Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Generic pidhash and scalable, time-bounded PID allocator
  4 *
  5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
  6 * (C) 2004 Nadia Yvette Chambers, Oracle
  7 * (C) 2002-2004 Ingo Molnar, Red Hat
  8 *
  9 * pid-structures are backing objects for tasks sharing a given ID to chain
 10 * against. There is very little to them aside from hashing them and
 11 * parking tasks using given ID's on a list.
 12 *
 13 * The hash is always changed with the tasklist_lock write-acquired,
 14 * and the hash is only accessed with the tasklist_lock at least
 15 * read-acquired, so there's no additional SMP locking needed here.
 16 *
 17 * We have a list of bitmap pages, which bitmaps represent the PID space.
 18 * Allocating and freeing PIDs is completely lockless. The worst-case
 19 * allocation scenario when all but one out of 1 million PIDs possible are
 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 22 *
 23 * Pid namespaces:
 24 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 25 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 26 *     Many thanks to Oleg Nesterov for comments and help
 27 *
 28 */
 29
 30#include <linux/mm.h>
 31#include <linux/export.h>
 32#include <linux/slab.h>
 33#include <linux/init.h>
 34#include <linux/rculist.h>
 35#include <linux/memblock.h>
 
 36#include <linux/pid_namespace.h>
 37#include <linux/init_task.h>
 38#include <linux/syscalls.h>
 39#include <linux/proc_ns.h>
 40#include <linux/refcount.h>
 41#include <linux/anon_inodes.h>
 42#include <linux/sched/signal.h>
 43#include <linux/sched/task.h>
 44#include <linux/idr.h>
 45
 46struct pid init_struct_pid = {
 47	.count		= REFCOUNT_INIT(1),
 48	.tasks		= {
 49		{ .first = NULL },
 50		{ .first = NULL },
 51		{ .first = NULL },
 52	},
 53	.level		= 0,
 54	.numbers	= { {
 55		.nr		= 0,
 56		.ns		= &init_pid_ns,
 57	}, }
 58};
 59
 60int pid_max = PID_MAX_DEFAULT;
 61
 62#define RESERVED_PIDS		300
 63
 64int pid_max_min = RESERVED_PIDS + 1;
 65int pid_max_max = PID_MAX_LIMIT;
 66
 
 
 
 
 
 
 
 
 
 
 
 
 67/*
 68 * PID-map pages start out as NULL, they get allocated upon
 69 * first use and are never deallocated. This way a low pid_max
 70 * value does not cause lots of bitmaps to be allocated, but
 71 * the scheme scales to up to 4 million PIDs, runtime.
 72 */
 73struct pid_namespace init_pid_ns = {
 74	.kref = KREF_INIT(2),
 75	.idr = IDR_INIT(init_pid_ns.idr),
 76	.pid_allocated = PIDNS_ADDING,
 
 
 
 
 77	.level = 0,
 78	.child_reaper = &init_task,
 79	.user_ns = &init_user_ns,
 80	.ns.inum = PROC_PID_INIT_INO,
 81#ifdef CONFIG_PID_NS
 82	.ns.ops = &pidns_operations,
 83#endif
 84};
 85EXPORT_SYMBOL_GPL(init_pid_ns);
 86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 87/*
 88 * Note: disable interrupts while the pidmap_lock is held as an
 89 * interrupt might come in and do read_lock(&tasklist_lock).
 90 *
 91 * If we don't disable interrupts there is a nasty deadlock between
 92 * detach_pid()->free_pid() and another cpu that does
 93 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 94 * read_lock(&tasklist_lock);
 95 *
 96 * After we clean up the tasklist_lock and know there are no
 97 * irq handlers that take it we can leave the interrupts enabled.
 98 * For now it is easier to be safe than to prove it can't happen.
 99 */
100
101static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103void put_pid(struct pid *pid)
104{
105	struct pid_namespace *ns;
106
107	if (!pid)
108		return;
109
110	ns = pid->numbers[pid->level].ns;
111	if (refcount_dec_and_test(&pid->count)) {
 
112		kmem_cache_free(ns->pid_cachep, pid);
113		put_pid_ns(ns);
114	}
115}
116EXPORT_SYMBOL_GPL(put_pid);
117
118static void delayed_put_pid(struct rcu_head *rhp)
119{
120	struct pid *pid = container_of(rhp, struct pid, rcu);
121	put_pid(pid);
122}
123
124void free_pid(struct pid *pid)
125{
126	/* We can be called with write_lock_irq(&tasklist_lock) held */
127	int i;
128	unsigned long flags;
129
130	spin_lock_irqsave(&pidmap_lock, flags);
131	for (i = 0; i <= pid->level; i++) {
132		struct upid *upid = pid->numbers + i;
133		struct pid_namespace *ns = upid->ns;
134		switch (--ns->pid_allocated) {
135		case 2:
136		case 1:
137			/* When all that is left in the pid namespace
138			 * is the reaper wake up the reaper.  The reaper
139			 * may be sleeping in zap_pid_ns_processes().
140			 */
141			wake_up_process(ns->child_reaper);
142			break;
143		case PIDNS_ADDING:
144			/* Handle a fork failure of the first process */
145			WARN_ON(ns->child_reaper);
146			ns->pid_allocated = 0;
147			/* fall through */
148		case 0:
149			schedule_work(&ns->proc_work);
150			break;
151		}
152
153		idr_remove(&ns->idr, upid->nr);
154	}
155	spin_unlock_irqrestore(&pidmap_lock, flags);
156
 
 
 
157	call_rcu(&pid->rcu, delayed_put_pid);
158}
159
160struct pid *alloc_pid(struct pid_namespace *ns)
161{
162	struct pid *pid;
163	enum pid_type type;
164	int i, nr;
165	struct pid_namespace *tmp;
166	struct upid *upid;
167	int retval = -ENOMEM;
168
169	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
170	if (!pid)
171		return ERR_PTR(retval);
172
173	tmp = ns;
174	pid->level = ns->level;
175
176	for (i = ns->level; i >= 0; i--) {
177		int pid_min = 1;
178
179		idr_preload(GFP_KERNEL);
180		spin_lock_irq(&pidmap_lock);
181
182		/*
183		 * init really needs pid 1, but after reaching the maximum
184		 * wrap back to RESERVED_PIDS
185		 */
186		if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
187			pid_min = RESERVED_PIDS;
188
189		/*
190		 * Store a null pointer so find_pid_ns does not find
191		 * a partially initialized PID (see below).
192		 */
193		nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
194				      pid_max, GFP_ATOMIC);
195		spin_unlock_irq(&pidmap_lock);
196		idr_preload_end();
197
198		if (nr < 0) {
199			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
200			goto out_free;
201		}
202
203		pid->numbers[i].nr = nr;
204		pid->numbers[i].ns = tmp;
205		tmp = tmp->parent;
206	}
207
208	if (unlikely(is_child_reaper(pid))) {
209		if (pid_ns_prepare_proc(ns))
210			goto out_free;
211	}
212
213	get_pid_ns(ns);
214	refcount_set(&pid->count, 1);
 
215	for (type = 0; type < PIDTYPE_MAX; ++type)
216		INIT_HLIST_HEAD(&pid->tasks[type]);
217
218	init_waitqueue_head(&pid->wait_pidfd);
219
220	upid = pid->numbers + ns->level;
221	spin_lock_irq(&pidmap_lock);
222	if (!(ns->pid_allocated & PIDNS_ADDING))
223		goto out_unlock;
224	for ( ; upid >= pid->numbers; --upid) {
225		/* Make the PID visible to find_pid_ns. */
226		idr_replace(&upid->ns->idr, pid, upid->nr);
227		upid->ns->pid_allocated++;
228	}
229	spin_unlock_irq(&pidmap_lock);
230
 
231	return pid;
232
233out_unlock:
234	spin_unlock_irq(&pidmap_lock);
235	put_pid_ns(ns);
236
237out_free:
238	spin_lock_irq(&pidmap_lock);
239	while (++i <= ns->level) {
240		upid = pid->numbers + i;
241		idr_remove(&upid->ns->idr, upid->nr);
242	}
243
244	/* On failure to allocate the first pid, reset the state */
245	if (ns->pid_allocated == PIDNS_ADDING)
246		idr_set_cursor(&ns->idr, 0);
247
248	spin_unlock_irq(&pidmap_lock);
249
250	kmem_cache_free(ns->pid_cachep, pid);
251	return ERR_PTR(retval);
252}
253
254void disable_pid_allocation(struct pid_namespace *ns)
255{
256	spin_lock_irq(&pidmap_lock);
257	ns->pid_allocated &= ~PIDNS_ADDING;
258	spin_unlock_irq(&pidmap_lock);
259}
260
261struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
262{
263	return idr_find(&ns->idr, nr);
 
 
 
 
 
 
 
 
 
264}
265EXPORT_SYMBOL_GPL(find_pid_ns);
266
267struct pid *find_vpid(int nr)
268{
269	return find_pid_ns(nr, task_active_pid_ns(current));
270}
271EXPORT_SYMBOL_GPL(find_vpid);
272
273static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
274{
275	return (type == PIDTYPE_PID) ?
276		&task->thread_pid :
277		&task->signal->pids[type];
278}
279
280/*
281 * attach_pid() must be called with the tasklist_lock write-held.
282 */
283void attach_pid(struct task_struct *task, enum pid_type type)
 
284{
285	struct pid *pid = *task_pid_ptr(task, type);
286	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
 
 
 
287}
288
289static void __change_pid(struct task_struct *task, enum pid_type type,
290			struct pid *new)
291{
292	struct pid **pid_ptr = task_pid_ptr(task, type);
293	struct pid *pid;
294	int tmp;
295
296	pid = *pid_ptr;
 
297
298	hlist_del_rcu(&task->pid_links[type]);
299	*pid_ptr = new;
300
301	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
302		if (!hlist_empty(&pid->tasks[tmp]))
303			return;
304
305	free_pid(pid);
306}
307
308void detach_pid(struct task_struct *task, enum pid_type type)
309{
310	__change_pid(task, type, NULL);
311}
312
313void change_pid(struct task_struct *task, enum pid_type type,
314		struct pid *pid)
315{
316	__change_pid(task, type, pid);
317	attach_pid(task, type);
318}
319
320/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
321void transfer_pid(struct task_struct *old, struct task_struct *new,
322			   enum pid_type type)
323{
324	if (type == PIDTYPE_PID)
325		new->thread_pid = old->thread_pid;
326	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
327}
328
329struct task_struct *pid_task(struct pid *pid, enum pid_type type)
330{
331	struct task_struct *result = NULL;
332	if (pid) {
333		struct hlist_node *first;
334		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
335					      lockdep_tasklist_lock_is_held());
336		if (first)
337			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
338	}
339	return result;
340}
341EXPORT_SYMBOL(pid_task);
342
343/*
344 * Must be called under rcu_read_lock().
345 */
346struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
347{
348	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
349			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
 
350	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
351}
352
353struct task_struct *find_task_by_vpid(pid_t vnr)
354{
355	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
356}
357
358struct task_struct *find_get_task_by_vpid(pid_t nr)
359{
360	struct task_struct *task;
361
362	rcu_read_lock();
363	task = find_task_by_vpid(nr);
364	if (task)
365		get_task_struct(task);
366	rcu_read_unlock();
367
368	return task;
369}
370
371struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
372{
373	struct pid *pid;
374	rcu_read_lock();
375	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
 
 
376	rcu_read_unlock();
377	return pid;
378}
379EXPORT_SYMBOL_GPL(get_task_pid);
380
381struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
382{
383	struct task_struct *result;
384	rcu_read_lock();
385	result = pid_task(pid, type);
386	if (result)
387		get_task_struct(result);
388	rcu_read_unlock();
389	return result;
390}
391EXPORT_SYMBOL_GPL(get_pid_task);
392
393struct pid *find_get_pid(pid_t nr)
394{
395	struct pid *pid;
396
397	rcu_read_lock();
398	pid = get_pid(find_vpid(nr));
399	rcu_read_unlock();
400
401	return pid;
402}
403EXPORT_SYMBOL_GPL(find_get_pid);
404
405pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
406{
407	struct upid *upid;
408	pid_t nr = 0;
409
410	if (pid && ns->level <= pid->level) {
411		upid = &pid->numbers[ns->level];
412		if (upid->ns == ns)
413			nr = upid->nr;
414	}
415	return nr;
416}
417EXPORT_SYMBOL_GPL(pid_nr_ns);
418
419pid_t pid_vnr(struct pid *pid)
420{
421	return pid_nr_ns(pid, task_active_pid_ns(current));
422}
423EXPORT_SYMBOL_GPL(pid_vnr);
424
425pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
426			struct pid_namespace *ns)
427{
428	pid_t nr = 0;
429
430	rcu_read_lock();
431	if (!ns)
432		ns = task_active_pid_ns(current);
433	if (likely(pid_alive(task)))
434		nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
 
 
 
435	rcu_read_unlock();
436
437	return nr;
438}
439EXPORT_SYMBOL(__task_pid_nr_ns);
440
 
 
 
 
 
 
441struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
442{
443	return ns_of_pid(task_pid(tsk));
444}
445EXPORT_SYMBOL_GPL(task_active_pid_ns);
446
447/*
448 * Used by proc to find the first pid that is greater than or equal to nr.
449 *
450 * If there is a pid at nr this function is exactly the same as find_pid_ns.
451 */
452struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
453{
454	return idr_get_next(&ns->idr, &nr);
455}
456
457/**
458 * pidfd_create() - Create a new pid file descriptor.
459 *
460 * @pid:  struct pid that the pidfd will reference
461 *
462 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
463 *
464 * Note, that this function can only be called after the fd table has
465 * been unshared to avoid leaking the pidfd to the new process.
466 *
467 * Return: On success, a cloexec pidfd is returned.
468 *         On error, a negative errno number will be returned.
469 */
470static int pidfd_create(struct pid *pid)
471{
472	int fd;
473
474	fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
475			      O_RDWR | O_CLOEXEC);
476	if (fd < 0)
477		put_pid(pid);
 
 
478
479	return fd;
480}
481
482/**
483 * pidfd_open() - Open new pid file descriptor.
484 *
485 * @pid:   pid for which to retrieve a pidfd
486 * @flags: flags to pass
487 *
488 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
489 * the process identified by @pid. Currently, the process identified by
490 * @pid must be a thread-group leader. This restriction currently exists
491 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
492 * be used with CLONE_THREAD) and pidfd polling (only supports thread group
493 * leaders).
494 *
495 * Return: On success, a cloexec pidfd is returned.
496 *         On error, a negative errno number will be returned.
497 */
498SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
499{
500	int fd, ret;
501	struct pid *p;
502
503	if (flags)
504		return -EINVAL;
505
506	if (pid <= 0)
507		return -EINVAL;
 
 
 
508
509	p = find_get_pid(pid);
510	if (!p)
511		return -ESRCH;
512
513	ret = 0;
514	rcu_read_lock();
515	if (!pid_task(p, PIDTYPE_TGID))
516		ret = -EINVAL;
517	rcu_read_unlock();
518
519	fd = ret ?: pidfd_create(p);
520	put_pid(p);
521	return fd;
522}
523
524void __init pid_idr_init(void)
525{
526	/* Verify no one has done anything silly: */
527	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
528
529	/* bump default and minimum pid_max based on number of cpus */
530	pid_max = min(pid_max_max, max_t(int, pid_max,
531				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
532	pid_max_min = max_t(int, pid_max_min,
533				PIDS_PER_CPU_MIN * num_possible_cpus());
534	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
535
536	idr_init(&init_pid_ns.idr);
 
 
 
537
538	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
539			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
540}
v3.5.6
 
  1/*
  2 * Generic pidhash and scalable, time-bounded PID allocator
  3 *
  4 * (C) 2002-2003 William Irwin, IBM
  5 * (C) 2004 William Irwin, Oracle
  6 * (C) 2002-2004 Ingo Molnar, Red Hat
  7 *
  8 * pid-structures are backing objects for tasks sharing a given ID to chain
  9 * against. There is very little to them aside from hashing them and
 10 * parking tasks using given ID's on a list.
 11 *
 12 * The hash is always changed with the tasklist_lock write-acquired,
 13 * and the hash is only accessed with the tasklist_lock at least
 14 * read-acquired, so there's no additional SMP locking needed here.
 15 *
 16 * We have a list of bitmap pages, which bitmaps represent the PID space.
 17 * Allocating and freeing PIDs is completely lockless. The worst-case
 18 * allocation scenario when all but one out of 1 million PIDs possible are
 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 21 *
 22 * Pid namespaces:
 23 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 24 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 25 *     Many thanks to Oleg Nesterov for comments and help
 26 *
 27 */
 28
 29#include <linux/mm.h>
 30#include <linux/export.h>
 31#include <linux/slab.h>
 32#include <linux/init.h>
 33#include <linux/rculist.h>
 34#include <linux/bootmem.h>
 35#include <linux/hash.h>
 36#include <linux/pid_namespace.h>
 37#include <linux/init_task.h>
 38#include <linux/syscalls.h>
 39
 40#define pid_hashfn(nr, ns)	\
 41	hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
 42static struct hlist_head *pid_hash;
 43static unsigned int pidhash_shift = 4;
 44struct pid init_struct_pid = INIT_STRUCT_PID;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 45
 46int pid_max = PID_MAX_DEFAULT;
 47
 48#define RESERVED_PIDS		300
 49
 50int pid_max_min = RESERVED_PIDS + 1;
 51int pid_max_max = PID_MAX_LIMIT;
 52
 53#define BITS_PER_PAGE		(PAGE_SIZE*8)
 54#define BITS_PER_PAGE_MASK	(BITS_PER_PAGE-1)
 55
 56static inline int mk_pid(struct pid_namespace *pid_ns,
 57		struct pidmap *map, int off)
 58{
 59	return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
 60}
 61
 62#define find_next_offset(map, off)					\
 63		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
 64
 65/*
 66 * PID-map pages start out as NULL, they get allocated upon
 67 * first use and are never deallocated. This way a low pid_max
 68 * value does not cause lots of bitmaps to be allocated, but
 69 * the scheme scales to up to 4 million PIDs, runtime.
 70 */
 71struct pid_namespace init_pid_ns = {
 72	.kref = {
 73		.refcount       = ATOMIC_INIT(2),
 74	},
 75	.pidmap = {
 76		[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
 77	},
 78	.last_pid = 0,
 79	.level = 0,
 80	.child_reaper = &init_task,
 
 
 
 
 
 81};
 82EXPORT_SYMBOL_GPL(init_pid_ns);
 83
 84int is_container_init(struct task_struct *tsk)
 85{
 86	int ret = 0;
 87	struct pid *pid;
 88
 89	rcu_read_lock();
 90	pid = task_pid(tsk);
 91	if (pid != NULL && pid->numbers[pid->level].nr == 1)
 92		ret = 1;
 93	rcu_read_unlock();
 94
 95	return ret;
 96}
 97EXPORT_SYMBOL(is_container_init);
 98
 99/*
100 * Note: disable interrupts while the pidmap_lock is held as an
101 * interrupt might come in and do read_lock(&tasklist_lock).
102 *
103 * If we don't disable interrupts there is a nasty deadlock between
104 * detach_pid()->free_pid() and another cpu that does
105 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
106 * read_lock(&tasklist_lock);
107 *
108 * After we clean up the tasklist_lock and know there are no
109 * irq handlers that take it we can leave the interrupts enabled.
110 * For now it is easier to be safe than to prove it can't happen.
111 */
112
113static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
114
115static void free_pidmap(struct upid *upid)
116{
117	int nr = upid->nr;
118	struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
119	int offset = nr & BITS_PER_PAGE_MASK;
120
121	clear_bit(offset, map->page);
122	atomic_inc(&map->nr_free);
123}
124
125/*
126 * If we started walking pids at 'base', is 'a' seen before 'b'?
127 */
128static int pid_before(int base, int a, int b)
129{
130	/*
131	 * This is the same as saying
132	 *
133	 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
134	 * and that mapping orders 'a' and 'b' with respect to 'base'.
135	 */
136	return (unsigned)(a - base) < (unsigned)(b - base);
137}
138
139/*
140 * We might be racing with someone else trying to set pid_ns->last_pid
141 * at the pid allocation time (there's also a sysctl for this, but racing
142 * with this one is OK, see comment in kernel/pid_namespace.c about it).
143 * We want the winner to have the "later" value, because if the
144 * "earlier" value prevails, then a pid may get reused immediately.
145 *
146 * Since pids rollover, it is not sufficient to just pick the bigger
147 * value.  We have to consider where we started counting from.
148 *
149 * 'base' is the value of pid_ns->last_pid that we observed when
150 * we started looking for a pid.
151 *
152 * 'pid' is the pid that we eventually found.
153 */
154static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
155{
156	int prev;
157	int last_write = base;
158	do {
159		prev = last_write;
160		last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
161	} while ((prev != last_write) && (pid_before(base, last_write, pid)));
162}
163
164static int alloc_pidmap(struct pid_namespace *pid_ns)
165{
166	int i, offset, max_scan, pid, last = pid_ns->last_pid;
167	struct pidmap *map;
168
169	pid = last + 1;
170	if (pid >= pid_max)
171		pid = RESERVED_PIDS;
172	offset = pid & BITS_PER_PAGE_MASK;
173	map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
174	/*
175	 * If last_pid points into the middle of the map->page we
176	 * want to scan this bitmap block twice, the second time
177	 * we start with offset == 0 (or RESERVED_PIDS).
178	 */
179	max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
180	for (i = 0; i <= max_scan; ++i) {
181		if (unlikely(!map->page)) {
182			void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
183			/*
184			 * Free the page if someone raced with us
185			 * installing it:
186			 */
187			spin_lock_irq(&pidmap_lock);
188			if (!map->page) {
189				map->page = page;
190				page = NULL;
191			}
192			spin_unlock_irq(&pidmap_lock);
193			kfree(page);
194			if (unlikely(!map->page))
195				break;
196		}
197		if (likely(atomic_read(&map->nr_free))) {
198			do {
199				if (!test_and_set_bit(offset, map->page)) {
200					atomic_dec(&map->nr_free);
201					set_last_pid(pid_ns, last, pid);
202					return pid;
203				}
204				offset = find_next_offset(map, offset);
205				pid = mk_pid(pid_ns, map, offset);
206			} while (offset < BITS_PER_PAGE && pid < pid_max);
207		}
208		if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
209			++map;
210			offset = 0;
211		} else {
212			map = &pid_ns->pidmap[0];
213			offset = RESERVED_PIDS;
214			if (unlikely(last == offset))
215				break;
216		}
217		pid = mk_pid(pid_ns, map, offset);
218	}
219	return -1;
220}
221
222int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
223{
224	int offset;
225	struct pidmap *map, *end;
226
227	if (last >= PID_MAX_LIMIT)
228		return -1;
229
230	offset = (last + 1) & BITS_PER_PAGE_MASK;
231	map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
232	end = &pid_ns->pidmap[PIDMAP_ENTRIES];
233	for (; map < end; map++, offset = 0) {
234		if (unlikely(!map->page))
235			continue;
236		offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
237		if (offset < BITS_PER_PAGE)
238			return mk_pid(pid_ns, map, offset);
239	}
240	return -1;
241}
242
243void put_pid(struct pid *pid)
244{
245	struct pid_namespace *ns;
246
247	if (!pid)
248		return;
249
250	ns = pid->numbers[pid->level].ns;
251	if ((atomic_read(&pid->count) == 1) ||
252	     atomic_dec_and_test(&pid->count)) {
253		kmem_cache_free(ns->pid_cachep, pid);
254		put_pid_ns(ns);
255	}
256}
257EXPORT_SYMBOL_GPL(put_pid);
258
259static void delayed_put_pid(struct rcu_head *rhp)
260{
261	struct pid *pid = container_of(rhp, struct pid, rcu);
262	put_pid(pid);
263}
264
265void free_pid(struct pid *pid)
266{
267	/* We can be called with write_lock_irq(&tasklist_lock) held */
268	int i;
269	unsigned long flags;
270
271	spin_lock_irqsave(&pidmap_lock, flags);
272	for (i = 0; i <= pid->level; i++)
273		hlist_del_rcu(&pid->numbers[i].pid_chain);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274	spin_unlock_irqrestore(&pidmap_lock, flags);
275
276	for (i = 0; i <= pid->level; i++)
277		free_pidmap(pid->numbers + i);
278
279	call_rcu(&pid->rcu, delayed_put_pid);
280}
281
282struct pid *alloc_pid(struct pid_namespace *ns)
283{
284	struct pid *pid;
285	enum pid_type type;
286	int i, nr;
287	struct pid_namespace *tmp;
288	struct upid *upid;
 
289
290	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
291	if (!pid)
292		goto out;
293
294	tmp = ns;
 
 
295	for (i = ns->level; i >= 0; i--) {
296		nr = alloc_pidmap(tmp);
297		if (nr < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298			goto out_free;
 
299
300		pid->numbers[i].nr = nr;
301		pid->numbers[i].ns = tmp;
302		tmp = tmp->parent;
303	}
304
 
 
 
 
 
305	get_pid_ns(ns);
306	pid->level = ns->level;
307	atomic_set(&pid->count, 1);
308	for (type = 0; type < PIDTYPE_MAX; ++type)
309		INIT_HLIST_HEAD(&pid->tasks[type]);
310
 
 
311	upid = pid->numbers + ns->level;
312	spin_lock_irq(&pidmap_lock);
313	for ( ; upid >= pid->numbers; --upid)
314		hlist_add_head_rcu(&upid->pid_chain,
315				&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
 
 
 
 
316	spin_unlock_irq(&pidmap_lock);
317
318out:
319	return pid;
320
 
 
 
 
321out_free:
322	while (++i <= ns->level)
323		free_pidmap(pid->numbers + i);
 
 
 
 
 
 
 
 
 
324
325	kmem_cache_free(ns->pid_cachep, pid);
326	pid = NULL;
327	goto out;
 
 
 
 
 
 
328}
329
330struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
331{
332	struct hlist_node *elem;
333	struct upid *pnr;
334
335	hlist_for_each_entry_rcu(pnr, elem,
336			&pid_hash[pid_hashfn(nr, ns)], pid_chain)
337		if (pnr->nr == nr && pnr->ns == ns)
338			return container_of(pnr, struct pid,
339					numbers[ns->level]);
340
341	return NULL;
342}
343EXPORT_SYMBOL_GPL(find_pid_ns);
344
345struct pid *find_vpid(int nr)
346{
347	return find_pid_ns(nr, current->nsproxy->pid_ns);
348}
349EXPORT_SYMBOL_GPL(find_vpid);
350
 
 
 
 
 
 
 
351/*
352 * attach_pid() must be called with the tasklist_lock write-held.
353 */
354void attach_pid(struct task_struct *task, enum pid_type type,
355		struct pid *pid)
356{
357	struct pid_link *link;
358
359	link = &task->pids[type];
360	link->pid = pid;
361	hlist_add_head_rcu(&link->node, &pid->tasks[type]);
362}
363
364static void __change_pid(struct task_struct *task, enum pid_type type,
365			struct pid *new)
366{
367	struct pid_link *link;
368	struct pid *pid;
369	int tmp;
370
371	link = &task->pids[type];
372	pid = link->pid;
373
374	hlist_del_rcu(&link->node);
375	link->pid = new;
376
377	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
378		if (!hlist_empty(&pid->tasks[tmp]))
379			return;
380
381	free_pid(pid);
382}
383
384void detach_pid(struct task_struct *task, enum pid_type type)
385{
386	__change_pid(task, type, NULL);
387}
388
389void change_pid(struct task_struct *task, enum pid_type type,
390		struct pid *pid)
391{
392	__change_pid(task, type, pid);
393	attach_pid(task, type, pid);
394}
395
396/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
397void transfer_pid(struct task_struct *old, struct task_struct *new,
398			   enum pid_type type)
399{
400	new->pids[type].pid = old->pids[type].pid;
401	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
 
402}
403
404struct task_struct *pid_task(struct pid *pid, enum pid_type type)
405{
406	struct task_struct *result = NULL;
407	if (pid) {
408		struct hlist_node *first;
409		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
410					      lockdep_tasklist_lock_is_held());
411		if (first)
412			result = hlist_entry(first, struct task_struct, pids[(type)].node);
413	}
414	return result;
415}
416EXPORT_SYMBOL(pid_task);
417
418/*
419 * Must be called under rcu_read_lock().
420 */
421struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
422{
423	rcu_lockdep_assert(rcu_read_lock_held(),
424			   "find_task_by_pid_ns() needs rcu_read_lock()"
425			   " protection");
426	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
427}
428
429struct task_struct *find_task_by_vpid(pid_t vnr)
430{
431	return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns);
 
 
 
 
 
 
 
 
 
 
 
 
 
432}
433
434struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
435{
436	struct pid *pid;
437	rcu_read_lock();
438	if (type != PIDTYPE_PID)
439		task = task->group_leader;
440	pid = get_pid(task->pids[type].pid);
441	rcu_read_unlock();
442	return pid;
443}
444EXPORT_SYMBOL_GPL(get_task_pid);
445
446struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
447{
448	struct task_struct *result;
449	rcu_read_lock();
450	result = pid_task(pid, type);
451	if (result)
452		get_task_struct(result);
453	rcu_read_unlock();
454	return result;
455}
456EXPORT_SYMBOL_GPL(get_pid_task);
457
458struct pid *find_get_pid(pid_t nr)
459{
460	struct pid *pid;
461
462	rcu_read_lock();
463	pid = get_pid(find_vpid(nr));
464	rcu_read_unlock();
465
466	return pid;
467}
468EXPORT_SYMBOL_GPL(find_get_pid);
469
470pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
471{
472	struct upid *upid;
473	pid_t nr = 0;
474
475	if (pid && ns->level <= pid->level) {
476		upid = &pid->numbers[ns->level];
477		if (upid->ns == ns)
478			nr = upid->nr;
479	}
480	return nr;
481}
 
482
483pid_t pid_vnr(struct pid *pid)
484{
485	return pid_nr_ns(pid, current->nsproxy->pid_ns);
486}
487EXPORT_SYMBOL_GPL(pid_vnr);
488
489pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
490			struct pid_namespace *ns)
491{
492	pid_t nr = 0;
493
494	rcu_read_lock();
495	if (!ns)
496		ns = current->nsproxy->pid_ns;
497	if (likely(pid_alive(task))) {
498		if (type != PIDTYPE_PID)
499			task = task->group_leader;
500		nr = pid_nr_ns(task->pids[type].pid, ns);
501	}
502	rcu_read_unlock();
503
504	return nr;
505}
506EXPORT_SYMBOL(__task_pid_nr_ns);
507
508pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
509{
510	return pid_nr_ns(task_tgid(tsk), ns);
511}
512EXPORT_SYMBOL(task_tgid_nr_ns);
513
514struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
515{
516	return ns_of_pid(task_pid(tsk));
517}
518EXPORT_SYMBOL_GPL(task_active_pid_ns);
519
520/*
521 * Used by proc to find the first pid that is greater than or equal to nr.
522 *
523 * If there is a pid at nr this function is exactly the same as find_pid_ns.
524 */
525struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
526{
527	struct pid *pid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528
529	do {
530		pid = find_pid_ns(nr, ns);
531		if (pid)
532			break;
533		nr = next_pidmap(ns, nr);
534	} while (nr > 0);
535
536	return pid;
537}
538
539/*
540 * The pid hash table is scaled according to the amount of memory in the
541 * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
542 * more.
 
 
 
 
 
 
 
 
 
 
 
543 */
544void __init pidhash_init(void)
545{
546	unsigned int i, pidhash_size;
 
 
 
 
547
548	pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
549					   HASH_EARLY | HASH_SMALL,
550					   &pidhash_shift, NULL,
551					   0, 4096);
552	pidhash_size = 1U << pidhash_shift;
553
554	for (i = 0; i < pidhash_size; i++)
555		INIT_HLIST_HEAD(&pid_hash[i]);
 
 
 
 
 
 
 
 
 
 
 
556}
557
558void __init pidmap_init(void)
559{
 
 
 
560	/* bump default and minimum pid_max based on number of cpus */
561	pid_max = min(pid_max_max, max_t(int, pid_max,
562				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
563	pid_max_min = max_t(int, pid_max_min,
564				PIDS_PER_CPU_MIN * num_possible_cpus());
565	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
566
567	init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
568	/* Reserve PID 0. We never call free_pidmap(0) */
569	set_bit(0, init_pid_ns.pidmap[0].page);
570	atomic_dec(&init_pid_ns.pidmap[0].nr_free);
571
572	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
573			SLAB_HWCACHE_ALIGN | SLAB_PANIC);
574}