Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (c) 1994 - 1997, 99, 2000, 06, 07 Ralf Baechle (ralf@linux-mips.org)
7 * Copyright (c) 1999, 2000 Silicon Graphics, Inc.
8 */
9#ifndef _ASM_BITOPS_H
10#define _ASM_BITOPS_H
11
12#ifndef _LINUX_BITOPS_H
13#error only <linux/bitops.h> can be included directly
14#endif
15
16#include <linux/compiler.h>
17#include <linux/types.h>
18#include <asm/barrier.h>
19#include <asm/byteorder.h> /* sigh ... */
20#include <asm/compiler.h>
21#include <asm/cpu-features.h>
22#include <asm/llsc.h>
23#include <asm/sgidefs.h>
24#include <asm/war.h>
25
26/*
27 * These are the "slower" versions of the functions and are in bitops.c.
28 * These functions call raw_local_irq_{save,restore}().
29 */
30void __mips_set_bit(unsigned long nr, volatile unsigned long *addr);
31void __mips_clear_bit(unsigned long nr, volatile unsigned long *addr);
32void __mips_change_bit(unsigned long nr, volatile unsigned long *addr);
33int __mips_test_and_set_bit(unsigned long nr,
34 volatile unsigned long *addr);
35int __mips_test_and_set_bit_lock(unsigned long nr,
36 volatile unsigned long *addr);
37int __mips_test_and_clear_bit(unsigned long nr,
38 volatile unsigned long *addr);
39int __mips_test_and_change_bit(unsigned long nr,
40 volatile unsigned long *addr);
41
42
43/*
44 * set_bit - Atomically set a bit in memory
45 * @nr: the bit to set
46 * @addr: the address to start counting from
47 *
48 * This function is atomic and may not be reordered. See __set_bit()
49 * if you do not require the atomic guarantees.
50 * Note that @nr may be almost arbitrarily large; this function is not
51 * restricted to acting on a single-word quantity.
52 */
53static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
54{
55 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
56 int bit = nr & SZLONG_MASK;
57 unsigned long temp;
58
59 if (kernel_uses_llsc && R10000_LLSC_WAR) {
60 __asm__ __volatile__(
61 " .set push \n"
62 " .set arch=r4000 \n"
63 "1: " __LL "%0, %1 # set_bit \n"
64 " or %0, %2 \n"
65 " " __SC "%0, %1 \n"
66 " beqzl %0, 1b \n"
67 " .set pop \n"
68 : "=&r" (temp), "=" GCC_OFF_SMALL_ASM() (*m)
69 : "ir" (1UL << bit), GCC_OFF_SMALL_ASM() (*m)
70 : __LLSC_CLOBBER);
71#if defined(CONFIG_CPU_MIPSR2) || defined(CONFIG_CPU_MIPSR6)
72 } else if (kernel_uses_llsc && __builtin_constant_p(bit)) {
73 loongson_llsc_mb();
74 do {
75 __asm__ __volatile__(
76 " " __LL "%0, %1 # set_bit \n"
77 " " __INS "%0, %3, %2, 1 \n"
78 " " __SC "%0, %1 \n"
79 : "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m)
80 : "ir" (bit), "r" (~0)
81 : __LLSC_CLOBBER);
82 } while (unlikely(!temp));
83#endif /* CONFIG_CPU_MIPSR2 || CONFIG_CPU_MIPSR6 */
84 } else if (kernel_uses_llsc) {
85 loongson_llsc_mb();
86 do {
87 __asm__ __volatile__(
88 " .set push \n"
89 " .set "MIPS_ISA_ARCH_LEVEL" \n"
90 " " __LL "%0, %1 # set_bit \n"
91 " or %0, %2 \n"
92 " " __SC "%0, %1 \n"
93 " .set pop \n"
94 : "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m)
95 : "ir" (1UL << bit)
96 : __LLSC_CLOBBER);
97 } while (unlikely(!temp));
98 } else
99 __mips_set_bit(nr, addr);
100}
101
102/*
103 * clear_bit - Clears a bit in memory
104 * @nr: Bit to clear
105 * @addr: Address to start counting from
106 *
107 * clear_bit() is atomic and may not be reordered. However, it does
108 * not contain a memory barrier, so if it is used for locking purposes,
109 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
110 * in order to ensure changes are visible on other processors.
111 */
112static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
113{
114 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
115 int bit = nr & SZLONG_MASK;
116 unsigned long temp;
117
118 if (kernel_uses_llsc && R10000_LLSC_WAR) {
119 __asm__ __volatile__(
120 " .set push \n"
121 " .set arch=r4000 \n"
122 "1: " __LL "%0, %1 # clear_bit \n"
123 " and %0, %2 \n"
124 " " __SC "%0, %1 \n"
125 " beqzl %0, 1b \n"
126 " .set pop \n"
127 : "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m)
128 : "ir" (~(1UL << bit))
129 : __LLSC_CLOBBER);
130#if defined(CONFIG_CPU_MIPSR2) || defined(CONFIG_CPU_MIPSR6)
131 } else if (kernel_uses_llsc && __builtin_constant_p(bit)) {
132 loongson_llsc_mb();
133 do {
134 __asm__ __volatile__(
135 " " __LL "%0, %1 # clear_bit \n"
136 " " __INS "%0, $0, %2, 1 \n"
137 " " __SC "%0, %1 \n"
138 : "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m)
139 : "ir" (bit)
140 : __LLSC_CLOBBER);
141 } while (unlikely(!temp));
142#endif /* CONFIG_CPU_MIPSR2 || CONFIG_CPU_MIPSR6 */
143 } else if (kernel_uses_llsc) {
144 loongson_llsc_mb();
145 do {
146 __asm__ __volatile__(
147 " .set push \n"
148 " .set "MIPS_ISA_ARCH_LEVEL" \n"
149 " " __LL "%0, %1 # clear_bit \n"
150 " and %0, %2 \n"
151 " " __SC "%0, %1 \n"
152 " .set pop \n"
153 : "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m)
154 : "ir" (~(1UL << bit))
155 : __LLSC_CLOBBER);
156 } while (unlikely(!temp));
157 } else
158 __mips_clear_bit(nr, addr);
159}
160
161/*
162 * clear_bit_unlock - Clears a bit in memory
163 * @nr: Bit to clear
164 * @addr: Address to start counting from
165 *
166 * clear_bit() is atomic and implies release semantics before the memory
167 * operation. It can be used for an unlock.
168 */
169static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
170{
171 smp_mb__before_atomic();
172 clear_bit(nr, addr);
173}
174
175/*
176 * change_bit - Toggle a bit in memory
177 * @nr: Bit to change
178 * @addr: Address to start counting from
179 *
180 * change_bit() is atomic and may not be reordered.
181 * Note that @nr may be almost arbitrarily large; this function is not
182 * restricted to acting on a single-word quantity.
183 */
184static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
185{
186 int bit = nr & SZLONG_MASK;
187
188 if (kernel_uses_llsc && R10000_LLSC_WAR) {
189 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
190 unsigned long temp;
191
192 __asm__ __volatile__(
193 " .set push \n"
194 " .set arch=r4000 \n"
195 "1: " __LL "%0, %1 # change_bit \n"
196 " xor %0, %2 \n"
197 " " __SC "%0, %1 \n"
198 " beqzl %0, 1b \n"
199 " .set pop \n"
200 : "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m)
201 : "ir" (1UL << bit)
202 : __LLSC_CLOBBER);
203 } else if (kernel_uses_llsc) {
204 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
205 unsigned long temp;
206
207 loongson_llsc_mb();
208 do {
209 __asm__ __volatile__(
210 " .set push \n"
211 " .set "MIPS_ISA_ARCH_LEVEL" \n"
212 " " __LL "%0, %1 # change_bit \n"
213 " xor %0, %2 \n"
214 " " __SC "%0, %1 \n"
215 " .set pop \n"
216 : "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m)
217 : "ir" (1UL << bit)
218 : __LLSC_CLOBBER);
219 } while (unlikely(!temp));
220 } else
221 __mips_change_bit(nr, addr);
222}
223
224/*
225 * test_and_set_bit - Set a bit and return its old value
226 * @nr: Bit to set
227 * @addr: Address to count from
228 *
229 * This operation is atomic and cannot be reordered.
230 * It also implies a memory barrier.
231 */
232static inline int test_and_set_bit(unsigned long nr,
233 volatile unsigned long *addr)
234{
235 int bit = nr & SZLONG_MASK;
236 unsigned long res;
237
238 smp_mb__before_llsc();
239
240 if (kernel_uses_llsc && R10000_LLSC_WAR) {
241 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
242 unsigned long temp;
243
244 __asm__ __volatile__(
245 " .set push \n"
246 " .set arch=r4000 \n"
247 "1: " __LL "%0, %1 # test_and_set_bit \n"
248 " or %2, %0, %3 \n"
249 " " __SC "%2, %1 \n"
250 " beqzl %2, 1b \n"
251 " and %2, %0, %3 \n"
252 " .set pop \n"
253 : "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
254 : "r" (1UL << bit)
255 : __LLSC_CLOBBER);
256 } else if (kernel_uses_llsc) {
257 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
258 unsigned long temp;
259
260 loongson_llsc_mb();
261 do {
262 __asm__ __volatile__(
263 " .set push \n"
264 " .set "MIPS_ISA_ARCH_LEVEL" \n"
265 " " __LL "%0, %1 # test_and_set_bit \n"
266 " or %2, %0, %3 \n"
267 " " __SC "%2, %1 \n"
268 " .set pop \n"
269 : "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
270 : "r" (1UL << bit)
271 : __LLSC_CLOBBER);
272 } while (unlikely(!res));
273
274 res = temp & (1UL << bit);
275 } else
276 res = __mips_test_and_set_bit(nr, addr);
277
278 smp_llsc_mb();
279
280 return res != 0;
281}
282
283/*
284 * test_and_set_bit_lock - Set a bit and return its old value
285 * @nr: Bit to set
286 * @addr: Address to count from
287 *
288 * This operation is atomic and implies acquire ordering semantics
289 * after the memory operation.
290 */
291static inline int test_and_set_bit_lock(unsigned long nr,
292 volatile unsigned long *addr)
293{
294 int bit = nr & SZLONG_MASK;
295 unsigned long res;
296
297 if (kernel_uses_llsc && R10000_LLSC_WAR) {
298 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
299 unsigned long temp;
300
301 __asm__ __volatile__(
302 " .set push \n"
303 " .set arch=r4000 \n"
304 "1: " __LL "%0, %1 # test_and_set_bit \n"
305 " or %2, %0, %3 \n"
306 " " __SC "%2, %1 \n"
307 " beqzl %2, 1b \n"
308 " and %2, %0, %3 \n"
309 " .set pop \n"
310 : "=&r" (temp), "+m" (*m), "=&r" (res)
311 : "r" (1UL << bit)
312 : __LLSC_CLOBBER);
313 } else if (kernel_uses_llsc) {
314 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
315 unsigned long temp;
316
317 loongson_llsc_mb();
318 do {
319 __asm__ __volatile__(
320 " .set push \n"
321 " .set "MIPS_ISA_ARCH_LEVEL" \n"
322 " " __LL "%0, %1 # test_and_set_bit \n"
323 " or %2, %0, %3 \n"
324 " " __SC "%2, %1 \n"
325 " .set pop \n"
326 : "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
327 : "r" (1UL << bit)
328 : __LLSC_CLOBBER);
329 } while (unlikely(!res));
330
331 res = temp & (1UL << bit);
332 } else
333 res = __mips_test_and_set_bit_lock(nr, addr);
334
335 smp_llsc_mb();
336
337 return res != 0;
338}
339/*
340 * test_and_clear_bit - Clear a bit and return its old value
341 * @nr: Bit to clear
342 * @addr: Address to count from
343 *
344 * This operation is atomic and cannot be reordered.
345 * It also implies a memory barrier.
346 */
347static inline int test_and_clear_bit(unsigned long nr,
348 volatile unsigned long *addr)
349{
350 int bit = nr & SZLONG_MASK;
351 unsigned long res;
352
353 smp_mb__before_llsc();
354
355 if (kernel_uses_llsc && R10000_LLSC_WAR) {
356 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
357 unsigned long temp;
358
359 __asm__ __volatile__(
360 " .set push \n"
361 " .set arch=r4000 \n"
362 "1: " __LL "%0, %1 # test_and_clear_bit \n"
363 " or %2, %0, %3 \n"
364 " xor %2, %3 \n"
365 " " __SC "%2, %1 \n"
366 " beqzl %2, 1b \n"
367 " and %2, %0, %3 \n"
368 " .set pop \n"
369 : "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
370 : "r" (1UL << bit)
371 : __LLSC_CLOBBER);
372#if defined(CONFIG_CPU_MIPSR2) || defined(CONFIG_CPU_MIPSR6)
373 } else if (kernel_uses_llsc && __builtin_constant_p(nr)) {
374 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
375 unsigned long temp;
376
377 loongson_llsc_mb();
378 do {
379 __asm__ __volatile__(
380 " " __LL "%0, %1 # test_and_clear_bit \n"
381 " " __EXT "%2, %0, %3, 1 \n"
382 " " __INS "%0, $0, %3, 1 \n"
383 " " __SC "%0, %1 \n"
384 : "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
385 : "ir" (bit)
386 : __LLSC_CLOBBER);
387 } while (unlikely(!temp));
388#endif
389 } else if (kernel_uses_llsc) {
390 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
391 unsigned long temp;
392
393 loongson_llsc_mb();
394 do {
395 __asm__ __volatile__(
396 " .set push \n"
397 " .set "MIPS_ISA_ARCH_LEVEL" \n"
398 " " __LL "%0, %1 # test_and_clear_bit \n"
399 " or %2, %0, %3 \n"
400 " xor %2, %3 \n"
401 " " __SC "%2, %1 \n"
402 " .set pop \n"
403 : "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
404 : "r" (1UL << bit)
405 : __LLSC_CLOBBER);
406 } while (unlikely(!res));
407
408 res = temp & (1UL << bit);
409 } else
410 res = __mips_test_and_clear_bit(nr, addr);
411
412 smp_llsc_mb();
413
414 return res != 0;
415}
416
417/*
418 * test_and_change_bit - Change a bit and return its old value
419 * @nr: Bit to change
420 * @addr: Address to count from
421 *
422 * This operation is atomic and cannot be reordered.
423 * It also implies a memory barrier.
424 */
425static inline int test_and_change_bit(unsigned long nr,
426 volatile unsigned long *addr)
427{
428 int bit = nr & SZLONG_MASK;
429 unsigned long res;
430
431 smp_mb__before_llsc();
432
433 if (kernel_uses_llsc && R10000_LLSC_WAR) {
434 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
435 unsigned long temp;
436
437 __asm__ __volatile__(
438 " .set push \n"
439 " .set arch=r4000 \n"
440 "1: " __LL "%0, %1 # test_and_change_bit \n"
441 " xor %2, %0, %3 \n"
442 " " __SC "%2, %1 \n"
443 " beqzl %2, 1b \n"
444 " and %2, %0, %3 \n"
445 " .set pop \n"
446 : "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
447 : "r" (1UL << bit)
448 : __LLSC_CLOBBER);
449 } else if (kernel_uses_llsc) {
450 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
451 unsigned long temp;
452
453 loongson_llsc_mb();
454 do {
455 __asm__ __volatile__(
456 " .set push \n"
457 " .set "MIPS_ISA_ARCH_LEVEL" \n"
458 " " __LL "%0, %1 # test_and_change_bit \n"
459 " xor %2, %0, %3 \n"
460 " " __SC "\t%2, %1 \n"
461 " .set pop \n"
462 : "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
463 : "r" (1UL << bit)
464 : __LLSC_CLOBBER);
465 } while (unlikely(!res));
466
467 res = temp & (1UL << bit);
468 } else
469 res = __mips_test_and_change_bit(nr, addr);
470
471 smp_llsc_mb();
472
473 return res != 0;
474}
475
476#include <asm-generic/bitops/non-atomic.h>
477
478/*
479 * __clear_bit_unlock - Clears a bit in memory
480 * @nr: Bit to clear
481 * @addr: Address to start counting from
482 *
483 * __clear_bit() is non-atomic and implies release semantics before the memory
484 * operation. It can be used for an unlock if no other CPUs can concurrently
485 * modify other bits in the word.
486 */
487static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
488{
489 smp_mb__before_llsc();
490 __clear_bit(nr, addr);
491 nudge_writes();
492}
493
494/*
495 * Return the bit position (0..63) of the most significant 1 bit in a word
496 * Returns -1 if no 1 bit exists
497 */
498static __always_inline unsigned long __fls(unsigned long word)
499{
500 int num;
501
502 if (BITS_PER_LONG == 32 && !__builtin_constant_p(word) &&
503 __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
504 __asm__(
505 " .set push \n"
506 " .set "MIPS_ISA_LEVEL" \n"
507 " clz %0, %1 \n"
508 " .set pop \n"
509 : "=r" (num)
510 : "r" (word));
511
512 return 31 - num;
513 }
514
515 if (BITS_PER_LONG == 64 && !__builtin_constant_p(word) &&
516 __builtin_constant_p(cpu_has_mips64) && cpu_has_mips64) {
517 __asm__(
518 " .set push \n"
519 " .set "MIPS_ISA_LEVEL" \n"
520 " dclz %0, %1 \n"
521 " .set pop \n"
522 : "=r" (num)
523 : "r" (word));
524
525 return 63 - num;
526 }
527
528 num = BITS_PER_LONG - 1;
529
530#if BITS_PER_LONG == 64
531 if (!(word & (~0ul << 32))) {
532 num -= 32;
533 word <<= 32;
534 }
535#endif
536 if (!(word & (~0ul << (BITS_PER_LONG-16)))) {
537 num -= 16;
538 word <<= 16;
539 }
540 if (!(word & (~0ul << (BITS_PER_LONG-8)))) {
541 num -= 8;
542 word <<= 8;
543 }
544 if (!(word & (~0ul << (BITS_PER_LONG-4)))) {
545 num -= 4;
546 word <<= 4;
547 }
548 if (!(word & (~0ul << (BITS_PER_LONG-2)))) {
549 num -= 2;
550 word <<= 2;
551 }
552 if (!(word & (~0ul << (BITS_PER_LONG-1))))
553 num -= 1;
554 return num;
555}
556
557/*
558 * __ffs - find first bit in word.
559 * @word: The word to search
560 *
561 * Returns 0..SZLONG-1
562 * Undefined if no bit exists, so code should check against 0 first.
563 */
564static __always_inline unsigned long __ffs(unsigned long word)
565{
566 return __fls(word & -word);
567}
568
569/*
570 * fls - find last bit set.
571 * @word: The word to search
572 *
573 * This is defined the same way as ffs.
574 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
575 */
576static inline int fls(unsigned int x)
577{
578 int r;
579
580 if (!__builtin_constant_p(x) &&
581 __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
582 __asm__(
583 " .set push \n"
584 " .set "MIPS_ISA_LEVEL" \n"
585 " clz %0, %1 \n"
586 " .set pop \n"
587 : "=r" (x)
588 : "r" (x));
589
590 return 32 - x;
591 }
592
593 r = 32;
594 if (!x)
595 return 0;
596 if (!(x & 0xffff0000u)) {
597 x <<= 16;
598 r -= 16;
599 }
600 if (!(x & 0xff000000u)) {
601 x <<= 8;
602 r -= 8;
603 }
604 if (!(x & 0xf0000000u)) {
605 x <<= 4;
606 r -= 4;
607 }
608 if (!(x & 0xc0000000u)) {
609 x <<= 2;
610 r -= 2;
611 }
612 if (!(x & 0x80000000u)) {
613 x <<= 1;
614 r -= 1;
615 }
616 return r;
617}
618
619#include <asm-generic/bitops/fls64.h>
620
621/*
622 * ffs - find first bit set.
623 * @word: The word to search
624 *
625 * This is defined the same way as
626 * the libc and compiler builtin ffs routines, therefore
627 * differs in spirit from the above ffz (man ffs).
628 */
629static inline int ffs(int word)
630{
631 if (!word)
632 return 0;
633
634 return fls(word & -word);
635}
636
637#include <asm-generic/bitops/ffz.h>
638#include <asm-generic/bitops/find.h>
639
640#ifdef __KERNEL__
641
642#include <asm-generic/bitops/sched.h>
643
644#include <asm/arch_hweight.h>
645#include <asm-generic/bitops/const_hweight.h>
646
647#include <asm-generic/bitops/le.h>
648#include <asm-generic/bitops/ext2-atomic.h>
649
650#endif /* __KERNEL__ */
651
652#endif /* _ASM_BITOPS_H */
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (c) 1994 - 1997, 99, 2000, 06, 07 Ralf Baechle (ralf@linux-mips.org)
7 * Copyright (c) 1999, 2000 Silicon Graphics, Inc.
8 */
9#ifndef _ASM_BITOPS_H
10#define _ASM_BITOPS_H
11
12#ifndef _LINUX_BITOPS_H
13#error only <linux/bitops.h> can be included directly
14#endif
15
16#include <linux/bits.h>
17#include <linux/compiler.h>
18#include <linux/types.h>
19#include <asm/asm.h>
20#include <asm/barrier.h>
21#include <asm/byteorder.h> /* sigh ... */
22#include <asm/compiler.h>
23#include <asm/cpu-features.h>
24#include <asm/sgidefs.h>
25
26#define __bit_op(mem, insn, inputs...) do { \
27 unsigned long __temp; \
28 \
29 asm volatile( \
30 " .set push \n" \
31 " .set " MIPS_ISA_LEVEL " \n" \
32 " " __SYNC(full, loongson3_war) " \n" \
33 "1: " __stringify(LONG_LL) " %0, %1 \n" \
34 " " insn " \n" \
35 " " __stringify(LONG_SC) " %0, %1 \n" \
36 " " __stringify(SC_BEQZ) " %0, 1b \n" \
37 " .set pop \n" \
38 : "=&r"(__temp), "+" GCC_OFF_SMALL_ASM()(mem) \
39 : inputs \
40 : __LLSC_CLOBBER); \
41} while (0)
42
43#define __test_bit_op(mem, ll_dst, insn, inputs...) ({ \
44 unsigned long __orig, __temp; \
45 \
46 asm volatile( \
47 " .set push \n" \
48 " .set " MIPS_ISA_LEVEL " \n" \
49 " " __SYNC(full, loongson3_war) " \n" \
50 "1: " __stringify(LONG_LL) " " ll_dst ", %2\n" \
51 " " insn " \n" \
52 " " __stringify(LONG_SC) " %1, %2 \n" \
53 " " __stringify(SC_BEQZ) " %1, 1b \n" \
54 " .set pop \n" \
55 : "=&r"(__orig), "=&r"(__temp), \
56 "+" GCC_OFF_SMALL_ASM()(mem) \
57 : inputs \
58 : __LLSC_CLOBBER); \
59 \
60 __orig; \
61})
62
63/*
64 * These are the "slower" versions of the functions and are in bitops.c.
65 * These functions call raw_local_irq_{save,restore}().
66 */
67void __mips_set_bit(unsigned long nr, volatile unsigned long *addr);
68void __mips_clear_bit(unsigned long nr, volatile unsigned long *addr);
69void __mips_change_bit(unsigned long nr, volatile unsigned long *addr);
70int __mips_test_and_set_bit_lock(unsigned long nr,
71 volatile unsigned long *addr);
72int __mips_test_and_clear_bit(unsigned long nr,
73 volatile unsigned long *addr);
74int __mips_test_and_change_bit(unsigned long nr,
75 volatile unsigned long *addr);
76bool __mips_xor_is_negative_byte(unsigned long mask,
77 volatile unsigned long *addr);
78
79/*
80 * set_bit - Atomically set a bit in memory
81 * @nr: the bit to set
82 * @addr: the address to start counting from
83 *
84 * This function is atomic and may not be reordered. See __set_bit()
85 * if you do not require the atomic guarantees.
86 * Note that @nr may be almost arbitrarily large; this function is not
87 * restricted to acting on a single-word quantity.
88 */
89static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
90{
91 volatile unsigned long *m = &addr[BIT_WORD(nr)];
92 int bit = nr % BITS_PER_LONG;
93
94 if (!kernel_uses_llsc) {
95 __mips_set_bit(nr, addr);
96 return;
97 }
98
99 if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(bit) && (bit >= 16)) {
100 __bit_op(*m, __stringify(LONG_INS) " %0, %3, %2, 1", "i"(bit), "r"(~0));
101 return;
102 }
103
104 __bit_op(*m, "or\t%0, %2", "ir"(BIT(bit)));
105}
106
107/*
108 * clear_bit - Clears a bit in memory
109 * @nr: Bit to clear
110 * @addr: Address to start counting from
111 *
112 * clear_bit() is atomic and may not be reordered. However, it does
113 * not contain a memory barrier, so if it is used for locking purposes,
114 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
115 * in order to ensure changes are visible on other processors.
116 */
117static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
118{
119 volatile unsigned long *m = &addr[BIT_WORD(nr)];
120 int bit = nr % BITS_PER_LONG;
121
122 if (!kernel_uses_llsc) {
123 __mips_clear_bit(nr, addr);
124 return;
125 }
126
127 if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(bit)) {
128 __bit_op(*m, __stringify(LONG_INS) " %0, $0, %2, 1", "i"(bit));
129 return;
130 }
131
132 __bit_op(*m, "and\t%0, %2", "ir"(~BIT(bit)));
133}
134
135/*
136 * clear_bit_unlock - Clears a bit in memory
137 * @nr: Bit to clear
138 * @addr: Address to start counting from
139 *
140 * clear_bit() is atomic and implies release semantics before the memory
141 * operation. It can be used for an unlock.
142 */
143static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
144{
145 smp_mb__before_atomic();
146 clear_bit(nr, addr);
147}
148
149/*
150 * change_bit - Toggle a bit in memory
151 * @nr: Bit to change
152 * @addr: Address to start counting from
153 *
154 * change_bit() is atomic and may not be reordered.
155 * Note that @nr may be almost arbitrarily large; this function is not
156 * restricted to acting on a single-word quantity.
157 */
158static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
159{
160 volatile unsigned long *m = &addr[BIT_WORD(nr)];
161 int bit = nr % BITS_PER_LONG;
162
163 if (!kernel_uses_llsc) {
164 __mips_change_bit(nr, addr);
165 return;
166 }
167
168 __bit_op(*m, "xor\t%0, %2", "ir"(BIT(bit)));
169}
170
171/*
172 * test_and_set_bit_lock - Set a bit and return its old value
173 * @nr: Bit to set
174 * @addr: Address to count from
175 *
176 * This operation is atomic and implies acquire ordering semantics
177 * after the memory operation.
178 */
179static inline int test_and_set_bit_lock(unsigned long nr,
180 volatile unsigned long *addr)
181{
182 volatile unsigned long *m = &addr[BIT_WORD(nr)];
183 int bit = nr % BITS_PER_LONG;
184 unsigned long res, orig;
185
186 if (!kernel_uses_llsc) {
187 res = __mips_test_and_set_bit_lock(nr, addr);
188 } else {
189 orig = __test_bit_op(*m, "%0",
190 "or\t%1, %0, %3",
191 "ir"(BIT(bit)));
192 res = (orig & BIT(bit)) != 0;
193 }
194
195 smp_llsc_mb();
196
197 return res;
198}
199
200/*
201 * test_and_set_bit - Set a bit and return its old value
202 * @nr: Bit to set
203 * @addr: Address to count from
204 *
205 * This operation is atomic and cannot be reordered.
206 * It also implies a memory barrier.
207 */
208static inline int test_and_set_bit(unsigned long nr,
209 volatile unsigned long *addr)
210{
211 smp_mb__before_atomic();
212 return test_and_set_bit_lock(nr, addr);
213}
214
215/*
216 * test_and_clear_bit - Clear a bit and return its old value
217 * @nr: Bit to clear
218 * @addr: Address to count from
219 *
220 * This operation is atomic and cannot be reordered.
221 * It also implies a memory barrier.
222 */
223static inline int test_and_clear_bit(unsigned long nr,
224 volatile unsigned long *addr)
225{
226 volatile unsigned long *m = &addr[BIT_WORD(nr)];
227 int bit = nr % BITS_PER_LONG;
228 unsigned long res, orig;
229
230 smp_mb__before_atomic();
231
232 if (!kernel_uses_llsc) {
233 res = __mips_test_and_clear_bit(nr, addr);
234 } else if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(nr)) {
235 res = __test_bit_op(*m, "%1",
236 __stringify(LONG_EXT) " %0, %1, %3, 1;"
237 __stringify(LONG_INS) " %1, $0, %3, 1",
238 "i"(bit));
239 } else {
240 orig = __test_bit_op(*m, "%0",
241 "or\t%1, %0, %3;"
242 "xor\t%1, %1, %3",
243 "ir"(BIT(bit)));
244 res = (orig & BIT(bit)) != 0;
245 }
246
247 smp_llsc_mb();
248
249 return res;
250}
251
252/*
253 * test_and_change_bit - Change a bit and return its old value
254 * @nr: Bit to change
255 * @addr: Address to count from
256 *
257 * This operation is atomic and cannot be reordered.
258 * It also implies a memory barrier.
259 */
260static inline int test_and_change_bit(unsigned long nr,
261 volatile unsigned long *addr)
262{
263 volatile unsigned long *m = &addr[BIT_WORD(nr)];
264 int bit = nr % BITS_PER_LONG;
265 unsigned long res, orig;
266
267 smp_mb__before_atomic();
268
269 if (!kernel_uses_llsc) {
270 res = __mips_test_and_change_bit(nr, addr);
271 } else {
272 orig = __test_bit_op(*m, "%0",
273 "xor\t%1, %0, %3",
274 "ir"(BIT(bit)));
275 res = (orig & BIT(bit)) != 0;
276 }
277
278 smp_llsc_mb();
279
280 return res;
281}
282
283static inline bool xor_unlock_is_negative_byte(unsigned long mask,
284 volatile unsigned long *p)
285{
286 unsigned long orig;
287 bool res;
288
289 smp_mb__before_atomic();
290
291 if (!kernel_uses_llsc) {
292 res = __mips_xor_is_negative_byte(mask, p);
293 } else {
294 orig = __test_bit_op(*p, "%0",
295 "xor\t%1, %0, %3",
296 "ir"(mask));
297 res = (orig & BIT(7)) != 0;
298 }
299
300 smp_llsc_mb();
301
302 return res;
303}
304
305#undef __bit_op
306#undef __test_bit_op
307
308#include <asm-generic/bitops/non-atomic.h>
309
310/*
311 * __clear_bit_unlock - Clears a bit in memory
312 * @nr: Bit to clear
313 * @addr: Address to start counting from
314 *
315 * __clear_bit() is non-atomic and implies release semantics before the memory
316 * operation. It can be used for an unlock if no other CPUs can concurrently
317 * modify other bits in the word.
318 */
319static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
320{
321 smp_mb__before_llsc();
322 __clear_bit(nr, addr);
323 nudge_writes();
324}
325
326/*
327 * Return the bit position (0..63) of the most significant 1 bit in a word
328 * Returns -1 if no 1 bit exists
329 */
330static __always_inline unsigned long __fls(unsigned long word)
331{
332 int num;
333
334 if (BITS_PER_LONG == 32 && !__builtin_constant_p(word) &&
335 __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
336 __asm__(
337 " .set push \n"
338 " .set "MIPS_ISA_LEVEL" \n"
339 " clz %0, %1 \n"
340 " .set pop \n"
341 : "=r" (num)
342 : "r" (word));
343
344 return 31 - num;
345 }
346
347 if (BITS_PER_LONG == 64 && !__builtin_constant_p(word) &&
348 __builtin_constant_p(cpu_has_mips64) && cpu_has_mips64) {
349 __asm__(
350 " .set push \n"
351 " .set "MIPS_ISA_LEVEL" \n"
352 " dclz %0, %1 \n"
353 " .set pop \n"
354 : "=r" (num)
355 : "r" (word));
356
357 return 63 - num;
358 }
359
360 num = BITS_PER_LONG - 1;
361
362#if BITS_PER_LONG == 64
363 if (!(word & (~0ul << 32))) {
364 num -= 32;
365 word <<= 32;
366 }
367#endif
368 if (!(word & (~0ul << (BITS_PER_LONG-16)))) {
369 num -= 16;
370 word <<= 16;
371 }
372 if (!(word & (~0ul << (BITS_PER_LONG-8)))) {
373 num -= 8;
374 word <<= 8;
375 }
376 if (!(word & (~0ul << (BITS_PER_LONG-4)))) {
377 num -= 4;
378 word <<= 4;
379 }
380 if (!(word & (~0ul << (BITS_PER_LONG-2)))) {
381 num -= 2;
382 word <<= 2;
383 }
384 if (!(word & (~0ul << (BITS_PER_LONG-1))))
385 num -= 1;
386 return num;
387}
388
389/*
390 * __ffs - find first bit in word.
391 * @word: The word to search
392 *
393 * Returns 0..SZLONG-1
394 * Undefined if no bit exists, so code should check against 0 first.
395 */
396static __always_inline unsigned long __ffs(unsigned long word)
397{
398 return __fls(word & -word);
399}
400
401/*
402 * fls - find last bit set.
403 * @word: The word to search
404 *
405 * This is defined the same way as ffs.
406 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
407 */
408static inline int fls(unsigned int x)
409{
410 int r;
411
412 if (!__builtin_constant_p(x) &&
413 __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
414 __asm__(
415 " .set push \n"
416 " .set "MIPS_ISA_LEVEL" \n"
417 " clz %0, %1 \n"
418 " .set pop \n"
419 : "=r" (x)
420 : "r" (x));
421
422 return 32 - x;
423 }
424
425 r = 32;
426 if (!x)
427 return 0;
428 if (!(x & 0xffff0000u)) {
429 x <<= 16;
430 r -= 16;
431 }
432 if (!(x & 0xff000000u)) {
433 x <<= 8;
434 r -= 8;
435 }
436 if (!(x & 0xf0000000u)) {
437 x <<= 4;
438 r -= 4;
439 }
440 if (!(x & 0xc0000000u)) {
441 x <<= 2;
442 r -= 2;
443 }
444 if (!(x & 0x80000000u)) {
445 x <<= 1;
446 r -= 1;
447 }
448 return r;
449}
450
451#include <asm-generic/bitops/fls64.h>
452
453/*
454 * ffs - find first bit set.
455 * @word: The word to search
456 *
457 * This is defined the same way as
458 * the libc and compiler builtin ffs routines, therefore
459 * differs in spirit from the below ffz (man ffs).
460 */
461static inline int ffs(int word)
462{
463 if (!word)
464 return 0;
465
466 return fls(word & -word);
467}
468
469#include <asm-generic/bitops/ffz.h>
470
471#ifdef __KERNEL__
472
473#include <asm-generic/bitops/sched.h>
474
475#include <asm/arch_hweight.h>
476#include <asm-generic/bitops/const_hweight.h>
477
478#include <asm-generic/bitops/le.h>
479#include <asm-generic/bitops/ext2-atomic.h>
480
481#endif /* __KERNEL__ */
482
483#endif /* _ASM_BITOPS_H */