Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7 *
  8 * SMP support for BMIPS
  9 */
 10
 11#include <linux/init.h>
 12#include <linux/sched.h>
 13#include <linux/sched/hotplug.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/mm.h>
 16#include <linux/delay.h>
 17#include <linux/smp.h>
 18#include <linux/interrupt.h>
 19#include <linux/spinlock.h>
 20#include <linux/cpu.h>
 21#include <linux/cpumask.h>
 22#include <linux/reboot.h>
 23#include <linux/io.h>
 24#include <linux/compiler.h>
 25#include <linux/linkage.h>
 26#include <linux/bug.h>
 27#include <linux/kernel.h>
 28#include <linux/kexec.h>
 29
 30#include <asm/time.h>
 31#include <asm/pgtable.h>
 32#include <asm/processor.h>
 33#include <asm/bootinfo.h>
 34#include <asm/pmon.h>
 35#include <asm/cacheflush.h>
 36#include <asm/tlbflush.h>
 37#include <asm/mipsregs.h>
 38#include <asm/bmips.h>
 39#include <asm/traps.h>
 40#include <asm/barrier.h>
 41#include <asm/cpu-features.h>
 42
 43static int __maybe_unused max_cpus = 1;
 44
 45/* these may be configured by the platform code */
 46int bmips_smp_enabled = 1;
 47int bmips_cpu_offset;
 48cpumask_t bmips_booted_mask;
 49unsigned long bmips_tp1_irqs = IE_IRQ1;
 50
 51#define RESET_FROM_KSEG0		0x80080800
 52#define RESET_FROM_KSEG1		0xa0080800
 53
 54static void bmips_set_reset_vec(int cpu, u32 val);
 55
 56#ifdef CONFIG_SMP
 57
 58/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
 59unsigned long bmips_smp_boot_sp;
 60unsigned long bmips_smp_boot_gp;
 61
 62static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
 63static void bmips5000_send_ipi_single(int cpu, unsigned int action);
 64static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
 65static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
 66
 67/* SW interrupts 0,1 are used for interprocessor signaling */
 68#define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
 69#define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
 70
 71#define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
 72#define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 73#define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 74#define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
 75
 76static void __init bmips_smp_setup(void)
 77{
 78	int i, cpu = 1, boot_cpu = 0;
 79	int cpu_hw_intr;
 80
 81	switch (current_cpu_type()) {
 82	case CPU_BMIPS4350:
 83	case CPU_BMIPS4380:
 84		/* arbitration priority */
 85		clear_c0_brcm_cmt_ctrl(0x30);
 86
 87		/* NBK and weak order flags */
 88		set_c0_brcm_config_0(0x30000);
 89
 90		/* Find out if we are running on TP0 or TP1 */
 91		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
 92
 93		/*
 94		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
 95		 * thread
 96		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
 97		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
 98		 */
 99		if (boot_cpu == 0)
100			cpu_hw_intr = 0x02;
101		else
102			cpu_hw_intr = 0x1d;
103
104		change_c0_brcm_cmt_intr(0xf8018000,
105					(cpu_hw_intr << 27) | (0x03 << 15));
106
107		/* single core, 2 threads (2 pipelines) */
108		max_cpus = 2;
109
110		break;
111	case CPU_BMIPS5000:
112		/* enable raceless SW interrupts */
113		set_c0_brcm_config(0x03 << 22);
114
115		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
116		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
117
118		/* N cores, 2 threads per core */
119		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
120
121		/* clear any pending SW interrupts */
122		for (i = 0; i < max_cpus; i++) {
123			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
124			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
125		}
126
127		break;
128	default:
129		max_cpus = 1;
130	}
131
132	if (!bmips_smp_enabled)
133		max_cpus = 1;
134
135	/* this can be overridden by the BSP */
136	if (!board_ebase_setup)
137		board_ebase_setup = &bmips_ebase_setup;
138
139	__cpu_number_map[boot_cpu] = 0;
140	__cpu_logical_map[0] = boot_cpu;
141
142	for (i = 0; i < max_cpus; i++) {
143		if (i != boot_cpu) {
144			__cpu_number_map[i] = cpu;
145			__cpu_logical_map[cpu] = i;
146			cpu++;
147		}
148		set_cpu_possible(i, 1);
149		set_cpu_present(i, 1);
150	}
151}
152
153/*
154 * IPI IRQ setup - runs on CPU0
155 */
156static void bmips_prepare_cpus(unsigned int max_cpus)
157{
158	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
159
160	switch (current_cpu_type()) {
161	case CPU_BMIPS4350:
162	case CPU_BMIPS4380:
163		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
164		break;
165	case CPU_BMIPS5000:
166		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
167		break;
168	default:
169		return;
170	}
171
172	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
173			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
174		panic("Can't request IPI0 interrupt");
175	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
176			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
177		panic("Can't request IPI1 interrupt");
178}
179
180/*
181 * Tell the hardware to boot CPUx - runs on CPU0
182 */
183static int bmips_boot_secondary(int cpu, struct task_struct *idle)
184{
185	bmips_smp_boot_sp = __KSTK_TOS(idle);
186	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
187	mb();
188
189	/*
190	 * Initial boot sequence for secondary CPU:
191	 *   bmips_reset_nmi_vec @ a000_0000 ->
192	 *   bmips_smp_entry ->
193	 *   plat_wired_tlb_setup (cached function call; optional) ->
194	 *   start_secondary (cached jump)
195	 *
196	 * Warm restart sequence:
197	 *   play_dead WAIT loop ->
198	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
199	 *   eret to play_dead ->
200	 *   bmips_secondary_reentry ->
201	 *   start_secondary
202	 */
203
204	pr_info("SMP: Booting CPU%d...\n", cpu);
205
206	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
207		/* kseg1 might not exist if this CPU enabled XKS01 */
208		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
209
210		switch (current_cpu_type()) {
211		case CPU_BMIPS4350:
212		case CPU_BMIPS4380:
213			bmips43xx_send_ipi_single(cpu, 0);
214			break;
215		case CPU_BMIPS5000:
216			bmips5000_send_ipi_single(cpu, 0);
217			break;
218		}
219	} else {
220		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
221
222		switch (current_cpu_type()) {
223		case CPU_BMIPS4350:
224		case CPU_BMIPS4380:
225			/* Reset slave TP1 if booting from TP0 */
226			if (cpu_logical_map(cpu) == 1)
227				set_c0_brcm_cmt_ctrl(0x01);
228			break;
229		case CPU_BMIPS5000:
230			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
231			break;
232		}
233		cpumask_set_cpu(cpu, &bmips_booted_mask);
234	}
235
236	return 0;
237}
238
239/*
240 * Early setup - runs on secondary CPU after cache probe
241 */
242static void bmips_init_secondary(void)
243{
244	switch (current_cpu_type()) {
245	case CPU_BMIPS4350:
246	case CPU_BMIPS4380:
247		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
248		break;
249	case CPU_BMIPS5000:
250		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
251		cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
252		break;
253	}
254}
255
256/*
257 * Late setup - runs on secondary CPU before entering the idle loop
258 */
259static void bmips_smp_finish(void)
260{
261	pr_info("SMP: CPU%d is running\n", smp_processor_id());
262
263	/* make sure there won't be a timer interrupt for a little while */
264	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
265
266	irq_enable_hazard();
267	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
268	irq_enable_hazard();
269}
270
271/*
272 * BMIPS5000 raceless IPIs
273 *
274 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
275 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
276 * IPI1 is used for SMP_CALL_FUNCTION
277 */
278
279static void bmips5000_send_ipi_single(int cpu, unsigned int action)
280{
281	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
282}
283
284static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
285{
286	int action = irq - IPI0_IRQ;
287
288	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
289
290	if (action == 0)
291		scheduler_ipi();
292	else
293		generic_smp_call_function_interrupt();
294
295	return IRQ_HANDLED;
296}
297
298static void bmips5000_send_ipi_mask(const struct cpumask *mask,
299	unsigned int action)
300{
301	unsigned int i;
302
303	for_each_cpu(i, mask)
304		bmips5000_send_ipi_single(i, action);
305}
306
307/*
308 * BMIPS43xx racey IPIs
309 *
310 * We use one inbound SW IRQ for each CPU.
311 *
312 * A spinlock must be held in order to keep CPUx from accidentally clearing
313 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
314 * same spinlock is used to protect the action masks.
315 */
316
317static DEFINE_SPINLOCK(ipi_lock);
318static DEFINE_PER_CPU(int, ipi_action_mask);
319
320static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
321{
322	unsigned long flags;
323
324	spin_lock_irqsave(&ipi_lock, flags);
325	set_c0_cause(cpu ? C_SW1 : C_SW0);
326	per_cpu(ipi_action_mask, cpu) |= action;
327	irq_enable_hazard();
328	spin_unlock_irqrestore(&ipi_lock, flags);
329}
330
331static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
332{
333	unsigned long flags;
334	int action, cpu = irq - IPI0_IRQ;
335
336	spin_lock_irqsave(&ipi_lock, flags);
337	action = __this_cpu_read(ipi_action_mask);
338	per_cpu(ipi_action_mask, cpu) = 0;
339	clear_c0_cause(cpu ? C_SW1 : C_SW0);
340	spin_unlock_irqrestore(&ipi_lock, flags);
341
342	if (action & SMP_RESCHEDULE_YOURSELF)
343		scheduler_ipi();
344	if (action & SMP_CALL_FUNCTION)
345		generic_smp_call_function_interrupt();
346
347	return IRQ_HANDLED;
348}
349
350static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
351	unsigned int action)
352{
353	unsigned int i;
354
355	for_each_cpu(i, mask)
356		bmips43xx_send_ipi_single(i, action);
357}
358
359#ifdef CONFIG_HOTPLUG_CPU
360
361static int bmips_cpu_disable(void)
362{
363	unsigned int cpu = smp_processor_id();
364
365	if (cpu == 0)
366		return -EBUSY;
367
368	pr_info("SMP: CPU%d is offline\n", cpu);
369
370	set_cpu_online(cpu, false);
371	calculate_cpu_foreign_map();
372	irq_cpu_offline();
373	clear_c0_status(IE_IRQ5);
374
375	local_flush_tlb_all();
376	local_flush_icache_range(0, ~0);
377
378	return 0;
379}
380
381static void bmips_cpu_die(unsigned int cpu)
382{
383}
384
385void __ref play_dead(void)
386{
387	idle_task_exit();
388
389	/* flush data cache */
390	_dma_cache_wback_inv(0, ~0);
391
392	/*
393	 * Wakeup is on SW0 or SW1; disable everything else
394	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
395	 * IRQ handlers; this clears ST0_IE and returns immediately.
396	 */
397	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
398	change_c0_status(
399		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
400		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
401	irq_disable_hazard();
402
403	/*
404	 * wait for SW interrupt from bmips_boot_secondary(), then jump
405	 * back to start_secondary()
406	 */
407	__asm__ __volatile__(
408	"	wait\n"
409	"	j	bmips_secondary_reentry\n"
410	: : : "memory");
411}
412
413#endif /* CONFIG_HOTPLUG_CPU */
414
415const struct plat_smp_ops bmips43xx_smp_ops = {
416	.smp_setup		= bmips_smp_setup,
417	.prepare_cpus		= bmips_prepare_cpus,
418	.boot_secondary		= bmips_boot_secondary,
419	.smp_finish		= bmips_smp_finish,
420	.init_secondary		= bmips_init_secondary,
421	.send_ipi_single	= bmips43xx_send_ipi_single,
422	.send_ipi_mask		= bmips43xx_send_ipi_mask,
423#ifdef CONFIG_HOTPLUG_CPU
424	.cpu_disable		= bmips_cpu_disable,
425	.cpu_die		= bmips_cpu_die,
426#endif
427#ifdef CONFIG_KEXEC
428	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
429#endif
430};
431
432const struct plat_smp_ops bmips5000_smp_ops = {
433	.smp_setup		= bmips_smp_setup,
434	.prepare_cpus		= bmips_prepare_cpus,
435	.boot_secondary		= bmips_boot_secondary,
436	.smp_finish		= bmips_smp_finish,
437	.init_secondary		= bmips_init_secondary,
438	.send_ipi_single	= bmips5000_send_ipi_single,
439	.send_ipi_mask		= bmips5000_send_ipi_mask,
440#ifdef CONFIG_HOTPLUG_CPU
441	.cpu_disable		= bmips_cpu_disable,
442	.cpu_die		= bmips_cpu_die,
443#endif
444#ifdef CONFIG_KEXEC
445	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
446#endif
447};
448
449#endif /* CONFIG_SMP */
450
451/***********************************************************************
452 * BMIPS vector relocation
453 * This is primarily used for SMP boot, but it is applicable to some
454 * UP BMIPS systems as well.
455 ***********************************************************************/
456
457static void bmips_wr_vec(unsigned long dst, char *start, char *end)
458{
459	memcpy((void *)dst, start, end - start);
460	dma_cache_wback(dst, end - start);
461	local_flush_icache_range(dst, dst + (end - start));
462	instruction_hazard();
463}
464
465static inline void bmips_nmi_handler_setup(void)
466{
467	bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
468		bmips_reset_nmi_vec_end);
469	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
470		bmips_smp_int_vec_end);
471}
472
473struct reset_vec_info {
474	int cpu;
475	u32 val;
476};
477
478static void bmips_set_reset_vec_remote(void *vinfo)
479{
480	struct reset_vec_info *info = vinfo;
481	int shift = info->cpu & 0x01 ? 16 : 0;
482	u32 mask = ~(0xffff << shift), val = info->val >> 16;
483
484	preempt_disable();
485	if (smp_processor_id() > 0) {
486		smp_call_function_single(0, &bmips_set_reset_vec_remote,
487					 info, 1);
488	} else {
489		if (info->cpu & 0x02) {
490			/* BMIPS5200 "should" use mask/shift, but it's buggy */
491			bmips_write_zscm_reg(0xa0, (val << 16) | val);
492			bmips_read_zscm_reg(0xa0);
493		} else {
494			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
495					      (val << shift));
496		}
497	}
498	preempt_enable();
499}
500
501static void bmips_set_reset_vec(int cpu, u32 val)
502{
503	struct reset_vec_info info;
504
505	if (current_cpu_type() == CPU_BMIPS5000) {
506		/* this needs to run from CPU0 (which is always online) */
507		info.cpu = cpu;
508		info.val = val;
509		bmips_set_reset_vec_remote(&info);
510	} else {
511		void __iomem *cbr = BMIPS_GET_CBR();
512
513		if (cpu == 0)
514			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
515		else {
516			if (current_cpu_type() != CPU_BMIPS4380)
517				return;
518			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
519		}
520	}
521	__sync();
522	back_to_back_c0_hazard();
523}
524
525void bmips_ebase_setup(void)
526{
527	unsigned long new_ebase = ebase;
528
529	BUG_ON(ebase != CKSEG0);
530
531	switch (current_cpu_type()) {
532	case CPU_BMIPS4350:
533		/*
534		 * BMIPS4350 cannot relocate the normal vectors, but it
535		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
536		 * the relocated BEV=1, IV=0 general exception vector @
537		 * 0xa000_0380.
538		 *
539		 * set_uncached_handler() is used here because:
540		 *  - CPU1 will run this from uncached space
541		 *  - None of the cacheflush functions are set up yet
542		 */
543		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
544			&bmips_smp_int_vec, 0x80);
545		__sync();
546		return;
547	case CPU_BMIPS3300:
548	case CPU_BMIPS4380:
549		/*
550		 * 0x8000_0000: reset/NMI (initially in kseg1)
551		 * 0x8000_0400: normal vectors
552		 */
553		new_ebase = 0x80000400;
554		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
555		break;
556	case CPU_BMIPS5000:
557		/*
558		 * 0x8000_0000: reset/NMI (initially in kseg1)
559		 * 0x8000_1000: normal vectors
560		 */
561		new_ebase = 0x80001000;
562		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
563		write_c0_ebase(new_ebase);
564		break;
565	default:
566		return;
567	}
568
569	board_nmi_handler_setup = &bmips_nmi_handler_setup;
570	ebase = new_ebase;
571}
572
573asmlinkage void __weak plat_wired_tlb_setup(void)
574{
575	/*
576	 * Called when starting/restarting a secondary CPU.
577	 * Kernel stacks and other important data might only be accessible
578	 * once the wired entries are present.
579	 */
580}
581
582void bmips_cpu_setup(void)
583{
584	void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
585	u32 __maybe_unused cfg;
586
587	switch (current_cpu_type()) {
588	case CPU_BMIPS3300:
589		/* Set BIU to async mode */
590		set_c0_brcm_bus_pll(BIT(22));
591		__sync();
592
593		/* put the BIU back in sync mode */
594		clear_c0_brcm_bus_pll(BIT(22));
595
596		/* clear BHTD to enable branch history table */
597		clear_c0_brcm_reset(BIT(16));
598
599		/* Flush and enable RAC */
600		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
601		__raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
602		__raw_readl(cbr + BMIPS_RAC_CONFIG);
603
604		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
605		__raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
606		__raw_readl(cbr + BMIPS_RAC_CONFIG);
607
608		cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
609		__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
610		__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
611		break;
612
613	case CPU_BMIPS4380:
614		/* CBG workaround for early BMIPS4380 CPUs */
615		switch (read_c0_prid()) {
616		case 0x2a040:
617		case 0x2a042:
618		case 0x2a044:
619		case 0x2a060:
620			cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
621			__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
622			__raw_readl(cbr + BMIPS_L2_CONFIG);
623		}
624
625		/* clear BHTD to enable branch history table */
626		clear_c0_brcm_config_0(BIT(21));
627
628		/* XI/ROTR enable */
629		set_c0_brcm_config_0(BIT(23));
630		set_c0_brcm_cmt_ctrl(BIT(15));
631		break;
632
633	case CPU_BMIPS5000:
634		/* enable RDHWR, BRDHWR */
635		set_c0_brcm_config(BIT(17) | BIT(21));
636
637		/* Disable JTB */
638		__asm__ __volatile__(
639		"	.set	noreorder\n"
640		"	li	$8, 0x5a455048\n"
641		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
642		"	.word	0x4008b008\n"	/* mfc0	t0, $22, 8 */
643		"	li	$9, 0x00008000\n"
644		"	or	$8, $8, $9\n"
645		"	.word	0x4088b008\n"	/* mtc0	t0, $22, 8 */
646		"	sync\n"
647		"	li	$8, 0x0\n"
648		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
649		"	.set	reorder\n"
650		: : : "$8", "$9");
651
652		/* XI enable */
653		set_c0_brcm_config(BIT(27));
654
655		/* enable MIPS32R2 ROR instruction for XI TLB handlers */
656		__asm__ __volatile__(
657		"	li	$8, 0x5a455048\n"
658		"	.word	0x4088b00f\n"	/* mtc0 $8, $22, 15 */
659		"	nop; nop; nop\n"
660		"	.word	0x4008b008\n"	/* mfc0 $8, $22, 8 */
661		"	lui	$9, 0x0100\n"
662		"	or	$8, $9\n"
663		"	.word	0x4088b008\n"	/* mtc0 $8, $22, 8 */
664		: : : "$8", "$9");
665		break;
666	}
667}
v4.10.11
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7 *
  8 * SMP support for BMIPS
  9 */
 10
 11#include <linux/init.h>
 12#include <linux/sched.h>
 
 
 13#include <linux/mm.h>
 14#include <linux/delay.h>
 15#include <linux/smp.h>
 16#include <linux/interrupt.h>
 17#include <linux/spinlock.h>
 18#include <linux/cpu.h>
 19#include <linux/cpumask.h>
 20#include <linux/reboot.h>
 21#include <linux/io.h>
 22#include <linux/compiler.h>
 23#include <linux/linkage.h>
 24#include <linux/bug.h>
 25#include <linux/kernel.h>
 
 26
 27#include <asm/time.h>
 28#include <asm/pgtable.h>
 29#include <asm/processor.h>
 30#include <asm/bootinfo.h>
 31#include <asm/pmon.h>
 32#include <asm/cacheflush.h>
 33#include <asm/tlbflush.h>
 34#include <asm/mipsregs.h>
 35#include <asm/bmips.h>
 36#include <asm/traps.h>
 37#include <asm/barrier.h>
 38#include <asm/cpu-features.h>
 39
 40static int __maybe_unused max_cpus = 1;
 41
 42/* these may be configured by the platform code */
 43int bmips_smp_enabled = 1;
 44int bmips_cpu_offset;
 45cpumask_t bmips_booted_mask;
 46unsigned long bmips_tp1_irqs = IE_IRQ1;
 47
 48#define RESET_FROM_KSEG0		0x80080800
 49#define RESET_FROM_KSEG1		0xa0080800
 50
 51static void bmips_set_reset_vec(int cpu, u32 val);
 52
 53#ifdef CONFIG_SMP
 54
 55/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
 56unsigned long bmips_smp_boot_sp;
 57unsigned long bmips_smp_boot_gp;
 58
 59static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
 60static void bmips5000_send_ipi_single(int cpu, unsigned int action);
 61static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
 62static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
 63
 64/* SW interrupts 0,1 are used for interprocessor signaling */
 65#define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
 66#define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
 67
 68#define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
 69#define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 70#define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 71#define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
 72
 73static void __init bmips_smp_setup(void)
 74{
 75	int i, cpu = 1, boot_cpu = 0;
 76	int cpu_hw_intr;
 77
 78	switch (current_cpu_type()) {
 79	case CPU_BMIPS4350:
 80	case CPU_BMIPS4380:
 81		/* arbitration priority */
 82		clear_c0_brcm_cmt_ctrl(0x30);
 83
 84		/* NBK and weak order flags */
 85		set_c0_brcm_config_0(0x30000);
 86
 87		/* Find out if we are running on TP0 or TP1 */
 88		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
 89
 90		/*
 91		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
 92		 * thread
 93		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
 94		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
 95		 */
 96		if (boot_cpu == 0)
 97			cpu_hw_intr = 0x02;
 98		else
 99			cpu_hw_intr = 0x1d;
100
101		change_c0_brcm_cmt_intr(0xf8018000,
102					(cpu_hw_intr << 27) | (0x03 << 15));
103
104		/* single core, 2 threads (2 pipelines) */
105		max_cpus = 2;
106
107		break;
108	case CPU_BMIPS5000:
109		/* enable raceless SW interrupts */
110		set_c0_brcm_config(0x03 << 22);
111
112		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
113		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
114
115		/* N cores, 2 threads per core */
116		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
117
118		/* clear any pending SW interrupts */
119		for (i = 0; i < max_cpus; i++) {
120			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
121			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
122		}
123
124		break;
125	default:
126		max_cpus = 1;
127	}
128
129	if (!bmips_smp_enabled)
130		max_cpus = 1;
131
132	/* this can be overridden by the BSP */
133	if (!board_ebase_setup)
134		board_ebase_setup = &bmips_ebase_setup;
135
136	__cpu_number_map[boot_cpu] = 0;
137	__cpu_logical_map[0] = boot_cpu;
138
139	for (i = 0; i < max_cpus; i++) {
140		if (i != boot_cpu) {
141			__cpu_number_map[i] = cpu;
142			__cpu_logical_map[cpu] = i;
143			cpu++;
144		}
145		set_cpu_possible(i, 1);
146		set_cpu_present(i, 1);
147	}
148}
149
150/*
151 * IPI IRQ setup - runs on CPU0
152 */
153static void bmips_prepare_cpus(unsigned int max_cpus)
154{
155	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
156
157	switch (current_cpu_type()) {
158	case CPU_BMIPS4350:
159	case CPU_BMIPS4380:
160		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
161		break;
162	case CPU_BMIPS5000:
163		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
164		break;
165	default:
166		return;
167	}
168
169	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
170			"smp_ipi0", NULL))
171		panic("Can't request IPI0 interrupt");
172	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
173			"smp_ipi1", NULL))
174		panic("Can't request IPI1 interrupt");
175}
176
177/*
178 * Tell the hardware to boot CPUx - runs on CPU0
179 */
180static void bmips_boot_secondary(int cpu, struct task_struct *idle)
181{
182	bmips_smp_boot_sp = __KSTK_TOS(idle);
183	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
184	mb();
185
186	/*
187	 * Initial boot sequence for secondary CPU:
188	 *   bmips_reset_nmi_vec @ a000_0000 ->
189	 *   bmips_smp_entry ->
190	 *   plat_wired_tlb_setup (cached function call; optional) ->
191	 *   start_secondary (cached jump)
192	 *
193	 * Warm restart sequence:
194	 *   play_dead WAIT loop ->
195	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
196	 *   eret to play_dead ->
197	 *   bmips_secondary_reentry ->
198	 *   start_secondary
199	 */
200
201	pr_info("SMP: Booting CPU%d...\n", cpu);
202
203	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
204		/* kseg1 might not exist if this CPU enabled XKS01 */
205		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
206
207		switch (current_cpu_type()) {
208		case CPU_BMIPS4350:
209		case CPU_BMIPS4380:
210			bmips43xx_send_ipi_single(cpu, 0);
211			break;
212		case CPU_BMIPS5000:
213			bmips5000_send_ipi_single(cpu, 0);
214			break;
215		}
216	} else {
217		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
218
219		switch (current_cpu_type()) {
220		case CPU_BMIPS4350:
221		case CPU_BMIPS4380:
222			/* Reset slave TP1 if booting from TP0 */
223			if (cpu_logical_map(cpu) == 1)
224				set_c0_brcm_cmt_ctrl(0x01);
225			break;
226		case CPU_BMIPS5000:
227			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
228			break;
229		}
230		cpumask_set_cpu(cpu, &bmips_booted_mask);
231	}
 
 
232}
233
234/*
235 * Early setup - runs on secondary CPU after cache probe
236 */
237static void bmips_init_secondary(void)
238{
239	switch (current_cpu_type()) {
240	case CPU_BMIPS4350:
241	case CPU_BMIPS4380:
242		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
243		break;
244	case CPU_BMIPS5000:
245		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
246		current_cpu_data.core = (read_c0_brcm_config() >> 25) & 3;
247		break;
248	}
249}
250
251/*
252 * Late setup - runs on secondary CPU before entering the idle loop
253 */
254static void bmips_smp_finish(void)
255{
256	pr_info("SMP: CPU%d is running\n", smp_processor_id());
257
258	/* make sure there won't be a timer interrupt for a little while */
259	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
260
261	irq_enable_hazard();
262	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
263	irq_enable_hazard();
264}
265
266/*
267 * BMIPS5000 raceless IPIs
268 *
269 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
270 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
271 * IPI1 is used for SMP_CALL_FUNCTION
272 */
273
274static void bmips5000_send_ipi_single(int cpu, unsigned int action)
275{
276	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
277}
278
279static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
280{
281	int action = irq - IPI0_IRQ;
282
283	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
284
285	if (action == 0)
286		scheduler_ipi();
287	else
288		generic_smp_call_function_interrupt();
289
290	return IRQ_HANDLED;
291}
292
293static void bmips5000_send_ipi_mask(const struct cpumask *mask,
294	unsigned int action)
295{
296	unsigned int i;
297
298	for_each_cpu(i, mask)
299		bmips5000_send_ipi_single(i, action);
300}
301
302/*
303 * BMIPS43xx racey IPIs
304 *
305 * We use one inbound SW IRQ for each CPU.
306 *
307 * A spinlock must be held in order to keep CPUx from accidentally clearing
308 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
309 * same spinlock is used to protect the action masks.
310 */
311
312static DEFINE_SPINLOCK(ipi_lock);
313static DEFINE_PER_CPU(int, ipi_action_mask);
314
315static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
316{
317	unsigned long flags;
318
319	spin_lock_irqsave(&ipi_lock, flags);
320	set_c0_cause(cpu ? C_SW1 : C_SW0);
321	per_cpu(ipi_action_mask, cpu) |= action;
322	irq_enable_hazard();
323	spin_unlock_irqrestore(&ipi_lock, flags);
324}
325
326static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
327{
328	unsigned long flags;
329	int action, cpu = irq - IPI0_IRQ;
330
331	spin_lock_irqsave(&ipi_lock, flags);
332	action = __this_cpu_read(ipi_action_mask);
333	per_cpu(ipi_action_mask, cpu) = 0;
334	clear_c0_cause(cpu ? C_SW1 : C_SW0);
335	spin_unlock_irqrestore(&ipi_lock, flags);
336
337	if (action & SMP_RESCHEDULE_YOURSELF)
338		scheduler_ipi();
339	if (action & SMP_CALL_FUNCTION)
340		generic_smp_call_function_interrupt();
341
342	return IRQ_HANDLED;
343}
344
345static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
346	unsigned int action)
347{
348	unsigned int i;
349
350	for_each_cpu(i, mask)
351		bmips43xx_send_ipi_single(i, action);
352}
353
354#ifdef CONFIG_HOTPLUG_CPU
355
356static int bmips_cpu_disable(void)
357{
358	unsigned int cpu = smp_processor_id();
359
360	if (cpu == 0)
361		return -EBUSY;
362
363	pr_info("SMP: CPU%d is offline\n", cpu);
364
365	set_cpu_online(cpu, false);
366	calculate_cpu_foreign_map();
367	cpumask_clear_cpu(cpu, &cpu_callin_map);
368	clear_c0_status(IE_IRQ5);
369
370	local_flush_tlb_all();
371	local_flush_icache_range(0, ~0);
372
373	return 0;
374}
375
376static void bmips_cpu_die(unsigned int cpu)
377{
378}
379
380void __ref play_dead(void)
381{
382	idle_task_exit();
383
384	/* flush data cache */
385	_dma_cache_wback_inv(0, ~0);
386
387	/*
388	 * Wakeup is on SW0 or SW1; disable everything else
389	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
390	 * IRQ handlers; this clears ST0_IE and returns immediately.
391	 */
392	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
393	change_c0_status(
394		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
395		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
396	irq_disable_hazard();
397
398	/*
399	 * wait for SW interrupt from bmips_boot_secondary(), then jump
400	 * back to start_secondary()
401	 */
402	__asm__ __volatile__(
403	"	wait\n"
404	"	j	bmips_secondary_reentry\n"
405	: : : "memory");
406}
407
408#endif /* CONFIG_HOTPLUG_CPU */
409
410struct plat_smp_ops bmips43xx_smp_ops = {
411	.smp_setup		= bmips_smp_setup,
412	.prepare_cpus		= bmips_prepare_cpus,
413	.boot_secondary		= bmips_boot_secondary,
414	.smp_finish		= bmips_smp_finish,
415	.init_secondary		= bmips_init_secondary,
416	.send_ipi_single	= bmips43xx_send_ipi_single,
417	.send_ipi_mask		= bmips43xx_send_ipi_mask,
418#ifdef CONFIG_HOTPLUG_CPU
419	.cpu_disable		= bmips_cpu_disable,
420	.cpu_die		= bmips_cpu_die,
421#endif
 
 
 
422};
423
424struct plat_smp_ops bmips5000_smp_ops = {
425	.smp_setup		= bmips_smp_setup,
426	.prepare_cpus		= bmips_prepare_cpus,
427	.boot_secondary		= bmips_boot_secondary,
428	.smp_finish		= bmips_smp_finish,
429	.init_secondary		= bmips_init_secondary,
430	.send_ipi_single	= bmips5000_send_ipi_single,
431	.send_ipi_mask		= bmips5000_send_ipi_mask,
432#ifdef CONFIG_HOTPLUG_CPU
433	.cpu_disable		= bmips_cpu_disable,
434	.cpu_die		= bmips_cpu_die,
435#endif
 
 
 
436};
437
438#endif /* CONFIG_SMP */
439
440/***********************************************************************
441 * BMIPS vector relocation
442 * This is primarily used for SMP boot, but it is applicable to some
443 * UP BMIPS systems as well.
444 ***********************************************************************/
445
446static void bmips_wr_vec(unsigned long dst, char *start, char *end)
447{
448	memcpy((void *)dst, start, end - start);
449	dma_cache_wback(dst, end - start);
450	local_flush_icache_range(dst, dst + (end - start));
451	instruction_hazard();
452}
453
454static inline void bmips_nmi_handler_setup(void)
455{
456	bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
457		&bmips_reset_nmi_vec_end);
458	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
459		&bmips_smp_int_vec_end);
460}
461
462struct reset_vec_info {
463	int cpu;
464	u32 val;
465};
466
467static void bmips_set_reset_vec_remote(void *vinfo)
468{
469	struct reset_vec_info *info = vinfo;
470	int shift = info->cpu & 0x01 ? 16 : 0;
471	u32 mask = ~(0xffff << shift), val = info->val >> 16;
472
473	preempt_disable();
474	if (smp_processor_id() > 0) {
475		smp_call_function_single(0, &bmips_set_reset_vec_remote,
476					 info, 1);
477	} else {
478		if (info->cpu & 0x02) {
479			/* BMIPS5200 "should" use mask/shift, but it's buggy */
480			bmips_write_zscm_reg(0xa0, (val << 16) | val);
481			bmips_read_zscm_reg(0xa0);
482		} else {
483			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
484					      (val << shift));
485		}
486	}
487	preempt_enable();
488}
489
490static void bmips_set_reset_vec(int cpu, u32 val)
491{
492	struct reset_vec_info info;
493
494	if (current_cpu_type() == CPU_BMIPS5000) {
495		/* this needs to run from CPU0 (which is always online) */
496		info.cpu = cpu;
497		info.val = val;
498		bmips_set_reset_vec_remote(&info);
499	} else {
500		void __iomem *cbr = BMIPS_GET_CBR();
501
502		if (cpu == 0)
503			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
504		else {
505			if (current_cpu_type() != CPU_BMIPS4380)
506				return;
507			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
508		}
509	}
510	__sync();
511	back_to_back_c0_hazard();
512}
513
514void bmips_ebase_setup(void)
515{
516	unsigned long new_ebase = ebase;
517
518	BUG_ON(ebase != CKSEG0);
519
520	switch (current_cpu_type()) {
521	case CPU_BMIPS4350:
522		/*
523		 * BMIPS4350 cannot relocate the normal vectors, but it
524		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
525		 * the relocated BEV=1, IV=0 general exception vector @
526		 * 0xa000_0380.
527		 *
528		 * set_uncached_handler() is used here because:
529		 *  - CPU1 will run this from uncached space
530		 *  - None of the cacheflush functions are set up yet
531		 */
532		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
533			&bmips_smp_int_vec, 0x80);
534		__sync();
535		return;
536	case CPU_BMIPS3300:
537	case CPU_BMIPS4380:
538		/*
539		 * 0x8000_0000: reset/NMI (initially in kseg1)
540		 * 0x8000_0400: normal vectors
541		 */
542		new_ebase = 0x80000400;
543		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
544		break;
545	case CPU_BMIPS5000:
546		/*
547		 * 0x8000_0000: reset/NMI (initially in kseg1)
548		 * 0x8000_1000: normal vectors
549		 */
550		new_ebase = 0x80001000;
551		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
552		write_c0_ebase(new_ebase);
553		break;
554	default:
555		return;
556	}
557
558	board_nmi_handler_setup = &bmips_nmi_handler_setup;
559	ebase = new_ebase;
560}
561
562asmlinkage void __weak plat_wired_tlb_setup(void)
563{
564	/*
565	 * Called when starting/restarting a secondary CPU.
566	 * Kernel stacks and other important data might only be accessible
567	 * once the wired entries are present.
568	 */
569}
570
571void __init bmips_cpu_setup(void)
572{
573	void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
574	u32 __maybe_unused cfg;
575
576	switch (current_cpu_type()) {
577	case CPU_BMIPS3300:
578		/* Set BIU to async mode */
579		set_c0_brcm_bus_pll(BIT(22));
580		__sync();
581
582		/* put the BIU back in sync mode */
583		clear_c0_brcm_bus_pll(BIT(22));
584
585		/* clear BHTD to enable branch history table */
586		clear_c0_brcm_reset(BIT(16));
587
588		/* Flush and enable RAC */
589		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
590		__raw_writel(cfg | 0x100, BMIPS_RAC_CONFIG);
591		__raw_readl(cbr + BMIPS_RAC_CONFIG);
592
593		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
594		__raw_writel(cfg | 0xf, BMIPS_RAC_CONFIG);
595		__raw_readl(cbr + BMIPS_RAC_CONFIG);
596
597		cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
598		__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
599		__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
600		break;
601
602	case CPU_BMIPS4380:
603		/* CBG workaround for early BMIPS4380 CPUs */
604		switch (read_c0_prid()) {
605		case 0x2a040:
606		case 0x2a042:
607		case 0x2a044:
608		case 0x2a060:
609			cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
610			__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
611			__raw_readl(cbr + BMIPS_L2_CONFIG);
612		}
613
614		/* clear BHTD to enable branch history table */
615		clear_c0_brcm_config_0(BIT(21));
616
617		/* XI/ROTR enable */
618		set_c0_brcm_config_0(BIT(23));
619		set_c0_brcm_cmt_ctrl(BIT(15));
620		break;
621
622	case CPU_BMIPS5000:
623		/* enable RDHWR, BRDHWR */
624		set_c0_brcm_config(BIT(17) | BIT(21));
625
626		/* Disable JTB */
627		__asm__ __volatile__(
628		"	.set	noreorder\n"
629		"	li	$8, 0x5a455048\n"
630		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
631		"	.word	0x4008b008\n"	/* mfc0	t0, $22, 8 */
632		"	li	$9, 0x00008000\n"
633		"	or	$8, $8, $9\n"
634		"	.word	0x4088b008\n"	/* mtc0	t0, $22, 8 */
635		"	sync\n"
636		"	li	$8, 0x0\n"
637		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
638		"	.set	reorder\n"
639		: : : "$8", "$9");
640
641		/* XI enable */
642		set_c0_brcm_config(BIT(27));
643
644		/* enable MIPS32R2 ROR instruction for XI TLB handlers */
645		__asm__ __volatile__(
646		"	li	$8, 0x5a455048\n"
647		"	.word	0x4088b00f\n"	/* mtc0 $8, $22, 15 */
648		"	nop; nop; nop\n"
649		"	.word	0x4008b008\n"	/* mfc0 $8, $22, 8 */
650		"	lui	$9, 0x0100\n"
651		"	or	$8, $9\n"
652		"	.word	0x4088b008\n"	/* mtc0 $8, $22, 8 */
653		: : : "$8", "$9");
654		break;
655	}
656}