Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7 *
  8 * SMP support for BMIPS
  9 */
 10
 11#include <linux/init.h>
 12#include <linux/sched.h>
 13#include <linux/sched/hotplug.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/mm.h>
 16#include <linux/delay.h>
 17#include <linux/smp.h>
 18#include <linux/interrupt.h>
 19#include <linux/spinlock.h>
 20#include <linux/cpu.h>
 21#include <linux/cpumask.h>
 22#include <linux/reboot.h>
 23#include <linux/io.h>
 24#include <linux/compiler.h>
 25#include <linux/linkage.h>
 26#include <linux/bug.h>
 27#include <linux/kernel.h>
 28#include <linux/kexec.h>
 
 29
 30#include <asm/time.h>
 31#include <asm/pgtable.h>
 32#include <asm/processor.h>
 33#include <asm/bootinfo.h>
 34#include <asm/pmon.h>
 35#include <asm/cacheflush.h>
 36#include <asm/tlbflush.h>
 37#include <asm/mipsregs.h>
 38#include <asm/bmips.h>
 39#include <asm/traps.h>
 40#include <asm/barrier.h>
 41#include <asm/cpu-features.h>
 42
 43static int __maybe_unused max_cpus = 1;
 44
 45/* these may be configured by the platform code */
 46int bmips_smp_enabled = 1;
 47int bmips_cpu_offset;
 48cpumask_t bmips_booted_mask;
 49unsigned long bmips_tp1_irqs = IE_IRQ1;
 50
 51#define RESET_FROM_KSEG0		0x80080800
 52#define RESET_FROM_KSEG1		0xa0080800
 53
 54static void bmips_set_reset_vec(int cpu, u32 val);
 55
 56#ifdef CONFIG_SMP
 57
 
 
 58/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
 59unsigned long bmips_smp_boot_sp;
 60unsigned long bmips_smp_boot_gp;
 61
 62static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
 63static void bmips5000_send_ipi_single(int cpu, unsigned int action);
 64static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
 65static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
 66
 67/* SW interrupts 0,1 are used for interprocessor signaling */
 68#define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
 69#define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
 70
 71#define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
 72#define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 73#define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 74#define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
 75
 76static void __init bmips_smp_setup(void)
 77{
 78	int i, cpu = 1, boot_cpu = 0;
 79	int cpu_hw_intr;
 80
 81	switch (current_cpu_type()) {
 82	case CPU_BMIPS4350:
 83	case CPU_BMIPS4380:
 84		/* arbitration priority */
 85		clear_c0_brcm_cmt_ctrl(0x30);
 86
 87		/* NBK and weak order flags */
 88		set_c0_brcm_config_0(0x30000);
 89
 90		/* Find out if we are running on TP0 or TP1 */
 91		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
 92
 93		/*
 94		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
 95		 * thread
 96		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
 97		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
 98		 */
 99		if (boot_cpu == 0)
100			cpu_hw_intr = 0x02;
101		else
102			cpu_hw_intr = 0x1d;
103
104		change_c0_brcm_cmt_intr(0xf8018000,
105					(cpu_hw_intr << 27) | (0x03 << 15));
106
107		/* single core, 2 threads (2 pipelines) */
108		max_cpus = 2;
109
110		break;
111	case CPU_BMIPS5000:
112		/* enable raceless SW interrupts */
113		set_c0_brcm_config(0x03 << 22);
114
115		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
116		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
117
118		/* N cores, 2 threads per core */
119		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
120
121		/* clear any pending SW interrupts */
122		for (i = 0; i < max_cpus; i++) {
123			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
124			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
125		}
126
127		break;
128	default:
129		max_cpus = 1;
130	}
131
132	if (!bmips_smp_enabled)
133		max_cpus = 1;
134
135	/* this can be overridden by the BSP */
136	if (!board_ebase_setup)
137		board_ebase_setup = &bmips_ebase_setup;
138
139	__cpu_number_map[boot_cpu] = 0;
140	__cpu_logical_map[0] = boot_cpu;
 
141
142	for (i = 0; i < max_cpus; i++) {
143		if (i != boot_cpu) {
144			__cpu_number_map[i] = cpu;
145			__cpu_logical_map[cpu] = i;
146			cpu++;
 
 
 
147		}
148		set_cpu_possible(i, 1);
149		set_cpu_present(i, 1);
 
 
 
150	}
151}
152
153/*
154 * IPI IRQ setup - runs on CPU0
155 */
156static void bmips_prepare_cpus(unsigned int max_cpus)
157{
158	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
159
160	switch (current_cpu_type()) {
161	case CPU_BMIPS4350:
162	case CPU_BMIPS4380:
163		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
164		break;
165	case CPU_BMIPS5000:
166		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
167		break;
168	default:
169		return;
170	}
171
172	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
173			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
174		panic("Can't request IPI0 interrupt");
175	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
176			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
177		panic("Can't request IPI1 interrupt");
178}
179
180/*
181 * Tell the hardware to boot CPUx - runs on CPU0
182 */
183static int bmips_boot_secondary(int cpu, struct task_struct *idle)
184{
185	bmips_smp_boot_sp = __KSTK_TOS(idle);
186	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
187	mb();
188
189	/*
190	 * Initial boot sequence for secondary CPU:
191	 *   bmips_reset_nmi_vec @ a000_0000 ->
192	 *   bmips_smp_entry ->
193	 *   plat_wired_tlb_setup (cached function call; optional) ->
194	 *   start_secondary (cached jump)
195	 *
196	 * Warm restart sequence:
197	 *   play_dead WAIT loop ->
198	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
199	 *   eret to play_dead ->
200	 *   bmips_secondary_reentry ->
201	 *   start_secondary
202	 */
203
204	pr_info("SMP: Booting CPU%d...\n", cpu);
205
206	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
207		/* kseg1 might not exist if this CPU enabled XKS01 */
208		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
209
210		switch (current_cpu_type()) {
211		case CPU_BMIPS4350:
212		case CPU_BMIPS4380:
213			bmips43xx_send_ipi_single(cpu, 0);
214			break;
215		case CPU_BMIPS5000:
216			bmips5000_send_ipi_single(cpu, 0);
217			break;
218		}
219	} else {
220		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
221
222		switch (current_cpu_type()) {
223		case CPU_BMIPS4350:
224		case CPU_BMIPS4380:
225			/* Reset slave TP1 if booting from TP0 */
226			if (cpu_logical_map(cpu) == 1)
227				set_c0_brcm_cmt_ctrl(0x01);
228			break;
229		case CPU_BMIPS5000:
230			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
231			break;
232		}
233		cpumask_set_cpu(cpu, &bmips_booted_mask);
234	}
235
236	return 0;
237}
238
239/*
240 * Early setup - runs on secondary CPU after cache probe
241 */
242static void bmips_init_secondary(void)
243{
 
 
244	switch (current_cpu_type()) {
245	case CPU_BMIPS4350:
246	case CPU_BMIPS4380:
247		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
248		break;
249	case CPU_BMIPS5000:
250		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
251		cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
252		break;
253	}
254}
255
256/*
257 * Late setup - runs on secondary CPU before entering the idle loop
258 */
259static void bmips_smp_finish(void)
260{
261	pr_info("SMP: CPU%d is running\n", smp_processor_id());
262
263	/* make sure there won't be a timer interrupt for a little while */
264	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
265
266	irq_enable_hazard();
267	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
268	irq_enable_hazard();
269}
270
271/*
272 * BMIPS5000 raceless IPIs
273 *
274 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
275 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
276 * IPI1 is used for SMP_CALL_FUNCTION
277 */
278
279static void bmips5000_send_ipi_single(int cpu, unsigned int action)
280{
281	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
282}
283
284static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
285{
286	int action = irq - IPI0_IRQ;
287
288	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
289
290	if (action == 0)
291		scheduler_ipi();
292	else
293		generic_smp_call_function_interrupt();
294
295	return IRQ_HANDLED;
296}
297
298static void bmips5000_send_ipi_mask(const struct cpumask *mask,
299	unsigned int action)
300{
301	unsigned int i;
302
303	for_each_cpu(i, mask)
304		bmips5000_send_ipi_single(i, action);
305}
306
307/*
308 * BMIPS43xx racey IPIs
309 *
310 * We use one inbound SW IRQ for each CPU.
311 *
312 * A spinlock must be held in order to keep CPUx from accidentally clearing
313 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
314 * same spinlock is used to protect the action masks.
315 */
316
317static DEFINE_SPINLOCK(ipi_lock);
318static DEFINE_PER_CPU(int, ipi_action_mask);
319
320static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
321{
322	unsigned long flags;
323
324	spin_lock_irqsave(&ipi_lock, flags);
325	set_c0_cause(cpu ? C_SW1 : C_SW0);
326	per_cpu(ipi_action_mask, cpu) |= action;
327	irq_enable_hazard();
328	spin_unlock_irqrestore(&ipi_lock, flags);
329}
330
331static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
332{
333	unsigned long flags;
334	int action, cpu = irq - IPI0_IRQ;
335
336	spin_lock_irqsave(&ipi_lock, flags);
337	action = __this_cpu_read(ipi_action_mask);
338	per_cpu(ipi_action_mask, cpu) = 0;
339	clear_c0_cause(cpu ? C_SW1 : C_SW0);
340	spin_unlock_irqrestore(&ipi_lock, flags);
341
342	if (action & SMP_RESCHEDULE_YOURSELF)
343		scheduler_ipi();
344	if (action & SMP_CALL_FUNCTION)
345		generic_smp_call_function_interrupt();
346
347	return IRQ_HANDLED;
348}
349
350static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
351	unsigned int action)
352{
353	unsigned int i;
354
355	for_each_cpu(i, mask)
356		bmips43xx_send_ipi_single(i, action);
357}
358
359#ifdef CONFIG_HOTPLUG_CPU
360
361static int bmips_cpu_disable(void)
362{
363	unsigned int cpu = smp_processor_id();
364
365	if (cpu == 0)
366		return -EBUSY;
367
368	pr_info("SMP: CPU%d is offline\n", cpu);
369
370	set_cpu_online(cpu, false);
371	calculate_cpu_foreign_map();
372	irq_cpu_offline();
373	clear_c0_status(IE_IRQ5);
374
375	local_flush_tlb_all();
376	local_flush_icache_range(0, ~0);
377
378	return 0;
379}
380
381static void bmips_cpu_die(unsigned int cpu)
382{
383}
384
385void __ref play_dead(void)
386{
387	idle_task_exit();
 
388
389	/* flush data cache */
390	_dma_cache_wback_inv(0, ~0);
391
392	/*
393	 * Wakeup is on SW0 or SW1; disable everything else
394	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
395	 * IRQ handlers; this clears ST0_IE and returns immediately.
396	 */
397	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
398	change_c0_status(
399		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
400		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
401	irq_disable_hazard();
402
403	/*
404	 * wait for SW interrupt from bmips_boot_secondary(), then jump
405	 * back to start_secondary()
406	 */
407	__asm__ __volatile__(
408	"	wait\n"
409	"	j	bmips_secondary_reentry\n"
410	: : : "memory");
 
 
411}
412
413#endif /* CONFIG_HOTPLUG_CPU */
414
415const struct plat_smp_ops bmips43xx_smp_ops = {
416	.smp_setup		= bmips_smp_setup,
417	.prepare_cpus		= bmips_prepare_cpus,
418	.boot_secondary		= bmips_boot_secondary,
419	.smp_finish		= bmips_smp_finish,
420	.init_secondary		= bmips_init_secondary,
421	.send_ipi_single	= bmips43xx_send_ipi_single,
422	.send_ipi_mask		= bmips43xx_send_ipi_mask,
423#ifdef CONFIG_HOTPLUG_CPU
424	.cpu_disable		= bmips_cpu_disable,
425	.cpu_die		= bmips_cpu_die,
426#endif
427#ifdef CONFIG_KEXEC
428	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
429#endif
430};
431
432const struct plat_smp_ops bmips5000_smp_ops = {
433	.smp_setup		= bmips_smp_setup,
434	.prepare_cpus		= bmips_prepare_cpus,
435	.boot_secondary		= bmips_boot_secondary,
436	.smp_finish		= bmips_smp_finish,
437	.init_secondary		= bmips_init_secondary,
438	.send_ipi_single	= bmips5000_send_ipi_single,
439	.send_ipi_mask		= bmips5000_send_ipi_mask,
440#ifdef CONFIG_HOTPLUG_CPU
441	.cpu_disable		= bmips_cpu_disable,
442	.cpu_die		= bmips_cpu_die,
443#endif
444#ifdef CONFIG_KEXEC
445	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
446#endif
447};
448
449#endif /* CONFIG_SMP */
450
451/***********************************************************************
452 * BMIPS vector relocation
453 * This is primarily used for SMP boot, but it is applicable to some
454 * UP BMIPS systems as well.
455 ***********************************************************************/
456
457static void bmips_wr_vec(unsigned long dst, char *start, char *end)
458{
459	memcpy((void *)dst, start, end - start);
460	dma_cache_wback(dst, end - start);
461	local_flush_icache_range(dst, dst + (end - start));
462	instruction_hazard();
463}
464
465static inline void bmips_nmi_handler_setup(void)
466{
467	bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
468		bmips_reset_nmi_vec_end);
469	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
470		bmips_smp_int_vec_end);
471}
472
473struct reset_vec_info {
474	int cpu;
475	u32 val;
476};
477
478static void bmips_set_reset_vec_remote(void *vinfo)
479{
480	struct reset_vec_info *info = vinfo;
481	int shift = info->cpu & 0x01 ? 16 : 0;
482	u32 mask = ~(0xffff << shift), val = info->val >> 16;
483
484	preempt_disable();
485	if (smp_processor_id() > 0) {
486		smp_call_function_single(0, &bmips_set_reset_vec_remote,
487					 info, 1);
488	} else {
489		if (info->cpu & 0x02) {
490			/* BMIPS5200 "should" use mask/shift, but it's buggy */
491			bmips_write_zscm_reg(0xa0, (val << 16) | val);
492			bmips_read_zscm_reg(0xa0);
493		} else {
494			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
495					      (val << shift));
496		}
497	}
498	preempt_enable();
499}
500
501static void bmips_set_reset_vec(int cpu, u32 val)
502{
503	struct reset_vec_info info;
504
505	if (current_cpu_type() == CPU_BMIPS5000) {
506		/* this needs to run from CPU0 (which is always online) */
507		info.cpu = cpu;
508		info.val = val;
509		bmips_set_reset_vec_remote(&info);
510	} else {
511		void __iomem *cbr = BMIPS_GET_CBR();
512
513		if (cpu == 0)
514			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
515		else {
516			if (current_cpu_type() != CPU_BMIPS4380)
517				return;
518			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
519		}
520	}
521	__sync();
522	back_to_back_c0_hazard();
523}
524
525void bmips_ebase_setup(void)
526{
527	unsigned long new_ebase = ebase;
528
529	BUG_ON(ebase != CKSEG0);
530
531	switch (current_cpu_type()) {
532	case CPU_BMIPS4350:
533		/*
534		 * BMIPS4350 cannot relocate the normal vectors, but it
535		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
536		 * the relocated BEV=1, IV=0 general exception vector @
537		 * 0xa000_0380.
538		 *
539		 * set_uncached_handler() is used here because:
540		 *  - CPU1 will run this from uncached space
541		 *  - None of the cacheflush functions are set up yet
542		 */
543		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
544			&bmips_smp_int_vec, 0x80);
545		__sync();
546		return;
547	case CPU_BMIPS3300:
548	case CPU_BMIPS4380:
549		/*
550		 * 0x8000_0000: reset/NMI (initially in kseg1)
551		 * 0x8000_0400: normal vectors
552		 */
553		new_ebase = 0x80000400;
554		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
555		break;
556	case CPU_BMIPS5000:
557		/*
558		 * 0x8000_0000: reset/NMI (initially in kseg1)
559		 * 0x8000_1000: normal vectors
560		 */
561		new_ebase = 0x80001000;
562		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
563		write_c0_ebase(new_ebase);
564		break;
565	default:
566		return;
567	}
568
569	board_nmi_handler_setup = &bmips_nmi_handler_setup;
570	ebase = new_ebase;
571}
572
573asmlinkage void __weak plat_wired_tlb_setup(void)
574{
575	/*
576	 * Called when starting/restarting a secondary CPU.
577	 * Kernel stacks and other important data might only be accessible
578	 * once the wired entries are present.
579	 */
580}
581
582void bmips_cpu_setup(void)
583{
584	void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
585	u32 __maybe_unused cfg;
586
587	switch (current_cpu_type()) {
588	case CPU_BMIPS3300:
589		/* Set BIU to async mode */
590		set_c0_brcm_bus_pll(BIT(22));
591		__sync();
592
593		/* put the BIU back in sync mode */
594		clear_c0_brcm_bus_pll(BIT(22));
595
596		/* clear BHTD to enable branch history table */
597		clear_c0_brcm_reset(BIT(16));
598
599		/* Flush and enable RAC */
600		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
601		__raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
602		__raw_readl(cbr + BMIPS_RAC_CONFIG);
603
604		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
605		__raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
606		__raw_readl(cbr + BMIPS_RAC_CONFIG);
607
608		cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
609		__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
610		__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
611		break;
612
613	case CPU_BMIPS4380:
614		/* CBG workaround for early BMIPS4380 CPUs */
615		switch (read_c0_prid()) {
616		case 0x2a040:
617		case 0x2a042:
618		case 0x2a044:
619		case 0x2a060:
620			cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
621			__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
622			__raw_readl(cbr + BMIPS_L2_CONFIG);
623		}
624
625		/* clear BHTD to enable branch history table */
626		clear_c0_brcm_config_0(BIT(21));
627
628		/* XI/ROTR enable */
629		set_c0_brcm_config_0(BIT(23));
630		set_c0_brcm_cmt_ctrl(BIT(15));
631		break;
632
633	case CPU_BMIPS5000:
634		/* enable RDHWR, BRDHWR */
635		set_c0_brcm_config(BIT(17) | BIT(21));
636
637		/* Disable JTB */
638		__asm__ __volatile__(
639		"	.set	noreorder\n"
640		"	li	$8, 0x5a455048\n"
641		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
642		"	.word	0x4008b008\n"	/* mfc0	t0, $22, 8 */
643		"	li	$9, 0x00008000\n"
644		"	or	$8, $8, $9\n"
645		"	.word	0x4088b008\n"	/* mtc0	t0, $22, 8 */
646		"	sync\n"
647		"	li	$8, 0x0\n"
648		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
649		"	.set	reorder\n"
650		: : : "$8", "$9");
651
652		/* XI enable */
653		set_c0_brcm_config(BIT(27));
654
655		/* enable MIPS32R2 ROR instruction for XI TLB handlers */
656		__asm__ __volatile__(
657		"	li	$8, 0x5a455048\n"
658		"	.word	0x4088b00f\n"	/* mtc0 $8, $22, 15 */
659		"	nop; nop; nop\n"
660		"	.word	0x4008b008\n"	/* mfc0 $8, $22, 8 */
661		"	lui	$9, 0x0100\n"
662		"	or	$8, $9\n"
663		"	.word	0x4088b008\n"	/* mtc0 $8, $22, 8 */
664		: : : "$8", "$9");
665		break;
666	}
667}
v6.8
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7 *
  8 * SMP support for BMIPS
  9 */
 10
 11#include <linux/init.h>
 12#include <linux/sched.h>
 13#include <linux/sched/hotplug.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/mm.h>
 16#include <linux/delay.h>
 17#include <linux/smp.h>
 18#include <linux/interrupt.h>
 19#include <linux/spinlock.h>
 20#include <linux/cpu.h>
 21#include <linux/cpumask.h>
 22#include <linux/reboot.h>
 23#include <linux/io.h>
 24#include <linux/compiler.h>
 25#include <linux/linkage.h>
 26#include <linux/bug.h>
 27#include <linux/kernel.h>
 28#include <linux/kexec.h>
 29#include <linux/irq.h>
 30
 31#include <asm/time.h>
 
 32#include <asm/processor.h>
 33#include <asm/bootinfo.h>
 
 34#include <asm/cacheflush.h>
 35#include <asm/tlbflush.h>
 36#include <asm/mipsregs.h>
 37#include <asm/bmips.h>
 38#include <asm/traps.h>
 39#include <asm/barrier.h>
 40#include <asm/cpu-features.h>
 41
 42static int __maybe_unused max_cpus = 1;
 43
 44/* these may be configured by the platform code */
 45int bmips_smp_enabled = 1;
 46int bmips_cpu_offset;
 47cpumask_t bmips_booted_mask;
 48unsigned long bmips_tp1_irqs = IE_IRQ1;
 49
 50#define RESET_FROM_KSEG0		0x80080800
 51#define RESET_FROM_KSEG1		0xa0080800
 52
 53static void bmips_set_reset_vec(int cpu, u32 val);
 54
 55#ifdef CONFIG_SMP
 56
 57#include <asm/smp.h>
 58
 59/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
 60unsigned long bmips_smp_boot_sp;
 61unsigned long bmips_smp_boot_gp;
 62
 63static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
 64static void bmips5000_send_ipi_single(int cpu, unsigned int action);
 65static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
 66static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
 67
 68/* SW interrupts 0,1 are used for interprocessor signaling */
 69#define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
 70#define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
 71
 72#define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
 73#define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 74#define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 75#define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
 76
 77static void __init bmips_smp_setup(void)
 78{
 79	int i, cpu = 1, boot_cpu = 0;
 80	int cpu_hw_intr;
 81
 82	switch (current_cpu_type()) {
 83	case CPU_BMIPS4350:
 84	case CPU_BMIPS4380:
 85		/* arbitration priority */
 86		clear_c0_brcm_cmt_ctrl(0x30);
 87
 88		/* NBK and weak order flags */
 89		set_c0_brcm_config_0(0x30000);
 90
 91		/* Find out if we are running on TP0 or TP1 */
 92		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
 93
 94		/*
 95		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
 96		 * thread
 97		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
 98		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
 99		 */
100		if (boot_cpu == 0)
101			cpu_hw_intr = 0x02;
102		else
103			cpu_hw_intr = 0x1d;
104
105		change_c0_brcm_cmt_intr(0xf8018000,
106					(cpu_hw_intr << 27) | (0x03 << 15));
107
108		/* single core, 2 threads (2 pipelines) */
109		max_cpus = 2;
110
111		break;
112	case CPU_BMIPS5000:
113		/* enable raceless SW interrupts */
114		set_c0_brcm_config(0x03 << 22);
115
116		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
117		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
118
119		/* N cores, 2 threads per core */
120		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
121
122		/* clear any pending SW interrupts */
123		for (i = 0; i < max_cpus; i++) {
124			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
125			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
126		}
127
128		break;
129	default:
130		max_cpus = 1;
131	}
132
133	if (!bmips_smp_enabled)
134		max_cpus = 1;
135
136	/* this can be overridden by the BSP */
137	if (!board_ebase_setup)
138		board_ebase_setup = &bmips_ebase_setup;
139
140	if (max_cpus > 1) {
141		__cpu_number_map[boot_cpu] = 0;
142		__cpu_logical_map[0] = boot_cpu;
143
144		for (i = 0; i < max_cpus; i++) {
145			if (i != boot_cpu) {
146				__cpu_number_map[i] = cpu;
147				__cpu_logical_map[cpu] = i;
148				cpu++;
149			}
150			set_cpu_possible(i, 1);
151			set_cpu_present(i, 1);
152		}
153	} else {
154		__cpu_number_map[0] = boot_cpu;
155		__cpu_logical_map[0] = 0;
156		set_cpu_possible(0, 1);
157		set_cpu_present(0, 1);
158	}
159}
160
161/*
162 * IPI IRQ setup - runs on CPU0
163 */
164static void bmips_prepare_cpus(unsigned int max_cpus)
165{
166	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
167
168	switch (current_cpu_type()) {
169	case CPU_BMIPS4350:
170	case CPU_BMIPS4380:
171		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
172		break;
173	case CPU_BMIPS5000:
174		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
175		break;
176	default:
177		return;
178	}
179
180	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
181			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
182		panic("Can't request IPI0 interrupt");
183	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
184			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
185		panic("Can't request IPI1 interrupt");
186}
187
188/*
189 * Tell the hardware to boot CPUx - runs on CPU0
190 */
191static int bmips_boot_secondary(int cpu, struct task_struct *idle)
192{
193	bmips_smp_boot_sp = __KSTK_TOS(idle);
194	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
195	mb();
196
197	/*
198	 * Initial boot sequence for secondary CPU:
199	 *   bmips_reset_nmi_vec @ a000_0000 ->
200	 *   bmips_smp_entry ->
201	 *   plat_wired_tlb_setup (cached function call; optional) ->
202	 *   start_secondary (cached jump)
203	 *
204	 * Warm restart sequence:
205	 *   play_dead WAIT loop ->
206	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
207	 *   eret to play_dead ->
208	 *   bmips_secondary_reentry ->
209	 *   start_secondary
210	 */
211
212	pr_info("SMP: Booting CPU%d...\n", cpu);
213
214	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
215		/* kseg1 might not exist if this CPU enabled XKS01 */
216		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
217
218		switch (current_cpu_type()) {
219		case CPU_BMIPS4350:
220		case CPU_BMIPS4380:
221			bmips43xx_send_ipi_single(cpu, 0);
222			break;
223		case CPU_BMIPS5000:
224			bmips5000_send_ipi_single(cpu, 0);
225			break;
226		}
227	} else {
228		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
229
230		switch (current_cpu_type()) {
231		case CPU_BMIPS4350:
232		case CPU_BMIPS4380:
233			/* Reset slave TP1 if booting from TP0 */
234			if (cpu_logical_map(cpu) == 1)
235				set_c0_brcm_cmt_ctrl(0x01);
236			break;
237		case CPU_BMIPS5000:
238			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
239			break;
240		}
241		cpumask_set_cpu(cpu, &bmips_booted_mask);
242	}
243
244	return 0;
245}
246
247/*
248 * Early setup - runs on secondary CPU after cache probe
249 */
250static void bmips_init_secondary(void)
251{
252	bmips_cpu_setup();
253
254	switch (current_cpu_type()) {
255	case CPU_BMIPS4350:
256	case CPU_BMIPS4380:
257		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
258		break;
259	case CPU_BMIPS5000:
260		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
261		cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
262		break;
263	}
264}
265
266/*
267 * Late setup - runs on secondary CPU before entering the idle loop
268 */
269static void bmips_smp_finish(void)
270{
271	pr_info("SMP: CPU%d is running\n", smp_processor_id());
272
273	/* make sure there won't be a timer interrupt for a little while */
274	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
275
276	irq_enable_hazard();
277	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
278	irq_enable_hazard();
279}
280
281/*
282 * BMIPS5000 raceless IPIs
283 *
284 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
285 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
286 * IPI1 is used for SMP_CALL_FUNCTION
287 */
288
289static void bmips5000_send_ipi_single(int cpu, unsigned int action)
290{
291	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
292}
293
294static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
295{
296	int action = irq - IPI0_IRQ;
297
298	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
299
300	if (action == 0)
301		scheduler_ipi();
302	else
303		generic_smp_call_function_interrupt();
304
305	return IRQ_HANDLED;
306}
307
308static void bmips5000_send_ipi_mask(const struct cpumask *mask,
309	unsigned int action)
310{
311	unsigned int i;
312
313	for_each_cpu(i, mask)
314		bmips5000_send_ipi_single(i, action);
315}
316
317/*
318 * BMIPS43xx racey IPIs
319 *
320 * We use one inbound SW IRQ for each CPU.
321 *
322 * A spinlock must be held in order to keep CPUx from accidentally clearing
323 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
324 * same spinlock is used to protect the action masks.
325 */
326
327static DEFINE_SPINLOCK(ipi_lock);
328static DEFINE_PER_CPU(int, ipi_action_mask);
329
330static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
331{
332	unsigned long flags;
333
334	spin_lock_irqsave(&ipi_lock, flags);
335	set_c0_cause(cpu ? C_SW1 : C_SW0);
336	per_cpu(ipi_action_mask, cpu) |= action;
337	irq_enable_hazard();
338	spin_unlock_irqrestore(&ipi_lock, flags);
339}
340
341static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
342{
343	unsigned long flags;
344	int action, cpu = irq - IPI0_IRQ;
345
346	spin_lock_irqsave(&ipi_lock, flags);
347	action = __this_cpu_read(ipi_action_mask);
348	per_cpu(ipi_action_mask, cpu) = 0;
349	clear_c0_cause(cpu ? C_SW1 : C_SW0);
350	spin_unlock_irqrestore(&ipi_lock, flags);
351
352	if (action & SMP_RESCHEDULE_YOURSELF)
353		scheduler_ipi();
354	if (action & SMP_CALL_FUNCTION)
355		generic_smp_call_function_interrupt();
356
357	return IRQ_HANDLED;
358}
359
360static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
361	unsigned int action)
362{
363	unsigned int i;
364
365	for_each_cpu(i, mask)
366		bmips43xx_send_ipi_single(i, action);
367}
368
369#ifdef CONFIG_HOTPLUG_CPU
370
371static int bmips_cpu_disable(void)
372{
373	unsigned int cpu = smp_processor_id();
374
 
 
 
375	pr_info("SMP: CPU%d is offline\n", cpu);
376
377	set_cpu_online(cpu, false);
378	calculate_cpu_foreign_map();
379	irq_migrate_all_off_this_cpu();
380	clear_c0_status(IE_IRQ5);
381
382	local_flush_tlb_all();
383	local_flush_icache_range(0, ~0);
384
385	return 0;
386}
387
388static void bmips_cpu_die(unsigned int cpu)
389{
390}
391
392void __ref play_dead(void)
393{
394	idle_task_exit();
395	cpuhp_ap_report_dead();
396
397	/* flush data cache */
398	_dma_cache_wback_inv(0, ~0);
399
400	/*
401	 * Wakeup is on SW0 or SW1; disable everything else
402	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
403	 * IRQ handlers; this clears ST0_IE and returns immediately.
404	 */
405	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
406	change_c0_status(
407		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
408		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
409	irq_disable_hazard();
410
411	/*
412	 * wait for SW interrupt from bmips_boot_secondary(), then jump
413	 * back to start_secondary()
414	 */
415	__asm__ __volatile__(
416	"	wait\n"
417	"	j	bmips_secondary_reentry\n"
418	: : : "memory");
419
420	BUG();
421}
422
423#endif /* CONFIG_HOTPLUG_CPU */
424
425const struct plat_smp_ops bmips43xx_smp_ops = {
426	.smp_setup		= bmips_smp_setup,
427	.prepare_cpus		= bmips_prepare_cpus,
428	.boot_secondary		= bmips_boot_secondary,
429	.smp_finish		= bmips_smp_finish,
430	.init_secondary		= bmips_init_secondary,
431	.send_ipi_single	= bmips43xx_send_ipi_single,
432	.send_ipi_mask		= bmips43xx_send_ipi_mask,
433#ifdef CONFIG_HOTPLUG_CPU
434	.cpu_disable		= bmips_cpu_disable,
435	.cpu_die		= bmips_cpu_die,
436#endif
437#ifdef CONFIG_KEXEC_CORE
438	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
439#endif
440};
441
442const struct plat_smp_ops bmips5000_smp_ops = {
443	.smp_setup		= bmips_smp_setup,
444	.prepare_cpus		= bmips_prepare_cpus,
445	.boot_secondary		= bmips_boot_secondary,
446	.smp_finish		= bmips_smp_finish,
447	.init_secondary		= bmips_init_secondary,
448	.send_ipi_single	= bmips5000_send_ipi_single,
449	.send_ipi_mask		= bmips5000_send_ipi_mask,
450#ifdef CONFIG_HOTPLUG_CPU
451	.cpu_disable		= bmips_cpu_disable,
452	.cpu_die		= bmips_cpu_die,
453#endif
454#ifdef CONFIG_KEXEC_CORE
455	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
456#endif
457};
458
459#endif /* CONFIG_SMP */
460
461/***********************************************************************
462 * BMIPS vector relocation
463 * This is primarily used for SMP boot, but it is applicable to some
464 * UP BMIPS systems as well.
465 ***********************************************************************/
466
467static void bmips_wr_vec(unsigned long dst, char *start, char *end)
468{
469	memcpy((void *)dst, start, end - start);
470	dma_cache_wback(dst, end - start);
471	local_flush_icache_range(dst, dst + (end - start));
472	instruction_hazard();
473}
474
475static inline void bmips_nmi_handler_setup(void)
476{
477	bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
478		bmips_reset_nmi_vec_end);
479	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
480		bmips_smp_int_vec_end);
481}
482
483struct reset_vec_info {
484	int cpu;
485	u32 val;
486};
487
488static void bmips_set_reset_vec_remote(void *vinfo)
489{
490	struct reset_vec_info *info = vinfo;
491	int shift = info->cpu & 0x01 ? 16 : 0;
492	u32 mask = ~(0xffff << shift), val = info->val >> 16;
493
494	preempt_disable();
495	if (smp_processor_id() > 0) {
496		smp_call_function_single(0, &bmips_set_reset_vec_remote,
497					 info, 1);
498	} else {
499		if (info->cpu & 0x02) {
500			/* BMIPS5200 "should" use mask/shift, but it's buggy */
501			bmips_write_zscm_reg(0xa0, (val << 16) | val);
502			bmips_read_zscm_reg(0xa0);
503		} else {
504			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
505					      (val << shift));
506		}
507	}
508	preempt_enable();
509}
510
511static void bmips_set_reset_vec(int cpu, u32 val)
512{
513	struct reset_vec_info info;
514
515	if (current_cpu_type() == CPU_BMIPS5000) {
516		/* this needs to run from CPU0 (which is always online) */
517		info.cpu = cpu;
518		info.val = val;
519		bmips_set_reset_vec_remote(&info);
520	} else {
521		void __iomem *cbr = BMIPS_GET_CBR();
522
523		if (cpu == 0)
524			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
525		else {
526			if (current_cpu_type() != CPU_BMIPS4380)
527				return;
528			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
529		}
530	}
531	__sync();
532	back_to_back_c0_hazard();
533}
534
535void bmips_ebase_setup(void)
536{
537	unsigned long new_ebase = ebase;
538
539	BUG_ON(ebase != CKSEG0);
540
541	switch (current_cpu_type()) {
542	case CPU_BMIPS4350:
543		/*
544		 * BMIPS4350 cannot relocate the normal vectors, but it
545		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
546		 * the relocated BEV=1, IV=0 general exception vector @
547		 * 0xa000_0380.
548		 *
549		 * set_uncached_handler() is used here because:
550		 *  - CPU1 will run this from uncached space
551		 *  - None of the cacheflush functions are set up yet
552		 */
553		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
554			&bmips_smp_int_vec, 0x80);
555		__sync();
556		return;
557	case CPU_BMIPS3300:
558	case CPU_BMIPS4380:
559		/*
560		 * 0x8000_0000: reset/NMI (initially in kseg1)
561		 * 0x8000_0400: normal vectors
562		 */
563		new_ebase = 0x80000400;
564		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
565		break;
566	case CPU_BMIPS5000:
567		/*
568		 * 0x8000_0000: reset/NMI (initially in kseg1)
569		 * 0x8000_1000: normal vectors
570		 */
571		new_ebase = 0x80001000;
572		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
573		write_c0_ebase(new_ebase);
574		break;
575	default:
576		return;
577	}
578
579	board_nmi_handler_setup = &bmips_nmi_handler_setup;
580	ebase = new_ebase;
581}
582
583asmlinkage void __weak plat_wired_tlb_setup(void)
584{
585	/*
586	 * Called when starting/restarting a secondary CPU.
587	 * Kernel stacks and other important data might only be accessible
588	 * once the wired entries are present.
589	 */
590}
591
592void bmips_cpu_setup(void)
593{
594	void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
595	u32 __maybe_unused cfg;
596
597	switch (current_cpu_type()) {
598	case CPU_BMIPS3300:
599		/* Set BIU to async mode */
600		set_c0_brcm_bus_pll(BIT(22));
601		__sync();
602
603		/* put the BIU back in sync mode */
604		clear_c0_brcm_bus_pll(BIT(22));
605
606		/* clear BHTD to enable branch history table */
607		clear_c0_brcm_reset(BIT(16));
608
609		/* Flush and enable RAC */
610		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
611		__raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
612		__raw_readl(cbr + BMIPS_RAC_CONFIG);
613
614		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
615		__raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
616		__raw_readl(cbr + BMIPS_RAC_CONFIG);
617
618		cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
619		__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
620		__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
621		break;
622
623	case CPU_BMIPS4380:
624		/* CBG workaround for early BMIPS4380 CPUs */
625		switch (read_c0_prid()) {
626		case 0x2a040:
627		case 0x2a042:
628		case 0x2a044:
629		case 0x2a060:
630			cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
631			__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
632			__raw_readl(cbr + BMIPS_L2_CONFIG);
633		}
634
635		/* clear BHTD to enable branch history table */
636		clear_c0_brcm_config_0(BIT(21));
637
638		/* XI/ROTR enable */
639		set_c0_brcm_config_0(BIT(23));
640		set_c0_brcm_cmt_ctrl(BIT(15));
641		break;
642
643	case CPU_BMIPS5000:
644		/* enable RDHWR, BRDHWR */
645		set_c0_brcm_config(BIT(17) | BIT(21));
646
647		/* Disable JTB */
648		__asm__ __volatile__(
649		"	.set	noreorder\n"
650		"	li	$8, 0x5a455048\n"
651		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
652		"	.word	0x4008b008\n"	/* mfc0	t0, $22, 8 */
653		"	li	$9, 0x00008000\n"
654		"	or	$8, $8, $9\n"
655		"	.word	0x4088b008\n"	/* mtc0	t0, $22, 8 */
656		"	sync\n"
657		"	li	$8, 0x0\n"
658		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
659		"	.set	reorder\n"
660		: : : "$8", "$9");
661
662		/* XI enable */
663		set_c0_brcm_config(BIT(27));
664
665		/* enable MIPS32R2 ROR instruction for XI TLB handlers */
666		__asm__ __volatile__(
667		"	li	$8, 0x5a455048\n"
668		"	.word	0x4088b00f\n"	/* mtc0 $8, $22, 15 */
669		"	nop; nop; nop\n"
670		"	.word	0x4008b008\n"	/* mfc0 $8, $22, 8 */
671		"	lui	$9, 0x0100\n"
672		"	or	$8, $9\n"
673		"	.word	0x4088b008\n"	/* mtc0 $8, $22, 8 */
674		: : : "$8", "$9");
675		break;
676	}
677}