Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/idr.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
  30#include <linux/rfkill.h>
  31#include <linux/debugfs.h>
  32#include <linux/crypto.h>
  33#include <linux/property.h>
 
 
  34#include <asm/unaligned.h>
  35
  36#include <net/bluetooth/bluetooth.h>
  37#include <net/bluetooth/hci_core.h>
  38#include <net/bluetooth/l2cap.h>
  39#include <net/bluetooth/mgmt.h>
  40
  41#include "hci_request.h"
  42#include "hci_debugfs.h"
  43#include "smp.h"
  44#include "leds.h"
  45
  46static void hci_rx_work(struct work_struct *work);
  47static void hci_cmd_work(struct work_struct *work);
  48static void hci_tx_work(struct work_struct *work);
  49
  50/* HCI device list */
  51LIST_HEAD(hci_dev_list);
  52DEFINE_RWLOCK(hci_dev_list_lock);
  53
  54/* HCI callback list */
  55LIST_HEAD(hci_cb_list);
  56DEFINE_MUTEX(hci_cb_list_lock);
  57
  58/* HCI ID Numbering */
  59static DEFINE_IDA(hci_index_ida);
  60
  61/* ---- HCI debugfs entries ---- */
  62
  63static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  64			     size_t count, loff_t *ppos)
  65{
  66	struct hci_dev *hdev = file->private_data;
  67	char buf[3];
  68
  69	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  70	buf[1] = '\n';
  71	buf[2] = '\0';
  72	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  73}
  74
  75static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  76			      size_t count, loff_t *ppos)
  77{
  78	struct hci_dev *hdev = file->private_data;
  79	struct sk_buff *skb;
  80	bool enable;
  81	int err;
  82
  83	if (!test_bit(HCI_UP, &hdev->flags))
  84		return -ENETDOWN;
  85
  86	err = kstrtobool_from_user(user_buf, count, &enable);
  87	if (err)
  88		return err;
  89
  90	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  91		return -EALREADY;
 
 
 
 
 
  92
  93	hci_req_sync_lock(hdev);
  94	if (enable)
  95		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  96				     HCI_CMD_TIMEOUT);
  97	else
  98		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
  99				     HCI_CMD_TIMEOUT);
 100	hci_req_sync_unlock(hdev);
 101
 102	if (IS_ERR(skb))
 103		return PTR_ERR(skb);
 104
 105	kfree_skb(skb);
 
 
 
 
 106
 107	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 
 108
 109	return count;
 
 
 
 
 110}
 111
 112static const struct file_operations dut_mode_fops = {
 113	.open		= simple_open,
 114	.read		= dut_mode_read,
 115	.write		= dut_mode_write,
 116	.llseek		= default_llseek,
 117};
 118
 119static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 120				size_t count, loff_t *ppos)
 121{
 122	struct hci_dev *hdev = file->private_data;
 123	char buf[3];
 124
 125	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 126	buf[1] = '\n';
 127	buf[2] = '\0';
 128	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 
 129}
 130
 131static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 132				 size_t count, loff_t *ppos)
 
 133{
 134	struct hci_dev *hdev = file->private_data;
 135	bool enable;
 136	int err;
 137
 138	err = kstrtobool_from_user(user_buf, count, &enable);
 139	if (err)
 140		return err;
 141
 142	/* When the diagnostic flags are not persistent and the transport
 143	 * is not active or in user channel operation, then there is no need
 144	 * for the vendor callback. Instead just store the desired value and
 145	 * the setting will be programmed when the controller gets powered on.
 146	 */
 147	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 148	    (!test_bit(HCI_RUNNING, &hdev->flags) ||
 149	     hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
 150		goto done;
 151
 152	hci_req_sync_lock(hdev);
 153	err = hdev->set_diag(hdev, enable);
 154	hci_req_sync_unlock(hdev);
 155
 156	if (err < 0)
 157		return err;
 158
 159done:
 160	if (enable)
 161		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 162	else
 163		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 164
 165	return count;
 166}
 167
 168static const struct file_operations vendor_diag_fops = {
 169	.open		= simple_open,
 170	.read		= vendor_diag_read,
 171	.write		= vendor_diag_write,
 172	.llseek		= default_llseek,
 173};
 174
 175static void hci_debugfs_create_basic(struct hci_dev *hdev)
 176{
 177	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 178			    &dut_mode_fops);
 179
 180	if (hdev->set_diag)
 181		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 182				    &vendor_diag_fops);
 183}
 184
 185static int hci_reset_req(struct hci_request *req, unsigned long opt)
 186{
 187	BT_DBG("%s %ld", req->hdev->name, opt);
 188
 189	/* Reset device */
 190	set_bit(HCI_RESET, &req->hdev->flags);
 191	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 192	return 0;
 193}
 194
 195static void bredr_init(struct hci_request *req)
 196{
 197	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 
 198
 199	/* Read Local Supported Features */
 200	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 201
 202	/* Read Local Version */
 203	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 204
 205	/* Read BD Address */
 206	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 207}
 208
 209static void amp_init1(struct hci_request *req)
 
 210{
 211	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 212
 213	/* Read Local Version */
 214	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 215
 216	/* Read Local Supported Commands */
 217	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 218
 219	/* Read Local AMP Info */
 220	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 221
 222	/* Read Data Blk size */
 223	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 224
 225	/* Read Flow Control Mode */
 226	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 
 
 227
 228	/* Read Location Data */
 229	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 230}
 231
 232static int amp_init2(struct hci_request *req)
 233{
 234	/* Read Local Supported Features. Not all AMP controllers
 235	 * support this so it's placed conditionally in the second
 236	 * stage init.
 237	 */
 238	if (req->hdev->commands[14] & 0x20)
 239		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 240
 241	return 0;
 
 
 242}
 243
 244static int hci_init1_req(struct hci_request *req, unsigned long opt)
 245{
 246	struct hci_dev *hdev = req->hdev;
 
 
 247
 248	BT_DBG("%s %ld", hdev->name, opt);
 249
 250	/* Reset */
 251	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 252		hci_reset_req(req, 0);
 253
 254	switch (hdev->dev_type) {
 255	case HCI_PRIMARY:
 256		bredr_init(req);
 257		break;
 258	case HCI_AMP:
 259		amp_init1(req);
 260		break;
 261	default:
 262		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
 263		break;
 264	}
 265
 266	return 0;
 267}
 268
 269static void bredr_setup(struct hci_request *req)
 270{
 271	__le16 param;
 272	__u8 flt_type;
 273
 274	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 275	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 
 
 
 276
 277	/* Read Class of Device */
 278	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 279
 280	/* Read Local Name */
 281	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 282
 283	/* Read Voice Setting */
 284	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 285
 286	/* Read Number of Supported IAC */
 287	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 288
 289	/* Read Current IAC LAP */
 290	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 291
 292	/* Clear Event Filters */
 293	flt_type = HCI_FLT_CLEAR_ALL;
 294	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 295
 296	/* Connection accept timeout ~20 secs */
 297	param = cpu_to_le16(0x7d00);
 298	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 299}
 300
 301static void le_setup(struct hci_request *req)
 302{
 303	struct hci_dev *hdev = req->hdev;
 304
 305	/* Read LE Buffer Size */
 306	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 307
 308	/* Read LE Local Supported Features */
 309	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 310
 311	/* Read LE Supported States */
 312	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 313
 314	/* LE-only controllers have LE implicitly enabled */
 315	if (!lmp_bredr_capable(hdev))
 316		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 317}
 318
 319static void hci_setup_event_mask(struct hci_request *req)
 320{
 321	struct hci_dev *hdev = req->hdev;
 322
 323	/* The second byte is 0xff instead of 0x9f (two reserved bits
 324	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 325	 * command otherwise.
 326	 */
 327	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 328
 329	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 330	 * any event mask for pre 1.2 devices.
 331	 */
 332	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 333		return;
 334
 335	if (lmp_bredr_capable(hdev)) {
 336		events[4] |= 0x01; /* Flow Specification Complete */
 337	} else {
 338		/* Use a different default for LE-only devices */
 339		memset(events, 0, sizeof(events));
 340		events[1] |= 0x20; /* Command Complete */
 341		events[1] |= 0x40; /* Command Status */
 342		events[1] |= 0x80; /* Hardware Error */
 343
 344		/* If the controller supports the Disconnect command, enable
 345		 * the corresponding event. In addition enable packet flow
 346		 * control related events.
 347		 */
 348		if (hdev->commands[0] & 0x20) {
 349			events[0] |= 0x10; /* Disconnection Complete */
 350			events[2] |= 0x04; /* Number of Completed Packets */
 351			events[3] |= 0x02; /* Data Buffer Overflow */
 352		}
 353
 354		/* If the controller supports the Read Remote Version
 355		 * Information command, enable the corresponding event.
 356		 */
 357		if (hdev->commands[2] & 0x80)
 358			events[1] |= 0x08; /* Read Remote Version Information
 359					    * Complete
 360					    */
 361
 362		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 363			events[0] |= 0x80; /* Encryption Change */
 364			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 365		}
 366	}
 367
 368	if (lmp_inq_rssi_capable(hdev) ||
 369	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 370		events[4] |= 0x02; /* Inquiry Result with RSSI */
 371
 372	if (lmp_ext_feat_capable(hdev))
 373		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 374
 375	if (lmp_esco_capable(hdev)) {
 376		events[5] |= 0x08; /* Synchronous Connection Complete */
 377		events[5] |= 0x10; /* Synchronous Connection Changed */
 378	}
 379
 380	if (lmp_sniffsubr_capable(hdev))
 381		events[5] |= 0x20; /* Sniff Subrating */
 382
 383	if (lmp_pause_enc_capable(hdev))
 384		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 385
 386	if (lmp_ext_inq_capable(hdev))
 387		events[5] |= 0x40; /* Extended Inquiry Result */
 388
 389	if (lmp_no_flush_capable(hdev))
 390		events[7] |= 0x01; /* Enhanced Flush Complete */
 391
 392	if (lmp_lsto_capable(hdev))
 393		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 394
 395	if (lmp_ssp_capable(hdev)) {
 396		events[6] |= 0x01;	/* IO Capability Request */
 397		events[6] |= 0x02;	/* IO Capability Response */
 398		events[6] |= 0x04;	/* User Confirmation Request */
 399		events[6] |= 0x08;	/* User Passkey Request */
 400		events[6] |= 0x10;	/* Remote OOB Data Request */
 401		events[6] |= 0x20;	/* Simple Pairing Complete */
 402		events[7] |= 0x04;	/* User Passkey Notification */
 403		events[7] |= 0x08;	/* Keypress Notification */
 404		events[7] |= 0x10;	/* Remote Host Supported
 405					 * Features Notification
 406					 */
 407	}
 408
 409	if (lmp_le_capable(hdev))
 410		events[7] |= 0x20;	/* LE Meta-Event */
 411
 412	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 413}
 414
 415static int hci_init2_req(struct hci_request *req, unsigned long opt)
 416{
 417	struct hci_dev *hdev = req->hdev;
 418
 419	if (hdev->dev_type == HCI_AMP)
 420		return amp_init2(req);
 421
 422	if (lmp_bredr_capable(hdev))
 423		bredr_setup(req);
 424	else
 425		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 426
 427	if (lmp_le_capable(hdev))
 428		le_setup(req);
 429
 430	/* All Bluetooth 1.2 and later controllers should support the
 431	 * HCI command for reading the local supported commands.
 432	 *
 433	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 434	 * but do not have support for this command. If that is the case,
 435	 * the driver can quirk the behavior and skip reading the local
 436	 * supported commands.
 437	 */
 438	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 439	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 440		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 441
 442	if (lmp_ssp_capable(hdev)) {
 443		/* When SSP is available, then the host features page
 444		 * should also be available as well. However some
 445		 * controllers list the max_page as 0 as long as SSP
 446		 * has not been enabled. To achieve proper debugging
 447		 * output, force the minimum max_page to 1 at least.
 448		 */
 449		hdev->max_page = 0x01;
 450
 451		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 452			u8 mode = 0x01;
 453
 454			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 455				    sizeof(mode), &mode);
 456		} else {
 457			struct hci_cp_write_eir cp;
 458
 459			memset(hdev->eir, 0, sizeof(hdev->eir));
 460			memset(&cp, 0, sizeof(cp));
 461
 462			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 463		}
 464	}
 465
 466	if (lmp_inq_rssi_capable(hdev) ||
 467	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 468		u8 mode;
 469
 470		/* If Extended Inquiry Result events are supported, then
 471		 * they are clearly preferred over Inquiry Result with RSSI
 472		 * events.
 473		 */
 474		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 475
 476		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 477	}
 478
 479	if (lmp_inq_tx_pwr_capable(hdev))
 480		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 481
 482	if (lmp_ext_feat_capable(hdev)) {
 483		struct hci_cp_read_local_ext_features cp;
 484
 485		cp.page = 0x01;
 486		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 487			    sizeof(cp), &cp);
 488	}
 489
 490	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 491		u8 enable = 1;
 492		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 493			    &enable);
 494	}
 495
 496	return 0;
 497}
 498
 499static void hci_setup_link_policy(struct hci_request *req)
 500{
 501	struct hci_dev *hdev = req->hdev;
 502	struct hci_cp_write_def_link_policy cp;
 503	u16 link_policy = 0;
 504
 505	if (lmp_rswitch_capable(hdev))
 506		link_policy |= HCI_LP_RSWITCH;
 507	if (lmp_hold_capable(hdev))
 508		link_policy |= HCI_LP_HOLD;
 509	if (lmp_sniff_capable(hdev))
 510		link_policy |= HCI_LP_SNIFF;
 511	if (lmp_park_capable(hdev))
 512		link_policy |= HCI_LP_PARK;
 513
 514	cp.policy = cpu_to_le16(link_policy);
 515	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 516}
 517
 518static void hci_set_le_support(struct hci_request *req)
 519{
 520	struct hci_dev *hdev = req->hdev;
 521	struct hci_cp_write_le_host_supported cp;
 522
 523	/* LE-only devices do not support explicit enablement */
 524	if (!lmp_bredr_capable(hdev))
 525		return;
 526
 527	memset(&cp, 0, sizeof(cp));
 528
 529	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 530		cp.le = 0x01;
 531		cp.simul = 0x00;
 532	}
 533
 534	if (cp.le != lmp_host_le_capable(hdev))
 535		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 536			    &cp);
 537}
 538
 539static void hci_set_event_mask_page_2(struct hci_request *req)
 540{
 541	struct hci_dev *hdev = req->hdev;
 542	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 543	bool changed = false;
 544
 545	/* If Connectionless Slave Broadcast master role is supported
 546	 * enable all necessary events for it.
 547	 */
 548	if (lmp_csb_master_capable(hdev)) {
 549		events[1] |= 0x40;	/* Triggered Clock Capture */
 550		events[1] |= 0x80;	/* Synchronization Train Complete */
 551		events[2] |= 0x10;	/* Slave Page Response Timeout */
 552		events[2] |= 0x20;	/* CSB Channel Map Change */
 553		changed = true;
 554	}
 555
 556	/* If Connectionless Slave Broadcast slave role is supported
 557	 * enable all necessary events for it.
 558	 */
 559	if (lmp_csb_slave_capable(hdev)) {
 560		events[2] |= 0x01;	/* Synchronization Train Received */
 561		events[2] |= 0x02;	/* CSB Receive */
 562		events[2] |= 0x04;	/* CSB Timeout */
 563		events[2] |= 0x08;	/* Truncated Page Complete */
 564		changed = true;
 565	}
 566
 567	/* Enable Authenticated Payload Timeout Expired event if supported */
 568	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
 569		events[2] |= 0x80;
 570		changed = true;
 571	}
 572
 573	/* Some Broadcom based controllers indicate support for Set Event
 574	 * Mask Page 2 command, but then actually do not support it. Since
 575	 * the default value is all bits set to zero, the command is only
 576	 * required if the event mask has to be changed. In case no change
 577	 * to the event mask is needed, skip this command.
 578	 */
 579	if (changed)
 580		hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
 581			    sizeof(events), events);
 582}
 583
 584static int hci_init3_req(struct hci_request *req, unsigned long opt)
 585{
 586	struct hci_dev *hdev = req->hdev;
 587	u8 p;
 588
 589	hci_setup_event_mask(req);
 590
 591	if (hdev->commands[6] & 0x20 &&
 592	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 593		struct hci_cp_read_stored_link_key cp;
 594
 595		bacpy(&cp.bdaddr, BDADDR_ANY);
 596		cp.read_all = 0x01;
 597		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 598	}
 599
 600	if (hdev->commands[5] & 0x10)
 601		hci_setup_link_policy(req);
 602
 603	if (hdev->commands[8] & 0x01)
 604		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 605
 606	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 607	 * support the Read Page Scan Type command. Check support for
 608	 * this command in the bit mask of supported commands.
 609	 */
 610	if (hdev->commands[13] & 0x01)
 611		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 612
 613	if (lmp_le_capable(hdev)) {
 614		u8 events[8];
 615
 616		memset(events, 0, sizeof(events));
 617
 618		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 619			events[0] |= 0x10;	/* LE Long Term Key Request */
 620
 621		/* If controller supports the Connection Parameters Request
 622		 * Link Layer Procedure, enable the corresponding event.
 623		 */
 624		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 625			events[0] |= 0x20;	/* LE Remote Connection
 626						 * Parameter Request
 627						 */
 628
 629		/* If the controller supports the Data Length Extension
 630		 * feature, enable the corresponding event.
 631		 */
 632		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 633			events[0] |= 0x40;	/* LE Data Length Change */
 634
 635		/* If the controller supports Extended Scanner Filter
 636		 * Policies, enable the correspondig event.
 637		 */
 638		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 639			events[1] |= 0x04;	/* LE Direct Advertising
 640						 * Report
 641						 */
 642
 643		/* If the controller supports Channel Selection Algorithm #2
 644		 * feature, enable the corresponding event.
 645		 */
 646		if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
 647			events[2] |= 0x08;	/* LE Channel Selection
 648						 * Algorithm
 649						 */
 650
 651		/* If the controller supports the LE Set Scan Enable command,
 652		 * enable the corresponding advertising report event.
 653		 */
 654		if (hdev->commands[26] & 0x08)
 655			events[0] |= 0x02;	/* LE Advertising Report */
 656
 657		/* If the controller supports the LE Create Connection
 658		 * command, enable the corresponding event.
 659		 */
 660		if (hdev->commands[26] & 0x10)
 661			events[0] |= 0x01;	/* LE Connection Complete */
 662
 663		/* If the controller supports the LE Connection Update
 664		 * command, enable the corresponding event.
 665		 */
 666		if (hdev->commands[27] & 0x04)
 667			events[0] |= 0x04;	/* LE Connection Update
 668						 * Complete
 669						 */
 670
 671		/* If the controller supports the LE Read Remote Used Features
 672		 * command, enable the corresponding event.
 673		 */
 674		if (hdev->commands[27] & 0x20)
 675			events[0] |= 0x08;	/* LE Read Remote Used
 676						 * Features Complete
 677						 */
 678
 679		/* If the controller supports the LE Read Local P-256
 680		 * Public Key command, enable the corresponding event.
 681		 */
 682		if (hdev->commands[34] & 0x02)
 683			events[0] |= 0x80;	/* LE Read Local P-256
 684						 * Public Key Complete
 685						 */
 686
 687		/* If the controller supports the LE Generate DHKey
 688		 * command, enable the corresponding event.
 689		 */
 690		if (hdev->commands[34] & 0x04)
 691			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 692
 693		/* If the controller supports the LE Set Default PHY or
 694		 * LE Set PHY commands, enable the corresponding event.
 695		 */
 696		if (hdev->commands[35] & (0x20 | 0x40))
 697			events[1] |= 0x08;        /* LE PHY Update Complete */
 698
 699		/* If the controller supports LE Set Extended Scan Parameters
 700		 * and LE Set Extended Scan Enable commands, enable the
 701		 * corresponding event.
 702		 */
 703		if (use_ext_scan(hdev))
 704			events[1] |= 0x10;	/* LE Extended Advertising
 705						 * Report
 706						 */
 707
 708		/* If the controller supports the LE Extended Create Connection
 709		 * command, enable the corresponding event.
 710		 */
 711		if (use_ext_conn(hdev))
 712			events[1] |= 0x02;      /* LE Enhanced Connection
 713						 * Complete
 714						 */
 715
 716		/* If the controller supports the LE Extended Advertising
 717		 * command, enable the corresponding event.
 718		 */
 719		if (ext_adv_capable(hdev))
 720			events[2] |= 0x02;	/* LE Advertising Set
 721						 * Terminated
 722						 */
 723
 724		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 725			    events);
 726
 727		/* Read LE Advertising Channel TX Power */
 728		if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
 729			/* HCI TS spec forbids mixing of legacy and extended
 730			 * advertising commands wherein READ_ADV_TX_POWER is
 731			 * also included. So do not call it if extended adv
 732			 * is supported otherwise controller will return
 733			 * COMMAND_DISALLOWED for extended commands.
 734			 */
 735			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 736		}
 737
 738		if (hdev->commands[26] & 0x40) {
 739			/* Read LE White List Size */
 740			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
 741				    0, NULL);
 742		}
 743
 744		if (hdev->commands[26] & 0x80) {
 745			/* Clear LE White List */
 746			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
 747		}
 748
 749		if (hdev->commands[34] & 0x40) {
 750			/* Read LE Resolving List Size */
 751			hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
 752				    0, NULL);
 753		}
 754
 755		if (hdev->commands[34] & 0x20) {
 756			/* Clear LE Resolving List */
 757			hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
 758		}
 759
 760		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 761			/* Read LE Maximum Data Length */
 762			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 763
 764			/* Read LE Suggested Default Data Length */
 765			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 766		}
 767
 768		if (ext_adv_capable(hdev)) {
 769			/* Read LE Number of Supported Advertising Sets */
 770			hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
 771				    0, NULL);
 772		}
 773
 774		hci_set_le_support(req);
 775	}
 776
 777	/* Read features beyond page 1 if available */
 778	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 779		struct hci_cp_read_local_ext_features cp;
 780
 781		cp.page = p;
 782		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 783			    sizeof(cp), &cp);
 784	}
 785
 786	return 0;
 
 787}
 788
 789static int hci_init4_req(struct hci_request *req, unsigned long opt)
 790{
 791	struct hci_dev *hdev = req->hdev;
 792
 793	/* Some Broadcom based Bluetooth controllers do not support the
 794	 * Delete Stored Link Key command. They are clearly indicating its
 795	 * absence in the bit mask of supported commands.
 796	 *
 797	 * Check the supported commands and only if the the command is marked
 798	 * as supported send it. If not supported assume that the controller
 799	 * does not have actual support for stored link keys which makes this
 800	 * command redundant anyway.
 801	 *
 802	 * Some controllers indicate that they support handling deleting
 803	 * stored link keys, but they don't. The quirk lets a driver
 804	 * just disable this command.
 805	 */
 806	if (hdev->commands[6] & 0x80 &&
 807	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 808		struct hci_cp_delete_stored_link_key cp;
 809
 810		bacpy(&cp.bdaddr, BDADDR_ANY);
 811		cp.delete_all = 0x01;
 812		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 813			    sizeof(cp), &cp);
 814	}
 815
 816	/* Set event mask page 2 if the HCI command for it is supported */
 817	if (hdev->commands[22] & 0x04)
 818		hci_set_event_mask_page_2(req);
 819
 820	/* Read local codec list if the HCI command is supported */
 821	if (hdev->commands[29] & 0x20)
 822		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 823
 824	/* Get MWS transport configuration if the HCI command is supported */
 825	if (hdev->commands[30] & 0x08)
 826		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 827
 828	/* Check for Synchronization Train support */
 829	if (lmp_sync_train_capable(hdev))
 830		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 831
 832	/* Enable Secure Connections if supported and configured */
 833	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 834	    bredr_sc_enabled(hdev)) {
 835		u8 support = 0x01;
 836
 837		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 838			    sizeof(support), &support);
 839	}
 840
 841	/* Set Suggested Default Data Length to maximum if supported */
 842	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 843		struct hci_cp_le_write_def_data_len cp;
 
 844
 845		cp.tx_len = hdev->le_max_tx_len;
 846		cp.tx_time = hdev->le_max_tx_time;
 847		hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
 848	}
 
 849
 850	/* Set Default PHY parameters if command is supported */
 851	if (hdev->commands[35] & 0x20) {
 852		struct hci_cp_le_set_default_phy cp;
 
 853
 854		cp.all_phys = 0x00;
 855		cp.tx_phys = hdev->le_tx_def_phys;
 856		cp.rx_phys = hdev->le_rx_def_phys;
 857
 858		hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
 
 
 859	}
 860
 861	return 0;
 862}
 863
 864static int __hci_init(struct hci_dev *hdev)
 865{
 866	int err;
 867
 868	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 869	if (err < 0)
 870		return err;
 871
 872	if (hci_dev_test_flag(hdev, HCI_SETUP))
 873		hci_debugfs_create_basic(hdev);
 874
 875	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 876	if (err < 0)
 877		return err;
 878
 879	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
 880	 * BR/EDR/LE type controllers. AMP controllers only need the
 881	 * first two stages of init.
 882	 */
 883	if (hdev->dev_type != HCI_PRIMARY)
 884		return 0;
 885
 886	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 887	if (err < 0)
 888		return err;
 889
 890	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 891	if (err < 0)
 892		return err;
 893
 894	/* This function is only called when the controller is actually in
 895	 * configured state. When the controller is marked as unconfigured,
 896	 * this initialization procedure is not run.
 897	 *
 898	 * It means that it is possible that a controller runs through its
 899	 * setup phase and then discovers missing settings. If that is the
 900	 * case, then this function will not be called. It then will only
 901	 * be called during the config phase.
 902	 *
 903	 * So only when in setup phase or config phase, create the debugfs
 904	 * entries and register the SMP channels.
 905	 */
 906	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 907	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 908		return 0;
 909
 910	hci_debugfs_create_common(hdev);
 911
 912	if (lmp_bredr_capable(hdev))
 913		hci_debugfs_create_bredr(hdev);
 914
 915	if (lmp_le_capable(hdev))
 916		hci_debugfs_create_le(hdev);
 917
 918	return 0;
 919}
 920
 921static int hci_init0_req(struct hci_request *req, unsigned long opt)
 922{
 923	struct hci_dev *hdev = req->hdev;
 924
 925	BT_DBG("%s %ld", hdev->name, opt);
 926
 927	/* Reset */
 928	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 929		hci_reset_req(req, 0);
 930
 931	/* Read Local Version */
 932	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 933
 934	/* Read BD Address */
 935	if (hdev->set_bdaddr)
 936		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 937
 938	return 0;
 939}
 940
 941static int __hci_unconf_init(struct hci_dev *hdev)
 942{
 943	int err;
 944
 945	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 946		return 0;
 947
 948	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 949	if (err < 0)
 950		return err;
 951
 952	if (hci_dev_test_flag(hdev, HCI_SETUP))
 953		hci_debugfs_create_basic(hdev);
 954
 955	return 0;
 
 956}
 957
 958static int hci_scan_req(struct hci_request *req, unsigned long opt)
 959{
 960	__u8 scan = opt;
 961
 962	BT_DBG("%s %x", req->hdev->name, scan);
 963
 964	/* Inquiry and Page scans */
 965	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 966	return 0;
 967}
 968
 969static int hci_auth_req(struct hci_request *req, unsigned long opt)
 970{
 971	__u8 auth = opt;
 972
 973	BT_DBG("%s %x", req->hdev->name, auth);
 974
 975	/* Authentication */
 976	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 977	return 0;
 978}
 979
 980static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
 981{
 982	__u8 encrypt = opt;
 983
 984	BT_DBG("%s %x", req->hdev->name, encrypt);
 985
 986	/* Encryption */
 987	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 988	return 0;
 989}
 990
 991static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 992{
 993	__le16 policy = cpu_to_le16(opt);
 994
 995	BT_DBG("%s %x", req->hdev->name, policy);
 996
 997	/* Default link policy */
 998	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 999	return 0;
1000}
1001
1002/* Get HCI device by index.
1003 * Device is held on return. */
1004struct hci_dev *hci_dev_get(int index)
1005{
1006	struct hci_dev *hdev = NULL, *d;
1007
1008	BT_DBG("%d", index);
1009
1010	if (index < 0)
1011		return NULL;
1012
1013	read_lock(&hci_dev_list_lock);
1014	list_for_each_entry(d, &hci_dev_list, list) {
1015		if (d->id == index) {
1016			hdev = hci_dev_hold(d);
1017			break;
1018		}
1019	}
1020	read_unlock(&hci_dev_list_lock);
1021	return hdev;
1022}
1023
1024/* ---- Inquiry support ---- */
1025
1026bool hci_discovery_active(struct hci_dev *hdev)
1027{
1028	struct discovery_state *discov = &hdev->discovery;
1029
1030	switch (discov->state) {
1031	case DISCOVERY_FINDING:
1032	case DISCOVERY_RESOLVING:
1033		return true;
1034
1035	default:
1036		return false;
1037	}
1038}
1039
1040void hci_discovery_set_state(struct hci_dev *hdev, int state)
1041{
1042	int old_state = hdev->discovery.state;
1043
1044	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1045
1046	if (old_state == state)
1047		return;
1048
1049	hdev->discovery.state = state;
1050
1051	switch (state) {
1052	case DISCOVERY_STOPPED:
1053		hci_update_background_scan(hdev);
1054
1055		if (old_state != DISCOVERY_STARTING)
1056			mgmt_discovering(hdev, 0);
1057		break;
1058	case DISCOVERY_STARTING:
1059		break;
1060	case DISCOVERY_FINDING:
1061		mgmt_discovering(hdev, 1);
1062		break;
1063	case DISCOVERY_RESOLVING:
1064		break;
1065	case DISCOVERY_STOPPING:
1066		break;
1067	}
 
 
1068}
1069
1070void hci_inquiry_cache_flush(struct hci_dev *hdev)
1071{
1072	struct discovery_state *cache = &hdev->discovery;
1073	struct inquiry_entry *p, *n;
1074
1075	list_for_each_entry_safe(p, n, &cache->all, all) {
1076		list_del(&p->all);
1077		kfree(p);
1078	}
1079
1080	INIT_LIST_HEAD(&cache->unknown);
1081	INIT_LIST_HEAD(&cache->resolve);
1082}
1083
1084struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1085					       bdaddr_t *bdaddr)
1086{
1087	struct discovery_state *cache = &hdev->discovery;
1088	struct inquiry_entry *e;
1089
1090	BT_DBG("cache %p, %pMR", cache, bdaddr);
1091
1092	list_for_each_entry(e, &cache->all, all) {
1093		if (!bacmp(&e->data.bdaddr, bdaddr))
1094			return e;
1095	}
1096
1097	return NULL;
1098}
1099
1100struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1101						       bdaddr_t *bdaddr)
1102{
1103	struct discovery_state *cache = &hdev->discovery;
1104	struct inquiry_entry *e;
1105
1106	BT_DBG("cache %p, %pMR", cache, bdaddr);
1107
1108	list_for_each_entry(e, &cache->unknown, list) {
1109		if (!bacmp(&e->data.bdaddr, bdaddr))
1110			return e;
1111	}
1112
1113	return NULL;
1114}
1115
1116struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1117						       bdaddr_t *bdaddr,
1118						       int state)
1119{
1120	struct discovery_state *cache = &hdev->discovery;
1121	struct inquiry_entry *e;
1122
1123	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1124
1125	list_for_each_entry(e, &cache->resolve, list) {
1126		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1127			return e;
1128		if (!bacmp(&e->data.bdaddr, bdaddr))
1129			return e;
1130	}
1131
1132	return NULL;
1133}
1134
1135void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1136				      struct inquiry_entry *ie)
1137{
1138	struct discovery_state *cache = &hdev->discovery;
1139	struct list_head *pos = &cache->resolve;
1140	struct inquiry_entry *p;
1141
1142	list_del(&ie->list);
1143
1144	list_for_each_entry(p, &cache->resolve, list) {
1145		if (p->name_state != NAME_PENDING &&
1146		    abs(p->data.rssi) >= abs(ie->data.rssi))
1147			break;
1148		pos = &p->list;
1149	}
1150
1151	list_add(&ie->list, pos);
1152}
1153
1154u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1155			     bool name_known)
1156{
1157	struct discovery_state *cache = &hdev->discovery;
1158	struct inquiry_entry *ie;
1159	u32 flags = 0;
1160
1161	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1162
1163	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1164
1165	if (!data->ssp_mode)
1166		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1167
1168	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1169	if (ie) {
1170		if (!ie->data.ssp_mode)
1171			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1172
1173		if (ie->name_state == NAME_NEEDED &&
1174		    data->rssi != ie->data.rssi) {
1175			ie->data.rssi = data->rssi;
1176			hci_inquiry_cache_update_resolve(hdev, ie);
1177		}
1178
1179		goto update;
1180	}
1181
1182	/* Entry not in the cache. Add new one. */
1183	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1184	if (!ie) {
1185		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1186		goto done;
1187	}
1188
1189	list_add(&ie->all, &cache->all);
1190
1191	if (name_known) {
1192		ie->name_state = NAME_KNOWN;
1193	} else {
1194		ie->name_state = NAME_NOT_KNOWN;
1195		list_add(&ie->list, &cache->unknown);
1196	}
1197
1198update:
1199	if (name_known && ie->name_state != NAME_KNOWN &&
1200	    ie->name_state != NAME_PENDING) {
1201		ie->name_state = NAME_KNOWN;
1202		list_del(&ie->list);
1203	}
1204
1205	memcpy(&ie->data, data, sizeof(*data));
1206	ie->timestamp = jiffies;
1207	cache->timestamp = jiffies;
1208
1209	if (ie->name_state == NAME_NOT_KNOWN)
1210		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1211
1212done:
1213	return flags;
1214}
1215
1216static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1217{
1218	struct discovery_state *cache = &hdev->discovery;
1219	struct inquiry_info *info = (struct inquiry_info *) buf;
1220	struct inquiry_entry *e;
1221	int copied = 0;
1222
1223	list_for_each_entry(e, &cache->all, all) {
1224		struct inquiry_data *data = &e->data;
1225
1226		if (copied >= num)
1227			break;
1228
1229		bacpy(&info->bdaddr, &data->bdaddr);
1230		info->pscan_rep_mode	= data->pscan_rep_mode;
1231		info->pscan_period_mode	= data->pscan_period_mode;
1232		info->pscan_mode	= data->pscan_mode;
1233		memcpy(info->dev_class, data->dev_class, 3);
1234		info->clock_offset	= data->clock_offset;
1235
1236		info++;
1237		copied++;
1238	}
1239
1240	BT_DBG("cache %p, copied %d", cache, copied);
1241	return copied;
1242}
1243
1244static int hci_inq_req(struct hci_request *req, unsigned long opt)
1245{
1246	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1247	struct hci_dev *hdev = req->hdev;
1248	struct hci_cp_inquiry cp;
1249
1250	BT_DBG("%s", hdev->name);
1251
1252	if (test_bit(HCI_INQUIRY, &hdev->flags))
1253		return 0;
1254
1255	/* Start Inquiry */
1256	memcpy(&cp.lap, &ir->lap, 3);
1257	cp.length  = ir->length;
1258	cp.num_rsp = ir->num_rsp;
1259	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1260
1261	return 0;
1262}
1263
1264int hci_inquiry(void __user *arg)
1265{
1266	__u8 __user *ptr = arg;
1267	struct hci_inquiry_req ir;
1268	struct hci_dev *hdev;
1269	int err = 0, do_inquiry = 0, max_rsp;
1270	long timeo;
1271	__u8 *buf;
1272
1273	if (copy_from_user(&ir, ptr, sizeof(ir)))
1274		return -EFAULT;
1275
1276	hdev = hci_dev_get(ir.dev_id);
1277	if (!hdev)
1278		return -ENODEV;
1279
1280	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1281		err = -EBUSY;
1282		goto done;
1283	}
1284
1285	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1286		err = -EOPNOTSUPP;
1287		goto done;
1288	}
1289
1290	if (hdev->dev_type != HCI_PRIMARY) {
1291		err = -EOPNOTSUPP;
1292		goto done;
1293	}
1294
1295	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1296		err = -EOPNOTSUPP;
1297		goto done;
1298	}
1299
1300	hci_dev_lock(hdev);
1301	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1302	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1303		hci_inquiry_cache_flush(hdev);
 
1304		do_inquiry = 1;
1305	}
1306	hci_dev_unlock(hdev);
1307
1308	timeo = ir.length * msecs_to_jiffies(2000);
1309
1310	if (do_inquiry) {
1311		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1312				   timeo, NULL);
1313		if (err < 0)
1314			goto done;
1315
1316		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1317		 * cleared). If it is interrupted by a signal, return -EINTR.
1318		 */
1319		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1320				TASK_INTERRUPTIBLE))
1321			return -EINTR;
1322	}
1323
1324	/* for unlimited number of responses we will use buffer with
1325	 * 255 entries
1326	 */
1327	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1328
1329	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1330	 * copy it to the user space.
1331	 */
1332	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1333	if (!buf) {
1334		err = -ENOMEM;
1335		goto done;
1336	}
1337
1338	hci_dev_lock(hdev);
1339	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1340	hci_dev_unlock(hdev);
1341
1342	BT_DBG("num_rsp %d", ir.num_rsp);
1343
1344	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1345		ptr += sizeof(ir);
1346		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1347				 ir.num_rsp))
1348			err = -EFAULT;
1349	} else
1350		err = -EFAULT;
1351
1352	kfree(buf);
1353
1354done:
1355	hci_dev_put(hdev);
1356	return err;
1357}
1358
1359/**
1360 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1361 *				       (BD_ADDR) for a HCI device from
1362 *				       a firmware node property.
1363 * @hdev:	The HCI device
1364 *
1365 * Search the firmware node for 'local-bd-address'.
1366 *
1367 * All-zero BD addresses are rejected, because those could be properties
1368 * that exist in the firmware tables, but were not updated by the firmware. For
1369 * example, the DTS could define 'local-bd-address', with zero BD addresses.
1370 */
1371static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1372{
1373	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1374	bdaddr_t ba;
1375	int ret;
1376
1377	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1378					    (u8 *)&ba, sizeof(ba));
1379	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1380		return;
1381
1382	bacpy(&hdev->public_addr, &ba);
1383}
1384
1385static int hci_dev_do_open(struct hci_dev *hdev)
1386{
 
1387	int ret = 0;
1388
 
 
 
 
1389	BT_DBG("%s %p", hdev->name, hdev);
1390
1391	hci_req_sync_lock(hdev);
1392
1393	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1394		ret = -ENODEV;
1395		goto done;
1396	}
1397
1398	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1399	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1400		/* Check for rfkill but allow the HCI setup stage to
1401		 * proceed (which in itself doesn't cause any RF activity).
1402		 */
1403		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1404			ret = -ERFKILL;
1405			goto done;
1406		}
1407
1408		/* Check for valid public address or a configured static
1409		 * random adddress, but let the HCI setup proceed to
1410		 * be able to determine if there is a public address
1411		 * or not.
1412		 *
1413		 * In case of user channel usage, it is not important
1414		 * if a public address or static random address is
1415		 * available.
1416		 *
1417		 * This check is only valid for BR/EDR controllers
1418		 * since AMP controllers do not have an address.
1419		 */
1420		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1421		    hdev->dev_type == HCI_PRIMARY &&
1422		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1423		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1424			ret = -EADDRNOTAVAIL;
1425			goto done;
1426		}
1427	}
1428
1429	if (test_bit(HCI_UP, &hdev->flags)) {
1430		ret = -EALREADY;
1431		goto done;
1432	}
1433
 
 
 
 
 
 
 
 
1434	if (hdev->open(hdev)) {
1435		ret = -EIO;
1436		goto done;
1437	}
1438
1439	set_bit(HCI_RUNNING, &hdev->flags);
1440	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
 
 
1441
1442	atomic_set(&hdev->cmd_cnt, 1);
1443	set_bit(HCI_INIT, &hdev->flags);
1444
1445	if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1446	    test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1447		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1448
1449		if (hdev->setup)
1450			ret = hdev->setup(hdev);
1451
1452		if (ret)
1453			goto setup_failed;
1454
1455		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1456			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1457				hci_dev_get_bd_addr_from_property(hdev);
1458
1459			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1460			    hdev->set_bdaddr)
1461				ret = hdev->set_bdaddr(hdev,
1462						       &hdev->public_addr);
1463		}
1464
1465setup_failed:
1466		/* The transport driver can set these quirks before
1467		 * creating the HCI device or in its setup callback.
1468		 *
1469		 * In case any of them is set, the controller has to
1470		 * start up as unconfigured.
1471		 */
1472		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1473		    test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1474			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1475
1476		/* For an unconfigured controller it is required to
1477		 * read at least the version information provided by
1478		 * the Read Local Version Information command.
1479		 *
1480		 * If the set_bdaddr driver callback is provided, then
1481		 * also the original Bluetooth public device address
1482		 * will be read using the Read BD Address command.
1483		 */
1484		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1485			ret = __hci_unconf_init(hdev);
1486	}
1487
1488	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1489		/* If public address change is configured, ensure that
1490		 * the address gets programmed. If the driver does not
1491		 * support changing the public address, fail the power
1492		 * on procedure.
1493		 */
1494		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1495		    hdev->set_bdaddr)
1496			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1497		else
1498			ret = -EADDRNOTAVAIL;
1499	}
1500
1501	if (!ret) {
1502		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1503		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1504			ret = __hci_init(hdev);
1505			if (!ret && hdev->post_init)
1506				ret = hdev->post_init(hdev);
1507		}
1508	}
1509
1510	/* If the HCI Reset command is clearing all diagnostic settings,
1511	 * then they need to be reprogrammed after the init procedure
1512	 * completed.
1513	 */
1514	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1515	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1516	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1517		ret = hdev->set_diag(hdev, true);
1518
1519	clear_bit(HCI_INIT, &hdev->flags);
1520
1521	if (!ret) {
1522		hci_dev_hold(hdev);
1523		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1524		hci_adv_instances_set_rpa_expired(hdev, true);
1525		set_bit(HCI_UP, &hdev->flags);
1526		hci_sock_dev_event(hdev, HCI_DEV_UP);
1527		hci_leds_update_powered(hdev, true);
1528		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1529		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1530		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1531		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1532		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1533		    hdev->dev_type == HCI_PRIMARY) {
1534			ret = __hci_req_hci_power_on(hdev);
1535			mgmt_power_on(hdev, ret);
1536		}
1537	} else {
1538		/* Init failed, cleanup */
1539		flush_work(&hdev->tx_work);
1540		flush_work(&hdev->cmd_work);
1541		flush_work(&hdev->rx_work);
1542
1543		skb_queue_purge(&hdev->cmd_q);
1544		skb_queue_purge(&hdev->rx_q);
1545
1546		if (hdev->flush)
1547			hdev->flush(hdev);
1548
1549		if (hdev->sent_cmd) {
1550			kfree_skb(hdev->sent_cmd);
1551			hdev->sent_cmd = NULL;
1552		}
1553
1554		clear_bit(HCI_RUNNING, &hdev->flags);
1555		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1556
1557		hdev->close(hdev);
1558		hdev->flags &= BIT(HCI_RAW);
1559	}
1560
1561done:
1562	hci_req_sync_unlock(hdev);
1563	return ret;
1564}
1565
1566/* ---- HCI ioctl helpers ---- */
1567
1568int hci_dev_open(__u16 dev)
1569{
1570	struct hci_dev *hdev;
1571	int err;
1572
1573	hdev = hci_dev_get(dev);
1574	if (!hdev)
1575		return -ENODEV;
1576
1577	/* Devices that are marked as unconfigured can only be powered
1578	 * up as user channel. Trying to bring them up as normal devices
1579	 * will result into a failure. Only user channel operation is
1580	 * possible.
1581	 *
1582	 * When this function is called for a user channel, the flag
1583	 * HCI_USER_CHANNEL will be set first before attempting to
1584	 * open the device.
1585	 */
1586	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1587	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1588		err = -EOPNOTSUPP;
1589		goto done;
1590	}
1591
1592	/* We need to ensure that no other power on/off work is pending
1593	 * before proceeding to call hci_dev_do_open. This is
1594	 * particularly important if the setup procedure has not yet
1595	 * completed.
1596	 */
1597	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1598		cancel_delayed_work(&hdev->power_off);
1599
1600	/* After this call it is guaranteed that the setup procedure
1601	 * has finished. This means that error conditions like RFKILL
1602	 * or no valid public or static random address apply.
1603	 */
1604	flush_workqueue(hdev->req_workqueue);
1605
1606	/* For controllers not using the management interface and that
1607	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1608	 * so that pairing works for them. Once the management interface
1609	 * is in use this bit will be cleared again and userspace has
1610	 * to explicitly enable it.
1611	 */
1612	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1613	    !hci_dev_test_flag(hdev, HCI_MGMT))
1614		hci_dev_set_flag(hdev, HCI_BONDABLE);
1615
1616	err = hci_dev_do_open(hdev);
1617
1618done:
 
1619	hci_dev_put(hdev);
1620	return err;
1621}
1622
1623/* This function requires the caller holds hdev->lock */
1624static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1625{
1626	struct hci_conn_params *p;
1627
1628	list_for_each_entry(p, &hdev->le_conn_params, list) {
1629		if (p->conn) {
1630			hci_conn_drop(p->conn);
1631			hci_conn_put(p->conn);
1632			p->conn = NULL;
1633		}
1634		list_del_init(&p->action);
1635	}
1636
1637	BT_DBG("All LE pending actions cleared");
1638}
1639
1640int hci_dev_do_close(struct hci_dev *hdev)
1641{
1642	bool auto_off;
1643
1644	BT_DBG("%s %p", hdev->name, hdev);
1645
1646	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1647	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1648	    test_bit(HCI_UP, &hdev->flags)) {
1649		/* Execute vendor specific shutdown routine */
1650		if (hdev->shutdown)
1651			hdev->shutdown(hdev);
1652	}
1653
1654	cancel_delayed_work(&hdev->power_off);
1655
1656	hci_request_cancel_all(hdev);
1657	hci_req_sync_lock(hdev);
1658
1659	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1660		cancel_delayed_work_sync(&hdev->cmd_timer);
1661		hci_req_sync_unlock(hdev);
1662		return 0;
1663	}
1664
1665	hci_leds_update_powered(hdev, false);
1666
1667	/* Flush RX and TX works */
1668	flush_work(&hdev->tx_work);
1669	flush_work(&hdev->rx_work);
1670
1671	if (hdev->discov_timeout > 0) {
 
1672		hdev->discov_timeout = 0;
1673		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1674		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1675	}
1676
1677	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1678		cancel_delayed_work(&hdev->service_cache);
1679
1680	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1681		struct adv_info *adv_instance;
1682
1683		cancel_delayed_work_sync(&hdev->rpa_expired);
1684
1685		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1686			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1687	}
1688
1689	/* Avoid potential lockdep warnings from the *_flush() calls by
1690	 * ensuring the workqueue is empty up front.
1691	 */
1692	drain_workqueue(hdev->workqueue);
1693
1694	hci_dev_lock(hdev);
1695
1696	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1697
1698	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1699
1700	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1701	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1702	    hci_dev_test_flag(hdev, HCI_MGMT))
1703		__mgmt_power_off(hdev);
1704
1705	hci_inquiry_cache_flush(hdev);
1706	hci_pend_le_actions_clear(hdev);
1707	hci_conn_hash_flush(hdev);
1708	hci_dev_unlock(hdev);
1709
1710	smp_unregister(hdev);
1711
1712	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1713
1714	if (hdev->flush)
1715		hdev->flush(hdev);
1716
1717	/* Reset device */
1718	skb_queue_purge(&hdev->cmd_q);
1719	atomic_set(&hdev->cmd_cnt, 1);
1720	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1721	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1722		set_bit(HCI_INIT, &hdev->flags);
1723		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
 
1724		clear_bit(HCI_INIT, &hdev->flags);
1725	}
1726
1727	/* flush cmd  work */
1728	flush_work(&hdev->cmd_work);
1729
1730	/* Drop queues */
1731	skb_queue_purge(&hdev->rx_q);
1732	skb_queue_purge(&hdev->cmd_q);
1733	skb_queue_purge(&hdev->raw_q);
1734
1735	/* Drop last sent command */
1736	if (hdev->sent_cmd) {
1737		cancel_delayed_work_sync(&hdev->cmd_timer);
1738		kfree_skb(hdev->sent_cmd);
1739		hdev->sent_cmd = NULL;
1740	}
1741
1742	clear_bit(HCI_RUNNING, &hdev->flags);
1743	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1744
1745	/* After this point our queues are empty
1746	 * and no tasks are scheduled. */
1747	hdev->close(hdev);
1748
1749	/* Clear flags */
1750	hdev->flags &= BIT(HCI_RAW);
1751	hci_dev_clear_volatile_flags(hdev);
 
 
1752
1753	/* Controller radio is available but is currently powered down */
1754	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1755
1756	memset(hdev->eir, 0, sizeof(hdev->eir));
1757	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1758	bacpy(&hdev->random_addr, BDADDR_ANY);
1759
1760	hci_req_sync_unlock(hdev);
1761
1762	hci_dev_put(hdev);
1763	return 0;
1764}
1765
1766int hci_dev_close(__u16 dev)
1767{
1768	struct hci_dev *hdev;
1769	int err;
1770
1771	hdev = hci_dev_get(dev);
1772	if (!hdev)
1773		return -ENODEV;
1774
1775	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1776		err = -EBUSY;
1777		goto done;
1778	}
1779
1780	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1781		cancel_delayed_work(&hdev->power_off);
1782
1783	err = hci_dev_do_close(hdev);
1784
1785done:
1786	hci_dev_put(hdev);
1787	return err;
1788}
1789
1790static int hci_dev_do_reset(struct hci_dev *hdev)
1791{
1792	int ret;
 
1793
1794	BT_DBG("%s %p", hdev->name, hdev);
 
 
 
 
1795
1796	hci_req_sync_lock(hdev);
 
1797
1798	/* Drop queues */
1799	skb_queue_purge(&hdev->rx_q);
1800	skb_queue_purge(&hdev->cmd_q);
1801
1802	/* Avoid potential lockdep warnings from the *_flush() calls by
1803	 * ensuring the workqueue is empty up front.
1804	 */
1805	drain_workqueue(hdev->workqueue);
1806
1807	hci_dev_lock(hdev);
1808	hci_inquiry_cache_flush(hdev);
1809	hci_conn_hash_flush(hdev);
1810	hci_dev_unlock(hdev);
1811
1812	if (hdev->flush)
1813		hdev->flush(hdev);
1814
1815	atomic_set(&hdev->cmd_cnt, 1);
1816	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1817
1818	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1819
1820	hci_req_sync_unlock(hdev);
1821	return ret;
1822}
1823
1824int hci_dev_reset(__u16 dev)
1825{
1826	struct hci_dev *hdev;
1827	int err;
1828
1829	hdev = hci_dev_get(dev);
1830	if (!hdev)
1831		return -ENODEV;
1832
1833	if (!test_bit(HCI_UP, &hdev->flags)) {
1834		err = -ENETDOWN;
1835		goto done;
1836	}
1837
1838	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1839		err = -EBUSY;
1840		goto done;
1841	}
1842
1843	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1844		err = -EOPNOTSUPP;
1845		goto done;
1846	}
1847
1848	err = hci_dev_do_reset(hdev);
1849
1850done:
 
1851	hci_dev_put(hdev);
1852	return err;
1853}
1854
1855int hci_dev_reset_stat(__u16 dev)
1856{
1857	struct hci_dev *hdev;
1858	int ret = 0;
1859
1860	hdev = hci_dev_get(dev);
1861	if (!hdev)
1862		return -ENODEV;
1863
1864	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1865		ret = -EBUSY;
1866		goto done;
1867	}
1868
1869	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1870		ret = -EOPNOTSUPP;
1871		goto done;
1872	}
1873
1874	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1875
1876done:
1877	hci_dev_put(hdev);
1878	return ret;
1879}
1880
1881static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1882{
1883	bool conn_changed, discov_changed;
1884
1885	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1886
1887	if ((scan & SCAN_PAGE))
1888		conn_changed = !hci_dev_test_and_set_flag(hdev,
1889							  HCI_CONNECTABLE);
1890	else
1891		conn_changed = hci_dev_test_and_clear_flag(hdev,
1892							   HCI_CONNECTABLE);
1893
1894	if ((scan & SCAN_INQUIRY)) {
1895		discov_changed = !hci_dev_test_and_set_flag(hdev,
1896							    HCI_DISCOVERABLE);
1897	} else {
1898		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1899		discov_changed = hci_dev_test_and_clear_flag(hdev,
1900							     HCI_DISCOVERABLE);
1901	}
1902
1903	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1904		return;
1905
1906	if (conn_changed || discov_changed) {
1907		/* In case this was disabled through mgmt */
1908		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1909
1910		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1911			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1912
1913		mgmt_new_settings(hdev);
1914	}
1915}
1916
1917int hci_dev_cmd(unsigned int cmd, void __user *arg)
1918{
1919	struct hci_dev *hdev;
1920	struct hci_dev_req dr;
1921	int err = 0;
1922
1923	if (copy_from_user(&dr, arg, sizeof(dr)))
1924		return -EFAULT;
1925
1926	hdev = hci_dev_get(dr.dev_id);
1927	if (!hdev)
1928		return -ENODEV;
1929
1930	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1931		err = -EBUSY;
1932		goto done;
1933	}
1934
1935	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1936		err = -EOPNOTSUPP;
1937		goto done;
1938	}
1939
1940	if (hdev->dev_type != HCI_PRIMARY) {
1941		err = -EOPNOTSUPP;
1942		goto done;
1943	}
1944
1945	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1946		err = -EOPNOTSUPP;
1947		goto done;
1948	}
1949
1950	switch (cmd) {
1951	case HCISETAUTH:
1952		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1953				   HCI_INIT_TIMEOUT, NULL);
1954		break;
1955
1956	case HCISETENCRYPT:
1957		if (!lmp_encrypt_capable(hdev)) {
1958			err = -EOPNOTSUPP;
1959			break;
1960		}
1961
1962		if (!test_bit(HCI_AUTH, &hdev->flags)) {
1963			/* Auth must be enabled first */
1964			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1965					   HCI_INIT_TIMEOUT, NULL);
1966			if (err)
1967				break;
1968		}
1969
1970		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1971				   HCI_INIT_TIMEOUT, NULL);
1972		break;
1973
1974	case HCISETSCAN:
1975		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1976				   HCI_INIT_TIMEOUT, NULL);
1977
1978		/* Ensure that the connectable and discoverable states
1979		 * get correctly modified as this was a non-mgmt change.
1980		 */
1981		if (!err)
1982			hci_update_scan_state(hdev, dr.dev_opt);
1983		break;
1984
1985	case HCISETLINKPOL:
1986		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1987				   HCI_INIT_TIMEOUT, NULL);
1988		break;
1989
1990	case HCISETLINKMODE:
1991		hdev->link_mode = ((__u16) dr.dev_opt) &
1992					(HCI_LM_MASTER | HCI_LM_ACCEPT);
1993		break;
1994
1995	case HCISETPTYPE:
1996		if (hdev->pkt_type == (__u16) dr.dev_opt)
1997			break;
1998
1999		hdev->pkt_type = (__u16) dr.dev_opt;
2000		mgmt_phy_configuration_changed(hdev, NULL);
2001		break;
2002
2003	case HCISETACLMTU:
2004		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
2005		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2006		break;
2007
2008	case HCISETSCOMTU:
2009		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
2010		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2011		break;
2012
2013	default:
2014		err = -EINVAL;
2015		break;
2016	}
2017
2018done:
2019	hci_dev_put(hdev);
2020	return err;
2021}
2022
2023int hci_get_dev_list(void __user *arg)
2024{
2025	struct hci_dev *hdev;
2026	struct hci_dev_list_req *dl;
2027	struct hci_dev_req *dr;
2028	int n = 0, size, err;
2029	__u16 dev_num;
2030
2031	if (get_user(dev_num, (__u16 __user *) arg))
2032		return -EFAULT;
2033
2034	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2035		return -EINVAL;
2036
2037	size = sizeof(*dl) + dev_num * sizeof(*dr);
2038
2039	dl = kzalloc(size, GFP_KERNEL);
2040	if (!dl)
2041		return -ENOMEM;
2042
2043	dr = dl->dev_req;
2044
2045	read_lock(&hci_dev_list_lock);
2046	list_for_each_entry(hdev, &hci_dev_list, list) {
2047		unsigned long flags = hdev->flags;
 
2048
2049		/* When the auto-off is configured it means the transport
2050		 * is running, but in that case still indicate that the
2051		 * device is actually down.
2052		 */
2053		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2054			flags &= ~BIT(HCI_UP);
2055
2056		(dr + n)->dev_id  = hdev->id;
2057		(dr + n)->dev_opt = flags;
2058
2059		if (++n >= dev_num)
2060			break;
2061	}
2062	read_unlock(&hci_dev_list_lock);
2063
2064	dl->dev_num = n;
2065	size = sizeof(*dl) + n * sizeof(*dr);
2066
2067	err = copy_to_user(arg, dl, size);
2068	kfree(dl);
2069
2070	return err ? -EFAULT : 0;
2071}
2072
2073int hci_get_dev_info(void __user *arg)
2074{
2075	struct hci_dev *hdev;
2076	struct hci_dev_info di;
2077	unsigned long flags;
2078	int err = 0;
2079
2080	if (copy_from_user(&di, arg, sizeof(di)))
2081		return -EFAULT;
2082
2083	hdev = hci_dev_get(di.dev_id);
2084	if (!hdev)
2085		return -ENODEV;
2086
2087	/* When the auto-off is configured it means the transport
2088	 * is running, but in that case still indicate that the
2089	 * device is actually down.
2090	 */
2091	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2092		flags = hdev->flags & ~BIT(HCI_UP);
2093	else
2094		flags = hdev->flags;
2095
2096	strcpy(di.name, hdev->name);
2097	di.bdaddr   = hdev->bdaddr;
2098	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2099	di.flags    = flags;
2100	di.pkt_type = hdev->pkt_type;
2101	if (lmp_bredr_capable(hdev)) {
2102		di.acl_mtu  = hdev->acl_mtu;
2103		di.acl_pkts = hdev->acl_pkts;
2104		di.sco_mtu  = hdev->sco_mtu;
2105		di.sco_pkts = hdev->sco_pkts;
2106	} else {
2107		di.acl_mtu  = hdev->le_mtu;
2108		di.acl_pkts = hdev->le_pkts;
2109		di.sco_mtu  = 0;
2110		di.sco_pkts = 0;
2111	}
2112	di.link_policy = hdev->link_policy;
2113	di.link_mode   = hdev->link_mode;
2114
2115	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2116	memcpy(&di.features, &hdev->features, sizeof(di.features));
2117
2118	if (copy_to_user(arg, &di, sizeof(di)))
2119		err = -EFAULT;
2120
2121	hci_dev_put(hdev);
2122
2123	return err;
2124}
2125
2126/* ---- Interface to HCI drivers ---- */
2127
2128static int hci_rfkill_set_block(void *data, bool blocked)
2129{
2130	struct hci_dev *hdev = data;
2131
2132	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2133
2134	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2135		return -EBUSY;
2136
2137	if (blocked) {
2138		hci_dev_set_flag(hdev, HCI_RFKILLED);
2139		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2140		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2141			hci_dev_do_close(hdev);
2142	} else {
2143		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2144	}
2145
2146	return 0;
2147}
2148
2149static const struct rfkill_ops hci_rfkill_ops = {
2150	.set_block = hci_rfkill_set_block,
2151};
2152
2153static void hci_power_on(struct work_struct *work)
2154{
2155	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2156	int err;
2157
2158	BT_DBG("%s", hdev->name);
2159
2160	if (test_bit(HCI_UP, &hdev->flags) &&
2161	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2162	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2163		cancel_delayed_work(&hdev->power_off);
2164		hci_req_sync_lock(hdev);
2165		err = __hci_req_hci_power_on(hdev);
2166		hci_req_sync_unlock(hdev);
2167		mgmt_power_on(hdev, err);
2168		return;
2169	}
2170
2171	err = hci_dev_do_open(hdev);
2172	if (err < 0) {
2173		hci_dev_lock(hdev);
2174		mgmt_set_powered_failed(hdev, err);
2175		hci_dev_unlock(hdev);
2176		return;
2177	}
2178
2179	/* During the HCI setup phase, a few error conditions are
2180	 * ignored and they need to be checked now. If they are still
2181	 * valid, it is important to turn the device back off.
2182	 */
2183	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2184	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2185	    (hdev->dev_type == HCI_PRIMARY &&
2186	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2187	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2188		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2189		hci_dev_do_close(hdev);
2190	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2191		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2192				   HCI_AUTO_OFF_TIMEOUT);
2193	}
2194
2195	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2196		/* For unconfigured devices, set the HCI_RAW flag
2197		 * so that userspace can easily identify them.
2198		 */
2199		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2200			set_bit(HCI_RAW, &hdev->flags);
2201
2202		/* For fully configured devices, this will send
2203		 * the Index Added event. For unconfigured devices,
2204		 * it will send Unconfigued Index Added event.
2205		 *
2206		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2207		 * and no event will be send.
2208		 */
2209		mgmt_index_added(hdev);
2210	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2211		/* When the controller is now configured, then it
2212		 * is important to clear the HCI_RAW flag.
2213		 */
2214		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2215			clear_bit(HCI_RAW, &hdev->flags);
2216
2217		/* Powering on the controller with HCI_CONFIG set only
2218		 * happens with the transition from unconfigured to
2219		 * configured. This will send the Index Added event.
2220		 */
2221		mgmt_index_added(hdev);
2222	}
2223}
2224
2225static void hci_power_off(struct work_struct *work)
2226{
2227	struct hci_dev *hdev = container_of(work, struct hci_dev,
2228					    power_off.work);
2229
2230	BT_DBG("%s", hdev->name);
2231
2232	hci_dev_do_close(hdev);
2233}
2234
2235static void hci_error_reset(struct work_struct *work)
2236{
2237	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
 
 
 
2238
2239	BT_DBG("%s", hdev->name);
2240
2241	if (hdev->hw_error)
2242		hdev->hw_error(hdev, hdev->hw_error_code);
2243	else
2244		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2245
2246	if (hci_dev_do_close(hdev))
2247		return;
2248
2249	hci_dev_do_open(hdev);
 
 
2250}
2251
2252void hci_uuids_clear(struct hci_dev *hdev)
2253{
2254	struct bt_uuid *uuid, *tmp;
 
 
 
 
 
2255
2256	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2257		list_del(&uuid->list);
2258		kfree(uuid);
2259	}
 
 
2260}
2261
2262void hci_link_keys_clear(struct hci_dev *hdev)
2263{
2264	struct link_key *key;
2265
2266	list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2267		list_del_rcu(&key->list);
2268		kfree_rcu(key, rcu);
2269	}
2270}
2271
2272void hci_smp_ltks_clear(struct hci_dev *hdev)
2273{
2274	struct smp_ltk *k;
2275
2276	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2277		list_del_rcu(&k->list);
2278		kfree_rcu(k, rcu);
2279	}
 
 
2280}
2281
2282void hci_smp_irks_clear(struct hci_dev *hdev)
2283{
2284	struct smp_irk *k;
2285
2286	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2287		list_del_rcu(&k->list);
2288		kfree_rcu(k, rcu);
2289	}
 
 
2290}
2291
2292struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2293{
2294	struct link_key *k;
2295
2296	rcu_read_lock();
2297	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2298		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2299			rcu_read_unlock();
2300			return k;
2301		}
2302	}
2303	rcu_read_unlock();
2304
2305	return NULL;
2306}
2307
2308static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2309			       u8 key_type, u8 old_key_type)
2310{
2311	/* Legacy key */
2312	if (key_type < 0x03)
2313		return true;
2314
2315	/* Debug keys are insecure so don't store them persistently */
2316	if (key_type == HCI_LK_DEBUG_COMBINATION)
2317		return false;
2318
2319	/* Changed combination key and there's no previous one */
2320	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2321		return false;
2322
2323	/* Security mode 3 case */
2324	if (!conn)
2325		return true;
2326
2327	/* BR/EDR key derived using SC from an LE link */
2328	if (conn->type == LE_LINK)
2329		return true;
2330
2331	/* Neither local nor remote side had no-bonding as requirement */
2332	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2333		return true;
2334
2335	/* Local side had dedicated bonding as requirement */
2336	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2337		return true;
2338
2339	/* Remote side had dedicated bonding as requirement */
2340	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2341		return true;
2342
2343	/* If none of the above criteria match, then don't store the key
2344	 * persistently */
2345	return false;
2346}
2347
2348static u8 ltk_role(u8 type)
2349{
2350	if (type == SMP_LTK)
2351		return HCI_ROLE_MASTER;
2352
2353	return HCI_ROLE_SLAVE;
2354}
2355
2356struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2357			     u8 addr_type, u8 role)
2358{
2359	struct smp_ltk *k;
2360
2361	rcu_read_lock();
2362	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2363		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2364			continue;
2365
2366		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2367			rcu_read_unlock();
2368			return k;
2369		}
2370	}
2371	rcu_read_unlock();
2372
2373	return NULL;
2374}
2375
2376struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2377{
2378	struct smp_irk *irk;
2379
2380	rcu_read_lock();
2381	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2382		if (!bacmp(&irk->rpa, rpa)) {
2383			rcu_read_unlock();
2384			return irk;
2385		}
2386	}
2387
2388	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2389		if (smp_irk_matches(hdev, irk->val, rpa)) {
2390			bacpy(&irk->rpa, rpa);
2391			rcu_read_unlock();
2392			return irk;
2393		}
2394	}
2395	rcu_read_unlock();
2396
2397	return NULL;
2398}
 
2399
2400struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2401				     u8 addr_type)
2402{
2403	struct smp_irk *irk;
2404
2405	/* Identity Address must be public or static random */
2406	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2407		return NULL;
2408
2409	rcu_read_lock();
2410	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2411		if (addr_type == irk->addr_type &&
2412		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2413			rcu_read_unlock();
2414			return irk;
2415		}
2416	}
2417	rcu_read_unlock();
2418
2419	return NULL;
2420}
 
2421
2422struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2423				  bdaddr_t *bdaddr, u8 *val, u8 type,
2424				  u8 pin_len, bool *persistent)
2425{
2426	struct link_key *key, *old_key;
2427	u8 old_key_type;
 
2428
2429	old_key = hci_find_link_key(hdev, bdaddr);
2430	if (old_key) {
2431		old_key_type = old_key->type;
2432		key = old_key;
2433	} else {
2434		old_key_type = conn ? conn->key_type : 0xff;
2435		key = kzalloc(sizeof(*key), GFP_KERNEL);
2436		if (!key)
2437			return NULL;
2438		list_add_rcu(&key->list, &hdev->link_keys);
2439	}
2440
2441	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2442
2443	/* Some buggy controller combinations generate a changed
2444	 * combination key for legacy pairing even when there's no
2445	 * previous key */
2446	if (type == HCI_LK_CHANGED_COMBINATION &&
2447	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
 
2448		type = HCI_LK_COMBINATION;
2449		if (conn)
2450			conn->key_type = type;
2451	}
2452
2453	bacpy(&key->bdaddr, bdaddr);
2454	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2455	key->pin_len = pin_len;
2456
2457	if (type == HCI_LK_CHANGED_COMBINATION)
2458		key->type = old_key_type;
2459	else
2460		key->type = type;
2461
2462	if (persistent)
2463		*persistent = hci_persistent_key(hdev, conn, type,
2464						 old_key_type);
 
 
 
 
 
 
2465
2466	return key;
2467}
2468
2469struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2470			    u8 addr_type, u8 type, u8 authenticated,
2471			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2472{
2473	struct smp_ltk *key, *old_key;
2474	u8 role = ltk_role(type);
2475
2476	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
 
 
 
2477	if (old_key)
2478		key = old_key;
2479	else {
2480		key = kzalloc(sizeof(*key), GFP_KERNEL);
2481		if (!key)
2482			return NULL;
2483		list_add_rcu(&key->list, &hdev->long_term_keys);
2484	}
2485
2486	bacpy(&key->bdaddr, bdaddr);
2487	key->bdaddr_type = addr_type;
2488	memcpy(key->val, tk, sizeof(key->val));
2489	key->authenticated = authenticated;
2490	key->ediv = ediv;
2491	key->rand = rand;
2492	key->enc_size = enc_size;
2493	key->type = type;
 
2494
2495	return key;
2496}
2497
2498struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2499			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2500{
2501	struct smp_irk *irk;
2502
2503	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2504	if (!irk) {
2505		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2506		if (!irk)
2507			return NULL;
2508
2509		bacpy(&irk->bdaddr, bdaddr);
2510		irk->addr_type = addr_type;
2511
2512		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2513	}
2514
2515	memcpy(irk->val, val, 16);
2516	bacpy(&irk->rpa, rpa);
2517
2518	return irk;
2519}
2520
2521int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2522{
2523	struct link_key *key;
2524
2525	key = hci_find_link_key(hdev, bdaddr);
2526	if (!key)
2527		return -ENOENT;
2528
2529	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2530
2531	list_del_rcu(&key->list);
2532	kfree_rcu(key, rcu);
2533
2534	return 0;
2535}
2536
2537int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2538{
2539	struct smp_ltk *k;
2540	int removed = 0;
2541
2542	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2543		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2544			continue;
2545
2546		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2547
2548		list_del_rcu(&k->list);
2549		kfree_rcu(k, rcu);
2550		removed++;
2551	}
2552
2553	return removed ? 0 : -ENOENT;
2554}
2555
2556void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2557{
2558	struct smp_irk *k;
2559
2560	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2561		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2562			continue;
2563
2564		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2565
2566		list_del_rcu(&k->list);
2567		kfree_rcu(k, rcu);
2568	}
2569}
2570
2571bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2572{
2573	struct smp_ltk *k;
2574	struct smp_irk *irk;
2575	u8 addr_type;
2576
2577	if (type == BDADDR_BREDR) {
2578		if (hci_find_link_key(hdev, bdaddr))
2579			return true;
2580		return false;
2581	}
2582
2583	/* Convert to HCI addr type which struct smp_ltk uses */
2584	if (type == BDADDR_LE_PUBLIC)
2585		addr_type = ADDR_LE_DEV_PUBLIC;
2586	else
2587		addr_type = ADDR_LE_DEV_RANDOM;
2588
2589	irk = hci_get_irk(hdev, bdaddr, addr_type);
2590	if (irk) {
2591		bdaddr = &irk->bdaddr;
2592		addr_type = irk->addr_type;
2593	}
2594
2595	rcu_read_lock();
2596	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2597		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2598			rcu_read_unlock();
2599			return true;
2600		}
2601	}
2602	rcu_read_unlock();
2603
2604	return false;
2605}
2606
2607/* HCI command timer function */
2608static void hci_cmd_timeout(struct work_struct *work)
2609{
2610	struct hci_dev *hdev = container_of(work, struct hci_dev,
2611					    cmd_timer.work);
2612
2613	if (hdev->sent_cmd) {
2614		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2615		u16 opcode = __le16_to_cpu(sent->opcode);
2616
2617		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2618	} else {
2619		bt_dev_err(hdev, "command tx timeout");
2620	}
2621
2622	if (hdev->cmd_timeout)
2623		hdev->cmd_timeout(hdev);
2624
 
2625	atomic_set(&hdev->cmd_cnt, 1);
2626	queue_work(hdev->workqueue, &hdev->cmd_work);
2627}
2628
2629struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2630					  bdaddr_t *bdaddr, u8 bdaddr_type)
2631{
2632	struct oob_data *data;
2633
2634	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2635		if (bacmp(bdaddr, &data->bdaddr) != 0)
2636			continue;
2637		if (data->bdaddr_type != bdaddr_type)
2638			continue;
2639		return data;
2640	}
2641
2642	return NULL;
2643}
2644
2645int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2646			       u8 bdaddr_type)
2647{
2648	struct oob_data *data;
2649
2650	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2651	if (!data)
2652		return -ENOENT;
2653
2654	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2655
2656	list_del(&data->list);
2657	kfree(data);
2658
2659	return 0;
2660}
2661
2662void hci_remote_oob_data_clear(struct hci_dev *hdev)
2663{
2664	struct oob_data *data, *n;
2665
2666	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2667		list_del(&data->list);
2668		kfree(data);
2669	}
 
 
2670}
2671
2672int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2673			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2674			    u8 *hash256, u8 *rand256)
2675{
2676	struct oob_data *data;
2677
2678	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
 
2679	if (!data) {
2680		data = kmalloc(sizeof(*data), GFP_KERNEL);
2681		if (!data)
2682			return -ENOMEM;
2683
2684		bacpy(&data->bdaddr, bdaddr);
2685		data->bdaddr_type = bdaddr_type;
2686		list_add(&data->list, &hdev->remote_oob_data);
2687	}
2688
2689	if (hash192 && rand192) {
2690		memcpy(data->hash192, hash192, sizeof(data->hash192));
2691		memcpy(data->rand192, rand192, sizeof(data->rand192));
2692		if (hash256 && rand256)
2693			data->present = 0x03;
2694	} else {
2695		memset(data->hash192, 0, sizeof(data->hash192));
2696		memset(data->rand192, 0, sizeof(data->rand192));
2697		if (hash256 && rand256)
2698			data->present = 0x02;
2699		else
2700			data->present = 0x00;
2701	}
2702
2703	if (hash256 && rand256) {
2704		memcpy(data->hash256, hash256, sizeof(data->hash256));
2705		memcpy(data->rand256, rand256, sizeof(data->rand256));
2706	} else {
2707		memset(data->hash256, 0, sizeof(data->hash256));
2708		memset(data->rand256, 0, sizeof(data->rand256));
2709		if (hash192 && rand192)
2710			data->present = 0x01;
2711	}
2712
2713	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2714
2715	return 0;
2716}
2717
2718/* This function requires the caller holds hdev->lock */
2719struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2720{
2721	struct adv_info *adv_instance;
2722
2723	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2724		if (adv_instance->instance == instance)
2725			return adv_instance;
2726	}
2727
2728	return NULL;
2729}
2730
2731/* This function requires the caller holds hdev->lock */
2732struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2733{
2734	struct adv_info *cur_instance;
2735
2736	cur_instance = hci_find_adv_instance(hdev, instance);
2737	if (!cur_instance)
2738		return NULL;
2739
2740	if (cur_instance == list_last_entry(&hdev->adv_instances,
2741					    struct adv_info, list))
2742		return list_first_entry(&hdev->adv_instances,
2743						 struct adv_info, list);
2744	else
2745		return list_next_entry(cur_instance, list);
2746}
2747
2748/* This function requires the caller holds hdev->lock */
2749int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2750{
2751	struct adv_info *adv_instance;
2752
2753	adv_instance = hci_find_adv_instance(hdev, instance);
2754	if (!adv_instance)
2755		return -ENOENT;
2756
2757	BT_DBG("%s removing %dMR", hdev->name, instance);
2758
2759	if (hdev->cur_adv_instance == instance) {
2760		if (hdev->adv_instance_timeout) {
2761			cancel_delayed_work(&hdev->adv_instance_expire);
2762			hdev->adv_instance_timeout = 0;
2763		}
2764		hdev->cur_adv_instance = 0x00;
2765	}
2766
2767	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2768
2769	list_del(&adv_instance->list);
2770	kfree(adv_instance);
2771
2772	hdev->adv_instance_cnt--;
2773
2774	return 0;
2775}
2776
2777void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2778{
2779	struct adv_info *adv_instance, *n;
2780
2781	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2782		adv_instance->rpa_expired = rpa_expired;
2783}
2784
2785/* This function requires the caller holds hdev->lock */
2786void hci_adv_instances_clear(struct hci_dev *hdev)
2787{
2788	struct adv_info *adv_instance, *n;
2789
2790	if (hdev->adv_instance_timeout) {
2791		cancel_delayed_work(&hdev->adv_instance_expire);
2792		hdev->adv_instance_timeout = 0;
2793	}
2794
2795	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2796		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2797		list_del(&adv_instance->list);
2798		kfree(adv_instance);
2799	}
2800
2801	hdev->adv_instance_cnt = 0;
2802	hdev->cur_adv_instance = 0x00;
2803}
2804
2805static void adv_instance_rpa_expired(struct work_struct *work)
2806{
2807	struct adv_info *adv_instance = container_of(work, struct adv_info,
2808						     rpa_expired_cb.work);
2809
2810	BT_DBG("");
2811
2812	adv_instance->rpa_expired = true;
2813}
2814
2815/* This function requires the caller holds hdev->lock */
2816int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2817			 u16 adv_data_len, u8 *adv_data,
2818			 u16 scan_rsp_len, u8 *scan_rsp_data,
2819			 u16 timeout, u16 duration)
2820{
2821	struct adv_info *adv_instance;
2822
2823	adv_instance = hci_find_adv_instance(hdev, instance);
2824	if (adv_instance) {
2825		memset(adv_instance->adv_data, 0,
2826		       sizeof(adv_instance->adv_data));
2827		memset(adv_instance->scan_rsp_data, 0,
2828		       sizeof(adv_instance->scan_rsp_data));
2829	} else {
2830		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2831		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2832			return -EOVERFLOW;
2833
2834		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2835		if (!adv_instance)
2836			return -ENOMEM;
2837
2838		adv_instance->pending = true;
2839		adv_instance->instance = instance;
2840		list_add(&adv_instance->list, &hdev->adv_instances);
2841		hdev->adv_instance_cnt++;
2842	}
2843
2844	adv_instance->flags = flags;
2845	adv_instance->adv_data_len = adv_data_len;
2846	adv_instance->scan_rsp_len = scan_rsp_len;
2847
2848	if (adv_data_len)
2849		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2850
2851	if (scan_rsp_len)
2852		memcpy(adv_instance->scan_rsp_data,
2853		       scan_rsp_data, scan_rsp_len);
2854
2855	adv_instance->timeout = timeout;
2856	adv_instance->remaining_time = timeout;
2857
2858	if (duration == 0)
2859		adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2860	else
2861		adv_instance->duration = duration;
2862
2863	adv_instance->tx_power = HCI_TX_POWER_INVALID;
2864
2865	INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
2866			  adv_instance_rpa_expired);
2867
2868	BT_DBG("%s for %dMR", hdev->name, instance);
2869
2870	return 0;
2871}
2872
2873struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2874					 bdaddr_t *bdaddr, u8 type)
2875{
2876	struct bdaddr_list *b;
2877
2878	list_for_each_entry(b, bdaddr_list, list) {
2879		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2880			return b;
2881	}
2882
2883	return NULL;
2884}
2885
2886struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2887				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2888				u8 type)
2889{
2890	struct bdaddr_list_with_irk *b;
2891
2892	list_for_each_entry(b, bdaddr_list, list) {
2893		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2894			return b;
2895	}
2896
2897	return NULL;
2898}
2899
2900void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2901{
2902	struct bdaddr_list *b, *n;
2903
2904	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2905		list_del(&b->list);
2906		kfree(b);
2907	}
2908}
2909
2910int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2911{
2912	struct bdaddr_list *entry;
2913
2914	if (!bacmp(bdaddr, BDADDR_ANY))
2915		return -EBADF;
2916
2917	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2918		return -EEXIST;
2919
2920	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2921	if (!entry)
2922		return -ENOMEM;
2923
2924	bacpy(&entry->bdaddr, bdaddr);
2925	entry->bdaddr_type = type;
2926
2927	list_add(&entry->list, list);
2928
2929	return 0;
2930}
2931
2932int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2933					u8 type, u8 *peer_irk, u8 *local_irk)
2934{
2935	struct bdaddr_list_with_irk *entry;
2936
2937	if (!bacmp(bdaddr, BDADDR_ANY))
2938		return -EBADF;
2939
2940	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2941		return -EEXIST;
2942
2943	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2944	if (!entry)
2945		return -ENOMEM;
2946
2947	bacpy(&entry->bdaddr, bdaddr);
2948	entry->bdaddr_type = type;
2949
2950	if (peer_irk)
2951		memcpy(entry->peer_irk, peer_irk, 16);
2952
2953	if (local_irk)
2954		memcpy(entry->local_irk, local_irk, 16);
2955
2956	list_add(&entry->list, list);
2957
2958	return 0;
2959}
2960
2961int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2962{
2963	struct bdaddr_list *entry;
2964
2965	if (!bacmp(bdaddr, BDADDR_ANY)) {
2966		hci_bdaddr_list_clear(list);
2967		return 0;
2968	}
2969
2970	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2971	if (!entry)
2972		return -ENOENT;
2973
2974	list_del(&entry->list);
2975	kfree(entry);
2976
2977	return 0;
2978}
2979
2980int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2981							u8 type)
2982{
2983	struct bdaddr_list_with_irk *entry;
 
2984
2985	if (!bacmp(bdaddr, BDADDR_ANY)) {
2986		hci_bdaddr_list_clear(list);
2987		return 0;
2988	}
2989
2990	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2991	if (!entry)
2992		return -ENOENT;
2993
2994	list_del(&entry->list);
2995	kfree(entry);
 
2996
2997	return 0;
 
 
 
2998}
2999
3000/* This function requires the caller holds hdev->lock */
3001struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3002					       bdaddr_t *addr, u8 addr_type)
3003{
3004	struct hci_conn_params *params;
3005
3006	list_for_each_entry(params, &hdev->le_conn_params, list) {
3007		if (bacmp(&params->addr, addr) == 0 &&
3008		    params->addr_type == addr_type) {
3009			return params;
3010		}
3011	}
3012
3013	return NULL;
3014}
3015
3016/* This function requires the caller holds hdev->lock */
3017struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3018						  bdaddr_t *addr, u8 addr_type)
3019{
3020	struct hci_conn_params *param;
3021
3022	list_for_each_entry(param, list, action) {
3023		if (bacmp(&param->addr, addr) == 0 &&
3024		    param->addr_type == addr_type)
3025			return param;
3026	}
3027
3028	return NULL;
3029}
 
3030
3031/* This function requires the caller holds hdev->lock */
3032struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3033					    bdaddr_t *addr, u8 addr_type)
3034{
3035	struct hci_conn_params *params;
3036
3037	params = hci_conn_params_lookup(hdev, addr, addr_type);
3038	if (params)
3039		return params;
3040
3041	params = kzalloc(sizeof(*params), GFP_KERNEL);
3042	if (!params) {
3043		bt_dev_err(hdev, "out of memory");
3044		return NULL;
3045	}
3046
3047	bacpy(&params->addr, addr);
3048	params->addr_type = addr_type;
 
 
3049
3050	list_add(&params->list, &hdev->le_conn_params);
3051	INIT_LIST_HEAD(&params->action);
3052
3053	params->conn_min_interval = hdev->le_conn_min_interval;
3054	params->conn_max_interval = hdev->le_conn_max_interval;
3055	params->conn_latency = hdev->le_conn_latency;
3056	params->supervision_timeout = hdev->le_supv_timeout;
3057	params->auto_connect = HCI_AUTO_CONN_DISABLED;
3058
3059	BT_DBG("addr %pMR (type %u)", addr, addr_type);
 
3060
3061	return params;
3062}
3063
3064static void hci_conn_params_free(struct hci_conn_params *params)
3065{
3066	if (params->conn) {
3067		hci_conn_drop(params->conn);
3068		hci_conn_put(params->conn);
 
 
 
 
 
 
 
 
3069	}
3070
3071	list_del(&params->action);
3072	list_del(&params->list);
3073	kfree(params);
3074}
3075
3076/* This function requires the caller holds hdev->lock */
3077void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3078{
3079	struct hci_conn_params *params;
 
 
3080
3081	params = hci_conn_params_lookup(hdev, addr, addr_type);
3082	if (!params)
3083		return;
3084
3085	hci_conn_params_free(params);
3086
3087	hci_update_background_scan(hdev);
 
3088
3089	BT_DBG("addr %pMR (type %u)", addr, addr_type);
 
 
 
 
 
 
 
 
3090}
3091
3092/* This function requires the caller holds hdev->lock */
3093void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3094{
3095	struct hci_conn_params *params, *tmp;
3096
3097	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3098		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3099			continue;
3100
3101		/* If trying to estabilish one time connection to disabled
3102		 * device, leave the params, but mark them as just once.
3103		 */
3104		if (params->explicit_connect) {
3105			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3106			continue;
3107		}
3108
3109		list_del(&params->list);
3110		kfree(params);
3111	}
 
3112
3113	BT_DBG("All LE disabled connection parameters were removed");
3114}
3115
3116/* This function requires the caller holds hdev->lock */
3117static void hci_conn_params_clear_all(struct hci_dev *hdev)
3118{
3119	struct hci_conn_params *params, *tmp;
3120
3121	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3122		hci_conn_params_free(params);
3123
3124	BT_DBG("All LE connection parameters were removed");
3125}
3126
3127/* Copy the Identity Address of the controller.
3128 *
3129 * If the controller has a public BD_ADDR, then by default use that one.
3130 * If this is a LE only controller without a public address, default to
3131 * the static random address.
3132 *
3133 * For debugging purposes it is possible to force controllers with a
3134 * public address to use the static random address instead.
3135 *
3136 * In case BR/EDR has been disabled on a dual-mode controller and
3137 * userspace has configured a static address, then that address
3138 * becomes the identity address instead of the public BR/EDR address.
3139 */
3140void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3141			       u8 *bdaddr_type)
3142{
3143	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3144	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3145	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3146	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
3147		bacpy(bdaddr, &hdev->static_addr);
3148		*bdaddr_type = ADDR_LE_DEV_RANDOM;
3149	} else {
3150		bacpy(bdaddr, &hdev->bdaddr);
3151		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
3152	}
3153}
3154
3155/* Alloc HCI device */
3156struct hci_dev *hci_alloc_dev(void)
3157{
3158	struct hci_dev *hdev;
3159
3160	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3161	if (!hdev)
3162		return NULL;
3163
3164	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3165	hdev->esco_type = (ESCO_HV1);
3166	hdev->link_mode = (HCI_LM_ACCEPT);
3167	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
3168	hdev->io_capability = 0x03;	/* No Input No Output */
3169	hdev->manufacturer = 0xffff;	/* Default to internal use */
3170	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3171	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3172	hdev->adv_instance_cnt = 0;
3173	hdev->cur_adv_instance = 0x00;
3174	hdev->adv_instance_timeout = 0;
3175
3176	hdev->sniff_max_interval = 800;
3177	hdev->sniff_min_interval = 80;
3178
3179	hdev->le_adv_channel_map = 0x07;
3180	hdev->le_adv_min_interval = 0x0800;
3181	hdev->le_adv_max_interval = 0x0800;
3182	hdev->le_scan_interval = 0x0060;
3183	hdev->le_scan_window = 0x0030;
3184	hdev->le_conn_min_interval = 0x0018;
3185	hdev->le_conn_max_interval = 0x0028;
3186	hdev->le_conn_latency = 0x0000;
3187	hdev->le_supv_timeout = 0x002a;
3188	hdev->le_def_tx_len = 0x001b;
3189	hdev->le_def_tx_time = 0x0148;
3190	hdev->le_max_tx_len = 0x001b;
3191	hdev->le_max_tx_time = 0x0148;
3192	hdev->le_max_rx_len = 0x001b;
3193	hdev->le_max_rx_time = 0x0148;
3194	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3195	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3196	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3197	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3198	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3199
3200	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3201	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3202	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3203	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3204	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3205	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3206
3207	mutex_init(&hdev->lock);
3208	mutex_init(&hdev->req_lock);
3209
3210	INIT_LIST_HEAD(&hdev->mgmt_pending);
3211	INIT_LIST_HEAD(&hdev->blacklist);
3212	INIT_LIST_HEAD(&hdev->whitelist);
3213	INIT_LIST_HEAD(&hdev->uuids);
3214	INIT_LIST_HEAD(&hdev->link_keys);
3215	INIT_LIST_HEAD(&hdev->long_term_keys);
3216	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3217	INIT_LIST_HEAD(&hdev->remote_oob_data);
3218	INIT_LIST_HEAD(&hdev->le_white_list);
3219	INIT_LIST_HEAD(&hdev->le_resolv_list);
3220	INIT_LIST_HEAD(&hdev->le_conn_params);
3221	INIT_LIST_HEAD(&hdev->pend_le_conns);
3222	INIT_LIST_HEAD(&hdev->pend_le_reports);
3223	INIT_LIST_HEAD(&hdev->conn_hash.list);
3224	INIT_LIST_HEAD(&hdev->adv_instances);
3225
3226	INIT_WORK(&hdev->rx_work, hci_rx_work);
3227	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3228	INIT_WORK(&hdev->tx_work, hci_tx_work);
3229	INIT_WORK(&hdev->power_on, hci_power_on);
3230	INIT_WORK(&hdev->error_reset, hci_error_reset);
3231
3232	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
 
 
3233
 
3234	skb_queue_head_init(&hdev->rx_q);
3235	skb_queue_head_init(&hdev->cmd_q);
3236	skb_queue_head_init(&hdev->raw_q);
3237
3238	init_waitqueue_head(&hdev->req_wait_q);
3239
3240	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3241
3242	hci_request_setup(hdev);
3243
3244	hci_init_sysfs(hdev);
3245	discovery_init(hdev);
 
3246
3247	return hdev;
3248}
3249EXPORT_SYMBOL(hci_alloc_dev);
3250
3251/* Free HCI device */
3252void hci_free_dev(struct hci_dev *hdev)
3253{
 
 
3254	/* will free via device release */
3255	put_device(&hdev->dev);
3256}
3257EXPORT_SYMBOL(hci_free_dev);
3258
3259/* Register HCI device */
3260int hci_register_dev(struct hci_dev *hdev)
3261{
 
3262	int id, error;
3263
3264	if (!hdev->open || !hdev->close || !hdev->send)
3265		return -EINVAL;
3266
 
 
3267	/* Do not allow HCI_AMP devices to register at index 0,
3268	 * so the index can be used as the AMP controller ID.
3269	 */
3270	switch (hdev->dev_type) {
3271	case HCI_PRIMARY:
3272		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3273		break;
3274	case HCI_AMP:
3275		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3276		break;
3277	default:
3278		return -EINVAL;
3279	}
3280
3281	if (id < 0)
3282		return id;
 
 
 
 
 
 
 
3283
3284	sprintf(hdev->name, "hci%d", id);
3285	hdev->id = id;
3286
3287	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3288
3289	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3290	if (!hdev->workqueue) {
3291		error = -ENOMEM;
3292		goto err;
3293	}
3294
3295	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3296						      hdev->name);
3297	if (!hdev->req_workqueue) {
3298		destroy_workqueue(hdev->workqueue);
3299		error = -ENOMEM;
3300		goto err;
3301	}
3302
3303	if (!IS_ERR_OR_NULL(bt_debugfs))
3304		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3305
3306	dev_set_name(&hdev->dev, "%s", hdev->name);
3307
3308	error = device_add(&hdev->dev);
3309	if (error < 0)
3310		goto err_wqueue;
3311
3312	hci_leds_init(hdev);
3313
3314	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3315				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3316				    hdev);
3317	if (hdev->rfkill) {
3318		if (rfkill_register(hdev->rfkill) < 0) {
3319			rfkill_destroy(hdev->rfkill);
3320			hdev->rfkill = NULL;
3321		}
3322	}
3323
3324	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3325		hci_dev_set_flag(hdev, HCI_RFKILLED);
3326
3327	hci_dev_set_flag(hdev, HCI_SETUP);
3328	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3329
3330	if (hdev->dev_type == HCI_PRIMARY) {
3331		/* Assume BR/EDR support until proven otherwise (such as
3332		 * through reading supported features during init.
3333		 */
3334		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3335	}
3336
3337	write_lock(&hci_dev_list_lock);
3338	list_add(&hdev->list, &hci_dev_list);
3339	write_unlock(&hci_dev_list_lock);
3340
3341	/* Devices that are marked for raw-only usage are unconfigured
3342	 * and should not be included in normal operation.
3343	 */
3344	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3345		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3346
3347	hci_sock_dev_event(hdev, HCI_DEV_REG);
3348	hci_dev_hold(hdev);
3349
3350	queue_work(hdev->req_workqueue, &hdev->power_on);
3351
3352	return id;
3353
3354err_wqueue:
3355	destroy_workqueue(hdev->workqueue);
3356	destroy_workqueue(hdev->req_workqueue);
3357err:
3358	ida_simple_remove(&hci_index_ida, hdev->id);
 
 
3359
3360	return error;
3361}
3362EXPORT_SYMBOL(hci_register_dev);
3363
3364/* Unregister HCI device */
3365void hci_unregister_dev(struct hci_dev *hdev)
3366{
3367	int id;
3368
3369	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3370
3371	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3372
3373	id = hdev->id;
3374
3375	write_lock(&hci_dev_list_lock);
3376	list_del(&hdev->list);
3377	write_unlock(&hci_dev_list_lock);
3378
3379	cancel_work_sync(&hdev->power_on);
3380
3381	hci_dev_do_close(hdev);
3382
 
 
 
3383	if (!test_bit(HCI_INIT, &hdev->flags) &&
3384	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3385	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3386		hci_dev_lock(hdev);
3387		mgmt_index_removed(hdev);
3388		hci_dev_unlock(hdev);
3389	}
3390
3391	/* mgmt_index_removed should take care of emptying the
3392	 * pending list */
3393	BUG_ON(!list_empty(&hdev->mgmt_pending));
3394
3395	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3396
3397	if (hdev->rfkill) {
3398		rfkill_unregister(hdev->rfkill);
3399		rfkill_destroy(hdev->rfkill);
3400	}
3401
3402	device_del(&hdev->dev);
3403
3404	debugfs_remove_recursive(hdev->debugfs);
3405	kfree_const(hdev->hw_info);
3406	kfree_const(hdev->fw_info);
3407
3408	destroy_workqueue(hdev->workqueue);
3409	destroy_workqueue(hdev->req_workqueue);
3410
3411	hci_dev_lock(hdev);
3412	hci_bdaddr_list_clear(&hdev->blacklist);
3413	hci_bdaddr_list_clear(&hdev->whitelist);
3414	hci_uuids_clear(hdev);
3415	hci_link_keys_clear(hdev);
3416	hci_smp_ltks_clear(hdev);
3417	hci_smp_irks_clear(hdev);
3418	hci_remote_oob_data_clear(hdev);
3419	hci_adv_instances_clear(hdev);
3420	hci_bdaddr_list_clear(&hdev->le_white_list);
3421	hci_bdaddr_list_clear(&hdev->le_resolv_list);
3422	hci_conn_params_clear_all(hdev);
3423	hci_discovery_filter_clear(hdev);
3424	hci_dev_unlock(hdev);
3425
3426	hci_dev_put(hdev);
3427
3428	ida_simple_remove(&hci_index_ida, id);
3429}
3430EXPORT_SYMBOL(hci_unregister_dev);
3431
3432/* Suspend HCI device */
3433int hci_suspend_dev(struct hci_dev *hdev)
3434{
3435	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3436	return 0;
3437}
3438EXPORT_SYMBOL(hci_suspend_dev);
3439
3440/* Resume HCI device */
3441int hci_resume_dev(struct hci_dev *hdev)
3442{
3443	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3444	return 0;
3445}
3446EXPORT_SYMBOL(hci_resume_dev);
3447
3448/* Reset HCI device */
3449int hci_reset_dev(struct hci_dev *hdev)
3450{
3451	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3452	struct sk_buff *skb;
3453
3454	skb = bt_skb_alloc(3, GFP_ATOMIC);
3455	if (!skb)
3456		return -ENOMEM;
3457
3458	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3459	skb_put_data(skb, hw_err, 3);
3460
3461	/* Send Hardware Error to upper stack */
3462	return hci_recv_frame(hdev, skb);
3463}
3464EXPORT_SYMBOL(hci_reset_dev);
3465
3466/* Receive frame from HCI drivers */
3467int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3468{
 
3469	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3470		      && !test_bit(HCI_INIT, &hdev->flags))) {
3471		kfree_skb(skb);
3472		return -ENXIO;
3473	}
3474
3475	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3476	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3477	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3478		kfree_skb(skb);
3479		return -EINVAL;
3480	}
3481
3482	/* Incoming skb */
3483	bt_cb(skb)->incoming = 1;
3484
3485	/* Time stamp */
3486	__net_timestamp(skb);
3487
3488	skb_queue_tail(&hdev->rx_q, skb);
3489	queue_work(hdev->workqueue, &hdev->rx_work);
3490
3491	return 0;
3492}
3493EXPORT_SYMBOL(hci_recv_frame);
3494
3495/* Receive diagnostic message from HCI drivers */
3496int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3497{
3498	/* Mark as diagnostic packet */
3499	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
 
 
 
3500
3501	/* Time stamp */
3502	__net_timestamp(skb);
 
3503
3504	skb_queue_tail(&hdev->rx_q, skb);
3505	queue_work(hdev->workqueue, &hdev->rx_work);
3506
3507	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3508}
3509EXPORT_SYMBOL(hci_recv_diag);
3510
3511void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3512{
3513	va_list vargs;
 
 
 
 
 
 
 
 
 
 
 
 
3514
3515	va_start(vargs, fmt);
3516	kfree_const(hdev->hw_info);
3517	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3518	va_end(vargs);
3519}
3520EXPORT_SYMBOL(hci_set_hw_info);
 
 
3521
3522void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3523{
3524	va_list vargs;
 
 
 
 
 
 
 
3525
3526	va_start(vargs, fmt);
3527	kfree_const(hdev->fw_info);
3528	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3529	va_end(vargs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3530}
3531EXPORT_SYMBOL(hci_set_fw_info);
3532
3533/* ---- Interface to upper protocols ---- */
3534
3535int hci_register_cb(struct hci_cb *cb)
3536{
3537	BT_DBG("%p name %s", cb, cb->name);
3538
3539	mutex_lock(&hci_cb_list_lock);
3540	list_add_tail(&cb->list, &hci_cb_list);
3541	mutex_unlock(&hci_cb_list_lock);
3542
3543	return 0;
3544}
3545EXPORT_SYMBOL(hci_register_cb);
3546
3547int hci_unregister_cb(struct hci_cb *cb)
3548{
3549	BT_DBG("%p name %s", cb, cb->name);
3550
3551	mutex_lock(&hci_cb_list_lock);
3552	list_del(&cb->list);
3553	mutex_unlock(&hci_cb_list_lock);
3554
3555	return 0;
3556}
3557EXPORT_SYMBOL(hci_unregister_cb);
3558
3559static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3560{
3561	int err;
 
 
 
 
 
3562
3563	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3564	       skb->len);
3565
3566	/* Time stamp */
3567	__net_timestamp(skb);
3568
3569	/* Send copy to monitor */
3570	hci_send_to_monitor(hdev, skb);
3571
3572	if (atomic_read(&hdev->promisc)) {
3573		/* Send copy to the sockets */
3574		hci_send_to_sock(hdev, skb);
3575	}
3576
3577	/* Get rid of skb owner, prior to sending to the driver. */
3578	skb_orphan(skb);
3579
3580	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3581		kfree_skb(skb);
3582		return;
3583	}
3584
3585	err = hdev->send(hdev, skb);
3586	if (err < 0) {
3587		bt_dev_err(hdev, "sending frame failed (%d)", err);
3588		kfree_skb(skb);
3589	}
3590}
3591
3592/* Send HCI command */
3593int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3594		 const void *param)
3595{
 
 
3596	struct sk_buff *skb;
3597
3598	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3599
3600	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3601	if (!skb) {
3602		bt_dev_err(hdev, "no memory for command");
3603		return -ENOMEM;
3604	}
3605
3606	/* Stand-alone HCI commands must be flagged as
3607	 * single-command requests.
3608	 */
3609	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3610
3611	skb_queue_tail(&hdev->cmd_q, skb);
3612	queue_work(hdev->workqueue, &hdev->cmd_work);
3613
3614	return 0;
3615}
3616
3617int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3618		   const void *param)
3619{
3620	struct sk_buff *skb;
3621
3622	if (hci_opcode_ogf(opcode) != 0x3f) {
3623		/* A controller receiving a command shall respond with either
3624		 * a Command Status Event or a Command Complete Event.
3625		 * Therefore, all standard HCI commands must be sent via the
3626		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3627		 * Some vendors do not comply with this rule for vendor-specific
3628		 * commands and do not return any event. We want to support
3629		 * unresponded commands for such cases only.
3630		 */
3631		bt_dev_err(hdev, "unresponded command not supported");
3632		return -EINVAL;
3633	}
3634
3635	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3636	if (!skb) {
3637		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3638			   opcode);
3639		return -ENOMEM;
3640	}
3641
3642	hci_send_frame(hdev, skb);
 
3643
3644	return 0;
3645}
3646EXPORT_SYMBOL(__hci_cmd_send);
3647
3648/* Get data from the previously sent command */
3649void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3650{
3651	struct hci_command_hdr *hdr;
3652
3653	if (!hdev->sent_cmd)
3654		return NULL;
3655
3656	hdr = (void *) hdev->sent_cmd->data;
3657
3658	if (hdr->opcode != cpu_to_le16(opcode))
3659		return NULL;
3660
3661	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3662
3663	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3664}
3665
3666/* Send HCI command and wait for command commplete event */
3667struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3668			     const void *param, u32 timeout)
3669{
3670	struct sk_buff *skb;
3671
3672	if (!test_bit(HCI_UP, &hdev->flags))
3673		return ERR_PTR(-ENETDOWN);
3674
3675	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3676
3677	hci_req_sync_lock(hdev);
3678	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3679	hci_req_sync_unlock(hdev);
3680
3681	return skb;
3682}
3683EXPORT_SYMBOL(hci_cmd_sync);
3684
3685/* Send ACL data */
3686static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3687{
3688	struct hci_acl_hdr *hdr;
3689	int len = skb->len;
3690
3691	skb_push(skb, HCI_ACL_HDR_SIZE);
3692	skb_reset_transport_header(skb);
3693	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3694	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3695	hdr->dlen   = cpu_to_le16(len);
3696}
3697
3698static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3699			  struct sk_buff *skb, __u16 flags)
3700{
3701	struct hci_conn *conn = chan->conn;
3702	struct hci_dev *hdev = conn->hdev;
3703	struct sk_buff *list;
3704
3705	skb->len = skb_headlen(skb);
3706	skb->data_len = 0;
3707
3708	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3709
3710	switch (hdev->dev_type) {
3711	case HCI_PRIMARY:
3712		hci_add_acl_hdr(skb, conn->handle, flags);
3713		break;
3714	case HCI_AMP:
3715		hci_add_acl_hdr(skb, chan->handle, flags);
3716		break;
3717	default:
3718		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3719		return;
3720	}
3721
3722	list = skb_shinfo(skb)->frag_list;
3723	if (!list) {
3724		/* Non fragmented */
3725		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3726
3727		skb_queue_tail(queue, skb);
3728	} else {
3729		/* Fragmented */
3730		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3731
3732		skb_shinfo(skb)->frag_list = NULL;
3733
3734		/* Queue all fragments atomically. We need to use spin_lock_bh
3735		 * here because of 6LoWPAN links, as there this function is
3736		 * called from softirq and using normal spin lock could cause
3737		 * deadlocks.
3738		 */
3739		spin_lock_bh(&queue->lock);
3740
3741		__skb_queue_tail(queue, skb);
3742
3743		flags &= ~ACL_START;
3744		flags |= ACL_CONT;
3745		do {
3746			skb = list; list = list->next;
3747
3748			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
 
3749			hci_add_acl_hdr(skb, conn->handle, flags);
3750
3751			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3752
3753			__skb_queue_tail(queue, skb);
3754		} while (list);
3755
3756		spin_unlock_bh(&queue->lock);
3757	}
3758}
3759
3760void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3761{
3762	struct hci_dev *hdev = chan->conn->hdev;
 
 
 
3763
3764	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3765
3766	hci_queue_acl(chan, &chan->data_q, skb, flags);
3767
3768	queue_work(hdev->workqueue, &hdev->tx_work);
3769}
 
3770
3771/* Send SCO data */
3772void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3773{
3774	struct hci_dev *hdev = conn->hdev;
3775	struct hci_sco_hdr hdr;
3776
3777	BT_DBG("%s len %d", hdev->name, skb->len);
3778
3779	hdr.handle = cpu_to_le16(conn->handle);
3780	hdr.dlen   = skb->len;
3781
3782	skb_push(skb, HCI_SCO_HDR_SIZE);
3783	skb_reset_transport_header(skb);
3784	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3785
3786	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
 
3787
3788	skb_queue_tail(&conn->data_q, skb);
3789	queue_work(hdev->workqueue, &hdev->tx_work);
3790}
 
3791
3792/* ---- HCI TX task (outgoing data) ---- */
3793
3794/* HCI Connection scheduler */
3795static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3796				     int *quote)
3797{
3798	struct hci_conn_hash *h = &hdev->conn_hash;
3799	struct hci_conn *conn = NULL, *c;
3800	unsigned int num = 0, min = ~0;
3801
3802	/* We don't have to lock device here. Connections are always
3803	 * added and removed with TX task disabled. */
3804
3805	rcu_read_lock();
3806
3807	list_for_each_entry_rcu(c, &h->list, list) {
3808		if (c->type != type || skb_queue_empty(&c->data_q))
3809			continue;
3810
3811		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3812			continue;
3813
3814		num++;
3815
3816		if (c->sent < min) {
3817			min  = c->sent;
3818			conn = c;
3819		}
3820
3821		if (hci_conn_num(hdev, type) == num)
3822			break;
3823	}
3824
3825	rcu_read_unlock();
3826
3827	if (conn) {
3828		int cnt, q;
3829
3830		switch (conn->type) {
3831		case ACL_LINK:
3832			cnt = hdev->acl_cnt;
3833			break;
3834		case SCO_LINK:
3835		case ESCO_LINK:
3836			cnt = hdev->sco_cnt;
3837			break;
3838		case LE_LINK:
3839			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3840			break;
3841		default:
3842			cnt = 0;
3843			bt_dev_err(hdev, "unknown link type %d", conn->type);
3844		}
3845
3846		q = cnt / num;
3847		*quote = q ? q : 1;
3848	} else
3849		*quote = 0;
3850
3851	BT_DBG("conn %p quote %d", conn, *quote);
3852	return conn;
3853}
3854
3855static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3856{
3857	struct hci_conn_hash *h = &hdev->conn_hash;
3858	struct hci_conn *c;
3859
3860	bt_dev_err(hdev, "link tx timeout");
3861
3862	rcu_read_lock();
3863
3864	/* Kill stalled connections */
3865	list_for_each_entry_rcu(c, &h->list, list) {
3866		if (c->type == type && c->sent) {
3867			bt_dev_err(hdev, "killing stalled connection %pMR",
3868				   &c->dst);
3869			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3870		}
3871	}
3872
3873	rcu_read_unlock();
3874}
3875
3876static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3877				      int *quote)
3878{
3879	struct hci_conn_hash *h = &hdev->conn_hash;
3880	struct hci_chan *chan = NULL;
3881	unsigned int num = 0, min = ~0, cur_prio = 0;
3882	struct hci_conn *conn;
3883	int cnt, q, conn_num = 0;
3884
3885	BT_DBG("%s", hdev->name);
3886
3887	rcu_read_lock();
3888
3889	list_for_each_entry_rcu(conn, &h->list, list) {
3890		struct hci_chan *tmp;
3891
3892		if (conn->type != type)
3893			continue;
3894
3895		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3896			continue;
3897
3898		conn_num++;
3899
3900		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3901			struct sk_buff *skb;
3902
3903			if (skb_queue_empty(&tmp->data_q))
3904				continue;
3905
3906			skb = skb_peek(&tmp->data_q);
3907			if (skb->priority < cur_prio)
3908				continue;
3909
3910			if (skb->priority > cur_prio) {
3911				num = 0;
3912				min = ~0;
3913				cur_prio = skb->priority;
3914			}
3915
3916			num++;
3917
3918			if (conn->sent < min) {
3919				min  = conn->sent;
3920				chan = tmp;
3921			}
3922		}
3923
3924		if (hci_conn_num(hdev, type) == conn_num)
3925			break;
3926	}
3927
3928	rcu_read_unlock();
3929
3930	if (!chan)
3931		return NULL;
3932
3933	switch (chan->conn->type) {
3934	case ACL_LINK:
3935		cnt = hdev->acl_cnt;
3936		break;
3937	case AMP_LINK:
3938		cnt = hdev->block_cnt;
3939		break;
3940	case SCO_LINK:
3941	case ESCO_LINK:
3942		cnt = hdev->sco_cnt;
3943		break;
3944	case LE_LINK:
3945		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3946		break;
3947	default:
3948		cnt = 0;
3949		bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
3950	}
3951
3952	q = cnt / num;
3953	*quote = q ? q : 1;
3954	BT_DBG("chan %p quote %d", chan, *quote);
3955	return chan;
3956}
3957
3958static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3959{
3960	struct hci_conn_hash *h = &hdev->conn_hash;
3961	struct hci_conn *conn;
3962	int num = 0;
3963
3964	BT_DBG("%s", hdev->name);
3965
3966	rcu_read_lock();
3967
3968	list_for_each_entry_rcu(conn, &h->list, list) {
3969		struct hci_chan *chan;
3970
3971		if (conn->type != type)
3972			continue;
3973
3974		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3975			continue;
3976
3977		num++;
3978
3979		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3980			struct sk_buff *skb;
3981
3982			if (chan->sent) {
3983				chan->sent = 0;
3984				continue;
3985			}
3986
3987			if (skb_queue_empty(&chan->data_q))
3988				continue;
3989
3990			skb = skb_peek(&chan->data_q);
3991			if (skb->priority >= HCI_PRIO_MAX - 1)
3992				continue;
3993
3994			skb->priority = HCI_PRIO_MAX - 1;
3995
3996			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3997			       skb->priority);
3998		}
3999
4000		if (hci_conn_num(hdev, type) == num)
4001			break;
4002	}
4003
4004	rcu_read_unlock();
4005
4006}
4007
4008static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4009{
4010	/* Calculate count of blocks used by this packet */
4011	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4012}
4013
4014static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4015{
4016	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4017		/* ACL tx timeout must be longer than maximum
4018		 * link supervision timeout (40.9 seconds) */
4019		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4020				       HCI_ACL_TX_TIMEOUT))
4021			hci_link_tx_to(hdev, ACL_LINK);
4022	}
4023}
4024
4025static void hci_sched_acl_pkt(struct hci_dev *hdev)
4026{
4027	unsigned int cnt = hdev->acl_cnt;
4028	struct hci_chan *chan;
4029	struct sk_buff *skb;
4030	int quote;
4031
4032	__check_timeout(hdev, cnt);
4033
4034	while (hdev->acl_cnt &&
4035	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4036		u32 priority = (skb_peek(&chan->data_q))->priority;
4037		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4038			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4039			       skb->len, skb->priority);
4040
4041			/* Stop if priority has changed */
4042			if (skb->priority < priority)
4043				break;
4044
4045			skb = skb_dequeue(&chan->data_q);
4046
4047			hci_conn_enter_active_mode(chan->conn,
4048						   bt_cb(skb)->force_active);
4049
4050			hci_send_frame(hdev, skb);
4051			hdev->acl_last_tx = jiffies;
4052
4053			hdev->acl_cnt--;
4054			chan->sent++;
4055			chan->conn->sent++;
4056		}
4057	}
4058
4059	if (cnt != hdev->acl_cnt)
4060		hci_prio_recalculate(hdev, ACL_LINK);
4061}
4062
4063static void hci_sched_acl_blk(struct hci_dev *hdev)
4064{
4065	unsigned int cnt = hdev->block_cnt;
4066	struct hci_chan *chan;
4067	struct sk_buff *skb;
4068	int quote;
4069	u8 type;
4070
4071	__check_timeout(hdev, cnt);
4072
4073	BT_DBG("%s", hdev->name);
4074
4075	if (hdev->dev_type == HCI_AMP)
4076		type = AMP_LINK;
4077	else
4078		type = ACL_LINK;
4079
4080	while (hdev->block_cnt > 0 &&
4081	       (chan = hci_chan_sent(hdev, type, &quote))) {
4082		u32 priority = (skb_peek(&chan->data_q))->priority;
4083		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4084			int blocks;
4085
4086			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4087			       skb->len, skb->priority);
4088
4089			/* Stop if priority has changed */
4090			if (skb->priority < priority)
4091				break;
4092
4093			skb = skb_dequeue(&chan->data_q);
4094
4095			blocks = __get_blocks(hdev, skb);
4096			if (blocks > hdev->block_cnt)
4097				return;
4098
4099			hci_conn_enter_active_mode(chan->conn,
4100						   bt_cb(skb)->force_active);
4101
4102			hci_send_frame(hdev, skb);
4103			hdev->acl_last_tx = jiffies;
4104
4105			hdev->block_cnt -= blocks;
4106			quote -= blocks;
4107
4108			chan->sent += blocks;
4109			chan->conn->sent += blocks;
4110		}
4111	}
4112
4113	if (cnt != hdev->block_cnt)
4114		hci_prio_recalculate(hdev, type);
4115}
4116
4117static void hci_sched_acl(struct hci_dev *hdev)
4118{
4119	BT_DBG("%s", hdev->name);
4120
4121	/* No ACL link over BR/EDR controller */
4122	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4123		return;
4124
4125	/* No AMP link over AMP controller */
4126	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4127		return;
4128
4129	switch (hdev->flow_ctl_mode) {
4130	case HCI_FLOW_CTL_MODE_PACKET_BASED:
4131		hci_sched_acl_pkt(hdev);
4132		break;
4133
4134	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4135		hci_sched_acl_blk(hdev);
4136		break;
4137	}
4138}
4139
4140/* Schedule SCO */
4141static void hci_sched_sco(struct hci_dev *hdev)
4142{
4143	struct hci_conn *conn;
4144	struct sk_buff *skb;
4145	int quote;
4146
4147	BT_DBG("%s", hdev->name);
4148
4149	if (!hci_conn_num(hdev, SCO_LINK))
4150		return;
4151
4152	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4153		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4154			BT_DBG("skb %p len %d", skb, skb->len);
4155			hci_send_frame(hdev, skb);
4156
4157			conn->sent++;
4158			if (conn->sent == ~0)
4159				conn->sent = 0;
4160		}
4161	}
4162}
4163
4164static void hci_sched_esco(struct hci_dev *hdev)
4165{
4166	struct hci_conn *conn;
4167	struct sk_buff *skb;
4168	int quote;
4169
4170	BT_DBG("%s", hdev->name);
4171
4172	if (!hci_conn_num(hdev, ESCO_LINK))
4173		return;
4174
4175	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4176						     &quote))) {
4177		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4178			BT_DBG("skb %p len %d", skb, skb->len);
4179			hci_send_frame(hdev, skb);
4180
4181			conn->sent++;
4182			if (conn->sent == ~0)
4183				conn->sent = 0;
4184		}
4185	}
4186}
4187
4188static void hci_sched_le(struct hci_dev *hdev)
4189{
4190	struct hci_chan *chan;
4191	struct sk_buff *skb;
4192	int quote, cnt, tmp;
4193
4194	BT_DBG("%s", hdev->name);
4195
4196	if (!hci_conn_num(hdev, LE_LINK))
4197		return;
4198
4199	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4200		/* LE tx timeout must be longer than maximum
4201		 * link supervision timeout (40.9 seconds) */
4202		if (!hdev->le_cnt && hdev->le_pkts &&
4203		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
4204			hci_link_tx_to(hdev, LE_LINK);
4205	}
4206
4207	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4208	tmp = cnt;
4209	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4210		u32 priority = (skb_peek(&chan->data_q))->priority;
4211		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4212			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4213			       skb->len, skb->priority);
4214
4215			/* Stop if priority has changed */
4216			if (skb->priority < priority)
4217				break;
4218
4219			skb = skb_dequeue(&chan->data_q);
4220
4221			hci_send_frame(hdev, skb);
4222			hdev->le_last_tx = jiffies;
4223
4224			cnt--;
4225			chan->sent++;
4226			chan->conn->sent++;
4227		}
4228	}
4229
4230	if (hdev->le_pkts)
4231		hdev->le_cnt = cnt;
4232	else
4233		hdev->acl_cnt = cnt;
4234
4235	if (cnt != tmp)
4236		hci_prio_recalculate(hdev, LE_LINK);
4237}
4238
4239static void hci_tx_work(struct work_struct *work)
4240{
4241	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4242	struct sk_buff *skb;
4243
4244	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4245	       hdev->sco_cnt, hdev->le_cnt);
4246
4247	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4248		/* Schedule queues and send stuff to HCI driver */
4249		hci_sched_acl(hdev);
4250		hci_sched_sco(hdev);
4251		hci_sched_esco(hdev);
4252		hci_sched_le(hdev);
4253	}
 
 
4254
4255	/* Send next queued raw (unknown type) packet */
4256	while ((skb = skb_dequeue(&hdev->raw_q)))
4257		hci_send_frame(hdev, skb);
4258}
4259
4260/* ----- HCI RX task (incoming data processing) ----- */
4261
4262/* ACL data packet */
4263static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4264{
4265	struct hci_acl_hdr *hdr = (void *) skb->data;
4266	struct hci_conn *conn;
4267	__u16 handle, flags;
4268
4269	skb_pull(skb, HCI_ACL_HDR_SIZE);
4270
4271	handle = __le16_to_cpu(hdr->handle);
4272	flags  = hci_flags(handle);
4273	handle = hci_handle(handle);
4274
4275	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4276	       handle, flags);
4277
4278	hdev->stat.acl_rx++;
4279
4280	hci_dev_lock(hdev);
4281	conn = hci_conn_hash_lookup_handle(hdev, handle);
4282	hci_dev_unlock(hdev);
4283
4284	if (conn) {
4285		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4286
 
 
 
 
 
 
 
 
4287		/* Send to upper protocol */
4288		l2cap_recv_acldata(conn, skb, flags);
4289		return;
4290	} else {
4291		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4292			   handle);
4293	}
4294
4295	kfree_skb(skb);
4296}
4297
4298/* SCO data packet */
4299static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4300{
4301	struct hci_sco_hdr *hdr = (void *) skb->data;
4302	struct hci_conn *conn;
4303	__u16 handle;
4304
4305	skb_pull(skb, HCI_SCO_HDR_SIZE);
4306
4307	handle = __le16_to_cpu(hdr->handle);
4308
4309	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4310
4311	hdev->stat.sco_rx++;
4312
4313	hci_dev_lock(hdev);
4314	conn = hci_conn_hash_lookup_handle(hdev, handle);
4315	hci_dev_unlock(hdev);
4316
4317	if (conn) {
4318		/* Send to upper protocol */
4319		sco_recv_scodata(conn, skb);
4320		return;
4321	} else {
4322		bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4323			   handle);
4324	}
4325
4326	kfree_skb(skb);
4327}
4328
4329static bool hci_req_is_complete(struct hci_dev *hdev)
4330{
4331	struct sk_buff *skb;
4332
4333	skb = skb_peek(&hdev->cmd_q);
4334	if (!skb)
4335		return true;
4336
4337	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4338}
4339
4340static void hci_resend_last(struct hci_dev *hdev)
4341{
4342	struct hci_command_hdr *sent;
4343	struct sk_buff *skb;
4344	u16 opcode;
4345
4346	if (!hdev->sent_cmd)
4347		return;
4348
4349	sent = (void *) hdev->sent_cmd->data;
4350	opcode = __le16_to_cpu(sent->opcode);
4351	if (opcode == HCI_OP_RESET)
4352		return;
4353
4354	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4355	if (!skb)
4356		return;
4357
4358	skb_queue_head(&hdev->cmd_q, skb);
4359	queue_work(hdev->workqueue, &hdev->cmd_work);
4360}
4361
4362void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4363			  hci_req_complete_t *req_complete,
4364			  hci_req_complete_skb_t *req_complete_skb)
4365{
4366	struct sk_buff *skb;
4367	unsigned long flags;
4368
4369	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4370
4371	/* If the completed command doesn't match the last one that was
4372	 * sent we need to do special handling of it.
4373	 */
4374	if (!hci_sent_cmd_data(hdev, opcode)) {
4375		/* Some CSR based controllers generate a spontaneous
4376		 * reset complete event during init and any pending
4377		 * command will never be completed. In such a case we
4378		 * need to resend whatever was the last sent
4379		 * command.
4380		 */
4381		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4382			hci_resend_last(hdev);
4383
4384		return;
4385	}
4386
4387	/* If we reach this point this event matches the last command sent */
4388	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4389
4390	/* If the command succeeded and there's still more commands in
4391	 * this request the request is not yet complete.
4392	 */
4393	if (!status && !hci_req_is_complete(hdev))
4394		return;
4395
4396	/* If this was the last command in a request the complete
4397	 * callback would be found in hdev->sent_cmd instead of the
4398	 * command queue (hdev->cmd_q).
4399	 */
4400	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4401		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4402		return;
4403	}
4404
4405	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4406		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4407		return;
4408	}
4409
4410	/* Remove all pending commands belonging to this request */
4411	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4412	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4413		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4414			__skb_queue_head(&hdev->cmd_q, skb);
4415			break;
4416		}
4417
4418		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4419			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4420		else
4421			*req_complete = bt_cb(skb)->hci.req_complete;
4422		kfree_skb(skb);
4423	}
4424	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4425}
4426
4427static void hci_rx_work(struct work_struct *work)
4428{
4429	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4430	struct sk_buff *skb;
4431
4432	BT_DBG("%s", hdev->name);
4433
4434	while ((skb = skb_dequeue(&hdev->rx_q))) {
4435		/* Send copy to monitor */
4436		hci_send_to_monitor(hdev, skb);
4437
4438		if (atomic_read(&hdev->promisc)) {
4439			/* Send copy to the sockets */
4440			hci_send_to_sock(hdev, skb);
4441		}
4442
4443		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4444			kfree_skb(skb);
4445			continue;
4446		}
4447
4448		if (test_bit(HCI_INIT, &hdev->flags)) {
4449			/* Don't process data packets in this states. */
4450			switch (hci_skb_pkt_type(skb)) {
4451			case HCI_ACLDATA_PKT:
4452			case HCI_SCODATA_PKT:
4453				kfree_skb(skb);
4454				continue;
4455			}
4456		}
4457
4458		/* Process frame */
4459		switch (hci_skb_pkt_type(skb)) {
4460		case HCI_EVENT_PKT:
4461			BT_DBG("%s Event packet", hdev->name);
4462			hci_event_packet(hdev, skb);
4463			break;
4464
4465		case HCI_ACLDATA_PKT:
4466			BT_DBG("%s ACL data packet", hdev->name);
4467			hci_acldata_packet(hdev, skb);
4468			break;
4469
4470		case HCI_SCODATA_PKT:
4471			BT_DBG("%s SCO data packet", hdev->name);
4472			hci_scodata_packet(hdev, skb);
4473			break;
4474
4475		default:
4476			kfree_skb(skb);
4477			break;
4478		}
4479	}
4480}
4481
4482static void hci_cmd_work(struct work_struct *work)
4483{
4484	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4485	struct sk_buff *skb;
4486
4487	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4488	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4489
4490	/* Send queued commands */
4491	if (atomic_read(&hdev->cmd_cnt)) {
4492		skb = skb_dequeue(&hdev->cmd_q);
4493		if (!skb)
4494			return;
4495
4496		kfree_skb(hdev->sent_cmd);
4497
4498		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4499		if (hdev->sent_cmd) {
4500			if (hci_req_status_pend(hdev))
4501				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4502			atomic_dec(&hdev->cmd_cnt);
4503			hci_send_frame(hdev, skb);
4504			if (test_bit(HCI_RESET, &hdev->flags))
4505				cancel_delayed_work(&hdev->cmd_timer);
4506			else
4507				schedule_delayed_work(&hdev->cmd_timer,
4508						      HCI_CMD_TIMEOUT);
4509		} else {
4510			skb_queue_head(&hdev->cmd_q, skb);
4511			queue_work(hdev->workqueue, &hdev->cmd_work);
4512		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4513	}
4514}
v3.5.6
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/jiffies.h>
  29#include <linux/module.h>
  30#include <linux/kmod.h>
  31
  32#include <linux/types.h>
  33#include <linux/errno.h>
  34#include <linux/kernel.h>
  35#include <linux/sched.h>
  36#include <linux/slab.h>
  37#include <linux/poll.h>
  38#include <linux/fcntl.h>
  39#include <linux/init.h>
  40#include <linux/skbuff.h>
  41#include <linux/workqueue.h>
  42#include <linux/interrupt.h>
  43#include <linux/rfkill.h>
  44#include <linux/timer.h>
  45#include <linux/crypto.h>
  46#include <net/sock.h>
  47
  48#include <linux/uaccess.h>
  49#include <asm/unaligned.h>
  50
  51#include <net/bluetooth/bluetooth.h>
  52#include <net/bluetooth/hci_core.h>
 
 
  53
  54#define AUTO_OFF_TIMEOUT 2000
 
 
 
  55
  56static void hci_rx_work(struct work_struct *work);
  57static void hci_cmd_work(struct work_struct *work);
  58static void hci_tx_work(struct work_struct *work);
  59
  60/* HCI device list */
  61LIST_HEAD(hci_dev_list);
  62DEFINE_RWLOCK(hci_dev_list_lock);
  63
  64/* HCI callback list */
  65LIST_HEAD(hci_cb_list);
  66DEFINE_RWLOCK(hci_cb_list_lock);
 
 
 
  67
  68/* ---- HCI notifications ---- */
  69
  70static void hci_notify(struct hci_dev *hdev, int event)
 
  71{
  72	hci_sock_dev_event(hdev, event);
 
 
 
 
 
 
  73}
  74
  75/* ---- HCI requests ---- */
 
 
 
 
 
 
 
 
 
  76
  77void hci_req_complete(struct hci_dev *hdev, __u16 cmd, int result)
  78{
  79	BT_DBG("%s command 0x%04x result 0x%2.2x", hdev->name, cmd, result);
  80
  81	/* If this is the init phase check if the completed command matches
  82	 * the last init command, and if not just return.
  83	 */
  84	if (test_bit(HCI_INIT, &hdev->flags) && hdev->init_last_cmd != cmd) {
  85		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
  86		u16 opcode = __le16_to_cpu(sent->opcode);
  87		struct sk_buff *skb;
  88
  89		/* Some CSR based controllers generate a spontaneous
  90		 * reset complete event during init and any pending
  91		 * command will never be completed. In such a case we
  92		 * need to resend whatever was the last sent
  93		 * command.
  94		 */
 
 
  95
  96		if (cmd != HCI_OP_RESET || opcode == HCI_OP_RESET)
  97			return;
  98
  99		skb = skb_clone(hdev->sent_cmd, GFP_ATOMIC);
 100		if (skb) {
 101			skb_queue_head(&hdev->cmd_q, skb);
 102			queue_work(hdev->workqueue, &hdev->cmd_work);
 103		}
 104
 105		return;
 106	}
 107
 108	if (hdev->req_status == HCI_REQ_PEND) {
 109		hdev->req_result = result;
 110		hdev->req_status = HCI_REQ_DONE;
 111		wake_up_interruptible(&hdev->req_wait_q);
 112	}
 113}
 114
 115static void hci_req_cancel(struct hci_dev *hdev, int err)
 
 
 
 
 
 
 
 
 116{
 117	BT_DBG("%s err 0x%2.2x", hdev->name, err);
 
 118
 119	if (hdev->req_status == HCI_REQ_PEND) {
 120		hdev->req_result = err;
 121		hdev->req_status = HCI_REQ_CANCELED;
 122		wake_up_interruptible(&hdev->req_wait_q);
 123	}
 124}
 125
 126/* Execute request and wait for completion. */
 127static int __hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
 128					unsigned long opt, __u32 timeout)
 129{
 130	DECLARE_WAITQUEUE(wait, current);
 131	int err = 0;
 
 132
 133	BT_DBG("%s start", hdev->name);
 
 
 134
 135	hdev->req_status = HCI_REQ_PEND;
 
 
 
 
 
 
 
 
 136
 137	add_wait_queue(&hdev->req_wait_q, &wait);
 138	set_current_state(TASK_INTERRUPTIBLE);
 
 139
 140	req(hdev, opt);
 141	schedule_timeout(timeout);
 142
 143	remove_wait_queue(&hdev->req_wait_q, &wait);
 
 
 
 
 144
 145	if (signal_pending(current))
 146		return -EINTR;
 147
 148	switch (hdev->req_status) {
 149	case HCI_REQ_DONE:
 150		err = -bt_to_errno(hdev->req_result);
 151		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152
 153	case HCI_REQ_CANCELED:
 154		err = -hdev->req_result;
 155		break;
 
 
 156
 157	default:
 158		err = -ETIMEDOUT;
 159		break;
 160	}
 161
 162	hdev->req_status = hdev->req_result = 0;
 
 163
 164	BT_DBG("%s end: err %d", hdev->name, err);
 
 165
 166	return err;
 
 167}
 168
 169static inline int hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
 170					unsigned long opt, __u32 timeout)
 171{
 172	int ret;
 
 
 
 
 
 
 
 
 
 173
 174	if (!test_bit(HCI_UP, &hdev->flags))
 175		return -ENETDOWN;
 176
 177	/* Serialize all requests */
 178	hci_req_lock(hdev);
 179	ret = __hci_request(hdev, req, opt, timeout);
 180	hci_req_unlock(hdev);
 181
 182	return ret;
 
 183}
 184
 185static void hci_reset_req(struct hci_dev *hdev, unsigned long opt)
 186{
 187	BT_DBG("%s %ld", hdev->name, opt);
 
 
 
 
 
 188
 189	/* Reset device */
 190	set_bit(HCI_RESET, &hdev->flags);
 191	hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
 192}
 193
 194static void bredr_init(struct hci_dev *hdev)
 195{
 196	struct hci_cp_delete_stored_link_key cp;
 197	__le16 param;
 198	__u8 flt_type;
 199
 200	hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 201
 202	/* Mandatory initialization */
 
 
 203
 204	/* Reset */
 205	if (!test_bit(HCI_QUIRK_NO_RESET, &hdev->quirks)) {
 206		set_bit(HCI_RESET, &hdev->flags);
 207		hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
 
 
 
 
 
 
 208	}
 209
 210	/* Read Local Supported Features */
 211	hci_send_cmd(hdev, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 212
 213	/* Read Local Version */
 214	hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 
 
 215
 216	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 217	hci_send_cmd(hdev, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 218
 219	/* Read BD Address */
 220	hci_send_cmd(hdev, HCI_OP_READ_BD_ADDR, 0, NULL);
 221
 222	/* Read Class of Device */
 223	hci_send_cmd(hdev, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 224
 225	/* Read Local Name */
 226	hci_send_cmd(hdev, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 227
 228	/* Read Voice Setting */
 229	hci_send_cmd(hdev, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 230
 231	/* Optional initialization */
 
 
 
 
 232
 233	/* Clear Event Filters */
 234	flt_type = HCI_FLT_CLEAR_ALL;
 235	hci_send_cmd(hdev, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 236
 237	/* Connection accept timeout ~20 secs */
 238	param = cpu_to_le16(0x7d00);
 239	hci_send_cmd(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 
 
 
 
 
 
 
 
 
 
 
 240
 241	bacpy(&cp.bdaddr, BDADDR_ANY);
 242	cp.delete_all = 1;
 243	hci_send_cmd(hdev, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp);
 
 
 
 244}
 245
 246static void amp_init(struct hci_dev *hdev)
 247{
 248	hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 249
 250	/* Reset */
 251	hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 252
 253	/* Read Local Version */
 254	hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 
 
 255
 256	/* Read Local AMP Info */
 257	hci_send_cmd(hdev, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 258}
 259
 260static void hci_init_req(struct hci_dev *hdev, unsigned long opt)
 261{
 262	struct sk_buff *skb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 263
 264	BT_DBG("%s %ld", hdev->name, opt);
 
 
 
 265
 266	/* Driver initialization */
 
 
 267
 268	/* Special commands */
 269	while ((skb = skb_dequeue(&hdev->driver_init))) {
 270		bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
 271		skb->dev = (void *) hdev;
 272
 273		skb_queue_tail(&hdev->cmd_q, skb);
 274		queue_work(hdev->workqueue, &hdev->cmd_work);
 
 275	}
 276	skb_queue_purge(&hdev->driver_init);
 277
 278	switch (hdev->dev_type) {
 279	case HCI_BREDR:
 280		bredr_init(hdev);
 281		break;
 282
 283	case HCI_AMP:
 284		amp_init(hdev);
 285		break;
 286
 287	default:
 288		BT_ERR("Unknown device type %d", hdev->dev_type);
 289		break;
 290	}
 291
 
 292}
 293
 294static void hci_le_init_req(struct hci_dev *hdev, unsigned long opt)
 295{
 296	BT_DBG("%s", hdev->name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297
 298	/* Read LE buffer size */
 299	hci_send_cmd(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 300}
 301
 302static void hci_scan_req(struct hci_dev *hdev, unsigned long opt)
 303{
 304	__u8 scan = opt;
 305
 306	BT_DBG("%s %x", hdev->name, scan);
 307
 308	/* Inquiry and Page scans */
 309	hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 
 310}
 311
 312static void hci_auth_req(struct hci_dev *hdev, unsigned long opt)
 313{
 314	__u8 auth = opt;
 315
 316	BT_DBG("%s %x", hdev->name, auth);
 317
 318	/* Authentication */
 319	hci_send_cmd(hdev, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 
 320}
 321
 322static void hci_encrypt_req(struct hci_dev *hdev, unsigned long opt)
 323{
 324	__u8 encrypt = opt;
 325
 326	BT_DBG("%s %x", hdev->name, encrypt);
 327
 328	/* Encryption */
 329	hci_send_cmd(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 
 330}
 331
 332static void hci_linkpol_req(struct hci_dev *hdev, unsigned long opt)
 333{
 334	__le16 policy = cpu_to_le16(opt);
 335
 336	BT_DBG("%s %x", hdev->name, policy);
 337
 338	/* Default link policy */
 339	hci_send_cmd(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 
 340}
 341
 342/* Get HCI device by index.
 343 * Device is held on return. */
 344struct hci_dev *hci_dev_get(int index)
 345{
 346	struct hci_dev *hdev = NULL, *d;
 347
 348	BT_DBG("%d", index);
 349
 350	if (index < 0)
 351		return NULL;
 352
 353	read_lock(&hci_dev_list_lock);
 354	list_for_each_entry(d, &hci_dev_list, list) {
 355		if (d->id == index) {
 356			hdev = hci_dev_hold(d);
 357			break;
 358		}
 359	}
 360	read_unlock(&hci_dev_list_lock);
 361	return hdev;
 362}
 363
 364/* ---- Inquiry support ---- */
 365
 366bool hci_discovery_active(struct hci_dev *hdev)
 367{
 368	struct discovery_state *discov = &hdev->discovery;
 369
 370	switch (discov->state) {
 371	case DISCOVERY_FINDING:
 372	case DISCOVERY_RESOLVING:
 373		return true;
 374
 375	default:
 376		return false;
 377	}
 378}
 379
 380void hci_discovery_set_state(struct hci_dev *hdev, int state)
 381{
 
 
 382	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 383
 384	if (hdev->discovery.state == state)
 385		return;
 386
 
 
 387	switch (state) {
 388	case DISCOVERY_STOPPED:
 389		if (hdev->discovery.state != DISCOVERY_STARTING)
 
 
 390			mgmt_discovering(hdev, 0);
 391		break;
 392	case DISCOVERY_STARTING:
 393		break;
 394	case DISCOVERY_FINDING:
 395		mgmt_discovering(hdev, 1);
 396		break;
 397	case DISCOVERY_RESOLVING:
 398		break;
 399	case DISCOVERY_STOPPING:
 400		break;
 401	}
 402
 403	hdev->discovery.state = state;
 404}
 405
 406static void inquiry_cache_flush(struct hci_dev *hdev)
 407{
 408	struct discovery_state *cache = &hdev->discovery;
 409	struct inquiry_entry *p, *n;
 410
 411	list_for_each_entry_safe(p, n, &cache->all, all) {
 412		list_del(&p->all);
 413		kfree(p);
 414	}
 415
 416	INIT_LIST_HEAD(&cache->unknown);
 417	INIT_LIST_HEAD(&cache->resolve);
 418}
 419
 420struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
 
 421{
 422	struct discovery_state *cache = &hdev->discovery;
 423	struct inquiry_entry *e;
 424
 425	BT_DBG("cache %p, %s", cache, batostr(bdaddr));
 426
 427	list_for_each_entry(e, &cache->all, all) {
 428		if (!bacmp(&e->data.bdaddr, bdaddr))
 429			return e;
 430	}
 431
 432	return NULL;
 433}
 434
 435struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
 436						       bdaddr_t *bdaddr)
 437{
 438	struct discovery_state *cache = &hdev->discovery;
 439	struct inquiry_entry *e;
 440
 441	BT_DBG("cache %p, %s", cache, batostr(bdaddr));
 442
 443	list_for_each_entry(e, &cache->unknown, list) {
 444		if (!bacmp(&e->data.bdaddr, bdaddr))
 445			return e;
 446	}
 447
 448	return NULL;
 449}
 450
 451struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
 452						       bdaddr_t *bdaddr,
 453						       int state)
 454{
 455	struct discovery_state *cache = &hdev->discovery;
 456	struct inquiry_entry *e;
 457
 458	BT_DBG("cache %p bdaddr %s state %d", cache, batostr(bdaddr), state);
 459
 460	list_for_each_entry(e, &cache->resolve, list) {
 461		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
 462			return e;
 463		if (!bacmp(&e->data.bdaddr, bdaddr))
 464			return e;
 465	}
 466
 467	return NULL;
 468}
 469
 470void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
 471				      struct inquiry_entry *ie)
 472{
 473	struct discovery_state *cache = &hdev->discovery;
 474	struct list_head *pos = &cache->resolve;
 475	struct inquiry_entry *p;
 476
 477	list_del(&ie->list);
 478
 479	list_for_each_entry(p, &cache->resolve, list) {
 480		if (p->name_state != NAME_PENDING &&
 481				abs(p->data.rssi) >= abs(ie->data.rssi))
 482			break;
 483		pos = &p->list;
 484	}
 485
 486	list_add(&ie->list, pos);
 487}
 488
 489bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
 490			      bool name_known, bool *ssp)
 491{
 492	struct discovery_state *cache = &hdev->discovery;
 493	struct inquiry_entry *ie;
 
 494
 495	BT_DBG("cache %p, %s", cache, batostr(&data->bdaddr));
 496
 497	if (ssp)
 498		*ssp = data->ssp_mode;
 
 
 499
 500	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
 501	if (ie) {
 502		if (ie->data.ssp_mode && ssp)
 503			*ssp = true;
 504
 505		if (ie->name_state == NAME_NEEDED &&
 506						data->rssi != ie->data.rssi) {
 507			ie->data.rssi = data->rssi;
 508			hci_inquiry_cache_update_resolve(hdev, ie);
 509		}
 510
 511		goto update;
 512	}
 513
 514	/* Entry not in the cache. Add new one. */
 515	ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
 516	if (!ie)
 517		return false;
 
 
 518
 519	list_add(&ie->all, &cache->all);
 520
 521	if (name_known) {
 522		ie->name_state = NAME_KNOWN;
 523	} else {
 524		ie->name_state = NAME_NOT_KNOWN;
 525		list_add(&ie->list, &cache->unknown);
 526	}
 527
 528update:
 529	if (name_known && ie->name_state != NAME_KNOWN &&
 530					ie->name_state != NAME_PENDING) {
 531		ie->name_state = NAME_KNOWN;
 532		list_del(&ie->list);
 533	}
 534
 535	memcpy(&ie->data, data, sizeof(*data));
 536	ie->timestamp = jiffies;
 537	cache->timestamp = jiffies;
 538
 539	if (ie->name_state == NAME_NOT_KNOWN)
 540		return false;
 541
 542	return true;
 
 543}
 544
 545static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
 546{
 547	struct discovery_state *cache = &hdev->discovery;
 548	struct inquiry_info *info = (struct inquiry_info *) buf;
 549	struct inquiry_entry *e;
 550	int copied = 0;
 551
 552	list_for_each_entry(e, &cache->all, all) {
 553		struct inquiry_data *data = &e->data;
 554
 555		if (copied >= num)
 556			break;
 557
 558		bacpy(&info->bdaddr, &data->bdaddr);
 559		info->pscan_rep_mode	= data->pscan_rep_mode;
 560		info->pscan_period_mode	= data->pscan_period_mode;
 561		info->pscan_mode	= data->pscan_mode;
 562		memcpy(info->dev_class, data->dev_class, 3);
 563		info->clock_offset	= data->clock_offset;
 564
 565		info++;
 566		copied++;
 567	}
 568
 569	BT_DBG("cache %p, copied %d", cache, copied);
 570	return copied;
 571}
 572
 573static void hci_inq_req(struct hci_dev *hdev, unsigned long opt)
 574{
 575	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
 
 576	struct hci_cp_inquiry cp;
 577
 578	BT_DBG("%s", hdev->name);
 579
 580	if (test_bit(HCI_INQUIRY, &hdev->flags))
 581		return;
 582
 583	/* Start Inquiry */
 584	memcpy(&cp.lap, &ir->lap, 3);
 585	cp.length  = ir->length;
 586	cp.num_rsp = ir->num_rsp;
 587	hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
 
 
 588}
 589
 590int hci_inquiry(void __user *arg)
 591{
 592	__u8 __user *ptr = arg;
 593	struct hci_inquiry_req ir;
 594	struct hci_dev *hdev;
 595	int err = 0, do_inquiry = 0, max_rsp;
 596	long timeo;
 597	__u8 *buf;
 598
 599	if (copy_from_user(&ir, ptr, sizeof(ir)))
 600		return -EFAULT;
 601
 602	hdev = hci_dev_get(ir.dev_id);
 603	if (!hdev)
 604		return -ENODEV;
 605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 606	hci_dev_lock(hdev);
 607	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
 608				inquiry_cache_empty(hdev) ||
 609				ir.flags & IREQ_CACHE_FLUSH) {
 610		inquiry_cache_flush(hdev);
 611		do_inquiry = 1;
 612	}
 613	hci_dev_unlock(hdev);
 614
 615	timeo = ir.length * msecs_to_jiffies(2000);
 616
 617	if (do_inquiry) {
 618		err = hci_request(hdev, hci_inq_req, (unsigned long)&ir, timeo);
 
 619		if (err < 0)
 620			goto done;
 
 
 
 
 
 
 
 621	}
 622
 623	/* for unlimited number of responses we will use buffer with 255 entries */
 
 
 624	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
 625
 626	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
 627	 * copy it to the user space.
 628	 */
 629	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
 630	if (!buf) {
 631		err = -ENOMEM;
 632		goto done;
 633	}
 634
 635	hci_dev_lock(hdev);
 636	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
 637	hci_dev_unlock(hdev);
 638
 639	BT_DBG("num_rsp %d", ir.num_rsp);
 640
 641	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
 642		ptr += sizeof(ir);
 643		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
 644					ir.num_rsp))
 645			err = -EFAULT;
 646	} else
 647		err = -EFAULT;
 648
 649	kfree(buf);
 650
 651done:
 652	hci_dev_put(hdev);
 653	return err;
 654}
 655
 656/* ---- HCI ioctl helpers ---- */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657
 658int hci_dev_open(__u16 dev)
 659{
 660	struct hci_dev *hdev;
 661	int ret = 0;
 662
 663	hdev = hci_dev_get(dev);
 664	if (!hdev)
 665		return -ENODEV;
 666
 667	BT_DBG("%s %p", hdev->name, hdev);
 668
 669	hci_req_lock(hdev);
 670
 671	if (test_bit(HCI_UNREGISTER, &hdev->dev_flags)) {
 672		ret = -ENODEV;
 673		goto done;
 674	}
 675
 676	if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
 677		ret = -ERFKILL;
 678		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 679	}
 680
 681	if (test_bit(HCI_UP, &hdev->flags)) {
 682		ret = -EALREADY;
 683		goto done;
 684	}
 685
 686	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 687		set_bit(HCI_RAW, &hdev->flags);
 688
 689	/* Treat all non BR/EDR controllers as raw devices if
 690	   enable_hs is not set */
 691	if (hdev->dev_type != HCI_BREDR && !enable_hs)
 692		set_bit(HCI_RAW, &hdev->flags);
 693
 694	if (hdev->open(hdev)) {
 695		ret = -EIO;
 696		goto done;
 697	}
 698
 699	if (!test_bit(HCI_RAW, &hdev->flags)) {
 700		atomic_set(&hdev->cmd_cnt, 1);
 701		set_bit(HCI_INIT, &hdev->flags);
 702		hdev->init_last_cmd = 0;
 703
 704		ret = __hci_request(hdev, hci_init_req, 0,
 705					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 706
 707		if (lmp_host_le_capable(hdev))
 708			ret = __hci_request(hdev, hci_le_init_req, 0,
 709					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 710
 711		clear_bit(HCI_INIT, &hdev->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 712	}
 713
 714	if (!ret) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 715		hci_dev_hold(hdev);
 
 
 716		set_bit(HCI_UP, &hdev->flags);
 717		hci_notify(hdev, HCI_DEV_UP);
 718		if (!test_bit(HCI_SETUP, &hdev->dev_flags)) {
 719			hci_dev_lock(hdev);
 720			mgmt_powered(hdev, 1);
 721			hci_dev_unlock(hdev);
 
 
 
 
 
 722		}
 723	} else {
 724		/* Init failed, cleanup */
 725		flush_work(&hdev->tx_work);
 726		flush_work(&hdev->cmd_work);
 727		flush_work(&hdev->rx_work);
 728
 729		skb_queue_purge(&hdev->cmd_q);
 730		skb_queue_purge(&hdev->rx_q);
 731
 732		if (hdev->flush)
 733			hdev->flush(hdev);
 734
 735		if (hdev->sent_cmd) {
 736			kfree_skb(hdev->sent_cmd);
 737			hdev->sent_cmd = NULL;
 738		}
 739
 
 
 
 740		hdev->close(hdev);
 741		hdev->flags = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 742	}
 743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 744done:
 745	hci_req_unlock(hdev);
 746	hci_dev_put(hdev);
 747	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 748}
 749
 750static int hci_dev_do_close(struct hci_dev *hdev)
 751{
 
 
 752	BT_DBG("%s %p", hdev->name, hdev);
 753
 754	cancel_work_sync(&hdev->le_scan);
 
 
 
 
 
 
 755
 756	cancel_delayed_work(&hdev->power_off);
 757
 758	hci_req_cancel(hdev, ENODEV);
 759	hci_req_lock(hdev);
 760
 761	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
 762		del_timer_sync(&hdev->cmd_timer);
 763		hci_req_unlock(hdev);
 764		return 0;
 765	}
 766
 
 
 767	/* Flush RX and TX works */
 768	flush_work(&hdev->tx_work);
 769	flush_work(&hdev->rx_work);
 770
 771	if (hdev->discov_timeout > 0) {
 772		cancel_delayed_work(&hdev->discov_off);
 773		hdev->discov_timeout = 0;
 774		clear_bit(HCI_DISCOVERABLE, &hdev->dev_flags);
 
 775	}
 776
 777	if (test_and_clear_bit(HCI_SERVICE_CACHE, &hdev->dev_flags))
 778		cancel_delayed_work(&hdev->service_cache);
 779
 780	cancel_delayed_work_sync(&hdev->le_scan_disable);
 
 
 
 
 
 
 
 
 
 
 
 
 781
 782	hci_dev_lock(hdev);
 783	inquiry_cache_flush(hdev);
 
 
 
 
 
 
 
 
 
 
 
 784	hci_conn_hash_flush(hdev);
 785	hci_dev_unlock(hdev);
 786
 787	hci_notify(hdev, HCI_DEV_DOWN);
 
 
 788
 789	if (hdev->flush)
 790		hdev->flush(hdev);
 791
 792	/* Reset device */
 793	skb_queue_purge(&hdev->cmd_q);
 794	atomic_set(&hdev->cmd_cnt, 1);
 795	if (!test_bit(HCI_RAW, &hdev->flags) &&
 796				test_bit(HCI_QUIRK_NO_RESET, &hdev->quirks)) {
 797		set_bit(HCI_INIT, &hdev->flags);
 798		__hci_request(hdev, hci_reset_req, 0,
 799					msecs_to_jiffies(250));
 800		clear_bit(HCI_INIT, &hdev->flags);
 801	}
 802
 803	/* flush cmd  work */
 804	flush_work(&hdev->cmd_work);
 805
 806	/* Drop queues */
 807	skb_queue_purge(&hdev->rx_q);
 808	skb_queue_purge(&hdev->cmd_q);
 809	skb_queue_purge(&hdev->raw_q);
 810
 811	/* Drop last sent command */
 812	if (hdev->sent_cmd) {
 813		del_timer_sync(&hdev->cmd_timer);
 814		kfree_skb(hdev->sent_cmd);
 815		hdev->sent_cmd = NULL;
 816	}
 817
 
 
 
 818	/* After this point our queues are empty
 819	 * and no tasks are scheduled. */
 820	hdev->close(hdev);
 821
 822	if (!test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags)) {
 823		hci_dev_lock(hdev);
 824		mgmt_powered(hdev, 0);
 825		hci_dev_unlock(hdev);
 826	}
 827
 828	/* Clear flags */
 829	hdev->flags = 0;
 830
 831	memset(hdev->eir, 0, sizeof(hdev->eir));
 832	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
 
 833
 834	hci_req_unlock(hdev);
 835
 836	hci_dev_put(hdev);
 837	return 0;
 838}
 839
 840int hci_dev_close(__u16 dev)
 841{
 842	struct hci_dev *hdev;
 843	int err;
 844
 845	hdev = hci_dev_get(dev);
 846	if (!hdev)
 847		return -ENODEV;
 848
 849	if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
 
 
 
 
 
 850		cancel_delayed_work(&hdev->power_off);
 851
 852	err = hci_dev_do_close(hdev);
 853
 
 854	hci_dev_put(hdev);
 855	return err;
 856}
 857
 858int hci_dev_reset(__u16 dev)
 859{
 860	struct hci_dev *hdev;
 861	int ret = 0;
 862
 863	hdev = hci_dev_get(dev);
 864	if (!hdev)
 865		return -ENODEV;
 866
 867	hci_req_lock(hdev);
 868
 869	if (!test_bit(HCI_UP, &hdev->flags))
 870		goto done;
 871
 872	/* Drop queues */
 873	skb_queue_purge(&hdev->rx_q);
 874	skb_queue_purge(&hdev->cmd_q);
 875
 
 
 
 
 
 876	hci_dev_lock(hdev);
 877	inquiry_cache_flush(hdev);
 878	hci_conn_hash_flush(hdev);
 879	hci_dev_unlock(hdev);
 880
 881	if (hdev->flush)
 882		hdev->flush(hdev);
 883
 884	atomic_set(&hdev->cmd_cnt, 1);
 885	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
 886
 887	if (!test_bit(HCI_RAW, &hdev->flags))
 888		ret = __hci_request(hdev, hci_reset_req, 0,
 889					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 890
 891done:
 892	hci_req_unlock(hdev);
 893	hci_dev_put(hdev);
 894	return ret;
 895}
 896
 897int hci_dev_reset_stat(__u16 dev)
 898{
 899	struct hci_dev *hdev;
 900	int ret = 0;
 901
 902	hdev = hci_dev_get(dev);
 903	if (!hdev)
 904		return -ENODEV;
 905
 
 
 
 
 
 
 
 
 
 
 906	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
 907
 
 908	hci_dev_put(hdev);
 
 
 909
 910	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 911}
 912
 913int hci_dev_cmd(unsigned int cmd, void __user *arg)
 914{
 915	struct hci_dev *hdev;
 916	struct hci_dev_req dr;
 917	int err = 0;
 918
 919	if (copy_from_user(&dr, arg, sizeof(dr)))
 920		return -EFAULT;
 921
 922	hdev = hci_dev_get(dr.dev_id);
 923	if (!hdev)
 924		return -ENODEV;
 925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 926	switch (cmd) {
 927	case HCISETAUTH:
 928		err = hci_request(hdev, hci_auth_req, dr.dev_opt,
 929					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 930		break;
 931
 932	case HCISETENCRYPT:
 933		if (!lmp_encrypt_capable(hdev)) {
 934			err = -EOPNOTSUPP;
 935			break;
 936		}
 937
 938		if (!test_bit(HCI_AUTH, &hdev->flags)) {
 939			/* Auth must be enabled first */
 940			err = hci_request(hdev, hci_auth_req, dr.dev_opt,
 941					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 942			if (err)
 943				break;
 944		}
 945
 946		err = hci_request(hdev, hci_encrypt_req, dr.dev_opt,
 947					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 948		break;
 949
 950	case HCISETSCAN:
 951		err = hci_request(hdev, hci_scan_req, dr.dev_opt,
 952					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 
 
 
 
 
 
 953		break;
 954
 955	case HCISETLINKPOL:
 956		err = hci_request(hdev, hci_linkpol_req, dr.dev_opt,
 957					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 958		break;
 959
 960	case HCISETLINKMODE:
 961		hdev->link_mode = ((__u16) dr.dev_opt) &
 962					(HCI_LM_MASTER | HCI_LM_ACCEPT);
 963		break;
 964
 965	case HCISETPTYPE:
 
 
 
 966		hdev->pkt_type = (__u16) dr.dev_opt;
 
 967		break;
 968
 969	case HCISETACLMTU:
 970		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
 971		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
 972		break;
 973
 974	case HCISETSCOMTU:
 975		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
 976		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
 977		break;
 978
 979	default:
 980		err = -EINVAL;
 981		break;
 982	}
 983
 
 984	hci_dev_put(hdev);
 985	return err;
 986}
 987
 988int hci_get_dev_list(void __user *arg)
 989{
 990	struct hci_dev *hdev;
 991	struct hci_dev_list_req *dl;
 992	struct hci_dev_req *dr;
 993	int n = 0, size, err;
 994	__u16 dev_num;
 995
 996	if (get_user(dev_num, (__u16 __user *) arg))
 997		return -EFAULT;
 998
 999	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1000		return -EINVAL;
1001
1002	size = sizeof(*dl) + dev_num * sizeof(*dr);
1003
1004	dl = kzalloc(size, GFP_KERNEL);
1005	if (!dl)
1006		return -ENOMEM;
1007
1008	dr = dl->dev_req;
1009
1010	read_lock(&hci_dev_list_lock);
1011	list_for_each_entry(hdev, &hci_dev_list, list) {
1012		if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1013			cancel_delayed_work(&hdev->power_off);
1014
1015		if (!test_bit(HCI_MGMT, &hdev->dev_flags))
1016			set_bit(HCI_PAIRABLE, &hdev->dev_flags);
 
 
 
 
1017
1018		(dr + n)->dev_id  = hdev->id;
1019		(dr + n)->dev_opt = hdev->flags;
1020
1021		if (++n >= dev_num)
1022			break;
1023	}
1024	read_unlock(&hci_dev_list_lock);
1025
1026	dl->dev_num = n;
1027	size = sizeof(*dl) + n * sizeof(*dr);
1028
1029	err = copy_to_user(arg, dl, size);
1030	kfree(dl);
1031
1032	return err ? -EFAULT : 0;
1033}
1034
1035int hci_get_dev_info(void __user *arg)
1036{
1037	struct hci_dev *hdev;
1038	struct hci_dev_info di;
 
1039	int err = 0;
1040
1041	if (copy_from_user(&di, arg, sizeof(di)))
1042		return -EFAULT;
1043
1044	hdev = hci_dev_get(di.dev_id);
1045	if (!hdev)
1046		return -ENODEV;
1047
1048	if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1049		cancel_delayed_work_sync(&hdev->power_off);
1050
1051	if (!test_bit(HCI_MGMT, &hdev->dev_flags))
1052		set_bit(HCI_PAIRABLE, &hdev->dev_flags);
 
 
 
1053
1054	strcpy(di.name, hdev->name);
1055	di.bdaddr   = hdev->bdaddr;
1056	di.type     = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
1057	di.flags    = hdev->flags;
1058	di.pkt_type = hdev->pkt_type;
1059	di.acl_mtu  = hdev->acl_mtu;
1060	di.acl_pkts = hdev->acl_pkts;
1061	di.sco_mtu  = hdev->sco_mtu;
1062	di.sco_pkts = hdev->sco_pkts;
 
 
 
 
 
 
 
1063	di.link_policy = hdev->link_policy;
1064	di.link_mode   = hdev->link_mode;
1065
1066	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1067	memcpy(&di.features, &hdev->features, sizeof(di.features));
1068
1069	if (copy_to_user(arg, &di, sizeof(di)))
1070		err = -EFAULT;
1071
1072	hci_dev_put(hdev);
1073
1074	return err;
1075}
1076
1077/* ---- Interface to HCI drivers ---- */
1078
1079static int hci_rfkill_set_block(void *data, bool blocked)
1080{
1081	struct hci_dev *hdev = data;
1082
1083	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1084
1085	if (!blocked)
1086		return 0;
1087
1088	hci_dev_do_close(hdev);
 
 
 
 
 
 
 
1089
1090	return 0;
1091}
1092
1093static const struct rfkill_ops hci_rfkill_ops = {
1094	.set_block = hci_rfkill_set_block,
1095};
1096
1097static void hci_power_on(struct work_struct *work)
1098{
1099	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
 
1100
1101	BT_DBG("%s", hdev->name);
1102
1103	if (hci_dev_open(hdev->id) < 0)
 
 
 
 
 
 
 
1104		return;
 
1105
1106	if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1107		schedule_delayed_work(&hdev->power_off,
1108					msecs_to_jiffies(AUTO_OFF_TIMEOUT));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1109
1110	if (test_and_clear_bit(HCI_SETUP, &hdev->dev_flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1111		mgmt_index_added(hdev);
 
1112}
1113
1114static void hci_power_off(struct work_struct *work)
1115{
1116	struct hci_dev *hdev = container_of(work, struct hci_dev,
1117							power_off.work);
1118
1119	BT_DBG("%s", hdev->name);
1120
1121	hci_dev_do_close(hdev);
1122}
1123
1124static void hci_discov_off(struct work_struct *work)
1125{
1126	struct hci_dev *hdev;
1127	u8 scan = SCAN_PAGE;
1128
1129	hdev = container_of(work, struct hci_dev, discov_off.work);
1130
1131	BT_DBG("%s", hdev->name);
1132
1133	hci_dev_lock(hdev);
 
 
 
1134
1135	hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, sizeof(scan), &scan);
 
1136
1137	hdev->discov_timeout = 0;
1138
1139	hci_dev_unlock(hdev);
1140}
1141
1142int hci_uuids_clear(struct hci_dev *hdev)
1143{
1144	struct list_head *p, *n;
1145
1146	list_for_each_safe(p, n, &hdev->uuids) {
1147		struct bt_uuid *uuid;
1148
1149		uuid = list_entry(p, struct bt_uuid, list);
1150
1151		list_del(p);
 
1152		kfree(uuid);
1153	}
1154
1155	return 0;
1156}
1157
1158int hci_link_keys_clear(struct hci_dev *hdev)
1159{
1160	struct list_head *p, *n;
1161
1162	list_for_each_safe(p, n, &hdev->link_keys) {
1163		struct link_key *key;
 
 
 
1164
1165		key = list_entry(p, struct link_key, list);
 
 
1166
1167		list_del(p);
1168		kfree(key);
 
1169	}
1170
1171	return 0;
1172}
1173
1174int hci_smp_ltks_clear(struct hci_dev *hdev)
1175{
1176	struct smp_ltk *k, *tmp;
1177
1178	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1179		list_del(&k->list);
1180		kfree(k);
1181	}
1182
1183	return 0;
1184}
1185
1186struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1187{
1188	struct link_key *k;
1189
1190	list_for_each_entry(k, &hdev->link_keys, list)
1191		if (bacmp(bdaddr, &k->bdaddr) == 0)
 
 
1192			return k;
 
 
 
1193
1194	return NULL;
1195}
1196
1197static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1198						u8 key_type, u8 old_key_type)
1199{
1200	/* Legacy key */
1201	if (key_type < 0x03)
1202		return true;
1203
1204	/* Debug keys are insecure so don't store them persistently */
1205	if (key_type == HCI_LK_DEBUG_COMBINATION)
1206		return false;
1207
1208	/* Changed combination key and there's no previous one */
1209	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1210		return false;
1211
1212	/* Security mode 3 case */
1213	if (!conn)
1214		return true;
1215
 
 
 
 
1216	/* Neither local nor remote side had no-bonding as requirement */
1217	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1218		return true;
1219
1220	/* Local side had dedicated bonding as requirement */
1221	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1222		return true;
1223
1224	/* Remote side had dedicated bonding as requirement */
1225	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1226		return true;
1227
1228	/* If none of the above criteria match, then don't store the key
1229	 * persistently */
1230	return false;
1231}
1232
1233struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
 
 
 
 
 
 
 
 
 
1234{
1235	struct smp_ltk *k;
1236
1237	list_for_each_entry(k, &hdev->long_term_keys, list) {
1238		if (k->ediv != ediv ||
1239				memcmp(rand, k->rand, sizeof(k->rand)))
1240			continue;
1241
1242		return k;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243	}
1244
 
 
 
 
 
 
 
 
 
1245	return NULL;
1246}
1247EXPORT_SYMBOL(hci_find_ltk);
1248
1249struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1250				     u8 addr_type)
1251{
1252	struct smp_ltk *k;
 
 
 
 
1253
1254	list_for_each_entry(k, &hdev->long_term_keys, list)
1255		if (addr_type == k->bdaddr_type &&
1256					bacmp(bdaddr, &k->bdaddr) == 0)
1257			return k;
 
 
 
 
 
1258
1259	return NULL;
1260}
1261EXPORT_SYMBOL(hci_find_ltk_by_addr);
1262
1263int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
1264		     bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
 
1265{
1266	struct link_key *key, *old_key;
1267	u8 old_key_type;
1268	bool persistent;
1269
1270	old_key = hci_find_link_key(hdev, bdaddr);
1271	if (old_key) {
1272		old_key_type = old_key->type;
1273		key = old_key;
1274	} else {
1275		old_key_type = conn ? conn->key_type : 0xff;
1276		key = kzalloc(sizeof(*key), GFP_ATOMIC);
1277		if (!key)
1278			return -ENOMEM;
1279		list_add(&key->list, &hdev->link_keys);
1280	}
1281
1282	BT_DBG("%s key for %s type %u", hdev->name, batostr(bdaddr), type);
1283
1284	/* Some buggy controller combinations generate a changed
1285	 * combination key for legacy pairing even when there's no
1286	 * previous key */
1287	if (type == HCI_LK_CHANGED_COMBINATION &&
1288					(!conn || conn->remote_auth == 0xff) &&
1289					old_key_type == 0xff) {
1290		type = HCI_LK_COMBINATION;
1291		if (conn)
1292			conn->key_type = type;
1293	}
1294
1295	bacpy(&key->bdaddr, bdaddr);
1296	memcpy(key->val, val, 16);
1297	key->pin_len = pin_len;
1298
1299	if (type == HCI_LK_CHANGED_COMBINATION)
1300		key->type = old_key_type;
1301	else
1302		key->type = type;
1303
1304	if (!new_key)
1305		return 0;
1306
1307	persistent = hci_persistent_key(hdev, conn, type, old_key_type);
1308
1309	mgmt_new_link_key(hdev, key, persistent);
1310
1311	if (conn)
1312		conn->flush_key = !persistent;
1313
1314	return 0;
1315}
1316
1317int hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 type,
1318		int new_key, u8 authenticated, u8 tk[16], u8 enc_size, __le16
1319		ediv, u8 rand[8])
1320{
1321	struct smp_ltk *key, *old_key;
 
1322
1323	if (!(type & HCI_SMP_STK) && !(type & HCI_SMP_LTK))
1324		return 0;
1325
1326	old_key = hci_find_ltk_by_addr(hdev, bdaddr, addr_type);
1327	if (old_key)
1328		key = old_key;
1329	else {
1330		key = kzalloc(sizeof(*key), GFP_ATOMIC);
1331		if (!key)
1332			return -ENOMEM;
1333		list_add(&key->list, &hdev->long_term_keys);
1334	}
1335
1336	bacpy(&key->bdaddr, bdaddr);
1337	key->bdaddr_type = addr_type;
1338	memcpy(key->val, tk, sizeof(key->val));
1339	key->authenticated = authenticated;
1340	key->ediv = ediv;
 
1341	key->enc_size = enc_size;
1342	key->type = type;
1343	memcpy(key->rand, rand, sizeof(key->rand));
1344
1345	if (!new_key)
1346		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1347
1348	if (type & HCI_SMP_LTK)
1349		mgmt_new_ltk(hdev, key, 1);
1350
1351	return 0;
1352}
1353
1354int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1355{
1356	struct link_key *key;
1357
1358	key = hci_find_link_key(hdev, bdaddr);
1359	if (!key)
1360		return -ENOENT;
1361
1362	BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1363
1364	list_del(&key->list);
1365	kfree(key);
1366
1367	return 0;
1368}
1369
1370int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr)
1371{
1372	struct smp_ltk *k, *tmp;
 
1373
1374	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1375		if (bacmp(bdaddr, &k->bdaddr))
1376			continue;
1377
1378		BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1379
1380		list_del(&k->list);
1381		kfree(k);
 
1382	}
1383
1384	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385}
1386
1387/* HCI command timer function */
1388static void hci_cmd_timer(unsigned long arg)
1389{
1390	struct hci_dev *hdev = (void *) arg;
 
 
 
 
 
 
 
 
 
 
 
 
 
1391
1392	BT_ERR("%s command tx timeout", hdev->name);
1393	atomic_set(&hdev->cmd_cnt, 1);
1394	queue_work(hdev->workqueue, &hdev->cmd_work);
1395}
1396
1397struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1398					  bdaddr_t *bdaddr)
1399{
1400	struct oob_data *data;
1401
1402	list_for_each_entry(data, &hdev->remote_oob_data, list)
1403		if (bacmp(bdaddr, &data->bdaddr) == 0)
1404			return data;
 
 
 
 
1405
1406	return NULL;
1407}
1408
1409int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
 
1410{
1411	struct oob_data *data;
1412
1413	data = hci_find_remote_oob_data(hdev, bdaddr);
1414	if (!data)
1415		return -ENOENT;
1416
1417	BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1418
1419	list_del(&data->list);
1420	kfree(data);
1421
1422	return 0;
1423}
1424
1425int hci_remote_oob_data_clear(struct hci_dev *hdev)
1426{
1427	struct oob_data *data, *n;
1428
1429	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1430		list_del(&data->list);
1431		kfree(data);
1432	}
1433
1434	return 0;
1435}
1436
1437int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
1438			    u8 *randomizer)
 
1439{
1440	struct oob_data *data;
1441
1442	data = hci_find_remote_oob_data(hdev, bdaddr);
1443
1444	if (!data) {
1445		data = kmalloc(sizeof(*data), GFP_ATOMIC);
1446		if (!data)
1447			return -ENOMEM;
1448
1449		bacpy(&data->bdaddr, bdaddr);
 
1450		list_add(&data->list, &hdev->remote_oob_data);
1451	}
1452
1453	memcpy(data->hash, hash, sizeof(data->hash));
1454	memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
 
 
 
 
 
 
 
 
 
 
 
1455
1456	BT_DBG("%s for %s", hdev->name, batostr(bdaddr));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1457
1458	return 0;
1459}
1460
1461struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
 
1462{
1463	struct bdaddr_list *b;
1464
1465	list_for_each_entry(b, &hdev->blacklist, list)
1466		if (bacmp(bdaddr, &b->bdaddr) == 0)
1467			return b;
 
1468
1469	return NULL;
1470}
1471
1472int hci_blacklist_clear(struct hci_dev *hdev)
 
 
1473{
1474	struct list_head *p, *n;
1475
1476	list_for_each_safe(p, n, &hdev->blacklist) {
1477		struct bdaddr_list *b;
 
 
1478
1479		b = list_entry(p, struct bdaddr_list, list);
 
 
 
 
 
1480
1481		list_del(p);
 
1482		kfree(b);
1483	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1484
1485	return 0;
1486}
1487
1488int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
 
1489{
1490	struct bdaddr_list *entry;
1491
1492	if (bacmp(bdaddr, BDADDR_ANY) == 0)
1493		return -EBADF;
1494
1495	if (hci_blacklist_lookup(hdev, bdaddr))
1496		return -EEXIST;
1497
1498	entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
1499	if (!entry)
1500		return -ENOMEM;
1501
1502	bacpy(&entry->bdaddr, bdaddr);
 
 
 
 
1503
1504	list_add(&entry->list, &hdev->blacklist);
 
1505
1506	return mgmt_device_blocked(hdev, bdaddr, type);
 
 
1507}
1508
1509int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1510{
1511	struct bdaddr_list *entry;
1512
1513	if (bacmp(bdaddr, BDADDR_ANY) == 0)
1514		return hci_blacklist_clear(hdev);
 
 
1515
1516	entry = hci_blacklist_lookup(hdev, bdaddr);
1517	if (!entry)
1518		return -ENOENT;
1519
1520	list_del(&entry->list);
1521	kfree(entry);
1522
1523	return mgmt_device_unblocked(hdev, bdaddr, type);
1524}
1525
1526static void le_scan_param_req(struct hci_dev *hdev, unsigned long opt)
 
1527{
1528	struct le_scan_params *param =  (struct le_scan_params *) opt;
1529	struct hci_cp_le_set_scan_param cp;
1530
1531	memset(&cp, 0, sizeof(cp));
1532	cp.type = param->type;
1533	cp.interval = cpu_to_le16(param->interval);
1534	cp.window = cpu_to_le16(param->window);
1535
1536	hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_PARAM, sizeof(cp), &cp);
1537}
 
1538
1539static void le_scan_enable_req(struct hci_dev *hdev, unsigned long opt)
1540{
1541	struct hci_cp_le_set_scan_enable cp;
1542
1543	memset(&cp, 0, sizeof(cp));
1544	cp.enable = 1;
1545
1546	hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1547}
1548
1549static int hci_do_le_scan(struct hci_dev *hdev, u8 type, u16 interval,
1550			  u16 window, int timeout)
1551{
1552	long timeo = msecs_to_jiffies(3000);
1553	struct le_scan_params param;
1554	int err;
 
 
 
 
 
 
1555
1556	BT_DBG("%s", hdev->name);
 
1557
1558	if (test_bit(HCI_LE_SCAN, &hdev->dev_flags))
1559		return -EINPROGRESS;
 
 
 
 
 
 
 
 
 
1560
1561	param.type = type;
1562	param.interval = interval;
1563	param.window = window;
1564
1565	hci_req_lock(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1566
1567	err = __hci_request(hdev, le_scan_param_req, (unsigned long) &param,
1568			    timeo);
1569	if (!err)
1570		err = __hci_request(hdev, le_scan_enable_req, 0, timeo);
1571
1572	hci_req_unlock(hdev);
 
1573
1574	if (err < 0)
1575		return err;
 
 
 
1576
1577	schedule_delayed_work(&hdev->le_scan_disable,
1578			      msecs_to_jiffies(timeout));
1579
1580	return 0;
1581}
1582
1583int hci_cancel_le_scan(struct hci_dev *hdev)
1584{
1585	BT_DBG("%s", hdev->name);
1586
1587	if (!test_bit(HCI_LE_SCAN, &hdev->dev_flags))
1588		return -EALREADY;
1589
1590	if (cancel_delayed_work(&hdev->le_scan_disable)) {
1591		struct hci_cp_le_set_scan_enable cp;
1592
1593		/* Send HCI command to disable LE Scan */
1594		memset(&cp, 0, sizeof(cp));
1595		hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1596	}
1597
1598	return 0;
 
 
1599}
1600
1601static void le_scan_disable_work(struct work_struct *work)
 
1602{
1603	struct hci_dev *hdev = container_of(work, struct hci_dev,
1604					    le_scan_disable.work);
1605	struct hci_cp_le_set_scan_enable cp;
1606
1607	BT_DBG("%s", hdev->name);
 
 
1608
1609	memset(&cp, 0, sizeof(cp));
1610
1611	hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1612}
1613
1614static void le_scan_work(struct work_struct *work)
1615{
1616	struct hci_dev *hdev = container_of(work, struct hci_dev, le_scan);
1617	struct le_scan_params *param = &hdev->le_scan_params;
1618
1619	BT_DBG("%s", hdev->name);
1620
1621	hci_do_le_scan(hdev, param->type, param->interval, param->window,
1622		       param->timeout);
1623}
1624
1625int hci_le_scan(struct hci_dev *hdev, u8 type, u16 interval, u16 window,
1626		int timeout)
1627{
1628	struct le_scan_params *param = &hdev->le_scan_params;
1629
1630	BT_DBG("%s", hdev->name);
 
 
1631
1632	if (work_busy(&hdev->le_scan))
1633		return -EINPROGRESS;
 
 
 
 
 
1634
1635	param->type = type;
1636	param->interval = interval;
1637	param->window = window;
1638	param->timeout = timeout;
1639
1640	queue_work(system_long_wq, &hdev->le_scan);
 
1641
1642	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1643}
1644
1645/* Alloc HCI device */
1646struct hci_dev *hci_alloc_dev(void)
1647{
1648	struct hci_dev *hdev;
1649
1650	hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
1651	if (!hdev)
1652		return NULL;
1653
1654	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
1655	hdev->esco_type = (ESCO_HV1);
1656	hdev->link_mode = (HCI_LM_ACCEPT);
1657	hdev->io_capability = 0x03; /* No Input No Output */
 
 
 
 
 
 
 
1658
1659	hdev->sniff_max_interval = 800;
1660	hdev->sniff_min_interval = 80;
1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1662	mutex_init(&hdev->lock);
1663	mutex_init(&hdev->req_lock);
1664
1665	INIT_LIST_HEAD(&hdev->mgmt_pending);
1666	INIT_LIST_HEAD(&hdev->blacklist);
 
1667	INIT_LIST_HEAD(&hdev->uuids);
1668	INIT_LIST_HEAD(&hdev->link_keys);
1669	INIT_LIST_HEAD(&hdev->long_term_keys);
 
1670	INIT_LIST_HEAD(&hdev->remote_oob_data);
 
 
 
 
 
 
 
1671
1672	INIT_WORK(&hdev->rx_work, hci_rx_work);
1673	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
1674	INIT_WORK(&hdev->tx_work, hci_tx_work);
1675	INIT_WORK(&hdev->power_on, hci_power_on);
1676	INIT_WORK(&hdev->le_scan, le_scan_work);
1677
1678	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
1679	INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
1680	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
1681
1682	skb_queue_head_init(&hdev->driver_init);
1683	skb_queue_head_init(&hdev->rx_q);
1684	skb_queue_head_init(&hdev->cmd_q);
1685	skb_queue_head_init(&hdev->raw_q);
1686
1687	init_waitqueue_head(&hdev->req_wait_q);
1688
1689	setup_timer(&hdev->cmd_timer, hci_cmd_timer, (unsigned long) hdev);
 
 
1690
1691	hci_init_sysfs(hdev);
1692	discovery_init(hdev);
1693	hci_conn_hash_init(hdev);
1694
1695	return hdev;
1696}
1697EXPORT_SYMBOL(hci_alloc_dev);
1698
1699/* Free HCI device */
1700void hci_free_dev(struct hci_dev *hdev)
1701{
1702	skb_queue_purge(&hdev->driver_init);
1703
1704	/* will free via device release */
1705	put_device(&hdev->dev);
1706}
1707EXPORT_SYMBOL(hci_free_dev);
1708
1709/* Register HCI device */
1710int hci_register_dev(struct hci_dev *hdev)
1711{
1712	struct list_head *head, *p;
1713	int id, error;
1714
1715	if (!hdev->open || !hdev->close)
1716		return -EINVAL;
1717
1718	write_lock(&hci_dev_list_lock);
1719
1720	/* Do not allow HCI_AMP devices to register at index 0,
1721	 * so the index can be used as the AMP controller ID.
1722	 */
1723	id = (hdev->dev_type == HCI_BREDR) ? 0 : 1;
1724	head = &hci_dev_list;
 
 
 
 
 
 
 
 
1725
1726	/* Find first available device id */
1727	list_for_each(p, &hci_dev_list) {
1728		int nid = list_entry(p, struct hci_dev, list)->id;
1729		if (nid > id)
1730			break;
1731		if (nid == id)
1732			id++;
1733		head = p;
1734	}
1735
1736	sprintf(hdev->name, "hci%d", id);
1737	hdev->id = id;
1738
1739	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1740
1741	list_add(&hdev->list, head);
1742
1743	write_unlock(&hci_dev_list_lock);
 
 
1744
1745	hdev->workqueue = alloc_workqueue(hdev->name, WQ_HIGHPRI | WQ_UNBOUND |
1746							WQ_MEM_RECLAIM, 1);
1747	if (!hdev->workqueue) {
 
1748		error = -ENOMEM;
1749		goto err;
1750	}
1751
1752	error = hci_add_sysfs(hdev);
 
 
 
 
 
1753	if (error < 0)
1754		goto err_wqueue;
1755
 
 
1756	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
1757				RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, hdev);
 
1758	if (hdev->rfkill) {
1759		if (rfkill_register(hdev->rfkill) < 0) {
1760			rfkill_destroy(hdev->rfkill);
1761			hdev->rfkill = NULL;
1762		}
1763	}
1764
1765	set_bit(HCI_AUTO_OFF, &hdev->dev_flags);
1766	set_bit(HCI_SETUP, &hdev->dev_flags);
1767	schedule_work(&hdev->power_on);
 
 
1768
1769	hci_notify(hdev, HCI_DEV_REG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1770	hci_dev_hold(hdev);
1771
 
 
1772	return id;
1773
1774err_wqueue:
1775	destroy_workqueue(hdev->workqueue);
 
1776err:
1777	write_lock(&hci_dev_list_lock);
1778	list_del(&hdev->list);
1779	write_unlock(&hci_dev_list_lock);
1780
1781	return error;
1782}
1783EXPORT_SYMBOL(hci_register_dev);
1784
1785/* Unregister HCI device */
1786void hci_unregister_dev(struct hci_dev *hdev)
1787{
1788	int i;
1789
1790	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1791
1792	set_bit(HCI_UNREGISTER, &hdev->dev_flags);
 
 
1793
1794	write_lock(&hci_dev_list_lock);
1795	list_del(&hdev->list);
1796	write_unlock(&hci_dev_list_lock);
1797
 
 
1798	hci_dev_do_close(hdev);
1799
1800	for (i = 0; i < NUM_REASSEMBLY; i++)
1801		kfree_skb(hdev->reassembly[i]);
1802
1803	if (!test_bit(HCI_INIT, &hdev->flags) &&
1804				!test_bit(HCI_SETUP, &hdev->dev_flags)) {
 
1805		hci_dev_lock(hdev);
1806		mgmt_index_removed(hdev);
1807		hci_dev_unlock(hdev);
1808	}
1809
1810	/* mgmt_index_removed should take care of emptying the
1811	 * pending list */
1812	BUG_ON(!list_empty(&hdev->mgmt_pending));
1813
1814	hci_notify(hdev, HCI_DEV_UNREG);
1815
1816	if (hdev->rfkill) {
1817		rfkill_unregister(hdev->rfkill);
1818		rfkill_destroy(hdev->rfkill);
1819	}
1820
1821	hci_del_sysfs(hdev);
 
 
 
 
1822
1823	destroy_workqueue(hdev->workqueue);
 
1824
1825	hci_dev_lock(hdev);
1826	hci_blacklist_clear(hdev);
 
1827	hci_uuids_clear(hdev);
1828	hci_link_keys_clear(hdev);
1829	hci_smp_ltks_clear(hdev);
 
1830	hci_remote_oob_data_clear(hdev);
 
 
 
 
 
1831	hci_dev_unlock(hdev);
1832
1833	hci_dev_put(hdev);
 
 
1834}
1835EXPORT_SYMBOL(hci_unregister_dev);
1836
1837/* Suspend HCI device */
1838int hci_suspend_dev(struct hci_dev *hdev)
1839{
1840	hci_notify(hdev, HCI_DEV_SUSPEND);
1841	return 0;
1842}
1843EXPORT_SYMBOL(hci_suspend_dev);
1844
1845/* Resume HCI device */
1846int hci_resume_dev(struct hci_dev *hdev)
1847{
1848	hci_notify(hdev, HCI_DEV_RESUME);
1849	return 0;
1850}
1851EXPORT_SYMBOL(hci_resume_dev);
1852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1853/* Receive frame from HCI drivers */
1854int hci_recv_frame(struct sk_buff *skb)
1855{
1856	struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1857	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
1858				&& !test_bit(HCI_INIT, &hdev->flags))) {
1859		kfree_skb(skb);
1860		return -ENXIO;
1861	}
1862
1863	/* Incomming skb */
 
 
 
 
 
 
 
1864	bt_cb(skb)->incoming = 1;
1865
1866	/* Time stamp */
1867	__net_timestamp(skb);
1868
1869	skb_queue_tail(&hdev->rx_q, skb);
1870	queue_work(hdev->workqueue, &hdev->rx_work);
1871
1872	return 0;
1873}
1874EXPORT_SYMBOL(hci_recv_frame);
1875
1876static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
1877						  int count, __u8 index)
1878{
1879	int len = 0;
1880	int hlen = 0;
1881	int remain = count;
1882	struct sk_buff *skb;
1883	struct bt_skb_cb *scb;
1884
1885	if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
1886				index >= NUM_REASSEMBLY)
1887		return -EILSEQ;
1888
1889	skb = hdev->reassembly[index];
 
1890
1891	if (!skb) {
1892		switch (type) {
1893		case HCI_ACLDATA_PKT:
1894			len = HCI_MAX_FRAME_SIZE;
1895			hlen = HCI_ACL_HDR_SIZE;
1896			break;
1897		case HCI_EVENT_PKT:
1898			len = HCI_MAX_EVENT_SIZE;
1899			hlen = HCI_EVENT_HDR_SIZE;
1900			break;
1901		case HCI_SCODATA_PKT:
1902			len = HCI_MAX_SCO_SIZE;
1903			hlen = HCI_SCO_HDR_SIZE;
1904			break;
1905		}
1906
1907		skb = bt_skb_alloc(len, GFP_ATOMIC);
1908		if (!skb)
1909			return -ENOMEM;
1910
1911		scb = (void *) skb->cb;
1912		scb->expect = hlen;
1913		scb->pkt_type = type;
1914
1915		skb->dev = (void *) hdev;
1916		hdev->reassembly[index] = skb;
1917	}
1918
1919	while (count) {
1920		scb = (void *) skb->cb;
1921		len = min_t(uint, scb->expect, count);
1922
1923		memcpy(skb_put(skb, len), data, len);
1924
1925		count -= len;
1926		data += len;
1927		scb->expect -= len;
1928		remain = count;
1929
1930		switch (type) {
1931		case HCI_EVENT_PKT:
1932			if (skb->len == HCI_EVENT_HDR_SIZE) {
1933				struct hci_event_hdr *h = hci_event_hdr(skb);
1934				scb->expect = h->plen;
1935
1936				if (skb_tailroom(skb) < scb->expect) {
1937					kfree_skb(skb);
1938					hdev->reassembly[index] = NULL;
1939					return -ENOMEM;
1940				}
1941			}
1942			break;
1943
1944		case HCI_ACLDATA_PKT:
1945			if (skb->len  == HCI_ACL_HDR_SIZE) {
1946				struct hci_acl_hdr *h = hci_acl_hdr(skb);
1947				scb->expect = __le16_to_cpu(h->dlen);
1948
1949				if (skb_tailroom(skb) < scb->expect) {
1950					kfree_skb(skb);
1951					hdev->reassembly[index] = NULL;
1952					return -ENOMEM;
1953				}
1954			}
1955			break;
1956
1957		case HCI_SCODATA_PKT:
1958			if (skb->len == HCI_SCO_HDR_SIZE) {
1959				struct hci_sco_hdr *h = hci_sco_hdr(skb);
1960				scb->expect = h->dlen;
1961
1962				if (skb_tailroom(skb) < scb->expect) {
1963					kfree_skb(skb);
1964					hdev->reassembly[index] = NULL;
1965					return -ENOMEM;
1966				}
1967			}
1968			break;
1969		}
1970
1971		if (scb->expect == 0) {
1972			/* Complete frame */
1973
1974			bt_cb(skb)->pkt_type = type;
1975			hci_recv_frame(skb);
1976
1977			hdev->reassembly[index] = NULL;
1978			return remain;
1979		}
1980	}
1981
1982	return remain;
1983}
 
1984
1985int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
1986{
1987	int rem = 0;
1988
1989	if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
1990		return -EILSEQ;
1991
1992	while (count) {
1993		rem = hci_reassembly(hdev, type, data, count, type - 1);
1994		if (rem < 0)
1995			return rem;
1996
1997		data += (count - rem);
1998		count = rem;
1999	}
2000
2001	return rem;
 
 
 
2002}
2003EXPORT_SYMBOL(hci_recv_fragment);
2004
2005#define STREAM_REASSEMBLY 0
2006
2007int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
2008{
2009	int type;
2010	int rem = 0;
2011
2012	while (count) {
2013		struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
2014
2015		if (!skb) {
2016			struct { char type; } *pkt;
2017
2018			/* Start of the frame */
2019			pkt = data;
2020			type = pkt->type;
2021
2022			data++;
2023			count--;
2024		} else
2025			type = bt_cb(skb)->pkt_type;
2026
2027		rem = hci_reassembly(hdev, type, data, count,
2028							STREAM_REASSEMBLY);
2029		if (rem < 0)
2030			return rem;
2031
2032		data += (count - rem);
2033		count = rem;
2034	}
2035
2036	return rem;
2037}
2038EXPORT_SYMBOL(hci_recv_stream_fragment);
2039
2040/* ---- Interface to upper protocols ---- */
2041
2042int hci_register_cb(struct hci_cb *cb)
2043{
2044	BT_DBG("%p name %s", cb, cb->name);
2045
2046	write_lock(&hci_cb_list_lock);
2047	list_add(&cb->list, &hci_cb_list);
2048	write_unlock(&hci_cb_list_lock);
2049
2050	return 0;
2051}
2052EXPORT_SYMBOL(hci_register_cb);
2053
2054int hci_unregister_cb(struct hci_cb *cb)
2055{
2056	BT_DBG("%p name %s", cb, cb->name);
2057
2058	write_lock(&hci_cb_list_lock);
2059	list_del(&cb->list);
2060	write_unlock(&hci_cb_list_lock);
2061
2062	return 0;
2063}
2064EXPORT_SYMBOL(hci_unregister_cb);
2065
2066static int hci_send_frame(struct sk_buff *skb)
2067{
2068	struct hci_dev *hdev = (struct hci_dev *) skb->dev;
2069
2070	if (!hdev) {
2071		kfree_skb(skb);
2072		return -ENODEV;
2073	}
2074
2075	BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
 
2076
2077	/* Time stamp */
2078	__net_timestamp(skb);
2079
2080	/* Send copy to monitor */
2081	hci_send_to_monitor(hdev, skb);
2082
2083	if (atomic_read(&hdev->promisc)) {
2084		/* Send copy to the sockets */
2085		hci_send_to_sock(hdev, skb);
2086	}
2087
2088	/* Get rid of skb owner, prior to sending to the driver. */
2089	skb_orphan(skb);
2090
2091	return hdev->send(skb);
 
 
 
 
 
 
 
 
 
2092}
2093
2094/* Send HCI command */
2095int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, void *param)
 
2096{
2097	int len = HCI_COMMAND_HDR_SIZE + plen;
2098	struct hci_command_hdr *hdr;
2099	struct sk_buff *skb;
2100
2101	BT_DBG("%s opcode 0x%x plen %d", hdev->name, opcode, plen);
2102
2103	skb = bt_skb_alloc(len, GFP_ATOMIC);
2104	if (!skb) {
2105		BT_ERR("%s no memory for command", hdev->name);
2106		return -ENOMEM;
2107	}
2108
2109	hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
2110	hdr->opcode = cpu_to_le16(opcode);
2111	hdr->plen   = plen;
 
2112
2113	if (plen)
2114		memcpy(skb_put(skb, plen), param, plen);
2115
2116	BT_DBG("skb len %d", skb->len);
 
2117
2118	bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
2119	skb->dev = (void *) hdev;
 
 
2120
2121	if (test_bit(HCI_INIT, &hdev->flags))
2122		hdev->init_last_cmd = opcode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2123
2124	skb_queue_tail(&hdev->cmd_q, skb);
2125	queue_work(hdev->workqueue, &hdev->cmd_work);
2126
2127	return 0;
2128}
 
2129
2130/* Get data from the previously sent command */
2131void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
2132{
2133	struct hci_command_hdr *hdr;
2134
2135	if (!hdev->sent_cmd)
2136		return NULL;
2137
2138	hdr = (void *) hdev->sent_cmd->data;
2139
2140	if (hdr->opcode != cpu_to_le16(opcode))
2141		return NULL;
2142
2143	BT_DBG("%s opcode 0x%x", hdev->name, opcode);
2144
2145	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
2146}
2147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2148/* Send ACL data */
2149static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
2150{
2151	struct hci_acl_hdr *hdr;
2152	int len = skb->len;
2153
2154	skb_push(skb, HCI_ACL_HDR_SIZE);
2155	skb_reset_transport_header(skb);
2156	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
2157	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
2158	hdr->dlen   = cpu_to_le16(len);
2159}
2160
2161static void hci_queue_acl(struct hci_conn *conn, struct sk_buff_head *queue,
2162				struct sk_buff *skb, __u16 flags)
2163{
 
2164	struct hci_dev *hdev = conn->hdev;
2165	struct sk_buff *list;
2166
2167	skb->len = skb_headlen(skb);
2168	skb->data_len = 0;
2169
2170	bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2171	hci_add_acl_hdr(skb, conn->handle, flags);
 
 
 
 
 
 
 
 
 
 
 
2172
2173	list = skb_shinfo(skb)->frag_list;
2174	if (!list) {
2175		/* Non fragmented */
2176		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
2177
2178		skb_queue_tail(queue, skb);
2179	} else {
2180		/* Fragmented */
2181		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2182
2183		skb_shinfo(skb)->frag_list = NULL;
2184
2185		/* Queue all fragments atomically */
2186		spin_lock(&queue->lock);
 
 
 
 
2187
2188		__skb_queue_tail(queue, skb);
2189
2190		flags &= ~ACL_START;
2191		flags |= ACL_CONT;
2192		do {
2193			skb = list; list = list->next;
2194
2195			skb->dev = (void *) hdev;
2196			bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2197			hci_add_acl_hdr(skb, conn->handle, flags);
2198
2199			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2200
2201			__skb_queue_tail(queue, skb);
2202		} while (list);
2203
2204		spin_unlock(&queue->lock);
2205	}
2206}
2207
2208void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
2209{
2210	struct hci_conn *conn = chan->conn;
2211	struct hci_dev *hdev = conn->hdev;
2212
2213	BT_DBG("%s chan %p flags 0x%x", hdev->name, chan, flags);
2214
2215	skb->dev = (void *) hdev;
2216
2217	hci_queue_acl(conn, &chan->data_q, skb, flags);
2218
2219	queue_work(hdev->workqueue, &hdev->tx_work);
2220}
2221EXPORT_SYMBOL(hci_send_acl);
2222
2223/* Send SCO data */
2224void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
2225{
2226	struct hci_dev *hdev = conn->hdev;
2227	struct hci_sco_hdr hdr;
2228
2229	BT_DBG("%s len %d", hdev->name, skb->len);
2230
2231	hdr.handle = cpu_to_le16(conn->handle);
2232	hdr.dlen   = skb->len;
2233
2234	skb_push(skb, HCI_SCO_HDR_SIZE);
2235	skb_reset_transport_header(skb);
2236	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
2237
2238	skb->dev = (void *) hdev;
2239	bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
2240
2241	skb_queue_tail(&conn->data_q, skb);
2242	queue_work(hdev->workqueue, &hdev->tx_work);
2243}
2244EXPORT_SYMBOL(hci_send_sco);
2245
2246/* ---- HCI TX task (outgoing data) ---- */
2247
2248/* HCI Connection scheduler */
2249static inline struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, int *quote)
 
2250{
2251	struct hci_conn_hash *h = &hdev->conn_hash;
2252	struct hci_conn *conn = NULL, *c;
2253	unsigned int num = 0, min = ~0;
2254
2255	/* We don't have to lock device here. Connections are always
2256	 * added and removed with TX task disabled. */
2257
2258	rcu_read_lock();
2259
2260	list_for_each_entry_rcu(c, &h->list, list) {
2261		if (c->type != type || skb_queue_empty(&c->data_q))
2262			continue;
2263
2264		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
2265			continue;
2266
2267		num++;
2268
2269		if (c->sent < min) {
2270			min  = c->sent;
2271			conn = c;
2272		}
2273
2274		if (hci_conn_num(hdev, type) == num)
2275			break;
2276	}
2277
2278	rcu_read_unlock();
2279
2280	if (conn) {
2281		int cnt, q;
2282
2283		switch (conn->type) {
2284		case ACL_LINK:
2285			cnt = hdev->acl_cnt;
2286			break;
2287		case SCO_LINK:
2288		case ESCO_LINK:
2289			cnt = hdev->sco_cnt;
2290			break;
2291		case LE_LINK:
2292			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2293			break;
2294		default:
2295			cnt = 0;
2296			BT_ERR("Unknown link type");
2297		}
2298
2299		q = cnt / num;
2300		*quote = q ? q : 1;
2301	} else
2302		*quote = 0;
2303
2304	BT_DBG("conn %p quote %d", conn, *quote);
2305	return conn;
2306}
2307
2308static inline void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
2309{
2310	struct hci_conn_hash *h = &hdev->conn_hash;
2311	struct hci_conn *c;
2312
2313	BT_ERR("%s link tx timeout", hdev->name);
2314
2315	rcu_read_lock();
2316
2317	/* Kill stalled connections */
2318	list_for_each_entry_rcu(c, &h->list, list) {
2319		if (c->type == type && c->sent) {
2320			BT_ERR("%s killing stalled connection %s",
2321				hdev->name, batostr(&c->dst));
2322			hci_acl_disconn(c, 0x13);
2323		}
2324	}
2325
2326	rcu_read_unlock();
2327}
2328
2329static inline struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
2330						int *quote)
2331{
2332	struct hci_conn_hash *h = &hdev->conn_hash;
2333	struct hci_chan *chan = NULL;
2334	unsigned int num = 0, min = ~0, cur_prio = 0;
2335	struct hci_conn *conn;
2336	int cnt, q, conn_num = 0;
2337
2338	BT_DBG("%s", hdev->name);
2339
2340	rcu_read_lock();
2341
2342	list_for_each_entry_rcu(conn, &h->list, list) {
2343		struct hci_chan *tmp;
2344
2345		if (conn->type != type)
2346			continue;
2347
2348		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2349			continue;
2350
2351		conn_num++;
2352
2353		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
2354			struct sk_buff *skb;
2355
2356			if (skb_queue_empty(&tmp->data_q))
2357				continue;
2358
2359			skb = skb_peek(&tmp->data_q);
2360			if (skb->priority < cur_prio)
2361				continue;
2362
2363			if (skb->priority > cur_prio) {
2364				num = 0;
2365				min = ~0;
2366				cur_prio = skb->priority;
2367			}
2368
2369			num++;
2370
2371			if (conn->sent < min) {
2372				min  = conn->sent;
2373				chan = tmp;
2374			}
2375		}
2376
2377		if (hci_conn_num(hdev, type) == conn_num)
2378			break;
2379	}
2380
2381	rcu_read_unlock();
2382
2383	if (!chan)
2384		return NULL;
2385
2386	switch (chan->conn->type) {
2387	case ACL_LINK:
2388		cnt = hdev->acl_cnt;
2389		break;
 
 
 
2390	case SCO_LINK:
2391	case ESCO_LINK:
2392		cnt = hdev->sco_cnt;
2393		break;
2394	case LE_LINK:
2395		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2396		break;
2397	default:
2398		cnt = 0;
2399		BT_ERR("Unknown link type");
2400	}
2401
2402	q = cnt / num;
2403	*quote = q ? q : 1;
2404	BT_DBG("chan %p quote %d", chan, *quote);
2405	return chan;
2406}
2407
2408static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
2409{
2410	struct hci_conn_hash *h = &hdev->conn_hash;
2411	struct hci_conn *conn;
2412	int num = 0;
2413
2414	BT_DBG("%s", hdev->name);
2415
2416	rcu_read_lock();
2417
2418	list_for_each_entry_rcu(conn, &h->list, list) {
2419		struct hci_chan *chan;
2420
2421		if (conn->type != type)
2422			continue;
2423
2424		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2425			continue;
2426
2427		num++;
2428
2429		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
2430			struct sk_buff *skb;
2431
2432			if (chan->sent) {
2433				chan->sent = 0;
2434				continue;
2435			}
2436
2437			if (skb_queue_empty(&chan->data_q))
2438				continue;
2439
2440			skb = skb_peek(&chan->data_q);
2441			if (skb->priority >= HCI_PRIO_MAX - 1)
2442				continue;
2443
2444			skb->priority = HCI_PRIO_MAX - 1;
2445
2446			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
2447								skb->priority);
2448		}
2449
2450		if (hci_conn_num(hdev, type) == num)
2451			break;
2452	}
2453
2454	rcu_read_unlock();
2455
2456}
2457
2458static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
2459{
2460	/* Calculate count of blocks used by this packet */
2461	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
2462}
2463
2464static inline void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
2465{
2466	if (!test_bit(HCI_RAW, &hdev->flags)) {
2467		/* ACL tx timeout must be longer than maximum
2468		 * link supervision timeout (40.9 seconds) */
2469		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
2470					msecs_to_jiffies(HCI_ACL_TX_TIMEOUT)))
2471			hci_link_tx_to(hdev, ACL_LINK);
2472	}
2473}
2474
2475static inline void hci_sched_acl_pkt(struct hci_dev *hdev)
2476{
2477	unsigned int cnt = hdev->acl_cnt;
2478	struct hci_chan *chan;
2479	struct sk_buff *skb;
2480	int quote;
2481
2482	__check_timeout(hdev, cnt);
2483
2484	while (hdev->acl_cnt &&
2485			(chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
2486		u32 priority = (skb_peek(&chan->data_q))->priority;
2487		while (quote-- && (skb = skb_peek(&chan->data_q))) {
2488			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
2489					skb->len, skb->priority);
2490
2491			/* Stop if priority has changed */
2492			if (skb->priority < priority)
2493				break;
2494
2495			skb = skb_dequeue(&chan->data_q);
2496
2497			hci_conn_enter_active_mode(chan->conn,
2498						   bt_cb(skb)->force_active);
2499
2500			hci_send_frame(skb);
2501			hdev->acl_last_tx = jiffies;
2502
2503			hdev->acl_cnt--;
2504			chan->sent++;
2505			chan->conn->sent++;
2506		}
2507	}
2508
2509	if (cnt != hdev->acl_cnt)
2510		hci_prio_recalculate(hdev, ACL_LINK);
2511}
2512
2513static inline void hci_sched_acl_blk(struct hci_dev *hdev)
2514{
2515	unsigned int cnt = hdev->block_cnt;
2516	struct hci_chan *chan;
2517	struct sk_buff *skb;
2518	int quote;
 
2519
2520	__check_timeout(hdev, cnt);
2521
 
 
 
 
 
 
 
2522	while (hdev->block_cnt > 0 &&
2523			(chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
2524		u32 priority = (skb_peek(&chan->data_q))->priority;
2525		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
2526			int blocks;
2527
2528			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
2529						skb->len, skb->priority);
2530
2531			/* Stop if priority has changed */
2532			if (skb->priority < priority)
2533				break;
2534
2535			skb = skb_dequeue(&chan->data_q);
2536
2537			blocks = __get_blocks(hdev, skb);
2538			if (blocks > hdev->block_cnt)
2539				return;
2540
2541			hci_conn_enter_active_mode(chan->conn,
2542						bt_cb(skb)->force_active);
2543
2544			hci_send_frame(skb);
2545			hdev->acl_last_tx = jiffies;
2546
2547			hdev->block_cnt -= blocks;
2548			quote -= blocks;
2549
2550			chan->sent += blocks;
2551			chan->conn->sent += blocks;
2552		}
2553	}
2554
2555	if (cnt != hdev->block_cnt)
2556		hci_prio_recalculate(hdev, ACL_LINK);
2557}
2558
2559static inline void hci_sched_acl(struct hci_dev *hdev)
2560{
2561	BT_DBG("%s", hdev->name);
2562
2563	if (!hci_conn_num(hdev, ACL_LINK))
 
 
 
 
 
2564		return;
2565
2566	switch (hdev->flow_ctl_mode) {
2567	case HCI_FLOW_CTL_MODE_PACKET_BASED:
2568		hci_sched_acl_pkt(hdev);
2569		break;
2570
2571	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
2572		hci_sched_acl_blk(hdev);
2573		break;
2574	}
2575}
2576
2577/* Schedule SCO */
2578static inline void hci_sched_sco(struct hci_dev *hdev)
2579{
2580	struct hci_conn *conn;
2581	struct sk_buff *skb;
2582	int quote;
2583
2584	BT_DBG("%s", hdev->name);
2585
2586	if (!hci_conn_num(hdev, SCO_LINK))
2587		return;
2588
2589	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
2590		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2591			BT_DBG("skb %p len %d", skb, skb->len);
2592			hci_send_frame(skb);
2593
2594			conn->sent++;
2595			if (conn->sent == ~0)
2596				conn->sent = 0;
2597		}
2598	}
2599}
2600
2601static inline void hci_sched_esco(struct hci_dev *hdev)
2602{
2603	struct hci_conn *conn;
2604	struct sk_buff *skb;
2605	int quote;
2606
2607	BT_DBG("%s", hdev->name);
2608
2609	if (!hci_conn_num(hdev, ESCO_LINK))
2610		return;
2611
2612	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, &quote))) {
 
2613		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2614			BT_DBG("skb %p len %d", skb, skb->len);
2615			hci_send_frame(skb);
2616
2617			conn->sent++;
2618			if (conn->sent == ~0)
2619				conn->sent = 0;
2620		}
2621	}
2622}
2623
2624static inline void hci_sched_le(struct hci_dev *hdev)
2625{
2626	struct hci_chan *chan;
2627	struct sk_buff *skb;
2628	int quote, cnt, tmp;
2629
2630	BT_DBG("%s", hdev->name);
2631
2632	if (!hci_conn_num(hdev, LE_LINK))
2633		return;
2634
2635	if (!test_bit(HCI_RAW, &hdev->flags)) {
2636		/* LE tx timeout must be longer than maximum
2637		 * link supervision timeout (40.9 seconds) */
2638		if (!hdev->le_cnt && hdev->le_pkts &&
2639				time_after(jiffies, hdev->le_last_tx + HZ * 45))
2640			hci_link_tx_to(hdev, LE_LINK);
2641	}
2642
2643	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
2644	tmp = cnt;
2645	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
2646		u32 priority = (skb_peek(&chan->data_q))->priority;
2647		while (quote-- && (skb = skb_peek(&chan->data_q))) {
2648			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
2649					skb->len, skb->priority);
2650
2651			/* Stop if priority has changed */
2652			if (skb->priority < priority)
2653				break;
2654
2655			skb = skb_dequeue(&chan->data_q);
2656
2657			hci_send_frame(skb);
2658			hdev->le_last_tx = jiffies;
2659
2660			cnt--;
2661			chan->sent++;
2662			chan->conn->sent++;
2663		}
2664	}
2665
2666	if (hdev->le_pkts)
2667		hdev->le_cnt = cnt;
2668	else
2669		hdev->acl_cnt = cnt;
2670
2671	if (cnt != tmp)
2672		hci_prio_recalculate(hdev, LE_LINK);
2673}
2674
2675static void hci_tx_work(struct work_struct *work)
2676{
2677	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
2678	struct sk_buff *skb;
2679
2680	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
2681		hdev->sco_cnt, hdev->le_cnt);
2682
2683	/* Schedule queues and send stuff to HCI driver */
2684
2685	hci_sched_acl(hdev);
2686
2687	hci_sched_sco(hdev);
2688
2689	hci_sched_esco(hdev);
2690
2691	hci_sched_le(hdev);
2692
2693	/* Send next queued raw (unknown type) packet */
2694	while ((skb = skb_dequeue(&hdev->raw_q)))
2695		hci_send_frame(skb);
2696}
2697
2698/* ----- HCI RX task (incoming data processing) ----- */
2699
2700/* ACL data packet */
2701static inline void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2702{
2703	struct hci_acl_hdr *hdr = (void *) skb->data;
2704	struct hci_conn *conn;
2705	__u16 handle, flags;
2706
2707	skb_pull(skb, HCI_ACL_HDR_SIZE);
2708
2709	handle = __le16_to_cpu(hdr->handle);
2710	flags  = hci_flags(handle);
2711	handle = hci_handle(handle);
2712
2713	BT_DBG("%s len %d handle 0x%x flags 0x%x", hdev->name, skb->len, handle, flags);
 
2714
2715	hdev->stat.acl_rx++;
2716
2717	hci_dev_lock(hdev);
2718	conn = hci_conn_hash_lookup_handle(hdev, handle);
2719	hci_dev_unlock(hdev);
2720
2721	if (conn) {
2722		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
2723
2724		hci_dev_lock(hdev);
2725		if (test_bit(HCI_MGMT, &hdev->dev_flags) &&
2726		    !test_and_set_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags))
2727			mgmt_device_connected(hdev, &conn->dst, conn->type,
2728					      conn->dst_type, 0, NULL, 0,
2729					      conn->dev_class);
2730		hci_dev_unlock(hdev);
2731
2732		/* Send to upper protocol */
2733		l2cap_recv_acldata(conn, skb, flags);
2734		return;
2735	} else {
2736		BT_ERR("%s ACL packet for unknown connection handle %d",
2737			hdev->name, handle);
2738	}
2739
2740	kfree_skb(skb);
2741}
2742
2743/* SCO data packet */
2744static inline void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2745{
2746	struct hci_sco_hdr *hdr = (void *) skb->data;
2747	struct hci_conn *conn;
2748	__u16 handle;
2749
2750	skb_pull(skb, HCI_SCO_HDR_SIZE);
2751
2752	handle = __le16_to_cpu(hdr->handle);
2753
2754	BT_DBG("%s len %d handle 0x%x", hdev->name, skb->len, handle);
2755
2756	hdev->stat.sco_rx++;
2757
2758	hci_dev_lock(hdev);
2759	conn = hci_conn_hash_lookup_handle(hdev, handle);
2760	hci_dev_unlock(hdev);
2761
2762	if (conn) {
2763		/* Send to upper protocol */
2764		sco_recv_scodata(conn, skb);
2765		return;
2766	} else {
2767		BT_ERR("%s SCO packet for unknown connection handle %d",
2768			hdev->name, handle);
2769	}
2770
2771	kfree_skb(skb);
2772}
2773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2774static void hci_rx_work(struct work_struct *work)
2775{
2776	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
2777	struct sk_buff *skb;
2778
2779	BT_DBG("%s", hdev->name);
2780
2781	while ((skb = skb_dequeue(&hdev->rx_q))) {
2782		/* Send copy to monitor */
2783		hci_send_to_monitor(hdev, skb);
2784
2785		if (atomic_read(&hdev->promisc)) {
2786			/* Send copy to the sockets */
2787			hci_send_to_sock(hdev, skb);
2788		}
2789
2790		if (test_bit(HCI_RAW, &hdev->flags)) {
2791			kfree_skb(skb);
2792			continue;
2793		}
2794
2795		if (test_bit(HCI_INIT, &hdev->flags)) {
2796			/* Don't process data packets in this states. */
2797			switch (bt_cb(skb)->pkt_type) {
2798			case HCI_ACLDATA_PKT:
2799			case HCI_SCODATA_PKT:
2800				kfree_skb(skb);
2801				continue;
2802			}
2803		}
2804
2805		/* Process frame */
2806		switch (bt_cb(skb)->pkt_type) {
2807		case HCI_EVENT_PKT:
2808			BT_DBG("%s Event packet", hdev->name);
2809			hci_event_packet(hdev, skb);
2810			break;
2811
2812		case HCI_ACLDATA_PKT:
2813			BT_DBG("%s ACL data packet", hdev->name);
2814			hci_acldata_packet(hdev, skb);
2815			break;
2816
2817		case HCI_SCODATA_PKT:
2818			BT_DBG("%s SCO data packet", hdev->name);
2819			hci_scodata_packet(hdev, skb);
2820			break;
2821
2822		default:
2823			kfree_skb(skb);
2824			break;
2825		}
2826	}
2827}
2828
2829static void hci_cmd_work(struct work_struct *work)
2830{
2831	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
2832	struct sk_buff *skb;
2833
2834	BT_DBG("%s cmd %d", hdev->name, atomic_read(&hdev->cmd_cnt));
 
2835
2836	/* Send queued commands */
2837	if (atomic_read(&hdev->cmd_cnt)) {
2838		skb = skb_dequeue(&hdev->cmd_q);
2839		if (!skb)
2840			return;
2841
2842		kfree_skb(hdev->sent_cmd);
2843
2844		hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
2845		if (hdev->sent_cmd) {
 
 
2846			atomic_dec(&hdev->cmd_cnt);
2847			hci_send_frame(skb);
2848			if (test_bit(HCI_RESET, &hdev->flags))
2849				del_timer(&hdev->cmd_timer);
2850			else
2851				mod_timer(&hdev->cmd_timer,
2852				  jiffies + msecs_to_jiffies(HCI_CMD_TIMEOUT));
2853		} else {
2854			skb_queue_head(&hdev->cmd_q, skb);
2855			queue_work(hdev->workqueue, &hdev->cmd_work);
2856		}
2857	}
2858}
2859
2860int hci_do_inquiry(struct hci_dev *hdev, u8 length)
2861{
2862	/* General inquiry access code (GIAC) */
2863	u8 lap[3] = { 0x33, 0x8b, 0x9e };
2864	struct hci_cp_inquiry cp;
2865
2866	BT_DBG("%s", hdev->name);
2867
2868	if (test_bit(HCI_INQUIRY, &hdev->flags))
2869		return -EINPROGRESS;
2870
2871	inquiry_cache_flush(hdev);
2872
2873	memset(&cp, 0, sizeof(cp));
2874	memcpy(&cp.lap, lap, sizeof(cp.lap));
2875	cp.length  = length;
2876
2877	return hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
2878}
2879
2880int hci_cancel_inquiry(struct hci_dev *hdev)
2881{
2882	BT_DBG("%s", hdev->name);
2883
2884	if (!test_bit(HCI_INQUIRY, &hdev->flags))
2885		return -EALREADY;
2886
2887	return hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2888}
2889
2890u8 bdaddr_to_le(u8 bdaddr_type)
2891{
2892	switch (bdaddr_type) {
2893	case BDADDR_LE_PUBLIC:
2894		return ADDR_LE_DEV_PUBLIC;
2895
2896	default:
2897		/* Fallback to LE Random address type */
2898		return ADDR_LE_DEV_RANDOM;
2899	}
2900}