd.h>
  26#include <linux/kernel.h>
  27#include <linux/tracehook.h>
  28#include <linux/errno.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/task.h>
  31#include <linux/lsm_hooks.h>
  32#include <linux/xattr.h>
  33#include <linux/capability.h>
  34#include <linux/unistd.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/slab.h>
  38#include <linux/pagemap.h>
  39#include <linux/proc_fs.h>
  40#include <linux/swap.h>
  41#include <linux/spinlock.h>
  42#include <linux/syscalls.h>
  43#include <linux/dcache.h>
  44#include <linux/file.h>
  45#include <linux/fdtable.h>
  46#include <linux/namei.h>
  47#include <linux/mount.h>
  48#include <linux/fs_context.h>
  49#include <linux/fs_parser.h>
  50#include <linux/netfilter_ipv4.h>
  51#include <linux/netfilter_ipv6.h>
  52#include <linux/tty.h>
  53#include <net/icmp.h>
  54#include <net/ip.h>		/* for local_port_range[] */
 
  55#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  56#include <net/inet_connection_sock.h>
  57#include <net/net_namespace.h>
  58#include <net/netlabel.h>
  59#include <linux/uaccess.h>
  60#include <asm/ioctls.h>
  61#include <linux/atomic.h>
  62#include <linux/bitops.h>
  63#include <linux/interrupt.h>
  64#include <linux/netdevice.h>	/* for network interface checks */
  65#include <net/netlink.h>
  66#include <linux/tcp.h>
  67#include <linux/udp.h>
  68#include <linux/dccp.h>
  69#include <linux/sctp.h>
  70#include <net/sctp/structs.h>
  71#include <linux/quota.h>
  72#include <linux/un.h>		/* for Unix socket types */
  73#include <net/af_unix.h>	/* for Unix socket types */
  74#include <linux/parser.h>
  75#include <linux/nfs_mount.h>
  76#include <net/ipv6.h>
  77#include <linux/hugetlb.h>
  78#include <linux/personality.h>
  79#include <linux/audit.h>
  80#include <linux/string.h>
 
  81#include <linux/mutex.h>
  82#include <linux/posix-timers.h>
  83#include <linux/syslog.h>
  84#include <linux/user_namespace.h>
  85#include <linux/export.h>
  86#include <linux/msg.h>
  87#include <linux/shm.h>
  88#include <linux/bpf.h>
  89#include <linux/kernfs.h>
  90#include <linux/stringhash.h>	/* for hashlen_string() */
  91#include <uapi/linux/mount.h>
  92#include <linux/fsnotify.h>
  93#include <linux/fanotify.h>
  94
  95#include "avc.h"
  96#include "objsec.h"
  97#include "netif.h"
  98#include "netnode.h"
  99#include "netport.h"
 100#include "ibpkey.h"
 101#include "xfrm.h"
 102#include "netlabel.h"
 103#include "audit.h"
 104#include "avc_ss.h"
 105
 106struct selinux_state selinux_state;
 107
 108/* SECMARK reference count */
 109static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 110
 111#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 112static int selinux_enforcing_boot;
 113
 114static int __init enforcing_setup(char *str)
 115{
 116	unsigned long enforcing;
 117	if (!kstrtoul(str, 0, &enforcing))
 118		selinux_enforcing_boot = enforcing ? 1 : 0;
 119	return 1;
 120}
 121__setup("enforcing=", enforcing_setup);
 122#else
 123#define selinux_enforcing_boot 1
 124#endif
 125
 126int selinux_enabled __lsm_ro_after_init = 1;
 127#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 
 
 128static int __init selinux_enabled_setup(char *str)
 129{
 130	unsigned long enabled;
 131	if (!kstrtoul(str, 0, &enabled))
 132		selinux_enabled = enabled ? 1 : 0;
 133	return 1;
 134}
 135__setup("selinux=", selinux_enabled_setup);
 
 
 136#endif
 137
 138static unsigned int selinux_checkreqprot_boot =
 139	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
 140
 141static int __init checkreqprot_setup(char *str)
 142{
 143	unsigned long checkreqprot;
 144
 145	if (!kstrtoul(str, 0, &checkreqprot))
 146		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
 147	return 1;
 148}
 149__setup("checkreqprot=", checkreqprot_setup);
 150
 151/**
 152 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 153 *
 154 * Description:
 155 * This function checks the SECMARK reference counter to see if any SECMARK
 156 * targets are currently configured, if the reference counter is greater than
 157 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 158 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 159 * policy capability is enabled, SECMARK is always considered enabled.
 160 *
 161 */
 162static int selinux_secmark_enabled(void)
 163{
 164	return (selinux_policycap_alwaysnetwork() ||
 165		atomic_read(&selinux_secmark_refcount));
 166}
 167
 168/**
 169 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 170 *
 171 * Description:
 172 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 173 * (1) if any are enabled or false (0) if neither are enabled.  If the
 174 * always_check_network policy capability is enabled, peer labeling
 175 * is always considered enabled.
 176 *
 177 */
 178static int selinux_peerlbl_enabled(void)
 179{
 180	return (selinux_policycap_alwaysnetwork() ||
 181		netlbl_enabled() || selinux_xfrm_enabled());
 182}
 183
 184static int selinux_netcache_avc_callback(u32 event)
 185{
 186	if (event == AVC_CALLBACK_RESET) {
 187		sel_netif_flush();
 188		sel_netnode_flush();
 189		sel_netport_flush();
 190		synchronize_net();
 191	}
 192	return 0;
 193}
 194
 195static int selinux_lsm_notifier_avc_callback(u32 event)
 196{
 197	if (event == AVC_CALLBACK_RESET) {
 198		sel_ib_pkey_flush();
 199		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 200	}
 201
 202	return 0;
 203}
 204
 205/*
 206 * initialise the security for the init task
 207 */
 208static void cred_init_security(void)
 209{
 210	struct cred *cred = (struct cred *) current->real_cred;
 211	struct task_security_struct *tsec;
 212
 213	tsec = selinux_cred(cred);
 
 
 
 214	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 
 215}
 216
 217/*
 218 * get the security ID of a set of credentials
 219 */
 220static inline u32 cred_sid(const struct cred *cred)
 221{
 222	const struct task_security_struct *tsec;
 223
 224	tsec = selinux_cred(cred);
 225	return tsec->sid;
 226}
 227
 228/*
 229 * get the objective security ID of a task
 230 */
 231static inline u32 task_sid(const struct task_struct *task)
 232{
 233	u32 sid;
 234
 235	rcu_read_lock();
 236	sid = cred_sid(__task_cred(task));
 237	rcu_read_unlock();
 238	return sid;
 239}
 240
 
 
 
 
 
 
 
 
 
 
 241/* Allocate and free functions for each kind of security blob. */
 242
 243static int inode_alloc_security(struct inode *inode)
 244{
 245	struct inode_security_struct *isec = selinux_inode(inode);
 246	u32 sid = current_sid();
 247
 248	spin_lock_init(&isec->lock);
 
 
 
 
 249	INIT_LIST_HEAD(&isec->list);
 250	isec->inode = inode;
 251	isec->sid = SECINITSID_UNLABELED;
 252	isec->sclass = SECCLASS_FILE;
 253	isec->task_sid = sid;
 254	isec->initialized = LABEL_INVALID;
 255
 256	return 0;
 257}
 258
 259static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 260
 261/*
 262 * Try reloading inode security labels that have been marked as invalid.  The
 263 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 264 * allowed; when set to false, returns -ECHILD when the label is
 265 * invalid.  The @dentry parameter should be set to a dentry of the inode.
 266 */
 267static int __inode_security_revalidate(struct inode *inode,
 268				       struct dentry *dentry,
 269				       bool may_sleep)
 270{
 271	struct inode_security_struct *isec = selinux_inode(inode);
 272
 273	might_sleep_if(may_sleep);
 274
 275	if (selinux_state.initialized &&
 276	    isec->initialized != LABEL_INITIALIZED) {
 277		if (!may_sleep)
 278			return -ECHILD;
 279
 280		/*
 281		 * Try reloading the inode security label.  This will fail if
 282		 * @opt_dentry is NULL and no dentry for this inode can be
 283		 * found; in that case, continue using the old label.
 284		 */
 285		inode_doinit_with_dentry(inode, dentry);
 286	}
 287	return 0;
 288}
 289
 290static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 291{
 292	return selinux_inode(inode);
 293}
 294
 295static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 296{
 297	int error;
 298
 299	error = __inode_security_revalidate(inode, NULL, !rcu);
 300	if (error)
 301		return ERR_PTR(error);
 302	return selinux_inode(inode);
 303}
 304
 305/*
 306 * Get the security label of an inode.
 307 */
 308static struct inode_security_struct *inode_security(struct inode *inode)
 309{
 310	__inode_security_revalidate(inode, NULL, true);
 311	return selinux_inode(inode);
 312}
 313
 314static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 315{
 316	struct inode *inode = d_backing_inode(dentry);
 317
 318	return selinux_inode(inode);
 319}
 320
 321/*
 322 * Get the security label of a dentry's backing inode.
 323 */
 324static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 325{
 326	struct inode *inode = d_backing_inode(dentry);
 327
 328	__inode_security_revalidate(inode, dentry, true);
 329	return selinux_inode(inode);
 330}
 331
 332static void inode_free_security(struct inode *inode)
 333{
 334	struct inode_security_struct *isec = selinux_inode(inode);
 335	struct superblock_security_struct *sbsec;
 
 
 
 
 
 336
 337	if (!isec)
 338		return;
 339	sbsec = inode->i_sb->s_security;
 340	/*
 341	 * As not all inode security structures are in a list, we check for
 342	 * empty list outside of the lock to make sure that we won't waste
 343	 * time taking a lock doing nothing.
 344	 *
 345	 * The list_del_init() function can be safely called more than once.
 346	 * It should not be possible for this function to be called with
 347	 * concurrent list_add(), but for better safety against future changes
 348	 * in the code, we use list_empty_careful() here.
 349	 */
 350	if (!list_empty_careful(&isec->list)) {
 351		spin_lock(&sbsec->isec_lock);
 352		list_del_init(&isec->list);
 353		spin_unlock(&sbsec->isec_lock);
 354	}
 355}
 356
 357static int file_alloc_security(struct file *file)
 358{
 359	struct file_security_struct *fsec = selinux_file(file);
 360	u32 sid = current_sid();
 361
 
 
 
 
 362	fsec->sid = sid;
 363	fsec->fown_sid = sid;
 
 364
 365	return 0;
 366}
 367
 
 
 
 
 
 
 
 368static int superblock_alloc_security(struct super_block *sb)
 369{
 370	struct superblock_security_struct *sbsec;
 371
 372	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 373	if (!sbsec)
 374		return -ENOMEM;
 375
 376	mutex_init(&sbsec->lock);
 377	INIT_LIST_HEAD(&sbsec->isec_head);
 378	spin_lock_init(&sbsec->isec_lock);
 379	sbsec->sb = sb;
 380	sbsec->sid = SECINITSID_UNLABELED;
 381	sbsec->def_sid = SECINITSID_FILE;
 382	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 383	sb->s_security = sbsec;
 384
 385	return 0;
 386}
 387
 388static void superblock_free_security(struct super_block *sb)
 389{
 390	struct superblock_security_struct *sbsec = sb->s_security;
 391	sb->s_security = NULL;
 392	kfree(sbsec);
 393}
 394
 395struct selinux_mnt_opts {
 396	const char *fscontext, *context, *rootcontext, *defcontext;
 
 
 
 
 
 
 
 
 397};
 398
 399static void selinux_free_mnt_opts(void *mnt_opts)
 400{
 401	struct selinux_mnt_opts *opts = mnt_opts;
 402	kfree(opts->fscontext);
 403	kfree(opts->context);
 404	kfree(opts->rootcontext);
 405	kfree(opts->defcontext);
 406	kfree(opts);
 407}
 408
 409static inline int inode_doinit(struct inode *inode)
 410{
 411	return inode_doinit_with_dentry(inode, NULL);
 412}
 413
 414enum {
 415	Opt_error = -1,
 416	Opt_context = 0,
 417	Opt_defcontext = 1,
 418	Opt_fscontext = 2,
 419	Opt_rootcontext = 3,
 420	Opt_seclabel = 4,
 421};
 422
 423#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
 424static struct {
 425	const char *name;
 426	int len;
 427	int opt;
 428	bool has_arg;
 429} tokens[] = {
 430	A(context, true),
 431	A(fscontext, true),
 432	A(defcontext, true),
 433	A(rootcontext, true),
 434	A(seclabel, false),
 435};
 436#undef A
 437
 438static int match_opt_prefix(char *s, int l, char **arg)
 439{
 440	int i;
 441
 442	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 443		size_t len = tokens[i].len;
 444		if (len > l || memcmp(s, tokens[i].name, len))
 445			continue;
 446		if (tokens[i].has_arg) {
 447			if (len == l || s[len] != '=')
 448				continue;
 449			*arg = s + len + 1;
 450		} else if (len != l)
 451			continue;
 452		return tokens[i].opt;
 453	}
 454	return Opt_error;
 455}
 456
 457#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 458
 459static int may_context_mount_sb_relabel(u32 sid,
 460			struct superblock_security_struct *sbsec,
 461			const struct cred *cred)
 462{
 463	const struct task_security_struct *tsec = selinux_cred(cred);
 464	int rc;
 465
 466	rc = avc_has_perm(&selinux_state,
 467			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 468			  FILESYSTEM__RELABELFROM, NULL);
 469	if (rc)
 470		return rc;
 471
 472	rc = avc_has_perm(&selinux_state,
 473			  tsec->sid, sid, SECCLASS_FILESYSTEM,
 474			  FILESYSTEM__RELABELTO, NULL);
 475	return rc;
 476}
 477
 478static int may_context_mount_inode_relabel(u32 sid,
 479			struct superblock_security_struct *sbsec,
 480			const struct cred *cred)
 481{
 482	const struct task_security_struct *tsec = selinux_cred(cred);
 483	int rc;
 484	rc = avc_has_perm(&selinux_state,
 485			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 486			  FILESYSTEM__RELABELFROM, NULL);
 487	if (rc)
 488		return rc;
 489
 490	rc = avc_has_perm(&selinux_state,
 491			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
 492			  FILESYSTEM__ASSOCIATE, NULL);
 493	return rc;
 494}
 495
 496static int selinux_is_genfs_special_handling(struct super_block *sb)
 497{
 498	/* Special handling. Genfs but also in-core setxattr handler */
 499	return	!strcmp(sb->s_type->name, "sysfs") ||
 500		!strcmp(sb->s_type->name, "pstore") ||
 501		!strcmp(sb->s_type->name, "debugfs") ||
 502		!strcmp(sb->s_type->name, "tracefs") ||
 503		!strcmp(sb->s_type->name, "rootfs") ||
 504		(selinux_policycap_cgroupseclabel() &&
 505		 (!strcmp(sb->s_type->name, "cgroup") ||
 506		  !strcmp(sb->s_type->name, "cgroup2")));
 507}
 508
 509static int selinux_is_sblabel_mnt(struct super_block *sb)
 510{
 511	struct superblock_security_struct *sbsec = sb->s_security;
 512
 513	/*
 514	 * IMPORTANT: Double-check logic in this function when adding a new
 515	 * SECURITY_FS_USE_* definition!
 516	 */
 517	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
 518
 519	switch (sbsec->behavior) {
 520	case SECURITY_FS_USE_XATTR:
 521	case SECURITY_FS_USE_TRANS:
 522	case SECURITY_FS_USE_TASK:
 523	case SECURITY_FS_USE_NATIVE:
 524		return 1;
 525
 526	case SECURITY_FS_USE_GENFS:
 527		return selinux_is_genfs_special_handling(sb);
 
 
 
 
 528
 529	/* Never allow relabeling on context mounts */
 530	case SECURITY_FS_USE_MNTPOINT:
 531	case SECURITY_FS_USE_NONE:
 532	default:
 533		return 0;
 534	}
 535}
 536
 537static int sb_finish_set_opts(struct super_block *sb)
 538{
 539	struct superblock_security_struct *sbsec = sb->s_security;
 540	struct dentry *root = sb->s_root;
 541	struct inode *root_inode = d_backing_inode(root);
 542	int rc = 0;
 543
 544	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 545		/* Make sure that the xattr handler exists and that no
 546		   error other than -ENODATA is returned by getxattr on
 547		   the root directory.  -ENODATA is ok, as this may be
 548		   the first boot of the SELinux kernel before we have
 549		   assigned xattr values to the filesystem. */
 550		if (!(root_inode->i_opflags & IOP_XATTR)) {
 551			pr_warn("SELinux: (dev %s, type %s) has no "
 552			       "xattr support\n", sb->s_id, sb->s_type->name);
 553			rc = -EOPNOTSUPP;
 554			goto out;
 555		}
 556
 557		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 558		if (rc < 0 && rc != -ENODATA) {
 559			if (rc == -EOPNOTSUPP)
 560				pr_warn("SELinux: (dev %s, type "
 561				       "%s) has no security xattr handler\n",
 562				       sb->s_id, sb->s_type->name);
 563			else
 564				pr_warn("SELinux: (dev %s, type "
 565				       "%s) getxattr errno %d\n", sb->s_id,
 566				       sb->s_type->name, -rc);
 567			goto out;
 568		}
 569	}
 570
 571	sbsec->flags |= SE_SBINITIALIZED;
 
 
 
 
 
 
 572
 573	/*
 574	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 575	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 576	 * us a superblock that needs the flag to be cleared.
 577	 */
 578	if (selinux_is_sblabel_mnt(sb))
 579		sbsec->flags |= SBLABEL_MNT;
 580	else
 581		sbsec->flags &= ~SBLABEL_MNT;
 582
 583	/* Initialize the root inode. */
 584	rc = inode_doinit_with_dentry(root_inode, root);
 585
 586	/* Initialize any other inodes associated with the superblock, e.g.
 587	   inodes created prior to initial policy load or inodes created
 588	   during get_sb by a pseudo filesystem that directly
 589	   populates itself. */
 590	spin_lock(&sbsec->isec_lock);
 591	while (!list_empty(&sbsec->isec_head)) {
 
 592		struct inode_security_struct *isec =
 593				list_first_entry(&sbsec->isec_head,
 594					   struct inode_security_struct, list);
 595		struct inode *inode = isec->inode;
 596		list_del_init(&isec->list);
 597		spin_unlock(&sbsec->isec_lock);
 598		inode = igrab(inode);
 599		if (inode) {
 600			if (!IS_PRIVATE(inode))
 601				inode_doinit(inode);
 602			iput(inode);
 603		}
 604		spin_lock(&sbsec->isec_lock);
 
 
 605	}
 606	spin_unlock(&sbsec->isec_lock);
 607out:
 608	return rc;
 609}
 610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 611static int bad_option(struct superblock_security_struct *sbsec, char flag,
 612		      u32 old_sid, u32 new_sid)
 613{
 614	char mnt_flags = sbsec->flags & SE_MNTMASK;
 615
 616	/* check if the old mount command had the same options */
 617	if (sbsec->flags & SE_SBINITIALIZED)
 618		if (!(sbsec->flags & flag) ||
 619		    (old_sid != new_sid))
 620			return 1;
 621
 622	/* check if we were passed the same options twice,
 623	 * aka someone passed context=a,context=b
 624	 */
 625	if (!(sbsec->flags & SE_SBINITIALIZED))
 626		if (mnt_flags & flag)
 627			return 1;
 628	return 0;
 629}
 630
 631static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
 632{
 633	int rc = security_context_str_to_sid(&selinux_state, s,
 634					     sid, GFP_KERNEL);
 635	if (rc)
 636		pr_warn("SELinux: security_context_str_to_sid"
 637		       "(%s) failed for (dev %s, type %s) errno=%d\n",
 638		       s, sb->s_id, sb->s_type->name, rc);
 639	return rc;
 640}
 641
 642/*
 643 * Allow filesystems with binary mount data to explicitly set mount point
 644 * labeling information.
 645 */
 646static int selinux_set_mnt_opts(struct super_block *sb,
 647				void *mnt_opts,
 648				unsigned long kern_flags,
 649				unsigned long *set_kern_flags)
 650{
 651	const struct cred *cred = current_cred();
 
 652	struct superblock_security_struct *sbsec = sb->s_security;
 653	struct dentry *root = sbsec->sb->s_root;
 654	struct selinux_mnt_opts *opts = mnt_opts;
 655	struct inode_security_struct *root_isec;
 656	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 657	u32 defcontext_sid = 0;
 658	int rc = 0;
 
 
 659
 660	mutex_lock(&sbsec->lock);
 661
 662	if (!selinux_state.initialized) {
 663		if (!opts) {
 664			/* Defer initialization until selinux_complete_init,
 665			   after the initial policy is loaded and the security
 666			   server is ready to handle calls. */
 667			goto out;
 668		}
 669		rc = -EINVAL;
 670		pr_warn("SELinux: Unable to set superblock options "
 671			"before the security server is initialized\n");
 672		goto out;
 673	}
 674	if (kern_flags && !set_kern_flags) {
 675		/* Specifying internal flags without providing a place to
 676		 * place the results is not allowed */
 677		rc = -EINVAL;
 678		goto out;
 679	}
 680
 681	/*
 682	 * Binary mount data FS will come through this function twice.  Once
 683	 * from an explicit call and once from the generic calls from the vfs.
 684	 * Since the generic VFS calls will not contain any security mount data
 685	 * we need to skip the double mount verification.
 686	 *
 687	 * This does open a hole in which we will not notice if the first
 688	 * mount using this sb set explict options and a second mount using
 689	 * this sb does not set any security options.  (The first options
 690	 * will be used for both mounts)
 691	 */
 692	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 693	    && !opts)
 694		goto out;
 695
 696	root_isec = backing_inode_security_novalidate(root);
 697
 698	/*
 699	 * parse the mount options, check if they are valid sids.
 700	 * also check if someone is trying to mount the same sb more
 701	 * than once with different security options.
 702	 */
 703	if (opts) {
 704		if (opts->fscontext) {
 705			rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
 706			if (rc)
 707				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 708			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 709					fscontext_sid))
 710				goto out_double_mount;
 
 711			sbsec->flags |= FSCONTEXT_MNT;
 712		}
 713		if (opts->context) {
 714			rc = parse_sid(sb, opts->context, &context_sid);
 715			if (rc)
 716				goto out;
 717			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 718					context_sid))
 719				goto out_double_mount;
 
 720			sbsec->flags |= CONTEXT_MNT;
 721		}
 722		if (opts->rootcontext) {
 723			rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
 724			if (rc)
 725				goto out;
 726			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 727					rootcontext_sid))
 728				goto out_double_mount;
 
 729			sbsec->flags |= ROOTCONTEXT_MNT;
 730		}
 731		if (opts->defcontext) {
 732			rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
 733			if (rc)
 734				goto out;
 735			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 736					defcontext_sid))
 737				goto out_double_mount;
 
 738			sbsec->flags |= DEFCONTEXT_MNT;
 
 
 
 
 
 739		}
 740	}
 741
 742	if (sbsec->flags & SE_SBINITIALIZED) {
 743		/* previously mounted with options, but not on this attempt? */
 744		if ((sbsec->flags & SE_MNTMASK) && !opts)
 745			goto out_double_mount;
 746		rc = 0;
 747		goto out;
 748	}
 749
 750	if (strcmp(sb->s_type->name, "proc") == 0)
 751		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 752
 753	if (!strcmp(sb->s_type->name, "debugfs") ||
 754	    !strcmp(sb->s_type->name, "tracefs") ||
 755	    !strcmp(sb->s_type->name, "pstore"))
 756		sbsec->flags |= SE_SBGENFS;
 757
 758	if (!strcmp(sb->s_type->name, "sysfs") ||
 759	    !strcmp(sb->s_type->name, "cgroup") ||
 760	    !strcmp(sb->s_type->name, "cgroup2"))
 761		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
 762
 763	if (!sbsec->behavior) {
 764		/*
 765		 * Determine the labeling behavior to use for this
 766		 * filesystem type.
 767		 */
 768		rc = security_fs_use(&selinux_state, sb);
 769		if (rc) {
 770			pr_warn("%s: security_fs_use(%s) returned %d\n",
 
 771					__func__, sb->s_type->name, rc);
 772			goto out;
 773		}
 774	}
 775
 776	/*
 777	 * If this is a user namespace mount and the filesystem type is not
 778	 * explicitly whitelisted, then no contexts are allowed on the command
 779	 * line and security labels must be ignored.
 780	 */
 781	if (sb->s_user_ns != &init_user_ns &&
 782	    strcmp(sb->s_type->name, "tmpfs") &&
 783	    strcmp(sb->s_type->name, "ramfs") &&
 784	    strcmp(sb->s_type->name, "devpts")) {
 785		if (context_sid || fscontext_sid || rootcontext_sid ||
 786		    defcontext_sid) {
 787			rc = -EACCES;
 788			goto out;
 789		}
 790		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 791			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 792			rc = security_transition_sid(&selinux_state,
 793						     current_sid(),
 794						     current_sid(),
 795						     SECCLASS_FILE, NULL,
 796						     &sbsec->mntpoint_sid);
 797			if (rc)
 798				goto out;
 799		}
 800		goto out_set_opts;
 801	}
 802
 803	/* sets the context of the superblock for the fs being mounted. */
 804	if (fscontext_sid) {
 805		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 806		if (rc)
 807			goto out;
 808
 809		sbsec->sid = fscontext_sid;
 810	}
 811
 812	/*
 813	 * Switch to using mount point labeling behavior.
 814	 * sets the label used on all file below the mountpoint, and will set
 815	 * the superblock context if not already set.
 816	 */
 817	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 818		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 819		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 820	}
 821
 822	if (context_sid) {
 823		if (!fscontext_sid) {
 824			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 825							  cred);
 826			if (rc)
 827				goto out;
 828			sbsec->sid = context_sid;
 829		} else {
 830			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 831							     cred);
 832			if (rc)
 833				goto out;
 834		}
 835		if (!rootcontext_sid)
 836			rootcontext_sid = context_sid;
 837
 838		sbsec->mntpoint_sid = context_sid;
 839		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 840	}
 841
 842	if (rootcontext_sid) {
 843		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 844						     cred);
 845		if (rc)
 846			goto out;
 847
 848		root_isec->sid = rootcontext_sid;
 849		root_isec->initialized = LABEL_INITIALIZED;
 850	}
 851
 852	if (defcontext_sid) {
 853		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 854			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 855			rc = -EINVAL;
 856			pr_warn("SELinux: defcontext option is "
 857			       "invalid for this filesystem type\n");
 858			goto out;
 859		}
 860
 861		if (defcontext_sid != sbsec->def_sid) {
 862			rc = may_context_mount_inode_relabel(defcontext_sid,
 863							     sbsec, cred);
 864			if (rc)
 865				goto out;
 866		}
 867
 868		sbsec->def_sid = defcontext_sid;
 869	}
 870
 871out_set_opts:
 872	rc = sb_finish_set_opts(sb);
 873out:
 874	mutex_unlock(&sbsec->lock);
 875	return rc;
 876out_double_mount:
 877	rc = -EINVAL;
 878	pr_warn("SELinux: mount invalid.  Same superblock, different "
 879	       "security settings for (dev %s, type %s)\n", sb->s_id,
 880	       sb->s_type->name);
 881	goto out;
 882}
 883
 884static int selinux_cmp_sb_context(const struct super_block *oldsb,
 885				    const struct super_block *newsb)
 886{
 887	struct superblock_security_struct *old = oldsb->s_security;
 888	struct superblock_security_struct *new = newsb->s_security;
 889	char oldflags = old->flags & SE_MNTMASK;
 890	char newflags = new->flags & SE_MNTMASK;
 891
 892	if (oldflags != newflags)
 893		goto mismatch;
 894	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 895		goto mismatch;
 896	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 897		goto mismatch;
 898	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 899		goto mismatch;
 900	if (oldflags & ROOTCONTEXT_MNT) {
 901		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 902		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 903		if (oldroot->sid != newroot->sid)
 904			goto mismatch;
 905	}
 906	return 0;
 907mismatch:
 908	pr_warn("SELinux: mount invalid.  Same superblock, "
 909			    "different security settings for (dev %s, "
 910			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 911	return -EBUSY;
 912}
 913
 914static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 915					struct super_block *newsb,
 916					unsigned long kern_flags,
 917					unsigned long *set_kern_flags)
 918{
 919	int rc = 0;
 920	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 921	struct superblock_security_struct *newsbsec = newsb->s_security;
 922
 923	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 924	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 925	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 926
 927	/*
 928	 * if the parent was able to be mounted it clearly had no special lsm
 929	 * mount options.  thus we can safely deal with this superblock later
 930	 */
 931	if (!selinux_state.initialized)
 932		return 0;
 933
 934	/*
 935	 * Specifying internal flags without providing a place to
 936	 * place the results is not allowed.
 937	 */
 938	if (kern_flags && !set_kern_flags)
 939		return -EINVAL;
 940
 941	/* how can we clone if the old one wasn't set up?? */
 942	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 943
 944	/* if fs is reusing a sb, make sure that the contexts match */
 945	if (newsbsec->flags & SE_SBINITIALIZED) {
 946		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
 947			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 948		return selinux_cmp_sb_context(oldsb, newsb);
 949	}
 950
 951	mutex_lock(&newsbsec->lock);
 952
 953	newsbsec->flags = oldsbsec->flags;
 954
 955	newsbsec->sid = oldsbsec->sid;
 956	newsbsec->def_sid = oldsbsec->def_sid;
 957	newsbsec->behavior = oldsbsec->behavior;
 958
 959	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
 960		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
 961		rc = security_fs_use(&selinux_state, newsb);
 962		if (rc)
 963			goto out;
 964	}
 965
 966	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
 967		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
 968		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 969	}
 970
 971	if (set_context) {
 972		u32 sid = oldsbsec->mntpoint_sid;
 973
 974		if (!set_fscontext)
 975			newsbsec->sid = sid;
 976		if (!set_rootcontext) {
 977			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 
 978			newisec->sid = sid;
 979		}
 980		newsbsec->mntpoint_sid = sid;
 981	}
 982	if (set_rootcontext) {
 983		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 984		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 
 
 985
 986		newisec->sid = oldisec->sid;
 987	}
 988
 989	sb_finish_set_opts(newsb);
 990out:
 991	mutex_unlock(&newsbsec->lock);
 992	return rc;
 993}
 994
 995static int selinux_add_opt(int token, const char *s, void **mnt_opts)
 
 996{
 997	struct selinux_mnt_opts *opts = *mnt_opts;
 
 
 
 998
 999	if (token == Opt_seclabel)	/* eaten and completely ignored */
1000		return 0;
1001
1002	if (!opts) {
1003		opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
1004		if (!opts)
1005			return -ENOMEM;
1006		*mnt_opts = opts;
1007	}
1008	if (!s)
1009		return -ENOMEM;
1010	switch (token) {
1011	case Opt_context:
1012		if (opts->context || opts->defcontext)
1013			goto Einval;
1014		opts->context = s;
1015		break;
1016	case Opt_fscontext:
1017		if (opts->fscontext)
1018			goto Einval;
1019		opts->fscontext = s;
1020		break;
1021	case Opt_rootcontext:
1022		if (opts->rootcontext)
1023			goto Einval;
1024		opts->rootcontext = s;
1025		break;
1026	case Opt_defcontext:
1027		if (opts->context || opts->defcontext)
1028			goto Einval;
1029		opts->defcontext = s;
1030		break;
1031	}
1032	return 0;
1033Einval:
1034	pr_warn(SEL_MOUNT_FAIL_MSG);
1035	return -EINVAL;
1036}
1037
1038static int selinux_add_mnt_opt(const char *option, const char *val, int len,
1039			       void **mnt_opts)
1040{
1041	int token = Opt_error;
1042	int rc, i;
 
 
 
 
 
 
 
 
 
 
 
 
 
1043
1044	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
1045		if (strcmp(option, tokens[i].name) == 0) {
1046			token = tokens[i].opt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1047			break;
 
 
 
 
 
1048		}
1049	}
1050
1051	if (token == Opt_error)
1052		return -EINVAL;
 
 
1053
1054	if (token != Opt_seclabel) {
1055		val = kmemdup_nul(val, len, GFP_KERNEL);
1056		if (!val) {
1057			rc = -ENOMEM;
1058			goto free_opt;
1059		}
1060	}
1061	rc = selinux_add_opt(token, val, mnt_opts);
1062	if (unlikely(rc)) {
1063		kfree(val);
1064		goto free_opt;
 
 
 
 
 
 
 
 
1065	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1066	return rc;
 
 
 
 
 
 
 
 
 
1067
1068free_opt:
1069	if (*mnt_opts) {
1070		selinux_free_mnt_opts(*mnt_opts);
1071		*mnt_opts = NULL;
1072	}
 
 
 
 
 
 
 
 
 
 
 
1073	return rc;
1074}
1075
1076static int show_sid(struct seq_file *m, u32 sid)
 
1077{
1078	char *context = NULL;
1079	u32 len;
1080	int rc;
 
 
1081
1082	rc = security_sid_to_context(&selinux_state, sid,
1083					     &context, &len);
1084	if (!rc) {
1085		bool has_comma = context && strchr(context, ',');
1086
1087		seq_putc(m, '=');
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088		if (has_comma)
1089			seq_putc(m, '\"');
1090		seq_escape(m, context, "\"\n\\");
1091		if (has_comma)
1092			seq_putc(m, '\"');
1093	}
1094	kfree(context);
1095	return rc;
1096}
1097
1098static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1099{
1100	struct superblock_security_struct *sbsec = sb->s_security;
1101	int rc;
1102
1103	if (!(sbsec->flags & SE_SBINITIALIZED))
1104		return 0;
 
 
 
 
 
1105
1106	if (!selinux_state.initialized)
1107		return 0;
1108
1109	if (sbsec->flags & FSCONTEXT_MNT) {
1110		seq_putc(m, ',');
1111		seq_puts(m, FSCONTEXT_STR);
1112		rc = show_sid(m, sbsec->sid);
1113		if (rc)
1114			return rc;
1115	}
1116	if (sbsec->flags & CONTEXT_MNT) {
1117		seq_putc(m, ',');
1118		seq_puts(m, CONTEXT_STR);
1119		rc = show_sid(m, sbsec->mntpoint_sid);
1120		if (rc)
1121			return rc;
1122	}
1123	if (sbsec->flags & DEFCONTEXT_MNT) {
1124		seq_putc(m, ',');
1125		seq_puts(m, DEFCONTEXT_STR);
1126		rc = show_sid(m, sbsec->def_sid);
1127		if (rc)
1128			return rc;
1129	}
1130	if (sbsec->flags & ROOTCONTEXT_MNT) {
1131		struct dentry *root = sbsec->sb->s_root;
1132		struct inode_security_struct *isec = backing_inode_security(root);
1133		seq_putc(m, ',');
1134		seq_puts(m, ROOTCONTEXT_STR);
1135		rc = show_sid(m, isec->sid);
1136		if (rc)
1137			return rc;
1138	}
1139	if (sbsec->flags & SBLABEL_MNT) {
1140		seq_putc(m, ',');
1141		seq_puts(m, SECLABEL_STR);
1142	}
1143	return 0;
1144}
1145
1146static inline u16 inode_mode_to_security_class(umode_t mode)
1147{
1148	switch (mode & S_IFMT) {
1149	case S_IFSOCK:
1150		return SECCLASS_SOCK_FILE;
1151	case S_IFLNK:
1152		return SECCLASS_LNK_FILE;
1153	case S_IFREG:
1154		return SECCLASS_FILE;
1155	case S_IFBLK:
1156		return SECCLASS_BLK_FILE;
1157	case S_IFDIR:
1158		return SECCLASS_DIR;
1159	case S_IFCHR:
1160		return SECCLASS_CHR_FILE;
1161	case S_IFIFO:
1162		return SECCLASS_FIFO_FILE;
1163
1164	}
1165
1166	return SECCLASS_FILE;
1167}
1168
1169static inline int default_protocol_stream(int protocol)
1170{
1171	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1172}
1173
1174static inline int default_protocol_dgram(int protocol)
1175{
1176	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1177}
1178
1179static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1180{
1181	int extsockclass = selinux_policycap_extsockclass();
1182
1183	switch (family) {
1184	case PF_UNIX:
1185		switch (type) {
1186		case SOCK_STREAM:
1187		case SOCK_SEQPACKET:
1188			return SECCLASS_UNIX_STREAM_SOCKET;
1189		case SOCK_DGRAM:
1190		case SOCK_RAW:
1191			return SECCLASS_UNIX_DGRAM_SOCKET;
1192		}
1193		break;
1194	case PF_INET:
1195	case PF_INET6:
1196		switch (type) {
1197		case SOCK_STREAM:
1198		case SOCK_SEQPACKET:
1199			if (default_protocol_stream(protocol))
1200				return SECCLASS_TCP_SOCKET;
1201			else if (extsockclass && protocol == IPPROTO_SCTP)
1202				return SECCLASS_SCTP_SOCKET;
1203			else
1204				return SECCLASS_RAWIP_SOCKET;
1205		case SOCK_DGRAM:
1206			if (default_protocol_dgram(protocol))
1207				return SECCLASS_UDP_SOCKET;
1208			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1209						  protocol == IPPROTO_ICMPV6))
1210				return SECCLASS_ICMP_SOCKET;
1211			else
1212				return SECCLASS_RAWIP_SOCKET;
1213		case SOCK_DCCP:
1214			return SECCLASS_DCCP_SOCKET;
1215		default:
1216			return SECCLASS_RAWIP_SOCKET;
1217		}
1218		break;
1219	case PF_NETLINK:
1220		switch (protocol) {
1221		case NETLINK_ROUTE:
1222			return SECCLASS_NETLINK_ROUTE_SOCKET;
 
 
1223		case NETLINK_SOCK_DIAG:
1224			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1225		case NETLINK_NFLOG:
1226			return SECCLASS_NETLINK_NFLOG_SOCKET;
1227		case NETLINK_XFRM:
1228			return SECCLASS_NETLINK_XFRM_SOCKET;
1229		case NETLINK_SELINUX:
1230			return SECCLASS_NETLINK_SELINUX_SOCKET;
1231		case NETLINK_ISCSI:
1232			return SECCLASS_NETLINK_ISCSI_SOCKET;
1233		case NETLINK_AUDIT:
1234			return SECCLASS_NETLINK_AUDIT_SOCKET;
1235		case NETLINK_FIB_LOOKUP:
1236			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1237		case NETLINK_CONNECTOR:
1238			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1239		case NETLINK_NETFILTER:
1240			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1241		case NETLINK_DNRTMSG:
1242			return SECCLASS_NETLINK_DNRT_SOCKET;
1243		case NETLINK_KOBJECT_UEVENT:
1244			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1245		case NETLINK_GENERIC:
1246			return SECCLASS_NETLINK_GENERIC_SOCKET;
1247		case NETLINK_SCSITRANSPORT:
1248			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1249		case NETLINK_RDMA:
1250			return SECCLASS_NETLINK_RDMA_SOCKET;
1251		case NETLINK_CRYPTO:
1252			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1253		default:
1254			return SECCLASS_NETLINK_SOCKET;
1255		}
1256	case PF_PACKET:
1257		return SECCLASS_PACKET_SOCKET;
1258	case PF_KEY:
1259		return SECCLASS_KEY_SOCKET;
1260	case PF_APPLETALK:
1261		return SECCLASS_APPLETALK_SOCKET;
1262	}
1263
1264	if (extsockclass) {
1265		switch (family) {
1266		case PF_AX25:
1267			return SECCLASS_AX25_SOCKET;
1268		case PF_IPX:
1269			return SECCLASS_IPX_SOCKET;
1270		case PF_NETROM:
1271			return SECCLASS_NETROM_SOCKET;
1272		case PF_ATMPVC:
1273			return SECCLASS_ATMPVC_SOCKET;
1274		case PF_X25:
1275			return SECCLASS_X25_SOCKET;
1276		case PF_ROSE:
1277			return SECCLASS_ROSE_SOCKET;
1278		case PF_DECnet:
1279			return SECCLASS_DECNET_SOCKET;
1280		case PF_ATMSVC:
1281			return SECCLASS_ATMSVC_SOCKET;
1282		case PF_RDS:
1283			return SECCLASS_RDS_SOCKET;
1284		case PF_IRDA:
1285			return SECCLASS_IRDA_SOCKET;
1286		case PF_PPPOX:
1287			return SECCLASS_PPPOX_SOCKET;
1288		case PF_LLC:
1289			return SECCLASS_LLC_SOCKET;
1290		case PF_CAN:
1291			return SECCLASS_CAN_SOCKET;
1292		case PF_TIPC:
1293			return SECCLASS_TIPC_SOCKET;
1294		case PF_BLUETOOTH:
1295			return SECCLASS_BLUETOOTH_SOCKET;
1296		case PF_IUCV:
1297			return SECCLASS_IUCV_SOCKET;
1298		case PF_RXRPC:
1299			return SECCLASS_RXRPC_SOCKET;
1300		case PF_ISDN:
1301			return SECCLASS_ISDN_SOCKET;
1302		case PF_PHONET:
1303			return SECCLASS_PHONET_SOCKET;
1304		case PF_IEEE802154:
1305			return SECCLASS_IEEE802154_SOCKET;
1306		case PF_CAIF:
1307			return SECCLASS_CAIF_SOCKET;
1308		case PF_ALG:
1309			return SECCLASS_ALG_SOCKET;
1310		case PF_NFC:
1311			return SECCLASS_NFC_SOCKET;
1312		case PF_VSOCK:
1313			return SECCLASS_VSOCK_SOCKET;
1314		case PF_KCM:
1315			return SECCLASS_KCM_SOCKET;
1316		case PF_QIPCRTR:
1317			return SECCLASS_QIPCRTR_SOCKET;
1318		case PF_SMC:
1319			return SECCLASS_SMC_SOCKET;
1320		case PF_XDP:
1321			return SECCLASS_XDP_SOCKET;
1322#if PF_MAX > 45
1323#error New address family defined, please update this function.
1324#endif
1325		}
1326	}
1327
1328	return SECCLASS_SOCKET;
1329}
1330
1331static int selinux_genfs_get_sid(struct dentry *dentry,
1332				 u16 tclass,
1333				 u16 flags,
1334				 u32 *sid)
1335{
1336	int rc;
1337	struct super_block *sb = dentry->d_sb;
1338	char *buffer, *path;
1339
1340	buffer = (char *)__get_free_page(GFP_KERNEL);
1341	if (!buffer)
1342		return -ENOMEM;
1343
1344	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1345	if (IS_ERR(path))
1346		rc = PTR_ERR(path);
1347	else {
1348		if (flags & SE_SBPROC) {
1349			/* each process gets a /proc/PID/ entry. Strip off the
1350			 * PID part to get a valid selinux labeling.
1351			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1352			while (path[1] >= '0' && path[1] <= '9') {
1353				path[1] = '/';
1354				path++;
1355			}
1356		}
1357		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1358					path, tclass, sid);
1359		if (rc == -ENOENT) {
1360			/* No match in policy, mark as unlabeled. */
1361			*sid = SECINITSID_UNLABELED;
1362			rc = 0;
1363		}
 
1364	}
1365	free_page((unsigned long)buffer);
1366	return rc;
1367}
1368
1369static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1370				  u32 def_sid, u32 *sid)
 
1371{
1372#define INITCONTEXTLEN 255
1373	char *context;
1374	unsigned int len;
1375	int rc;
1376
1377	len = INITCONTEXTLEN;
1378	context = kmalloc(len + 1, GFP_NOFS);
1379	if (!context)
1380		return -ENOMEM;
1381
1382	context[len] = '\0';
1383	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1384	if (rc == -ERANGE) {
1385		kfree(context);
1386
1387		/* Need a larger buffer.  Query for the right size. */
1388		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1389		if (rc < 0)
1390			return rc;
1391
1392		len = rc;
1393		context = kmalloc(len + 1, GFP_NOFS);
1394		if (!context)
1395			return -ENOMEM;
1396
1397		context[len] = '\0';
1398		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1399				    context, len);
1400	}
1401	if (rc < 0) {
1402		kfree(context);
1403		if (rc != -ENODATA) {
1404			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1405				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1406			return rc;
1407		}
1408		*sid = def_sid;
1409		return 0;
1410	}
1411
1412	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1413					     def_sid, GFP_NOFS);
1414	if (rc) {
1415		char *dev = inode->i_sb->s_id;
1416		unsigned long ino = inode->i_ino;
1417
1418		if (rc == -EINVAL) {
1419			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1420					      ino, dev, context);
1421		} else {
1422			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1423				__func__, context, -rc, dev, ino);
1424		}
1425	}
1426	kfree(context);
1427	return 0;
1428}
 
1429
1430/* The inode's security attributes must be initialized before first use. */
1431static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1432{
1433	struct superblock_security_struct *sbsec = NULL;
1434	struct inode_security_struct *isec = selinux_inode(inode);
1435	u32 task_sid, sid = 0;
1436	u16 sclass;
1437	struct dentry *dentry;
 
 
 
1438	int rc = 0;
1439
1440	if (isec->initialized == LABEL_INITIALIZED)
1441		return 0;
1442
1443	spin_lock(&isec->lock);
1444	if (isec->initialized == LABEL_INITIALIZED)
1445		goto out_unlock;
1446
1447	if (isec->sclass == SECCLASS_FILE)
1448		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1449
1450	sbsec = inode->i_sb->s_security;
1451	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1452		/* Defer initialization until selinux_complete_init,
1453		   after the initial policy is loaded and the security
1454		   server is ready to handle calls. */
1455		spin_lock(&sbsec->isec_lock);
1456		if (list_empty(&isec->list))
1457			list_add(&isec->list, &sbsec->isec_head);
1458		spin_unlock(&sbsec->isec_lock);
1459		goto out_unlock;
1460	}
1461
1462	sclass = isec->sclass;
1463	task_sid = isec->task_sid;
1464	sid = isec->sid;
1465	isec->initialized = LABEL_PENDING;
1466	spin_unlock(&isec->lock);
1467
1468	switch (sbsec->behavior) {
1469	case SECURITY_FS_USE_NATIVE:
1470		break;
1471	case SECURITY_FS_USE_XATTR:
1472		if (!(inode->i_opflags & IOP_XATTR)) {
1473			sid = sbsec->def_sid;
1474			break;
1475		}
 
1476		/* Need a dentry, since the xattr API requires one.
1477		   Life would be simpler if we could just pass the inode. */
1478		if (opt_dentry) {
1479			/* Called from d_instantiate or d_splice_alias. */
1480			dentry = dget(opt_dentry);
1481		} else {
1482			/*
1483			 * Called from selinux_complete_init, try to find a dentry.
1484			 * Some filesystems really want a connected one, so try
1485			 * that first.  We could split SECURITY_FS_USE_XATTR in
1486			 * two, depending upon that...
1487			 */
1488			dentry = d_find_alias(inode);
1489			if (!dentry)
1490				dentry = d_find_any_alias(inode);
1491		}
1492		if (!dentry) {
1493			/*
1494			 * this is can be hit on boot when a file is accessed
1495			 * before the policy is loaded.  When we load policy we
1496			 * may find inodes that have no dentry on the
1497			 * sbsec->isec_head list.  No reason to complain as these
1498			 * will get fixed up the next time we go through
1499			 * inode_doinit with a dentry, before these inodes could
1500			 * be used again by userspace.
1501			 */
1502			goto out;
1503		}
1504
1505		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1506					    &sid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1507		dput(dentry);
1508		if (rc)
1509			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510		break;
1511	case SECURITY_FS_USE_TASK:
1512		sid = task_sid;
1513		break;
1514	case SECURITY_FS_USE_TRANS:
1515		/* Default to the fs SID. */
1516		sid = sbsec->sid;
1517
1518		/* Try to obtain a transition SID. */
1519		rc = security_transition_sid(&selinux_state, task_sid, sid,
1520					     sclass, NULL, &sid);
 
1521		if (rc)
1522			goto out;
 
1523		break;
1524	case SECURITY_FS_USE_MNTPOINT:
1525		sid = sbsec->mntpoint_sid;
1526		break;
1527	default:
1528		/* Default to the fs superblock SID. */
1529		sid = sbsec->sid;
1530
1531		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1532			/* We must have a dentry to determine the label on
1533			 * procfs inodes */
1534			if (opt_dentry) {
1535				/* Called from d_instantiate or
1536				 * d_splice_alias. */
1537				dentry = dget(opt_dentry);
1538			} else {
1539				/* Called from selinux_complete_init, try to
1540				 * find a dentry.  Some filesystems really want
1541				 * a connected one, so try that first.
1542				 */
1543				dentry = d_find_alias(inode);
1544				if (!dentry)
1545					dentry = d_find_any_alias(inode);
1546			}
1547			/*
1548			 * This can be hit on boot when a file is accessed
1549			 * before the policy is loaded.  When we load policy we
1550			 * may find inodes that have no dentry on the
1551			 * sbsec->isec_head list.  No reason to complain as
1552			 * these will get fixed up the next time we go through
1553			 * inode_doinit() with a dentry, before these inodes
1554			 * could be used again by userspace.
1555			 */
1556			if (!dentry)
1557				goto out;
1558			rc = selinux_genfs_get_sid(dentry, sclass,
1559						   sbsec->flags, &sid);
1560			if (rc) {
1561				dput(dentry);
1562				goto out;
1563			}
1564
1565			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1566			    (inode->i_opflags & IOP_XATTR)) {
1567				rc = inode_doinit_use_xattr(inode, dentry,
1568							    sid, &sid);
1569				if (rc) {
1570					dput(dentry);
1571					goto out;
1572				}
1573			}
1574			dput(dentry);
 
 
 
1575		}
1576		break;
1577	}
1578
1579out:
1580	spin_lock(&isec->lock);
1581	if (isec->initialized == LABEL_PENDING) {
1582		if (!sid || rc) {
1583			isec->initialized = LABEL_INVALID;
1584			goto out_unlock;
1585		}
1586
1587		isec->initialized = LABEL_INITIALIZED;
1588		isec->sid = sid;
1589	}
1590
1591out_unlock:
1592	spin_unlock(&isec->lock);
 
 
 
1593	return rc;
1594}
1595
1596/* Convert a Linux signal to an access vector. */
1597static inline u32 signal_to_av(int sig)
1598{
1599	u32 perm = 0;
1600
1601	switch (sig) {
1602	case SIGCHLD:
1603		/* Commonly granted from child to parent. */
1604		perm = PROCESS__SIGCHLD;
1605		break;
1606	case SIGKILL:
1607		/* Cannot be caught or ignored */
1608		perm = PROCESS__SIGKILL;
1609		break;
1610	case SIGSTOP:
1611		/* Cannot be caught or ignored */
1612		perm = PROCESS__SIGSTOP;
1613		break;
1614	default:
1615		/* All other signals. */
1616		perm = PROCESS__SIGNAL;
1617		break;
1618	}
1619
1620	return perm;
1621}
1622
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1623#if CAP_LAST_CAP > 63
1624#error Fix SELinux to handle capabilities > 63.
1625#endif
1626
1627/* Check whether a task is allowed to use a capability. */
1628static int cred_has_capability(const struct cred *cred,
1629			       int cap, unsigned int opts, bool initns)
1630{
1631	struct common_audit_data ad;
1632	struct av_decision avd;
1633	u16 sclass;
1634	u32 sid = cred_sid(cred);
1635	u32 av = CAP_TO_MASK(cap);
1636	int rc;
1637
1638	ad.type = LSM_AUDIT_DATA_CAP;
1639	ad.u.cap = cap;
1640
1641	switch (CAP_TO_INDEX(cap)) {
1642	case 0:
1643		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1644		break;
1645	case 1:
1646		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1647		break;
1648	default:
1649		pr_err("SELinux:  out of range capability %d\n", cap);
 
1650		BUG();
1651		return -EINVAL;
1652	}
1653
1654	rc = avc_has_perm_noaudit(&selinux_state,
1655				  sid, sid, sclass, av, 0, &avd);
1656	if (!(opts & CAP_OPT_NOAUDIT)) {
1657		int rc2 = avc_audit(&selinux_state,
1658				    sid, sid, sclass, av, &avd, rc, &ad, 0);
1659		if (rc2)
1660			return rc2;
1661	}
1662	return rc;
1663}
1664
 
 
 
 
 
 
 
 
 
 
1665/* Check whether a task has a particular permission to an inode.
1666   The 'adp' parameter is optional and allows other audit
1667   data to be passed (e.g. the dentry). */
1668static int inode_has_perm(const struct cred *cred,
1669			  struct inode *inode,
1670			  u32 perms,
1671			  struct common_audit_data *adp)
1672{
1673	struct inode_security_struct *isec;
1674	u32 sid;
1675
1676	validate_creds(cred);
1677
1678	if (unlikely(IS_PRIVATE(inode)))
1679		return 0;
1680
1681	sid = cred_sid(cred);
1682	isec = selinux_inode(inode);
1683
1684	return avc_has_perm(&selinux_state,
1685			    sid, isec->sid, isec->sclass, perms, adp);
1686}
1687
1688/* Same as inode_has_perm, but pass explicit audit data containing
1689   the dentry to help the auditing code to more easily generate the
1690   pathname if needed. */
1691static inline int dentry_has_perm(const struct cred *cred,
1692				  struct dentry *dentry,
1693				  u32 av)
1694{
1695	struct inode *inode = d_backing_inode(dentry);
1696	struct common_audit_data ad;
1697
1698	ad.type = LSM_AUDIT_DATA_DENTRY;
1699	ad.u.dentry = dentry;
1700	__inode_security_revalidate(inode, dentry, true);
1701	return inode_has_perm(cred, inode, av, &ad);
1702}
1703
1704/* Same as inode_has_perm, but pass explicit audit data containing
1705   the path to help the auditing code to more easily generate the
1706   pathname if needed. */
1707static inline int path_has_perm(const struct cred *cred,
1708				const struct path *path,
1709				u32 av)
1710{
1711	struct inode *inode = d_backing_inode(path->dentry);
1712	struct common_audit_data ad;
1713
1714	ad.type = LSM_AUDIT_DATA_PATH;
1715	ad.u.path = *path;
1716	__inode_security_revalidate(inode, path->dentry, true);
1717	return inode_has_perm(cred, inode, av, &ad);
1718}
1719
1720/* Same as path_has_perm, but uses the inode from the file struct. */
1721static inline int file_path_has_perm(const struct cred *cred,
1722				     struct file *file,
1723				     u32 av)
1724{
1725	struct common_audit_data ad;
1726
1727	ad.type = LSM_AUDIT_DATA_FILE;
1728	ad.u.file = file;
1729	return inode_has_perm(cred, file_inode(file), av, &ad);
1730}
1731
1732#ifdef CONFIG_BPF_SYSCALL
1733static int bpf_fd_pass(struct file *file, u32 sid);
1734#endif
1735
1736/* Check whether a task can use an open file descriptor to
1737   access an inode in a given way.  Check access to the
1738   descriptor itself, and then use dentry_has_perm to
1739   check a particular permission to the file.
1740   Access to the descriptor is implicitly granted if it
1741   has the same SID as the process.  If av is zero, then
1742   access to the file is not checked, e.g. for cases
1743   where only the descriptor is affected like seek. */
1744static int file_has_perm(const struct cred *cred,
1745			 struct file *file,
1746			 u32 av)
1747{
1748	struct file_security_struct *fsec = selinux_file(file);
1749	struct inode *inode = file_inode(file);
1750	struct common_audit_data ad;
1751	u32 sid = cred_sid(cred);
1752	int rc;
1753
1754	ad.type = LSM_AUDIT_DATA_FILE;
1755	ad.u.file = file;
1756
1757	if (sid != fsec->sid) {
1758		rc = avc_has_perm(&selinux_state,
1759				  sid, fsec->sid,
1760				  SECCLASS_FD,
1761				  FD__USE,
1762				  &ad);
1763		if (rc)
1764			goto out;
1765	}
1766
1767#ifdef CONFIG_BPF_SYSCALL
1768	rc = bpf_fd_pass(file, cred_sid(cred));
1769	if (rc)
1770		return rc;
1771#endif
1772
1773	/* av is zero if only checking access to the descriptor. */
1774	rc = 0;
1775	if (av)
1776		rc = inode_has_perm(cred, inode, av, &ad);
1777
1778out:
1779	return rc;
1780}
1781
1782/*
1783 * Determine the label for an inode that might be unioned.
1784 */
1785static int
1786selinux_determine_inode_label(const struct task_security_struct *tsec,
1787				 struct inode *dir,
1788				 const struct qstr *name, u16 tclass,
1789				 u32 *_new_isid)
1790{
1791	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1792
1793	if ((sbsec->flags & SE_SBINITIALIZED) &&
1794	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1795		*_new_isid = sbsec->mntpoint_sid;
1796	} else if ((sbsec->flags & SBLABEL_MNT) &&
1797		   tsec->create_sid) {
1798		*_new_isid = tsec->create_sid;
1799	} else {
1800		const struct inode_security_struct *dsec = inode_security(dir);
1801		return security_transition_sid(&selinux_state, tsec->sid,
1802					       dsec->sid, tclass,
1803					       name, _new_isid);
1804	}
1805
1806	return 0;
1807}
1808
1809/* Check whether a task can create a file. */
1810static int may_create(struct inode *dir,
1811		      struct dentry *dentry,
1812		      u16 tclass)
1813{
1814	const struct task_security_struct *tsec = selinux_cred(current_cred());
1815	struct inode_security_struct *dsec;
1816	struct superblock_security_struct *sbsec;
1817	u32 sid, newsid;
1818	struct common_audit_data ad;
1819	int rc;
1820
1821	dsec = inode_security(dir);
1822	sbsec = dir->i_sb->s_security;
1823
1824	sid = tsec->sid;
 
1825
1826	ad.type = LSM_AUDIT_DATA_DENTRY;
1827	ad.u.dentry = dentry;
1828
1829	rc = avc_has_perm(&selinux_state,
1830			  sid, dsec->sid, SECCLASS_DIR,
1831			  DIR__ADD_NAME | DIR__SEARCH,
1832			  &ad);
1833	if (rc)
1834		return rc;
1835
1836	rc = selinux_determine_inode_label(selinux_cred(current_cred()), dir,
1837					   &dentry->d_name, tclass, &newsid);
1838	if (rc)
1839		return rc;
 
 
1840
1841	rc = avc_has_perm(&selinux_state,
1842			  sid, newsid, tclass, FILE__CREATE, &ad);
1843	if (rc)
1844		return rc;
1845
1846	return avc_has_perm(&selinux_state,
1847			    newsid, sbsec->sid,
1848			    SECCLASS_FILESYSTEM,
1849			    FILESYSTEM__ASSOCIATE, &ad);
1850}
1851
 
 
 
 
 
 
 
 
 
1852#define MAY_LINK	0
1853#define MAY_UNLINK	1
1854#define MAY_RMDIR	2
1855
1856/* Check whether a task can link, unlink, or rmdir a file/directory. */
1857static int may_link(struct inode *dir,
1858		    struct dentry *dentry,
1859		    int kind)
1860
1861{
1862	struct inode_security_struct *dsec, *isec;
1863	struct common_audit_data ad;
1864	u32 sid = current_sid();
1865	u32 av;
1866	int rc;
1867
1868	dsec = inode_security(dir);
1869	isec = backing_inode_security(dentry);
1870
1871	ad.type = LSM_AUDIT_DATA_DENTRY;
1872	ad.u.dentry = dentry;
1873
1874	av = DIR__SEARCH;
1875	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1876	rc = avc_has_perm(&selinux_state,
1877			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1878	if (rc)
1879		return rc;
1880
1881	switch (kind) {
1882	case MAY_LINK:
1883		av = FILE__LINK;
1884		break;
1885	case MAY_UNLINK:
1886		av = FILE__UNLINK;
1887		break;
1888	case MAY_RMDIR:
1889		av = DIR__RMDIR;
1890		break;
1891	default:
1892		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1893			__func__, kind);
1894		return 0;
1895	}
1896
1897	rc = avc_has_perm(&selinux_state,
1898			  sid, isec->sid, isec->sclass, av, &ad);
1899	return rc;
1900}
1901
1902static inline int may_rename(struct inode *old_dir,
1903			     struct dentry *old_dentry,
1904			     struct inode *new_dir,
1905			     struct dentry *new_dentry)
1906{
1907	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1908	struct common_audit_data ad;
1909	u32 sid = current_sid();
1910	u32 av;
1911	int old_is_dir, new_is_dir;
1912	int rc;
1913
1914	old_dsec = inode_security(old_dir);
1915	old_isec = backing_inode_security(old_dentry);
1916	old_is_dir = d_is_dir(old_dentry);
1917	new_dsec = inode_security(new_dir);
1918
1919	ad.type = LSM_AUDIT_DATA_DENTRY;
1920
1921	ad.u.dentry = old_dentry;
1922	rc = avc_has_perm(&selinux_state,
1923			  sid, old_dsec->sid, SECCLASS_DIR,
1924			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1925	if (rc)
1926		return rc;
1927	rc = avc_has_perm(&selinux_state,
1928			  sid, old_isec->sid,
1929			  old_isec->sclass, FILE__RENAME, &ad);
1930	if (rc)
1931		return rc;
1932	if (old_is_dir && new_dir != old_dir) {
1933		rc = avc_has_perm(&selinux_state,
1934				  sid, old_isec->sid,
1935				  old_isec->sclass, DIR__REPARENT, &ad);
1936		if (rc)
1937			return rc;
1938	}
1939
1940	ad.u.dentry = new_dentry;
1941	av = DIR__ADD_NAME | DIR__SEARCH;
1942	if (d_is_positive(new_dentry))
1943		av |= DIR__REMOVE_NAME;
1944	rc = avc_has_perm(&selinux_state,
1945			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1946	if (rc)
1947		return rc;
1948	if (d_is_positive(new_dentry)) {
1949		new_isec = backing_inode_security(new_dentry);
1950		new_is_dir = d_is_dir(new_dentry);
1951		rc = avc_has_perm(&selinux_state,
1952				  sid, new_isec->sid,
1953				  new_isec->sclass,
1954				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1955		if (rc)
1956			return rc;
1957	}
1958
1959	return 0;
1960}
1961
1962/* Check whether a task can perform a filesystem operation. */
1963static int superblock_has_perm(const struct cred *cred,
1964			       struct super_block *sb,
1965			       u32 perms,
1966			       struct common_audit_data *ad)
1967{
1968	struct superblock_security_struct *sbsec;
1969	u32 sid = cred_sid(cred);
1970
1971	sbsec = sb->s_security;
1972	return avc_has_perm(&selinux_state,
1973			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1974}
1975
1976/* Convert a Linux mode and permission mask to an access vector. */
1977static inline u32 file_mask_to_av(int mode, int mask)
1978{
1979	u32 av = 0;
1980
1981	if (!S_ISDIR(mode)) {
1982		if (mask & MAY_EXEC)
1983			av |= FILE__EXECUTE;
1984		if (mask & MAY_READ)
1985			av |= FILE__READ;
1986
1987		if (mask & MAY_APPEND)
1988			av |= FILE__APPEND;
1989		else if (mask & MAY_WRITE)
1990			av |= FILE__WRITE;
1991
1992	} else {
1993		if (mask & MAY_EXEC)
1994			av |= DIR__SEARCH;
1995		if (mask & MAY_WRITE)
1996			av |= DIR__WRITE;
1997		if (mask & MAY_READ)
1998			av |= DIR__READ;
1999	}
2000
2001	return av;
2002}
2003
2004/* Convert a Linux file to an access vector. */
2005static inline u32 file_to_av(struct file *file)
2006{
2007	u32 av = 0;
2008
2009	if (file->f_mode & FMODE_READ)
2010		av |= FILE__READ;
2011	if (file->f_mode & FMODE_WRITE) {
2012		if (file->f_flags & O_APPEND)
2013			av |= FILE__APPEND;
2014		else
2015			av |= FILE__WRITE;
2016	}
2017	if (!av) {
2018		/*
2019		 * Special file opened with flags 3 for ioctl-only use.
2020		 */
2021		av = FILE__IOCTL;
2022	}
2023
2024	return av;
2025}
2026
2027/*
2028 * Convert a file to an access vector and include the correct open
2029 * open permission.
2030 */
2031static inline u32 open_file_to_av(struct file *file)
2032{
2033	u32 av = file_to_av(file);
2034	struct inode *inode = file_inode(file);
2035
2036	if (selinux_policycap_openperm() &&
2037	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2038		av |= FILE__OPEN;
2039
2040	return av;
2041}
2042
2043/* Hook functions begin here. */
2044
2045static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2046{
2047	u32 mysid = current_sid();
2048	u32 mgrsid = task_sid(mgr);
2049
2050	return avc_has_perm(&selinux_state,
2051			    mysid, mgrsid, SECCLASS_BINDER,
2052			    BINDER__SET_CONTEXT_MGR, NULL);
2053}
2054
2055static int selinux_binder_transaction(struct task_struct *from,
2056				      struct task_struct *to)
2057{
2058	u32 mysid = current_sid();
2059	u32 fromsid = task_sid(from);
2060	u32 tosid = task_sid(to);
2061	int rc;
2062
2063	if (mysid != fromsid) {
2064		rc = avc_has_perm(&selinux_state,
2065				  mysid, fromsid, SECCLASS_BINDER,
2066				  BINDER__IMPERSONATE, NULL);
2067		if (rc)
2068			return rc;
 
 
2069	}
2070
2071	return avc_has_perm(&selinux_state,
2072			    fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2073			    NULL);
2074}
2075
2076static int selinux_binder_transfer_binder(struct task_struct *from,
2077					  struct task_struct *to)
2078{
2079	u32 fromsid = task_sid(from);
2080	u32 tosid = task_sid(to);
2081
2082	return avc_has_perm(&selinux_state,
2083			    fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2084			    NULL);
2085}
2086
2087static int selinux_binder_transfer_file(struct task_struct *from,
2088					struct task_struct *to,
2089					struct file *file)
2090{
2091	u32 sid = task_sid(to);
2092	struct file_security_struct *fsec = selinux_file(file);
2093	struct dentry *dentry = file->f_path.dentry;
2094	struct inode_security_struct *isec;
2095	struct common_audit_data ad;
2096	int rc;
2097
2098	ad.type = LSM_AUDIT_DATA_PATH;
2099	ad.u.path = file->f_path;
2100
2101	if (sid != fsec->sid) {
2102		rc = avc_has_perm(&selinux_state,
2103				  sid, fsec->sid,
2104				  SECCLASS_FD,
2105				  FD__USE,
2106				  &ad);
2107		if (rc)
2108			return rc;
2109	}
2110
2111#ifdef CONFIG_BPF_SYSCALL
2112	rc = bpf_fd_pass(file, sid);
2113	if (rc)
2114		return rc;
2115#endif
2116
2117	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2118		return 0;
2119
2120	isec = backing_inode_security(dentry);
2121	return avc_has_perm(&selinux_state,
2122			    sid, isec->sid, isec->sclass, file_to_av(file),
2123			    &ad);
2124}
2125
2126static int selinux_ptrace_access_check(struct task_struct *child,
2127				     unsigned int mode)
2128{
2129	u32 sid = current_sid();
2130	u32 csid = task_sid(child);
2131
2132	if (mode & PTRACE_MODE_READ)
2133		return avc_has_perm(&selinux_state,
2134				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2135
2136	return avc_has_perm(&selinux_state,
2137			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2138}
2139
2140static int selinux_ptrace_traceme(struct task_struct *parent)
2141{
2142	return avc_has_perm(&selinux_state,
2143			    task_sid(parent), current_sid(), SECCLASS_PROCESS,
2144			    PROCESS__PTRACE, NULL);
2145}
2146
2147static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2148			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2149{
2150	return avc_has_perm(&selinux_state,
2151			    current_sid(), task_sid(target), SECCLASS_PROCESS,
2152			    PROCESS__GETCAP, NULL);
 
 
 
 
2153}
2154
2155static int selinux_capset(struct cred *new, const struct cred *old,
2156			  const kernel_cap_t *effective,
2157			  const kernel_cap_t *inheritable,
2158			  const kernel_cap_t *permitted)
2159{
2160	return avc_has_perm(&selinux_state,
2161			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2162			    PROCESS__SETCAP, NULL);
 
 
 
 
 
2163}
2164
2165/*
2166 * (This comment used to live with the selinux_task_setuid hook,
2167 * which was removed).
2168 *
2169 * Since setuid only affects the current process, and since the SELinux
2170 * controls are not based on the Linux identity attributes, SELinux does not
2171 * need to control this operation.  However, SELinux does control the use of
2172 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2173 */
2174
2175static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2176			   int cap, unsigned int opts)
2177{
2178	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
 
 
 
 
 
 
2179}
2180
2181static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2182{
2183	const struct cred *cred = current_cred();
2184	int rc = 0;
2185
2186	if (!sb)
2187		return 0;
2188
2189	switch (cmds) {
2190	case Q_SYNC:
2191	case Q_QUOTAON:
2192	case Q_QUOTAOFF:
2193	case Q_SETINFO:
2194	case Q_SETQUOTA:
2195		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2196		break;
2197	case Q_GETFMT:
2198	case Q_GETINFO:
2199	case Q_GETQUOTA:
2200		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2201		break;
2202	default:
2203		rc = 0;  /* let the kernel handle invalid cmds */
2204		break;
2205	}
2206	return rc;
2207}
2208
2209static int selinux_quota_on(struct dentry *dentry)
2210{
2211	const struct cred *cred = current_cred();
2212
2213	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2214}
2215
2216static int selinux_syslog(int type)
2217{
 
 
2218	switch (type) {
2219	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2220	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2221		return avc_has_perm(&selinux_state,
2222				    current_sid(), SECINITSID_KERNEL,
2223				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2224	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2225	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2226	/* Set level of messages printed to console */
2227	case SYSLOG_ACTION_CONSOLE_LEVEL:
2228		return avc_has_perm(&selinux_state,
2229				    current_sid(), SECINITSID_KERNEL,
2230				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2231				    NULL);
2232	}
2233	/* All other syslog types */
2234	return avc_has_perm(&selinux_state,
2235			    current_sid(), SECINITSID_KERNEL,
2236			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
 
 
 
2237}
2238
2239/*
2240 * Check that a process has enough memory to allocate a new virtual
2241 * mapping. 0 means there is enough memory for the allocation to
2242 * succeed and -ENOMEM implies there is not.
2243 *
2244 * Do not audit the selinux permission check, as this is applied to all
2245 * processes that allocate mappings.
2246 */
2247static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2248{
2249	int rc, cap_sys_admin = 0;
2250
2251	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2252				 CAP_OPT_NOAUDIT, true);
2253	if (rc == 0)
2254		cap_sys_admin = 1;
2255
2256	return cap_sys_admin;
2257}
2258
2259/* binprm security operations */
2260
2261static u32 ptrace_parent_sid(void)
2262{
2263	u32 sid = 0;
2264	struct task_struct *tracer;
2265
2266	rcu_read_lock();
2267	tracer = ptrace_parent(current);
2268	if (tracer)
2269		sid = task_sid(tracer);
2270	rcu_read_unlock();
2271
2272	return sid;
2273}
2274
2275static int check_nnp_nosuid(const struct linux_binprm *bprm,
2276			    const struct task_security_struct *old_tsec,
2277			    const struct task_security_struct *new_tsec)
2278{
2279	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2280	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2281	int rc;
2282	u32 av;
2283
2284	if (!nnp && !nosuid)
2285		return 0; /* neither NNP nor nosuid */
2286
2287	if (new_tsec->sid == old_tsec->sid)
2288		return 0; /* No change in credentials */
2289
2290	/*
2291	 * If the policy enables the nnp_nosuid_transition policy capability,
2292	 * then we permit transitions under NNP or nosuid if the
2293	 * policy allows the corresponding permission between
2294	 * the old and new contexts.
2295	 */
2296	if (selinux_policycap_nnp_nosuid_transition()) {
2297		av = 0;
2298		if (nnp)
2299			av |= PROCESS2__NNP_TRANSITION;
2300		if (nosuid)
2301			av |= PROCESS2__NOSUID_TRANSITION;
2302		rc = avc_has_perm(&selinux_state,
2303				  old_tsec->sid, new_tsec->sid,
2304				  SECCLASS_PROCESS2, av, NULL);
2305		if (!rc)
2306			return 0;
2307	}
2308
2309	/*
2310	 * We also permit NNP or nosuid transitions to bounded SIDs,
2311	 * i.e. SIDs that are guaranteed to only be allowed a subset
2312	 * of the permissions of the current SID.
2313	 */
2314	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2315					 new_tsec->sid);
2316	if (!rc)
2317		return 0;
2318
2319	/*
2320	 * On failure, preserve the errno values for NNP vs nosuid.
2321	 * NNP:  Operation not permitted for caller.
2322	 * nosuid:  Permission denied to file.
2323	 */
2324	if (nnp)
2325		return -EPERM;
2326	return -EACCES;
2327}
2328
2329static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2330{
2331	const struct task_security_struct *old_tsec;
2332	struct task_security_struct *new_tsec;
2333	struct inode_security_struct *isec;
2334	struct common_audit_data ad;
2335	struct inode *inode = file_inode(bprm->file);
2336	int rc;
2337
 
 
 
 
2338	/* SELinux context only depends on initial program or script and not
2339	 * the script interpreter */
2340	if (bprm->called_set_creds)
2341		return 0;
2342
2343	old_tsec = selinux_cred(current_cred());
2344	new_tsec = selinux_cred(bprm->cred);
2345	isec = inode_security(inode);
2346
2347	/* Default to the current task SID. */
2348	new_tsec->sid = old_tsec->sid;
2349	new_tsec->osid = old_tsec->sid;
2350
2351	/* Reset fs, key, and sock SIDs on execve. */
2352	new_tsec->create_sid = 0;
2353	new_tsec->keycreate_sid = 0;
2354	new_tsec->sockcreate_sid = 0;
2355
2356	if (old_tsec->exec_sid) {
2357		new_tsec->sid = old_tsec->exec_sid;
2358		/* Reset exec SID on execve. */
2359		new_tsec->exec_sid = 0;
2360
2361		/* Fail on NNP or nosuid if not an allowed transition. */
2362		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2363		if (rc)
2364			return rc;
 
 
2365	} else {
2366		/* Check for a default transition on this program. */
2367		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2368					     isec->sid, SECCLASS_PROCESS, NULL,
2369					     &new_tsec->sid);
2370		if (rc)
2371			return rc;
2372
2373		/*
2374		 * Fallback to old SID on NNP or nosuid if not an allowed
2375		 * transition.
2376		 */
2377		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2378		if (rc)
2379			new_tsec->sid = old_tsec->sid;
2380	}
2381
2382	ad.type = LSM_AUDIT_DATA_FILE;
2383	ad.u.file = bprm->file;
 
 
 
 
2384
2385	if (new_tsec->sid == old_tsec->sid) {
2386		rc = avc_has_perm(&selinux_state,
2387				  old_tsec->sid, isec->sid,
2388				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2389		if (rc)
2390			return rc;
2391	} else {
2392		/* Check permissions for the transition. */
2393		rc = avc_has_perm(&selinux_state,
2394				  old_tsec->sid, new_tsec->sid,
2395				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2396		if (rc)
2397			return rc;
2398
2399		rc = avc_has_perm(&selinux_state,
2400				  new_tsec->sid, isec->sid,
2401				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2402		if (rc)
2403			return rc;
2404
2405		/* Check for shared state */
2406		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2407			rc = avc_has_perm(&selinux_state,
2408					  old_tsec->sid, new_tsec->sid,
2409					  SECCLASS_PROCESS, PROCESS__SHARE,
2410					  NULL);
2411			if (rc)
2412				return -EPERM;
2413		}
2414
2415		/* Make sure that anyone attempting to ptrace over a task that
2416		 * changes its SID has the appropriate permit */
2417		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2418			u32 ptsid = ptrace_parent_sid();
 
 
 
 
 
 
 
 
 
 
 
 
2419			if (ptsid != 0) {
2420				rc = avc_has_perm(&selinux_state,
2421						  ptsid, new_tsec->sid,
2422						  SECCLASS_PROCESS,
2423						  PROCESS__PTRACE, NULL);
2424				if (rc)
2425					return -EPERM;
2426			}
2427		}
2428
2429		/* Clear any possibly unsafe personality bits on exec: */
2430		bprm->per_clear |= PER_CLEAR_ON_SETID;
 
 
 
 
 
 
 
 
 
 
 
 
 
2431
 
2432		/* Enable secure mode for SIDs transitions unless
2433		   the noatsecure permission is granted between
2434		   the two SIDs, i.e. ahp returns 0. */
2435		rc = avc_has_perm(&selinux_state,
2436				  old_tsec->sid, new_tsec->sid,
2437				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2438				  NULL);
2439		bprm->secureexec |= !!rc;
2440	}
2441
2442	return 0;
2443}
2444
2445static int match_file(const void *p, struct file *file, unsigned fd)
2446{
2447	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2448}
2449
2450/* Derived from fs/exec.c:flush_old_files. */
2451static inline void flush_unauthorized_files(const struct cred *cred,
2452					    struct files_struct *files)
2453{
2454	struct file *file, *devnull = NULL;
2455	struct tty_struct *tty;
2456	int drop_tty = 0;
2457	unsigned n;
2458
2459	tty = get_current_tty();
2460	if (tty) {
2461		spin_lock(&tty->files_lock);
2462		if (!list_empty(&tty->tty_files)) {
2463			struct tty_file_private *file_priv;
2464
2465			/* Revalidate access to controlling tty.
2466			   Use file_path_has_perm on the tty path directly
2467			   rather than using file_has_perm, as this particular
2468			   open file may belong to another process and we are
2469			   only interested in the inode-based check here. */
2470			file_priv = list_first_entry(&tty->tty_files,
2471						struct tty_file_private, list);
2472			file = file_priv->file;
2473			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2474				drop_tty = 1;
2475		}
2476		spin_unlock(&tty->files_lock);
2477		tty_kref_put(tty);
2478	}
2479	/* Reset controlling tty. */
2480	if (drop_tty)
2481		no_tty();
2482
2483	/* Revalidate access to inherited open files. */
2484	n = iterate_fd(files, 0, match_file, cred);
2485	if (!n) /* none found? */
2486		return;
2487
2488	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2489	if (IS_ERR(devnull))
2490		devnull = NULL;
2491	/* replace all the matching ones with this */
2492	do {
2493		replace_fd(n - 1, devnull, 0);
2494	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2495	if (devnull)
2496		fput(devnull);
2497}
2498
2499/*
2500 * Prepare a process for imminent new credential changes due to exec
2501 */
2502static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2503{
2504	struct task_security_struct *new_tsec;
2505	struct rlimit *rlim, *initrlim;
2506	int rc, i;
2507
2508	new_tsec = selinux_cred(bprm->cred);
2509	if (new_tsec->sid == new_tsec->osid)
2510		return;
2511
2512	/* Close files for which the new task SID is not authorized. */
2513	flush_unauthorized_files(bprm->cred, current->files);
2514
2515	/* Always clear parent death signal on SID transitions. */
2516	current->pdeath_signal = 0;
2517
2518	/* Check whether the new SID can inherit resource limits from the old
2519	 * SID.  If not, reset all soft limits to the lower of the current
2520	 * task's hard limit and the init task's soft limit.
2521	 *
2522	 * Note that the setting of hard limits (even to lower them) can be
2523	 * controlled by the setrlimit check.  The inclusion of the init task's
2524	 * soft limit into the computation is to avoid resetting soft limits
2525	 * higher than the default soft limit for cases where the default is
2526	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2527	 */
2528	rc = avc_has_perm(&selinux_state,
2529			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2530			  PROCESS__RLIMITINH, NULL);
2531	if (rc) {
2532		/* protect against do_prlimit() */
2533		task_lock(current);
2534		for (i = 0; i < RLIM_NLIMITS; i++) {
2535			rlim = current->signal->rlim + i;
2536			initrlim = init_task.signal->rlim + i;
2537			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2538		}
2539		task_unlock(current);
2540		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2541			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2542	}
2543}
2544
2545/*
2546 * Clean up the process immediately after the installation of new credentials
2547 * due to exec
2548 */
2549static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2550{
2551	const struct task_security_struct *tsec = selinux_cred(current_cred());
2552	struct itimerval itimer;
2553	u32 osid, sid;
2554	int rc, i;
2555
2556	osid = tsec->osid;
2557	sid = tsec->sid;
2558
2559	if (sid == osid)
2560		return;
2561
2562	/* Check whether the new SID can inherit signal state from the old SID.
2563	 * If not, clear itimers to avoid subsequent signal generation and
2564	 * flush and unblock signals.
2565	 *
2566	 * This must occur _after_ the task SID has been updated so that any
2567	 * kill done after the flush will be checked against the new SID.
2568	 */
2569	rc = avc_has_perm(&selinux_state,
2570			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2571	if (rc) {
2572		if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2573			memset(&itimer, 0, sizeof itimer);
2574			for (i = 0; i < 3; i++)
2575				do_setitimer(i, &itimer, NULL);
2576		}
2577		spin_lock_irq(&current->sighand->siglock);
2578		if (!fatal_signal_pending(current)) {
2579			flush_sigqueue(&current->pending);
2580			flush_sigqueue(&current->signal->shared_pending);
2581			flush_signal_handlers(current, 1);
2582			sigemptyset(&current->blocked);
2583			recalc_sigpending();
2584		}
2585		spin_unlock_irq(&current->sighand->siglock);
2586	}
2587
2588	/* Wake up the parent if it is waiting so that it can recheck
2589	 * wait permission to the new task SID. */
2590	read_lock(&tasklist_lock);
2591	__wake_up_parent(current, current->real_parent);
2592	read_unlock(&tasklist_lock);
2593}
2594
2595/* superblock security operations */
2596
2597static int selinux_sb_alloc_security(struct super_block *sb)
2598{
2599	return superblock_alloc_security(sb);
2600}
2601
2602static void selinux_sb_free_security(struct super_block *sb)
2603{
2604	superblock_free_security(sb);
2605}
2606
2607static inline int opt_len(const char *s)
2608{
2609	bool open_quote = false;
2610	int len;
2611	char c;
2612
2613	for (len = 0; (c = s[len]) != '\0'; len++) {
2614		if (c == '"')
2615			open_quote = !open_quote;
2616		if (c == ',' && !open_quote)
2617			break;
2618	}
2619	return len;
2620}
2621
2622static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2623{
2624	char *from = options;
2625	char *to = options;
2626	bool first = true;
2627	int rc;
 
 
2628
2629	while (1) {
2630		int len = opt_len(from);
2631		int token;
2632		char *arg = NULL;
 
 
 
 
 
 
2633
2634		token = match_opt_prefix(from, len, &arg);
 
 
 
2635
2636		if (token != Opt_error) {
2637			char *p, *q;
 
 
 
2638
2639			/* strip quotes */
2640			if (arg) {
2641				for (p = q = arg; p < from + len; p++) {
2642					char c = *p;
2643					if (c != '"')
2644						*q++ = c;
2645				}
2646				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2647				if (!arg) {
2648					rc = -ENOMEM;
2649					goto free_opt;
2650				}
2651			}
2652			rc = selinux_add_opt(token, arg, mnt_opts);
2653			if (unlikely(rc)) {
2654				kfree(arg);
2655				goto free_opt;
2656			}
2657		} else {
2658			if (!first) {	// copy with preceding comma
2659				from--;
2660				len++;
2661			}
2662			if (to != from)
2663				memmove(to, from, len);
2664			to += len;
2665			first = false;
2666		}
2667		if (!from[len])
2668			break;
2669		from += len + 1;
2670	}
2671	*to = '\0';
2672	return 0;
 
 
 
 
 
 
2673
2674free_opt:
2675	if (*mnt_opts) {
2676		selinux_free_mnt_opts(*mnt_opts);
2677		*mnt_opts = NULL;
 
 
 
2678	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2679	return rc;
2680}
2681
2682static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2683{
2684	struct selinux_mnt_opts *opts = mnt_opts;
 
 
2685	struct superblock_security_struct *sbsec = sb->s_security;
2686	u32 sid;
2687	int rc;
2688
2689	if (!(sbsec->flags & SE_SBINITIALIZED))
2690		return 0;
2691
2692	if (!opts)
2693		return 0;
2694
2695	if (opts->fscontext) {
2696		rc = parse_sid(sb, opts->fscontext, &sid);
2697		if (rc)
2698			return rc;
2699		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2700			goto out_bad_option;
2701	}
2702	if (opts->context) {
2703		rc = parse_sid(sb, opts->context, &sid);
2704		if (rc)
2705			return rc;
2706		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2707			goto out_bad_option;
2708	}
2709	if (opts->rootcontext) {
2710		struct inode_security_struct *root_isec;
2711		root_isec = backing_inode_security(sb->s_root);
2712		rc = parse_sid(sb, opts->rootcontext, &sid);
2713		if (rc)
2714			return rc;
2715		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2716			goto out_bad_option;
2717	}
2718	if (opts->defcontext) {
2719		rc = parse_sid(sb, opts->defcontext, &sid);
2720		if (rc)
2721			return rc;
2722		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2723			goto out_bad_option;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2724	}
2725	return 0;
2726
 
 
 
 
 
 
2727out_bad_option:
2728	pr_warn("SELinux: unable to change security options "
2729	       "during remount (dev %s, type=%s)\n", sb->s_id,
2730	       sb->s_type->name);
2731	return -EINVAL;
2732}
2733
2734static int selinux_sb_kern_mount(struct super_block *sb)
2735{
2736	const struct cred *cred = current_cred();
2737	struct common_audit_data ad;
 
 
 
 
 
 
 
 
 
2738
2739	ad.type = LSM_AUDIT_DATA_DENTRY;
2740	ad.u.dentry = sb->s_root;
2741	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2742}
2743
2744static int selinux_sb_statfs(struct dentry *dentry)
2745{
2746	const struct cred *cred = current_cred();
2747	struct common_audit_data ad;
2748
2749	ad.type = LSM_AUDIT_DATA_DENTRY;
2750	ad.u.dentry = dentry->d_sb->s_root;
2751	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2752}
2753
2754static int selinux_mount(const char *dev_name,
2755			 const struct path *path,
2756			 const char *type,
2757			 unsigned long flags,
2758			 void *data)
2759{
2760	const struct cred *cred = current_cred();
2761
2762	if (flags & MS_REMOUNT)
2763		return superblock_has_perm(cred, path->dentry->d_sb,
2764					   FILESYSTEM__REMOUNT, NULL);
2765	else
2766		return path_has_perm(cred, path, FILE__MOUNTON);
2767}
2768
2769static int selinux_umount(struct vfsmount *mnt, int flags)
2770{
2771	const struct cred *cred = current_cred();
2772
2773	return superblock_has_perm(cred, mnt->mnt_sb,
2774				   FILESYSTEM__UNMOUNT, NULL);
2775}
2776
2777static int selinux_fs_context_dup(struct fs_context *fc,
2778				  struct fs_context *src_fc)
2779{
2780	const struct selinux_mnt_opts *src = src_fc->security;
2781	struct selinux_mnt_opts *opts;
2782
2783	if (!src)
2784		return 0;
2785
2786	fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2787	if (!fc->security)
2788		return -ENOMEM;
2789
2790	opts = fc->security;
2791
2792	if (src->fscontext) {
2793		opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2794		if (!opts->fscontext)
2795			return -ENOMEM;
2796	}
2797	if (src->context) {
2798		opts->context = kstrdup(src->context, GFP_KERNEL);
2799		if (!opts->context)
2800			return -ENOMEM;
2801	}
2802	if (src->rootcontext) {
2803		opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2804		if (!opts->rootcontext)
2805			return -ENOMEM;
2806	}
2807	if (src->defcontext) {
2808		opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2809		if (!opts->defcontext)
2810			return -ENOMEM;
2811	}
2812	return 0;
2813}
2814
2815static const struct fs_parameter_spec selinux_param_specs[] = {
2816	fsparam_string(CONTEXT_STR,	Opt_context),
2817	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2818	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2819	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2820	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2821	{}
2822};
2823
2824static const struct fs_parameter_description selinux_fs_parameters = {
2825	.name		= "SELinux",
2826	.specs		= selinux_param_specs,
2827};
2828
2829static int selinux_fs_context_parse_param(struct fs_context *fc,
2830					  struct fs_parameter *param)
2831{
2832	struct fs_parse_result result;
2833	int opt, rc;
2834
2835	opt = fs_parse(fc, &selinux_fs_parameters, param, &result);
2836	if (opt < 0)
2837		return opt;
2838
2839	rc = selinux_add_opt(opt, param->string, &fc->security);
2840	if (!rc) {
2841		param->string = NULL;
2842		rc = 1;
2843	}
2844	return rc;
2845}
2846
2847/* inode security operations */
2848
2849static int selinux_inode_alloc_security(struct inode *inode)
2850{
2851	return inode_alloc_security(inode);
2852}
2853
2854static void selinux_inode_free_security(struct inode *inode)
2855{
2856	inode_free_security(inode);
2857}
2858
2859static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2860					const struct qstr *name, void **ctx,
2861					u32 *ctxlen)
2862{
 
 
 
 
 
2863	u32 newsid;
2864	int rc;
2865
2866	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2867					   d_inode(dentry->d_parent), name,
2868					   inode_mode_to_security_class(mode),
2869					   &newsid);
2870	if (rc)
2871		return rc;
2872
2873	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2874				       ctxlen);
2875}
2876
2877static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2878					  struct qstr *name,
2879					  const struct cred *old,
2880					  struct cred *new)
2881{
2882	u32 newsid;
2883	int rc;
2884	struct task_security_struct *tsec;
2885
2886	rc = selinux_determine_inode_label(selinux_cred(old),
2887					   d_inode(dentry->d_parent), name,
2888					   inode_mode_to_security_class(mode),
2889					   &newsid);
2890	if (rc)
2891		return rc;
 
 
 
 
 
 
 
 
2892
2893	tsec = selinux_cred(new);
2894	tsec->create_sid = newsid;
2895	return 0;
2896}
2897
2898static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2899				       const struct qstr *qstr,
2900				       const char **name,
2901				       void **value, size_t *len)
2902{
2903	const struct task_security_struct *tsec = selinux_cred(current_cred());
 
2904	struct superblock_security_struct *sbsec;
2905	u32 newsid, clen;
2906	int rc;
2907	char *context;
2908
 
2909	sbsec = dir->i_sb->s_security;
2910
 
2911	newsid = tsec->create_sid;
2912
2913	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2914		dir, qstr,
2915		inode_mode_to_security_class(inode->i_mode),
2916		&newsid);
2917	if (rc)
2918		return rc;
 
 
 
 
 
 
 
 
 
 
2919
2920	/* Possibly defer initialization to selinux_complete_init. */
2921	if (sbsec->flags & SE_SBINITIALIZED) {
2922		struct inode_security_struct *isec = selinux_inode(inode);
2923		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2924		isec->sid = newsid;
2925		isec->initialized = LABEL_INITIALIZED;
2926	}
2927
2928	if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
2929		return -EOPNOTSUPP;
2930
2931	if (name)
2932		*name = XATTR_SELINUX_SUFFIX;
2933
2934	if (value && len) {
2935		rc = security_sid_to_context_force(&selinux_state, newsid,
2936						   &context, &clen);
2937		if (rc)
2938			return rc;
2939		*value = context;
2940		*len = clen;
2941	}
2942
2943	return 0;
2944}
2945
2946static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2947{
2948	return may_create(dir, dentry, SECCLASS_FILE);
2949}
2950
2951static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2952{
2953	return may_link(dir, old_dentry, MAY_LINK);
2954}
2955
2956static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2957{
2958	return may_link(dir, dentry, MAY_UNLINK);
2959}
2960
2961static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2962{
2963	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2964}
2965
2966static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2967{
2968	return may_create(dir, dentry, SECCLASS_DIR);
2969}
2970
2971static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2972{
2973	return may_link(dir, dentry, MAY_RMDIR);
2974}
2975
2976static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2977{
2978	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2979}
2980
2981static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2982				struct inode *new_inode, struct dentry *new_dentry)
2983{
2984	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2985}
2986
2987static int selinux_inode_readlink(struct dentry *dentry)
2988{
2989	const struct cred *cred = current_cred();
2990
2991	return dentry_has_perm(cred, dentry, FILE__READ);
2992}
2993
2994static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2995				     bool rcu)
2996{
2997	const struct cred *cred = current_cred();
2998	struct common_audit_data ad;
2999	struct inode_security_struct *isec;
3000	u32 sid;
3001
3002	validate_creds(cred);
3003
3004	ad.type = LSM_AUDIT_DATA_DENTRY;
3005	ad.u.dentry = dentry;
3006	sid = cred_sid(cred);
3007	isec = inode_security_rcu(inode, rcu);
3008	if (IS_ERR(isec))
3009		return PTR_ERR(isec);
3010
3011	return avc_has_perm(&selinux_state,
3012			    sid, isec->sid, isec->sclass, FILE__READ, &ad);
3013}
3014
3015static noinline int audit_inode_permission(struct inode *inode,
3016					   u32 perms, u32 audited, u32 denied,
3017					   int result,
3018					   unsigned flags)
3019{
3020	struct common_audit_data ad;
3021	struct inode_security_struct *isec = selinux_inode(inode);
3022	int rc;
3023
3024	ad.type = LSM_AUDIT_DATA_INODE;
3025	ad.u.inode = inode;
3026
3027	rc = slow_avc_audit(&selinux_state,
3028			    current_sid(), isec->sid, isec->sclass, perms,
3029			    audited, denied, result, &ad, flags);
3030	if (rc)
3031		return rc;
3032	return 0;
3033}
3034
3035static int selinux_inode_permission(struct inode *inode, int mask)
3036{
3037	const struct cred *cred = current_cred();
3038	u32 perms;
3039	bool from_access;
3040	unsigned flags = mask & MAY_NOT_BLOCK;
3041	struct inode_security_struct *isec;
3042	u32 sid;
3043	struct av_decision avd;
3044	int rc, rc2;
3045	u32 audited, denied;
3046
3047	from_access = mask & MAY_ACCESS;
3048	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3049
3050	/* No permission to check.  Existence test. */
3051	if (!mask)
3052		return 0;
3053
3054	validate_creds(cred);
3055
3056	if (unlikely(IS_PRIVATE(inode)))
3057		return 0;
3058
3059	perms = file_mask_to_av(inode->i_mode, mask);
3060
3061	sid = cred_sid(cred);
3062	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3063	if (IS_ERR(isec))
3064		return PTR_ERR(isec);
3065
3066	rc = avc_has_perm_noaudit(&selinux_state,
3067				  sid, isec->sid, isec->sclass, perms,
3068				  (flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0,
3069				  &avd);
3070	audited = avc_audit_required(perms, &avd, rc,
3071				     from_access ? FILE__AUDIT_ACCESS : 0,
3072				     &denied);
3073	if (likely(!audited))
3074		return rc;
3075
3076	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3077	if (rc2)
3078		return rc2;
3079	return rc;
3080}
3081
3082static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3083{
3084	const struct cred *cred = current_cred();
3085	struct inode *inode = d_backing_inode(dentry);
3086	unsigned int ia_valid = iattr->ia_valid;
3087	__u32 av = FILE__WRITE;
3088
3089	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3090	if (ia_valid & ATTR_FORCE) {
3091		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3092			      ATTR_FORCE);
3093		if (!ia_valid)
3094			return 0;
3095	}
3096
3097	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3098			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3099		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3100
3101	if (selinux_policycap_openperm() &&
3102	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3103	    (ia_valid & ATTR_SIZE) &&
3104	    !(ia_valid & ATTR_FILE))
3105		av |= FILE__OPEN;
3106
3107	return dentry_has_perm(cred, dentry, av);
3108}
3109
3110static int selinux_inode_getattr(const struct path *path)
3111{
3112	return path_has_perm(current_cred(), path, FILE__GETATTR);
 
 
 
 
 
 
3113}
3114
3115static bool has_cap_mac_admin(bool audit)
3116{
3117	const struct cred *cred = current_cred();
3118	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3119
3120	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3121		return false;
3122	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3123		return false;
3124	return true;
 
 
 
 
 
 
 
 
 
 
3125}
3126
3127static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3128				  const void *value, size_t size, int flags)
3129{
3130	struct inode *inode = d_backing_inode(dentry);
3131	struct inode_security_struct *isec;
3132	struct superblock_security_struct *sbsec;
3133	struct common_audit_data ad;
3134	u32 newsid, sid = current_sid();
3135	int rc = 0;
3136
3137	if (strcmp(name, XATTR_NAME_SELINUX)) {
3138		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3139		if (rc)
3140			return rc;
3141
3142		/* Not an attribute we recognize, so just check the
3143		   ordinary setattr permission. */
3144		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3145	}
3146
3147	sbsec = inode->i_sb->s_security;
3148	if (!(sbsec->flags & SBLABEL_MNT))
3149		return -EOPNOTSUPP;
3150
3151	if (!inode_owner_or_capable(inode))
3152		return -EPERM;
3153
3154	ad.type = LSM_AUDIT_DATA_DENTRY;
3155	ad.u.dentry = dentry;
3156
3157	isec = backing_inode_security(dentry);
3158	rc = avc_has_perm(&selinux_state,
3159			  sid, isec->sid, isec->sclass,
3160			  FILE__RELABELFROM, &ad);
3161	if (rc)
3162		return rc;
3163
3164	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3165				     GFP_KERNEL);
3166	if (rc == -EINVAL) {
3167		if (!has_cap_mac_admin(true)) {
3168			struct audit_buffer *ab;
3169			size_t audit_size;
 
3170
3171			/* We strip a nul only if it is at the end, otherwise the
3172			 * context contains a nul and we should audit that */
3173			if (value) {
3174				const char *str = value;
3175
3176				if (str[size - 1] == '\0')
3177					audit_size = size - 1;
3178				else
3179					audit_size = size;
3180			} else {
 
3181				audit_size = 0;
3182			}
3183			ab = audit_log_start(audit_context(),
3184					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3185			audit_log_format(ab, "op=setxattr invalid_context=");
3186			audit_log_n_untrustedstring(ab, value, audit_size);
3187			audit_log_end(ab);
3188
3189			return rc;
3190		}
3191		rc = security_context_to_sid_force(&selinux_state, value,
3192						   size, &newsid);
3193	}
3194	if (rc)
3195		return rc;
3196
3197	rc = avc_has_perm(&selinux_state,
3198			  sid, newsid, isec->sclass,
3199			  FILE__RELABELTO, &ad);
3200	if (rc)
3201		return rc;
3202
3203	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3204					  sid, isec->sclass);
3205	if (rc)
3206		return rc;
3207
3208	return avc_has_perm(&selinux_state,
3209			    newsid,
3210			    sbsec->sid,
3211			    SECCLASS_FILESYSTEM,
3212			    FILESYSTEM__ASSOCIATE,
3213			    &ad);
3214}
3215
3216static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3217					const void *value, size_t size,
3218					int flags)
3219{
3220	struct inode *inode = d_backing_inode(dentry);
3221	struct inode_security_struct *isec;
3222	u32 newsid;
3223	int rc;
3224
3225	if (strcmp(name, XATTR_NAME_SELINUX)) {
3226		/* Not an attribute we recognize, so nothing to do. */
3227		return;
3228	}
3229
3230	rc = security_context_to_sid_force(&selinux_state, value, size,
3231					   &newsid);
3232	if (rc) {
3233		pr_err("SELinux:  unable to map context to SID"
3234		       "for (%s, %lu), rc=%d\n",
3235		       inode->i_sb->s_id, inode->i_ino, -rc);
3236		return;
3237	}
3238
3239	isec = backing_inode_security(dentry);
3240	spin_lock(&isec->lock);
3241	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3242	isec->sid = newsid;
3243	isec->initialized = LABEL_INITIALIZED;
3244	spin_unlock(&isec->lock);
3245
3246	return;
3247}
3248
3249static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3250{
3251	const struct cred *cred = current_cred();
3252
3253	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3254}
3255
3256static int selinux_inode_listxattr(struct dentry *dentry)
3257{
3258	const struct cred *cred = current_cred();
3259
3260	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3261}
3262
3263static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3264{
3265	if (strcmp(name, XATTR_NAME_SELINUX)) {
3266		int rc = cap_inode_removexattr(dentry, name);
3267		if (rc)
3268			return rc;
3269
3270		/* Not an attribute we recognize, so just check the
3271		   ordinary setattr permission. */
3272		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3273	}
3274
3275	/* No one is allowed to remove a SELinux security label.
3276	   You can change the label, but all data must be labeled. */
3277	return -EACCES;
3278}
3279
3280static int selinux_path_notify(const struct path *path, u64 mask,
3281						unsigned int obj_type)
3282{
3283	int ret;
3284	u32 perm;
3285
3286	struct common_audit_data ad;
3287
3288	ad.type = LSM_AUDIT_DATA_PATH;
3289	ad.u.path = *path;
3290
3291	/*
3292	 * Set permission needed based on the type of mark being set.
3293	 * Performs an additional check for sb watches.
3294	 */
3295	switch (obj_type) {
3296	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3297		perm = FILE__WATCH_MOUNT;
3298		break;
3299	case FSNOTIFY_OBJ_TYPE_SB:
3300		perm = FILE__WATCH_SB;
3301		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3302						FILESYSTEM__WATCH, &ad);
3303		if (ret)
3304			return ret;
3305		break;
3306	case FSNOTIFY_OBJ_TYPE_INODE:
3307		perm = FILE__WATCH;
3308		break;
3309	default:
3310		return -EINVAL;
3311	}
3312
3313	/* blocking watches require the file:watch_with_perm permission */
3314	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3315		perm |= FILE__WATCH_WITH_PERM;
3316
3317	/* watches on read-like events need the file:watch_reads permission */
3318	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3319		perm |= FILE__WATCH_READS;
3320
3321	return path_has_perm(current_cred(), path, perm);
3322}
3323
3324/*
3325 * Copy the inode security context value to the user.
3326 *
3327 * Permission check is handled by selinux_inode_getxattr hook.
3328 */
3329static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3330{
3331	u32 size;
3332	int error;
3333	char *context = NULL;
3334	struct inode_security_struct *isec;
3335
3336	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3337		return -EOPNOTSUPP;
3338
3339	/*
3340	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3341	 * value even if it is not defined by current policy; otherwise,
3342	 * use the in-core value under current policy.
3343	 * Use the non-auditing forms of the permission checks since
3344	 * getxattr may be called by unprivileged processes commonly
3345	 * and lack of permission just means that we fall back to the
3346	 * in-core context value, not a denial.
3347	 */
3348	isec = inode_security(inode);
3349	if (has_cap_mac_admin(false))
3350		error = security_sid_to_context_force(&selinux_state,
3351						      isec->sid, &context,
3352						      &size);
3353	else
3354		error = security_sid_to_context(&selinux_state, isec->sid,
3355						&context, &size);
3356	if (error)
3357		return error;
3358	error = size;
3359	if (alloc) {
3360		*buffer = context;
3361		goto out_nofree;
3362	}
3363	kfree(context);
3364out_nofree:
3365	return error;
3366}
3367
3368static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3369				     const void *value, size_t size, int flags)
3370{
3371	struct inode_security_struct *isec = inode_security_novalidate(inode);
3372	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
3373	u32 newsid;
3374	int rc;
3375
3376	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3377		return -EOPNOTSUPP;
3378
3379	if (!(sbsec->flags & SBLABEL_MNT))
3380		return -EOPNOTSUPP;
3381
3382	if (!value || !size)
3383		return -EACCES;
3384
3385	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3386				     GFP_KERNEL);
3387	if (rc)
3388		return rc;
3389
3390	spin_lock(&isec->lock);
3391	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3392	isec->sid = newsid;
3393	isec->initialized = LABEL_INITIALIZED;
3394	spin_unlock(&isec->lock);
3395	return 0;
3396}
3397
3398static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3399{
3400	const int len = sizeof(XATTR_NAME_SELINUX);
3401	if (buffer && len <= buffer_size)
3402		memcpy(buffer, XATTR_NAME_SELINUX, len);
3403	return len;
3404}
3405
3406static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3407{
3408	struct inode_security_struct *isec = inode_security_novalidate(inode);
3409	*secid = isec->sid;
3410}
3411
3412static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3413{
3414	u32 sid;
3415	struct task_security_struct *tsec;
3416	struct cred *new_creds = *new;
3417
3418	if (new_creds == NULL) {
3419		new_creds = prepare_creds();
3420		if (!new_creds)
3421			return -ENOMEM;
3422	}
3423
3424	tsec = selinux_cred(new_creds);
3425	/* Get label from overlay inode and set it in create_sid */
3426	selinux_inode_getsecid(d_inode(src), &sid);
3427	tsec->create_sid = sid;
3428	*new = new_creds;
3429	return 0;
3430}
3431
3432static int selinux_inode_copy_up_xattr(const char *name)
3433{
3434	/* The copy_up hook above sets the initial context on an inode, but we
3435	 * don't then want to overwrite it by blindly copying all the lower
3436	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3437	 */
3438	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3439		return 1; /* Discard */
3440	/*
3441	 * Any other attribute apart from SELINUX is not claimed, supported
3442	 * by selinux.
3443	 */
3444	return -EOPNOTSUPP;
3445}
3446
3447/* kernfs node operations */
3448
3449static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3450					struct kernfs_node *kn)
3451{
3452	const struct task_security_struct *tsec = selinux_cred(current_cred());
3453	u32 parent_sid, newsid, clen;
3454	int rc;
3455	char *context;
3456
3457	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3458	if (rc == -ENODATA)
3459		return 0;
3460	else if (rc < 0)
3461		return rc;
3462
3463	clen = (u32)rc;
3464	context = kmalloc(clen, GFP_KERNEL);
3465	if (!context)
3466		return -ENOMEM;
3467
3468	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3469	if (rc < 0) {
3470		kfree(context);
3471		return rc;
3472	}
3473
3474	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3475				     GFP_KERNEL);
3476	kfree(context);
3477	if (rc)
3478		return rc;
3479
3480	if (tsec->create_sid) {
3481		newsid = tsec->create_sid;
3482	} else {
3483		u16 secclass = inode_mode_to_security_class(kn->mode);
3484		struct qstr q;
3485
3486		q.name = kn->name;
3487		q.hash_len = hashlen_string(kn_dir, kn->name);
3488
3489		rc = security_transition_sid(&selinux_state, tsec->sid,
3490					     parent_sid, secclass, &q,
3491					     &newsid);
3492		if (rc)
3493			return rc;
3494	}
3495
3496	rc = security_sid_to_context_force(&selinux_state, newsid,
3497					   &context, &clen);
3498	if (rc)
3499		return rc;
3500
3501	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3502			      XATTR_CREATE);
3503	kfree(context);
3504	return rc;
3505}
3506
3507
3508/* file security operations */
3509
3510static int selinux_revalidate_file_permission(struct file *file, int mask)
3511{
3512	const struct cred *cred = current_cred();
3513	struct inode *inode = file_inode(file);
3514
3515	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3516	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3517		mask |= MAY_APPEND;
3518
3519	return file_has_perm(cred, file,
3520			     file_mask_to_av(inode->i_mode, mask));
3521}
3522
3523static int selinux_file_permission(struct file *file, int mask)
3524{
3525	struct inode *inode = file_inode(file);
3526	struct file_security_struct *fsec = selinux_file(file);
3527	struct inode_security_struct *isec;
3528	u32 sid = current_sid();
3529
3530	if (!mask)
3531		/* No permission to check.  Existence test. */
3532		return 0;
3533
3534	isec = inode_security(inode);
3535	if (sid == fsec->sid && fsec->isid == isec->sid &&
3536	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3537		/* No change since file_open check. */
3538		return 0;
3539
3540	return selinux_revalidate_file_permission(file, mask);
3541}
3542
3543static int selinux_file_alloc_security(struct file *file)
3544{
3545	return file_alloc_security(file);
3546}
3547
3548/*
3549 * Check whether a task has the ioctl permission and cmd
3550 * operation to an inode.
3551 */
3552static int ioctl_has_perm(const struct cred *cred, struct file *file,
3553		u32 requested, u16 cmd)
3554{
3555	struct common_audit_data ad;
3556	struct file_security_struct *fsec = selinux_file(file);
3557	struct inode *inode = file_inode(file);
3558	struct inode_security_struct *isec;
3559	struct lsm_ioctlop_audit ioctl;
3560	u32 ssid = cred_sid(cred);
3561	int rc;
3562	u8 driver = cmd >> 8;
3563	u8 xperm = cmd & 0xff;
3564
3565	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3566	ad.u.op = &ioctl;
3567	ad.u.op->cmd = cmd;
3568	ad.u.op->path = file->f_path;
3569
3570	if (ssid != fsec->sid) {
3571		rc = avc_has_perm(&selinux_state,
3572				  ssid, fsec->sid,
3573				SECCLASS_FD,
3574				FD__USE,
3575				&ad);
3576		if (rc)
3577			goto out;
3578	}
3579
3580	if (unlikely(IS_PRIVATE(inode)))
3581		return 0;
3582
3583	isec = inode_security(inode);
3584	rc = avc_has_extended_perms(&selinux_state,
3585				    ssid, isec->sid, isec->sclass,
3586				    requested, driver, xperm, &ad);
3587out:
3588	return rc;
3589}
3590
3591static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3592			      unsigned long arg)
3593{
3594	const struct cred *cred = current_cred();
3595	int error = 0;
3596
3597	switch (cmd) {
3598	case FIONREAD:
3599	/* fall through */
3600	case FIBMAP:
3601	/* fall through */
3602	case FIGETBSZ:
3603	/* fall through */
3604	case FS_IOC_GETFLAGS:
3605	/* fall through */
3606	case FS_IOC_GETVERSION:
3607		error = file_has_perm(cred, file, FILE__GETATTR);
3608		break;
3609
3610	case FS_IOC_SETFLAGS:
3611	/* fall through */
3612	case FS_IOC_SETVERSION:
3613		error = file_has_perm(cred, file, FILE__SETATTR);
3614		break;
3615
3616	/* sys_ioctl() checks */
3617	case FIONBIO:
3618	/* fall through */
3619	case FIOASYNC:
3620		error = file_has_perm(cred, file, 0);
3621		break;
3622
3623	case KDSKBENT:
3624	case KDSKBSENT:
3625		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3626					    CAP_OPT_NONE, true);
3627		break;
3628
3629	/* default case assumes that the command will go
3630	 * to the file's ioctl() function.
3631	 */
3632	default:
3633		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3634	}
3635	return error;
3636}
3637
3638static int default_noexec;
3639
3640static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3641{
3642	const struct cred *cred = current_cred();
3643	u32 sid = cred_sid(cred);
3644	int rc = 0;
3645
3646	if (default_noexec &&
3647	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3648				   (!shared && (prot & PROT_WRITE)))) {
3649		/*
3650		 * We are making executable an anonymous mapping or a
3651		 * private file mapping that will also be writable.
3652		 * This has an additional check.
3653		 */
3654		rc = avc_has_perm(&selinux_state,
3655				  sid, sid, SECCLASS_PROCESS,
3656				  PROCESS__EXECMEM, NULL);
3657		if (rc)
3658			goto error;
3659	}
3660
3661	if (file) {
3662		/* read access is always possible with a mapping */
3663		u32 av = FILE__READ;
3664
3665		/* write access only matters if the mapping is shared */
3666		if (shared && (prot & PROT_WRITE))
3667			av |= FILE__WRITE;
3668
3669		if (prot & PROT_EXEC)
3670			av |= FILE__EXECUTE;
3671
3672		return file_has_perm(cred, file, av);
3673	}
3674
3675error:
3676	return rc;
3677}
3678
3679static int selinux_mmap_addr(unsigned long addr)
3680{
3681	int rc = 0;
 
 
 
 
 
3682
3683	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3684		u32 sid = current_sid();
3685		rc = avc_has_perm(&selinux_state,
3686				  sid, sid, SECCLASS_MEMPROTECT,
3687				  MEMPROTECT__MMAP_ZERO, NULL);
3688	}
3689
3690	return rc;
3691}
3692
3693static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3694			     unsigned long prot, unsigned long flags)
3695{
3696	struct common_audit_data ad;
3697	int rc;
3698
3699	if (file) {
3700		ad.type = LSM_AUDIT_DATA_FILE;
3701		ad.u.file = file;
3702		rc = inode_has_perm(current_cred(), file_inode(file),
3703				    FILE__MAP, &ad);
3704		if (rc)
3705			return rc;
3706	}
3707
3708	if (selinux_state.checkreqprot)
3709		prot = reqprot;
3710
3711	return file_map_prot_check(file, prot,
3712				   (flags & MAP_TYPE) == MAP_SHARED);
3713}
3714
3715static int selinux_file_mprotect(struct vm_area_struct *vma,
3716				 unsigned long reqprot,
3717				 unsigned long prot)
3718{
3719	const struct cred *cred = current_cred();
3720	u32 sid = cred_sid(cred);
3721
3722	if (selinux_state.checkreqprot)
3723		prot = reqprot;
3724
3725	if (default_noexec &&
3726	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3727		int rc = 0;
3728		if (vma->vm_start >= vma->vm_mm->start_brk &&
3729		    vma->vm_end <= vma->vm_mm->brk) {
3730			rc = avc_has_perm(&selinux_state,
3731					  sid, sid, SECCLASS_PROCESS,
3732					  PROCESS__EXECHEAP, NULL);
3733		} else if (!vma->vm_file &&
3734			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3735			     vma->vm_end >= vma->vm_mm->start_stack) ||
3736			    vma_is_stack_for_current(vma))) {
3737			rc = avc_has_perm(&selinux_state,
3738					  sid, sid, SECCLASS_PROCESS,
3739					  PROCESS__EXECSTACK, NULL);
3740		} else if (vma->vm_file && vma->anon_vma) {
3741			/*
3742			 * We are making executable a file mapping that has
3743			 * had some COW done. Since pages might have been
3744			 * written, check ability to execute the possibly
3745			 * modified content.  This typically should only
3746			 * occur for text relocations.
3747			 */
3748			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3749		}
3750		if (rc)
3751			return rc;
3752	}
3753
3754	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3755}
3756
3757static int selinux_file_lock(struct file *file, unsigned int cmd)
3758{
3759	const struct cred *cred = current_cred();
3760
3761	return file_has_perm(cred, file, FILE__LOCK);
3762}
3763
3764static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3765			      unsigned long arg)
3766{
3767	const struct cred *cred = current_cred();
3768	int err = 0;
3769
3770	switch (cmd) {
3771	case F_SETFL:
3772		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3773			err = file_has_perm(cred, file, FILE__WRITE);
3774			break;
3775		}
3776		/* fall through */
3777	case F_SETOWN:
3778	case F_SETSIG:
3779	case F_GETFL:
3780	case F_GETOWN:
3781	case F_GETSIG:
3782	case F_GETOWNER_UIDS:
3783		/* Just check FD__USE permission */
3784		err = file_has_perm(cred, file, 0);
3785		break;
3786	case F_GETLK:
3787	case F_SETLK:
3788	case F_SETLKW:
3789	case F_OFD_GETLK:
3790	case F_OFD_SETLK:
3791	case F_OFD_SETLKW:
3792#if BITS_PER_LONG == 32
3793	case F_GETLK64:
3794	case F_SETLK64:
3795	case F_SETLKW64:
3796#endif
3797		err = file_has_perm(cred, file, FILE__LOCK);
3798		break;
3799	}
3800
3801	return err;
3802}
3803
3804static void selinux_file_set_fowner(struct file *file)
3805{
3806	struct file_security_struct *fsec;
3807
3808	fsec = selinux_file(file);
3809	fsec->fown_sid = current_sid();
 
 
3810}
3811
3812static int selinux_file_send_sigiotask(struct task_struct *tsk,
3813				       struct fown_struct *fown, int signum)
3814{
3815	struct file *file;
3816	u32 sid = task_sid(tsk);
3817	u32 perm;
3818	struct file_security_struct *fsec;
3819
3820	/* struct fown_struct is never outside the context of a struct file */
3821	file = container_of(fown, struct file, f_owner);
3822
3823	fsec = selinux_file(file);
3824
3825	if (!signum)
3826		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3827	else
3828		perm = signal_to_av(signum);
3829
3830	return avc_has_perm(&selinux_state,
3831			    fsec->fown_sid, sid,
3832			    SECCLASS_PROCESS, perm, NULL);
3833}
3834
3835static int selinux_file_receive(struct file *file)
3836{
3837	const struct cred *cred = current_cred();
3838
3839	return file_has_perm(cred, file, file_to_av(file));
3840}
3841
3842static int selinux_file_open(struct file *file)
3843{
3844	struct file_security_struct *fsec;
3845	struct inode_security_struct *isec;
3846
3847	fsec = selinux_file(file);
3848	isec = inode_security(file_inode(file));
3849	/*
3850	 * Save inode label and policy sequence number
3851	 * at open-time so that selinux_file_permission
3852	 * can determine whether revalidation is necessary.
3853	 * Task label is already saved in the file security
3854	 * struct as its SID.
3855	 */
3856	fsec->isid = isec->sid;
3857	fsec->pseqno = avc_policy_seqno(&selinux_state);
3858	/*
3859	 * Since the inode label or policy seqno may have changed
3860	 * between the selinux_inode_permission check and the saving
3861	 * of state above, recheck that access is still permitted.
3862	 * Otherwise, access might never be revalidated against the
3863	 * new inode label or new policy.
3864	 * This check is not redundant - do not remove.
3865	 */
3866	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3867}
3868
3869/* task security operations */
3870
3871static int selinux_task_alloc(struct task_struct *task,
3872			      unsigned long clone_flags)
3873{
3874	u32 sid = current_sid();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3875
3876	return avc_has_perm(&selinux_state,
3877			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
3878}
3879
3880/*
3881 * prepare a new set of credentials for modification
3882 */
3883static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3884				gfp_t gfp)
3885{
3886	const struct task_security_struct *old_tsec = selinux_cred(old);
3887	struct task_security_struct *tsec = selinux_cred(new);
3888
3889	*tsec = *old_tsec;
 
 
 
 
 
 
3890	return 0;
3891}
3892
3893/*
3894 * transfer the SELinux data to a blank set of creds
3895 */
3896static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3897{
3898	const struct task_security_struct *old_tsec = selinux_cred(old);
3899	struct task_security_struct *tsec = selinux_cred(new);
3900
3901	*tsec = *old_tsec;
3902}
3903
3904static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3905{
3906	*secid = cred_sid(c);
3907}
3908
3909/*
3910 * set the security data for a kernel service
3911 * - all the creation contexts are set to unlabelled
3912 */
3913static int selinux_kernel_act_as(struct cred *new, u32 secid)
3914{
3915	struct task_security_struct *tsec = selinux_cred(new);
3916	u32 sid = current_sid();
3917	int ret;
3918
3919	ret = avc_has_perm(&selinux_state,
3920			   sid, secid,
3921			   SECCLASS_KERNEL_SERVICE,
3922			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3923			   NULL);
3924	if (ret == 0) {
3925		tsec->sid = secid;
3926		tsec->create_sid = 0;
3927		tsec->keycreate_sid = 0;
3928		tsec->sockcreate_sid = 0;
3929	}
3930	return ret;
3931}
3932
3933/*
3934 * set the file creation context in a security record to the same as the
3935 * objective context of the specified inode
3936 */
3937static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3938{
3939	struct inode_security_struct *isec = inode_security(inode);
3940	struct task_security_struct *tsec = selinux_cred(new);
3941	u32 sid = current_sid();
3942	int ret;
3943
3944	ret = avc_has_perm(&selinux_state,
3945			   sid, isec->sid,
3946			   SECCLASS_KERNEL_SERVICE,
3947			   KERNEL_SERVICE__CREATE_FILES_AS,
3948			   NULL);
3949
3950	if (ret == 0)
3951		tsec->create_sid = isec->sid;
3952	return ret;
3953}
3954
3955static int selinux_kernel_module_request(char *kmod_name)
3956{
 
3957	struct common_audit_data ad;
3958
 
 
3959	ad.type = LSM_AUDIT_DATA_KMOD;
3960	ad.u.kmod_name = kmod_name;
3961
3962	return avc_has_perm(&selinux_state,
3963			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3964			    SYSTEM__MODULE_REQUEST, &ad);
3965}
3966
3967static int selinux_kernel_module_from_file(struct file *file)
3968{
3969	struct common_audit_data ad;
3970	struct inode_security_struct *isec;
3971	struct file_security_struct *fsec;
3972	u32 sid = current_sid();
3973	int rc;
3974
3975	/* init_module */
3976	if (file == NULL)
3977		return avc_has_perm(&selinux_state,
3978				    sid, sid, SECCLASS_SYSTEM,
3979					SYSTEM__MODULE_LOAD, NULL);
3980
3981	/* finit_module */
3982
3983	ad.type = LSM_AUDIT_DATA_FILE;
3984	ad.u.file = file;
3985
3986	fsec = selinux_file(file);
3987	if (sid != fsec->sid) {
3988		rc = avc_has_perm(&selinux_state,
3989				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3990		if (rc)
3991			return rc;
3992	}
3993
3994	isec = inode_security(file_inode(file));
3995	return avc_has_perm(&selinux_state,
3996			    sid, isec->sid, SECCLASS_SYSTEM,
3997				SYSTEM__MODULE_LOAD, &ad);
3998}
3999
4000static int selinux_kernel_read_file(struct file *file,
4001				    enum kernel_read_file_id id)
4002{
4003	int rc = 0;
4004
4005	switch (id) {
4006	case READING_MODULE:
4007		rc = selinux_kernel_module_from_file(file);
4008		break;
4009	default:
4010		break;
4011	}
4012
4013	return rc;
4014}
4015
4016static int selinux_kernel_load_data(enum kernel_load_data_id id)
4017{
4018	int rc = 0;
4019
4020	switch (id) {
4021	case LOADING_MODULE:
4022		rc = selinux_kernel_module_from_file(NULL);
4023	default:
4024		break;
4025	}
4026
4027	return rc;
4028}
4029
4030static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4031{
4032	return avc_has_perm(&selinux_state,
4033			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4034			    PROCESS__SETPGID, NULL);
4035}
4036
4037static int selinux_task_getpgid(struct task_struct *p)
4038{
4039	return avc_has_perm(&selinux_state,
4040			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4041			    PROCESS__GETPGID, NULL);
4042}
4043
4044static int selinux_task_getsid(struct task_struct *p)
4045{
4046	return avc_has_perm(&selinux_state,
4047			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4048			    PROCESS__GETSESSION, NULL);
4049}
4050
4051static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4052{
4053	*secid = task_sid(p);
4054}
4055
4056static int selinux_task_setnice(struct task_struct *p, int nice)
4057{
4058	return avc_has_perm(&selinux_state,
4059			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4060			    PROCESS__SETSCHED, NULL);
 
 
 
 
4061}
4062
4063static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4064{
4065	return avc_has_perm(&selinux_state,
4066			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4067			    PROCESS__SETSCHED, NULL);
4068}
4069
4070static int selinux_task_getioprio(struct task_struct *p)
4071{
4072	return avc_has_perm(&selinux_state,
4073			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4074			    PROCESS__GETSCHED, NULL);
4075}
4076
4077static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4078				unsigned int flags)
4079{
4080	u32 av = 0;
4081
4082	if (!flags)
4083		return 0;
4084	if (flags & LSM_PRLIMIT_WRITE)
4085		av |= PROCESS__SETRLIMIT;
4086	if (flags & LSM_PRLIMIT_READ)
4087		av |= PROCESS__GETRLIMIT;
4088	return avc_has_perm(&selinux_state,
4089			    cred_sid(cred), cred_sid(tcred),
4090			    SECCLASS_PROCESS, av, NULL);
4091}
4092
4093static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4094		struct rlimit *new_rlim)
4095{
4096	struct rlimit *old_rlim = p->signal->rlim + resource;
4097
4098	/* Control the ability to change the hard limit (whether
4099	   lowering or raising it), so that the hard limit can
4100	   later be used as a safe reset point for the soft limit
4101	   upon context transitions.  See selinux_bprm_committing_creds. */
4102	if (old_rlim->rlim_max != new_rlim->rlim_max)
4103		return avc_has_perm(&selinux_state,
4104				    current_sid(), task_sid(p),
4105				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4106
4107	return 0;
4108}
4109
4110static int selinux_task_setscheduler(struct task_struct *p)
4111{
4112	return avc_has_perm(&selinux_state,
4113			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4114			    PROCESS__SETSCHED, NULL);
 
 
 
 
4115}
4116
4117static int selinux_task_getscheduler(struct task_struct *p)
4118{
4119	return avc_has_perm(&selinux_state,
4120			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4121			    PROCESS__GETSCHED, NULL);
4122}
4123
4124static int selinux_task_movememory(struct task_struct *p)
4125{
4126	return avc_has_perm(&selinux_state,
4127			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4128			    PROCESS__SETSCHED, NULL);
4129}
4130
4131static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4132				int sig, const struct cred *cred)
4133{
4134	u32 secid;
4135	u32 perm;
 
4136
4137	if (!sig)
4138		perm = PROCESS__SIGNULL; /* null signal; existence test */
4139	else
4140		perm = signal_to_av(sig);
4141	if (!cred)
4142		secid = current_sid();
 
4143	else
4144		secid = cred_sid(cred);
4145	return avc_has_perm(&selinux_state,
4146			    secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
 
 
 
 
4147}
4148
4149static void selinux_task_to_inode(struct task_struct *p,
4150				  struct inode *inode)
4151{
4152	struct inode_security_struct *isec = selinux_inode(inode);
4153	u32 sid = task_sid(p);
4154
4155	spin_lock(&isec->lock);
4156	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4157	isec->sid = sid;
4158	isec->initialized = LABEL_INITIALIZED;
4159	spin_unlock(&isec->lock);
4160}
4161
4162/* Returns error only if unable to parse addresses */
4163static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4164			struct common_audit_data *ad, u8 *proto)
4165{
4166	int offset, ihlen, ret = -EINVAL;
4167	struct iphdr _iph, *ih;
4168
4169	offset = skb_network_offset(skb);
4170	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4171	if (ih == NULL)
4172		goto out;
4173
4174	ihlen = ih->ihl * 4;
4175	if (ihlen < sizeof(_iph))
4176		goto out;
4177
4178	ad->u.net->v4info.saddr = ih->saddr;
4179	ad->u.net->v4info.daddr = ih->daddr;
4180	ret = 0;
4181
4182	if (proto)
4183		*proto = ih->protocol;
4184
4185	switch (ih->protocol) {
4186	case IPPROTO_TCP: {
4187		struct tcphdr _tcph, *th;
4188
4189		if (ntohs(ih->frag_off) & IP_OFFSET)
4190			break;
4191
4192		offset += ihlen;
4193		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4194		if (th == NULL)
4195			break;
4196
4197		ad->u.net->sport = th->source;
4198		ad->u.net->dport = th->dest;
4199		break;
4200	}
4201
4202	case IPPROTO_UDP: {
4203		struct udphdr _udph, *uh;
4204
4205		if (ntohs(ih->frag_off) & IP_OFFSET)
4206			break;
4207
4208		offset += ihlen;
4209		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4210		if (uh == NULL)
4211			break;
4212
4213		ad->u.net->sport = uh->source;
4214		ad->u.net->dport = uh->dest;
4215		break;
4216	}
4217
4218	case IPPROTO_DCCP: {
4219		struct dccp_hdr _dccph, *dh;
4220
4221		if (ntohs(ih->frag_off) & IP_OFFSET)
4222			break;
4223
4224		offset += ihlen;
4225		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4226		if (dh == NULL)
4227			break;
4228
4229		ad->u.net->sport = dh->dccph_sport;
4230		ad->u.net->dport = dh->dccph_dport;
4231		break;
4232	}
4233
4234#if IS_ENABLED(CONFIG_IP_SCTP)
4235	case IPPROTO_SCTP: {
4236		struct sctphdr _sctph, *sh;
4237
4238		if (ntohs(ih->frag_off) & IP_OFFSET)
4239			break;
4240
4241		offset += ihlen;
4242		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4243		if (sh == NULL)
4244			break;
4245
4246		ad->u.net->sport = sh->source;
4247		ad->u.net->dport = sh->dest;
4248		break;
4249	}
4250#endif
4251	default:
4252		break;
4253	}
4254out:
4255	return ret;
4256}
4257
4258#if IS_ENABLED(CONFIG_IPV6)
4259
4260/* Returns error only if unable to parse addresses */
4261static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4262			struct common_audit_data *ad, u8 *proto)
4263{
4264	u8 nexthdr;
4265	int ret = -EINVAL, offset;
4266	struct ipv6hdr _ipv6h, *ip6;
4267	__be16 frag_off;
4268
4269	offset = skb_network_offset(skb);
4270	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4271	if (ip6 == NULL)
4272		goto out;
4273
4274	ad->u.net->v6info.saddr = ip6->saddr;
4275	ad->u.net->v6info.daddr = ip6->daddr;
4276	ret = 0;
4277
4278	nexthdr = ip6->nexthdr;
4279	offset += sizeof(_ipv6h);
4280	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4281	if (offset < 0)
4282		goto out;
4283
4284	if (proto)
4285		*proto = nexthdr;
4286
4287	switch (nexthdr) {
4288	case IPPROTO_TCP: {
4289		struct tcphdr _tcph, *th;
4290
4291		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4292		if (th == NULL)
4293			break;
4294
4295		ad->u.net->sport = th->source;
4296		ad->u.net->dport = th->dest;
4297		break;
4298	}
4299
4300	case IPPROTO_UDP: {
4301		struct udphdr _udph, *uh;
4302
4303		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4304		if (uh == NULL)
4305			break;
4306
4307		ad->u.net->sport = uh->source;
4308		ad->u.net->dport = uh->dest;
4309		break;
4310	}
4311
4312	case IPPROTO_DCCP: {
4313		struct dccp_hdr _dccph, *dh;
4314
4315		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4316		if (dh == NULL)
4317			break;
4318
4319		ad->u.net->sport = dh->dccph_sport;
4320		ad->u.net->dport = dh->dccph_dport;
4321		break;
4322	}
4323
4324#if IS_ENABLED(CONFIG_IP_SCTP)
4325	case IPPROTO_SCTP: {
4326		struct sctphdr _sctph, *sh;
4327
4328		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4329		if (sh == NULL)
4330			break;
4331
4332		ad->u.net->sport = sh->source;
4333		ad->u.net->dport = sh->dest;
4334		break;
4335	}
4336#endif
4337	/* includes fragments */
4338	default:
4339		break;
4340	}
4341out:
4342	return ret;
4343}
4344
4345#endif /* IPV6 */
4346
4347static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4348			     char **_addrp, int src, u8 *proto)
4349{
4350	char *addrp;
4351	int ret;
4352
4353	switch (ad->u.net->family) {
4354	case PF_INET:
4355		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4356		if (ret)
4357			goto parse_error;
4358		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4359				       &ad->u.net->v4info.daddr);
4360		goto okay;
4361
4362#if IS_ENABLED(CONFIG_IPV6)
4363	case PF_INET6:
4364		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4365		if (ret)
4366			goto parse_error;
4367		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4368				       &ad->u.net->v6info.daddr);
4369		goto okay;
4370#endif	/* IPV6 */
4371	default:
4372		addrp = NULL;
4373		goto okay;
4374	}
4375
4376parse_error:
4377	pr_warn(
4378	       "SELinux: failure in selinux_parse_skb(),"
4379	       " unable to parse packet\n");
4380	return ret;
4381
4382okay:
4383	if (_addrp)
4384		*_addrp = addrp;
4385	return 0;
4386}
4387
4388/**
4389 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4390 * @skb: the packet
4391 * @family: protocol family
4392 * @sid: the packet's peer label SID
4393 *
4394 * Description:
4395 * Check the various different forms of network peer labeling and determine
4396 * the peer label/SID for the packet; most of the magic actually occurs in
4397 * the security server function security_net_peersid_cmp().  The function
4398 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4399 * or -EACCES if @sid is invalid due to inconsistencies with the different
4400 * peer labels.
4401 *
4402 */
4403static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4404{
4405	int err;
4406	u32 xfrm_sid;
4407	u32 nlbl_sid;
4408	u32 nlbl_type;
4409
4410	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4411	if (unlikely(err))
4412		return -EACCES;
4413	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4414	if (unlikely(err))
4415		return -EACCES;
4416
4417	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4418					   nlbl_type, xfrm_sid, sid);
4419	if (unlikely(err)) {
4420		pr_warn(
4421		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4422		       " unable to determine packet's peer label\n");
4423		return -EACCES;
4424	}
4425
4426	return 0;
4427}
4428
4429/**
4430 * selinux_conn_sid - Determine the child socket label for a connection
4431 * @sk_sid: the parent socket's SID
4432 * @skb_sid: the packet's SID
4433 * @conn_sid: the resulting connection SID
4434 *
4435 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4436 * combined with the MLS information from @skb_sid in order to create
4437 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4438 * of @sk_sid.  Returns zero on success, negative values on failure.
4439 *
4440 */
4441static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4442{
4443	int err = 0;
4444
4445	if (skb_sid != SECSID_NULL)
4446		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4447					    conn_sid);
4448	else
4449		*conn_sid = sk_sid;
4450
4451	return err;
4452}
4453
4454/* socket security operations */
4455
4456static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4457				 u16 secclass, u32 *socksid)
4458{
4459	if (tsec->sockcreate_sid > SECSID_NULL) {
4460		*socksid = tsec->sockcreate_sid;
4461		return 0;
4462	}
4463
4464	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4465				       secclass, NULL, socksid);
4466}
4467
4468static int sock_has_perm(struct sock *sk, u32 perms)
4469{
4470	struct sk_security_struct *sksec = sk->sk_security;
4471	struct common_audit_data ad;
4472	struct lsm_network_audit net = {0,};
 
4473
4474	if (sksec->sid == SECINITSID_KERNEL)
4475		return 0;
4476
4477	ad.type = LSM_AUDIT_DATA_NET;
4478	ad.u.net = &net;
4479	ad.u.net->sk = sk;
4480
4481	return avc_has_perm(&selinux_state,
4482			    current_sid(), sksec->sid, sksec->sclass, perms,
4483			    &ad);
4484}
4485
4486static int selinux_socket_create(int family, int type,
4487				 int protocol, int kern)
4488{
4489	const struct task_security_struct *tsec = selinux_cred(current_cred());
4490	u32 newsid;
4491	u16 secclass;
4492	int rc;
4493
4494	if (kern)
4495		return 0;
4496
4497	secclass = socket_type_to_security_class(family, type, protocol);
4498	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4499	if (rc)
4500		return rc;
4501
4502	return avc_has_perm(&selinux_state,
4503			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4504}
4505
4506static int selinux_socket_post_create(struct socket *sock, int family,
4507				      int type, int protocol, int kern)
4508{
4509	const struct task_security_struct *tsec = selinux_cred(current_cred());
4510	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4511	struct sk_security_struct *sksec;
4512	u16 sclass = socket_type_to_security_class(family, type, protocol);
4513	u32 sid = SECINITSID_KERNEL;
4514	int err = 0;
4515
4516	if (!kern) {
4517		err = socket_sockcreate_sid(tsec, sclass, &sid);
 
 
 
 
4518		if (err)
4519			return err;
4520	}
4521
4522	isec->sclass = sclass;
4523	isec->sid = sid;
4524	isec->initialized = LABEL_INITIALIZED;
4525
4526	if (sock->sk) {
4527		sksec = sock->sk->sk_security;
4528		sksec->sclass = sclass;
4529		sksec->sid = sid;
4530		/* Allows detection of the first association on this socket */
4531		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4532			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4533
4534		err = selinux_netlbl_socket_post_create(sock->sk, family);
4535	}
4536
4537	return err;
4538}
4539
4540static int selinux_socket_socketpair(struct socket *socka,
4541				     struct socket *sockb)
4542{
4543	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4544	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4545
4546	sksec_a->peer_sid = sksec_b->sid;
4547	sksec_b->peer_sid = sksec_a->sid;
4548
4549	return 0;
4550}
4551
4552/* Range of port numbers used to automatically bind.
4553   Need to determine whether we should perform a name_bind
4554   permission check between the socket and the port number. */
4555
4556static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4557{
4558	struct sock *sk = sock->sk;
4559	struct sk_security_struct *sksec = sk->sk_security;
4560	u16 family;
4561	int err;
4562
4563	err = sock_has_perm(sk, SOCKET__BIND);
4564	if (err)
4565		goto out;
4566
4567	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
 
 
 
 
4568	family = sk->sk_family;
4569	if (family == PF_INET || family == PF_INET6) {
4570		char *addrp;
 
4571		struct common_audit_data ad;
4572		struct lsm_network_audit net = {0,};
4573		struct sockaddr_in *addr4 = NULL;
4574		struct sockaddr_in6 *addr6 = NULL;
4575		u16 family_sa;
4576		unsigned short snum;
4577		u32 sid, node_perm;
4578
4579		/*
4580		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4581		 * that validates multiple binding addresses. Because of this
4582		 * need to check address->sa_family as it is possible to have
4583		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4584		 */
4585		if (addrlen < offsetofend(struct sockaddr, sa_family))
4586			return -EINVAL;
4587		family_sa = address->sa_family;
4588		switch (family_sa) {
4589		case AF_UNSPEC:
4590		case AF_INET:
4591			if (addrlen < sizeof(struct sockaddr_in))
4592				return -EINVAL;
4593			addr4 = (struct sockaddr_in *)address;
4594			if (family_sa == AF_UNSPEC) {
4595				/* see __inet_bind(), we only want to allow
4596				 * AF_UNSPEC if the address is INADDR_ANY
4597				 */
4598				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4599					goto err_af;
4600				family_sa = AF_INET;
4601			}
4602			snum = ntohs(addr4->sin_port);
4603			addrp = (char *)&addr4->sin_addr.s_addr;
4604			break;
4605		case AF_INET6:
4606			if (addrlen < SIN6_LEN_RFC2133)
4607				return -EINVAL;
4608			addr6 = (struct sockaddr_in6 *)address;
4609			snum = ntohs(addr6->sin6_port);
4610			addrp = (char *)&addr6->sin6_addr.s6_addr;
4611			break;
4612		default:
4613			goto err_af;
4614		}
4615
4616		ad.type = LSM_AUDIT_DATA_NET;
4617		ad.u.net = &net;
4618		ad.u.net->sport = htons(snum);
4619		ad.u.net->family = family_sa;
4620
4621		if (snum) {
4622			int low, high;
4623
4624			inet_get_local_port_range(sock_net(sk), &low, &high);
4625
4626			if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4627			    snum > high) {
4628				err = sel_netport_sid(sk->sk_protocol,
4629						      snum, &sid);
4630				if (err)
4631					goto out;
4632				err = avc_has_perm(&selinux_state,
4633						   sksec->sid, sid,
 
 
 
4634						   sksec->sclass,
4635						   SOCKET__NAME_BIND, &ad);
4636				if (err)
4637					goto out;
4638			}
4639		}
4640
4641		switch (sksec->sclass) {
4642		case SECCLASS_TCP_SOCKET:
4643			node_perm = TCP_SOCKET__NODE_BIND;
4644			break;
4645
4646		case SECCLASS_UDP_SOCKET:
4647			node_perm = UDP_SOCKET__NODE_BIND;
4648			break;
4649
4650		case SECCLASS_DCCP_SOCKET:
4651			node_perm = DCCP_SOCKET__NODE_BIND;
4652			break;
4653
4654		case SECCLASS_SCTP_SOCKET:
4655			node_perm = SCTP_SOCKET__NODE_BIND;
4656			break;
4657
4658		default:
4659			node_perm = RAWIP_SOCKET__NODE_BIND;
4660			break;
4661		}
4662
4663		err = sel_netnode_sid(addrp, family_sa, &sid);
4664		if (err)
4665			goto out;
4666
4667		if (family_sa == AF_INET)
 
 
 
 
 
4668			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4669		else
4670			ad.u.net->v6info.saddr = addr6->sin6_addr;
4671
4672		err = avc_has_perm(&selinux_state,
4673				   sksec->sid, sid,
4674				   sksec->sclass, node_perm, &ad);
4675		if (err)
4676			goto out;
4677	}
4678out:
4679	return err;
4680err_af:
4681	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4682	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4683		return -EINVAL;
4684	return -EAFNOSUPPORT;
4685}
4686
4687/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4688 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4689 */
4690static int selinux_socket_connect_helper(struct socket *sock,
4691					 struct sockaddr *address, int addrlen)
4692{
4693	struct sock *sk = sock->sk;
4694	struct sk_security_struct *sksec = sk->sk_security;
4695	int err;
4696
4697	err = sock_has_perm(sk, SOCKET__CONNECT);
4698	if (err)
4699		return err;
4700	if (addrlen < offsetofend(struct sockaddr, sa_family))
4701		return -EINVAL;
4702
4703	/* connect(AF_UNSPEC) has special handling, as it is a documented
4704	 * way to disconnect the socket
4705	 */
4706	if (address->sa_family == AF_UNSPEC)
4707		return 0;
4708
4709	/*
4710	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4711	 * for the port.
4712	 */
4713	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4714	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4715	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4716		struct common_audit_data ad;
4717		struct lsm_network_audit net = {0,};
4718		struct sockaddr_in *addr4 = NULL;
4719		struct sockaddr_in6 *addr6 = NULL;
4720		unsigned short snum;
4721		u32 sid, perm;
4722
4723		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4724		 * that validates multiple connect addresses. Because of this
4725		 * need to check address->sa_family as it is possible to have
4726		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4727		 */
4728		switch (address->sa_family) {
4729		case AF_INET:
4730			addr4 = (struct sockaddr_in *)address;
4731			if (addrlen < sizeof(struct sockaddr_in))
4732				return -EINVAL;
4733			snum = ntohs(addr4->sin_port);
4734			break;
4735		case AF_INET6:
4736			addr6 = (struct sockaddr_in6 *)address;
4737			if (addrlen < SIN6_LEN_RFC2133)
4738				return -EINVAL;
4739			snum = ntohs(addr6->sin6_port);
4740			break;
4741		default:
4742			/* Note that SCTP services expect -EINVAL, whereas
4743			 * others expect -EAFNOSUPPORT.
4744			 */
4745			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4746				return -EINVAL;
4747			else
4748				return -EAFNOSUPPORT;
4749		}
4750
4751		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4752		if (err)
4753			return err;
4754
4755		switch (sksec->sclass) {
4756		case SECCLASS_TCP_SOCKET:
4757			perm = TCP_SOCKET__NAME_CONNECT;
4758			break;
4759		case SECCLASS_DCCP_SOCKET:
4760			perm = DCCP_SOCKET__NAME_CONNECT;
4761			break;
4762		case SECCLASS_SCTP_SOCKET:
4763			perm = SCTP_SOCKET__NAME_CONNECT;
4764			break;
4765		}
4766
4767		ad.type = LSM_AUDIT_DATA_NET;
4768		ad.u.net = &net;
4769		ad.u.net->dport = htons(snum);
4770		ad.u.net->family = address->sa_family;
4771		err = avc_has_perm(&selinux_state,
4772				   sksec->sid, sid, sksec->sclass, perm, &ad);
4773		if (err)
4774			return err;
4775	}
4776
4777	return 0;
4778}
4779
4780/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4781static int selinux_socket_connect(struct socket *sock,
4782				  struct sockaddr *address, int addrlen)
4783{
4784	int err;
4785	struct sock *sk = sock->sk;
4786
4787	err = selinux_socket_connect_helper(sock, address, addrlen);
4788	if (err)
4789		return err;
4790
4791	return selinux_netlbl_socket_connect(sk, address);
 
4792}
4793
4794static int selinux_socket_listen(struct socket *sock, int backlog)
4795{
4796	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4797}
4798
4799static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4800{
4801	int err;
4802	struct inode_security_struct *isec;
4803	struct inode_security_struct *newisec;
4804	u16 sclass;
4805	u32 sid;
4806
4807	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4808	if (err)
4809		return err;
4810
4811	isec = inode_security_novalidate(SOCK_INODE(sock));
4812	spin_lock(&isec->lock);
4813	sclass = isec->sclass;
4814	sid = isec->sid;
4815	spin_unlock(&isec->lock);
4816
4817	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4818	newisec->sclass = sclass;
4819	newisec->sid = sid;
4820	newisec->initialized = LABEL_INITIALIZED;
4821
4822	return 0;
4823}
4824
4825static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4826				  int size)
4827{
4828	return sock_has_perm(sock->sk, SOCKET__WRITE);
4829}
4830
4831static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4832				  int size, int flags)
4833{
4834	return sock_has_perm(sock->sk, SOCKET__READ);
4835}
4836
4837static int selinux_socket_getsockname(struct socket *sock)
4838{
4839	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4840}
4841
4842static int selinux_socket_getpeername(struct socket *sock)
4843{
4844	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4845}
4846
4847static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4848{
4849	int err;
4850
4851	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4852	if (err)
4853		return err;
4854
4855	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4856}
4857
4858static int selinux_socket_getsockopt(struct socket *sock, int level,
4859				     int optname)
4860{
4861	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4862}
4863
4864static int selinux_socket_shutdown(struct socket *sock, int how)
4865{
4866	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4867}
4868
4869static int selinux_socket_unix_stream_connect(struct sock *sock,
4870					      struct sock *other,
4871					      struct sock *newsk)
4872{
4873	struct sk_security_struct *sksec_sock = sock->sk_security;
4874	struct sk_security_struct *sksec_other = other->sk_security;
4875	struct sk_security_struct *sksec_new = newsk->sk_security;
4876	struct common_audit_data ad;
4877	struct lsm_network_audit net = {0,};
4878	int err;
4879
4880	ad.type = LSM_AUDIT_DATA_NET;
4881	ad.u.net = &net;
4882	ad.u.net->sk = other;
4883
4884	err = avc_has_perm(&selinux_state,
4885			   sksec_sock->sid, sksec_other->sid,
4886			   sksec_other->sclass,
4887			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4888	if (err)
4889		return err;
4890
4891	/* server child socket */
4892	sksec_new->peer_sid = sksec_sock->sid;
4893	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4894				    sksec_sock->sid, &sksec_new->sid);
4895	if (err)
4896		return err;
4897
4898	/* connecting socket */
4899	sksec_sock->peer_sid = sksec_new->sid;
4900
4901	return 0;
4902}
4903
4904static int selinux_socket_unix_may_send(struct socket *sock,
4905					struct socket *other)
4906{
4907	struct sk_security_struct *ssec = sock->sk->sk_security;
4908	struct sk_security_struct *osec = other->sk->sk_security;
4909	struct common_audit_data ad;
4910	struct lsm_network_audit net = {0,};
4911
4912	ad.type = LSM_AUDIT_DATA_NET;
4913	ad.u.net = &net;
4914	ad.u.net->sk = other->sk;
4915
4916	return avc_has_perm(&selinux_state,
4917			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4918			    &ad);
4919}
4920
4921static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4922				    char *addrp, u16 family, u32 peer_sid,
4923				    struct common_audit_data *ad)
4924{
4925	int err;
4926	u32 if_sid;
4927	u32 node_sid;
4928
4929	err = sel_netif_sid(ns, ifindex, &if_sid);
4930	if (err)
4931		return err;
4932	err = avc_has_perm(&selinux_state,
4933			   peer_sid, if_sid,
4934			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4935	if (err)
4936		return err;
4937
4938	err = sel_netnode_sid(addrp, family, &node_sid);
4939	if (err)
4940		return err;
4941	return avc_has_perm(&selinux_state,
4942			    peer_sid, node_sid,
4943			    SECCLASS_NODE, NODE__RECVFROM, ad);
4944}
4945
4946static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4947				       u16 family)
4948{
4949	int err = 0;
4950	struct sk_security_struct *sksec = sk->sk_security;
4951	u32 sk_sid = sksec->sid;
4952	struct common_audit_data ad;
4953	struct lsm_network_audit net = {0,};
4954	char *addrp;
4955
4956	ad.type = LSM_AUDIT_DATA_NET;
4957	ad.u.net = &net;
4958	ad.u.net->netif = skb->skb_iif;
4959	ad.u.net->family = family;
4960	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4961	if (err)
4962		return err;
4963
4964	if (selinux_secmark_enabled()) {
4965		err = avc_has_perm(&selinux_state,
4966				   sk_sid, skb->secmark, SECCLASS_PACKET,
4967				   PACKET__RECV, &ad);
4968		if (err)
4969			return err;
4970	}
4971
4972	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4973	if (err)
4974		return err;
4975	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4976
4977	return err;
4978}
4979
4980static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4981{
4982	int err;
4983	struct sk_security_struct *sksec = sk->sk_security;
4984	u16 family = sk->sk_family;
4985	u32 sk_sid = sksec->sid;
4986	struct common_audit_data ad;
4987	struct lsm_network_audit net = {0,};
4988	char *addrp;
4989	u8 secmark_active;
4990	u8 peerlbl_active;
4991
4992	if (family != PF_INET && family != PF_INET6)
4993		return 0;
4994
4995	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4996	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4997		family = PF_INET;
4998
4999	/* If any sort of compatibility mode is enabled then handoff processing
5000	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5001	 * special handling.  We do this in an attempt to keep this function
5002	 * as fast and as clean as possible. */
5003	if (!selinux_policycap_netpeer())
5004		return selinux_sock_rcv_skb_compat(sk, skb, family);
5005
5006	secmark_active = selinux_secmark_enabled();
5007	peerlbl_active = selinux_peerlbl_enabled();
5008	if (!secmark_active && !peerlbl_active)
5009		return 0;
5010
5011	ad.type = LSM_AUDIT_DATA_NET;
5012	ad.u.net = &net;
5013	ad.u.net->netif = skb->skb_iif;
5014	ad.u.net->family = family;
5015	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5016	if (err)
5017		return err;
5018
5019	if (peerlbl_active) {
5020		u32 peer_sid;
5021
5022		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5023		if (err)
5024			return err;
5025		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5026					       addrp, family, peer_sid, &ad);
5027		if (err) {
5028			selinux_netlbl_err(skb, family, err, 0);
5029			return err;
5030		}
5031		err = avc_has_perm(&selinux_state,
5032				   sk_sid, peer_sid, SECCLASS_PEER,
5033				   PEER__RECV, &ad);
5034		if (err) {
5035			selinux_netlbl_err(skb, family, err, 0);
5036			return err;
5037		}
5038	}
5039
5040	if (secmark_active) {
5041		err = avc_has_perm(&selinux_state,
5042				   sk_sid, skb->secmark, SECCLASS_PACKET,
5043				   PACKET__RECV, &ad);
5044		if (err)
5045			return err;
5046	}
5047
5048	return err;
5049}
5050
5051static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5052					    int __user *optlen, unsigned len)
5053{
5054	int err = 0;
5055	char *scontext;
5056	u32 scontext_len;
5057	struct sk_security_struct *sksec = sock->sk->sk_security;
5058	u32 peer_sid = SECSID_NULL;
5059
5060	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5061	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5062	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5063		peer_sid = sksec->peer_sid;
5064	if (peer_sid == SECSID_NULL)
5065		return -ENOPROTOOPT;
5066
5067	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5068				      &scontext_len);
5069	if (err)
5070		return err;
5071
5072	if (scontext_len > len) {
5073		err = -ERANGE;
5074		goto out_len;
5075	}
5076
5077	if (copy_to_user(optval, scontext, scontext_len))
5078		err = -EFAULT;
5079
5080out_len:
5081	if (put_user(scontext_len, optlen))
5082		err = -EFAULT;
5083	kfree(scontext);
5084	return err;
5085}
5086
5087static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5088{
5089	u32 peer_secid = SECSID_NULL;
5090	u16 family;
5091	struct inode_security_struct *isec;
5092
5093	if (skb && skb->protocol == htons(ETH_P_IP))
5094		family = PF_INET;
5095	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5096		family = PF_INET6;
5097	else if (sock)
5098		family = sock->sk->sk_family;
5099	else
5100		goto out;
5101
5102	if (sock && family == PF_UNIX) {
5103		isec = inode_security_novalidate(SOCK_INODE(sock));
5104		peer_secid = isec->sid;
5105	} else if (skb)
5106		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5107
5108out:
5109	*secid = peer_secid;
5110	if (peer_secid == SECSID_NULL)
5111		return -EINVAL;
5112	return 0;
5113}
5114
5115static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5116{
5117	struct sk_security_struct *sksec;
5118
5119	sksec = kzalloc(sizeof(*sksec), priority);
5120	if (!sksec)
5121		return -ENOMEM;
5122
5123	sksec->peer_sid = SECINITSID_UNLABELED;
5124	sksec->sid = SECINITSID_UNLABELED;
5125	sksec->sclass = SECCLASS_SOCKET;
5126	selinux_netlbl_sk_security_reset(sksec);
5127	sk->sk_security = sksec;
5128
5129	return 0;
5130}
5131
5132static void selinux_sk_free_security(struct sock *sk)
5133{
5134	struct sk_security_struct *sksec = sk->sk_security;
5135
5136	sk->sk_security = NULL;
5137	selinux_netlbl_sk_security_free(sksec);
5138	kfree(sksec);
5139}
5140
5141static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5142{
5143	struct sk_security_struct *sksec = sk->sk_security;
5144	struct sk_security_struct *newsksec = newsk->sk_security;
5145
5146	newsksec->sid = sksec->sid;
5147	newsksec->peer_sid = sksec->peer_sid;
5148	newsksec->sclass = sksec->sclass;
5149
5150	selinux_netlbl_sk_security_reset(newsksec);
5151}
5152
5153static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5154{
5155	if (!sk)
5156		*secid = SECINITSID_ANY_SOCKET;
5157	else {
5158		struct sk_security_struct *sksec = sk->sk_security;
5159
5160		*secid = sksec->sid;
5161	}
5162}
5163
5164static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5165{
5166	struct inode_security_struct *isec =
5167		inode_security_novalidate(SOCK_INODE(parent));
5168	struct sk_security_struct *sksec = sk->sk_security;
5169
5170	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5171	    sk->sk_family == PF_UNIX)
5172		isec->sid = sksec->sid;
5173	sksec->sclass = isec->sclass;
5174}
5175
5176/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5177 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5178 * already present).
5179 */
5180static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5181				      struct sk_buff *skb)
5182{
5183	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5184	struct common_audit_data ad;
5185	struct lsm_network_audit net = {0,};
5186	u8 peerlbl_active;
5187	u32 peer_sid = SECINITSID_UNLABELED;
5188	u32 conn_sid;
5189	int err = 0;
5190
5191	if (!selinux_policycap_extsockclass())
5192		return 0;
5193
5194	peerlbl_active = selinux_peerlbl_enabled();
5195
5196	if (peerlbl_active) {
5197		/* This will return peer_sid = SECSID_NULL if there are
5198		 * no peer labels, see security_net_peersid_resolve().
5199		 */
5200		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5201					      &peer_sid);
5202		if (err)
5203			return err;
5204
5205		if (peer_sid == SECSID_NULL)
5206			peer_sid = SECINITSID_UNLABELED;
5207	}
5208
5209	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5210		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5211
5212		/* Here as first association on socket. As the peer SID
5213		 * was allowed by peer recv (and the netif/node checks),
5214		 * then it is approved by policy and used as the primary
5215		 * peer SID for getpeercon(3).
5216		 */
5217		sksec->peer_sid = peer_sid;
5218	} else if  (sksec->peer_sid != peer_sid) {
5219		/* Other association peer SIDs are checked to enforce
5220		 * consistency among the peer SIDs.
5221		 */
5222		ad.type = LSM_AUDIT_DATA_NET;
5223		ad.u.net = &net;
5224		ad.u.net->sk = ep->base.sk;
5225		err = avc_has_perm(&selinux_state,
5226				   sksec->peer_sid, peer_sid, sksec->sclass,
5227				   SCTP_SOCKET__ASSOCIATION, &ad);
5228		if (err)
5229			return err;
5230	}
5231
5232	/* Compute the MLS component for the connection and store
5233	 * the information in ep. This will be used by SCTP TCP type
5234	 * sockets and peeled off connections as they cause a new
5235	 * socket to be generated. selinux_sctp_sk_clone() will then
5236	 * plug this into the new socket.
5237	 */
5238	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5239	if (err)
5240		return err;
5241
5242	ep->secid = conn_sid;
5243	ep->peer_secid = peer_sid;
5244
5245	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5246	return selinux_netlbl_sctp_assoc_request(ep, skb);
5247}
5248
5249/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5250 * based on their @optname.
5251 */
5252static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5253				     struct sockaddr *address,
5254				     int addrlen)
5255{
5256	int len, err = 0, walk_size = 0;
5257	void *addr_buf;
5258	struct sockaddr *addr;
5259	struct socket *sock;
5260
5261	if (!selinux_policycap_extsockclass())
5262		return 0;
5263
5264	/* Process one or more addresses that may be IPv4 or IPv6 */
5265	sock = sk->sk_socket;
5266	addr_buf = address;
5267
5268	while (walk_size < addrlen) {
5269		if (walk_size + sizeof(sa_family_t) > addrlen)
5270			return -EINVAL;
5271
5272		addr = addr_buf;
5273		switch (addr->sa_family) {
5274		case AF_UNSPEC:
5275		case AF_INET:
5276			len = sizeof(struct sockaddr_in);
5277			break;
5278		case AF_INET6:
5279			len = sizeof(struct sockaddr_in6);
5280			break;
5281		default:
5282			return -EINVAL;
5283		}
5284
5285		if (walk_size + len > addrlen)
5286			return -EINVAL;
5287
5288		err = -EINVAL;
5289		switch (optname) {
5290		/* Bind checks */
5291		case SCTP_PRIMARY_ADDR:
5292		case SCTP_SET_PEER_PRIMARY_ADDR:
5293		case SCTP_SOCKOPT_BINDX_ADD:
5294			err = selinux_socket_bind(sock, addr, len);
5295			break;
5296		/* Connect checks */
5297		case SCTP_SOCKOPT_CONNECTX:
5298		case SCTP_PARAM_SET_PRIMARY:
5299		case SCTP_PARAM_ADD_IP:
5300		case SCTP_SENDMSG_CONNECT:
5301			err = selinux_socket_connect_helper(sock, addr, len);
5302			if (err)
5303				return err;
5304
5305			/* As selinux_sctp_bind_connect() is called by the
5306			 * SCTP protocol layer, the socket is already locked,
5307			 * therefore selinux_netlbl_socket_connect_locked() is
5308			 * is called here. The situations handled are:
5309			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5310			 * whenever a new IP address is added or when a new
5311			 * primary address is selected.
5312			 * Note that an SCTP connect(2) call happens before
5313			 * the SCTP protocol layer and is handled via
5314			 * selinux_socket_connect().
5315			 */
5316			err = selinux_netlbl_socket_connect_locked(sk, addr);
5317			break;
5318		}
5319
5320		if (err)
5321			return err;
5322
5323		addr_buf += len;
5324		walk_size += len;
5325	}
5326
5327	return 0;
5328}
5329
5330/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5331static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5332				  struct sock *newsk)
5333{
5334	struct sk_security_struct *sksec = sk->sk_security;
5335	struct sk_security_struct *newsksec = newsk->sk_security;
5336
5337	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5338	 * the non-sctp clone version.
5339	 */
5340	if (!selinux_policycap_extsockclass())
5341		return selinux_sk_clone_security(sk, newsk);
5342
5343	newsksec->sid = ep->secid;
5344	newsksec->peer_sid = ep->peer_secid;
5345	newsksec->sclass = sksec->sclass;
5346	selinux_netlbl_sctp_sk_clone(sk, newsk);
5347}
5348
5349static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5350				     struct request_sock *req)
5351{
5352	struct sk_security_struct *sksec = sk->sk_security;
5353	int err;
5354	u16 family = req->rsk_ops->family;
5355	u32 connsid;
5356	u32 peersid;
5357
5358	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5359	if (err)
5360		return err;
5361	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5362	if (err)
5363		return err;
5364	req->secid = connsid;
5365	req->peer_secid = peersid;
5366
5367	return selinux_netlbl_inet_conn_request(req, family);
5368}
5369
5370static void selinux_inet_csk_clone(struct sock *newsk,
5371				   const struct request_sock *req)
5372{
5373	struct sk_security_struct *newsksec = newsk->sk_security;
5374
5375	newsksec->sid = req->secid;
5376	newsksec->peer_sid = req->peer_secid;
5377	/* NOTE: Ideally, we should also get the isec->sid for the
5378	   new socket in sync, but we don't have the isec available yet.
5379	   So we will wait until sock_graft to do it, by which
5380	   time it will have been created and available. */
5381
5382	/* We don't need to take any sort of lock here as we are the only
5383	 * thread with access to newsksec */
5384	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5385}
5386
5387static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5388{
5389	u16 family = sk->sk_family;
5390	struct sk_security_struct *sksec = sk->sk_security;
5391
5392	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5393	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5394		family = PF_INET;
5395
5396	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5397}
5398
 
 
 
 
 
5399static int selinux_secmark_relabel_packet(u32 sid)
5400{
5401	const struct task_security_struct *__tsec;
5402	u32 tsid;
5403
5404	__tsec = selinux_cred(current_cred());
5405	tsid = __tsec->sid;
5406
5407	return avc_has_perm(&selinux_state,
5408			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5409			    NULL);
5410}
5411
5412static void selinux_secmark_refcount_inc(void)
5413{
5414	atomic_inc(&selinux_secmark_refcount);
5415}
5416
5417static void selinux_secmark_refcount_dec(void)
5418{
5419	atomic_dec(&selinux_secmark_refcount);
5420}
5421
5422static void selinux_req_classify_flow(const struct request_sock *req,
5423				      struct flowi *fl)
5424{
5425	fl->flowi_secid = req->secid;
5426}
5427
5428static int selinux_tun_dev_alloc_security(void **security)
5429{
5430	struct tun_security_struct *tunsec;
5431
5432	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5433	if (!tunsec)
5434		return -ENOMEM;
5435	tunsec->sid = current_sid();
5436
5437	*security = tunsec;
5438	return 0;
5439}
5440
5441static void selinux_tun_dev_free_security(void *security)
5442{
5443	kfree(security);
5444}
5445
5446static int selinux_tun_dev_create(void)
5447{
5448	u32 sid = current_sid();
5449
5450	/* we aren't taking into account the "sockcreate" SID since the socket
5451	 * that is being created here is not a socket in the traditional sense,
5452	 * instead it is a private sock, accessible only to the kernel, and
5453	 * representing a wide range of network traffic spanning multiple
5454	 * connections unlike traditional sockets - check the TUN driver to
5455	 * get a better understanding of why this socket is special */
5456
5457	return avc_has_perm(&selinux_state,
5458			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5459			    NULL);
5460}
5461
5462static int selinux_tun_dev_attach_queue(void *security)
5463{
5464	struct tun_security_struct *tunsec = security;
5465
5466	return avc_has_perm(&selinux_state,
5467			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5468			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5469}
5470
5471static int selinux_tun_dev_attach(struct sock *sk, void *security)
5472{
5473	struct tun_security_struct *tunsec = security;
5474	struct sk_security_struct *sksec = sk->sk_security;
5475
5476	/* we don't currently perform any NetLabel based labeling here and it
5477	 * isn't clear that we would want to do so anyway; while we could apply
5478	 * labeling without the support of the TUN user the resulting labeled
5479	 * traffic from the other end of the connection would almost certainly
5480	 * cause confusion to the TUN user that had no idea network labeling
5481	 * protocols were being used */
5482
5483	sksec->sid = tunsec->sid;
5484	sksec->sclass = SECCLASS_TUN_SOCKET;
5485
5486	return 0;
5487}
5488
5489static int selinux_tun_dev_open(void *security)
5490{
5491	struct tun_security_struct *tunsec = security;
5492	u32 sid = current_sid();
5493	int err;
5494
5495	err = avc_has_perm(&selinux_state,
5496			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5497			   TUN_SOCKET__RELABELFROM, NULL);
5498	if (err)
5499		return err;
5500	err = avc_has_perm(&selinux_state,
5501			   sid, sid, SECCLASS_TUN_SOCKET,
5502			   TUN_SOCKET__RELABELTO, NULL);
5503	if (err)
5504		return err;
5505	tunsec->sid = sid;
5506
5507	return 0;
5508}
5509
5510static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5511{
5512	int err = 0;
5513	u32 perm;
5514	struct nlmsghdr *nlh;
5515	struct sk_security_struct *sksec = sk->sk_security;
5516
5517	if (skb->len < NLMSG_HDRLEN) {
5518		err = -EINVAL;
5519		goto out;
5520	}
5521	nlh = nlmsg_hdr(skb);
5522
5523	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5524	if (err) {
5525		if (err == -EINVAL) {
5526			pr_warn_ratelimited("SELinux: unrecognized netlink"
5527			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5528			       " pig=%d comm=%s\n",
5529			       sk->sk_protocol, nlh->nlmsg_type,
5530			       secclass_map[sksec->sclass - 1].name,
5531			       task_pid_nr(current), current->comm);
5532			if (!enforcing_enabled(&selinux_state) ||
5533			    security_get_allow_unknown(&selinux_state))
5534				err = 0;
5535		}
5536
5537		/* Ignore */
5538		if (err == -ENOENT)
5539			err = 0;
5540		goto out;
5541	}
5542
5543	err = sock_has_perm(sk, perm);
5544out:
5545	return err;
5546}
5547
5548#ifdef CONFIG_NETFILTER
5549
5550static unsigned int selinux_ip_forward(struct sk_buff *skb,
5551				       const struct net_device *indev,
5552				       u16 family)
5553{
5554	int err;
5555	char *addrp;
5556	u32 peer_sid;
5557	struct common_audit_data ad;
5558	struct lsm_network_audit net = {0,};
5559	u8 secmark_active;
5560	u8 netlbl_active;
5561	u8 peerlbl_active;
5562
5563	if (!selinux_policycap_netpeer())
5564		return NF_ACCEPT;
5565
5566	secmark_active = selinux_secmark_enabled();
5567	netlbl_active = netlbl_enabled();
5568	peerlbl_active = selinux_peerlbl_enabled();
5569	if (!secmark_active && !peerlbl_active)
5570		return NF_ACCEPT;
5571
5572	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5573		return NF_DROP;
5574
5575	ad.type = LSM_AUDIT_DATA_NET;
5576	ad.u.net = &net;
5577	ad.u.net->netif = indev->ifindex;
5578	ad.u.net->family = family;
5579	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5580		return NF_DROP;
5581
5582	if (peerlbl_active) {
5583		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5584					       addrp, family, peer_sid, &ad);
5585		if (err) {
5586			selinux_netlbl_err(skb, family, err, 1);
5587			return NF_DROP;
5588		}
5589	}
5590
5591	if (secmark_active)
5592		if (avc_has_perm(&selinux_state,
5593				 peer_sid, skb->secmark,
5594				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5595			return NF_DROP;
5596
5597	if (netlbl_active)
5598		/* we do this in the FORWARD path and not the POST_ROUTING
5599		 * path because we want to make sure we apply the necessary
5600		 * labeling before IPsec is applied so we can leverage AH
5601		 * protection */
5602		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5603			return NF_DROP;
5604
5605	return NF_ACCEPT;
5606}
5607
5608static unsigned int selinux_ipv4_forward(void *priv,
5609					 struct sk_buff *skb,
5610					 const struct nf_hook_state *state)
 
 
5611{
5612	return selinux_ip_forward(skb, state->in, PF_INET);
5613}
5614
5615#if IS_ENABLED(CONFIG_IPV6)
5616static unsigned int selinux_ipv6_forward(void *priv,
5617					 struct sk_buff *skb,
5618					 const struct nf_hook_state *state)
 
 
5619{
5620	return selinux_ip_forward(skb, state->in, PF_INET6);
5621}
5622#endif	/* IPV6 */
5623
5624static unsigned int selinux_ip_output(struct sk_buff *skb,
5625				      u16 family)
5626{
5627	struct sock *sk;
5628	u32 sid;
5629
5630	if (!netlbl_enabled())
5631		return NF_ACCEPT;
5632
5633	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5634	 * because we want to make sure we apply the necessary labeling
5635	 * before IPsec is applied so we can leverage AH protection */
5636	sk = skb->sk;
5637	if (sk) {
5638		struct sk_security_struct *sksec;
5639
5640		if (sk_listener(sk))
5641			/* if the socket is the listening state then this
5642			 * packet is a SYN-ACK packet which means it needs to
5643			 * be labeled based on the connection/request_sock and
5644			 * not the parent socket.  unfortunately, we can't
5645			 * lookup the request_sock yet as it isn't queued on
5646			 * the parent socket until after the SYN-ACK is sent.
5647			 * the "solution" is to simply pass the packet as-is
5648			 * as any IP option based labeling should be copied
5649			 * from the initial connection request (in the IP
5650			 * layer).  it is far from ideal, but until we get a
5651			 * security label in the packet itself this is the
5652			 * best we can do. */
5653			return NF_ACCEPT;
5654
5655		/* standard practice, label using the parent socket */
5656		sksec = sk->sk_security;
5657		sid = sksec->sid;
5658	} else
5659		sid = SECINITSID_KERNEL;
5660	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5661		return NF_DROP;
5662
5663	return NF_ACCEPT;
5664}
5665
5666static unsigned int selinux_ipv4_output(void *priv,
5667					struct sk_buff *skb,
5668					const struct nf_hook_state *state)
 
 
5669{
5670	return selinux_ip_output(skb, PF_INET);
5671}
5672
5673#if IS_ENABLED(CONFIG_IPV6)
5674static unsigned int selinux_ipv6_output(void *priv,
5675					struct sk_buff *skb,
5676					const struct nf_hook_state *state)
5677{
5678	return selinux_ip_output(skb, PF_INET6);
5679}
5680#endif	/* IPV6 */
5681
5682static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5683						int ifindex,
5684						u16 family)
5685{
5686	struct sock *sk = skb_to_full_sk(skb);
5687	struct sk_security_struct *sksec;
5688	struct common_audit_data ad;
5689	struct lsm_network_audit net = {0,};
5690	char *addrp;
5691	u8 proto;
5692
5693	if (sk == NULL)
5694		return NF_ACCEPT;
5695	sksec = sk->sk_security;
5696
5697	ad.type = LSM_AUDIT_DATA_NET;
5698	ad.u.net = &net;
5699	ad.u.net->netif = ifindex;
5700	ad.u.net->family = family;
5701	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5702		return NF_DROP;
5703
5704	if (selinux_secmark_enabled())
5705		if (avc_has_perm(&selinux_state,
5706				 sksec->sid, skb->secmark,
5707				 SECCLASS_PACKET, PACKET__SEND, &ad))
5708			return NF_DROP_ERR(-ECONNREFUSED);
5709
5710	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5711		return NF_DROP_ERR(-ECONNREFUSED);
5712
5713	return NF_ACCEPT;
5714}
5715
5716static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5717					 const struct net_device *outdev,
5718					 u16 family)
5719{
5720	u32 secmark_perm;
5721	u32 peer_sid;
5722	int ifindex = outdev->ifindex;
5723	struct sock *sk;
5724	struct common_audit_data ad;
5725	struct lsm_network_audit net = {0,};
5726	char *addrp;
5727	u8 secmark_active;
5728	u8 peerlbl_active;
5729
5730	/* If any sort of compatibility mode is enabled then handoff processing
5731	 * to the selinux_ip_postroute_compat() function to deal with the
5732	 * special handling.  We do this in an attempt to keep this function
5733	 * as fast and as clean as possible. */
5734	if (!selinux_policycap_netpeer())
5735		return selinux_ip_postroute_compat(skb, ifindex, family);
5736
5737	secmark_active = selinux_secmark_enabled();
5738	peerlbl_active = selinux_peerlbl_enabled();
5739	if (!secmark_active && !peerlbl_active)
5740		return NF_ACCEPT;
5741
5742	sk = skb_to_full_sk(skb);
5743
5744#ifdef CONFIG_XFRM
5745	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5746	 * packet transformation so allow the packet to pass without any checks
5747	 * since we'll have another chance to perform access control checks
5748	 * when the packet is on it's final way out.
5749	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5750	 *       is NULL, in this case go ahead and apply access control.
5751	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5752	 *       TCP listening state we cannot wait until the XFRM processing
5753	 *       is done as we will miss out on the SA label if we do;
5754	 *       unfortunately, this means more work, but it is only once per
5755	 *       connection. */
5756	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5757	    !(sk && sk_listener(sk)))
5758		return NF_ACCEPT;
5759#endif
5760
5761	if (sk == NULL) {
5762		/* Without an associated socket the packet is either coming
5763		 * from the kernel or it is being forwarded; check the packet
5764		 * to determine which and if the packet is being forwarded
5765		 * query the packet directly to determine the security label. */
5766		if (skb->skb_iif) {
5767			secmark_perm = PACKET__FORWARD_OUT;
5768			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5769				return NF_DROP;
5770		} else {
5771			secmark_perm = PACKET__SEND;
5772			peer_sid = SECINITSID_KERNEL;
5773		}
5774	} else if (sk_listener(sk)) {
5775		/* Locally generated packet but the associated socket is in the
5776		 * listening state which means this is a SYN-ACK packet.  In
5777		 * this particular case the correct security label is assigned
5778		 * to the connection/request_sock but unfortunately we can't
5779		 * query the request_sock as it isn't queued on the parent
5780		 * socket until after the SYN-ACK packet is sent; the only
5781		 * viable choice is to regenerate the label like we do in
5782		 * selinux_inet_conn_request().  See also selinux_ip_output()
5783		 * for similar problems. */
5784		u32 skb_sid;
5785		struct sk_security_struct *sksec;
5786
5787		sksec = sk->sk_security;
5788		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5789			return NF_DROP;
5790		/* At this point, if the returned skb peerlbl is SECSID_NULL
5791		 * and the packet has been through at least one XFRM
5792		 * transformation then we must be dealing with the "final"
5793		 * form of labeled IPsec packet; since we've already applied
5794		 * all of our access controls on this packet we can safely
5795		 * pass the packet. */
5796		if (skb_sid == SECSID_NULL) {
5797			switch (family) {
5798			case PF_INET:
5799				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5800					return NF_ACCEPT;
5801				break;
5802			case PF_INET6:
5803				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5804					return NF_ACCEPT;
5805				break;
5806			default:
5807				return NF_DROP_ERR(-ECONNREFUSED);
5808			}
5809		}
5810		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5811			return NF_DROP;
5812		secmark_perm = PACKET__SEND;
5813	} else {
5814		/* Locally generated packet, fetch the security label from the
5815		 * associated socket. */
5816		struct sk_security_struct *sksec = sk->sk_security;
5817		peer_sid = sksec->sid;
5818		secmark_perm = PACKET__SEND;
5819	}
5820
5821	ad.type = LSM_AUDIT_DATA_NET;
5822	ad.u.net = &net;
5823	ad.u.net->netif = ifindex;
5824	ad.u.net->family = family;
5825	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5826		return NF_DROP;
5827
5828	if (secmark_active)
5829		if (avc_has_perm(&selinux_state,
5830				 peer_sid, skb->secmark,
5831				 SECCLASS_PACKET, secmark_perm, &ad))
5832			return NF_DROP_ERR(-ECONNREFUSED);
5833
5834	if (peerlbl_active) {
5835		u32 if_sid;
5836		u32 node_sid;
5837
5838		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5839			return NF_DROP;
5840		if (avc_has_perm(&selinux_state,
5841				 peer_sid, if_sid,
5842				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5843			return NF_DROP_ERR(-ECONNREFUSED);
5844
5845		if (sel_netnode_sid(addrp, family, &node_sid))
5846			return NF_DROP;
5847		if (avc_has_perm(&selinux_state,
5848				 peer_sid, node_sid,
5849				 SECCLASS_NODE, NODE__SENDTO, &ad))
5850			return NF_DROP_ERR(-ECONNREFUSED);
5851	}
5852
5853	return NF_ACCEPT;
5854}
5855
5856static unsigned int selinux_ipv4_postroute(void *priv,
5857					   struct sk_buff *skb,
5858					   const struct nf_hook_state *state)
 
 
5859{
5860	return selinux_ip_postroute(skb, state->out, PF_INET);
5861}
5862
5863#if IS_ENABLED(CONFIG_IPV6)
5864static unsigned int selinux_ipv6_postroute(void *priv,
5865					   struct sk_buff *skb,
5866					   const struct nf_hook_state *state)
 
 
5867{
5868	return selinux_ip_postroute(skb, state->out, PF_INET6);
5869}
5870#endif	/* IPV6 */
5871
5872#endif	/* CONFIG_NETFILTER */
5873
5874static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5875{
 
 
 
 
 
 
5876	return selinux_nlmsg_perm(sk, skb);
5877}
5878
5879static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
 
 
5880{
 
 
 
 
 
 
 
 
5881	isec->sclass = sclass;
5882	isec->sid = current_sid();
 
 
 
 
 
 
 
 
 
 
5883}
5884
5885static int msg_msg_alloc_security(struct msg_msg *msg)
5886{
5887	struct msg_security_struct *msec;
5888
5889	msec = selinux_msg_msg(msg);
 
 
 
5890	msec->sid = SECINITSID_UNLABELED;
 
5891
5892	return 0;
5893}
5894
 
 
 
 
 
 
 
 
5895static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5896			u32 perms)
5897{
5898	struct ipc_security_struct *isec;
5899	struct common_audit_data ad;
5900	u32 sid = current_sid();
5901
5902	isec = selinux_ipc(ipc_perms);
5903
5904	ad.type = LSM_AUDIT_DATA_IPC;
5905	ad.u.ipc_id = ipc_perms->key;
5906
5907	return avc_has_perm(&selinux_state,
5908			    sid, isec->sid, isec->sclass, perms, &ad);
5909}
5910
5911static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5912{
5913	return msg_msg_alloc_security(msg);
5914}
5915
 
 
 
 
 
5916/* message queue security operations */
5917static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5918{
5919	struct ipc_security_struct *isec;
5920	struct common_audit_data ad;
5921	u32 sid = current_sid();
5922	int rc;
5923
5924	isec = selinux_ipc(msq);
5925	ipc_init_security(isec, SECCLASS_MSGQ);
 
 
 
5926
5927	ad.type = LSM_AUDIT_DATA_IPC;
5928	ad.u.ipc_id = msq->key;
5929
5930	rc = avc_has_perm(&selinux_state,
5931			  sid, isec->sid, SECCLASS_MSGQ,
5932			  MSGQ__CREATE, &ad);
5933	return rc;
 
 
 
 
 
 
 
 
 
5934}
5935
5936static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5937{
5938	struct ipc_security_struct *isec;
5939	struct common_audit_data ad;
5940	u32 sid = current_sid();
5941
5942	isec = selinux_ipc(msq);
5943
5944	ad.type = LSM_AUDIT_DATA_IPC;
5945	ad.u.ipc_id = msq->key;
5946
5947	return avc_has_perm(&selinux_state,
5948			    sid, isec->sid, SECCLASS_MSGQ,
5949			    MSGQ__ASSOCIATE, &ad);
5950}
5951
5952static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5953{
5954	int err;
5955	int perms;
5956
5957	switch (cmd) {
5958	case IPC_INFO:
5959	case MSG_INFO:
5960		/* No specific object, just general system-wide information. */
5961		return avc_has_perm(&selinux_state,
5962				    current_sid(), SECINITSID_KERNEL,
5963				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5964	case IPC_STAT:
5965	case MSG_STAT:
5966	case MSG_STAT_ANY:
5967		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5968		break;
5969	case IPC_SET:
5970		perms = MSGQ__SETATTR;
5971		break;
5972	case IPC_RMID:
5973		perms = MSGQ__DESTROY;
5974		break;
5975	default:
5976		return 0;
5977	}
5978
5979	err = ipc_has_perm(msq, perms);
5980	return err;
5981}
5982
5983static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
5984{
5985	struct ipc_security_struct *isec;
5986	struct msg_security_struct *msec;
5987	struct common_audit_data ad;
5988	u32 sid = current_sid();
5989	int rc;
5990
5991	isec = selinux_ipc(msq);
5992	msec = selinux_msg_msg(msg);
5993
5994	/*
5995	 * First time through, need to assign label to the message
5996	 */
5997	if (msec->sid == SECINITSID_UNLABELED) {
5998		/*
5999		 * Compute new sid based on current process and
6000		 * message queue this message will be stored in
6001		 */
6002		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6003					     SECCLASS_MSG, NULL, &msec->sid);
6004		if (rc)
6005			return rc;
6006	}
6007
6008	ad.type = LSM_AUDIT_DATA_IPC;
6009	ad.u.ipc_id = msq->key;
6010
6011	/* Can this process write to the queue? */
6012	rc = avc_has_perm(&selinux_state,
6013			  sid, isec->sid, SECCLASS_MSGQ,
6014			  MSGQ__WRITE, &ad);
6015	if (!rc)
6016		/* Can this process send the message */
6017		rc = avc_has_perm(&selinux_state,
6018				  sid, msec->sid, SECCLASS_MSG,
6019				  MSG__SEND, &ad);
6020	if (!rc)
6021		/* Can the message be put in the queue? */
6022		rc = avc_has_perm(&selinux_state,
6023				  msec->sid, isec->sid, SECCLASS_MSGQ,
6024				  MSGQ__ENQUEUE, &ad);
6025
6026	return rc;
6027}
6028
6029static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6030				    struct task_struct *target,
6031				    long type, int mode)
6032{
6033	struct ipc_security_struct *isec;
6034	struct msg_security_struct *msec;
6035	struct common_audit_data ad;
6036	u32 sid = task_sid(target);
6037	int rc;
6038
6039	isec = selinux_ipc(msq);
6040	msec = selinux_msg_msg(msg);
6041
6042	ad.type = LSM_AUDIT_DATA_IPC;
6043	ad.u.ipc_id = msq->key;
6044
6045	rc = avc_has_perm(&selinux_state,
6046			  sid, isec->sid,
6047			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6048	if (!rc)
6049		rc = avc_has_perm(&selinux_state,
6050				  sid, msec->sid,
6051				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6052	return rc;
6053}
6054
6055/* Shared Memory security operations */
6056static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6057{
6058	struct ipc_security_struct *isec;
6059	struct common_audit_data ad;
6060	u32 sid = current_sid();
6061	int rc;
6062
6063	isec = selinux_ipc(shp);
6064	ipc_init_security(isec, SECCLASS_SHM);
 
 
 
6065
6066	ad.type = LSM_AUDIT_DATA_IPC;
6067	ad.u.ipc_id = shp->key;
6068
6069	rc = avc_has_perm(&selinux_state,
6070			  sid, isec->sid, SECCLASS_SHM,
6071			  SHM__CREATE, &ad);
6072	return rc;
 
 
 
 
 
 
 
 
 
6073}
6074
6075static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6076{
6077	struct ipc_security_struct *isec;
6078	struct common_audit_data ad;
6079	u32 sid = current_sid();
6080
6081	isec = selinux_ipc(shp);
6082
6083	ad.type = LSM_AUDIT_DATA_IPC;
6084	ad.u.ipc_id = shp->key;
6085
6086	return avc_has_perm(&selinux_state,
6087			    sid, isec->sid, SECCLASS_SHM,
6088			    SHM__ASSOCIATE, &ad);
6089}
6090
6091/* Note, at this point, shp is locked down */
6092static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6093{
6094	int perms;
6095	int err;
6096
6097	switch (cmd) {
6098	case IPC_INFO:
6099	case SHM_INFO:
6100		/* No specific object, just general system-wide information. */
6101		return avc_has_perm(&selinux_state,
6102				    current_sid(), SECINITSID_KERNEL,
6103				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6104	case IPC_STAT:
6105	case SHM_STAT:
6106	case SHM_STAT_ANY:
6107		perms = SHM__GETATTR | SHM__ASSOCIATE;
6108		break;
6109	case IPC_SET:
6110		perms = SHM__SETATTR;
6111		break;
6112	case SHM_LOCK:
6113	case SHM_UNLOCK:
6114		perms = SHM__LOCK;
6115		break;
6116	case IPC_RMID:
6117		perms = SHM__DESTROY;
6118		break;
6119	default:
6120		return 0;
6121	}
6122
6123	err = ipc_has_perm(shp, perms);
6124	return err;
6125}
6126
6127static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6128			     char __user *shmaddr, int shmflg)
6129{
6130	u32 perms;
6131
6132	if (shmflg & SHM_RDONLY)
6133		perms = SHM__READ;
6134	else
6135		perms = SHM__READ | SHM__WRITE;
6136
6137	return ipc_has_perm(shp, perms);
6138}
6139
6140/* Semaphore security operations */
6141static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6142{
6143	struct ipc_security_struct *isec;
6144	struct common_audit_data ad;
6145	u32 sid = current_sid();
6146	int rc;
6147
6148	isec = selinux_ipc(sma);
6149	ipc_init_security(isec, SECCLASS_SEM);
 
 
 
6150
6151	ad.type = LSM_AUDIT_DATA_IPC;
6152	ad.u.ipc_id = sma->key;
6153
6154	rc = avc_has_perm(&selinux_state,
6155			  sid, isec->sid, SECCLASS_SEM,
6156			  SEM__CREATE, &ad);
6157	return rc;
 
 
 
 
 
 
 
 
 
6158}
6159
6160static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6161{
6162	struct ipc_security_struct *isec;
6163	struct common_audit_data ad;
6164	u32 sid = current_sid();
6165
6166	isec = selinux_ipc(sma);
6167
6168	ad.type = LSM_AUDIT_DATA_IPC;
6169	ad.u.ipc_id = sma->key;
6170
6171	return avc_has_perm(&selinux_state,
6172			    sid, isec->sid, SECCLASS_SEM,
6173			    SEM__ASSOCIATE, &ad);
6174}
6175
6176/* Note, at this point, sma is locked down */
6177static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6178{
6179	int err;
6180	u32 perms;
6181
6182	switch (cmd) {
6183	case IPC_INFO:
6184	case SEM_INFO:
6185		/* No specific object, just general system-wide information. */
6186		return avc_has_perm(&selinux_state,
6187				    current_sid(), SECINITSID_KERNEL,
6188				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6189	case GETPID:
6190	case GETNCNT:
6191	case GETZCNT:
6192		perms = SEM__GETATTR;
6193		break;
6194	case GETVAL:
6195	case GETALL:
6196		perms = SEM__READ;
6197		break;
6198	case SETVAL:
6199	case SETALL:
6200		perms = SEM__WRITE;
6201		break;
6202	case IPC_RMID:
6203		perms = SEM__DESTROY;
6204		break;
6205	case IPC_SET:
6206		perms = SEM__SETATTR;
6207		break;
6208	case IPC_STAT:
6209	case SEM_STAT:
6210	case SEM_STAT_ANY:
6211		perms = SEM__GETATTR | SEM__ASSOCIATE;
6212		break;
6213	default:
6214		return 0;
6215	}
6216
6217	err = ipc_has_perm(sma, perms);
6218	return err;
6219}
6220
6221static int selinux_sem_semop(struct kern_ipc_perm *sma,
6222			     struct sembuf *sops, unsigned nsops, int alter)
6223{
6224	u32 perms;
6225
6226	if (alter)
6227		perms = SEM__READ | SEM__WRITE;
6228	else
6229		perms = SEM__READ;
6230
6231	return ipc_has_perm(sma, perms);
6232}
6233
6234static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6235{
6236	u32 av = 0;
6237
6238	av = 0;
6239	if (flag & S_IRUGO)
6240		av |= IPC__UNIX_READ;
6241	if (flag & S_IWUGO)
6242		av |= IPC__UNIX_WRITE;
6243
6244	if (av == 0)
6245		return 0;
6246
6247	return ipc_has_perm(ipcp, av);
6248}
6249
6250static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6251{
6252	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6253	*secid = isec->sid;
6254}
6255
6256static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6257{
6258	if (inode)
6259		inode_doinit_with_dentry(inode, dentry);
6260}
6261
6262static int selinux_getprocattr(struct task_struct *p,
6263			       char *name, char **value)
6264{
6265	const struct task_security_struct *__tsec;
6266	u32 sid;
6267	int error;
6268	unsigned len;
6269
6270	rcu_read_lock();
6271	__tsec = selinux_cred(__task_cred(p));
6272
6273	if (current != p) {
6274		error = avc_has_perm(&selinux_state,
6275				     current_sid(), __tsec->sid,
6276				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6277		if (error)
6278			goto bad;
6279	}
6280
 
 
 
6281	if (!strcmp(name, "current"))
6282		sid = __tsec->sid;
6283	else if (!strcmp(name, "prev"))
6284		sid = __tsec->osid;
6285	else if (!strcmp(name, "exec"))
6286		sid = __tsec->exec_sid;
6287	else if (!strcmp(name, "fscreate"))
6288		sid = __tsec->create_sid;
6289	else if (!strcmp(name, "keycreate"))
6290		sid = __tsec->keycreate_sid;
6291	else if (!strcmp(name, "sockcreate"))
6292		sid = __tsec->sockcreate_sid;
6293	else {
6294		error = -EINVAL;
6295		goto bad;
6296	}
6297	rcu_read_unlock();
6298
6299	if (!sid)
6300		return 0;
6301
6302	error = security_sid_to_context(&selinux_state, sid, value, &len);
6303	if (error)
6304		return error;
6305	return len;
6306
6307bad:
6308	rcu_read_unlock();
6309	return error;
6310}
6311
6312static int selinux_setprocattr(const char *name, void *value, size_t size)
 
6313{
6314	struct task_security_struct *tsec;
 
6315	struct cred *new;
6316	u32 mysid = current_sid(), sid = 0, ptsid;
6317	int error;
6318	char *str = value;
6319
 
 
 
 
 
 
6320	/*
6321	 * Basic control over ability to set these attributes at all.
 
 
6322	 */
6323	if (!strcmp(name, "exec"))
6324		error = avc_has_perm(&selinux_state,
6325				     mysid, mysid, SECCLASS_PROCESS,
6326				     PROCESS__SETEXEC, NULL);
6327	else if (!strcmp(name, "fscreate"))
6328		error = avc_has_perm(&selinux_state,
6329				     mysid, mysid, SECCLASS_PROCESS,
6330				     PROCESS__SETFSCREATE, NULL);
6331	else if (!strcmp(name, "keycreate"))
6332		error = avc_has_perm(&selinux_state,
6333				     mysid, mysid, SECCLASS_PROCESS,
6334				     PROCESS__SETKEYCREATE, NULL);
6335	else if (!strcmp(name, "sockcreate"))
6336		error = avc_has_perm(&selinux_state,
6337				     mysid, mysid, SECCLASS_PROCESS,
6338				     PROCESS__SETSOCKCREATE, NULL);
6339	else if (!strcmp(name, "current"))
6340		error = avc_has_perm(&selinux_state,
6341				     mysid, mysid, SECCLASS_PROCESS,
6342				     PROCESS__SETCURRENT, NULL);
6343	else
6344		error = -EINVAL;
6345	if (error)
6346		return error;
6347
6348	/* Obtain a SID for the context, if one was specified. */
6349	if (size && str[0] && str[0] != '\n') {
6350		if (str[size-1] == '\n') {
6351			str[size-1] = 0;
6352			size--;
6353		}
6354		error = security_context_to_sid(&selinux_state, value, size,
6355						&sid, GFP_KERNEL);
6356		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6357			if (!has_cap_mac_admin(true)) {
6358				struct audit_buffer *ab;
6359				size_t audit_size;
6360
6361				/* We strip a nul only if it is at the end, otherwise the
6362				 * context contains a nul and we should audit that */
6363				if (str[size - 1] == '\0')
6364					audit_size = size - 1;
6365				else
6366					audit_size = size;
6367				ab = audit_log_start(audit_context(),
6368						     GFP_ATOMIC,
6369						     AUDIT_SELINUX_ERR);
6370				audit_log_format(ab, "op=fscreate invalid_context=");
6371				audit_log_n_untrustedstring(ab, value, audit_size);
6372				audit_log_end(ab);
6373
6374				return error;
6375			}
6376			error = security_context_to_sid_force(
6377						      &selinux_state,
6378						      value, size, &sid);
6379		}
6380		if (error)
6381			return error;
6382	}
6383
6384	new = prepare_creds();
6385	if (!new)
6386		return -ENOMEM;
6387
6388	/* Permission checking based on the specified context is
6389	   performed during the actual operation (execve,
6390	   open/mkdir/...), when we know the full context of the
6391	   operation.  See selinux_bprm_set_creds for the execve
6392	   checks and may_create for the file creation checks. The
6393	   operation will then fail if the context is not permitted. */
6394	tsec = selinux_cred(new);
6395	if (!strcmp(name, "exec")) {
6396		tsec->exec_sid = sid;
6397	} else if (!strcmp(name, "fscreate")) {
6398		tsec->create_sid = sid;
6399	} else if (!strcmp(name, "keycreate")) {
6400		if (sid) {
6401			error = avc_has_perm(&selinux_state, mysid, sid,
6402					     SECCLASS_KEY, KEY__CREATE, NULL);
6403			if (error)
6404				goto abort_change;
6405		}
6406		tsec->keycreate_sid = sid;
6407	} else if (!strcmp(name, "sockcreate")) {
6408		tsec->sockcreate_sid = sid;
6409	} else if (!strcmp(name, "current")) {
6410		error = -EINVAL;
6411		if (sid == 0)
6412			goto abort_change;
6413
6414		/* Only allow single threaded processes to change context */
6415		error = -EPERM;
6416		if (!current_is_single_threaded()) {
6417			error = security_bounded_transition(&selinux_state,
6418							    tsec->sid, sid);
6419			if (error)
6420				goto abort_change;
6421		}
6422
6423		/* Check permissions for the transition. */
6424		error = avc_has_perm(&selinux_state,
6425				     tsec->sid, sid, SECCLASS_PROCESS,
6426				     PROCESS__DYNTRANSITION, NULL);
6427		if (error)
6428			goto abort_change;
6429
6430		/* Check for ptracing, and update the task SID if ok.
6431		   Otherwise, leave SID unchanged and fail. */
6432		ptsid = ptrace_parent_sid();
6433		if (ptsid != 0) {
6434			error = avc_has_perm(&selinux_state,
6435					     ptsid, sid, SECCLASS_PROCESS,
 
 
 
 
 
6436					     PROCESS__PTRACE, NULL);
6437			if (error)
6438				goto abort_change;
6439		}
6440
6441		tsec->sid = sid;
6442	} else {
6443		error = -EINVAL;
6444		goto abort_change;
6445	}
6446
6447	commit_creds(new);
6448	return size;
6449
6450abort_change:
6451	abort_creds(new);
6452	return error;
6453}
6454
6455static int selinux_ismaclabel(const char *name)
6456{
6457	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6458}
6459
6460static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6461{
6462	return security_sid_to_context(&selinux_state, secid,
6463				       secdata, seclen);
6464}
6465
6466static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6467{
6468	return security_context_to_sid(&selinux_state, secdata, seclen,
6469				       secid, GFP_KERNEL);
6470}
6471
6472static void selinux_release_secctx(char *secdata, u32 seclen)
6473{
6474	kfree(secdata);
6475}
6476
6477static void selinux_inode_invalidate_secctx(struct inode *inode)
6478{
6479	struct inode_security_struct *isec = selinux_inode(inode);
6480
6481	spin_lock(&isec->lock);
6482	isec->initialized = LABEL_INVALID;
6483	spin_unlock(&isec->lock);
6484}
6485
6486/*
6487 *	called with inode->i_mutex locked
6488 */
6489static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6490{
6491	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6492					   ctx, ctxlen, 0);
6493	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6494	return rc == -EOPNOTSUPP ? 0 : rc;
6495}
6496
6497/*
6498 *	called with inode->i_mutex locked
6499 */
6500static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6501{
6502	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6503}
6504
6505static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6506{
6507	int len = 0;
6508	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6509						ctx, true);
6510	if (len < 0)
6511		return len;
6512	*ctxlen = len;
6513	return 0;
6514}
6515#ifdef CONFIG_KEYS
6516
6517static int selinux_key_alloc(struct key *k, const struct cred *cred,
6518			     unsigned long flags)
6519{
6520	const struct task_security_struct *tsec;
6521	struct key_security_struct *ksec;
6522
6523	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6524	if (!ksec)
6525		return -ENOMEM;
6526
6527	tsec = selinux_cred(cred);
6528	if (tsec->keycreate_sid)
6529		ksec->sid = tsec->keycreate_sid;
6530	else
6531		ksec->sid = tsec->sid;
6532
6533	k->security = ksec;
6534	return 0;
6535}
6536
6537static void selinux_key_free(struct key *k)
6538{
6539	struct key_security_struct *ksec = k->security;
6540
6541	k->security = NULL;
6542	kfree(ksec);
6543}
6544
6545static int selinux_key_permission(key_ref_t key_ref,
6546				  const struct cred *cred,
6547				  unsigned perm)
6548{
6549	struct key *key;
6550	struct key_security_struct *ksec;
6551	u32 sid;
6552
6553	/* if no specific permissions are requested, we skip the
6554	   permission check. No serious, additional covert channels
6555	   appear to be created. */
6556	if (perm == 0)
6557		return 0;
6558
6559	sid = cred_sid(cred);
6560
6561	key = key_ref_to_ptr(key_ref);
6562	ksec = key->security;
6563
6564	return avc_has_perm(&selinux_state,
6565			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6566}
6567
6568static int selinux_key_getsecurity(struct key *key, char **_buffer)
6569{
6570	struct key_security_struct *ksec = key->security;
6571	char *context = NULL;
6572	unsigned len;
6573	int rc;
6574
6575	rc = security_sid_to_context(&selinux_state, ksec->sid,
6576				     &context, &len);
6577	if (!rc)
6578		rc = len;
6579	*_buffer = context;
6580	return rc;
6581}
6582#endif
6583
6584#ifdef CONFIG_SECURITY_INFINIBAND
6585static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6586{
6587	struct common_audit_data ad;
6588	int err;
6589	u32 sid = 0;
6590	struct ib_security_struct *sec = ib_sec;
6591	struct lsm_ibpkey_audit ibpkey;
6592
6593	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6594	if (err)
6595		return err;
6596
6597	ad.type = LSM_AUDIT_DATA_IBPKEY;
6598	ibpkey.subnet_prefix = subnet_prefix;
6599	ibpkey.pkey = pkey_val;
6600	ad.u.ibpkey = &ibpkey;
6601	return avc_has_perm(&selinux_state,
6602			    sec->sid, sid,
6603			    SECCLASS_INFINIBAND_PKEY,
6604			    INFINIBAND_PKEY__ACCESS, &ad);
6605}
6606
6607static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6608					    u8 port_num)
6609{
6610	struct common_audit_data ad;
6611	int err;
6612	u32 sid = 0;
6613	struct ib_security_struct *sec = ib_sec;
6614	struct lsm_ibendport_audit ibendport;
6615
6616	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6617				      &sid);
6618
6619	if (err)
6620		return err;
6621
6622	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6623	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6624	ibendport.port = port_num;
6625	ad.u.ibendport = &ibendport;
6626	return avc_has_perm(&selinux_state,
6627			    sec->sid, sid,
6628			    SECCLASS_INFINIBAND_ENDPORT,
6629			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6630}
6631
6632static int selinux_ib_alloc_security(void **ib_sec)
6633{
6634	struct ib_security_struct *sec;
6635
6636	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6637	if (!sec)
6638		return -ENOMEM;
6639	sec->sid = current_sid();
6640
6641	*ib_sec = sec;
6642	return 0;
6643}
6644
6645static void selinux_ib_free_security(void *ib_sec)
6646{
6647	kfree(ib_sec);
6648}
6649#endif
6650
6651#ifdef CONFIG_BPF_SYSCALL
6652static int selinux_bpf(int cmd, union bpf_attr *attr,
6653				     unsigned int size)
6654{
6655	u32 sid = current_sid();
6656	int ret;
6657
6658	switch (cmd) {
6659	case BPF_MAP_CREATE:
6660		ret = avc_has_perm(&selinux_state,
6661				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6662				   NULL);
6663		break;
6664	case BPF_PROG_LOAD:
6665		ret = avc_has_perm(&selinux_state,
6666				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6667				   NULL);
6668		break;
6669	default:
6670		ret = 0;
6671		break;
6672	}
6673
6674	return ret;
6675}
6676
6677static u32 bpf_map_fmode_to_av(fmode_t fmode)
6678{
6679	u32 av = 0;
6680
6681	if (fmode & FMODE_READ)
6682		av |= BPF__MAP_READ;
6683	if (fmode & FMODE_WRITE)
6684		av |= BPF__MAP_WRITE;
6685	return av;
6686}
6687
6688/* This function will check the file pass through unix socket or binder to see
6689 * if it is a bpf related object. And apply correspinding checks on the bpf
6690 * object based on the type. The bpf maps and programs, not like other files and
6691 * socket, are using a shared anonymous inode inside the kernel as their inode.
6692 * So checking that inode cannot identify if the process have privilege to
6693 * access the bpf object and that's why we have to add this additional check in
6694 * selinux_file_receive and selinux_binder_transfer_files.
6695 */
6696static int bpf_fd_pass(struct file *file, u32 sid)
6697{
6698	struct bpf_security_struct *bpfsec;
6699	struct bpf_prog *prog;
6700	struct bpf_map *map;
6701	int ret;
6702
6703	if (file->f_op == &bpf_map_fops) {
6704		map = file->private_data;
6705		bpfsec = map->security;
6706		ret = avc_has_perm(&selinux_state,
6707				   sid, bpfsec->sid, SECCLASS_BPF,
6708				   bpf_map_fmode_to_av(file->f_mode), NULL);
6709		if (ret)
6710			return ret;
6711	} else if (file->f_op == &bpf_prog_fops) {
6712		prog = file->private_data;
6713		bpfsec = prog->aux->security;
6714		ret = avc_has_perm(&selinux_state,
6715				   sid, bpfsec->sid, SECCLASS_BPF,
6716				   BPF__PROG_RUN, NULL);
6717		if (ret)
6718			return ret;
6719	}
6720	return 0;
6721}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6722
6723static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6724{
6725	u32 sid = current_sid();
6726	struct bpf_security_struct *bpfsec;
6727
6728	bpfsec = map->security;
6729	return avc_has_perm(&selinux_state,
6730			    sid, bpfsec->sid, SECCLASS_BPF,
6731			    bpf_map_fmode_to_av(fmode), NULL);
6732}
6733
6734static int selinux_bpf_prog(struct bpf_prog *prog)
6735{
6736	u32 sid = current_sid();
6737	struct bpf_security_struct *bpfsec;
6738
6739	bpfsec = prog->aux->security;
6740	return avc_has_perm(&selinux_state,
6741			    sid, bpfsec->sid, SECCLASS_BPF,
6742			    BPF__PROG_RUN, NULL);
6743}
6744
6745static int selinux_bpf_map_alloc(struct bpf_map *map)
6746{
6747	struct bpf_security_struct *bpfsec;
6748
6749	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6750	if (!bpfsec)
6751		return -ENOMEM;
6752
6753	bpfsec->sid = current_sid();
6754	map->security = bpfsec;
6755
6756	return 0;
6757}
6758
6759static void selinux_bpf_map_free(struct bpf_map *map)
6760{
6761	struct bpf_security_struct *bpfsec = map->security;
6762
6763	map->security = NULL;
6764	kfree(bpfsec);
6765}
6766
6767static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6768{
6769	struct bpf_security_struct *bpfsec;
6770
6771	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6772	if (!bpfsec)
6773		return -ENOMEM;
6774
6775	bpfsec->sid = current_sid();
6776	aux->security = bpfsec;
6777
6778	return 0;
6779}
6780
6781static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6782{
6783	struct bpf_security_struct *bpfsec = aux->security;
6784
6785	aux->security = NULL;
6786	kfree(bpfsec);
6787}
6788#endif
6789
6790struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6791	.lbs_cred = sizeof(struct task_security_struct),
6792	.lbs_file = sizeof(struct file_security_struct),
6793	.lbs_inode = sizeof(struct inode_security_struct),
6794	.lbs_ipc = sizeof(struct ipc_security_struct),
6795	.lbs_msg_msg = sizeof(struct msg_security_struct),
6796};
6797
6798static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6799	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6800	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6801	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6802	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6803
6804	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6805	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6806	LSM_HOOK_INIT(capget, selinux_capget),
6807	LSM_HOOK_INIT(capset, selinux_capset),
6808	LSM_HOOK_INIT(capable, selinux_capable),
6809	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6810	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6811	LSM_HOOK_INIT(syslog, selinux_syslog),
6812	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6813
6814	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6815
6816	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6817	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6818	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6819
6820	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
6821	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
6822
6823	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6824	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6825	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
6826	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
6827	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6828	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6829	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6830	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6831	LSM_HOOK_INIT(sb_mount, selinux_mount),
6832	LSM_HOOK_INIT(sb_umount, selinux_umount),
6833	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6834	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6835	LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
6836
6837	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6838	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6839
6840	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6841	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6842	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6843	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6844	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6845	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6846	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6847	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6848	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6849	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6850	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6851	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6852	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6853	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6854	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6855	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6856	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6857	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6858	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6859	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6860	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6861	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6862	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6863	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6864	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6865	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6866	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6867	LSM_HOOK_INIT(path_notify, selinux_path_notify),
6868
6869	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
6870
6871	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6872	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6873	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6874	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6875	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6876	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6877	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6878	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6879	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6880	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6881	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6882
6883	LSM_HOOK_INIT(file_open, selinux_file_open),
6884
6885	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6886	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6887	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6888	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6889	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6890	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6891	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6892	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
6893	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6894	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6895	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6896	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6897	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6898	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6899	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6900	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6901	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6902	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6903	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6904	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6905	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6906	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6907	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6908
6909	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6910	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6911
6912	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6913
6914	LSM_HOOK_INIT(msg_queue_alloc_security,
6915			selinux_msg_queue_alloc_security),
6916	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6917	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6918	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6919	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6920
6921	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6922	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6923	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6924	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6925
6926	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6927	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6928	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6929	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6930
6931	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6932
6933	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6934	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6935
6936	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6937	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6938	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6939	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6940	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6941	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6942	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6943	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6944
6945	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6946	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6947
6948	LSM_HOOK_INIT(socket_create, selinux_socket_create),
6949	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6950	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
6951	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6952	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6953	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6954	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6955	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6956	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6957	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6958	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6959	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6960	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6961	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6962	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6963	LSM_HOOK_INIT(socket_getpeersec_stream,
6964			selinux_socket_getpeersec_stream),
6965	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6966	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6967	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6968	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6969	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6970	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6971	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
6972	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
6973	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
6974	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6975	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6976	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6977	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6978	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6979	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6980	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6981	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6982	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6983	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6984	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6985	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6986	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6987#ifdef CONFIG_SECURITY_INFINIBAND
6988	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
6989	LSM_HOOK_INIT(ib_endport_manage_subnet,
6990		      selinux_ib_endport_manage_subnet),
6991	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
6992	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
6993#endif
6994#ifdef CONFIG_SECURITY_NETWORK_XFRM
6995	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6996	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6997	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6998	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6999	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7000	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7001			selinux_xfrm_state_alloc_acquire),
7002	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7003	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7004	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7005	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7006			selinux_xfrm_state_pol_flow_match),
7007	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7008#endif
7009
7010#ifdef CONFIG_KEYS
7011	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7012	LSM_HOOK_INIT(key_free, selinux_key_free),
7013	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7014	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7015#endif
7016
7017#ifdef CONFIG_AUDIT
7018	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7019	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7020	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7021	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7022#endif
7023
7024#ifdef CONFIG_BPF_SYSCALL
7025	LSM_HOOK_INIT(bpf, selinux_bpf),
7026	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7027	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7028	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7029	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7030	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7031	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7032#endif
7033};
7034
7035static __init int selinux_init(void)
7036{
7037	pr_info("SELinux:  Initializing.\n");
 
 
 
7038
7039	memset(&selinux_state, 0, sizeof(selinux_state));
7040	enforcing_set(&selinux_state, selinux_enforcing_boot);
7041	selinux_state.checkreqprot = selinux_checkreqprot_boot;
7042	selinux_ss_init(&selinux_state.ss);
7043	selinux_avc_init(&selinux_state.avc);
 
7044
7045	/* Set the security state for the initial task. */
7046	cred_init_security();
7047
7048	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7049
 
 
 
7050	avc_init();
7051
7052	avtab_cache_init();
7053
7054	ebitmap_cache_init();
7055
7056	hashtab_cache_init();
7057
7058	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7059
7060	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7061		panic("SELinux: Unable to register AVC netcache callback\n");
7062
7063	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7064		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7065
7066	if (selinux_enforcing_boot)
7067		pr_debug("SELinux:  Starting in enforcing mode\n");
7068	else
7069		pr_debug("SELinux:  Starting in permissive mode\n");
7070
7071	fs_validate_description(&selinux_fs_parameters);
7072
7073	return 0;
7074}
7075
7076static void delayed_superblock_init(struct super_block *sb, void *unused)
7077{
7078	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7079}
7080
7081void selinux_complete_init(void)
7082{
7083	pr_debug("SELinux:  Completing initialization.\n");
7084
7085	/* Set up any superblocks initialized prior to the policy load. */
7086	pr_debug("SELinux:  Setting up existing superblocks.\n");
7087	iterate_supers(delayed_superblock_init, NULL);
7088}
7089
7090/* SELinux requires early initialization in order to label
7091   all processes and objects when they are created. */
7092DEFINE_LSM(selinux) = {
7093	.name = "selinux",
7094	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7095	.enabled = &selinux_enabled,
7096	.blobs = &selinux_blob_sizes,
7097	.init = selinux_init,
7098};
7099
7100#if defined(CONFIG_NETFILTER)
7101
7102static const struct nf_hook_ops selinux_nf_ops[] = {
7103	{
7104		.hook =		selinux_ipv4_postroute,
 
7105		.pf =		NFPROTO_IPV4,
7106		.hooknum =	NF_INET_POST_ROUTING,
7107		.priority =	NF_IP_PRI_SELINUX_LAST,
7108	},
7109	{
7110		.hook =		selinux_ipv4_forward,
 
7111		.pf =		NFPROTO_IPV4,
7112		.hooknum =	NF_INET_FORWARD,
7113		.priority =	NF_IP_PRI_SELINUX_FIRST,
7114	},
7115	{
7116		.hook =		selinux_ipv4_output,
 
7117		.pf =		NFPROTO_IPV4,
7118		.hooknum =	NF_INET_LOCAL_OUT,
7119		.priority =	NF_IP_PRI_SELINUX_FIRST,
7120	},
7121#if IS_ENABLED(CONFIG_IPV6)
 
 
 
 
7122	{
7123		.hook =		selinux_ipv6_postroute,
 
7124		.pf =		NFPROTO_IPV6,
7125		.hooknum =	NF_INET_POST_ROUTING,
7126		.priority =	NF_IP6_PRI_SELINUX_LAST,
7127	},
7128	{
7129		.hook =		selinux_ipv6_forward,
 
7130		.pf =		NFPROTO_IPV6,
7131		.hooknum =	NF_INET_FORWARD,
7132		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7133	},
7134	{
7135		.hook =		selinux_ipv6_output,
7136		.pf =		NFPROTO_IPV6,
7137		.hooknum =	NF_INET_LOCAL_OUT,
7138		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7139	},
7140#endif	/* IPV6 */
7141};
7142
7143static int __net_init selinux_nf_register(struct net *net)
7144{
7145	return nf_register_net_hooks(net, selinux_nf_ops,
7146				     ARRAY_SIZE(selinux_nf_ops));
7147}
7148
7149static void __net_exit selinux_nf_unregister(struct net *net)
7150{
7151	nf_unregister_net_hooks(net, selinux_nf_ops,
7152				ARRAY_SIZE(selinux_nf_ops));
7153}
7154
7155static struct pernet_operations selinux_net_ops = {
7156	.init = selinux_nf_register,
7157	.exit = selinux_nf_unregister,
7158};
7159
7160static int __init selinux_nf_ip_init(void)
7161{
7162	int err;
7163
7164	if (!selinux_enabled)
7165		return 0;
7166
7167	pr_debug("SELinux:  Registering netfilter hooks\n");
7168
7169	err = register_pernet_subsys(&selinux_net_ops);
7170	if (err)
7171		panic("SELinux: register_pernet_subsys: error %d\n", err);
7172
7173	return 0;
 
 
 
 
 
 
 
7174}
 
7175__initcall(selinux_nf_ip_init);
7176
7177#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7178static void selinux_nf_ip_exit(void)
7179{
7180	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7181
7182	unregister_pernet_subsys(&selinux_net_ops);
 
 
 
7183}
7184#endif
7185
7186#else /* CONFIG_NETFILTER */
7187
7188#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7189#define selinux_nf_ip_exit()
7190#endif
7191
7192#endif /* CONFIG_NETFILTER */
7193
7194#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7195int selinux_disable(struct selinux_state *state)
 
 
7196{
7197	if (state->initialized) {
7198		/* Not permitted after initial policy load. */
7199		return -EINVAL;
7200	}
7201
7202	if (state->disabled) {
7203		/* Only do this once. */
7204		return -EINVAL;
7205	}
7206
7207	state->disabled = 1;
7208
7209	pr_info("SELinux:  Disabled at runtime.\n");
7210
 
7211	selinux_enabled = 0;
7212
7213	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7214
7215	/* Try to destroy the avc node cache */
7216	avc_disable();
7217
7218	/* Unregister netfilter hooks. */
7219	selinux_nf_ip_exit();
7220
7221	/* Unregister selinuxfs. */
7222	exit_sel_fs();
7223
7224	return 0;
7225}
7226#endif
v3.15
 
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *
  21 *	This program is free software; you can redistribute it and/or modify
  22 *	it under the terms of the GNU General Public License version 2,
  23 *	as published by the Free Software Foundation.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/kd.h>
  28#include <linux/kernel.h>
  29#include <linux/tracehook.h>
  30#include <linux/errno.h>
  31#include <linux/sched.h>
  32#include <linux/security.h>
 
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
 
 
  49#include <linux/netfilter_ipv4.h>
  50#include <linux/netfilter_ipv6.h>
  51#include <linux/tty.h>
  52#include <net/icmp.h>
  53#include <net/ip.h>		/* for local_port_range[] */
  54#include <net/sock.h>
  55#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  56#include <net/inet_connection_sock.h>
  57#include <net/net_namespace.h>
  58#include <net/netlabel.h>
  59#include <linux/uaccess.h>
  60#include <asm/ioctls.h>
  61#include <linux/atomic.h>
  62#include <linux/bitops.h>
  63#include <linux/interrupt.h>
  64#include <linux/netdevice.h>	/* for network interface checks */
  65#include <net/netlink.h>
  66#include <linux/tcp.h>
  67#include <linux/udp.h>
  68#include <linux/dccp.h>
 
 
  69#include <linux/quota.h>
  70#include <linux/un.h>		/* for Unix socket types */
  71#include <net/af_unix.h>	/* for Unix socket types */
  72#include <linux/parser.h>
  73#include <linux/nfs_mount.h>
  74#include <net/ipv6.h>
  75#include <linux/hugetlb.h>
  76#include <linux/personality.h>
  77#include <linux/audit.h>
  78#include <linux/string.h>
  79#include <linux/selinux.h>
  80#include <linux/mutex.h>
  81#include <linux/posix-timers.h>
  82#include <linux/syslog.h>
  83#include <linux/user_namespace.h>
  84#include <linux/export.h>
  85#include <linux/msg.h>
  86#include <linux/shm.h>
 
 
 
 
 
 
  87
  88#include "avc.h"
  89#include "objsec.h"
  90#include "netif.h"
  91#include "netnode.h"
  92#include "netport.h"
 
  93#include "xfrm.h"
  94#include "netlabel.h"
  95#include "audit.h"
  96#include "avc_ss.h"
  97
  98extern struct security_operations *security_ops;
  99
 100/* SECMARK reference count */
 101static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 102
 103#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 104int selinux_enforcing;
 105
 106static int __init enforcing_setup(char *str)
 107{
 108	unsigned long enforcing;
 109	if (!kstrtoul(str, 0, &enforcing))
 110		selinux_enforcing = enforcing ? 1 : 0;
 111	return 1;
 112}
 113__setup("enforcing=", enforcing_setup);
 
 
 114#endif
 115
 
 116#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 117int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 118
 119static int __init selinux_enabled_setup(char *str)
 120{
 121	unsigned long enabled;
 122	if (!kstrtoul(str, 0, &enabled))
 123		selinux_enabled = enabled ? 1 : 0;
 124	return 1;
 125}
 126__setup("selinux=", selinux_enabled_setup);
 127#else
 128int selinux_enabled = 1;
 129#endif
 130
 131static struct kmem_cache *sel_inode_cache;
 
 
 
 
 
 
 
 
 
 
 
 132
 133/**
 134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 135 *
 136 * Description:
 137 * This function checks the SECMARK reference counter to see if any SECMARK
 138 * targets are currently configured, if the reference counter is greater than
 139 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 140 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 141 * policy capability is enabled, SECMARK is always considered enabled.
 142 *
 143 */
 144static int selinux_secmark_enabled(void)
 145{
 146	return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
 
 147}
 148
 149/**
 150 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 151 *
 152 * Description:
 153 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 154 * (1) if any are enabled or false (0) if neither are enabled.  If the
 155 * always_check_network policy capability is enabled, peer labeling
 156 * is always considered enabled.
 157 *
 158 */
 159static int selinux_peerlbl_enabled(void)
 160{
 161	return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 162}
 163
 164/*
 165 * initialise the security for the init task
 166 */
 167static void cred_init_security(void)
 168{
 169	struct cred *cred = (struct cred *) current->real_cred;
 170	struct task_security_struct *tsec;
 171
 172	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 173	if (!tsec)
 174		panic("SELinux:  Failed to initialize initial task.\n");
 175
 176	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 177	cred->security = tsec;
 178}
 179
 180/*
 181 * get the security ID of a set of credentials
 182 */
 183static inline u32 cred_sid(const struct cred *cred)
 184{
 185	const struct task_security_struct *tsec;
 186
 187	tsec = cred->security;
 188	return tsec->sid;
 189}
 190
 191/*
 192 * get the objective security ID of a task
 193 */
 194static inline u32 task_sid(const struct task_struct *task)
 195{
 196	u32 sid;
 197
 198	rcu_read_lock();
 199	sid = cred_sid(__task_cred(task));
 200	rcu_read_unlock();
 201	return sid;
 202}
 203
 204/*
 205 * get the subjective security ID of the current task
 206 */
 207static inline u32 current_sid(void)
 208{
 209	const struct task_security_struct *tsec = current_security();
 210
 211	return tsec->sid;
 212}
 213
 214/* Allocate and free functions for each kind of security blob. */
 215
 216static int inode_alloc_security(struct inode *inode)
 217{
 218	struct inode_security_struct *isec;
 219	u32 sid = current_sid();
 220
 221	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 222	if (!isec)
 223		return -ENOMEM;
 224
 225	mutex_init(&isec->lock);
 226	INIT_LIST_HEAD(&isec->list);
 227	isec->inode = inode;
 228	isec->sid = SECINITSID_UNLABELED;
 229	isec->sclass = SECCLASS_FILE;
 230	isec->task_sid = sid;
 231	inode->i_security = isec;
 
 
 
 
 
 232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 233	return 0;
 234}
 235
 236static void inode_free_rcu(struct rcu_head *head)
 237{
 238	struct inode_security_struct *isec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 239
 240	isec = container_of(head, struct inode_security_struct, rcu);
 241	kmem_cache_free(sel_inode_cache, isec);
 242}
 243
 244static void inode_free_security(struct inode *inode)
 245{
 246	struct inode_security_struct *isec = inode->i_security;
 247	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 248
 249	spin_lock(&sbsec->isec_lock);
 250	if (!list_empty(&isec->list))
 251		list_del_init(&isec->list);
 252	spin_unlock(&sbsec->isec_lock);
 253
 
 
 
 254	/*
 255	 * The inode may still be referenced in a path walk and
 256	 * a call to selinux_inode_permission() can be made
 257	 * after inode_free_security() is called. Ideally, the VFS
 258	 * wouldn't do this, but fixing that is a much harder
 259	 * job. For now, simply free the i_security via RCU, and
 260	 * leave the current inode->i_security pointer intact.
 261	 * The inode will be freed after the RCU grace period too.
 
 262	 */
 263	call_rcu(&isec->rcu, inode_free_rcu);
 
 
 
 
 264}
 265
 266static int file_alloc_security(struct file *file)
 267{
 268	struct file_security_struct *fsec;
 269	u32 sid = current_sid();
 270
 271	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
 272	if (!fsec)
 273		return -ENOMEM;
 274
 275	fsec->sid = sid;
 276	fsec->fown_sid = sid;
 277	file->f_security = fsec;
 278
 279	return 0;
 280}
 281
 282static void file_free_security(struct file *file)
 283{
 284	struct file_security_struct *fsec = file->f_security;
 285	file->f_security = NULL;
 286	kfree(fsec);
 287}
 288
 289static int superblock_alloc_security(struct super_block *sb)
 290{
 291	struct superblock_security_struct *sbsec;
 292
 293	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 294	if (!sbsec)
 295		return -ENOMEM;
 296
 297	mutex_init(&sbsec->lock);
 298	INIT_LIST_HEAD(&sbsec->isec_head);
 299	spin_lock_init(&sbsec->isec_lock);
 300	sbsec->sb = sb;
 301	sbsec->sid = SECINITSID_UNLABELED;
 302	sbsec->def_sid = SECINITSID_FILE;
 303	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 304	sb->s_security = sbsec;
 305
 306	return 0;
 307}
 308
 309static void superblock_free_security(struct super_block *sb)
 310{
 311	struct superblock_security_struct *sbsec = sb->s_security;
 312	sb->s_security = NULL;
 313	kfree(sbsec);
 314}
 315
 316/* The file system's label must be initialized prior to use. */
 317
 318static const char *labeling_behaviors[7] = {
 319	"uses xattr",
 320	"uses transition SIDs",
 321	"uses task SIDs",
 322	"uses genfs_contexts",
 323	"not configured for labeling",
 324	"uses mountpoint labeling",
 325	"uses native labeling",
 326};
 327
 328static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 
 
 
 
 
 
 
 
 329
 330static inline int inode_doinit(struct inode *inode)
 331{
 332	return inode_doinit_with_dentry(inode, NULL);
 333}
 334
 335enum {
 336	Opt_error = -1,
 337	Opt_context = 1,
 
 338	Opt_fscontext = 2,
 339	Opt_defcontext = 3,
 340	Opt_rootcontext = 4,
 341	Opt_labelsupport = 5,
 342	Opt_nextmntopt = 6,
 
 
 
 
 
 
 
 
 
 
 
 
 343};
 
 344
 345#define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
 
 
 346
 347static const match_table_t tokens = {
 348	{Opt_context, CONTEXT_STR "%s"},
 349	{Opt_fscontext, FSCONTEXT_STR "%s"},
 350	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 351	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 352	{Opt_labelsupport, LABELSUPP_STR},
 353	{Opt_error, NULL},
 354};
 
 
 
 
 
 
 355
 356#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 357
 358static int may_context_mount_sb_relabel(u32 sid,
 359			struct superblock_security_struct *sbsec,
 360			const struct cred *cred)
 361{
 362	const struct task_security_struct *tsec = cred->security;
 363	int rc;
 364
 365	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 366			  FILESYSTEM__RELABELFROM, NULL);
 367	if (rc)
 368		return rc;
 369
 370	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 
 371			  FILESYSTEM__RELABELTO, NULL);
 372	return rc;
 373}
 374
 375static int may_context_mount_inode_relabel(u32 sid,
 376			struct superblock_security_struct *sbsec,
 377			const struct cred *cred)
 378{
 379	const struct task_security_struct *tsec = cred->security;
 380	int rc;
 381	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 382			  FILESYSTEM__RELABELFROM, NULL);
 383	if (rc)
 384		return rc;
 385
 386	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 387			  FILESYSTEM__ASSOCIATE, NULL);
 388	return rc;
 389}
 390
 
 
 
 
 
 
 
 
 
 
 
 
 
 391static int selinux_is_sblabel_mnt(struct super_block *sb)
 392{
 393	struct superblock_security_struct *sbsec = sb->s_security;
 394
 395	if (sbsec->behavior == SECURITY_FS_USE_XATTR ||
 396	    sbsec->behavior == SECURITY_FS_USE_TRANS ||
 397	    sbsec->behavior == SECURITY_FS_USE_TASK)
 398		return 1;
 
 399
 400	/* Special handling for sysfs. Is genfs but also has setxattr handler*/
 401	if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
 
 
 
 402		return 1;
 403
 404	/*
 405	 * Special handling for rootfs. Is genfs but supports
 406	 * setting SELinux context on in-core inodes.
 407	 */
 408	if (strncmp(sb->s_type->name, "rootfs", sizeof("rootfs")) == 0)
 409		return 1;
 410
 411	return 0;
 
 
 
 
 
 412}
 413
 414static int sb_finish_set_opts(struct super_block *sb)
 415{
 416	struct superblock_security_struct *sbsec = sb->s_security;
 417	struct dentry *root = sb->s_root;
 418	struct inode *root_inode = root->d_inode;
 419	int rc = 0;
 420
 421	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 422		/* Make sure that the xattr handler exists and that no
 423		   error other than -ENODATA is returned by getxattr on
 424		   the root directory.  -ENODATA is ok, as this may be
 425		   the first boot of the SELinux kernel before we have
 426		   assigned xattr values to the filesystem. */
 427		if (!root_inode->i_op->getxattr) {
 428			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 429			       "xattr support\n", sb->s_id, sb->s_type->name);
 430			rc = -EOPNOTSUPP;
 431			goto out;
 432		}
 433		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
 
 434		if (rc < 0 && rc != -ENODATA) {
 435			if (rc == -EOPNOTSUPP)
 436				printk(KERN_WARNING "SELinux: (dev %s, type "
 437				       "%s) has no security xattr handler\n",
 438				       sb->s_id, sb->s_type->name);
 439			else
 440				printk(KERN_WARNING "SELinux: (dev %s, type "
 441				       "%s) getxattr errno %d\n", sb->s_id,
 442				       sb->s_type->name, -rc);
 443			goto out;
 444		}
 445	}
 446
 447	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 448		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
 449		       sb->s_id, sb->s_type->name);
 450	else
 451		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
 452		       sb->s_id, sb->s_type->name,
 453		       labeling_behaviors[sbsec->behavior-1]);
 454
 455	sbsec->flags |= SE_SBINITIALIZED;
 
 
 
 
 456	if (selinux_is_sblabel_mnt(sb))
 457		sbsec->flags |= SBLABEL_MNT;
 
 
 458
 459	/* Initialize the root inode. */
 460	rc = inode_doinit_with_dentry(root_inode, root);
 461
 462	/* Initialize any other inodes associated with the superblock, e.g.
 463	   inodes created prior to initial policy load or inodes created
 464	   during get_sb by a pseudo filesystem that directly
 465	   populates itself. */
 466	spin_lock(&sbsec->isec_lock);
 467next_inode:
 468	if (!list_empty(&sbsec->isec_head)) {
 469		struct inode_security_struct *isec =
 470				list_entry(sbsec->isec_head.next,
 471					   struct inode_security_struct, list);
 472		struct inode *inode = isec->inode;
 
 473		spin_unlock(&sbsec->isec_lock);
 474		inode = igrab(inode);
 475		if (inode) {
 476			if (!IS_PRIVATE(inode))
 477				inode_doinit(inode);
 478			iput(inode);
 479		}
 480		spin_lock(&sbsec->isec_lock);
 481		list_del_init(&isec->list);
 482		goto next_inode;
 483	}
 484	spin_unlock(&sbsec->isec_lock);
 485out:
 486	return rc;
 487}
 488
 489/*
 490 * This function should allow an FS to ask what it's mount security
 491 * options were so it can use those later for submounts, displaying
 492 * mount options, or whatever.
 493 */
 494static int selinux_get_mnt_opts(const struct super_block *sb,
 495				struct security_mnt_opts *opts)
 496{
 497	int rc = 0, i;
 498	struct superblock_security_struct *sbsec = sb->s_security;
 499	char *context = NULL;
 500	u32 len;
 501	char tmp;
 502
 503	security_init_mnt_opts(opts);
 504
 505	if (!(sbsec->flags & SE_SBINITIALIZED))
 506		return -EINVAL;
 507
 508	if (!ss_initialized)
 509		return -EINVAL;
 510
 511	/* make sure we always check enough bits to cover the mask */
 512	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
 513
 514	tmp = sbsec->flags & SE_MNTMASK;
 515	/* count the number of mount options for this sb */
 516	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
 517		if (tmp & 0x01)
 518			opts->num_mnt_opts++;
 519		tmp >>= 1;
 520	}
 521	/* Check if the Label support flag is set */
 522	if (sbsec->flags & SBLABEL_MNT)
 523		opts->num_mnt_opts++;
 524
 525	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 526	if (!opts->mnt_opts) {
 527		rc = -ENOMEM;
 528		goto out_free;
 529	}
 530
 531	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 532	if (!opts->mnt_opts_flags) {
 533		rc = -ENOMEM;
 534		goto out_free;
 535	}
 536
 537	i = 0;
 538	if (sbsec->flags & FSCONTEXT_MNT) {
 539		rc = security_sid_to_context(sbsec->sid, &context, &len);
 540		if (rc)
 541			goto out_free;
 542		opts->mnt_opts[i] = context;
 543		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 544	}
 545	if (sbsec->flags & CONTEXT_MNT) {
 546		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
 547		if (rc)
 548			goto out_free;
 549		opts->mnt_opts[i] = context;
 550		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 551	}
 552	if (sbsec->flags & DEFCONTEXT_MNT) {
 553		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
 554		if (rc)
 555			goto out_free;
 556		opts->mnt_opts[i] = context;
 557		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 558	}
 559	if (sbsec->flags & ROOTCONTEXT_MNT) {
 560		struct inode *root = sbsec->sb->s_root->d_inode;
 561		struct inode_security_struct *isec = root->i_security;
 562
 563		rc = security_sid_to_context(isec->sid, &context, &len);
 564		if (rc)
 565			goto out_free;
 566		opts->mnt_opts[i] = context;
 567		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 568	}
 569	if (sbsec->flags & SBLABEL_MNT) {
 570		opts->mnt_opts[i] = NULL;
 571		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
 572	}
 573
 574	BUG_ON(i != opts->num_mnt_opts);
 575
 576	return 0;
 577
 578out_free:
 579	security_free_mnt_opts(opts);
 580	return rc;
 581}
 582
 583static int bad_option(struct superblock_security_struct *sbsec, char flag,
 584		      u32 old_sid, u32 new_sid)
 585{
 586	char mnt_flags = sbsec->flags & SE_MNTMASK;
 587
 588	/* check if the old mount command had the same options */
 589	if (sbsec->flags & SE_SBINITIALIZED)
 590		if (!(sbsec->flags & flag) ||
 591		    (old_sid != new_sid))
 592			return 1;
 593
 594	/* check if we were passed the same options twice,
 595	 * aka someone passed context=a,context=b
 596	 */
 597	if (!(sbsec->flags & SE_SBINITIALIZED))
 598		if (mnt_flags & flag)
 599			return 1;
 600	return 0;
 601}
 602
 
 
 
 
 
 
 
 
 
 
 
 603/*
 604 * Allow filesystems with binary mount data to explicitly set mount point
 605 * labeling information.
 606 */
 607static int selinux_set_mnt_opts(struct super_block *sb,
 608				struct security_mnt_opts *opts,
 609				unsigned long kern_flags,
 610				unsigned long *set_kern_flags)
 611{
 612	const struct cred *cred = current_cred();
 613	int rc = 0, i;
 614	struct superblock_security_struct *sbsec = sb->s_security;
 615	const char *name = sb->s_type->name;
 616	struct inode *inode = sbsec->sb->s_root->d_inode;
 617	struct inode_security_struct *root_isec = inode->i_security;
 618	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 619	u32 defcontext_sid = 0;
 620	char **mount_options = opts->mnt_opts;
 621	int *flags = opts->mnt_opts_flags;
 622	int num_opts = opts->num_mnt_opts;
 623
 624	mutex_lock(&sbsec->lock);
 625
 626	if (!ss_initialized) {
 627		if (!num_opts) {
 628			/* Defer initialization until selinux_complete_init,
 629			   after the initial policy is loaded and the security
 630			   server is ready to handle calls. */
 631			goto out;
 632		}
 633		rc = -EINVAL;
 634		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 635			"before the security server is initialized\n");
 636		goto out;
 637	}
 638	if (kern_flags && !set_kern_flags) {
 639		/* Specifying internal flags without providing a place to
 640		 * place the results is not allowed */
 641		rc = -EINVAL;
 642		goto out;
 643	}
 644
 645	/*
 646	 * Binary mount data FS will come through this function twice.  Once
 647	 * from an explicit call and once from the generic calls from the vfs.
 648	 * Since the generic VFS calls will not contain any security mount data
 649	 * we need to skip the double mount verification.
 650	 *
 651	 * This does open a hole in which we will not notice if the first
 652	 * mount using this sb set explict options and a second mount using
 653	 * this sb does not set any security options.  (The first options
 654	 * will be used for both mounts)
 655	 */
 656	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 657	    && (num_opts == 0))
 658		goto out;
 659
 
 
 660	/*
 661	 * parse the mount options, check if they are valid sids.
 662	 * also check if someone is trying to mount the same sb more
 663	 * than once with different security options.
 664	 */
 665	for (i = 0; i < num_opts; i++) {
 666		u32 sid;
 667
 668		if (flags[i] == SBLABEL_MNT)
 669			continue;
 670		rc = security_context_to_sid(mount_options[i],
 671					     strlen(mount_options[i]), &sid, GFP_KERNEL);
 672		if (rc) {
 673			printk(KERN_WARNING "SELinux: security_context_to_sid"
 674			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 675			       mount_options[i], sb->s_id, name, rc);
 676			goto out;
 677		}
 678		switch (flags[i]) {
 679		case FSCONTEXT_MNT:
 680			fscontext_sid = sid;
 681
 682			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 683					fscontext_sid))
 684				goto out_double_mount;
 685
 686			sbsec->flags |= FSCONTEXT_MNT;
 687			break;
 688		case CONTEXT_MNT:
 689			context_sid = sid;
 690
 
 691			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 692					context_sid))
 693				goto out_double_mount;
 694
 695			sbsec->flags |= CONTEXT_MNT;
 696			break;
 697		case ROOTCONTEXT_MNT:
 698			rootcontext_sid = sid;
 699
 
 700			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 701					rootcontext_sid))
 702				goto out_double_mount;
 703
 704			sbsec->flags |= ROOTCONTEXT_MNT;
 705
 706			break;
 707		case DEFCONTEXT_MNT:
 708			defcontext_sid = sid;
 709
 710			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 711					defcontext_sid))
 712				goto out_double_mount;
 713
 714			sbsec->flags |= DEFCONTEXT_MNT;
 715
 716			break;
 717		default:
 718			rc = -EINVAL;
 719			goto out;
 720		}
 721	}
 722
 723	if (sbsec->flags & SE_SBINITIALIZED) {
 724		/* previously mounted with options, but not on this attempt? */
 725		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 726			goto out_double_mount;
 727		rc = 0;
 728		goto out;
 729	}
 730
 731	if (strcmp(sb->s_type->name, "proc") == 0)
 732		sbsec->flags |= SE_SBPROC;
 
 
 
 
 
 
 
 
 
 
 733
 734	if (!sbsec->behavior) {
 735		/*
 736		 * Determine the labeling behavior to use for this
 737		 * filesystem type.
 738		 */
 739		rc = security_fs_use(sb);
 740		if (rc) {
 741			printk(KERN_WARNING
 742				"%s: security_fs_use(%s) returned %d\n",
 743					__func__, sb->s_type->name, rc);
 744			goto out;
 745		}
 746	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747	/* sets the context of the superblock for the fs being mounted. */
 748	if (fscontext_sid) {
 749		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 750		if (rc)
 751			goto out;
 752
 753		sbsec->sid = fscontext_sid;
 754	}
 755
 756	/*
 757	 * Switch to using mount point labeling behavior.
 758	 * sets the label used on all file below the mountpoint, and will set
 759	 * the superblock context if not already set.
 760	 */
 761	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 762		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 763		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 764	}
 765
 766	if (context_sid) {
 767		if (!fscontext_sid) {
 768			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 769							  cred);
 770			if (rc)
 771				goto out;
 772			sbsec->sid = context_sid;
 773		} else {
 774			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 775							     cred);
 776			if (rc)
 777				goto out;
 778		}
 779		if (!rootcontext_sid)
 780			rootcontext_sid = context_sid;
 781
 782		sbsec->mntpoint_sid = context_sid;
 783		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 784	}
 785
 786	if (rootcontext_sid) {
 787		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 788						     cred);
 789		if (rc)
 790			goto out;
 791
 792		root_isec->sid = rootcontext_sid;
 793		root_isec->initialized = 1;
 794	}
 795
 796	if (defcontext_sid) {
 797		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 798			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 799			rc = -EINVAL;
 800			printk(KERN_WARNING "SELinux: defcontext option is "
 801			       "invalid for this filesystem type\n");
 802			goto out;
 803		}
 804
 805		if (defcontext_sid != sbsec->def_sid) {
 806			rc = may_context_mount_inode_relabel(defcontext_sid,
 807							     sbsec, cred);
 808			if (rc)
 809				goto out;
 810		}
 811
 812		sbsec->def_sid = defcontext_sid;
 813	}
 814
 
 815	rc = sb_finish_set_opts(sb);
 816out:
 817	mutex_unlock(&sbsec->lock);
 818	return rc;
 819out_double_mount:
 820	rc = -EINVAL;
 821	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 822	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 
 823	goto out;
 824}
 825
 826static int selinux_cmp_sb_context(const struct super_block *oldsb,
 827				    const struct super_block *newsb)
 828{
 829	struct superblock_security_struct *old = oldsb->s_security;
 830	struct superblock_security_struct *new = newsb->s_security;
 831	char oldflags = old->flags & SE_MNTMASK;
 832	char newflags = new->flags & SE_MNTMASK;
 833
 834	if (oldflags != newflags)
 835		goto mismatch;
 836	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 837		goto mismatch;
 838	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 839		goto mismatch;
 840	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 841		goto mismatch;
 842	if (oldflags & ROOTCONTEXT_MNT) {
 843		struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
 844		struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
 845		if (oldroot->sid != newroot->sid)
 846			goto mismatch;
 847	}
 848	return 0;
 849mismatch:
 850	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
 851			    "different security settings for (dev %s, "
 852			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 853	return -EBUSY;
 854}
 855
 856static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 857					struct super_block *newsb)
 
 
 858{
 
 859	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 860	struct superblock_security_struct *newsbsec = newsb->s_security;
 861
 862	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 863	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 864	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 865
 866	/*
 867	 * if the parent was able to be mounted it clearly had no special lsm
 868	 * mount options.  thus we can safely deal with this superblock later
 869	 */
 870	if (!ss_initialized)
 871		return 0;
 872
 
 
 
 
 
 
 
 873	/* how can we clone if the old one wasn't set up?? */
 874	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 875
 876	/* if fs is reusing a sb, make sure that the contexts match */
 877	if (newsbsec->flags & SE_SBINITIALIZED)
 
 
 878		return selinux_cmp_sb_context(oldsb, newsb);
 
 879
 880	mutex_lock(&newsbsec->lock);
 881
 882	newsbsec->flags = oldsbsec->flags;
 883
 884	newsbsec->sid = oldsbsec->sid;
 885	newsbsec->def_sid = oldsbsec->def_sid;
 886	newsbsec->behavior = oldsbsec->behavior;
 887
 
 
 
 
 
 
 
 
 
 
 
 
 888	if (set_context) {
 889		u32 sid = oldsbsec->mntpoint_sid;
 890
 891		if (!set_fscontext)
 892			newsbsec->sid = sid;
 893		if (!set_rootcontext) {
 894			struct inode *newinode = newsb->s_root->d_inode;
 895			struct inode_security_struct *newisec = newinode->i_security;
 896			newisec->sid = sid;
 897		}
 898		newsbsec->mntpoint_sid = sid;
 899	}
 900	if (set_rootcontext) {
 901		const struct inode *oldinode = oldsb->s_root->d_inode;
 902		const struct inode_security_struct *oldisec = oldinode->i_security;
 903		struct inode *newinode = newsb->s_root->d_inode;
 904		struct inode_security_struct *newisec = newinode->i_security;
 905
 906		newisec->sid = oldisec->sid;
 907	}
 908
 909	sb_finish_set_opts(newsb);
 
 910	mutex_unlock(&newsbsec->lock);
 911	return 0;
 912}
 913
 914static int selinux_parse_opts_str(char *options,
 915				  struct security_mnt_opts *opts)
 916{
 917	char *p;
 918	char *context = NULL, *defcontext = NULL;
 919	char *fscontext = NULL, *rootcontext = NULL;
 920	int rc, num_mnt_opts = 0;
 921
 922	opts->num_mnt_opts = 0;
 
 923
 924	/* Standard string-based options. */
 925	while ((p = strsep(&options, "|")) != NULL) {
 926		int token;
 927		substring_t args[MAX_OPT_ARGS];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928
 929		if (!*p)
 930			continue;
 931
 932		token = match_token(p, tokens, args);
 933
 934		switch (token) {
 935		case Opt_context:
 936			if (context || defcontext) {
 937				rc = -EINVAL;
 938				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 939				goto out_err;
 940			}
 941			context = match_strdup(&args[0]);
 942			if (!context) {
 943				rc = -ENOMEM;
 944				goto out_err;
 945			}
 946			break;
 947
 948		case Opt_fscontext:
 949			if (fscontext) {
 950				rc = -EINVAL;
 951				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 952				goto out_err;
 953			}
 954			fscontext = match_strdup(&args[0]);
 955			if (!fscontext) {
 956				rc = -ENOMEM;
 957				goto out_err;
 958			}
 959			break;
 960
 961		case Opt_rootcontext:
 962			if (rootcontext) {
 963				rc = -EINVAL;
 964				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 965				goto out_err;
 966			}
 967			rootcontext = match_strdup(&args[0]);
 968			if (!rootcontext) {
 969				rc = -ENOMEM;
 970				goto out_err;
 971			}
 972			break;
 973
 974		case Opt_defcontext:
 975			if (context || defcontext) {
 976				rc = -EINVAL;
 977				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 978				goto out_err;
 979			}
 980			defcontext = match_strdup(&args[0]);
 981			if (!defcontext) {
 982				rc = -ENOMEM;
 983				goto out_err;
 984			}
 985			break;
 986		case Opt_labelsupport:
 987			break;
 988		default:
 989			rc = -EINVAL;
 990			printk(KERN_WARNING "SELinux:  unknown mount option\n");
 991			goto out_err;
 992
 993		}
 994	}
 995
 996	rc = -ENOMEM;
 997	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
 998	if (!opts->mnt_opts)
 999		goto out_err;
1000
1001	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1002	if (!opts->mnt_opts_flags) {
1003		kfree(opts->mnt_opts);
1004		goto out_err;
 
 
1005	}
1006
1007	if (fscontext) {
1008		opts->mnt_opts[num_mnt_opts] = fscontext;
1009		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1010	}
1011	if (context) {
1012		opts->mnt_opts[num_mnt_opts] = context;
1013		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1014	}
1015	if (rootcontext) {
1016		opts->mnt_opts[num_mnt_opts] = rootcontext;
1017		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1018	}
1019	if (defcontext) {
1020		opts->mnt_opts[num_mnt_opts] = defcontext;
1021		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1022	}
1023
1024	opts->num_mnt_opts = num_mnt_opts;
1025	return 0;
1026
1027out_err:
1028	kfree(context);
1029	kfree(defcontext);
1030	kfree(fscontext);
1031	kfree(rootcontext);
1032	return rc;
1033}
1034/*
1035 * string mount options parsing and call set the sbsec
1036 */
1037static int superblock_doinit(struct super_block *sb, void *data)
1038{
1039	int rc = 0;
1040	char *options = data;
1041	struct security_mnt_opts opts;
1042
1043	security_init_mnt_opts(&opts);
1044
1045	if (!data)
1046		goto out;
1047
1048	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1049
1050	rc = selinux_parse_opts_str(options, &opts);
1051	if (rc)
1052		goto out_err;
1053
1054out:
1055	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1056
1057out_err:
1058	security_free_mnt_opts(&opts);
1059	return rc;
1060}
1061
1062static void selinux_write_opts(struct seq_file *m,
1063			       struct security_mnt_opts *opts)
1064{
1065	int i;
1066	char *prefix;
1067
1068	for (i = 0; i < opts->num_mnt_opts; i++) {
1069		char *has_comma;
1070
1071		if (opts->mnt_opts[i])
1072			has_comma = strchr(opts->mnt_opts[i], ',');
1073		else
1074			has_comma = NULL;
1075
1076		switch (opts->mnt_opts_flags[i]) {
1077		case CONTEXT_MNT:
1078			prefix = CONTEXT_STR;
1079			break;
1080		case FSCONTEXT_MNT:
1081			prefix = FSCONTEXT_STR;
1082			break;
1083		case ROOTCONTEXT_MNT:
1084			prefix = ROOTCONTEXT_STR;
1085			break;
1086		case DEFCONTEXT_MNT:
1087			prefix = DEFCONTEXT_STR;
1088			break;
1089		case SBLABEL_MNT:
1090			seq_putc(m, ',');
1091			seq_puts(m, LABELSUPP_STR);
1092			continue;
1093		default:
1094			BUG();
1095			return;
1096		};
1097		/* we need a comma before each option */
1098		seq_putc(m, ',');
1099		seq_puts(m, prefix);
1100		if (has_comma)
1101			seq_putc(m, '\"');
1102		seq_puts(m, opts->mnt_opts[i]);
1103		if (has_comma)
1104			seq_putc(m, '\"');
1105	}
 
 
1106}
1107
1108static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1109{
1110	struct security_mnt_opts opts;
1111	int rc;
1112
1113	rc = selinux_get_mnt_opts(sb, &opts);
1114	if (rc) {
1115		/* before policy load we may get EINVAL, don't show anything */
1116		if (rc == -EINVAL)
1117			rc = 0;
1118		return rc;
1119	}
1120
1121	selinux_write_opts(m, &opts);
 
1122
1123	security_free_mnt_opts(&opts);
1124
1125	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1126}
1127
1128static inline u16 inode_mode_to_security_class(umode_t mode)
1129{
1130	switch (mode & S_IFMT) {
1131	case S_IFSOCK:
1132		return SECCLASS_SOCK_FILE;
1133	case S_IFLNK:
1134		return SECCLASS_LNK_FILE;
1135	case S_IFREG:
1136		return SECCLASS_FILE;
1137	case S_IFBLK:
1138		return SECCLASS_BLK_FILE;
1139	case S_IFDIR:
1140		return SECCLASS_DIR;
1141	case S_IFCHR:
1142		return SECCLASS_CHR_FILE;
1143	case S_IFIFO:
1144		return SECCLASS_FIFO_FILE;
1145
1146	}
1147
1148	return SECCLASS_FILE;
1149}
1150
1151static inline int default_protocol_stream(int protocol)
1152{
1153	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1154}
1155
1156static inline int default_protocol_dgram(int protocol)
1157{
1158	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1159}
1160
1161static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1162{
 
 
1163	switch (family) {
1164	case PF_UNIX:
1165		switch (type) {
1166		case SOCK_STREAM:
1167		case SOCK_SEQPACKET:
1168			return SECCLASS_UNIX_STREAM_SOCKET;
1169		case SOCK_DGRAM:
 
1170			return SECCLASS_UNIX_DGRAM_SOCKET;
1171		}
1172		break;
1173	case PF_INET:
1174	case PF_INET6:
1175		switch (type) {
1176		case SOCK_STREAM:
 
1177			if (default_protocol_stream(protocol))
1178				return SECCLASS_TCP_SOCKET;
 
 
1179			else
1180				return SECCLASS_RAWIP_SOCKET;
1181		case SOCK_DGRAM:
1182			if (default_protocol_dgram(protocol))
1183				return SECCLASS_UDP_SOCKET;
 
 
 
1184			else
1185				return SECCLASS_RAWIP_SOCKET;
1186		case SOCK_DCCP:
1187			return SECCLASS_DCCP_SOCKET;
1188		default:
1189			return SECCLASS_RAWIP_SOCKET;
1190		}
1191		break;
1192	case PF_NETLINK:
1193		switch (protocol) {
1194		case NETLINK_ROUTE:
1195			return SECCLASS_NETLINK_ROUTE_SOCKET;
1196		case NETLINK_FIREWALL:
1197			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1198		case NETLINK_SOCK_DIAG:
1199			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1200		case NETLINK_NFLOG:
1201			return SECCLASS_NETLINK_NFLOG_SOCKET;
1202		case NETLINK_XFRM:
1203			return SECCLASS_NETLINK_XFRM_SOCKET;
1204		case NETLINK_SELINUX:
1205			return SECCLASS_NETLINK_SELINUX_SOCKET;
 
 
1206		case NETLINK_AUDIT:
1207			return SECCLASS_NETLINK_AUDIT_SOCKET;
1208		case NETLINK_IP6_FW:
1209			return SECCLASS_NETLINK_IP6FW_SOCKET;
 
 
 
 
1210		case NETLINK_DNRTMSG:
1211			return SECCLASS_NETLINK_DNRT_SOCKET;
1212		case NETLINK_KOBJECT_UEVENT:
1213			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
 
 
 
 
 
 
 
 
1214		default:
1215			return SECCLASS_NETLINK_SOCKET;
1216		}
1217	case PF_PACKET:
1218		return SECCLASS_PACKET_SOCKET;
1219	case PF_KEY:
1220		return SECCLASS_KEY_SOCKET;
1221	case PF_APPLETALK:
1222		return SECCLASS_APPLETALK_SOCKET;
1223	}
1224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1225	return SECCLASS_SOCKET;
1226}
1227
1228#ifdef CONFIG_PROC_FS
1229static int selinux_proc_get_sid(struct dentry *dentry,
1230				u16 tclass,
1231				u32 *sid)
1232{
1233	int rc;
 
1234	char *buffer, *path;
1235
1236	buffer = (char *)__get_free_page(GFP_KERNEL);
1237	if (!buffer)
1238		return -ENOMEM;
1239
1240	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1241	if (IS_ERR(path))
1242		rc = PTR_ERR(path);
1243	else {
1244		/* each process gets a /proc/PID/ entry. Strip off the
1245		 * PID part to get a valid selinux labeling.
1246		 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1247		while (path[1] >= '0' && path[1] <= '9') {
1248			path[1] = '/';
1249			path++;
 
 
 
 
 
 
 
 
 
1250		}
1251		rc = security_genfs_sid("proc", path, tclass, sid);
1252	}
1253	free_page((unsigned long)buffer);
1254	return rc;
1255}
1256#else
1257static int selinux_proc_get_sid(struct dentry *dentry,
1258				u16 tclass,
1259				u32 *sid)
1260{
1261	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1262}
1263#endif
1264
1265/* The inode's security attributes must be initialized before first use. */
1266static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1267{
1268	struct superblock_security_struct *sbsec = NULL;
1269	struct inode_security_struct *isec = inode->i_security;
1270	u32 sid;
 
1271	struct dentry *dentry;
1272#define INITCONTEXTLEN 255
1273	char *context = NULL;
1274	unsigned len = 0;
1275	int rc = 0;
1276
1277	if (isec->initialized)
1278		goto out;
1279
1280	mutex_lock(&isec->lock);
1281	if (isec->initialized)
1282		goto out_unlock;
1283
 
 
 
1284	sbsec = inode->i_sb->s_security;
1285	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1286		/* Defer initialization until selinux_complete_init,
1287		   after the initial policy is loaded and the security
1288		   server is ready to handle calls. */
1289		spin_lock(&sbsec->isec_lock);
1290		if (list_empty(&isec->list))
1291			list_add(&isec->list, &sbsec->isec_head);
1292		spin_unlock(&sbsec->isec_lock);
1293		goto out_unlock;
1294	}
1295
 
 
 
 
 
 
1296	switch (sbsec->behavior) {
1297	case SECURITY_FS_USE_NATIVE:
1298		break;
1299	case SECURITY_FS_USE_XATTR:
1300		if (!inode->i_op->getxattr) {
1301			isec->sid = sbsec->def_sid;
1302			break;
1303		}
1304
1305		/* Need a dentry, since the xattr API requires one.
1306		   Life would be simpler if we could just pass the inode. */
1307		if (opt_dentry) {
1308			/* Called from d_instantiate or d_splice_alias. */
1309			dentry = dget(opt_dentry);
1310		} else {
1311			/* Called from selinux_complete_init, try to find a dentry. */
 
 
 
 
 
1312			dentry = d_find_alias(inode);
 
 
1313		}
1314		if (!dentry) {
1315			/*
1316			 * this is can be hit on boot when a file is accessed
1317			 * before the policy is loaded.  When we load policy we
1318			 * may find inodes that have no dentry on the
1319			 * sbsec->isec_head list.  No reason to complain as these
1320			 * will get fixed up the next time we go through
1321			 * inode_doinit with a dentry, before these inodes could
1322			 * be used again by userspace.
1323			 */
1324			goto out_unlock;
1325		}
1326
1327		len = INITCONTEXTLEN;
1328		context = kmalloc(len+1, GFP_NOFS);
1329		if (!context) {
1330			rc = -ENOMEM;
1331			dput(dentry);
1332			goto out_unlock;
1333		}
1334		context[len] = '\0';
1335		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1336					   context, len);
1337		if (rc == -ERANGE) {
1338			kfree(context);
1339
1340			/* Need a larger buffer.  Query for the right size. */
1341			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1342						   NULL, 0);
1343			if (rc < 0) {
1344				dput(dentry);
1345				goto out_unlock;
1346			}
1347			len = rc;
1348			context = kmalloc(len+1, GFP_NOFS);
1349			if (!context) {
1350				rc = -ENOMEM;
1351				dput(dentry);
1352				goto out_unlock;
1353			}
1354			context[len] = '\0';
1355			rc = inode->i_op->getxattr(dentry,
1356						   XATTR_NAME_SELINUX,
1357						   context, len);
1358		}
1359		dput(dentry);
1360		if (rc < 0) {
1361			if (rc != -ENODATA) {
1362				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1363				       "%d for dev=%s ino=%ld\n", __func__,
1364				       -rc, inode->i_sb->s_id, inode->i_ino);
1365				kfree(context);
1366				goto out_unlock;
1367			}
1368			/* Map ENODATA to the default file SID */
1369			sid = sbsec->def_sid;
1370			rc = 0;
1371		} else {
1372			rc = security_context_to_sid_default(context, rc, &sid,
1373							     sbsec->def_sid,
1374							     GFP_NOFS);
1375			if (rc) {
1376				char *dev = inode->i_sb->s_id;
1377				unsigned long ino = inode->i_ino;
1378
1379				if (rc == -EINVAL) {
1380					if (printk_ratelimit())
1381						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1382							"context=%s.  This indicates you may need to relabel the inode or the "
1383							"filesystem in question.\n", ino, dev, context);
1384				} else {
1385					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1386					       "returned %d for dev=%s ino=%ld\n",
1387					       __func__, context, -rc, dev, ino);
1388				}
1389				kfree(context);
1390				/* Leave with the unlabeled SID */
1391				rc = 0;
1392				break;
1393			}
1394		}
1395		kfree(context);
1396		isec->sid = sid;
1397		break;
1398	case SECURITY_FS_USE_TASK:
1399		isec->sid = isec->task_sid;
1400		break;
1401	case SECURITY_FS_USE_TRANS:
1402		/* Default to the fs SID. */
1403		isec->sid = sbsec->sid;
1404
1405		/* Try to obtain a transition SID. */
1406		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1407		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1408					     isec->sclass, NULL, &sid);
1409		if (rc)
1410			goto out_unlock;
1411		isec->sid = sid;
1412		break;
1413	case SECURITY_FS_USE_MNTPOINT:
1414		isec->sid = sbsec->mntpoint_sid;
1415		break;
1416	default:
1417		/* Default to the fs superblock SID. */
1418		isec->sid = sbsec->sid;
1419
1420		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1421			/* We must have a dentry to determine the label on
1422			 * procfs inodes */
1423			if (opt_dentry)
1424				/* Called from d_instantiate or
1425				 * d_splice_alias. */
1426				dentry = dget(opt_dentry);
1427			else
1428				/* Called from selinux_complete_init, try to
1429				 * find a dentry. */
 
 
1430				dentry = d_find_alias(inode);
 
 
 
1431			/*
1432			 * This can be hit on boot when a file is accessed
1433			 * before the policy is loaded.  When we load policy we
1434			 * may find inodes that have no dentry on the
1435			 * sbsec->isec_head list.  No reason to complain as
1436			 * these will get fixed up the next time we go through
1437			 * inode_doinit() with a dentry, before these inodes
1438			 * could be used again by userspace.
1439			 */
1440			if (!dentry)
1441				goto out_unlock;
1442			isec->sclass = inode_mode_to_security_class(inode->i_mode);
1443			rc = selinux_proc_get_sid(dentry, isec->sclass, &sid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1444			dput(dentry);
1445			if (rc)
1446				goto out_unlock;
1447			isec->sid = sid;
1448		}
1449		break;
1450	}
1451
1452	isec->initialized = 1;
 
 
 
 
 
 
 
 
 
 
1453
1454out_unlock:
1455	mutex_unlock(&isec->lock);
1456out:
1457	if (isec->sclass == SECCLASS_FILE)
1458		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1459	return rc;
1460}
1461
1462/* Convert a Linux signal to an access vector. */
1463static inline u32 signal_to_av(int sig)
1464{
1465	u32 perm = 0;
1466
1467	switch (sig) {
1468	case SIGCHLD:
1469		/* Commonly granted from child to parent. */
1470		perm = PROCESS__SIGCHLD;
1471		break;
1472	case SIGKILL:
1473		/* Cannot be caught or ignored */
1474		perm = PROCESS__SIGKILL;
1475		break;
1476	case SIGSTOP:
1477		/* Cannot be caught or ignored */
1478		perm = PROCESS__SIGSTOP;
1479		break;
1480	default:
1481		/* All other signals. */
1482		perm = PROCESS__SIGNAL;
1483		break;
1484	}
1485
1486	return perm;
1487}
1488
1489/*
1490 * Check permission between a pair of credentials
1491 * fork check, ptrace check, etc.
1492 */
1493static int cred_has_perm(const struct cred *actor,
1494			 const struct cred *target,
1495			 u32 perms)
1496{
1497	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1498
1499	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1500}
1501
1502/*
1503 * Check permission between a pair of tasks, e.g. signal checks,
1504 * fork check, ptrace check, etc.
1505 * tsk1 is the actor and tsk2 is the target
1506 * - this uses the default subjective creds of tsk1
1507 */
1508static int task_has_perm(const struct task_struct *tsk1,
1509			 const struct task_struct *tsk2,
1510			 u32 perms)
1511{
1512	const struct task_security_struct *__tsec1, *__tsec2;
1513	u32 sid1, sid2;
1514
1515	rcu_read_lock();
1516	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1517	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1518	rcu_read_unlock();
1519	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1520}
1521
1522/*
1523 * Check permission between current and another task, e.g. signal checks,
1524 * fork check, ptrace check, etc.
1525 * current is the actor and tsk2 is the target
1526 * - this uses current's subjective creds
1527 */
1528static int current_has_perm(const struct task_struct *tsk,
1529			    u32 perms)
1530{
1531	u32 sid, tsid;
1532
1533	sid = current_sid();
1534	tsid = task_sid(tsk);
1535	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1536}
1537
1538#if CAP_LAST_CAP > 63
1539#error Fix SELinux to handle capabilities > 63.
1540#endif
1541
1542/* Check whether a task is allowed to use a capability. */
1543static int cred_has_capability(const struct cred *cred,
1544			       int cap, int audit)
1545{
1546	struct common_audit_data ad;
1547	struct av_decision avd;
1548	u16 sclass;
1549	u32 sid = cred_sid(cred);
1550	u32 av = CAP_TO_MASK(cap);
1551	int rc;
1552
1553	ad.type = LSM_AUDIT_DATA_CAP;
1554	ad.u.cap = cap;
1555
1556	switch (CAP_TO_INDEX(cap)) {
1557	case 0:
1558		sclass = SECCLASS_CAPABILITY;
1559		break;
1560	case 1:
1561		sclass = SECCLASS_CAPABILITY2;
1562		break;
1563	default:
1564		printk(KERN_ERR
1565		       "SELinux:  out of range capability %d\n", cap);
1566		BUG();
1567		return -EINVAL;
1568	}
1569
1570	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1571	if (audit == SECURITY_CAP_AUDIT) {
1572		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
 
 
1573		if (rc2)
1574			return rc2;
1575	}
1576	return rc;
1577}
1578
1579/* Check whether a task is allowed to use a system operation. */
1580static int task_has_system(struct task_struct *tsk,
1581			   u32 perms)
1582{
1583	u32 sid = task_sid(tsk);
1584
1585	return avc_has_perm(sid, SECINITSID_KERNEL,
1586			    SECCLASS_SYSTEM, perms, NULL);
1587}
1588
1589/* Check whether a task has a particular permission to an inode.
1590   The 'adp' parameter is optional and allows other audit
1591   data to be passed (e.g. the dentry). */
1592static int inode_has_perm(const struct cred *cred,
1593			  struct inode *inode,
1594			  u32 perms,
1595			  struct common_audit_data *adp)
1596{
1597	struct inode_security_struct *isec;
1598	u32 sid;
1599
1600	validate_creds(cred);
1601
1602	if (unlikely(IS_PRIVATE(inode)))
1603		return 0;
1604
1605	sid = cred_sid(cred);
1606	isec = inode->i_security;
1607
1608	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
 
1609}
1610
1611/* Same as inode_has_perm, but pass explicit audit data containing
1612   the dentry to help the auditing code to more easily generate the
1613   pathname if needed. */
1614static inline int dentry_has_perm(const struct cred *cred,
1615				  struct dentry *dentry,
1616				  u32 av)
1617{
1618	struct inode *inode = dentry->d_inode;
1619	struct common_audit_data ad;
1620
1621	ad.type = LSM_AUDIT_DATA_DENTRY;
1622	ad.u.dentry = dentry;
 
1623	return inode_has_perm(cred, inode, av, &ad);
1624}
1625
1626/* Same as inode_has_perm, but pass explicit audit data containing
1627   the path to help the auditing code to more easily generate the
1628   pathname if needed. */
1629static inline int path_has_perm(const struct cred *cred,
1630				struct path *path,
1631				u32 av)
1632{
1633	struct inode *inode = path->dentry->d_inode;
1634	struct common_audit_data ad;
1635
1636	ad.type = LSM_AUDIT_DATA_PATH;
1637	ad.u.path = *path;
 
1638	return inode_has_perm(cred, inode, av, &ad);
1639}
1640
1641/* Same as path_has_perm, but uses the inode from the file struct. */
1642static inline int file_path_has_perm(const struct cred *cred,
1643				     struct file *file,
1644				     u32 av)
1645{
1646	struct common_audit_data ad;
1647
1648	ad.type = LSM_AUDIT_DATA_PATH;
1649	ad.u.path = file->f_path;
1650	return inode_has_perm(cred, file_inode(file), av, &ad);
1651}
1652
 
 
 
 
1653/* Check whether a task can use an open file descriptor to
1654   access an inode in a given way.  Check access to the
1655   descriptor itself, and then use dentry_has_perm to
1656   check a particular permission to the file.
1657   Access to the descriptor is implicitly granted if it
1658   has the same SID as the process.  If av is zero, then
1659   access to the file is not checked, e.g. for cases
1660   where only the descriptor is affected like seek. */
1661static int file_has_perm(const struct cred *cred,
1662			 struct file *file,
1663			 u32 av)
1664{
1665	struct file_security_struct *fsec = file->f_security;
1666	struct inode *inode = file_inode(file);
1667	struct common_audit_data ad;
1668	u32 sid = cred_sid(cred);
1669	int rc;
1670
1671	ad.type = LSM_AUDIT_DATA_PATH;
1672	ad.u.path = file->f_path;
1673
1674	if (sid != fsec->sid) {
1675		rc = avc_has_perm(sid, fsec->sid,
 
1676				  SECCLASS_FD,
1677				  FD__USE,
1678				  &ad);
1679		if (rc)
1680			goto out;
1681	}
1682
 
 
 
 
 
 
1683	/* av is zero if only checking access to the descriptor. */
1684	rc = 0;
1685	if (av)
1686		rc = inode_has_perm(cred, inode, av, &ad);
1687
1688out:
1689	return rc;
1690}
1691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692/* Check whether a task can create a file. */
1693static int may_create(struct inode *dir,
1694		      struct dentry *dentry,
1695		      u16 tclass)
1696{
1697	const struct task_security_struct *tsec = current_security();
1698	struct inode_security_struct *dsec;
1699	struct superblock_security_struct *sbsec;
1700	u32 sid, newsid;
1701	struct common_audit_data ad;
1702	int rc;
1703
1704	dsec = dir->i_security;
1705	sbsec = dir->i_sb->s_security;
1706
1707	sid = tsec->sid;
1708	newsid = tsec->create_sid;
1709
1710	ad.type = LSM_AUDIT_DATA_DENTRY;
1711	ad.u.dentry = dentry;
1712
1713	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
 
1714			  DIR__ADD_NAME | DIR__SEARCH,
1715			  &ad);
1716	if (rc)
1717		return rc;
1718
1719	if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1720		rc = security_transition_sid(sid, dsec->sid, tclass,
1721					     &dentry->d_name, &newsid);
1722		if (rc)
1723			return rc;
1724	}
1725
1726	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
 
1727	if (rc)
1728		return rc;
1729
1730	return avc_has_perm(newsid, sbsec->sid,
 
1731			    SECCLASS_FILESYSTEM,
1732			    FILESYSTEM__ASSOCIATE, &ad);
1733}
1734
1735/* Check whether a task can create a key. */
1736static int may_create_key(u32 ksid,
1737			  struct task_struct *ctx)
1738{
1739	u32 sid = task_sid(ctx);
1740
1741	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1742}
1743
1744#define MAY_LINK	0
1745#define MAY_UNLINK	1
1746#define MAY_RMDIR	2
1747
1748/* Check whether a task can link, unlink, or rmdir a file/directory. */
1749static int may_link(struct inode *dir,
1750		    struct dentry *dentry,
1751		    int kind)
1752
1753{
1754	struct inode_security_struct *dsec, *isec;
1755	struct common_audit_data ad;
1756	u32 sid = current_sid();
1757	u32 av;
1758	int rc;
1759
1760	dsec = dir->i_security;
1761	isec = dentry->d_inode->i_security;
1762
1763	ad.type = LSM_AUDIT_DATA_DENTRY;
1764	ad.u.dentry = dentry;
1765
1766	av = DIR__SEARCH;
1767	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1768	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
 
1769	if (rc)
1770		return rc;
1771
1772	switch (kind) {
1773	case MAY_LINK:
1774		av = FILE__LINK;
1775		break;
1776	case MAY_UNLINK:
1777		av = FILE__UNLINK;
1778		break;
1779	case MAY_RMDIR:
1780		av = DIR__RMDIR;
1781		break;
1782	default:
1783		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1784			__func__, kind);
1785		return 0;
1786	}
1787
1788	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
 
1789	return rc;
1790}
1791
1792static inline int may_rename(struct inode *old_dir,
1793			     struct dentry *old_dentry,
1794			     struct inode *new_dir,
1795			     struct dentry *new_dentry)
1796{
1797	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1798	struct common_audit_data ad;
1799	u32 sid = current_sid();
1800	u32 av;
1801	int old_is_dir, new_is_dir;
1802	int rc;
1803
1804	old_dsec = old_dir->i_security;
1805	old_isec = old_dentry->d_inode->i_security;
1806	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1807	new_dsec = new_dir->i_security;
1808
1809	ad.type = LSM_AUDIT_DATA_DENTRY;
1810
1811	ad.u.dentry = old_dentry;
1812	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
 
1813			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1814	if (rc)
1815		return rc;
1816	rc = avc_has_perm(sid, old_isec->sid,
 
1817			  old_isec->sclass, FILE__RENAME, &ad);
1818	if (rc)
1819		return rc;
1820	if (old_is_dir && new_dir != old_dir) {
1821		rc = avc_has_perm(sid, old_isec->sid,
 
1822				  old_isec->sclass, DIR__REPARENT, &ad);
1823		if (rc)
1824			return rc;
1825	}
1826
1827	ad.u.dentry = new_dentry;
1828	av = DIR__ADD_NAME | DIR__SEARCH;
1829	if (new_dentry->d_inode)
1830		av |= DIR__REMOVE_NAME;
1831	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
 
1832	if (rc)
1833		return rc;
1834	if (new_dentry->d_inode) {
1835		new_isec = new_dentry->d_inode->i_security;
1836		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1837		rc = avc_has_perm(sid, new_isec->sid,
 
1838				  new_isec->sclass,
1839				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1840		if (rc)
1841			return rc;
1842	}
1843
1844	return 0;
1845}
1846
1847/* Check whether a task can perform a filesystem operation. */
1848static int superblock_has_perm(const struct cred *cred,
1849			       struct super_block *sb,
1850			       u32 perms,
1851			       struct common_audit_data *ad)
1852{
1853	struct superblock_security_struct *sbsec;
1854	u32 sid = cred_sid(cred);
1855
1856	sbsec = sb->s_security;
1857	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
 
1858}
1859
1860/* Convert a Linux mode and permission mask to an access vector. */
1861static inline u32 file_mask_to_av(int mode, int mask)
1862{
1863	u32 av = 0;
1864
1865	if (!S_ISDIR(mode)) {
1866		if (mask & MAY_EXEC)
1867			av |= FILE__EXECUTE;
1868		if (mask & MAY_READ)
1869			av |= FILE__READ;
1870
1871		if (mask & MAY_APPEND)
1872			av |= FILE__APPEND;
1873		else if (mask & MAY_WRITE)
1874			av |= FILE__WRITE;
1875
1876	} else {
1877		if (mask & MAY_EXEC)
1878			av |= DIR__SEARCH;
1879		if (mask & MAY_WRITE)
1880			av |= DIR__WRITE;
1881		if (mask & MAY_READ)
1882			av |= DIR__READ;
1883	}
1884
1885	return av;
1886}
1887
1888/* Convert a Linux file to an access vector. */
1889static inline u32 file_to_av(struct file *file)
1890{
1891	u32 av = 0;
1892
1893	if (file->f_mode & FMODE_READ)
1894		av |= FILE__READ;
1895	if (file->f_mode & FMODE_WRITE) {
1896		if (file->f_flags & O_APPEND)
1897			av |= FILE__APPEND;
1898		else
1899			av |= FILE__WRITE;
1900	}
1901	if (!av) {
1902		/*
1903		 * Special file opened with flags 3 for ioctl-only use.
1904		 */
1905		av = FILE__IOCTL;
1906	}
1907
1908	return av;
1909}
1910
1911/*
1912 * Convert a file to an access vector and include the correct open
1913 * open permission.
1914 */
1915static inline u32 open_file_to_av(struct file *file)
1916{
1917	u32 av = file_to_av(file);
 
1918
1919	if (selinux_policycap_openperm)
 
1920		av |= FILE__OPEN;
1921
1922	return av;
1923}
1924
1925/* Hook functions begin here. */
1926
1927static int selinux_ptrace_access_check(struct task_struct *child,
1928				     unsigned int mode)
 
 
 
 
 
 
 
 
 
 
1929{
 
 
 
1930	int rc;
1931
1932	rc = cap_ptrace_access_check(child, mode);
1933	if (rc)
1934		return rc;
1935
1936	if (mode & PTRACE_MODE_READ) {
1937		u32 sid = current_sid();
1938		u32 csid = task_sid(child);
1939		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1940	}
1941
1942	return current_has_perm(child, PROCESS__PTRACE);
 
 
1943}
1944
1945static int selinux_ptrace_traceme(struct task_struct *parent)
 
1946{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1947	int rc;
1948
1949	rc = cap_ptrace_traceme(parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1950	if (rc)
1951		return rc;
 
 
 
 
 
 
 
 
 
 
1952
1953	return task_has_perm(parent, current, PROCESS__PTRACE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1954}
1955
1956static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1957			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1958{
1959	int error;
1960
1961	error = current_has_perm(target, PROCESS__GETCAP);
1962	if (error)
1963		return error;
1964
1965	return cap_capget(target, effective, inheritable, permitted);
1966}
1967
1968static int selinux_capset(struct cred *new, const struct cred *old,
1969			  const kernel_cap_t *effective,
1970			  const kernel_cap_t *inheritable,
1971			  const kernel_cap_t *permitted)
1972{
1973	int error;
1974
1975	error = cap_capset(new, old,
1976				      effective, inheritable, permitted);
1977	if (error)
1978		return error;
1979
1980	return cred_has_perm(old, new, PROCESS__SETCAP);
1981}
1982
1983/*
1984 * (This comment used to live with the selinux_task_setuid hook,
1985 * which was removed).
1986 *
1987 * Since setuid only affects the current process, and since the SELinux
1988 * controls are not based on the Linux identity attributes, SELinux does not
1989 * need to control this operation.  However, SELinux does control the use of
1990 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1991 */
1992
1993static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1994			   int cap, int audit)
1995{
1996	int rc;
1997
1998	rc = cap_capable(cred, ns, cap, audit);
1999	if (rc)
2000		return rc;
2001
2002	return cred_has_capability(cred, cap, audit);
2003}
2004
2005static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2006{
2007	const struct cred *cred = current_cred();
2008	int rc = 0;
2009
2010	if (!sb)
2011		return 0;
2012
2013	switch (cmds) {
2014	case Q_SYNC:
2015	case Q_QUOTAON:
2016	case Q_QUOTAOFF:
2017	case Q_SETINFO:
2018	case Q_SETQUOTA:
2019		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2020		break;
2021	case Q_GETFMT:
2022	case Q_GETINFO:
2023	case Q_GETQUOTA:
2024		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2025		break;
2026	default:
2027		rc = 0;  /* let the kernel handle invalid cmds */
2028		break;
2029	}
2030	return rc;
2031}
2032
2033static int selinux_quota_on(struct dentry *dentry)
2034{
2035	const struct cred *cred = current_cred();
2036
2037	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2038}
2039
2040static int selinux_syslog(int type)
2041{
2042	int rc;
2043
2044	switch (type) {
2045	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2046	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2047		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2048		break;
 
2049	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2050	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2051	/* Set level of messages printed to console */
2052	case SYSLOG_ACTION_CONSOLE_LEVEL:
2053		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2054		break;
2055	case SYSLOG_ACTION_CLOSE:	/* Close log */
2056	case SYSLOG_ACTION_OPEN:	/* Open log */
2057	case SYSLOG_ACTION_READ:	/* Read from log */
2058	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
2059	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
2060	default:
2061		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2062		break;
2063	}
2064	return rc;
2065}
2066
2067/*
2068 * Check that a process has enough memory to allocate a new virtual
2069 * mapping. 0 means there is enough memory for the allocation to
2070 * succeed and -ENOMEM implies there is not.
2071 *
2072 * Do not audit the selinux permission check, as this is applied to all
2073 * processes that allocate mappings.
2074 */
2075static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2076{
2077	int rc, cap_sys_admin = 0;
2078
2079	rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2080			     SECURITY_CAP_NOAUDIT);
2081	if (rc == 0)
2082		cap_sys_admin = 1;
2083
2084	return __vm_enough_memory(mm, pages, cap_sys_admin);
2085}
2086
2087/* binprm security operations */
2088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2089static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2090{
2091	const struct task_security_struct *old_tsec;
2092	struct task_security_struct *new_tsec;
2093	struct inode_security_struct *isec;
2094	struct common_audit_data ad;
2095	struct inode *inode = file_inode(bprm->file);
2096	int rc;
2097
2098	rc = cap_bprm_set_creds(bprm);
2099	if (rc)
2100		return rc;
2101
2102	/* SELinux context only depends on initial program or script and not
2103	 * the script interpreter */
2104	if (bprm->cred_prepared)
2105		return 0;
2106
2107	old_tsec = current_security();
2108	new_tsec = bprm->cred->security;
2109	isec = inode->i_security;
2110
2111	/* Default to the current task SID. */
2112	new_tsec->sid = old_tsec->sid;
2113	new_tsec->osid = old_tsec->sid;
2114
2115	/* Reset fs, key, and sock SIDs on execve. */
2116	new_tsec->create_sid = 0;
2117	new_tsec->keycreate_sid = 0;
2118	new_tsec->sockcreate_sid = 0;
2119
2120	if (old_tsec->exec_sid) {
2121		new_tsec->sid = old_tsec->exec_sid;
2122		/* Reset exec SID on execve. */
2123		new_tsec->exec_sid = 0;
2124
2125		/*
2126		 * Minimize confusion: if no_new_privs and a transition is
2127		 * explicitly requested, then fail the exec.
2128		 */
2129		if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
2130			return -EPERM;
2131	} else {
2132		/* Check for a default transition on this program. */
2133		rc = security_transition_sid(old_tsec->sid, isec->sid,
2134					     SECCLASS_PROCESS, NULL,
2135					     &new_tsec->sid);
2136		if (rc)
2137			return rc;
 
 
 
 
 
 
 
 
2138	}
2139
2140	ad.type = LSM_AUDIT_DATA_PATH;
2141	ad.u.path = bprm->file->f_path;
2142
2143	if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2144	    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2145		new_tsec->sid = old_tsec->sid;
2146
2147	if (new_tsec->sid == old_tsec->sid) {
2148		rc = avc_has_perm(old_tsec->sid, isec->sid,
 
2149				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2150		if (rc)
2151			return rc;
2152	} else {
2153		/* Check permissions for the transition. */
2154		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2155				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2156		if (rc)
2157			return rc;
2158
2159		rc = avc_has_perm(new_tsec->sid, isec->sid,
 
2160				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2161		if (rc)
2162			return rc;
2163
2164		/* Check for shared state */
2165		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2166			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2167					  SECCLASS_PROCESS, PROCESS__SHARE,
2168					  NULL);
2169			if (rc)
2170				return -EPERM;
2171		}
2172
2173		/* Make sure that anyone attempting to ptrace over a task that
2174		 * changes its SID has the appropriate permit */
2175		if (bprm->unsafe &
2176		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2177			struct task_struct *tracer;
2178			struct task_security_struct *sec;
2179			u32 ptsid = 0;
2180
2181			rcu_read_lock();
2182			tracer = ptrace_parent(current);
2183			if (likely(tracer != NULL)) {
2184				sec = __task_cred(tracer)->security;
2185				ptsid = sec->sid;
2186			}
2187			rcu_read_unlock();
2188
2189			if (ptsid != 0) {
2190				rc = avc_has_perm(ptsid, new_tsec->sid,
 
2191						  SECCLASS_PROCESS,
2192						  PROCESS__PTRACE, NULL);
2193				if (rc)
2194					return -EPERM;
2195			}
2196		}
2197
2198		/* Clear any possibly unsafe personality bits on exec: */
2199		bprm->per_clear |= PER_CLEAR_ON_SETID;
2200	}
2201
2202	return 0;
2203}
2204
2205static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2206{
2207	const struct task_security_struct *tsec = current_security();
2208	u32 sid, osid;
2209	int atsecure = 0;
2210
2211	sid = tsec->sid;
2212	osid = tsec->osid;
2213
2214	if (osid != sid) {
2215		/* Enable secure mode for SIDs transitions unless
2216		   the noatsecure permission is granted between
2217		   the two SIDs, i.e. ahp returns 0. */
2218		atsecure = avc_has_perm(osid, sid,
2219					SECCLASS_PROCESS,
2220					PROCESS__NOATSECURE, NULL);
 
 
2221	}
2222
2223	return (atsecure || cap_bprm_secureexec(bprm));
2224}
2225
2226static int match_file(const void *p, struct file *file, unsigned fd)
2227{
2228	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2229}
2230
2231/* Derived from fs/exec.c:flush_old_files. */
2232static inline void flush_unauthorized_files(const struct cred *cred,
2233					    struct files_struct *files)
2234{
2235	struct file *file, *devnull = NULL;
2236	struct tty_struct *tty;
2237	int drop_tty = 0;
2238	unsigned n;
2239
2240	tty = get_current_tty();
2241	if (tty) {
2242		spin_lock(&tty_files_lock);
2243		if (!list_empty(&tty->tty_files)) {
2244			struct tty_file_private *file_priv;
2245
2246			/* Revalidate access to controlling tty.
2247			   Use file_path_has_perm on the tty path directly
2248			   rather than using file_has_perm, as this particular
2249			   open file may belong to another process and we are
2250			   only interested in the inode-based check here. */
2251			file_priv = list_first_entry(&tty->tty_files,
2252						struct tty_file_private, list);
2253			file = file_priv->file;
2254			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2255				drop_tty = 1;
2256		}
2257		spin_unlock(&tty_files_lock);
2258		tty_kref_put(tty);
2259	}
2260	/* Reset controlling tty. */
2261	if (drop_tty)
2262		no_tty();
2263
2264	/* Revalidate access to inherited open files. */
2265	n = iterate_fd(files, 0, match_file, cred);
2266	if (!n) /* none found? */
2267		return;
2268
2269	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2270	if (IS_ERR(devnull))
2271		devnull = NULL;
2272	/* replace all the matching ones with this */
2273	do {
2274		replace_fd(n - 1, devnull, 0);
2275	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2276	if (devnull)
2277		fput(devnull);
2278}
2279
2280/*
2281 * Prepare a process for imminent new credential changes due to exec
2282 */
2283static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2284{
2285	struct task_security_struct *new_tsec;
2286	struct rlimit *rlim, *initrlim;
2287	int rc, i;
2288
2289	new_tsec = bprm->cred->security;
2290	if (new_tsec->sid == new_tsec->osid)
2291		return;
2292
2293	/* Close files for which the new task SID is not authorized. */
2294	flush_unauthorized_files(bprm->cred, current->files);
2295
2296	/* Always clear parent death signal on SID transitions. */
2297	current->pdeath_signal = 0;
2298
2299	/* Check whether the new SID can inherit resource limits from the old
2300	 * SID.  If not, reset all soft limits to the lower of the current
2301	 * task's hard limit and the init task's soft limit.
2302	 *
2303	 * Note that the setting of hard limits (even to lower them) can be
2304	 * controlled by the setrlimit check.  The inclusion of the init task's
2305	 * soft limit into the computation is to avoid resetting soft limits
2306	 * higher than the default soft limit for cases where the default is
2307	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2308	 */
2309	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
 
2310			  PROCESS__RLIMITINH, NULL);
2311	if (rc) {
2312		/* protect against do_prlimit() */
2313		task_lock(current);
2314		for (i = 0; i < RLIM_NLIMITS; i++) {
2315			rlim = current->signal->rlim + i;
2316			initrlim = init_task.signal->rlim + i;
2317			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2318		}
2319		task_unlock(current);
2320		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
 
2321	}
2322}
2323
2324/*
2325 * Clean up the process immediately after the installation of new credentials
2326 * due to exec
2327 */
2328static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2329{
2330	const struct task_security_struct *tsec = current_security();
2331	struct itimerval itimer;
2332	u32 osid, sid;
2333	int rc, i;
2334
2335	osid = tsec->osid;
2336	sid = tsec->sid;
2337
2338	if (sid == osid)
2339		return;
2340
2341	/* Check whether the new SID can inherit signal state from the old SID.
2342	 * If not, clear itimers to avoid subsequent signal generation and
2343	 * flush and unblock signals.
2344	 *
2345	 * This must occur _after_ the task SID has been updated so that any
2346	 * kill done after the flush will be checked against the new SID.
2347	 */
2348	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
 
2349	if (rc) {
2350		memset(&itimer, 0, sizeof itimer);
2351		for (i = 0; i < 3; i++)
2352			do_setitimer(i, &itimer, NULL);
 
 
2353		spin_lock_irq(&current->sighand->siglock);
2354		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2355			__flush_signals(current);
 
2356			flush_signal_handlers(current, 1);
2357			sigemptyset(&current->blocked);
 
2358		}
2359		spin_unlock_irq(&current->sighand->siglock);
2360	}
2361
2362	/* Wake up the parent if it is waiting so that it can recheck
2363	 * wait permission to the new task SID. */
2364	read_lock(&tasklist_lock);
2365	__wake_up_parent(current, current->real_parent);
2366	read_unlock(&tasklist_lock);
2367}
2368
2369/* superblock security operations */
2370
2371static int selinux_sb_alloc_security(struct super_block *sb)
2372{
2373	return superblock_alloc_security(sb);
2374}
2375
2376static void selinux_sb_free_security(struct super_block *sb)
2377{
2378	superblock_free_security(sb);
2379}
2380
2381static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2382{
2383	if (plen > olen)
2384		return 0;
 
2385
2386	return !memcmp(prefix, option, plen);
 
 
 
 
 
 
2387}
2388
2389static inline int selinux_option(char *option, int len)
2390{
2391	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2392		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2393		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2394		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2395		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2396}
2397
2398static inline void take_option(char **to, char *from, int *first, int len)
2399{
2400	if (!*first) {
2401		**to = ',';
2402		*to += 1;
2403	} else
2404		*first = 0;
2405	memcpy(*to, from, len);
2406	*to += len;
2407}
2408
2409static inline void take_selinux_option(char **to, char *from, int *first,
2410				       int len)
2411{
2412	int current_size = 0;
2413
2414	if (!*first) {
2415		**to = '|';
2416		*to += 1;
2417	} else
2418		*first = 0;
2419
2420	while (current_size < len) {
2421		if (*from != '"') {
2422			**to = *from;
2423			*to += 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2424		}
2425		from += 1;
2426		current_size += 1;
 
2427	}
2428}
2429
2430static int selinux_sb_copy_data(char *orig, char *copy)
2431{
2432	int fnosec, fsec, rc = 0;
2433	char *in_save, *in_curr, *in_end;
2434	char *sec_curr, *nosec_save, *nosec;
2435	int open_quote = 0;
2436
2437	in_curr = orig;
2438	sec_curr = copy;
2439
2440	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2441	if (!nosec) {
2442		rc = -ENOMEM;
2443		goto out;
2444	}
2445
2446	nosec_save = nosec;
2447	fnosec = fsec = 1;
2448	in_save = in_end = orig;
2449
2450	do {
2451		if (*in_end == '"')
2452			open_quote = !open_quote;
2453		if ((*in_end == ',' && open_quote == 0) ||
2454				*in_end == '\0') {
2455			int len = in_end - in_curr;
2456
2457			if (selinux_option(in_curr, len))
2458				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2459			else
2460				take_option(&nosec, in_curr, &fnosec, len);
2461
2462			in_curr = in_end + 1;
2463		}
2464	} while (*in_end++);
2465
2466	strcpy(in_save, nosec_save);
2467	free_page((unsigned long)nosec_save);
2468out:
2469	return rc;
2470}
2471
2472static int selinux_sb_remount(struct super_block *sb, void *data)
2473{
2474	int rc, i, *flags;
2475	struct security_mnt_opts opts;
2476	char *secdata, **mount_options;
2477	struct superblock_security_struct *sbsec = sb->s_security;
 
 
2478
2479	if (!(sbsec->flags & SE_SBINITIALIZED))
2480		return 0;
2481
2482	if (!data)
2483		return 0;
2484
2485	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2486		return 0;
2487
2488	security_init_mnt_opts(&opts);
2489	secdata = alloc_secdata();
2490	if (!secdata)
2491		return -ENOMEM;
2492	rc = selinux_sb_copy_data(data, secdata);
2493	if (rc)
2494		goto out_free_secdata;
2495
2496	rc = selinux_parse_opts_str(secdata, &opts);
2497	if (rc)
2498		goto out_free_secdata;
2499
2500	mount_options = opts.mnt_opts;
2501	flags = opts.mnt_opts_flags;
2502
2503	for (i = 0; i < opts.num_mnt_opts; i++) {
2504		u32 sid;
2505		size_t len;
2506
2507		if (flags[i] == SBLABEL_MNT)
2508			continue;
2509		len = strlen(mount_options[i]);
2510		rc = security_context_to_sid(mount_options[i], len, &sid,
2511					     GFP_KERNEL);
2512		if (rc) {
2513			printk(KERN_WARNING "SELinux: security_context_to_sid"
2514			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2515			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2516			goto out_free_opts;
2517		}
2518		rc = -EINVAL;
2519		switch (flags[i]) {
2520		case FSCONTEXT_MNT:
2521			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2522				goto out_bad_option;
2523			break;
2524		case CONTEXT_MNT:
2525			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2526				goto out_bad_option;
2527			break;
2528		case ROOTCONTEXT_MNT: {
2529			struct inode_security_struct *root_isec;
2530			root_isec = sb->s_root->d_inode->i_security;
2531
2532			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2533				goto out_bad_option;
2534			break;
2535		}
2536		case DEFCONTEXT_MNT:
2537			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2538				goto out_bad_option;
2539			break;
2540		default:
2541			goto out_free_opts;
2542		}
2543	}
 
2544
2545	rc = 0;
2546out_free_opts:
2547	security_free_mnt_opts(&opts);
2548out_free_secdata:
2549	free_secdata(secdata);
2550	return rc;
2551out_bad_option:
2552	printk(KERN_WARNING "SELinux: unable to change security options "
2553	       "during remount (dev %s, type=%s)\n", sb->s_id,
2554	       sb->s_type->name);
2555	goto out_free_opts;
2556}
2557
2558static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2559{
2560	const struct cred *cred = current_cred();
2561	struct common_audit_data ad;
2562	int rc;
2563
2564	rc = superblock_doinit(sb, data);
2565	if (rc)
2566		return rc;
2567
2568	/* Allow all mounts performed by the kernel */
2569	if (flags & MS_KERNMOUNT)
2570		return 0;
2571
2572	ad.type = LSM_AUDIT_DATA_DENTRY;
2573	ad.u.dentry = sb->s_root;
2574	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2575}
2576
2577static int selinux_sb_statfs(struct dentry *dentry)
2578{
2579	const struct cred *cred = current_cred();
2580	struct common_audit_data ad;
2581
2582	ad.type = LSM_AUDIT_DATA_DENTRY;
2583	ad.u.dentry = dentry->d_sb->s_root;
2584	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2585}
2586
2587static int selinux_mount(const char *dev_name,
2588			 struct path *path,
2589			 const char *type,
2590			 unsigned long flags,
2591			 void *data)
2592{
2593	const struct cred *cred = current_cred();
2594
2595	if (flags & MS_REMOUNT)
2596		return superblock_has_perm(cred, path->dentry->d_sb,
2597					   FILESYSTEM__REMOUNT, NULL);
2598	else
2599		return path_has_perm(cred, path, FILE__MOUNTON);
2600}
2601
2602static int selinux_umount(struct vfsmount *mnt, int flags)
2603{
2604	const struct cred *cred = current_cred();
2605
2606	return superblock_has_perm(cred, mnt->mnt_sb,
2607				   FILESYSTEM__UNMOUNT, NULL);
2608}
2609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2610/* inode security operations */
2611
2612static int selinux_inode_alloc_security(struct inode *inode)
2613{
2614	return inode_alloc_security(inode);
2615}
2616
2617static void selinux_inode_free_security(struct inode *inode)
2618{
2619	inode_free_security(inode);
2620}
2621
2622static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2623					struct qstr *name, void **ctx,
2624					u32 *ctxlen)
2625{
2626	const struct cred *cred = current_cred();
2627	struct task_security_struct *tsec;
2628	struct inode_security_struct *dsec;
2629	struct superblock_security_struct *sbsec;
2630	struct inode *dir = dentry->d_parent->d_inode;
2631	u32 newsid;
2632	int rc;
2633
2634	tsec = cred->security;
2635	dsec = dir->i_security;
2636	sbsec = dir->i_sb->s_security;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2637
2638	if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2639		newsid = tsec->create_sid;
2640	} else {
2641		rc = security_transition_sid(tsec->sid, dsec->sid,
2642					     inode_mode_to_security_class(mode),
2643					     name,
2644					     &newsid);
2645		if (rc) {
2646			printk(KERN_WARNING
2647				"%s: security_transition_sid failed, rc=%d\n",
2648			       __func__, -rc);
2649			return rc;
2650		}
2651	}
2652
2653	return security_sid_to_context(newsid, (char **)ctx, ctxlen);
 
 
2654}
2655
2656static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2657				       const struct qstr *qstr,
2658				       const char **name,
2659				       void **value, size_t *len)
2660{
2661	const struct task_security_struct *tsec = current_security();
2662	struct inode_security_struct *dsec;
2663	struct superblock_security_struct *sbsec;
2664	u32 sid, newsid, clen;
2665	int rc;
2666	char *context;
2667
2668	dsec = dir->i_security;
2669	sbsec = dir->i_sb->s_security;
2670
2671	sid = tsec->sid;
2672	newsid = tsec->create_sid;
2673
2674	if ((sbsec->flags & SE_SBINITIALIZED) &&
2675	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2676		newsid = sbsec->mntpoint_sid;
2677	else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2678		rc = security_transition_sid(sid, dsec->sid,
2679					     inode_mode_to_security_class(inode->i_mode),
2680					     qstr, &newsid);
2681		if (rc) {
2682			printk(KERN_WARNING "%s:  "
2683			       "security_transition_sid failed, rc=%d (dev=%s "
2684			       "ino=%ld)\n",
2685			       __func__,
2686			       -rc, inode->i_sb->s_id, inode->i_ino);
2687			return rc;
2688		}
2689	}
2690
2691	/* Possibly defer initialization to selinux_complete_init. */
2692	if (sbsec->flags & SE_SBINITIALIZED) {
2693		struct inode_security_struct *isec = inode->i_security;
2694		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2695		isec->sid = newsid;
2696		isec->initialized = 1;
2697	}
2698
2699	if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2700		return -EOPNOTSUPP;
2701
2702	if (name)
2703		*name = XATTR_SELINUX_SUFFIX;
2704
2705	if (value && len) {
2706		rc = security_sid_to_context_force(newsid, &context, &clen);
 
2707		if (rc)
2708			return rc;
2709		*value = context;
2710		*len = clen;
2711	}
2712
2713	return 0;
2714}
2715
2716static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2717{
2718	return may_create(dir, dentry, SECCLASS_FILE);
2719}
2720
2721static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2722{
2723	return may_link(dir, old_dentry, MAY_LINK);
2724}
2725
2726static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2727{
2728	return may_link(dir, dentry, MAY_UNLINK);
2729}
2730
2731static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2732{
2733	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2734}
2735
2736static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2737{
2738	return may_create(dir, dentry, SECCLASS_DIR);
2739}
2740
2741static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2742{
2743	return may_link(dir, dentry, MAY_RMDIR);
2744}
2745
2746static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2747{
2748	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2749}
2750
2751static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2752				struct inode *new_inode, struct dentry *new_dentry)
2753{
2754	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2755}
2756
2757static int selinux_inode_readlink(struct dentry *dentry)
2758{
2759	const struct cred *cred = current_cred();
2760
2761	return dentry_has_perm(cred, dentry, FILE__READ);
2762}
2763
2764static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
 
2765{
2766	const struct cred *cred = current_cred();
 
 
 
 
 
 
 
 
 
 
 
 
2767
2768	return dentry_has_perm(cred, dentry, FILE__READ);
 
2769}
2770
2771static noinline int audit_inode_permission(struct inode *inode,
2772					   u32 perms, u32 audited, u32 denied,
 
2773					   unsigned flags)
2774{
2775	struct common_audit_data ad;
2776	struct inode_security_struct *isec = inode->i_security;
2777	int rc;
2778
2779	ad.type = LSM_AUDIT_DATA_INODE;
2780	ad.u.inode = inode;
2781
2782	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2783			    audited, denied, &ad, flags);
 
2784	if (rc)
2785		return rc;
2786	return 0;
2787}
2788
2789static int selinux_inode_permission(struct inode *inode, int mask)
2790{
2791	const struct cred *cred = current_cred();
2792	u32 perms;
2793	bool from_access;
2794	unsigned flags = mask & MAY_NOT_BLOCK;
2795	struct inode_security_struct *isec;
2796	u32 sid;
2797	struct av_decision avd;
2798	int rc, rc2;
2799	u32 audited, denied;
2800
2801	from_access = mask & MAY_ACCESS;
2802	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2803
2804	/* No permission to check.  Existence test. */
2805	if (!mask)
2806		return 0;
2807
2808	validate_creds(cred);
2809
2810	if (unlikely(IS_PRIVATE(inode)))
2811		return 0;
2812
2813	perms = file_mask_to_av(inode->i_mode, mask);
2814
2815	sid = cred_sid(cred);
2816	isec = inode->i_security;
2817
2818	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
 
 
 
 
 
2819	audited = avc_audit_required(perms, &avd, rc,
2820				     from_access ? FILE__AUDIT_ACCESS : 0,
2821				     &denied);
2822	if (likely(!audited))
2823		return rc;
2824
2825	rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2826	if (rc2)
2827		return rc2;
2828	return rc;
2829}
2830
2831static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2832{
2833	const struct cred *cred = current_cred();
 
2834	unsigned int ia_valid = iattr->ia_valid;
2835	__u32 av = FILE__WRITE;
2836
2837	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2838	if (ia_valid & ATTR_FORCE) {
2839		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2840			      ATTR_FORCE);
2841		if (!ia_valid)
2842			return 0;
2843	}
2844
2845	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2846			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2847		return dentry_has_perm(cred, dentry, FILE__SETATTR);
2848
2849	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
 
 
 
2850		av |= FILE__OPEN;
2851
2852	return dentry_has_perm(cred, dentry, av);
2853}
2854
2855static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2856{
2857	const struct cred *cred = current_cred();
2858	struct path path;
2859
2860	path.dentry = dentry;
2861	path.mnt = mnt;
2862
2863	return path_has_perm(cred, &path, FILE__GETATTR);
2864}
2865
2866static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2867{
2868	const struct cred *cred = current_cred();
 
2869
2870	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2871		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2872		if (!strcmp(name, XATTR_NAME_CAPS)) {
2873			if (!capable(CAP_SETFCAP))
2874				return -EPERM;
2875		} else if (!capable(CAP_SYS_ADMIN)) {
2876			/* A different attribute in the security namespace.
2877			   Restrict to administrator. */
2878			return -EPERM;
2879		}
2880	}
2881
2882	/* Not an attribute we recognize, so just check the
2883	   ordinary setattr permission. */
2884	return dentry_has_perm(cred, dentry, FILE__SETATTR);
2885}
2886
2887static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2888				  const void *value, size_t size, int flags)
2889{
2890	struct inode *inode = dentry->d_inode;
2891	struct inode_security_struct *isec = inode->i_security;
2892	struct superblock_security_struct *sbsec;
2893	struct common_audit_data ad;
2894	u32 newsid, sid = current_sid();
2895	int rc = 0;
2896
2897	if (strcmp(name, XATTR_NAME_SELINUX))
2898		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
2899
2900	sbsec = inode->i_sb->s_security;
2901	if (!(sbsec->flags & SBLABEL_MNT))
2902		return -EOPNOTSUPP;
2903
2904	if (!inode_owner_or_capable(inode))
2905		return -EPERM;
2906
2907	ad.type = LSM_AUDIT_DATA_DENTRY;
2908	ad.u.dentry = dentry;
2909
2910	rc = avc_has_perm(sid, isec->sid, isec->sclass,
 
 
2911			  FILE__RELABELFROM, &ad);
2912	if (rc)
2913		return rc;
2914
2915	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
 
2916	if (rc == -EINVAL) {
2917		if (!capable(CAP_MAC_ADMIN)) {
2918			struct audit_buffer *ab;
2919			size_t audit_size;
2920			const char *str;
2921
2922			/* We strip a nul only if it is at the end, otherwise the
2923			 * context contains a nul and we should audit that */
2924			if (value) {
2925				str = value;
 
2926				if (str[size - 1] == '\0')
2927					audit_size = size - 1;
2928				else
2929					audit_size = size;
2930			} else {
2931				str = "";
2932				audit_size = 0;
2933			}
2934			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
2935			audit_log_format(ab, "op=setxattr invalid_context=");
2936			audit_log_n_untrustedstring(ab, value, audit_size);
2937			audit_log_end(ab);
2938
2939			return rc;
2940		}
2941		rc = security_context_to_sid_force(value, size, &newsid);
 
2942	}
2943	if (rc)
2944		return rc;
2945
2946	rc = avc_has_perm(sid, newsid, isec->sclass,
 
2947			  FILE__RELABELTO, &ad);
2948	if (rc)
2949		return rc;
2950
2951	rc = security_validate_transition(isec->sid, newsid, sid,
2952					  isec->sclass);
2953	if (rc)
2954		return rc;
2955
2956	return avc_has_perm(newsid,
 
2957			    sbsec->sid,
2958			    SECCLASS_FILESYSTEM,
2959			    FILESYSTEM__ASSOCIATE,
2960			    &ad);
2961}
2962
2963static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2964					const void *value, size_t size,
2965					int flags)
2966{
2967	struct inode *inode = dentry->d_inode;
2968	struct inode_security_struct *isec = inode->i_security;
2969	u32 newsid;
2970	int rc;
2971
2972	if (strcmp(name, XATTR_NAME_SELINUX)) {
2973		/* Not an attribute we recognize, so nothing to do. */
2974		return;
2975	}
2976
2977	rc = security_context_to_sid_force(value, size, &newsid);
 
2978	if (rc) {
2979		printk(KERN_ERR "SELinux:  unable to map context to SID"
2980		       "for (%s, %lu), rc=%d\n",
2981		       inode->i_sb->s_id, inode->i_ino, -rc);
2982		return;
2983	}
2984
 
 
2985	isec->sclass = inode_mode_to_security_class(inode->i_mode);
2986	isec->sid = newsid;
2987	isec->initialized = 1;
 
2988
2989	return;
2990}
2991
2992static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2993{
2994	const struct cred *cred = current_cred();
2995
2996	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2997}
2998
2999static int selinux_inode_listxattr(struct dentry *dentry)
3000{
3001	const struct cred *cred = current_cred();
3002
3003	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3004}
3005
3006static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3007{
3008	if (strcmp(name, XATTR_NAME_SELINUX))
3009		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
3010
3011	/* No one is allowed to remove a SELinux security label.
3012	   You can change the label, but all data must be labeled. */
3013	return -EACCES;
3014}
3015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3016/*
3017 * Copy the inode security context value to the user.
3018 *
3019 * Permission check is handled by selinux_inode_getxattr hook.
3020 */
3021static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
3022{
3023	u32 size;
3024	int error;
3025	char *context = NULL;
3026	struct inode_security_struct *isec = inode->i_security;
3027
3028	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3029		return -EOPNOTSUPP;
3030
3031	/*
3032	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3033	 * value even if it is not defined by current policy; otherwise,
3034	 * use the in-core value under current policy.
3035	 * Use the non-auditing forms of the permission checks since
3036	 * getxattr may be called by unprivileged processes commonly
3037	 * and lack of permission just means that we fall back to the
3038	 * in-core context value, not a denial.
3039	 */
3040	error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3041				SECURITY_CAP_NOAUDIT);
3042	if (!error)
3043		error = security_sid_to_context_force(isec->sid, &context,
3044						      &size);
3045	else
3046		error = security_sid_to_context(isec->sid, &context, &size);
 
3047	if (error)
3048		return error;
3049	error = size;
3050	if (alloc) {
3051		*buffer = context;
3052		goto out_nofree;
3053	}
3054	kfree(context);
3055out_nofree:
3056	return error;
3057}
3058
3059static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3060				     const void *value, size_t size, int flags)
3061{
3062	struct inode_security_struct *isec = inode->i_security;
 
3063	u32 newsid;
3064	int rc;
3065
3066	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3067		return -EOPNOTSUPP;
3068
 
 
 
3069	if (!value || !size)
3070		return -EACCES;
3071
3072	rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL);
 
3073	if (rc)
3074		return rc;
3075
 
3076	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3077	isec->sid = newsid;
3078	isec->initialized = 1;
 
3079	return 0;
3080}
3081
3082static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3083{
3084	const int len = sizeof(XATTR_NAME_SELINUX);
3085	if (buffer && len <= buffer_size)
3086		memcpy(buffer, XATTR_NAME_SELINUX, len);
3087	return len;
3088}
3089
3090static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3091{
3092	struct inode_security_struct *isec = inode->i_security;
3093	*secid = isec->sid;
3094}
3095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3096/* file security operations */
3097
3098static int selinux_revalidate_file_permission(struct file *file, int mask)
3099{
3100	const struct cred *cred = current_cred();
3101	struct inode *inode = file_inode(file);
3102
3103	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3104	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3105		mask |= MAY_APPEND;
3106
3107	return file_has_perm(cred, file,
3108			     file_mask_to_av(inode->i_mode, mask));
3109}
3110
3111static int selinux_file_permission(struct file *file, int mask)
3112{
3113	struct inode *inode = file_inode(file);
3114	struct file_security_struct *fsec = file->f_security;
3115	struct inode_security_struct *isec = inode->i_security;
3116	u32 sid = current_sid();
3117
3118	if (!mask)
3119		/* No permission to check.  Existence test. */
3120		return 0;
3121
 
3122	if (sid == fsec->sid && fsec->isid == isec->sid &&
3123	    fsec->pseqno == avc_policy_seqno())
3124		/* No change since file_open check. */
3125		return 0;
3126
3127	return selinux_revalidate_file_permission(file, mask);
3128}
3129
3130static int selinux_file_alloc_security(struct file *file)
3131{
3132	return file_alloc_security(file);
3133}
3134
3135static void selinux_file_free_security(struct file *file)
 
 
 
 
 
3136{
3137	file_free_security(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3138}
3139
3140static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3141			      unsigned long arg)
3142{
3143	const struct cred *cred = current_cred();
3144	int error = 0;
3145
3146	switch (cmd) {
3147	case FIONREAD:
3148	/* fall through */
3149	case FIBMAP:
3150	/* fall through */
3151	case FIGETBSZ:
3152	/* fall through */
3153	case FS_IOC_GETFLAGS:
3154	/* fall through */
3155	case FS_IOC_GETVERSION:
3156		error = file_has_perm(cred, file, FILE__GETATTR);
3157		break;
3158
3159	case FS_IOC_SETFLAGS:
3160	/* fall through */
3161	case FS_IOC_SETVERSION:
3162		error = file_has_perm(cred, file, FILE__SETATTR);
3163		break;
3164
3165	/* sys_ioctl() checks */
3166	case FIONBIO:
3167	/* fall through */
3168	case FIOASYNC:
3169		error = file_has_perm(cred, file, 0);
3170		break;
3171
3172	case KDSKBENT:
3173	case KDSKBSENT:
3174		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3175					    SECURITY_CAP_AUDIT);
3176		break;
3177
3178	/* default case assumes that the command will go
3179	 * to the file's ioctl() function.
3180	 */
3181	default:
3182		error = file_has_perm(cred, file, FILE__IOCTL);
3183	}
3184	return error;
3185}
3186
3187static int default_noexec;
3188
3189static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3190{
3191	const struct cred *cred = current_cred();
 
3192	int rc = 0;
3193
3194	if (default_noexec &&
3195	    (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
 
3196		/*
3197		 * We are making executable an anonymous mapping or a
3198		 * private file mapping that will also be writable.
3199		 * This has an additional check.
3200		 */
3201		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
 
 
3202		if (rc)
3203			goto error;
3204	}
3205
3206	if (file) {
3207		/* read access is always possible with a mapping */
3208		u32 av = FILE__READ;
3209
3210		/* write access only matters if the mapping is shared */
3211		if (shared && (prot & PROT_WRITE))
3212			av |= FILE__WRITE;
3213
3214		if (prot & PROT_EXEC)
3215			av |= FILE__EXECUTE;
3216
3217		return file_has_perm(cred, file, av);
3218	}
3219
3220error:
3221	return rc;
3222}
3223
3224static int selinux_mmap_addr(unsigned long addr)
3225{
3226	int rc;
3227
3228	/* do DAC check on address space usage */
3229	rc = cap_mmap_addr(addr);
3230	if (rc)
3231		return rc;
3232
3233	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3234		u32 sid = current_sid();
3235		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
 
3236				  MEMPROTECT__MMAP_ZERO, NULL);
3237	}
3238
3239	return rc;
3240}
3241
3242static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3243			     unsigned long prot, unsigned long flags)
3244{
3245	if (selinux_checkreqprot)
 
 
 
 
 
 
 
 
 
 
 
 
3246		prot = reqprot;
3247
3248	return file_map_prot_check(file, prot,
3249				   (flags & MAP_TYPE) == MAP_SHARED);
3250}
3251
3252static int selinux_file_mprotect(struct vm_area_struct *vma,
3253				 unsigned long reqprot,
3254				 unsigned long prot)
3255{
3256	const struct cred *cred = current_cred();
 
3257
3258	if (selinux_checkreqprot)
3259		prot = reqprot;
3260
3261	if (default_noexec &&
3262	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3263		int rc = 0;
3264		if (vma->vm_start >= vma->vm_mm->start_brk &&
3265		    vma->vm_end <= vma->vm_mm->brk) {
3266			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
 
 
3267		} else if (!vma->vm_file &&
3268			   vma->vm_start <= vma->vm_mm->start_stack &&
3269			   vma->vm_end >= vma->vm_mm->start_stack) {
3270			rc = current_has_perm(current, PROCESS__EXECSTACK);
 
 
 
3271		} else if (vma->vm_file && vma->anon_vma) {
3272			/*
3273			 * We are making executable a file mapping that has
3274			 * had some COW done. Since pages might have been
3275			 * written, check ability to execute the possibly
3276			 * modified content.  This typically should only
3277			 * occur for text relocations.
3278			 */
3279			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3280		}
3281		if (rc)
3282			return rc;
3283	}
3284
3285	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3286}
3287
3288static int selinux_file_lock(struct file *file, unsigned int cmd)
3289{
3290	const struct cred *cred = current_cred();
3291
3292	return file_has_perm(cred, file, FILE__LOCK);
3293}
3294
3295static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3296			      unsigned long arg)
3297{
3298	const struct cred *cred = current_cred();
3299	int err = 0;
3300
3301	switch (cmd) {
3302	case F_SETFL:
3303		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3304			err = file_has_perm(cred, file, FILE__WRITE);
3305			break;
3306		}
3307		/* fall through */
3308	case F_SETOWN:
3309	case F_SETSIG:
3310	case F_GETFL:
3311	case F_GETOWN:
3312	case F_GETSIG:
3313	case F_GETOWNER_UIDS:
3314		/* Just check FD__USE permission */
3315		err = file_has_perm(cred, file, 0);
3316		break;
3317	case F_GETLK:
3318	case F_SETLK:
3319	case F_SETLKW:
3320	case F_OFD_GETLK:
3321	case F_OFD_SETLK:
3322	case F_OFD_SETLKW:
3323#if BITS_PER_LONG == 32
3324	case F_GETLK64:
3325	case F_SETLK64:
3326	case F_SETLKW64:
3327#endif
3328		err = file_has_perm(cred, file, FILE__LOCK);
3329		break;
3330	}
3331
3332	return err;
3333}
3334
3335static int selinux_file_set_fowner(struct file *file)
3336{
3337	struct file_security_struct *fsec;
3338
3339	fsec = file->f_security;
3340	fsec->fown_sid = current_sid();
3341
3342	return 0;
3343}
3344
3345static int selinux_file_send_sigiotask(struct task_struct *tsk,
3346				       struct fown_struct *fown, int signum)
3347{
3348	struct file *file;
3349	u32 sid = task_sid(tsk);
3350	u32 perm;
3351	struct file_security_struct *fsec;
3352
3353	/* struct fown_struct is never outside the context of a struct file */
3354	file = container_of(fown, struct file, f_owner);
3355
3356	fsec = file->f_security;
3357
3358	if (!signum)
3359		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3360	else
3361		perm = signal_to_av(signum);
3362
3363	return avc_has_perm(fsec->fown_sid, sid,
 
3364			    SECCLASS_PROCESS, perm, NULL);
3365}
3366
3367static int selinux_file_receive(struct file *file)
3368{
3369	const struct cred *cred = current_cred();
3370
3371	return file_has_perm(cred, file, file_to_av(file));
3372}
3373
3374static int selinux_file_open(struct file *file, const struct cred *cred)
3375{
3376	struct file_security_struct *fsec;
3377	struct inode_security_struct *isec;
3378
3379	fsec = file->f_security;
3380	isec = file_inode(file)->i_security;
3381	/*
3382	 * Save inode label and policy sequence number
3383	 * at open-time so that selinux_file_permission
3384	 * can determine whether revalidation is necessary.
3385	 * Task label is already saved in the file security
3386	 * struct as its SID.
3387	 */
3388	fsec->isid = isec->sid;
3389	fsec->pseqno = avc_policy_seqno();
3390	/*
3391	 * Since the inode label or policy seqno may have changed
3392	 * between the selinux_inode_permission check and the saving
3393	 * of state above, recheck that access is still permitted.
3394	 * Otherwise, access might never be revalidated against the
3395	 * new inode label or new policy.
3396	 * This check is not redundant - do not remove.
3397	 */
3398	return file_path_has_perm(cred, file, open_file_to_av(file));
3399}
3400
3401/* task security operations */
3402
3403static int selinux_task_create(unsigned long clone_flags)
 
3404{
3405	return current_has_perm(current, PROCESS__FORK);
3406}
3407
3408/*
3409 * allocate the SELinux part of blank credentials
3410 */
3411static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3412{
3413	struct task_security_struct *tsec;
3414
3415	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3416	if (!tsec)
3417		return -ENOMEM;
3418
3419	cred->security = tsec;
3420	return 0;
3421}
3422
3423/*
3424 * detach and free the LSM part of a set of credentials
3425 */
3426static void selinux_cred_free(struct cred *cred)
3427{
3428	struct task_security_struct *tsec = cred->security;
3429
3430	/*
3431	 * cred->security == NULL if security_cred_alloc_blank() or
3432	 * security_prepare_creds() returned an error.
3433	 */
3434	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3435	cred->security = (void *) 0x7UL;
3436	kfree(tsec);
3437}
3438
3439/*
3440 * prepare a new set of credentials for modification
3441 */
3442static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3443				gfp_t gfp)
3444{
3445	const struct task_security_struct *old_tsec;
3446	struct task_security_struct *tsec;
3447
3448	old_tsec = old->security;
3449
3450	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3451	if (!tsec)
3452		return -ENOMEM;
3453
3454	new->security = tsec;
3455	return 0;
3456}
3457
3458/*
3459 * transfer the SELinux data to a blank set of creds
3460 */
3461static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3462{
3463	const struct task_security_struct *old_tsec = old->security;
3464	struct task_security_struct *tsec = new->security;
3465
3466	*tsec = *old_tsec;
3467}
3468
 
 
 
 
 
3469/*
3470 * set the security data for a kernel service
3471 * - all the creation contexts are set to unlabelled
3472 */
3473static int selinux_kernel_act_as(struct cred *new, u32 secid)
3474{
3475	struct task_security_struct *tsec = new->security;
3476	u32 sid = current_sid();
3477	int ret;
3478
3479	ret = avc_has_perm(sid, secid,
 
3480			   SECCLASS_KERNEL_SERVICE,
3481			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3482			   NULL);
3483	if (ret == 0) {
3484		tsec->sid = secid;
3485		tsec->create_sid = 0;
3486		tsec->keycreate_sid = 0;
3487		tsec->sockcreate_sid = 0;
3488	}
3489	return ret;
3490}
3491
3492/*
3493 * set the file creation context in a security record to the same as the
3494 * objective context of the specified inode
3495 */
3496static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3497{
3498	struct inode_security_struct *isec = inode->i_security;
3499	struct task_security_struct *tsec = new->security;
3500	u32 sid = current_sid();
3501	int ret;
3502
3503	ret = avc_has_perm(sid, isec->sid,
 
3504			   SECCLASS_KERNEL_SERVICE,
3505			   KERNEL_SERVICE__CREATE_FILES_AS,
3506			   NULL);
3507
3508	if (ret == 0)
3509		tsec->create_sid = isec->sid;
3510	return ret;
3511}
3512
3513static int selinux_kernel_module_request(char *kmod_name)
3514{
3515	u32 sid;
3516	struct common_audit_data ad;
3517
3518	sid = task_sid(current);
3519
3520	ad.type = LSM_AUDIT_DATA_KMOD;
3521	ad.u.kmod_name = kmod_name;
3522
3523	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
 
3524			    SYSTEM__MODULE_REQUEST, &ad);
3525}
3526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3527static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3528{
3529	return current_has_perm(p, PROCESS__SETPGID);
 
 
3530}
3531
3532static int selinux_task_getpgid(struct task_struct *p)
3533{
3534	return current_has_perm(p, PROCESS__GETPGID);
 
 
3535}
3536
3537static int selinux_task_getsid(struct task_struct *p)
3538{
3539	return current_has_perm(p, PROCESS__GETSESSION);
 
 
3540}
3541
3542static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3543{
3544	*secid = task_sid(p);
3545}
3546
3547static int selinux_task_setnice(struct task_struct *p, int nice)
3548{
3549	int rc;
3550
3551	rc = cap_task_setnice(p, nice);
3552	if (rc)
3553		return rc;
3554
3555	return current_has_perm(p, PROCESS__SETSCHED);
3556}
3557
3558static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3559{
3560	int rc;
 
 
 
3561
3562	rc = cap_task_setioprio(p, ioprio);
3563	if (rc)
3564		return rc;
3565
3566	return current_has_perm(p, PROCESS__SETSCHED);
3567}
3568
3569static int selinux_task_getioprio(struct task_struct *p)
 
3570{
3571	return current_has_perm(p, PROCESS__GETSCHED);
 
 
 
 
 
 
 
 
 
 
3572}
3573
3574static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3575		struct rlimit *new_rlim)
3576{
3577	struct rlimit *old_rlim = p->signal->rlim + resource;
3578
3579	/* Control the ability to change the hard limit (whether
3580	   lowering or raising it), so that the hard limit can
3581	   later be used as a safe reset point for the soft limit
3582	   upon context transitions.  See selinux_bprm_committing_creds. */
3583	if (old_rlim->rlim_max != new_rlim->rlim_max)
3584		return current_has_perm(p, PROCESS__SETRLIMIT);
 
 
3585
3586	return 0;
3587}
3588
3589static int selinux_task_setscheduler(struct task_struct *p)
3590{
3591	int rc;
3592
3593	rc = cap_task_setscheduler(p);
3594	if (rc)
3595		return rc;
3596
3597	return current_has_perm(p, PROCESS__SETSCHED);
3598}
3599
3600static int selinux_task_getscheduler(struct task_struct *p)
3601{
3602	return current_has_perm(p, PROCESS__GETSCHED);
 
 
3603}
3604
3605static int selinux_task_movememory(struct task_struct *p)
3606{
3607	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3608}
3609
3610static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3611				int sig, u32 secid)
3612{
 
3613	u32 perm;
3614	int rc;
3615
3616	if (!sig)
3617		perm = PROCESS__SIGNULL; /* null signal; existence test */
3618	else
3619		perm = signal_to_av(sig);
3620	if (secid)
3621		rc = avc_has_perm(secid, task_sid(p),
3622				  SECCLASS_PROCESS, perm, NULL);
3623	else
3624		rc = current_has_perm(p, perm);
3625	return rc;
3626}
3627
3628static int selinux_task_wait(struct task_struct *p)
3629{
3630	return task_has_perm(p, current, PROCESS__SIGCHLD);
3631}
3632
3633static void selinux_task_to_inode(struct task_struct *p,
3634				  struct inode *inode)
3635{
3636	struct inode_security_struct *isec = inode->i_security;
3637	u32 sid = task_sid(p);
3638
 
 
3639	isec->sid = sid;
3640	isec->initialized = 1;
 
3641}
3642
3643/* Returns error only if unable to parse addresses */
3644static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3645			struct common_audit_data *ad, u8 *proto)
3646{
3647	int offset, ihlen, ret = -EINVAL;
3648	struct iphdr _iph, *ih;
3649
3650	offset = skb_network_offset(skb);
3651	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3652	if (ih == NULL)
3653		goto out;
3654
3655	ihlen = ih->ihl * 4;
3656	if (ihlen < sizeof(_iph))
3657		goto out;
3658
3659	ad->u.net->v4info.saddr = ih->saddr;
3660	ad->u.net->v4info.daddr = ih->daddr;
3661	ret = 0;
3662
3663	if (proto)
3664		*proto = ih->protocol;
3665
3666	switch (ih->protocol) {
3667	case IPPROTO_TCP: {
3668		struct tcphdr _tcph, *th;
3669
3670		if (ntohs(ih->frag_off) & IP_OFFSET)
3671			break;
3672
3673		offset += ihlen;
3674		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3675		if (th == NULL)
3676			break;
3677
3678		ad->u.net->sport = th->source;
3679		ad->u.net->dport = th->dest;
3680		break;
3681	}
3682
3683	case IPPROTO_UDP: {
3684		struct udphdr _udph, *uh;
3685
3686		if (ntohs(ih->frag_off) & IP_OFFSET)
3687			break;
3688
3689		offset += ihlen;
3690		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3691		if (uh == NULL)
3692			break;
3693
3694		ad->u.net->sport = uh->source;
3695		ad->u.net->dport = uh->dest;
3696		break;
3697	}
3698
3699	case IPPROTO_DCCP: {
3700		struct dccp_hdr _dccph, *dh;
3701
3702		if (ntohs(ih->frag_off) & IP_OFFSET)
3703			break;
3704
3705		offset += ihlen;
3706		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3707		if (dh == NULL)
3708			break;
3709
3710		ad->u.net->sport = dh->dccph_sport;
3711		ad->u.net->dport = dh->dccph_dport;
3712		break;
3713	}
3714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3715	default:
3716		break;
3717	}
3718out:
3719	return ret;
3720}
3721
3722#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3723
3724/* Returns error only if unable to parse addresses */
3725static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3726			struct common_audit_data *ad, u8 *proto)
3727{
3728	u8 nexthdr;
3729	int ret = -EINVAL, offset;
3730	struct ipv6hdr _ipv6h, *ip6;
3731	__be16 frag_off;
3732
3733	offset = skb_network_offset(skb);
3734	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3735	if (ip6 == NULL)
3736		goto out;
3737
3738	ad->u.net->v6info.saddr = ip6->saddr;
3739	ad->u.net->v6info.daddr = ip6->daddr;
3740	ret = 0;
3741
3742	nexthdr = ip6->nexthdr;
3743	offset += sizeof(_ipv6h);
3744	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3745	if (offset < 0)
3746		goto out;
3747
3748	if (proto)
3749		*proto = nexthdr;
3750
3751	switch (nexthdr) {
3752	case IPPROTO_TCP: {
3753		struct tcphdr _tcph, *th;
3754
3755		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3756		if (th == NULL)
3757			break;
3758
3759		ad->u.net->sport = th->source;
3760		ad->u.net->dport = th->dest;
3761		break;
3762	}
3763
3764	case IPPROTO_UDP: {
3765		struct udphdr _udph, *uh;
3766
3767		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3768		if (uh == NULL)
3769			break;
3770
3771		ad->u.net->sport = uh->source;
3772		ad->u.net->dport = uh->dest;
3773		break;
3774	}
3775
3776	case IPPROTO_DCCP: {
3777		struct dccp_hdr _dccph, *dh;
3778
3779		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3780		if (dh == NULL)
3781			break;
3782
3783		ad->u.net->sport = dh->dccph_sport;
3784		ad->u.net->dport = dh->dccph_dport;
3785		break;
3786	}
3787
 
 
 
 
 
 
 
 
 
 
 
 
 
3788	/* includes fragments */
3789	default:
3790		break;
3791	}
3792out:
3793	return ret;
3794}
3795
3796#endif /* IPV6 */
3797
3798static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3799			     char **_addrp, int src, u8 *proto)
3800{
3801	char *addrp;
3802	int ret;
3803
3804	switch (ad->u.net->family) {
3805	case PF_INET:
3806		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3807		if (ret)
3808			goto parse_error;
3809		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3810				       &ad->u.net->v4info.daddr);
3811		goto okay;
3812
3813#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3814	case PF_INET6:
3815		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3816		if (ret)
3817			goto parse_error;
3818		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3819				       &ad->u.net->v6info.daddr);
3820		goto okay;
3821#endif	/* IPV6 */
3822	default:
3823		addrp = NULL;
3824		goto okay;
3825	}
3826
3827parse_error:
3828	printk(KERN_WARNING
3829	       "SELinux: failure in selinux_parse_skb(),"
3830	       " unable to parse packet\n");
3831	return ret;
3832
3833okay:
3834	if (_addrp)
3835		*_addrp = addrp;
3836	return 0;
3837}
3838
3839/**
3840 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3841 * @skb: the packet
3842 * @family: protocol family
3843 * @sid: the packet's peer label SID
3844 *
3845 * Description:
3846 * Check the various different forms of network peer labeling and determine
3847 * the peer label/SID for the packet; most of the magic actually occurs in
3848 * the security server function security_net_peersid_cmp().  The function
3849 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3850 * or -EACCES if @sid is invalid due to inconsistencies with the different
3851 * peer labels.
3852 *
3853 */
3854static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3855{
3856	int err;
3857	u32 xfrm_sid;
3858	u32 nlbl_sid;
3859	u32 nlbl_type;
3860
3861	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
3862	if (unlikely(err))
3863		return -EACCES;
3864	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3865	if (unlikely(err))
3866		return -EACCES;
3867
3868	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
 
3869	if (unlikely(err)) {
3870		printk(KERN_WARNING
3871		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3872		       " unable to determine packet's peer label\n");
3873		return -EACCES;
3874	}
3875
3876	return 0;
3877}
3878
3879/**
3880 * selinux_conn_sid - Determine the child socket label for a connection
3881 * @sk_sid: the parent socket's SID
3882 * @skb_sid: the packet's SID
3883 * @conn_sid: the resulting connection SID
3884 *
3885 * If @skb_sid is valid then the user:role:type information from @sk_sid is
3886 * combined with the MLS information from @skb_sid in order to create
3887 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
3888 * of @sk_sid.  Returns zero on success, negative values on failure.
3889 *
3890 */
3891static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3892{
3893	int err = 0;
3894
3895	if (skb_sid != SECSID_NULL)
3896		err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
 
3897	else
3898		*conn_sid = sk_sid;
3899
3900	return err;
3901}
3902
3903/* socket security operations */
3904
3905static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3906				 u16 secclass, u32 *socksid)
3907{
3908	if (tsec->sockcreate_sid > SECSID_NULL) {
3909		*socksid = tsec->sockcreate_sid;
3910		return 0;
3911	}
3912
3913	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3914				       socksid);
3915}
3916
3917static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3918{
3919	struct sk_security_struct *sksec = sk->sk_security;
3920	struct common_audit_data ad;
3921	struct lsm_network_audit net = {0,};
3922	u32 tsid = task_sid(task);
3923
3924	if (sksec->sid == SECINITSID_KERNEL)
3925		return 0;
3926
3927	ad.type = LSM_AUDIT_DATA_NET;
3928	ad.u.net = &net;
3929	ad.u.net->sk = sk;
3930
3931	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
 
 
3932}
3933
3934static int selinux_socket_create(int family, int type,
3935				 int protocol, int kern)
3936{
3937	const struct task_security_struct *tsec = current_security();
3938	u32 newsid;
3939	u16 secclass;
3940	int rc;
3941
3942	if (kern)
3943		return 0;
3944
3945	secclass = socket_type_to_security_class(family, type, protocol);
3946	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3947	if (rc)
3948		return rc;
3949
3950	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
 
3951}
3952
3953static int selinux_socket_post_create(struct socket *sock, int family,
3954				      int type, int protocol, int kern)
3955{
3956	const struct task_security_struct *tsec = current_security();
3957	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3958	struct sk_security_struct *sksec;
 
 
3959	int err = 0;
3960
3961	isec->sclass = socket_type_to_security_class(family, type, protocol);
3962
3963	if (kern)
3964		isec->sid = SECINITSID_KERNEL;
3965	else {
3966		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3967		if (err)
3968			return err;
3969	}
3970
3971	isec->initialized = 1;
 
 
3972
3973	if (sock->sk) {
3974		sksec = sock->sk->sk_security;
3975		sksec->sid = isec->sid;
3976		sksec->sclass = isec->sclass;
 
 
 
 
3977		err = selinux_netlbl_socket_post_create(sock->sk, family);
3978	}
3979
3980	return err;
3981}
3982
 
 
 
 
 
 
 
 
 
 
 
 
3983/* Range of port numbers used to automatically bind.
3984   Need to determine whether we should perform a name_bind
3985   permission check between the socket and the port number. */
3986
3987static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3988{
3989	struct sock *sk = sock->sk;
 
3990	u16 family;
3991	int err;
3992
3993	err = sock_has_perm(current, sk, SOCKET__BIND);
3994	if (err)
3995		goto out;
3996
3997	/*
3998	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3999	 * Multiple address binding for SCTP is not supported yet: we just
4000	 * check the first address now.
4001	 */
4002	family = sk->sk_family;
4003	if (family == PF_INET || family == PF_INET6) {
4004		char *addrp;
4005		struct sk_security_struct *sksec = sk->sk_security;
4006		struct common_audit_data ad;
4007		struct lsm_network_audit net = {0,};
4008		struct sockaddr_in *addr4 = NULL;
4009		struct sockaddr_in6 *addr6 = NULL;
 
4010		unsigned short snum;
4011		u32 sid, node_perm;
4012
4013		if (family == PF_INET) {
 
 
 
 
 
 
 
 
 
 
 
 
 
4014			addr4 = (struct sockaddr_in *)address;
 
 
 
 
 
 
 
 
4015			snum = ntohs(addr4->sin_port);
4016			addrp = (char *)&addr4->sin_addr.s_addr;
4017		} else {
 
 
 
4018			addr6 = (struct sockaddr_in6 *)address;
4019			snum = ntohs(addr6->sin6_port);
4020			addrp = (char *)&addr6->sin6_addr.s6_addr;
 
 
 
4021		}
4022
 
 
 
 
 
4023		if (snum) {
4024			int low, high;
4025
4026			inet_get_local_port_range(sock_net(sk), &low, &high);
4027
4028			if (snum < max(PROT_SOCK, low) || snum > high) {
 
4029				err = sel_netport_sid(sk->sk_protocol,
4030						      snum, &sid);
4031				if (err)
4032					goto out;
4033				ad.type = LSM_AUDIT_DATA_NET;
4034				ad.u.net = &net;
4035				ad.u.net->sport = htons(snum);
4036				ad.u.net->family = family;
4037				err = avc_has_perm(sksec->sid, sid,
4038						   sksec->sclass,
4039						   SOCKET__NAME_BIND, &ad);
4040				if (err)
4041					goto out;
4042			}
4043		}
4044
4045		switch (sksec->sclass) {
4046		case SECCLASS_TCP_SOCKET:
4047			node_perm = TCP_SOCKET__NODE_BIND;
4048			break;
4049
4050		case SECCLASS_UDP_SOCKET:
4051			node_perm = UDP_SOCKET__NODE_BIND;
4052			break;
4053
4054		case SECCLASS_DCCP_SOCKET:
4055			node_perm = DCCP_SOCKET__NODE_BIND;
4056			break;
4057
 
 
 
 
4058		default:
4059			node_perm = RAWIP_SOCKET__NODE_BIND;
4060			break;
4061		}
4062
4063		err = sel_netnode_sid(addrp, family, &sid);
4064		if (err)
4065			goto out;
4066
4067		ad.type = LSM_AUDIT_DATA_NET;
4068		ad.u.net = &net;
4069		ad.u.net->sport = htons(snum);
4070		ad.u.net->family = family;
4071
4072		if (family == PF_INET)
4073			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4074		else
4075			ad.u.net->v6info.saddr = addr6->sin6_addr;
4076
4077		err = avc_has_perm(sksec->sid, sid,
 
4078				   sksec->sclass, node_perm, &ad);
4079		if (err)
4080			goto out;
4081	}
4082out:
4083	return err;
 
 
 
 
 
4084}
4085
4086static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
 
 
 
 
4087{
4088	struct sock *sk = sock->sk;
4089	struct sk_security_struct *sksec = sk->sk_security;
4090	int err;
4091
4092	err = sock_has_perm(current, sk, SOCKET__CONNECT);
4093	if (err)
4094		return err;
 
 
 
 
 
 
 
 
4095
4096	/*
4097	 * If a TCP or DCCP socket, check name_connect permission for the port.
 
4098	 */
4099	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4100	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
 
4101		struct common_audit_data ad;
4102		struct lsm_network_audit net = {0,};
4103		struct sockaddr_in *addr4 = NULL;
4104		struct sockaddr_in6 *addr6 = NULL;
4105		unsigned short snum;
4106		u32 sid, perm;
4107
4108		if (sk->sk_family == PF_INET) {
 
 
 
 
 
 
4109			addr4 = (struct sockaddr_in *)address;
4110			if (addrlen < sizeof(struct sockaddr_in))
4111				return -EINVAL;
4112			snum = ntohs(addr4->sin_port);
4113		} else {
 
4114			addr6 = (struct sockaddr_in6 *)address;
4115			if (addrlen < SIN6_LEN_RFC2133)
4116				return -EINVAL;
4117			snum = ntohs(addr6->sin6_port);
 
 
 
 
 
 
 
 
 
4118		}
4119
4120		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4121		if (err)
4122			goto out;
4123
4124		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4125		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
 
 
 
 
 
 
 
 
 
4126
4127		ad.type = LSM_AUDIT_DATA_NET;
4128		ad.u.net = &net;
4129		ad.u.net->dport = htons(snum);
4130		ad.u.net->family = sk->sk_family;
4131		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
 
4132		if (err)
4133			goto out;
4134	}
4135
4136	err = selinux_netlbl_socket_connect(sk, address);
 
 
 
 
 
 
 
 
 
 
 
 
4137
4138out:
4139	return err;
4140}
4141
4142static int selinux_socket_listen(struct socket *sock, int backlog)
4143{
4144	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4145}
4146
4147static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4148{
4149	int err;
4150	struct inode_security_struct *isec;
4151	struct inode_security_struct *newisec;
 
 
4152
4153	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4154	if (err)
4155		return err;
4156
4157	newisec = SOCK_INODE(newsock)->i_security;
4158
4159	isec = SOCK_INODE(sock)->i_security;
4160	newisec->sclass = isec->sclass;
4161	newisec->sid = isec->sid;
4162	newisec->initialized = 1;
 
 
 
 
4163
4164	return 0;
4165}
4166
4167static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4168				  int size)
4169{
4170	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4171}
4172
4173static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4174				  int size, int flags)
4175{
4176	return sock_has_perm(current, sock->sk, SOCKET__READ);
4177}
4178
4179static int selinux_socket_getsockname(struct socket *sock)
4180{
4181	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4182}
4183
4184static int selinux_socket_getpeername(struct socket *sock)
4185{
4186	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4187}
4188
4189static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4190{
4191	int err;
4192
4193	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4194	if (err)
4195		return err;
4196
4197	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4198}
4199
4200static int selinux_socket_getsockopt(struct socket *sock, int level,
4201				     int optname)
4202{
4203	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4204}
4205
4206static int selinux_socket_shutdown(struct socket *sock, int how)
4207{
4208	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4209}
4210
4211static int selinux_socket_unix_stream_connect(struct sock *sock,
4212					      struct sock *other,
4213					      struct sock *newsk)
4214{
4215	struct sk_security_struct *sksec_sock = sock->sk_security;
4216	struct sk_security_struct *sksec_other = other->sk_security;
4217	struct sk_security_struct *sksec_new = newsk->sk_security;
4218	struct common_audit_data ad;
4219	struct lsm_network_audit net = {0,};
4220	int err;
4221
4222	ad.type = LSM_AUDIT_DATA_NET;
4223	ad.u.net = &net;
4224	ad.u.net->sk = other;
4225
4226	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
 
4227			   sksec_other->sclass,
4228			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4229	if (err)
4230		return err;
4231
4232	/* server child socket */
4233	sksec_new->peer_sid = sksec_sock->sid;
4234	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4235				    &sksec_new->sid);
4236	if (err)
4237		return err;
4238
4239	/* connecting socket */
4240	sksec_sock->peer_sid = sksec_new->sid;
4241
4242	return 0;
4243}
4244
4245static int selinux_socket_unix_may_send(struct socket *sock,
4246					struct socket *other)
4247{
4248	struct sk_security_struct *ssec = sock->sk->sk_security;
4249	struct sk_security_struct *osec = other->sk->sk_security;
4250	struct common_audit_data ad;
4251	struct lsm_network_audit net = {0,};
4252
4253	ad.type = LSM_AUDIT_DATA_NET;
4254	ad.u.net = &net;
4255	ad.u.net->sk = other->sk;
4256
4257	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
 
4258			    &ad);
4259}
4260
4261static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4262				    u32 peer_sid,
4263				    struct common_audit_data *ad)
4264{
4265	int err;
4266	u32 if_sid;
4267	u32 node_sid;
4268
4269	err = sel_netif_sid(ifindex, &if_sid);
4270	if (err)
4271		return err;
4272	err = avc_has_perm(peer_sid, if_sid,
 
4273			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4274	if (err)
4275		return err;
4276
4277	err = sel_netnode_sid(addrp, family, &node_sid);
4278	if (err)
4279		return err;
4280	return avc_has_perm(peer_sid, node_sid,
 
4281			    SECCLASS_NODE, NODE__RECVFROM, ad);
4282}
4283
4284static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4285				       u16 family)
4286{
4287	int err = 0;
4288	struct sk_security_struct *sksec = sk->sk_security;
4289	u32 sk_sid = sksec->sid;
4290	struct common_audit_data ad;
4291	struct lsm_network_audit net = {0,};
4292	char *addrp;
4293
4294	ad.type = LSM_AUDIT_DATA_NET;
4295	ad.u.net = &net;
4296	ad.u.net->netif = skb->skb_iif;
4297	ad.u.net->family = family;
4298	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4299	if (err)
4300		return err;
4301
4302	if (selinux_secmark_enabled()) {
4303		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4304				   PACKET__RECV, &ad);
4305		if (err)
4306			return err;
4307	}
4308
4309	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4310	if (err)
4311		return err;
4312	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4313
4314	return err;
4315}
4316
4317static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4318{
4319	int err;
4320	struct sk_security_struct *sksec = sk->sk_security;
4321	u16 family = sk->sk_family;
4322	u32 sk_sid = sksec->sid;
4323	struct common_audit_data ad;
4324	struct lsm_network_audit net = {0,};
4325	char *addrp;
4326	u8 secmark_active;
4327	u8 peerlbl_active;
4328
4329	if (family != PF_INET && family != PF_INET6)
4330		return 0;
4331
4332	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4333	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4334		family = PF_INET;
4335
4336	/* If any sort of compatibility mode is enabled then handoff processing
4337	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4338	 * special handling.  We do this in an attempt to keep this function
4339	 * as fast and as clean as possible. */
4340	if (!selinux_policycap_netpeer)
4341		return selinux_sock_rcv_skb_compat(sk, skb, family);
4342
4343	secmark_active = selinux_secmark_enabled();
4344	peerlbl_active = selinux_peerlbl_enabled();
4345	if (!secmark_active && !peerlbl_active)
4346		return 0;
4347
4348	ad.type = LSM_AUDIT_DATA_NET;
4349	ad.u.net = &net;
4350	ad.u.net->netif = skb->skb_iif;
4351	ad.u.net->family = family;
4352	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4353	if (err)
4354		return err;
4355
4356	if (peerlbl_active) {
4357		u32 peer_sid;
4358
4359		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4360		if (err)
4361			return err;
4362		err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4363					       peer_sid, &ad);
4364		if (err) {
4365			selinux_netlbl_err(skb, err, 0);
4366			return err;
4367		}
4368		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
 
4369				   PEER__RECV, &ad);
4370		if (err) {
4371			selinux_netlbl_err(skb, err, 0);
4372			return err;
4373		}
4374	}
4375
4376	if (secmark_active) {
4377		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4378				   PACKET__RECV, &ad);
4379		if (err)
4380			return err;
4381	}
4382
4383	return err;
4384}
4385
4386static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4387					    int __user *optlen, unsigned len)
4388{
4389	int err = 0;
4390	char *scontext;
4391	u32 scontext_len;
4392	struct sk_security_struct *sksec = sock->sk->sk_security;
4393	u32 peer_sid = SECSID_NULL;
4394
4395	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4396	    sksec->sclass == SECCLASS_TCP_SOCKET)
 
4397		peer_sid = sksec->peer_sid;
4398	if (peer_sid == SECSID_NULL)
4399		return -ENOPROTOOPT;
4400
4401	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
 
4402	if (err)
4403		return err;
4404
4405	if (scontext_len > len) {
4406		err = -ERANGE;
4407		goto out_len;
4408	}
4409
4410	if (copy_to_user(optval, scontext, scontext_len))
4411		err = -EFAULT;
4412
4413out_len:
4414	if (put_user(scontext_len, optlen))
4415		err = -EFAULT;
4416	kfree(scontext);
4417	return err;
4418}
4419
4420static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4421{
4422	u32 peer_secid = SECSID_NULL;
4423	u16 family;
 
4424
4425	if (skb && skb->protocol == htons(ETH_P_IP))
4426		family = PF_INET;
4427	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4428		family = PF_INET6;
4429	else if (sock)
4430		family = sock->sk->sk_family;
4431	else
4432		goto out;
4433
4434	if (sock && family == PF_UNIX)
4435		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4436	else if (skb)
 
4437		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4438
4439out:
4440	*secid = peer_secid;
4441	if (peer_secid == SECSID_NULL)
4442		return -EINVAL;
4443	return 0;
4444}
4445
4446static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4447{
4448	struct sk_security_struct *sksec;
4449
4450	sksec = kzalloc(sizeof(*sksec), priority);
4451	if (!sksec)
4452		return -ENOMEM;
4453
4454	sksec->peer_sid = SECINITSID_UNLABELED;
4455	sksec->sid = SECINITSID_UNLABELED;
 
4456	selinux_netlbl_sk_security_reset(sksec);
4457	sk->sk_security = sksec;
4458
4459	return 0;
4460}
4461
4462static void selinux_sk_free_security(struct sock *sk)
4463{
4464	struct sk_security_struct *sksec = sk->sk_security;
4465
4466	sk->sk_security = NULL;
4467	selinux_netlbl_sk_security_free(sksec);
4468	kfree(sksec);
4469}
4470
4471static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4472{
4473	struct sk_security_struct *sksec = sk->sk_security;
4474	struct sk_security_struct *newsksec = newsk->sk_security;
4475
4476	newsksec->sid = sksec->sid;
4477	newsksec->peer_sid = sksec->peer_sid;
4478	newsksec->sclass = sksec->sclass;
4479
4480	selinux_netlbl_sk_security_reset(newsksec);
4481}
4482
4483static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4484{
4485	if (!sk)
4486		*secid = SECINITSID_ANY_SOCKET;
4487	else {
4488		struct sk_security_struct *sksec = sk->sk_security;
4489
4490		*secid = sksec->sid;
4491	}
4492}
4493
4494static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4495{
4496	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
 
4497	struct sk_security_struct *sksec = sk->sk_security;
4498
4499	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4500	    sk->sk_family == PF_UNIX)
4501		isec->sid = sksec->sid;
4502	sksec->sclass = isec->sclass;
4503}
4504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4505static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4506				     struct request_sock *req)
4507{
4508	struct sk_security_struct *sksec = sk->sk_security;
4509	int err;
4510	u16 family = req->rsk_ops->family;
4511	u32 connsid;
4512	u32 peersid;
4513
4514	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4515	if (err)
4516		return err;
4517	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4518	if (err)
4519		return err;
4520	req->secid = connsid;
4521	req->peer_secid = peersid;
4522
4523	return selinux_netlbl_inet_conn_request(req, family);
4524}
4525
4526static void selinux_inet_csk_clone(struct sock *newsk,
4527				   const struct request_sock *req)
4528{
4529	struct sk_security_struct *newsksec = newsk->sk_security;
4530
4531	newsksec->sid = req->secid;
4532	newsksec->peer_sid = req->peer_secid;
4533	/* NOTE: Ideally, we should also get the isec->sid for the
4534	   new socket in sync, but we don't have the isec available yet.
4535	   So we will wait until sock_graft to do it, by which
4536	   time it will have been created and available. */
4537
4538	/* We don't need to take any sort of lock here as we are the only
4539	 * thread with access to newsksec */
4540	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4541}
4542
4543static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4544{
4545	u16 family = sk->sk_family;
4546	struct sk_security_struct *sksec = sk->sk_security;
4547
4548	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4549	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4550		family = PF_INET;
4551
4552	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4553}
4554
4555static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4556{
4557	skb_set_owner_w(skb, sk);
4558}
4559
4560static int selinux_secmark_relabel_packet(u32 sid)
4561{
4562	const struct task_security_struct *__tsec;
4563	u32 tsid;
4564
4565	__tsec = current_security();
4566	tsid = __tsec->sid;
4567
4568	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
 
 
4569}
4570
4571static void selinux_secmark_refcount_inc(void)
4572{
4573	atomic_inc(&selinux_secmark_refcount);
4574}
4575
4576static void selinux_secmark_refcount_dec(void)
4577{
4578	atomic_dec(&selinux_secmark_refcount);
4579}
4580
4581static void selinux_req_classify_flow(const struct request_sock *req,
4582				      struct flowi *fl)
4583{
4584	fl->flowi_secid = req->secid;
4585}
4586
4587static int selinux_tun_dev_alloc_security(void **security)
4588{
4589	struct tun_security_struct *tunsec;
4590
4591	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4592	if (!tunsec)
4593		return -ENOMEM;
4594	tunsec->sid = current_sid();
4595
4596	*security = tunsec;
4597	return 0;
4598}
4599
4600static void selinux_tun_dev_free_security(void *security)
4601{
4602	kfree(security);
4603}
4604
4605static int selinux_tun_dev_create(void)
4606{
4607	u32 sid = current_sid();
4608
4609	/* we aren't taking into account the "sockcreate" SID since the socket
4610	 * that is being created here is not a socket in the traditional sense,
4611	 * instead it is a private sock, accessible only to the kernel, and
4612	 * representing a wide range of network traffic spanning multiple
4613	 * connections unlike traditional sockets - check the TUN driver to
4614	 * get a better understanding of why this socket is special */
4615
4616	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
 
4617			    NULL);
4618}
4619
4620static int selinux_tun_dev_attach_queue(void *security)
4621{
4622	struct tun_security_struct *tunsec = security;
4623
4624	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
 
4625			    TUN_SOCKET__ATTACH_QUEUE, NULL);
4626}
4627
4628static int selinux_tun_dev_attach(struct sock *sk, void *security)
4629{
4630	struct tun_security_struct *tunsec = security;
4631	struct sk_security_struct *sksec = sk->sk_security;
4632
4633	/* we don't currently perform any NetLabel based labeling here and it
4634	 * isn't clear that we would want to do so anyway; while we could apply
4635	 * labeling without the support of the TUN user the resulting labeled
4636	 * traffic from the other end of the connection would almost certainly
4637	 * cause confusion to the TUN user that had no idea network labeling
4638	 * protocols were being used */
4639
4640	sksec->sid = tunsec->sid;
4641	sksec->sclass = SECCLASS_TUN_SOCKET;
4642
4643	return 0;
4644}
4645
4646static int selinux_tun_dev_open(void *security)
4647{
4648	struct tun_security_struct *tunsec = security;
4649	u32 sid = current_sid();
4650	int err;
4651
4652	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
 
4653			   TUN_SOCKET__RELABELFROM, NULL);
4654	if (err)
4655		return err;
4656	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
 
4657			   TUN_SOCKET__RELABELTO, NULL);
4658	if (err)
4659		return err;
4660	tunsec->sid = sid;
4661
4662	return 0;
4663}
4664
4665static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4666{
4667	int err = 0;
4668	u32 perm;
4669	struct nlmsghdr *nlh;
4670	struct sk_security_struct *sksec = sk->sk_security;
4671
4672	if (skb->len < NLMSG_HDRLEN) {
4673		err = -EINVAL;
4674		goto out;
4675	}
4676	nlh = nlmsg_hdr(skb);
4677
4678	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4679	if (err) {
4680		if (err == -EINVAL) {
4681			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4682				  "SELinux:  unrecognized netlink message"
4683				  " type=%hu for sclass=%hu\n",
4684				  nlh->nlmsg_type, sksec->sclass);
4685			if (!selinux_enforcing || security_get_allow_unknown())
 
 
 
4686				err = 0;
4687		}
4688
4689		/* Ignore */
4690		if (err == -ENOENT)
4691			err = 0;
4692		goto out;
4693	}
4694
4695	err = sock_has_perm(current, sk, perm);
4696out:
4697	return err;
4698}
4699
4700#ifdef CONFIG_NETFILTER
4701
4702static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
 
4703				       u16 family)
4704{
4705	int err;
4706	char *addrp;
4707	u32 peer_sid;
4708	struct common_audit_data ad;
4709	struct lsm_network_audit net = {0,};
4710	u8 secmark_active;
4711	u8 netlbl_active;
4712	u8 peerlbl_active;
4713
4714	if (!selinux_policycap_netpeer)
4715		return NF_ACCEPT;
4716
4717	secmark_active = selinux_secmark_enabled();
4718	netlbl_active = netlbl_enabled();
4719	peerlbl_active = selinux_peerlbl_enabled();
4720	if (!secmark_active && !peerlbl_active)
4721		return NF_ACCEPT;
4722
4723	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4724		return NF_DROP;
4725
4726	ad.type = LSM_AUDIT_DATA_NET;
4727	ad.u.net = &net;
4728	ad.u.net->netif = ifindex;
4729	ad.u.net->family = family;
4730	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4731		return NF_DROP;
4732
4733	if (peerlbl_active) {
4734		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4735					       peer_sid, &ad);
4736		if (err) {
4737			selinux_netlbl_err(skb, err, 1);
4738			return NF_DROP;
4739		}
4740	}
4741
4742	if (secmark_active)
4743		if (avc_has_perm(peer_sid, skb->secmark,
 
4744				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4745			return NF_DROP;
4746
4747	if (netlbl_active)
4748		/* we do this in the FORWARD path and not the POST_ROUTING
4749		 * path because we want to make sure we apply the necessary
4750		 * labeling before IPsec is applied so we can leverage AH
4751		 * protection */
4752		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4753			return NF_DROP;
4754
4755	return NF_ACCEPT;
4756}
4757
4758static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4759					 struct sk_buff *skb,
4760					 const struct net_device *in,
4761					 const struct net_device *out,
4762					 int (*okfn)(struct sk_buff *))
4763{
4764	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4765}
4766
4767#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4768static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4769					 struct sk_buff *skb,
4770					 const struct net_device *in,
4771					 const struct net_device *out,
4772					 int (*okfn)(struct sk_buff *))
4773{
4774	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4775}
4776#endif	/* IPV6 */
4777
4778static unsigned int selinux_ip_output(struct sk_buff *skb,
4779				      u16 family)
4780{
4781	struct sock *sk;
4782	u32 sid;
4783
4784	if (!netlbl_enabled())
4785		return NF_ACCEPT;
4786
4787	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4788	 * because we want to make sure we apply the necessary labeling
4789	 * before IPsec is applied so we can leverage AH protection */
4790	sk = skb->sk;
4791	if (sk) {
4792		struct sk_security_struct *sksec;
4793
4794		if (sk->sk_state == TCP_LISTEN)
4795			/* if the socket is the listening state then this
4796			 * packet is a SYN-ACK packet which means it needs to
4797			 * be labeled based on the connection/request_sock and
4798			 * not the parent socket.  unfortunately, we can't
4799			 * lookup the request_sock yet as it isn't queued on
4800			 * the parent socket until after the SYN-ACK is sent.
4801			 * the "solution" is to simply pass the packet as-is
4802			 * as any IP option based labeling should be copied
4803			 * from the initial connection request (in the IP
4804			 * layer).  it is far from ideal, but until we get a
4805			 * security label in the packet itself this is the
4806			 * best we can do. */
4807			return NF_ACCEPT;
4808
4809		/* standard practice, label using the parent socket */
4810		sksec = sk->sk_security;
4811		sid = sksec->sid;
4812	} else
4813		sid = SECINITSID_KERNEL;
4814	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4815		return NF_DROP;
4816
4817	return NF_ACCEPT;
4818}
4819
4820static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4821					struct sk_buff *skb,
4822					const struct net_device *in,
4823					const struct net_device *out,
4824					int (*okfn)(struct sk_buff *))
4825{
4826	return selinux_ip_output(skb, PF_INET);
4827}
4828
 
 
 
 
 
 
 
 
 
4829static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4830						int ifindex,
4831						u16 family)
4832{
4833	struct sock *sk = skb->sk;
4834	struct sk_security_struct *sksec;
4835	struct common_audit_data ad;
4836	struct lsm_network_audit net = {0,};
4837	char *addrp;
4838	u8 proto;
4839
4840	if (sk == NULL)
4841		return NF_ACCEPT;
4842	sksec = sk->sk_security;
4843
4844	ad.type = LSM_AUDIT_DATA_NET;
4845	ad.u.net = &net;
4846	ad.u.net->netif = ifindex;
4847	ad.u.net->family = family;
4848	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4849		return NF_DROP;
4850
4851	if (selinux_secmark_enabled())
4852		if (avc_has_perm(sksec->sid, skb->secmark,
 
4853				 SECCLASS_PACKET, PACKET__SEND, &ad))
4854			return NF_DROP_ERR(-ECONNREFUSED);
4855
4856	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4857		return NF_DROP_ERR(-ECONNREFUSED);
4858
4859	return NF_ACCEPT;
4860}
4861
4862static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
 
4863					 u16 family)
4864{
4865	u32 secmark_perm;
4866	u32 peer_sid;
 
4867	struct sock *sk;
4868	struct common_audit_data ad;
4869	struct lsm_network_audit net = {0,};
4870	char *addrp;
4871	u8 secmark_active;
4872	u8 peerlbl_active;
4873
4874	/* If any sort of compatibility mode is enabled then handoff processing
4875	 * to the selinux_ip_postroute_compat() function to deal with the
4876	 * special handling.  We do this in an attempt to keep this function
4877	 * as fast and as clean as possible. */
4878	if (!selinux_policycap_netpeer)
4879		return selinux_ip_postroute_compat(skb, ifindex, family);
4880
4881	secmark_active = selinux_secmark_enabled();
4882	peerlbl_active = selinux_peerlbl_enabled();
4883	if (!secmark_active && !peerlbl_active)
4884		return NF_ACCEPT;
4885
4886	sk = skb->sk;
4887
4888#ifdef CONFIG_XFRM
4889	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4890	 * packet transformation so allow the packet to pass without any checks
4891	 * since we'll have another chance to perform access control checks
4892	 * when the packet is on it's final way out.
4893	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4894	 *       is NULL, in this case go ahead and apply access control.
4895	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
4896	 *       TCP listening state we cannot wait until the XFRM processing
4897	 *       is done as we will miss out on the SA label if we do;
4898	 *       unfortunately, this means more work, but it is only once per
4899	 *       connection. */
4900	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
4901	    !(sk != NULL && sk->sk_state == TCP_LISTEN))
4902		return NF_ACCEPT;
4903#endif
4904
4905	if (sk == NULL) {
4906		/* Without an associated socket the packet is either coming
4907		 * from the kernel or it is being forwarded; check the packet
4908		 * to determine which and if the packet is being forwarded
4909		 * query the packet directly to determine the security label. */
4910		if (skb->skb_iif) {
4911			secmark_perm = PACKET__FORWARD_OUT;
4912			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4913				return NF_DROP;
4914		} else {
4915			secmark_perm = PACKET__SEND;
4916			peer_sid = SECINITSID_KERNEL;
4917		}
4918	} else if (sk->sk_state == TCP_LISTEN) {
4919		/* Locally generated packet but the associated socket is in the
4920		 * listening state which means this is a SYN-ACK packet.  In
4921		 * this particular case the correct security label is assigned
4922		 * to the connection/request_sock but unfortunately we can't
4923		 * query the request_sock as it isn't queued on the parent
4924		 * socket until after the SYN-ACK packet is sent; the only
4925		 * viable choice is to regenerate the label like we do in
4926		 * selinux_inet_conn_request().  See also selinux_ip_output()
4927		 * for similar problems. */
4928		u32 skb_sid;
4929		struct sk_security_struct *sksec = sk->sk_security;
 
 
4930		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
4931			return NF_DROP;
4932		/* At this point, if the returned skb peerlbl is SECSID_NULL
4933		 * and the packet has been through at least one XFRM
4934		 * transformation then we must be dealing with the "final"
4935		 * form of labeled IPsec packet; since we've already applied
4936		 * all of our access controls on this packet we can safely
4937		 * pass the packet. */
4938		if (skb_sid == SECSID_NULL) {
4939			switch (family) {
4940			case PF_INET:
4941				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
4942					return NF_ACCEPT;
4943				break;
4944			case PF_INET6:
4945				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
4946					return NF_ACCEPT;
 
4947			default:
4948				return NF_DROP_ERR(-ECONNREFUSED);
4949			}
4950		}
4951		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
4952			return NF_DROP;
4953		secmark_perm = PACKET__SEND;
4954	} else {
4955		/* Locally generated packet, fetch the security label from the
4956		 * associated socket. */
4957		struct sk_security_struct *sksec = sk->sk_security;
4958		peer_sid = sksec->sid;
4959		secmark_perm = PACKET__SEND;
4960	}
4961
4962	ad.type = LSM_AUDIT_DATA_NET;
4963	ad.u.net = &net;
4964	ad.u.net->netif = ifindex;
4965	ad.u.net->family = family;
4966	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4967		return NF_DROP;
4968
4969	if (secmark_active)
4970		if (avc_has_perm(peer_sid, skb->secmark,
 
4971				 SECCLASS_PACKET, secmark_perm, &ad))
4972			return NF_DROP_ERR(-ECONNREFUSED);
4973
4974	if (peerlbl_active) {
4975		u32 if_sid;
4976		u32 node_sid;
4977
4978		if (sel_netif_sid(ifindex, &if_sid))
4979			return NF_DROP;
4980		if (avc_has_perm(peer_sid, if_sid,
 
4981				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4982			return NF_DROP_ERR(-ECONNREFUSED);
4983
4984		if (sel_netnode_sid(addrp, family, &node_sid))
4985			return NF_DROP;
4986		if (avc_has_perm(peer_sid, node_sid,
 
4987				 SECCLASS_NODE, NODE__SENDTO, &ad))
4988			return NF_DROP_ERR(-ECONNREFUSED);
4989	}
4990
4991	return NF_ACCEPT;
4992}
4993
4994static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
4995					   struct sk_buff *skb,
4996					   const struct net_device *in,
4997					   const struct net_device *out,
4998					   int (*okfn)(struct sk_buff *))
4999{
5000	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
5001}
5002
5003#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5004static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
5005					   struct sk_buff *skb,
5006					   const struct net_device *in,
5007					   const struct net_device *out,
5008					   int (*okfn)(struct sk_buff *))
5009{
5010	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
5011}
5012#endif	/* IPV6 */
5013
5014#endif	/* CONFIG_NETFILTER */
5015
5016static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5017{
5018	int err;
5019
5020	err = cap_netlink_send(sk, skb);
5021	if (err)
5022		return err;
5023
5024	return selinux_nlmsg_perm(sk, skb);
5025}
5026
5027static int ipc_alloc_security(struct task_struct *task,
5028			      struct kern_ipc_perm *perm,
5029			      u16 sclass)
5030{
5031	struct ipc_security_struct *isec;
5032	u32 sid;
5033
5034	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5035	if (!isec)
5036		return -ENOMEM;
5037
5038	sid = task_sid(task);
5039	isec->sclass = sclass;
5040	isec->sid = sid;
5041	perm->security = isec;
5042
5043	return 0;
5044}
5045
5046static void ipc_free_security(struct kern_ipc_perm *perm)
5047{
5048	struct ipc_security_struct *isec = perm->security;
5049	perm->security = NULL;
5050	kfree(isec);
5051}
5052
5053static int msg_msg_alloc_security(struct msg_msg *msg)
5054{
5055	struct msg_security_struct *msec;
5056
5057	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5058	if (!msec)
5059		return -ENOMEM;
5060
5061	msec->sid = SECINITSID_UNLABELED;
5062	msg->security = msec;
5063
5064	return 0;
5065}
5066
5067static void msg_msg_free_security(struct msg_msg *msg)
5068{
5069	struct msg_security_struct *msec = msg->security;
5070
5071	msg->security = NULL;
5072	kfree(msec);
5073}
5074
5075static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5076			u32 perms)
5077{
5078	struct ipc_security_struct *isec;
5079	struct common_audit_data ad;
5080	u32 sid = current_sid();
5081
5082	isec = ipc_perms->security;
5083
5084	ad.type = LSM_AUDIT_DATA_IPC;
5085	ad.u.ipc_id = ipc_perms->key;
5086
5087	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
 
5088}
5089
5090static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5091{
5092	return msg_msg_alloc_security(msg);
5093}
5094
5095static void selinux_msg_msg_free_security(struct msg_msg *msg)
5096{
5097	msg_msg_free_security(msg);
5098}
5099
5100/* message queue security operations */
5101static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5102{
5103	struct ipc_security_struct *isec;
5104	struct common_audit_data ad;
5105	u32 sid = current_sid();
5106	int rc;
5107
5108	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5109	if (rc)
5110		return rc;
5111
5112	isec = msq->q_perm.security;
5113
5114	ad.type = LSM_AUDIT_DATA_IPC;
5115	ad.u.ipc_id = msq->q_perm.key;
5116
5117	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5118			  MSGQ__CREATE, &ad);
5119	if (rc) {
5120		ipc_free_security(&msq->q_perm);
5121		return rc;
5122	}
5123	return 0;
5124}
5125
5126static void selinux_msg_queue_free_security(struct msg_queue *msq)
5127{
5128	ipc_free_security(&msq->q_perm);
5129}
5130
5131static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5132{
5133	struct ipc_security_struct *isec;
5134	struct common_audit_data ad;
5135	u32 sid = current_sid();
5136
5137	isec = msq->q_perm.security;
5138
5139	ad.type = LSM_AUDIT_DATA_IPC;
5140	ad.u.ipc_id = msq->q_perm.key;
5141
5142	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5143			    MSGQ__ASSOCIATE, &ad);
5144}
5145
5146static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5147{
5148	int err;
5149	int perms;
5150
5151	switch (cmd) {
5152	case IPC_INFO:
5153	case MSG_INFO:
5154		/* No specific object, just general system-wide information. */
5155		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5156	case IPC_STAT:
5157	case MSG_STAT:
 
5158		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5159		break;
5160	case IPC_SET:
5161		perms = MSGQ__SETATTR;
5162		break;
5163	case IPC_RMID:
5164		perms = MSGQ__DESTROY;
5165		break;
5166	default:
5167		return 0;
5168	}
5169
5170	err = ipc_has_perm(&msq->q_perm, perms);
5171	return err;
5172}
5173
5174static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5175{
5176	struct ipc_security_struct *isec;
5177	struct msg_security_struct *msec;
5178	struct common_audit_data ad;
5179	u32 sid = current_sid();
5180	int rc;
5181
5182	isec = msq->q_perm.security;
5183	msec = msg->security;
5184
5185	/*
5186	 * First time through, need to assign label to the message
5187	 */
5188	if (msec->sid == SECINITSID_UNLABELED) {
5189		/*
5190		 * Compute new sid based on current process and
5191		 * message queue this message will be stored in
5192		 */
5193		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5194					     NULL, &msec->sid);
5195		if (rc)
5196			return rc;
5197	}
5198
5199	ad.type = LSM_AUDIT_DATA_IPC;
5200	ad.u.ipc_id = msq->q_perm.key;
5201
5202	/* Can this process write to the queue? */
5203	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5204			  MSGQ__WRITE, &ad);
5205	if (!rc)
5206		/* Can this process send the message */
5207		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
 
5208				  MSG__SEND, &ad);
5209	if (!rc)
5210		/* Can the message be put in the queue? */
5211		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
 
5212				  MSGQ__ENQUEUE, &ad);
5213
5214	return rc;
5215}
5216
5217static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5218				    struct task_struct *target,
5219				    long type, int mode)
5220{
5221	struct ipc_security_struct *isec;
5222	struct msg_security_struct *msec;
5223	struct common_audit_data ad;
5224	u32 sid = task_sid(target);
5225	int rc;
5226
5227	isec = msq->q_perm.security;
5228	msec = msg->security;
5229
5230	ad.type = LSM_AUDIT_DATA_IPC;
5231	ad.u.ipc_id = msq->q_perm.key;
5232
5233	rc = avc_has_perm(sid, isec->sid,
 
5234			  SECCLASS_MSGQ, MSGQ__READ, &ad);
5235	if (!rc)
5236		rc = avc_has_perm(sid, msec->sid,
 
5237				  SECCLASS_MSG, MSG__RECEIVE, &ad);
5238	return rc;
5239}
5240
5241/* Shared Memory security operations */
5242static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5243{
5244	struct ipc_security_struct *isec;
5245	struct common_audit_data ad;
5246	u32 sid = current_sid();
5247	int rc;
5248
5249	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5250	if (rc)
5251		return rc;
5252
5253	isec = shp->shm_perm.security;
5254
5255	ad.type = LSM_AUDIT_DATA_IPC;
5256	ad.u.ipc_id = shp->shm_perm.key;
5257
5258	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5259			  SHM__CREATE, &ad);
5260	if (rc) {
5261		ipc_free_security(&shp->shm_perm);
5262		return rc;
5263	}
5264	return 0;
5265}
5266
5267static void selinux_shm_free_security(struct shmid_kernel *shp)
5268{
5269	ipc_free_security(&shp->shm_perm);
5270}
5271
5272static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5273{
5274	struct ipc_security_struct *isec;
5275	struct common_audit_data ad;
5276	u32 sid = current_sid();
5277
5278	isec = shp->shm_perm.security;
5279
5280	ad.type = LSM_AUDIT_DATA_IPC;
5281	ad.u.ipc_id = shp->shm_perm.key;
5282
5283	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5284			    SHM__ASSOCIATE, &ad);
5285}
5286
5287/* Note, at this point, shp is locked down */
5288static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5289{
5290	int perms;
5291	int err;
5292
5293	switch (cmd) {
5294	case IPC_INFO:
5295	case SHM_INFO:
5296		/* No specific object, just general system-wide information. */
5297		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5298	case IPC_STAT:
5299	case SHM_STAT:
 
5300		perms = SHM__GETATTR | SHM__ASSOCIATE;
5301		break;
5302	case IPC_SET:
5303		perms = SHM__SETATTR;
5304		break;
5305	case SHM_LOCK:
5306	case SHM_UNLOCK:
5307		perms = SHM__LOCK;
5308		break;
5309	case IPC_RMID:
5310		perms = SHM__DESTROY;
5311		break;
5312	default:
5313		return 0;
5314	}
5315
5316	err = ipc_has_perm(&shp->shm_perm, perms);
5317	return err;
5318}
5319
5320static int selinux_shm_shmat(struct shmid_kernel *shp,
5321			     char __user *shmaddr, int shmflg)
5322{
5323	u32 perms;
5324
5325	if (shmflg & SHM_RDONLY)
5326		perms = SHM__READ;
5327	else
5328		perms = SHM__READ | SHM__WRITE;
5329
5330	return ipc_has_perm(&shp->shm_perm, perms);
5331}
5332
5333/* Semaphore security operations */
5334static int selinux_sem_alloc_security(struct sem_array *sma)
5335{
5336	struct ipc_security_struct *isec;
5337	struct common_audit_data ad;
5338	u32 sid = current_sid();
5339	int rc;
5340
5341	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5342	if (rc)
5343		return rc;
5344
5345	isec = sma->sem_perm.security;
5346
5347	ad.type = LSM_AUDIT_DATA_IPC;
5348	ad.u.ipc_id = sma->sem_perm.key;
5349
5350	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5351			  SEM__CREATE, &ad);
5352	if (rc) {
5353		ipc_free_security(&sma->sem_perm);
5354		return rc;
5355	}
5356	return 0;
5357}
5358
5359static void selinux_sem_free_security(struct sem_array *sma)
5360{
5361	ipc_free_security(&sma->sem_perm);
5362}
5363
5364static int selinux_sem_associate(struct sem_array *sma, int semflg)
5365{
5366	struct ipc_security_struct *isec;
5367	struct common_audit_data ad;
5368	u32 sid = current_sid();
5369
5370	isec = sma->sem_perm.security;
5371
5372	ad.type = LSM_AUDIT_DATA_IPC;
5373	ad.u.ipc_id = sma->sem_perm.key;
5374
5375	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5376			    SEM__ASSOCIATE, &ad);
5377}
5378
5379/* Note, at this point, sma is locked down */
5380static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5381{
5382	int err;
5383	u32 perms;
5384
5385	switch (cmd) {
5386	case IPC_INFO:
5387	case SEM_INFO:
5388		/* No specific object, just general system-wide information. */
5389		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5390	case GETPID:
5391	case GETNCNT:
5392	case GETZCNT:
5393		perms = SEM__GETATTR;
5394		break;
5395	case GETVAL:
5396	case GETALL:
5397		perms = SEM__READ;
5398		break;
5399	case SETVAL:
5400	case SETALL:
5401		perms = SEM__WRITE;
5402		break;
5403	case IPC_RMID:
5404		perms = SEM__DESTROY;
5405		break;
5406	case IPC_SET:
5407		perms = SEM__SETATTR;
5408		break;
5409	case IPC_STAT:
5410	case SEM_STAT:
 
5411		perms = SEM__GETATTR | SEM__ASSOCIATE;
5412		break;
5413	default:
5414		return 0;
5415	}
5416
5417	err = ipc_has_perm(&sma->sem_perm, perms);
5418	return err;
5419}
5420
5421static int selinux_sem_semop(struct sem_array *sma,
5422			     struct sembuf *sops, unsigned nsops, int alter)
5423{
5424	u32 perms;
5425
5426	if (alter)
5427		perms = SEM__READ | SEM__WRITE;
5428	else
5429		perms = SEM__READ;
5430
5431	return ipc_has_perm(&sma->sem_perm, perms);
5432}
5433
5434static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5435{
5436	u32 av = 0;
5437
5438	av = 0;
5439	if (flag & S_IRUGO)
5440		av |= IPC__UNIX_READ;
5441	if (flag & S_IWUGO)
5442		av |= IPC__UNIX_WRITE;
5443
5444	if (av == 0)
5445		return 0;
5446
5447	return ipc_has_perm(ipcp, av);
5448}
5449
5450static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5451{
5452	struct ipc_security_struct *isec = ipcp->security;
5453	*secid = isec->sid;
5454}
5455
5456static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5457{
5458	if (inode)
5459		inode_doinit_with_dentry(inode, dentry);
5460}
5461
5462static int selinux_getprocattr(struct task_struct *p,
5463			       char *name, char **value)
5464{
5465	const struct task_security_struct *__tsec;
5466	u32 sid;
5467	int error;
5468	unsigned len;
5469
 
 
 
5470	if (current != p) {
5471		error = current_has_perm(p, PROCESS__GETATTR);
 
 
5472		if (error)
5473			return error;
5474	}
5475
5476	rcu_read_lock();
5477	__tsec = __task_cred(p)->security;
5478
5479	if (!strcmp(name, "current"))
5480		sid = __tsec->sid;
5481	else if (!strcmp(name, "prev"))
5482		sid = __tsec->osid;
5483	else if (!strcmp(name, "exec"))
5484		sid = __tsec->exec_sid;
5485	else if (!strcmp(name, "fscreate"))
5486		sid = __tsec->create_sid;
5487	else if (!strcmp(name, "keycreate"))
5488		sid = __tsec->keycreate_sid;
5489	else if (!strcmp(name, "sockcreate"))
5490		sid = __tsec->sockcreate_sid;
5491	else
5492		goto invalid;
 
 
5493	rcu_read_unlock();
5494
5495	if (!sid)
5496		return 0;
5497
5498	error = security_sid_to_context(sid, value, &len);
5499	if (error)
5500		return error;
5501	return len;
5502
5503invalid:
5504	rcu_read_unlock();
5505	return -EINVAL;
5506}
5507
5508static int selinux_setprocattr(struct task_struct *p,
5509			       char *name, void *value, size_t size)
5510{
5511	struct task_security_struct *tsec;
5512	struct task_struct *tracer;
5513	struct cred *new;
5514	u32 sid = 0, ptsid;
5515	int error;
5516	char *str = value;
5517
5518	if (current != p) {
5519		/* SELinux only allows a process to change its own
5520		   security attributes. */
5521		return -EACCES;
5522	}
5523
5524	/*
5525	 * Basic control over ability to set these attributes at all.
5526	 * current == p, but we'll pass them separately in case the
5527	 * above restriction is ever removed.
5528	 */
5529	if (!strcmp(name, "exec"))
5530		error = current_has_perm(p, PROCESS__SETEXEC);
 
 
5531	else if (!strcmp(name, "fscreate"))
5532		error = current_has_perm(p, PROCESS__SETFSCREATE);
 
 
5533	else if (!strcmp(name, "keycreate"))
5534		error = current_has_perm(p, PROCESS__SETKEYCREATE);
 
 
5535	else if (!strcmp(name, "sockcreate"))
5536		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
 
 
5537	else if (!strcmp(name, "current"))
5538		error = current_has_perm(p, PROCESS__SETCURRENT);
 
 
5539	else
5540		error = -EINVAL;
5541	if (error)
5542		return error;
5543
5544	/* Obtain a SID for the context, if one was specified. */
5545	if (size && str[1] && str[1] != '\n') {
5546		if (str[size-1] == '\n') {
5547			str[size-1] = 0;
5548			size--;
5549		}
5550		error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
 
5551		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5552			if (!capable(CAP_MAC_ADMIN)) {
5553				struct audit_buffer *ab;
5554				size_t audit_size;
5555
5556				/* We strip a nul only if it is at the end, otherwise the
5557				 * context contains a nul and we should audit that */
5558				if (str[size - 1] == '\0')
5559					audit_size = size - 1;
5560				else
5561					audit_size = size;
5562				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
 
5563				audit_log_format(ab, "op=fscreate invalid_context=");
5564				audit_log_n_untrustedstring(ab, value, audit_size);
5565				audit_log_end(ab);
5566
5567				return error;
5568			}
5569			error = security_context_to_sid_force(value, size,
5570							      &sid);
 
5571		}
5572		if (error)
5573			return error;
5574	}
5575
5576	new = prepare_creds();
5577	if (!new)
5578		return -ENOMEM;
5579
5580	/* Permission checking based on the specified context is
5581	   performed during the actual operation (execve,
5582	   open/mkdir/...), when we know the full context of the
5583	   operation.  See selinux_bprm_set_creds for the execve
5584	   checks and may_create for the file creation checks. The
5585	   operation will then fail if the context is not permitted. */
5586	tsec = new->security;
5587	if (!strcmp(name, "exec")) {
5588		tsec->exec_sid = sid;
5589	} else if (!strcmp(name, "fscreate")) {
5590		tsec->create_sid = sid;
5591	} else if (!strcmp(name, "keycreate")) {
5592		error = may_create_key(sid, p);
5593		if (error)
5594			goto abort_change;
 
 
 
5595		tsec->keycreate_sid = sid;
5596	} else if (!strcmp(name, "sockcreate")) {
5597		tsec->sockcreate_sid = sid;
5598	} else if (!strcmp(name, "current")) {
5599		error = -EINVAL;
5600		if (sid == 0)
5601			goto abort_change;
5602
5603		/* Only allow single threaded processes to change context */
5604		error = -EPERM;
5605		if (!current_is_single_threaded()) {
5606			error = security_bounded_transition(tsec->sid, sid);
 
5607			if (error)
5608				goto abort_change;
5609		}
5610
5611		/* Check permissions for the transition. */
5612		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
 
5613				     PROCESS__DYNTRANSITION, NULL);
5614		if (error)
5615			goto abort_change;
5616
5617		/* Check for ptracing, and update the task SID if ok.
5618		   Otherwise, leave SID unchanged and fail. */
5619		ptsid = 0;
5620		rcu_read_lock();
5621		tracer = ptrace_parent(p);
5622		if (tracer)
5623			ptsid = task_sid(tracer);
5624		rcu_read_unlock();
5625
5626		if (tracer) {
5627			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5628					     PROCESS__PTRACE, NULL);
5629			if (error)
5630				goto abort_change;
5631		}
5632
5633		tsec->sid = sid;
5634	} else {
5635		error = -EINVAL;
5636		goto abort_change;
5637	}
5638
5639	commit_creds(new);
5640	return size;
5641
5642abort_change:
5643	abort_creds(new);
5644	return error;
5645}
5646
5647static int selinux_ismaclabel(const char *name)
5648{
5649	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5650}
5651
5652static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5653{
5654	return security_sid_to_context(secid, secdata, seclen);
 
5655}
5656
5657static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5658{
5659	return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
 
5660}
5661
5662static void selinux_release_secctx(char *secdata, u32 seclen)
5663{
5664	kfree(secdata);
5665}
5666
 
 
 
 
 
 
 
 
 
5667/*
5668 *	called with inode->i_mutex locked
5669 */
5670static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5671{
5672	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
 
 
 
5673}
5674
5675/*
5676 *	called with inode->i_mutex locked
5677 */
5678static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5679{
5680	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5681}
5682
5683static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5684{
5685	int len = 0;
5686	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5687						ctx, true);
5688	if (len < 0)
5689		return len;
5690	*ctxlen = len;
5691	return 0;
5692}
5693#ifdef CONFIG_KEYS
5694
5695static int selinux_key_alloc(struct key *k, const struct cred *cred,
5696			     unsigned long flags)
5697{
5698	const struct task_security_struct *tsec;
5699	struct key_security_struct *ksec;
5700
5701	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5702	if (!ksec)
5703		return -ENOMEM;
5704
5705	tsec = cred->security;
5706	if (tsec->keycreate_sid)
5707		ksec->sid = tsec->keycreate_sid;
5708	else
5709		ksec->sid = tsec->sid;
5710
5711	k->security = ksec;
5712	return 0;
5713}
5714
5715static void selinux_key_free(struct key *k)
5716{
5717	struct key_security_struct *ksec = k->security;
5718
5719	k->security = NULL;
5720	kfree(ksec);
5721}
5722
5723static int selinux_key_permission(key_ref_t key_ref,
5724				  const struct cred *cred,
5725				  key_perm_t perm)
5726{
5727	struct key *key;
5728	struct key_security_struct *ksec;
5729	u32 sid;
5730
5731	/* if no specific permissions are requested, we skip the
5732	   permission check. No serious, additional covert channels
5733	   appear to be created. */
5734	if (perm == 0)
5735		return 0;
5736
5737	sid = cred_sid(cred);
5738
5739	key = key_ref_to_ptr(key_ref);
5740	ksec = key->security;
5741
5742	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
 
5743}
5744
5745static int selinux_key_getsecurity(struct key *key, char **_buffer)
5746{
5747	struct key_security_struct *ksec = key->security;
5748	char *context = NULL;
5749	unsigned len;
5750	int rc;
5751
5752	rc = security_sid_to_context(ksec->sid, &context, &len);
 
5753	if (!rc)
5754		rc = len;
5755	*_buffer = context;
5756	return rc;
5757}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5758
 
 
 
 
5759#endif
5760
5761static struct security_operations selinux_ops = {
5762	.name =				"selinux",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5763
5764	.ptrace_access_check =		selinux_ptrace_access_check,
5765	.ptrace_traceme =		selinux_ptrace_traceme,
5766	.capget =			selinux_capget,
5767	.capset =			selinux_capset,
5768	.capable =			selinux_capable,
5769	.quotactl =			selinux_quotactl,
5770	.quota_on =			selinux_quota_on,
5771	.syslog =			selinux_syslog,
5772	.vm_enough_memory =		selinux_vm_enough_memory,
5773
5774	.netlink_send =			selinux_netlink_send,
5775
5776	.bprm_set_creds =		selinux_bprm_set_creds,
5777	.bprm_committing_creds =	selinux_bprm_committing_creds,
5778	.bprm_committed_creds =		selinux_bprm_committed_creds,
5779	.bprm_secureexec =		selinux_bprm_secureexec,
5780
5781	.sb_alloc_security =		selinux_sb_alloc_security,
5782	.sb_free_security =		selinux_sb_free_security,
5783	.sb_copy_data =			selinux_sb_copy_data,
5784	.sb_remount =			selinux_sb_remount,
5785	.sb_kern_mount =		selinux_sb_kern_mount,
5786	.sb_show_options =		selinux_sb_show_options,
5787	.sb_statfs =			selinux_sb_statfs,
5788	.sb_mount =			selinux_mount,
5789	.sb_umount =			selinux_umount,
5790	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5791	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5792	.sb_parse_opts_str = 		selinux_parse_opts_str,
5793
5794	.dentry_init_security =		selinux_dentry_init_security,
5795
5796	.inode_alloc_security =		selinux_inode_alloc_security,
5797	.inode_free_security =		selinux_inode_free_security,
5798	.inode_init_security =		selinux_inode_init_security,
5799	.inode_create =			selinux_inode_create,
5800	.inode_link =			selinux_inode_link,
5801	.inode_unlink =			selinux_inode_unlink,
5802	.inode_symlink =		selinux_inode_symlink,
5803	.inode_mkdir =			selinux_inode_mkdir,
5804	.inode_rmdir =			selinux_inode_rmdir,
5805	.inode_mknod =			selinux_inode_mknod,
5806	.inode_rename =			selinux_inode_rename,
5807	.inode_readlink =		selinux_inode_readlink,
5808	.inode_follow_link =		selinux_inode_follow_link,
5809	.inode_permission =		selinux_inode_permission,
5810	.inode_setattr =		selinux_inode_setattr,
5811	.inode_getattr =		selinux_inode_getattr,
5812	.inode_setxattr =		selinux_inode_setxattr,
5813	.inode_post_setxattr =		selinux_inode_post_setxattr,
5814	.inode_getxattr =		selinux_inode_getxattr,
5815	.inode_listxattr =		selinux_inode_listxattr,
5816	.inode_removexattr =		selinux_inode_removexattr,
5817	.inode_getsecurity =		selinux_inode_getsecurity,
5818	.inode_setsecurity =		selinux_inode_setsecurity,
5819	.inode_listsecurity =		selinux_inode_listsecurity,
5820	.inode_getsecid =		selinux_inode_getsecid,
5821
5822	.file_permission =		selinux_file_permission,
5823	.file_alloc_security =		selinux_file_alloc_security,
5824	.file_free_security =		selinux_file_free_security,
5825	.file_ioctl =			selinux_file_ioctl,
5826	.mmap_file =			selinux_mmap_file,
5827	.mmap_addr =			selinux_mmap_addr,
5828	.file_mprotect =		selinux_file_mprotect,
5829	.file_lock =			selinux_file_lock,
5830	.file_fcntl =			selinux_file_fcntl,
5831	.file_set_fowner =		selinux_file_set_fowner,
5832	.file_send_sigiotask =		selinux_file_send_sigiotask,
5833	.file_receive =			selinux_file_receive,
5834
5835	.file_open =			selinux_file_open,
5836
5837	.task_create =			selinux_task_create,
5838	.cred_alloc_blank =		selinux_cred_alloc_blank,
5839	.cred_free =			selinux_cred_free,
5840	.cred_prepare =			selinux_cred_prepare,
5841	.cred_transfer =		selinux_cred_transfer,
5842	.kernel_act_as =		selinux_kernel_act_as,
5843	.kernel_create_files_as =	selinux_kernel_create_files_as,
5844	.kernel_module_request =	selinux_kernel_module_request,
5845	.task_setpgid =			selinux_task_setpgid,
5846	.task_getpgid =			selinux_task_getpgid,
5847	.task_getsid =			selinux_task_getsid,
5848	.task_getsecid =		selinux_task_getsecid,
5849	.task_setnice =			selinux_task_setnice,
5850	.task_setioprio =		selinux_task_setioprio,
5851	.task_getioprio =		selinux_task_getioprio,
5852	.task_setrlimit =		selinux_task_setrlimit,
5853	.task_setscheduler =		selinux_task_setscheduler,
5854	.task_getscheduler =		selinux_task_getscheduler,
5855	.task_movememory =		selinux_task_movememory,
5856	.task_kill =			selinux_task_kill,
5857	.task_wait =			selinux_task_wait,
5858	.task_to_inode =		selinux_task_to_inode,
5859
5860	.ipc_permission =		selinux_ipc_permission,
5861	.ipc_getsecid =			selinux_ipc_getsecid,
5862
5863	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5864	.msg_msg_free_security =	selinux_msg_msg_free_security,
5865
5866	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5867	.msg_queue_free_security =	selinux_msg_queue_free_security,
5868	.msg_queue_associate =		selinux_msg_queue_associate,
5869	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5870	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5871	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5872
5873	.shm_alloc_security =		selinux_shm_alloc_security,
5874	.shm_free_security =		selinux_shm_free_security,
5875	.shm_associate =		selinux_shm_associate,
5876	.shm_shmctl =			selinux_shm_shmctl,
5877	.shm_shmat =			selinux_shm_shmat,
5878
5879	.sem_alloc_security =		selinux_sem_alloc_security,
5880	.sem_free_security =		selinux_sem_free_security,
5881	.sem_associate =		selinux_sem_associate,
5882	.sem_semctl =			selinux_sem_semctl,
5883	.sem_semop =			selinux_sem_semop,
5884
5885	.d_instantiate =		selinux_d_instantiate,
5886
5887	.getprocattr =			selinux_getprocattr,
5888	.setprocattr =			selinux_setprocattr,
5889
5890	.ismaclabel =			selinux_ismaclabel,
5891	.secid_to_secctx =		selinux_secid_to_secctx,
5892	.secctx_to_secid =		selinux_secctx_to_secid,
5893	.release_secctx =		selinux_release_secctx,
5894	.inode_notifysecctx =		selinux_inode_notifysecctx,
5895	.inode_setsecctx =		selinux_inode_setsecctx,
5896	.inode_getsecctx =		selinux_inode_getsecctx,
5897
5898	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5899	.unix_may_send =		selinux_socket_unix_may_send,
5900
5901	.socket_create =		selinux_socket_create,
5902	.socket_post_create =		selinux_socket_post_create,
5903	.socket_bind =			selinux_socket_bind,
5904	.socket_connect =		selinux_socket_connect,
5905	.socket_listen =		selinux_socket_listen,
5906	.socket_accept =		selinux_socket_accept,
5907	.socket_sendmsg =		selinux_socket_sendmsg,
5908	.socket_recvmsg =		selinux_socket_recvmsg,
5909	.socket_getsockname =		selinux_socket_getsockname,
5910	.socket_getpeername =		selinux_socket_getpeername,
5911	.socket_getsockopt =		selinux_socket_getsockopt,
5912	.socket_setsockopt =		selinux_socket_setsockopt,
5913	.socket_shutdown =		selinux_socket_shutdown,
5914	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5915	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5916	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5917	.sk_alloc_security =		selinux_sk_alloc_security,
5918	.sk_free_security =		selinux_sk_free_security,
5919	.sk_clone_security =		selinux_sk_clone_security,
5920	.sk_getsecid =			selinux_sk_getsecid,
5921	.sock_graft =			selinux_sock_graft,
5922	.inet_conn_request =		selinux_inet_conn_request,
5923	.inet_csk_clone =		selinux_inet_csk_clone,
5924	.inet_conn_established =	selinux_inet_conn_established,
5925	.secmark_relabel_packet =	selinux_secmark_relabel_packet,
5926	.secmark_refcount_inc =		selinux_secmark_refcount_inc,
5927	.secmark_refcount_dec =		selinux_secmark_refcount_dec,
5928	.req_classify_flow =		selinux_req_classify_flow,
5929	.tun_dev_alloc_security =	selinux_tun_dev_alloc_security,
5930	.tun_dev_free_security =	selinux_tun_dev_free_security,
5931	.tun_dev_create =		selinux_tun_dev_create,
5932	.tun_dev_attach_queue =		selinux_tun_dev_attach_queue,
5933	.tun_dev_attach =		selinux_tun_dev_attach,
5934	.tun_dev_open =			selinux_tun_dev_open,
5935	.skb_owned_by =			selinux_skb_owned_by,
5936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5937#ifdef CONFIG_SECURITY_NETWORK_XFRM
5938	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5939	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5940	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5941	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5942	.xfrm_state_alloc =		selinux_xfrm_state_alloc,
5943	.xfrm_state_alloc_acquire =	selinux_xfrm_state_alloc_acquire,
5944	.xfrm_state_free_security =	selinux_xfrm_state_free,
5945	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5946	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5947	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5948	.xfrm_decode_session =		selinux_xfrm_decode_session,
 
 
5949#endif
5950
5951#ifdef CONFIG_KEYS
5952	.key_alloc =			selinux_key_alloc,
5953	.key_free =			selinux_key_free,
5954	.key_permission =		selinux_key_permission,
5955	.key_getsecurity =		selinux_key_getsecurity,
5956#endif
5957
5958#ifdef CONFIG_AUDIT
5959	.audit_rule_init =		selinux_audit_rule_init,
5960	.audit_rule_known =		selinux_audit_rule_known,
5961	.audit_rule_match =		selinux_audit_rule_match,
5962	.audit_rule_free =		selinux_audit_rule_free,
 
 
 
 
 
 
 
 
 
 
5963#endif
5964};
5965
5966static __init int selinux_init(void)
5967{
5968	if (!security_module_enable(&selinux_ops)) {
5969		selinux_enabled = 0;
5970		return 0;
5971	}
5972
5973	if (!selinux_enabled) {
5974		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5975		return 0;
5976	}
5977
5978	printk(KERN_INFO "SELinux:  Initializing.\n");
5979
5980	/* Set the security state for the initial task. */
5981	cred_init_security();
5982
5983	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5984
5985	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5986					    sizeof(struct inode_security_struct),
5987					    0, SLAB_PANIC, NULL);
5988	avc_init();
5989
5990	if (register_security(&selinux_ops))
5991		panic("SELinux: Unable to register with kernel.\n");
 
 
 
 
 
 
 
 
 
 
 
5992
5993	if (selinux_enforcing)
5994		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5995	else
5996		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
 
 
5997
5998	return 0;
5999}
6000
6001static void delayed_superblock_init(struct super_block *sb, void *unused)
6002{
6003	superblock_doinit(sb, NULL);
6004}
6005
6006void selinux_complete_init(void)
6007{
6008	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6009
6010	/* Set up any superblocks initialized prior to the policy load. */
6011	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6012	iterate_supers(delayed_superblock_init, NULL);
6013}
6014
6015/* SELinux requires early initialization in order to label
6016   all processes and objects when they are created. */
6017security_initcall(selinux_init);
 
 
 
 
 
 
6018
6019#if defined(CONFIG_NETFILTER)
6020
6021static struct nf_hook_ops selinux_ipv4_ops[] = {
6022	{
6023		.hook =		selinux_ipv4_postroute,
6024		.owner =	THIS_MODULE,
6025		.pf =		NFPROTO_IPV4,
6026		.hooknum =	NF_INET_POST_ROUTING,
6027		.priority =	NF_IP_PRI_SELINUX_LAST,
6028	},
6029	{
6030		.hook =		selinux_ipv4_forward,
6031		.owner =	THIS_MODULE,
6032		.pf =		NFPROTO_IPV4,
6033		.hooknum =	NF_INET_FORWARD,
6034		.priority =	NF_IP_PRI_SELINUX_FIRST,
6035	},
6036	{
6037		.hook =		selinux_ipv4_output,
6038		.owner =	THIS_MODULE,
6039		.pf =		NFPROTO_IPV4,
6040		.hooknum =	NF_INET_LOCAL_OUT,
6041		.priority =	NF_IP_PRI_SELINUX_FIRST,
6042	}
6043};
6044
6045#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6046
6047static struct nf_hook_ops selinux_ipv6_ops[] = {
6048	{
6049		.hook =		selinux_ipv6_postroute,
6050		.owner =	THIS_MODULE,
6051		.pf =		NFPROTO_IPV6,
6052		.hooknum =	NF_INET_POST_ROUTING,
6053		.priority =	NF_IP6_PRI_SELINUX_LAST,
6054	},
6055	{
6056		.hook =		selinux_ipv6_forward,
6057		.owner =	THIS_MODULE,
6058		.pf =		NFPROTO_IPV6,
6059		.hooknum =	NF_INET_FORWARD,
6060		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6061	}
 
 
 
 
 
 
 
6062};
6063
6064#endif	/* IPV6 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6065
6066static int __init selinux_nf_ip_init(void)
6067{
6068	int err = 0;
6069
6070	if (!selinux_enabled)
6071		goto out;
6072
6073	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6074
6075	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6076	if (err)
6077		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
6078
6079#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6080	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6081	if (err)
6082		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
6083#endif	/* IPV6 */
6084
6085out:
6086	return err;
6087}
6088
6089__initcall(selinux_nf_ip_init);
6090
6091#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6092static void selinux_nf_ip_exit(void)
6093{
6094	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6095
6096	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6097#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6098	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6099#endif	/* IPV6 */
6100}
6101#endif
6102
6103#else /* CONFIG_NETFILTER */
6104
6105#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6106#define selinux_nf_ip_exit()
6107#endif
6108
6109#endif /* CONFIG_NETFILTER */
6110
6111#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6112static int selinux_disabled;
6113
6114int selinux_disable(void)
6115{
6116	if (ss_initialized) {
6117		/* Not permitted after initial policy load. */
6118		return -EINVAL;
6119	}
6120
6121	if (selinux_disabled) {
6122		/* Only do this once. */
6123		return -EINVAL;
6124	}
6125
6126	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
 
 
6127
6128	selinux_disabled = 1;
6129	selinux_enabled = 0;
6130
6131	reset_security_ops();
6132
6133	/* Try to destroy the avc node cache */
6134	avc_disable();
6135
6136	/* Unregister netfilter hooks. */
6137	selinux_nf_ip_exit();
6138
6139	/* Unregister selinuxfs. */
6140	exit_sel_fs();
6141
6142	return 0;
6143}
6144#endif