Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7 *
  8 * SMP support for BMIPS
  9 */
 10
 11#include <linux/init.h>
 12#include <linux/sched.h>
 13#include <linux/sched/hotplug.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/mm.h>
 16#include <linux/delay.h>
 17#include <linux/smp.h>
 18#include <linux/interrupt.h>
 19#include <linux/spinlock.h>
 20#include <linux/cpu.h>
 21#include <linux/cpumask.h>
 22#include <linux/reboot.h>
 23#include <linux/io.h>
 24#include <linux/compiler.h>
 25#include <linux/linkage.h>
 26#include <linux/bug.h>
 27#include <linux/kernel.h>
 28#include <linux/kexec.h>
 29
 30#include <asm/time.h>
 31#include <asm/pgtable.h>
 32#include <asm/processor.h>
 33#include <asm/bootinfo.h>
 34#include <asm/pmon.h>
 35#include <asm/cacheflush.h>
 36#include <asm/tlbflush.h>
 37#include <asm/mipsregs.h>
 38#include <asm/bmips.h>
 39#include <asm/traps.h>
 40#include <asm/barrier.h>
 41#include <asm/cpu-features.h>
 42
 43static int __maybe_unused max_cpus = 1;
 44
 45/* these may be configured by the platform code */
 46int bmips_smp_enabled = 1;
 47int bmips_cpu_offset;
 48cpumask_t bmips_booted_mask;
 49unsigned long bmips_tp1_irqs = IE_IRQ1;
 50
 51#define RESET_FROM_KSEG0		0x80080800
 52#define RESET_FROM_KSEG1		0xa0080800
 53
 54static void bmips_set_reset_vec(int cpu, u32 val);
 55
 56#ifdef CONFIG_SMP
 57
 58/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
 59unsigned long bmips_smp_boot_sp;
 60unsigned long bmips_smp_boot_gp;
 61
 62static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
 63static void bmips5000_send_ipi_single(int cpu, unsigned int action);
 64static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
 65static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
 66
 67/* SW interrupts 0,1 are used for interprocessor signaling */
 68#define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
 69#define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
 70
 71#define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
 72#define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 73#define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 74#define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
 75
 76static void __init bmips_smp_setup(void)
 77{
 78	int i, cpu = 1, boot_cpu = 0;
 79	int cpu_hw_intr;
 80
 81	switch (current_cpu_type()) {
 82	case CPU_BMIPS4350:
 83	case CPU_BMIPS4380:
 84		/* arbitration priority */
 85		clear_c0_brcm_cmt_ctrl(0x30);
 86
 87		/* NBK and weak order flags */
 88		set_c0_brcm_config_0(0x30000);
 89
 90		/* Find out if we are running on TP0 or TP1 */
 91		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
 92
 93		/*
 94		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
 95		 * thread
 96		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
 97		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
 98		 */
 99		if (boot_cpu == 0)
100			cpu_hw_intr = 0x02;
101		else
102			cpu_hw_intr = 0x1d;
103
104		change_c0_brcm_cmt_intr(0xf8018000,
105					(cpu_hw_intr << 27) | (0x03 << 15));
106
107		/* single core, 2 threads (2 pipelines) */
108		max_cpus = 2;
109
110		break;
111	case CPU_BMIPS5000:
112		/* enable raceless SW interrupts */
113		set_c0_brcm_config(0x03 << 22);
114
115		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
116		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
117
118		/* N cores, 2 threads per core */
119		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
120
121		/* clear any pending SW interrupts */
122		for (i = 0; i < max_cpus; i++) {
123			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
124			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
125		}
126
127		break;
128	default:
129		max_cpus = 1;
130	}
131
132	if (!bmips_smp_enabled)
133		max_cpus = 1;
134
135	/* this can be overridden by the BSP */
136	if (!board_ebase_setup)
137		board_ebase_setup = &bmips_ebase_setup;
138
139	__cpu_number_map[boot_cpu] = 0;
140	__cpu_logical_map[0] = boot_cpu;
141
142	for (i = 0; i < max_cpus; i++) {
143		if (i != boot_cpu) {
144			__cpu_number_map[i] = cpu;
145			__cpu_logical_map[cpu] = i;
146			cpu++;
147		}
148		set_cpu_possible(i, 1);
149		set_cpu_present(i, 1);
150	}
151}
152
153/*
154 * IPI IRQ setup - runs on CPU0
155 */
156static void bmips_prepare_cpus(unsigned int max_cpus)
157{
158	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
159
160	switch (current_cpu_type()) {
161	case CPU_BMIPS4350:
162	case CPU_BMIPS4380:
163		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
164		break;
165	case CPU_BMIPS5000:
166		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
167		break;
168	default:
169		return;
170	}
171
172	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
173			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
174		panic("Can't request IPI0 interrupt");
175	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
176			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
177		panic("Can't request IPI1 interrupt");
178}
179
180/*
181 * Tell the hardware to boot CPUx - runs on CPU0
182 */
183static int bmips_boot_secondary(int cpu, struct task_struct *idle)
184{
185	bmips_smp_boot_sp = __KSTK_TOS(idle);
186	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
187	mb();
188
189	/*
190	 * Initial boot sequence for secondary CPU:
191	 *   bmips_reset_nmi_vec @ a000_0000 ->
192	 *   bmips_smp_entry ->
193	 *   plat_wired_tlb_setup (cached function call; optional) ->
194	 *   start_secondary (cached jump)
195	 *
196	 * Warm restart sequence:
197	 *   play_dead WAIT loop ->
198	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
199	 *   eret to play_dead ->
200	 *   bmips_secondary_reentry ->
201	 *   start_secondary
202	 */
203
204	pr_info("SMP: Booting CPU%d...\n", cpu);
205
206	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
207		/* kseg1 might not exist if this CPU enabled XKS01 */
208		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
209
210		switch (current_cpu_type()) {
211		case CPU_BMIPS4350:
212		case CPU_BMIPS4380:
213			bmips43xx_send_ipi_single(cpu, 0);
214			break;
215		case CPU_BMIPS5000:
216			bmips5000_send_ipi_single(cpu, 0);
217			break;
218		}
219	} else {
220		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
221
222		switch (current_cpu_type()) {
223		case CPU_BMIPS4350:
224		case CPU_BMIPS4380:
225			/* Reset slave TP1 if booting from TP0 */
226			if (cpu_logical_map(cpu) == 1)
227				set_c0_brcm_cmt_ctrl(0x01);
228			break;
229		case CPU_BMIPS5000:
230			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
 
 
 
 
 
 
 
 
 
 
231			break;
232		}
233		cpumask_set_cpu(cpu, &bmips_booted_mask);
234	}
235
236	return 0;
237}
238
239/*
240 * Early setup - runs on secondary CPU after cache probe
241 */
242static void bmips_init_secondary(void)
243{
 
 
 
 
 
 
 
244	switch (current_cpu_type()) {
245	case CPU_BMIPS4350:
246	case CPU_BMIPS4380:
 
 
 
 
 
 
 
 
 
247		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
248		break;
249	case CPU_BMIPS5000:
 
 
 
250		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
251		cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
252		break;
253	}
254}
255
256/*
257 * Late setup - runs on secondary CPU before entering the idle loop
258 */
259static void bmips_smp_finish(void)
260{
261	pr_info("SMP: CPU%d is running\n", smp_processor_id());
262
263	/* make sure there won't be a timer interrupt for a little while */
264	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
265
266	irq_enable_hazard();
267	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
268	irq_enable_hazard();
269}
270
271/*
 
 
 
 
 
 
 
272 * BMIPS5000 raceless IPIs
273 *
274 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
275 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
276 * IPI1 is used for SMP_CALL_FUNCTION
277 */
278
279static void bmips5000_send_ipi_single(int cpu, unsigned int action)
280{
281	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
282}
283
284static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
285{
286	int action = irq - IPI0_IRQ;
287
288	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
289
290	if (action == 0)
291		scheduler_ipi();
292	else
293		generic_smp_call_function_interrupt();
294
295	return IRQ_HANDLED;
296}
297
298static void bmips5000_send_ipi_mask(const struct cpumask *mask,
299	unsigned int action)
300{
301	unsigned int i;
302
303	for_each_cpu(i, mask)
304		bmips5000_send_ipi_single(i, action);
305}
306
307/*
308 * BMIPS43xx racey IPIs
309 *
310 * We use one inbound SW IRQ for each CPU.
311 *
312 * A spinlock must be held in order to keep CPUx from accidentally clearing
313 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
314 * same spinlock is used to protect the action masks.
315 */
316
317static DEFINE_SPINLOCK(ipi_lock);
318static DEFINE_PER_CPU(int, ipi_action_mask);
319
320static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
321{
322	unsigned long flags;
323
324	spin_lock_irqsave(&ipi_lock, flags);
325	set_c0_cause(cpu ? C_SW1 : C_SW0);
326	per_cpu(ipi_action_mask, cpu) |= action;
327	irq_enable_hazard();
328	spin_unlock_irqrestore(&ipi_lock, flags);
329}
330
331static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
332{
333	unsigned long flags;
334	int action, cpu = irq - IPI0_IRQ;
335
336	spin_lock_irqsave(&ipi_lock, flags);
337	action = __this_cpu_read(ipi_action_mask);
338	per_cpu(ipi_action_mask, cpu) = 0;
339	clear_c0_cause(cpu ? C_SW1 : C_SW0);
340	spin_unlock_irqrestore(&ipi_lock, flags);
341
342	if (action & SMP_RESCHEDULE_YOURSELF)
343		scheduler_ipi();
344	if (action & SMP_CALL_FUNCTION)
345		generic_smp_call_function_interrupt();
346
347	return IRQ_HANDLED;
348}
349
350static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
351	unsigned int action)
352{
353	unsigned int i;
354
355	for_each_cpu(i, mask)
356		bmips43xx_send_ipi_single(i, action);
357}
358
359#ifdef CONFIG_HOTPLUG_CPU
360
361static int bmips_cpu_disable(void)
362{
363	unsigned int cpu = smp_processor_id();
364
365	if (cpu == 0)
366		return -EBUSY;
367
368	pr_info("SMP: CPU%d is offline\n", cpu);
369
370	set_cpu_online(cpu, false);
371	calculate_cpu_foreign_map();
372	irq_cpu_offline();
373	clear_c0_status(IE_IRQ5);
374
375	local_flush_tlb_all();
376	local_flush_icache_range(0, ~0);
377
378	return 0;
379}
380
381static void bmips_cpu_die(unsigned int cpu)
382{
383}
384
385void __ref play_dead(void)
386{
387	idle_task_exit();
388
389	/* flush data cache */
390	_dma_cache_wback_inv(0, ~0);
391
392	/*
393	 * Wakeup is on SW0 or SW1; disable everything else
394	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
395	 * IRQ handlers; this clears ST0_IE and returns immediately.
396	 */
397	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
398	change_c0_status(
399		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
400		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
401	irq_disable_hazard();
402
403	/*
404	 * wait for SW interrupt from bmips_boot_secondary(), then jump
405	 * back to start_secondary()
406	 */
407	__asm__ __volatile__(
408	"	wait\n"
409	"	j	bmips_secondary_reentry\n"
410	: : : "memory");
411}
412
413#endif /* CONFIG_HOTPLUG_CPU */
414
415const struct plat_smp_ops bmips43xx_smp_ops = {
416	.smp_setup		= bmips_smp_setup,
417	.prepare_cpus		= bmips_prepare_cpus,
418	.boot_secondary		= bmips_boot_secondary,
419	.smp_finish		= bmips_smp_finish,
420	.init_secondary		= bmips_init_secondary,
 
421	.send_ipi_single	= bmips43xx_send_ipi_single,
422	.send_ipi_mask		= bmips43xx_send_ipi_mask,
423#ifdef CONFIG_HOTPLUG_CPU
424	.cpu_disable		= bmips_cpu_disable,
425	.cpu_die		= bmips_cpu_die,
426#endif
427#ifdef CONFIG_KEXEC
428	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
429#endif
430};
431
432const struct plat_smp_ops bmips5000_smp_ops = {
433	.smp_setup		= bmips_smp_setup,
434	.prepare_cpus		= bmips_prepare_cpus,
435	.boot_secondary		= bmips_boot_secondary,
436	.smp_finish		= bmips_smp_finish,
437	.init_secondary		= bmips_init_secondary,
 
438	.send_ipi_single	= bmips5000_send_ipi_single,
439	.send_ipi_mask		= bmips5000_send_ipi_mask,
440#ifdef CONFIG_HOTPLUG_CPU
441	.cpu_disable		= bmips_cpu_disable,
442	.cpu_die		= bmips_cpu_die,
443#endif
444#ifdef CONFIG_KEXEC
445	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
446#endif
447};
448
449#endif /* CONFIG_SMP */
450
451/***********************************************************************
452 * BMIPS vector relocation
453 * This is primarily used for SMP boot, but it is applicable to some
454 * UP BMIPS systems as well.
455 ***********************************************************************/
456
457static void bmips_wr_vec(unsigned long dst, char *start, char *end)
458{
459	memcpy((void *)dst, start, end - start);
460	dma_cache_wback(dst, end - start);
461	local_flush_icache_range(dst, dst + (end - start));
462	instruction_hazard();
463}
464
465static inline void bmips_nmi_handler_setup(void)
466{
467	bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
468		bmips_reset_nmi_vec_end);
469	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
470		bmips_smp_int_vec_end);
471}
472
473struct reset_vec_info {
474	int cpu;
475	u32 val;
476};
477
478static void bmips_set_reset_vec_remote(void *vinfo)
479{
480	struct reset_vec_info *info = vinfo;
481	int shift = info->cpu & 0x01 ? 16 : 0;
482	u32 mask = ~(0xffff << shift), val = info->val >> 16;
483
484	preempt_disable();
485	if (smp_processor_id() > 0) {
486		smp_call_function_single(0, &bmips_set_reset_vec_remote,
487					 info, 1);
488	} else {
489		if (info->cpu & 0x02) {
490			/* BMIPS5200 "should" use mask/shift, but it's buggy */
491			bmips_write_zscm_reg(0xa0, (val << 16) | val);
492			bmips_read_zscm_reg(0xa0);
493		} else {
494			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
495					      (val << shift));
496		}
497	}
498	preempt_enable();
499}
500
501static void bmips_set_reset_vec(int cpu, u32 val)
502{
503	struct reset_vec_info info;
504
505	if (current_cpu_type() == CPU_BMIPS5000) {
506		/* this needs to run from CPU0 (which is always online) */
507		info.cpu = cpu;
508		info.val = val;
509		bmips_set_reset_vec_remote(&info);
510	} else {
511		void __iomem *cbr = BMIPS_GET_CBR();
512
513		if (cpu == 0)
514			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
515		else {
516			if (current_cpu_type() != CPU_BMIPS4380)
517				return;
518			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
519		}
520	}
521	__sync();
522	back_to_back_c0_hazard();
523}
524
525void bmips_ebase_setup(void)
526{
527	unsigned long new_ebase = ebase;
 
528
529	BUG_ON(ebase != CKSEG0);
530
531	switch (current_cpu_type()) {
532	case CPU_BMIPS4350:
533		/*
534		 * BMIPS4350 cannot relocate the normal vectors, but it
535		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
536		 * the relocated BEV=1, IV=0 general exception vector @
537		 * 0xa000_0380.
538		 *
539		 * set_uncached_handler() is used here because:
540		 *  - CPU1 will run this from uncached space
541		 *  - None of the cacheflush functions are set up yet
542		 */
543		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
544			&bmips_smp_int_vec, 0x80);
545		__sync();
546		return;
547	case CPU_BMIPS3300:
548	case CPU_BMIPS4380:
549		/*
550		 * 0x8000_0000: reset/NMI (initially in kseg1)
551		 * 0x8000_0400: normal vectors
552		 */
553		new_ebase = 0x80000400;
554		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
 
 
555		break;
556	case CPU_BMIPS5000:
557		/*
558		 * 0x8000_0000: reset/NMI (initially in kseg1)
559		 * 0x8000_1000: normal vectors
560		 */
561		new_ebase = 0x80001000;
562		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
563		write_c0_ebase(new_ebase);
 
 
564		break;
565	default:
566		return;
567	}
568
569	board_nmi_handler_setup = &bmips_nmi_handler_setup;
570	ebase = new_ebase;
571}
572
573asmlinkage void __weak plat_wired_tlb_setup(void)
574{
575	/*
576	 * Called when starting/restarting a secondary CPU.
577	 * Kernel stacks and other important data might only be accessible
578	 * once the wired entries are present.
579	 */
580}
581
582void bmips_cpu_setup(void)
583{
584	void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
585	u32 __maybe_unused cfg;
586
587	switch (current_cpu_type()) {
588	case CPU_BMIPS3300:
589		/* Set BIU to async mode */
590		set_c0_brcm_bus_pll(BIT(22));
591		__sync();
592
593		/* put the BIU back in sync mode */
594		clear_c0_brcm_bus_pll(BIT(22));
595
596		/* clear BHTD to enable branch history table */
597		clear_c0_brcm_reset(BIT(16));
598
599		/* Flush and enable RAC */
600		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
601		__raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
602		__raw_readl(cbr + BMIPS_RAC_CONFIG);
603
604		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
605		__raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
606		__raw_readl(cbr + BMIPS_RAC_CONFIG);
607
608		cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
609		__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
610		__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
611		break;
612
613	case CPU_BMIPS4380:
614		/* CBG workaround for early BMIPS4380 CPUs */
615		switch (read_c0_prid()) {
616		case 0x2a040:
617		case 0x2a042:
618		case 0x2a044:
619		case 0x2a060:
620			cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
621			__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
622			__raw_readl(cbr + BMIPS_L2_CONFIG);
623		}
624
625		/* clear BHTD to enable branch history table */
626		clear_c0_brcm_config_0(BIT(21));
627
628		/* XI/ROTR enable */
629		set_c0_brcm_config_0(BIT(23));
630		set_c0_brcm_cmt_ctrl(BIT(15));
631		break;
632
633	case CPU_BMIPS5000:
634		/* enable RDHWR, BRDHWR */
635		set_c0_brcm_config(BIT(17) | BIT(21));
636
637		/* Disable JTB */
638		__asm__ __volatile__(
639		"	.set	noreorder\n"
640		"	li	$8, 0x5a455048\n"
641		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
642		"	.word	0x4008b008\n"	/* mfc0	t0, $22, 8 */
643		"	li	$9, 0x00008000\n"
644		"	or	$8, $8, $9\n"
645		"	.word	0x4088b008\n"	/* mtc0	t0, $22, 8 */
646		"	sync\n"
647		"	li	$8, 0x0\n"
648		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
649		"	.set	reorder\n"
650		: : : "$8", "$9");
651
652		/* XI enable */
653		set_c0_brcm_config(BIT(27));
654
655		/* enable MIPS32R2 ROR instruction for XI TLB handlers */
656		__asm__ __volatile__(
657		"	li	$8, 0x5a455048\n"
658		"	.word	0x4088b00f\n"	/* mtc0 $8, $22, 15 */
659		"	nop; nop; nop\n"
660		"	.word	0x4008b008\n"	/* mfc0 $8, $22, 8 */
661		"	lui	$9, 0x0100\n"
662		"	or	$8, $9\n"
663		"	.word	0x4088b008\n"	/* mtc0 $8, $22, 8 */
664		: : : "$8", "$9");
665		break;
666	}
667}
v3.15
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7 *
  8 * SMP support for BMIPS
  9 */
 10
 11#include <linux/init.h>
 12#include <linux/sched.h>
 
 
 13#include <linux/mm.h>
 14#include <linux/delay.h>
 15#include <linux/smp.h>
 16#include <linux/interrupt.h>
 17#include <linux/spinlock.h>
 18#include <linux/cpu.h>
 19#include <linux/cpumask.h>
 20#include <linux/reboot.h>
 21#include <linux/io.h>
 22#include <linux/compiler.h>
 23#include <linux/linkage.h>
 24#include <linux/bug.h>
 25#include <linux/kernel.h>
 
 26
 27#include <asm/time.h>
 28#include <asm/pgtable.h>
 29#include <asm/processor.h>
 30#include <asm/bootinfo.h>
 31#include <asm/pmon.h>
 32#include <asm/cacheflush.h>
 33#include <asm/tlbflush.h>
 34#include <asm/mipsregs.h>
 35#include <asm/bmips.h>
 36#include <asm/traps.h>
 37#include <asm/barrier.h>
 
 38
 39static int __maybe_unused max_cpus = 1;
 40
 41/* these may be configured by the platform code */
 42int bmips_smp_enabled = 1;
 43int bmips_cpu_offset;
 44cpumask_t bmips_booted_mask;
 
 
 
 
 
 
 45
 46#ifdef CONFIG_SMP
 47
 48/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
 49unsigned long bmips_smp_boot_sp;
 50unsigned long bmips_smp_boot_gp;
 51
 52static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
 53static void bmips5000_send_ipi_single(int cpu, unsigned int action);
 54static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
 55static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
 56
 57/* SW interrupts 0,1 are used for interprocessor signaling */
 58#define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
 59#define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
 60
 61#define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
 62#define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 63#define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 64#define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
 65
 66static void __init bmips_smp_setup(void)
 67{
 68	int i, cpu = 1, boot_cpu = 0;
 69	int cpu_hw_intr;
 70
 71	switch (current_cpu_type()) {
 72	case CPU_BMIPS4350:
 73	case CPU_BMIPS4380:
 74		/* arbitration priority */
 75		clear_c0_brcm_cmt_ctrl(0x30);
 76
 77		/* NBK and weak order flags */
 78		set_c0_brcm_config_0(0x30000);
 79
 80		/* Find out if we are running on TP0 or TP1 */
 81		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
 82
 83		/*
 84		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
 85		 * thread
 86		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
 87		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
 88		 */
 89		if (boot_cpu == 0)
 90			cpu_hw_intr = 0x02;
 91		else
 92			cpu_hw_intr = 0x1d;
 93
 94		change_c0_brcm_cmt_intr(0xf8018000,
 95					(cpu_hw_intr << 27) | (0x03 << 15));
 96
 97		/* single core, 2 threads (2 pipelines) */
 98		max_cpus = 2;
 99
100		break;
101	case CPU_BMIPS5000:
102		/* enable raceless SW interrupts */
103		set_c0_brcm_config(0x03 << 22);
104
105		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
106		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
107
108		/* N cores, 2 threads per core */
109		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
110
111		/* clear any pending SW interrupts */
112		for (i = 0; i < max_cpus; i++) {
113			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
114			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
115		}
116
117		break;
118	default:
119		max_cpus = 1;
120	}
121
122	if (!bmips_smp_enabled)
123		max_cpus = 1;
124
125	/* this can be overridden by the BSP */
126	if (!board_ebase_setup)
127		board_ebase_setup = &bmips_ebase_setup;
128
129	__cpu_number_map[boot_cpu] = 0;
130	__cpu_logical_map[0] = boot_cpu;
131
132	for (i = 0; i < max_cpus; i++) {
133		if (i != boot_cpu) {
134			__cpu_number_map[i] = cpu;
135			__cpu_logical_map[cpu] = i;
136			cpu++;
137		}
138		set_cpu_possible(i, 1);
139		set_cpu_present(i, 1);
140	}
141}
142
143/*
144 * IPI IRQ setup - runs on CPU0
145 */
146static void bmips_prepare_cpus(unsigned int max_cpus)
147{
148	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
149
150	switch (current_cpu_type()) {
151	case CPU_BMIPS4350:
152	case CPU_BMIPS4380:
153		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
154		break;
155	case CPU_BMIPS5000:
156		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
157		break;
158	default:
159		return;
160	}
161
162	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
163			"smp_ipi0", NULL))
164		panic("Can't request IPI0 interrupt");
165	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
166			"smp_ipi1", NULL))
167		panic("Can't request IPI1 interrupt");
168}
169
170/*
171 * Tell the hardware to boot CPUx - runs on CPU0
172 */
173static void bmips_boot_secondary(int cpu, struct task_struct *idle)
174{
175	bmips_smp_boot_sp = __KSTK_TOS(idle);
176	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
177	mb();
178
179	/*
180	 * Initial boot sequence for secondary CPU:
181	 *   bmips_reset_nmi_vec @ a000_0000 ->
182	 *   bmips_smp_entry ->
183	 *   plat_wired_tlb_setup (cached function call; optional) ->
184	 *   start_secondary (cached jump)
185	 *
186	 * Warm restart sequence:
187	 *   play_dead WAIT loop ->
188	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
189	 *   eret to play_dead ->
190	 *   bmips_secondary_reentry ->
191	 *   start_secondary
192	 */
193
194	pr_info("SMP: Booting CPU%d...\n", cpu);
195
196	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
 
 
 
197		switch (current_cpu_type()) {
198		case CPU_BMIPS4350:
199		case CPU_BMIPS4380:
200			bmips43xx_send_ipi_single(cpu, 0);
201			break;
202		case CPU_BMIPS5000:
203			bmips5000_send_ipi_single(cpu, 0);
204			break;
205		}
206	}
207	else {
 
208		switch (current_cpu_type()) {
209		case CPU_BMIPS4350:
210		case CPU_BMIPS4380:
211			/* Reset slave TP1 if booting from TP0 */
212			if (cpu_logical_map(cpu) == 1)
213				set_c0_brcm_cmt_ctrl(0x01);
214			break;
215		case CPU_BMIPS5000:
216			if (cpu & 0x01)
217				write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
218			else {
219				/*
220				 * core N thread 0 was already booted; just
221				 * pulse the NMI line
222				 */
223				bmips_write_zscm_reg(0x210, 0xc0000000);
224				udelay(10);
225				bmips_write_zscm_reg(0x210, 0x00);
226			}
227			break;
228		}
229		cpumask_set_cpu(cpu, &bmips_booted_mask);
230	}
 
 
231}
232
233/*
234 * Early setup - runs on secondary CPU after cache probe
235 */
236static void bmips_init_secondary(void)
237{
238	/* move NMI vector to kseg0, in case XKS01 is enabled */
239
240	void __iomem *cbr;
241	unsigned long old_vec;
242	unsigned long relo_vector;
243	int boot_cpu;
244
245	switch (current_cpu_type()) {
246	case CPU_BMIPS4350:
247	case CPU_BMIPS4380:
248		cbr = BMIPS_GET_CBR();
249
250		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
251		relo_vector = boot_cpu ? BMIPS_RELO_VECTOR_CONTROL_0 :
252				  BMIPS_RELO_VECTOR_CONTROL_1;
253
254		old_vec = __raw_readl(cbr + relo_vector);
255		__raw_writel(old_vec & ~0x20000000, cbr + relo_vector);
256
257		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
258		break;
259	case CPU_BMIPS5000:
260		write_c0_brcm_bootvec(read_c0_brcm_bootvec() &
261			(smp_processor_id() & 0x01 ? ~0x20000000 : ~0x2000));
262
263		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
 
264		break;
265	}
266}
267
268/*
269 * Late setup - runs on secondary CPU before entering the idle loop
270 */
271static void bmips_smp_finish(void)
272{
273	pr_info("SMP: CPU%d is running\n", smp_processor_id());
274
275	/* make sure there won't be a timer interrupt for a little while */
276	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
277
278	irq_enable_hazard();
279	set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ1 | IE_IRQ5 | ST0_IE);
280	irq_enable_hazard();
281}
282
283/*
284 * Runs on CPU0 after all CPUs have been booted
285 */
286static void bmips_cpus_done(void)
287{
288}
289
290/*
291 * BMIPS5000 raceless IPIs
292 *
293 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
294 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
295 * IPI1 is used for SMP_CALL_FUNCTION
296 */
297
298static void bmips5000_send_ipi_single(int cpu, unsigned int action)
299{
300	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
301}
302
303static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
304{
305	int action = irq - IPI0_IRQ;
306
307	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
308
309	if (action == 0)
310		scheduler_ipi();
311	else
312		smp_call_function_interrupt();
313
314	return IRQ_HANDLED;
315}
316
317static void bmips5000_send_ipi_mask(const struct cpumask *mask,
318	unsigned int action)
319{
320	unsigned int i;
321
322	for_each_cpu(i, mask)
323		bmips5000_send_ipi_single(i, action);
324}
325
326/*
327 * BMIPS43xx racey IPIs
328 *
329 * We use one inbound SW IRQ for each CPU.
330 *
331 * A spinlock must be held in order to keep CPUx from accidentally clearing
332 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
333 * same spinlock is used to protect the action masks.
334 */
335
336static DEFINE_SPINLOCK(ipi_lock);
337static DEFINE_PER_CPU(int, ipi_action_mask);
338
339static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
340{
341	unsigned long flags;
342
343	spin_lock_irqsave(&ipi_lock, flags);
344	set_c0_cause(cpu ? C_SW1 : C_SW0);
345	per_cpu(ipi_action_mask, cpu) |= action;
346	irq_enable_hazard();
347	spin_unlock_irqrestore(&ipi_lock, flags);
348}
349
350static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
351{
352	unsigned long flags;
353	int action, cpu = irq - IPI0_IRQ;
354
355	spin_lock_irqsave(&ipi_lock, flags);
356	action = __get_cpu_var(ipi_action_mask);
357	per_cpu(ipi_action_mask, cpu) = 0;
358	clear_c0_cause(cpu ? C_SW1 : C_SW0);
359	spin_unlock_irqrestore(&ipi_lock, flags);
360
361	if (action & SMP_RESCHEDULE_YOURSELF)
362		scheduler_ipi();
363	if (action & SMP_CALL_FUNCTION)
364		smp_call_function_interrupt();
365
366	return IRQ_HANDLED;
367}
368
369static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
370	unsigned int action)
371{
372	unsigned int i;
373
374	for_each_cpu(i, mask)
375		bmips43xx_send_ipi_single(i, action);
376}
377
378#ifdef CONFIG_HOTPLUG_CPU
379
380static int bmips_cpu_disable(void)
381{
382	unsigned int cpu = smp_processor_id();
383
384	if (cpu == 0)
385		return -EBUSY;
386
387	pr_info("SMP: CPU%d is offline\n", cpu);
388
389	set_cpu_online(cpu, false);
390	cpu_clear(cpu, cpu_callin_map);
 
 
391
392	local_flush_tlb_all();
393	local_flush_icache_range(0, ~0);
394
395	return 0;
396}
397
398static void bmips_cpu_die(unsigned int cpu)
399{
400}
401
402void __ref play_dead(void)
403{
404	idle_task_exit();
405
406	/* flush data cache */
407	_dma_cache_wback_inv(0, ~0);
408
409	/*
410	 * Wakeup is on SW0 or SW1; disable everything else
411	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
412	 * IRQ handlers; this clears ST0_IE and returns immediately.
413	 */
414	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
415	change_c0_status(IE_IRQ5 | IE_IRQ1 | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
 
416		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
417	irq_disable_hazard();
418
419	/*
420	 * wait for SW interrupt from bmips_boot_secondary(), then jump
421	 * back to start_secondary()
422	 */
423	__asm__ __volatile__(
424	"	wait\n"
425	"	j	bmips_secondary_reentry\n"
426	: : : "memory");
427}
428
429#endif /* CONFIG_HOTPLUG_CPU */
430
431struct plat_smp_ops bmips43xx_smp_ops = {
432	.smp_setup		= bmips_smp_setup,
433	.prepare_cpus		= bmips_prepare_cpus,
434	.boot_secondary		= bmips_boot_secondary,
435	.smp_finish		= bmips_smp_finish,
436	.init_secondary		= bmips_init_secondary,
437	.cpus_done		= bmips_cpus_done,
438	.send_ipi_single	= bmips43xx_send_ipi_single,
439	.send_ipi_mask		= bmips43xx_send_ipi_mask,
440#ifdef CONFIG_HOTPLUG_CPU
441	.cpu_disable		= bmips_cpu_disable,
442	.cpu_die		= bmips_cpu_die,
443#endif
 
 
 
444};
445
446struct plat_smp_ops bmips5000_smp_ops = {
447	.smp_setup		= bmips_smp_setup,
448	.prepare_cpus		= bmips_prepare_cpus,
449	.boot_secondary		= bmips_boot_secondary,
450	.smp_finish		= bmips_smp_finish,
451	.init_secondary		= bmips_init_secondary,
452	.cpus_done		= bmips_cpus_done,
453	.send_ipi_single	= bmips5000_send_ipi_single,
454	.send_ipi_mask		= bmips5000_send_ipi_mask,
455#ifdef CONFIG_HOTPLUG_CPU
456	.cpu_disable		= bmips_cpu_disable,
457	.cpu_die		= bmips_cpu_die,
458#endif
 
 
 
459};
460
461#endif /* CONFIG_SMP */
462
463/***********************************************************************
464 * BMIPS vector relocation
465 * This is primarily used for SMP boot, but it is applicable to some
466 * UP BMIPS systems as well.
467 ***********************************************************************/
468
469static void bmips_wr_vec(unsigned long dst, char *start, char *end)
470{
471	memcpy((void *)dst, start, end - start);
472	dma_cache_wback((unsigned long)start, end - start);
473	local_flush_icache_range(dst, dst + (end - start));
474	instruction_hazard();
475}
476
477static inline void bmips_nmi_handler_setup(void)
478{
479	bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
480		&bmips_reset_nmi_vec_end);
481	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
482		&bmips_smp_int_vec_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
483}
484
485void bmips_ebase_setup(void)
486{
487	unsigned long new_ebase = ebase;
488	void __iomem __maybe_unused *cbr;
489
490	BUG_ON(ebase != CKSEG0);
491
492	switch (current_cpu_type()) {
493	case CPU_BMIPS4350:
494		/*
495		 * BMIPS4350 cannot relocate the normal vectors, but it
496		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
497		 * the relocated BEV=1, IV=0 general exception vector @
498		 * 0xa000_0380.
499		 *
500		 * set_uncached_handler() is used here because:
501		 *  - CPU1 will run this from uncached space
502		 *  - None of the cacheflush functions are set up yet
503		 */
504		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
505			&bmips_smp_int_vec, 0x80);
506		__sync();
507		return;
 
508	case CPU_BMIPS4380:
509		/*
510		 * 0x8000_0000: reset/NMI (initially in kseg1)
511		 * 0x8000_0400: normal vectors
512		 */
513		new_ebase = 0x80000400;
514		cbr = BMIPS_GET_CBR();
515		__raw_writel(0x80080800, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
516		__raw_writel(0xa0080800, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
517		break;
518	case CPU_BMIPS5000:
519		/*
520		 * 0x8000_0000: reset/NMI (initially in kseg1)
521		 * 0x8000_1000: normal vectors
522		 */
523		new_ebase = 0x80001000;
524		write_c0_brcm_bootvec(0xa0088008);
525		write_c0_ebase(new_ebase);
526		if (max_cpus > 2)
527			bmips_write_zscm_reg(0xa0, 0xa008a008);
528		break;
529	default:
530		return;
531	}
532
533	board_nmi_handler_setup = &bmips_nmi_handler_setup;
534	ebase = new_ebase;
535}
536
537asmlinkage void __weak plat_wired_tlb_setup(void)
538{
539	/*
540	 * Called when starting/restarting a secondary CPU.
541	 * Kernel stacks and other important data might only be accessible
542	 * once the wired entries are present.
543	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
544}