Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (c) 1994 - 1997, 99, 2000, 06, 07  Ralf Baechle (ralf@linux-mips.org)
  7 * Copyright (c) 1999, 2000  Silicon Graphics, Inc.
  8 */
  9#ifndef _ASM_BITOPS_H
 10#define _ASM_BITOPS_H
 11
 12#ifndef _LINUX_BITOPS_H
 13#error only <linux/bitops.h> can be included directly
 14#endif
 15
 16#include <linux/compiler.h>
 17#include <linux/types.h>
 18#include <asm/barrier.h>
 19#include <asm/byteorder.h>		/* sigh ... */
 20#include <asm/compiler.h>
 21#include <asm/cpu-features.h>
 22#include <asm/llsc.h>
 23#include <asm/sgidefs.h>
 24#include <asm/war.h>
 25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 26/*
 27 * These are the "slower" versions of the functions and are in bitops.c.
 28 * These functions call raw_local_irq_{save,restore}().
 29 */
 30void __mips_set_bit(unsigned long nr, volatile unsigned long *addr);
 31void __mips_clear_bit(unsigned long nr, volatile unsigned long *addr);
 32void __mips_change_bit(unsigned long nr, volatile unsigned long *addr);
 33int __mips_test_and_set_bit(unsigned long nr,
 34			    volatile unsigned long *addr);
 35int __mips_test_and_set_bit_lock(unsigned long nr,
 36				 volatile unsigned long *addr);
 37int __mips_test_and_clear_bit(unsigned long nr,
 38			      volatile unsigned long *addr);
 39int __mips_test_and_change_bit(unsigned long nr,
 40			       volatile unsigned long *addr);
 41
 42
 43/*
 44 * set_bit - Atomically set a bit in memory
 45 * @nr: the bit to set
 46 * @addr: the address to start counting from
 47 *
 48 * This function is atomic and may not be reordered.  See __set_bit()
 49 * if you do not require the atomic guarantees.
 50 * Note that @nr may be almost arbitrarily large; this function is not
 51 * restricted to acting on a single-word quantity.
 52 */
 53static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
 54{
 55	unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
 56	int bit = nr & SZLONG_MASK;
 57	unsigned long temp;
 58
 59	if (kernel_uses_llsc && R10000_LLSC_WAR) {
 60		__asm__ __volatile__(
 61		"	.set	push					\n"
 62		"	.set	arch=r4000				\n"
 63		"1:	" __LL "%0, %1			# set_bit	\n"
 64		"	or	%0, %2					\n"
 65		"	" __SC	"%0, %1					\n"
 66		"	beqzl	%0, 1b					\n"
 67		"	.set	pop					\n"
 68		: "=&r" (temp), "=" GCC_OFF_SMALL_ASM() (*m)
 69		: "ir" (1UL << bit), GCC_OFF_SMALL_ASM() (*m)
 70		: __LLSC_CLOBBER);
 71#if defined(CONFIG_CPU_MIPSR2) || defined(CONFIG_CPU_MIPSR6)
 72	} else if (kernel_uses_llsc && __builtin_constant_p(bit)) {
 73		loongson_llsc_mb();
 74		do {
 75			__asm__ __volatile__(
 76			"	" __LL "%0, %1		# set_bit	\n"
 77			"	" __INS "%0, %3, %2, 1			\n"
 78			"	" __SC "%0, %1				\n"
 79			: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m)
 80			: "ir" (bit), "r" (~0)
 81			: __LLSC_CLOBBER);
 82		} while (unlikely(!temp));
 83#endif /* CONFIG_CPU_MIPSR2 || CONFIG_CPU_MIPSR6 */
 84	} else if (kernel_uses_llsc) {
 85		loongson_llsc_mb();
 86		do {
 87			__asm__ __volatile__(
 88			"	.set	push				\n"
 89			"	.set	"MIPS_ISA_ARCH_LEVEL"		\n"
 90			"	" __LL "%0, %1		# set_bit	\n"
 91			"	or	%0, %2				\n"
 92			"	" __SC	"%0, %1				\n"
 93			"	.set	pop				\n"
 94			: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m)
 95			: "ir" (1UL << bit)
 96			: __LLSC_CLOBBER);
 97		} while (unlikely(!temp));
 98	} else
 99		__mips_set_bit(nr, addr);
100}
101
102/*
103 * clear_bit - Clears a bit in memory
104 * @nr: Bit to clear
105 * @addr: Address to start counting from
106 *
107 * clear_bit() is atomic and may not be reordered.  However, it does
108 * not contain a memory barrier, so if it is used for locking purposes,
109 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
110 * in order to ensure changes are visible on other processors.
111 */
112static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
113{
114	unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
115	int bit = nr & SZLONG_MASK;
116	unsigned long temp;
117
118	if (kernel_uses_llsc && R10000_LLSC_WAR) {
119		__asm__ __volatile__(
120		"	.set	push					\n"
121		"	.set	arch=r4000				\n"
122		"1:	" __LL "%0, %1			# clear_bit	\n"
123		"	and	%0, %2					\n"
124		"	" __SC "%0, %1					\n"
125		"	beqzl	%0, 1b					\n"
126		"	.set	pop					\n"
127		: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m)
128		: "ir" (~(1UL << bit))
129		: __LLSC_CLOBBER);
130#if defined(CONFIG_CPU_MIPSR2) || defined(CONFIG_CPU_MIPSR6)
131	} else if (kernel_uses_llsc && __builtin_constant_p(bit)) {
132		loongson_llsc_mb();
133		do {
134			__asm__ __volatile__(
135			"	" __LL "%0, %1		# clear_bit	\n"
136			"	" __INS "%0, $0, %2, 1			\n"
137			"	" __SC "%0, %1				\n"
138			: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m)
139			: "ir" (bit)
140			: __LLSC_CLOBBER);
141		} while (unlikely(!temp));
142#endif /* CONFIG_CPU_MIPSR2 || CONFIG_CPU_MIPSR6 */
143	} else if (kernel_uses_llsc) {
144		loongson_llsc_mb();
145		do {
146			__asm__ __volatile__(
147			"	.set	push				\n"
148			"	.set	"MIPS_ISA_ARCH_LEVEL"		\n"
149			"	" __LL "%0, %1		# clear_bit	\n"
150			"	and	%0, %2				\n"
151			"	" __SC "%0, %1				\n"
152			"	.set	pop				\n"
153			: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m)
154			: "ir" (~(1UL << bit))
155			: __LLSC_CLOBBER);
156		} while (unlikely(!temp));
157	} else
158		__mips_clear_bit(nr, addr);
159}
160
161/*
162 * clear_bit_unlock - Clears a bit in memory
163 * @nr: Bit to clear
164 * @addr: Address to start counting from
165 *
166 * clear_bit() is atomic and implies release semantics before the memory
167 * operation. It can be used for an unlock.
168 */
169static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
170{
171	smp_mb__before_atomic();
172	clear_bit(nr, addr);
173}
174
175/*
176 * change_bit - Toggle a bit in memory
177 * @nr: Bit to change
178 * @addr: Address to start counting from
179 *
180 * change_bit() is atomic and may not be reordered.
181 * Note that @nr may be almost arbitrarily large; this function is not
182 * restricted to acting on a single-word quantity.
183 */
184static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
185{
186	int bit = nr & SZLONG_MASK;
187
188	if (kernel_uses_llsc && R10000_LLSC_WAR) {
189		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
190		unsigned long temp;
191
192		__asm__ __volatile__(
193		"	.set	push				\n"
194		"	.set	arch=r4000			\n"
195		"1:	" __LL "%0, %1		# change_bit	\n"
196		"	xor	%0, %2				\n"
197		"	" __SC	"%0, %1				\n"
198		"	beqzl	%0, 1b				\n"
199		"	.set	pop				\n"
200		: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m)
201		: "ir" (1UL << bit)
202		: __LLSC_CLOBBER);
203	} else if (kernel_uses_llsc) {
204		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
205		unsigned long temp;
206
207		loongson_llsc_mb();
208		do {
209			__asm__ __volatile__(
210			"	.set	push				\n"
211			"	.set	"MIPS_ISA_ARCH_LEVEL"		\n"
212			"	" __LL "%0, %1		# change_bit	\n"
213			"	xor	%0, %2				\n"
214			"	" __SC	"%0, %1				\n"
215			"	.set	pop				\n"
216			: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m)
217			: "ir" (1UL << bit)
218			: __LLSC_CLOBBER);
219		} while (unlikely(!temp));
220	} else
221		__mips_change_bit(nr, addr);
222}
223
224/*
225 * test_and_set_bit - Set a bit and return its old value
226 * @nr: Bit to set
227 * @addr: Address to count from
228 *
229 * This operation is atomic and cannot be reordered.
230 * It also implies a memory barrier.
231 */
232static inline int test_and_set_bit(unsigned long nr,
233	volatile unsigned long *addr)
234{
235	int bit = nr & SZLONG_MASK;
236	unsigned long res;
237
238	smp_mb__before_llsc();
239
240	if (kernel_uses_llsc && R10000_LLSC_WAR) {
241		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
242		unsigned long temp;
243
244		__asm__ __volatile__(
245		"	.set	push					\n"
246		"	.set	arch=r4000				\n"
247		"1:	" __LL "%0, %1		# test_and_set_bit	\n"
248		"	or	%2, %0, %3				\n"
249		"	" __SC	"%2, %1					\n"
250		"	beqzl	%2, 1b					\n"
251		"	and	%2, %0, %3				\n"
252		"	.set	pop					\n"
253		: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
254		: "r" (1UL << bit)
255		: __LLSC_CLOBBER);
256	} else if (kernel_uses_llsc) {
257		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
258		unsigned long temp;
259
260		loongson_llsc_mb();
261		do {
262			__asm__ __volatile__(
263			"	.set	push				\n"
264			"	.set	"MIPS_ISA_ARCH_LEVEL"		\n"
265			"	" __LL "%0, %1	# test_and_set_bit	\n"
266			"	or	%2, %0, %3			\n"
267			"	" __SC	"%2, %1				\n"
268			"	.set	pop				\n"
269			: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
270			: "r" (1UL << bit)
271			: __LLSC_CLOBBER);
272		} while (unlikely(!res));
273
274		res = temp & (1UL << bit);
275	} else
276		res = __mips_test_and_set_bit(nr, addr);
277
278	smp_llsc_mb();
279
280	return res != 0;
281}
282
283/*
284 * test_and_set_bit_lock - Set a bit and return its old value
285 * @nr: Bit to set
286 * @addr: Address to count from
287 *
288 * This operation is atomic and implies acquire ordering semantics
289 * after the memory operation.
290 */
291static inline int test_and_set_bit_lock(unsigned long nr,
292	volatile unsigned long *addr)
293{
294	int bit = nr & SZLONG_MASK;
295	unsigned long res;
296
297	if (kernel_uses_llsc && R10000_LLSC_WAR) {
298		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
299		unsigned long temp;
300
301		__asm__ __volatile__(
302		"	.set	push					\n"
303		"	.set	arch=r4000				\n"
304		"1:	" __LL "%0, %1		# test_and_set_bit	\n"
305		"	or	%2, %0, %3				\n"
306		"	" __SC	"%2, %1					\n"
307		"	beqzl	%2, 1b					\n"
308		"	and	%2, %0, %3				\n"
309		"	.set	pop					\n"
310		: "=&r" (temp), "+m" (*m), "=&r" (res)
311		: "r" (1UL << bit)
312		: __LLSC_CLOBBER);
313	} else if (kernel_uses_llsc) {
314		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
315		unsigned long temp;
316
317		loongson_llsc_mb();
318		do {
319			__asm__ __volatile__(
320			"	.set	push				\n"
321			"	.set	"MIPS_ISA_ARCH_LEVEL"		\n"
322			"	" __LL "%0, %1	# test_and_set_bit	\n"
323			"	or	%2, %0, %3			\n"
324			"	" __SC	"%2, %1				\n"
325			"	.set	pop				\n"
326			: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
327			: "r" (1UL << bit)
328			: __LLSC_CLOBBER);
329		} while (unlikely(!res));
330
331		res = temp & (1UL << bit);
332	} else
333		res = __mips_test_and_set_bit_lock(nr, addr);
334
335	smp_llsc_mb();
336
337	return res != 0;
338}
339/*
340 * test_and_clear_bit - Clear a bit and return its old value
341 * @nr: Bit to clear
342 * @addr: Address to count from
343 *
344 * This operation is atomic and cannot be reordered.
345 * It also implies a memory barrier.
346 */
347static inline int test_and_clear_bit(unsigned long nr,
348	volatile unsigned long *addr)
349{
350	int bit = nr & SZLONG_MASK;
351	unsigned long res;
352
353	smp_mb__before_llsc();
354
355	if (kernel_uses_llsc && R10000_LLSC_WAR) {
356		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
357		unsigned long temp;
358
359		__asm__ __volatile__(
360		"	.set	push					\n"
361		"	.set	arch=r4000				\n"
362		"1:	" __LL	"%0, %1		# test_and_clear_bit	\n"
363		"	or	%2, %0, %3				\n"
364		"	xor	%2, %3					\n"
365		"	" __SC	"%2, %1					\n"
366		"	beqzl	%2, 1b					\n"
367		"	and	%2, %0, %3				\n"
368		"	.set	pop					\n"
369		: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
370		: "r" (1UL << bit)
371		: __LLSC_CLOBBER);
372#if defined(CONFIG_CPU_MIPSR2) || defined(CONFIG_CPU_MIPSR6)
373	} else if (kernel_uses_llsc && __builtin_constant_p(nr)) {
374		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
375		unsigned long temp;
376
377		loongson_llsc_mb();
378		do {
379			__asm__ __volatile__(
380			"	" __LL	"%0, %1 # test_and_clear_bit	\n"
381			"	" __EXT "%2, %0, %3, 1			\n"
382			"	" __INS "%0, $0, %3, 1			\n"
383			"	" __SC	"%0, %1				\n"
384			: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
385			: "ir" (bit)
386			: __LLSC_CLOBBER);
387		} while (unlikely(!temp));
388#endif
389	} else if (kernel_uses_llsc) {
390		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
391		unsigned long temp;
392
393		loongson_llsc_mb();
394		do {
395			__asm__ __volatile__(
396			"	.set	push				\n"
397			"	.set	"MIPS_ISA_ARCH_LEVEL"		\n"
398			"	" __LL	"%0, %1 # test_and_clear_bit	\n"
399			"	or	%2, %0, %3			\n"
400			"	xor	%2, %3				\n"
401			"	" __SC	"%2, %1				\n"
402			"	.set	pop				\n"
403			: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
404			: "r" (1UL << bit)
405			: __LLSC_CLOBBER);
406		} while (unlikely(!res));
407
408		res = temp & (1UL << bit);
409	} else
410		res = __mips_test_and_clear_bit(nr, addr);
411
412	smp_llsc_mb();
413
414	return res != 0;
415}
416
417/*
418 * test_and_change_bit - Change a bit and return its old value
419 * @nr: Bit to change
420 * @addr: Address to count from
421 *
422 * This operation is atomic and cannot be reordered.
423 * It also implies a memory barrier.
424 */
425static inline int test_and_change_bit(unsigned long nr,
426	volatile unsigned long *addr)
427{
428	int bit = nr & SZLONG_MASK;
429	unsigned long res;
430
431	smp_mb__before_llsc();
432
433	if (kernel_uses_llsc && R10000_LLSC_WAR) {
434		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
435		unsigned long temp;
436
437		__asm__ __volatile__(
438		"	.set	push					\n"
439		"	.set	arch=r4000				\n"
440		"1:	" __LL	"%0, %1		# test_and_change_bit	\n"
441		"	xor	%2, %0, %3				\n"
442		"	" __SC	"%2, %1					\n"
443		"	beqzl	%2, 1b					\n"
444		"	and	%2, %0, %3				\n"
445		"	.set	pop					\n"
446		: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
447		: "r" (1UL << bit)
448		: __LLSC_CLOBBER);
449	} else if (kernel_uses_llsc) {
450		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
451		unsigned long temp;
452
453		loongson_llsc_mb();
454		do {
455			__asm__ __volatile__(
456			"	.set	push				\n"
457			"	.set	"MIPS_ISA_ARCH_LEVEL"		\n"
458			"	" __LL	"%0, %1 # test_and_change_bit	\n"
459			"	xor	%2, %0, %3			\n"
460			"	" __SC	"\t%2, %1			\n"
461			"	.set	pop				\n"
462			: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
463			: "r" (1UL << bit)
464			: __LLSC_CLOBBER);
465		} while (unlikely(!res));
466
467		res = temp & (1UL << bit);
468	} else
469		res = __mips_test_and_change_bit(nr, addr);
470
471	smp_llsc_mb();
472
473	return res != 0;
474}
475
476#include <asm-generic/bitops/non-atomic.h>
477
478/*
479 * __clear_bit_unlock - Clears a bit in memory
480 * @nr: Bit to clear
481 * @addr: Address to start counting from
482 *
483 * __clear_bit() is non-atomic and implies release semantics before the memory
484 * operation. It can be used for an unlock if no other CPUs can concurrently
485 * modify other bits in the word.
486 */
487static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
488{
489	smp_mb__before_llsc();
490	__clear_bit(nr, addr);
491	nudge_writes();
492}
493
494/*
495 * Return the bit position (0..63) of the most significant 1 bit in a word
496 * Returns -1 if no 1 bit exists
497 */
498static __always_inline unsigned long __fls(unsigned long word)
499{
500	int num;
501
502	if (BITS_PER_LONG == 32 && !__builtin_constant_p(word) &&
503	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
504		__asm__(
505		"	.set	push					\n"
506		"	.set	"MIPS_ISA_LEVEL"			\n"
507		"	clz	%0, %1					\n"
508		"	.set	pop					\n"
509		: "=r" (num)
510		: "r" (word));
511
512		return 31 - num;
513	}
514
515	if (BITS_PER_LONG == 64 && !__builtin_constant_p(word) &&
516	    __builtin_constant_p(cpu_has_mips64) && cpu_has_mips64) {
517		__asm__(
518		"	.set	push					\n"
519		"	.set	"MIPS_ISA_LEVEL"			\n"
520		"	dclz	%0, %1					\n"
521		"	.set	pop					\n"
522		: "=r" (num)
523		: "r" (word));
524
525		return 63 - num;
526	}
527
528	num = BITS_PER_LONG - 1;
529
530#if BITS_PER_LONG == 64
531	if (!(word & (~0ul << 32))) {
532		num -= 32;
533		word <<= 32;
534	}
535#endif
536	if (!(word & (~0ul << (BITS_PER_LONG-16)))) {
537		num -= 16;
538		word <<= 16;
539	}
540	if (!(word & (~0ul << (BITS_PER_LONG-8)))) {
541		num -= 8;
542		word <<= 8;
543	}
544	if (!(word & (~0ul << (BITS_PER_LONG-4)))) {
545		num -= 4;
546		word <<= 4;
547	}
548	if (!(word & (~0ul << (BITS_PER_LONG-2)))) {
549		num -= 2;
550		word <<= 2;
551	}
552	if (!(word & (~0ul << (BITS_PER_LONG-1))))
553		num -= 1;
554	return num;
555}
556
557/*
558 * __ffs - find first bit in word.
559 * @word: The word to search
560 *
561 * Returns 0..SZLONG-1
562 * Undefined if no bit exists, so code should check against 0 first.
563 */
564static __always_inline unsigned long __ffs(unsigned long word)
565{
566	return __fls(word & -word);
567}
568
569/*
570 * fls - find last bit set.
571 * @word: The word to search
572 *
573 * This is defined the same way as ffs.
574 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
575 */
576static inline int fls(unsigned int x)
577{
578	int r;
579
580	if (!__builtin_constant_p(x) &&
581	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
582		__asm__(
583		"	.set	push					\n"
584		"	.set	"MIPS_ISA_LEVEL"			\n"
585		"	clz	%0, %1					\n"
586		"	.set	pop					\n"
587		: "=r" (x)
588		: "r" (x));
589
590		return 32 - x;
591	}
592
593	r = 32;
594	if (!x)
595		return 0;
596	if (!(x & 0xffff0000u)) {
597		x <<= 16;
598		r -= 16;
599	}
600	if (!(x & 0xff000000u)) {
601		x <<= 8;
602		r -= 8;
603	}
604	if (!(x & 0xf0000000u)) {
605		x <<= 4;
606		r -= 4;
607	}
608	if (!(x & 0xc0000000u)) {
609		x <<= 2;
610		r -= 2;
611	}
612	if (!(x & 0x80000000u)) {
613		x <<= 1;
614		r -= 1;
615	}
616	return r;
617}
618
619#include <asm-generic/bitops/fls64.h>
620
621/*
622 * ffs - find first bit set.
623 * @word: The word to search
624 *
625 * This is defined the same way as
626 * the libc and compiler builtin ffs routines, therefore
627 * differs in spirit from the above ffz (man ffs).
628 */
629static inline int ffs(int word)
630{
631	if (!word)
632		return 0;
633
634	return fls(word & -word);
635}
636
637#include <asm-generic/bitops/ffz.h>
638#include <asm-generic/bitops/find.h>
639
640#ifdef __KERNEL__
641
642#include <asm-generic/bitops/sched.h>
643
644#include <asm/arch_hweight.h>
645#include <asm-generic/bitops/const_hweight.h>
646
647#include <asm-generic/bitops/le.h>
648#include <asm-generic/bitops/ext2-atomic.h>
649
650#endif /* __KERNEL__ */
651
652#endif /* _ASM_BITOPS_H */
v3.15
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (c) 1994 - 1997, 99, 2000, 06, 07  Ralf Baechle (ralf@linux-mips.org)
  7 * Copyright (c) 1999, 2000  Silicon Graphics, Inc.
  8 */
  9#ifndef _ASM_BITOPS_H
 10#define _ASM_BITOPS_H
 11
 12#ifndef _LINUX_BITOPS_H
 13#error only <linux/bitops.h> can be included directly
 14#endif
 15
 16#include <linux/compiler.h>
 17#include <linux/types.h>
 18#include <asm/barrier.h>
 19#include <asm/byteorder.h>		/* sigh ... */
 
 20#include <asm/cpu-features.h>
 
 21#include <asm/sgidefs.h>
 22#include <asm/war.h>
 23
 24#if _MIPS_SZLONG == 32
 25#define SZLONG_LOG 5
 26#define SZLONG_MASK 31UL
 27#define __LL		"ll	"
 28#define __SC		"sc	"
 29#define __INS		"ins	"
 30#define __EXT		"ext	"
 31#elif _MIPS_SZLONG == 64
 32#define SZLONG_LOG 6
 33#define SZLONG_MASK 63UL
 34#define __LL		"lld	"
 35#define __SC		"scd	"
 36#define __INS		"dins	 "
 37#define __EXT		"dext	 "
 38#endif
 39
 40/*
 41 * clear_bit() doesn't provide any barrier for the compiler.
 42 */
 43#define smp_mb__before_clear_bit()	smp_mb__before_llsc()
 44#define smp_mb__after_clear_bit()	smp_llsc_mb()
 45
 46
 47/*
 48 * These are the "slower" versions of the functions and are in bitops.c.
 49 * These functions call raw_local_irq_{save,restore}().
 50 */
 51void __mips_set_bit(unsigned long nr, volatile unsigned long *addr);
 52void __mips_clear_bit(unsigned long nr, volatile unsigned long *addr);
 53void __mips_change_bit(unsigned long nr, volatile unsigned long *addr);
 54int __mips_test_and_set_bit(unsigned long nr,
 55			    volatile unsigned long *addr);
 56int __mips_test_and_set_bit_lock(unsigned long nr,
 57				 volatile unsigned long *addr);
 58int __mips_test_and_clear_bit(unsigned long nr,
 59			      volatile unsigned long *addr);
 60int __mips_test_and_change_bit(unsigned long nr,
 61			       volatile unsigned long *addr);
 62
 63
 64/*
 65 * set_bit - Atomically set a bit in memory
 66 * @nr: the bit to set
 67 * @addr: the address to start counting from
 68 *
 69 * This function is atomic and may not be reordered.  See __set_bit()
 70 * if you do not require the atomic guarantees.
 71 * Note that @nr may be almost arbitrarily large; this function is not
 72 * restricted to acting on a single-word quantity.
 73 */
 74static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
 75{
 76	unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
 77	int bit = nr & SZLONG_MASK;
 78	unsigned long temp;
 79
 80	if (kernel_uses_llsc && R10000_LLSC_WAR) {
 81		__asm__ __volatile__(
 
 82		"	.set	arch=r4000				\n"
 83		"1:	" __LL "%0, %1			# set_bit	\n"
 84		"	or	%0, %2					\n"
 85		"	" __SC	"%0, %1					\n"
 86		"	beqzl	%0, 1b					\n"
 87		"	.set	mips0					\n"
 88		: "=&r" (temp), "=m" (*m)
 89		: "ir" (1UL << bit), "m" (*m));
 90#ifdef CONFIG_CPU_MIPSR2
 
 91	} else if (kernel_uses_llsc && __builtin_constant_p(bit)) {
 
 92		do {
 93			__asm__ __volatile__(
 94			"	" __LL "%0, %1		# set_bit	\n"
 95			"	" __INS "%0, %3, %2, 1			\n"
 96			"	" __SC "%0, %1				\n"
 97			: "=&r" (temp), "+m" (*m)
 98			: "ir" (bit), "r" (~0));
 
 99		} while (unlikely(!temp));
100#endif /* CONFIG_CPU_MIPSR2 */
101	} else if (kernel_uses_llsc) {
 
102		do {
103			__asm__ __volatile__(
104			"	.set	arch=r4000			\n"
 
105			"	" __LL "%0, %1		# set_bit	\n"
106			"	or	%0, %2				\n"
107			"	" __SC	"%0, %1				\n"
108			"	.set	mips0				\n"
109			: "=&r" (temp), "+m" (*m)
110			: "ir" (1UL << bit));
 
111		} while (unlikely(!temp));
112	} else
113		__mips_set_bit(nr, addr);
114}
115
116/*
117 * clear_bit - Clears a bit in memory
118 * @nr: Bit to clear
119 * @addr: Address to start counting from
120 *
121 * clear_bit() is atomic and may not be reordered.  However, it does
122 * not contain a memory barrier, so if it is used for locking purposes,
123 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
124 * in order to ensure changes are visible on other processors.
125 */
126static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
127{
128	unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
129	int bit = nr & SZLONG_MASK;
130	unsigned long temp;
131
132	if (kernel_uses_llsc && R10000_LLSC_WAR) {
133		__asm__ __volatile__(
 
134		"	.set	arch=r4000				\n"
135		"1:	" __LL "%0, %1			# clear_bit	\n"
136		"	and	%0, %2					\n"
137		"	" __SC "%0, %1					\n"
138		"	beqzl	%0, 1b					\n"
139		"	.set	mips0					\n"
140		: "=&r" (temp), "+m" (*m)
141		: "ir" (~(1UL << bit)));
142#ifdef CONFIG_CPU_MIPSR2
 
143	} else if (kernel_uses_llsc && __builtin_constant_p(bit)) {
 
144		do {
145			__asm__ __volatile__(
146			"	" __LL "%0, %1		# clear_bit	\n"
147			"	" __INS "%0, $0, %2, 1			\n"
148			"	" __SC "%0, %1				\n"
149			: "=&r" (temp), "+m" (*m)
150			: "ir" (bit));
 
151		} while (unlikely(!temp));
152#endif /* CONFIG_CPU_MIPSR2 */
153	} else if (kernel_uses_llsc) {
 
154		do {
155			__asm__ __volatile__(
156			"	.set	arch=r4000			\n"
 
157			"	" __LL "%0, %1		# clear_bit	\n"
158			"	and	%0, %2				\n"
159			"	" __SC "%0, %1				\n"
160			"	.set	mips0				\n"
161			: "=&r" (temp), "+m" (*m)
162			: "ir" (~(1UL << bit)));
 
163		} while (unlikely(!temp));
164	} else
165		__mips_clear_bit(nr, addr);
166}
167
168/*
169 * clear_bit_unlock - Clears a bit in memory
170 * @nr: Bit to clear
171 * @addr: Address to start counting from
172 *
173 * clear_bit() is atomic and implies release semantics before the memory
174 * operation. It can be used for an unlock.
175 */
176static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
177{
178	smp_mb__before_clear_bit();
179	clear_bit(nr, addr);
180}
181
182/*
183 * change_bit - Toggle a bit in memory
184 * @nr: Bit to change
185 * @addr: Address to start counting from
186 *
187 * change_bit() is atomic and may not be reordered.
188 * Note that @nr may be almost arbitrarily large; this function is not
189 * restricted to acting on a single-word quantity.
190 */
191static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
192{
193	int bit = nr & SZLONG_MASK;
194
195	if (kernel_uses_llsc && R10000_LLSC_WAR) {
196		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
197		unsigned long temp;
198
199		__asm__ __volatile__(
 
200		"	.set	arch=r4000			\n"
201		"1:	" __LL "%0, %1		# change_bit	\n"
202		"	xor	%0, %2				\n"
203		"	" __SC	"%0, %1				\n"
204		"	beqzl	%0, 1b				\n"
205		"	.set	mips0				\n"
206		: "=&r" (temp), "+m" (*m)
207		: "ir" (1UL << bit));
 
208	} else if (kernel_uses_llsc) {
209		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
210		unsigned long temp;
211
 
212		do {
213			__asm__ __volatile__(
214			"	.set	arch=r4000			\n"
 
215			"	" __LL "%0, %1		# change_bit	\n"
216			"	xor	%0, %2				\n"
217			"	" __SC	"%0, %1				\n"
218			"	.set	mips0				\n"
219			: "=&r" (temp), "+m" (*m)
220			: "ir" (1UL << bit));
 
221		} while (unlikely(!temp));
222	} else
223		__mips_change_bit(nr, addr);
224}
225
226/*
227 * test_and_set_bit - Set a bit and return its old value
228 * @nr: Bit to set
229 * @addr: Address to count from
230 *
231 * This operation is atomic and cannot be reordered.
232 * It also implies a memory barrier.
233 */
234static inline int test_and_set_bit(unsigned long nr,
235	volatile unsigned long *addr)
236{
237	int bit = nr & SZLONG_MASK;
238	unsigned long res;
239
240	smp_mb__before_llsc();
241
242	if (kernel_uses_llsc && R10000_LLSC_WAR) {
243		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
244		unsigned long temp;
245
246		__asm__ __volatile__(
 
247		"	.set	arch=r4000				\n"
248		"1:	" __LL "%0, %1		# test_and_set_bit	\n"
249		"	or	%2, %0, %3				\n"
250		"	" __SC	"%2, %1					\n"
251		"	beqzl	%2, 1b					\n"
252		"	and	%2, %0, %3				\n"
253		"	.set	mips0					\n"
254		: "=&r" (temp), "+m" (*m), "=&r" (res)
255		: "r" (1UL << bit)
256		: "memory");
257	} else if (kernel_uses_llsc) {
258		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
259		unsigned long temp;
260
 
261		do {
262			__asm__ __volatile__(
263			"	.set	arch=r4000			\n"
 
264			"	" __LL "%0, %1	# test_and_set_bit	\n"
265			"	or	%2, %0, %3			\n"
266			"	" __SC	"%2, %1				\n"
267			"	.set	mips0				\n"
268			: "=&r" (temp), "+m" (*m), "=&r" (res)
269			: "r" (1UL << bit)
270			: "memory");
271		} while (unlikely(!res));
272
273		res = temp & (1UL << bit);
274	} else
275		res = __mips_test_and_set_bit(nr, addr);
276
277	smp_llsc_mb();
278
279	return res != 0;
280}
281
282/*
283 * test_and_set_bit_lock - Set a bit and return its old value
284 * @nr: Bit to set
285 * @addr: Address to count from
286 *
287 * This operation is atomic and implies acquire ordering semantics
288 * after the memory operation.
289 */
290static inline int test_and_set_bit_lock(unsigned long nr,
291	volatile unsigned long *addr)
292{
293	int bit = nr & SZLONG_MASK;
294	unsigned long res;
295
296	if (kernel_uses_llsc && R10000_LLSC_WAR) {
297		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
298		unsigned long temp;
299
300		__asm__ __volatile__(
 
301		"	.set	arch=r4000				\n"
302		"1:	" __LL "%0, %1		# test_and_set_bit	\n"
303		"	or	%2, %0, %3				\n"
304		"	" __SC	"%2, %1					\n"
305		"	beqzl	%2, 1b					\n"
306		"	and	%2, %0, %3				\n"
307		"	.set	mips0					\n"
308		: "=&r" (temp), "+m" (*m), "=&r" (res)
309		: "r" (1UL << bit)
310		: "memory");
311	} else if (kernel_uses_llsc) {
312		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
313		unsigned long temp;
314
 
315		do {
316			__asm__ __volatile__(
317			"	.set	arch=r4000			\n"
 
318			"	" __LL "%0, %1	# test_and_set_bit	\n"
319			"	or	%2, %0, %3			\n"
320			"	" __SC	"%2, %1				\n"
321			"	.set	mips0				\n"
322			: "=&r" (temp), "+m" (*m), "=&r" (res)
323			: "r" (1UL << bit)
324			: "memory");
325		} while (unlikely(!res));
326
327		res = temp & (1UL << bit);
328	} else
329		res = __mips_test_and_set_bit_lock(nr, addr);
330
331	smp_llsc_mb();
332
333	return res != 0;
334}
335/*
336 * test_and_clear_bit - Clear a bit and return its old value
337 * @nr: Bit to clear
338 * @addr: Address to count from
339 *
340 * This operation is atomic and cannot be reordered.
341 * It also implies a memory barrier.
342 */
343static inline int test_and_clear_bit(unsigned long nr,
344	volatile unsigned long *addr)
345{
346	int bit = nr & SZLONG_MASK;
347	unsigned long res;
348
349	smp_mb__before_llsc();
350
351	if (kernel_uses_llsc && R10000_LLSC_WAR) {
352		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
353		unsigned long temp;
354
355		__asm__ __volatile__(
 
356		"	.set	arch=r4000				\n"
357		"1:	" __LL	"%0, %1		# test_and_clear_bit	\n"
358		"	or	%2, %0, %3				\n"
359		"	xor	%2, %3					\n"
360		"	" __SC	"%2, %1					\n"
361		"	beqzl	%2, 1b					\n"
362		"	and	%2, %0, %3				\n"
363		"	.set	mips0					\n"
364		: "=&r" (temp), "+m" (*m), "=&r" (res)
365		: "r" (1UL << bit)
366		: "memory");
367#ifdef CONFIG_CPU_MIPSR2
368	} else if (kernel_uses_llsc && __builtin_constant_p(nr)) {
369		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
370		unsigned long temp;
371
 
372		do {
373			__asm__ __volatile__(
374			"	" __LL	"%0, %1 # test_and_clear_bit	\n"
375			"	" __EXT "%2, %0, %3, 1			\n"
376			"	" __INS "%0, $0, %3, 1			\n"
377			"	" __SC	"%0, %1				\n"
378			: "=&r" (temp), "+m" (*m), "=&r" (res)
379			: "ir" (bit)
380			: "memory");
381		} while (unlikely(!temp));
382#endif
383	} else if (kernel_uses_llsc) {
384		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
385		unsigned long temp;
386
 
387		do {
388			__asm__ __volatile__(
389			"	.set	arch=r4000			\n"
 
390			"	" __LL	"%0, %1 # test_and_clear_bit	\n"
391			"	or	%2, %0, %3			\n"
392			"	xor	%2, %3				\n"
393			"	" __SC	"%2, %1				\n"
394			"	.set	mips0				\n"
395			: "=&r" (temp), "+m" (*m), "=&r" (res)
396			: "r" (1UL << bit)
397			: "memory");
398		} while (unlikely(!res));
399
400		res = temp & (1UL << bit);
401	} else
402		res = __mips_test_and_clear_bit(nr, addr);
403
404	smp_llsc_mb();
405
406	return res != 0;
407}
408
409/*
410 * test_and_change_bit - Change a bit and return its old value
411 * @nr: Bit to change
412 * @addr: Address to count from
413 *
414 * This operation is atomic and cannot be reordered.
415 * It also implies a memory barrier.
416 */
417static inline int test_and_change_bit(unsigned long nr,
418	volatile unsigned long *addr)
419{
420	int bit = nr & SZLONG_MASK;
421	unsigned long res;
422
423	smp_mb__before_llsc();
424
425	if (kernel_uses_llsc && R10000_LLSC_WAR) {
426		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
427		unsigned long temp;
428
429		__asm__ __volatile__(
 
430		"	.set	arch=r4000				\n"
431		"1:	" __LL	"%0, %1		# test_and_change_bit	\n"
432		"	xor	%2, %0, %3				\n"
433		"	" __SC	"%2, %1					\n"
434		"	beqzl	%2, 1b					\n"
435		"	and	%2, %0, %3				\n"
436		"	.set	mips0					\n"
437		: "=&r" (temp), "+m" (*m), "=&r" (res)
438		: "r" (1UL << bit)
439		: "memory");
440	} else if (kernel_uses_llsc) {
441		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
442		unsigned long temp;
443
 
444		do {
445			__asm__ __volatile__(
446			"	.set	arch=r4000			\n"
 
447			"	" __LL	"%0, %1 # test_and_change_bit	\n"
448			"	xor	%2, %0, %3			\n"
449			"	" __SC	"\t%2, %1			\n"
450			"	.set	mips0				\n"
451			: "=&r" (temp), "+m" (*m), "=&r" (res)
452			: "r" (1UL << bit)
453			: "memory");
454		} while (unlikely(!res));
455
456		res = temp & (1UL << bit);
457	} else
458		res = __mips_test_and_change_bit(nr, addr);
459
460	smp_llsc_mb();
461
462	return res != 0;
463}
464
465#include <asm-generic/bitops/non-atomic.h>
466
467/*
468 * __clear_bit_unlock - Clears a bit in memory
469 * @nr: Bit to clear
470 * @addr: Address to start counting from
471 *
472 * __clear_bit() is non-atomic and implies release semantics before the memory
473 * operation. It can be used for an unlock if no other CPUs can concurrently
474 * modify other bits in the word.
475 */
476static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
477{
478	smp_mb();
479	__clear_bit(nr, addr);
 
480}
481
482/*
483 * Return the bit position (0..63) of the most significant 1 bit in a word
484 * Returns -1 if no 1 bit exists
485 */
486static inline unsigned long __fls(unsigned long word)
487{
488	int num;
489
490	if (BITS_PER_LONG == 32 &&
491	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
492		__asm__(
493		"	.set	push					\n"
494		"	.set	mips32					\n"
495		"	clz	%0, %1					\n"
496		"	.set	pop					\n"
497		: "=r" (num)
498		: "r" (word));
499
500		return 31 - num;
501	}
502
503	if (BITS_PER_LONG == 64 &&
504	    __builtin_constant_p(cpu_has_mips64) && cpu_has_mips64) {
505		__asm__(
506		"	.set	push					\n"
507		"	.set	mips64					\n"
508		"	dclz	%0, %1					\n"
509		"	.set	pop					\n"
510		: "=r" (num)
511		: "r" (word));
512
513		return 63 - num;
514	}
515
516	num = BITS_PER_LONG - 1;
517
518#if BITS_PER_LONG == 64
519	if (!(word & (~0ul << 32))) {
520		num -= 32;
521		word <<= 32;
522	}
523#endif
524	if (!(word & (~0ul << (BITS_PER_LONG-16)))) {
525		num -= 16;
526		word <<= 16;
527	}
528	if (!(word & (~0ul << (BITS_PER_LONG-8)))) {
529		num -= 8;
530		word <<= 8;
531	}
532	if (!(word & (~0ul << (BITS_PER_LONG-4)))) {
533		num -= 4;
534		word <<= 4;
535	}
536	if (!(word & (~0ul << (BITS_PER_LONG-2)))) {
537		num -= 2;
538		word <<= 2;
539	}
540	if (!(word & (~0ul << (BITS_PER_LONG-1))))
541		num -= 1;
542	return num;
543}
544
545/*
546 * __ffs - find first bit in word.
547 * @word: The word to search
548 *
549 * Returns 0..SZLONG-1
550 * Undefined if no bit exists, so code should check against 0 first.
551 */
552static inline unsigned long __ffs(unsigned long word)
553{
554	return __fls(word & -word);
555}
556
557/*
558 * fls - find last bit set.
559 * @word: The word to search
560 *
561 * This is defined the same way as ffs.
562 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
563 */
564static inline int fls(int x)
565{
566	int r;
567
568	if (__builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
569		__asm__("clz %0, %1" : "=r" (x) : "r" (x));
 
 
 
 
 
 
 
570
571		return 32 - x;
572	}
573
574	r = 32;
575	if (!x)
576		return 0;
577	if (!(x & 0xffff0000u)) {
578		x <<= 16;
579		r -= 16;
580	}
581	if (!(x & 0xff000000u)) {
582		x <<= 8;
583		r -= 8;
584	}
585	if (!(x & 0xf0000000u)) {
586		x <<= 4;
587		r -= 4;
588	}
589	if (!(x & 0xc0000000u)) {
590		x <<= 2;
591		r -= 2;
592	}
593	if (!(x & 0x80000000u)) {
594		x <<= 1;
595		r -= 1;
596	}
597	return r;
598}
599
600#include <asm-generic/bitops/fls64.h>
601
602/*
603 * ffs - find first bit set.
604 * @word: The word to search
605 *
606 * This is defined the same way as
607 * the libc and compiler builtin ffs routines, therefore
608 * differs in spirit from the above ffz (man ffs).
609 */
610static inline int ffs(int word)
611{
612	if (!word)
613		return 0;
614
615	return fls(word & -word);
616}
617
618#include <asm-generic/bitops/ffz.h>
619#include <asm-generic/bitops/find.h>
620
621#ifdef __KERNEL__
622
623#include <asm-generic/bitops/sched.h>
624
625#include <asm/arch_hweight.h>
626#include <asm-generic/bitops/const_hweight.h>
627
628#include <asm-generic/bitops/le.h>
629#include <asm-generic/bitops/ext2-atomic.h>
630
631#endif /* __KERNEL__ */
632
633#endif /* _ASM_BITOPS_H */