Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (c) 1994 - 1997, 99, 2000, 06, 07  Ralf Baechle (ralf@linux-mips.org)
  7 * Copyright (c) 1999, 2000  Silicon Graphics, Inc.
  8 */
  9#ifndef _ASM_BITOPS_H
 10#define _ASM_BITOPS_H
 11
 12#ifndef _LINUX_BITOPS_H
 13#error only <linux/bitops.h> can be included directly
 14#endif
 15
 
 16#include <linux/compiler.h>
 17#include <linux/types.h>
 
 18#include <asm/barrier.h>
 19#include <asm/byteorder.h>		/* sigh ... */
 20#include <asm/compiler.h>
 21#include <asm/cpu-features.h>
 22#include <asm/llsc.h>
 23#include <asm/sgidefs.h>
 24#include <asm/war.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25
 26/*
 27 * These are the "slower" versions of the functions and are in bitops.c.
 28 * These functions call raw_local_irq_{save,restore}().
 29 */
 30void __mips_set_bit(unsigned long nr, volatile unsigned long *addr);
 31void __mips_clear_bit(unsigned long nr, volatile unsigned long *addr);
 32void __mips_change_bit(unsigned long nr, volatile unsigned long *addr);
 33int __mips_test_and_set_bit(unsigned long nr,
 34			    volatile unsigned long *addr);
 35int __mips_test_and_set_bit_lock(unsigned long nr,
 36				 volatile unsigned long *addr);
 37int __mips_test_and_clear_bit(unsigned long nr,
 38			      volatile unsigned long *addr);
 39int __mips_test_and_change_bit(unsigned long nr,
 40			       volatile unsigned long *addr);
 41
 42
 43/*
 44 * set_bit - Atomically set a bit in memory
 45 * @nr: the bit to set
 46 * @addr: the address to start counting from
 47 *
 48 * This function is atomic and may not be reordered.  See __set_bit()
 49 * if you do not require the atomic guarantees.
 50 * Note that @nr may be almost arbitrarily large; this function is not
 51 * restricted to acting on a single-word quantity.
 52 */
 53static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
 54{
 55	unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
 56	int bit = nr & SZLONG_MASK;
 57	unsigned long temp;
 58
 59	if (kernel_uses_llsc && R10000_LLSC_WAR) {
 60		__asm__ __volatile__(
 61		"	.set	push					\n"
 62		"	.set	arch=r4000				\n"
 63		"1:	" __LL "%0, %1			# set_bit	\n"
 64		"	or	%0, %2					\n"
 65		"	" __SC	"%0, %1					\n"
 66		"	beqzl	%0, 1b					\n"
 67		"	.set	pop					\n"
 68		: "=&r" (temp), "=" GCC_OFF_SMALL_ASM() (*m)
 69		: "ir" (1UL << bit), GCC_OFF_SMALL_ASM() (*m)
 70		: __LLSC_CLOBBER);
 71#if defined(CONFIG_CPU_MIPSR2) || defined(CONFIG_CPU_MIPSR6)
 72	} else if (kernel_uses_llsc && __builtin_constant_p(bit)) {
 73		loongson_llsc_mb();
 74		do {
 75			__asm__ __volatile__(
 76			"	" __LL "%0, %1		# set_bit	\n"
 77			"	" __INS "%0, %3, %2, 1			\n"
 78			"	" __SC "%0, %1				\n"
 79			: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m)
 80			: "ir" (bit), "r" (~0)
 81			: __LLSC_CLOBBER);
 82		} while (unlikely(!temp));
 83#endif /* CONFIG_CPU_MIPSR2 || CONFIG_CPU_MIPSR6 */
 84	} else if (kernel_uses_llsc) {
 85		loongson_llsc_mb();
 86		do {
 87			__asm__ __volatile__(
 88			"	.set	push				\n"
 89			"	.set	"MIPS_ISA_ARCH_LEVEL"		\n"
 90			"	" __LL "%0, %1		# set_bit	\n"
 91			"	or	%0, %2				\n"
 92			"	" __SC	"%0, %1				\n"
 93			"	.set	pop				\n"
 94			: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m)
 95			: "ir" (1UL << bit)
 96			: __LLSC_CLOBBER);
 97		} while (unlikely(!temp));
 98	} else
 99		__mips_set_bit(nr, addr);
 
 
 
 
 
 
 
 
 
100}
101
102/*
103 * clear_bit - Clears a bit in memory
104 * @nr: Bit to clear
105 * @addr: Address to start counting from
106 *
107 * clear_bit() is atomic and may not be reordered.  However, it does
108 * not contain a memory barrier, so if it is used for locking purposes,
109 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
110 * in order to ensure changes are visible on other processors.
111 */
112static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
113{
114	unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
115	int bit = nr & SZLONG_MASK;
116	unsigned long temp;
117
118	if (kernel_uses_llsc && R10000_LLSC_WAR) {
119		__asm__ __volatile__(
120		"	.set	push					\n"
121		"	.set	arch=r4000				\n"
122		"1:	" __LL "%0, %1			# clear_bit	\n"
123		"	and	%0, %2					\n"
124		"	" __SC "%0, %1					\n"
125		"	beqzl	%0, 1b					\n"
126		"	.set	pop					\n"
127		: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m)
128		: "ir" (~(1UL << bit))
129		: __LLSC_CLOBBER);
130#if defined(CONFIG_CPU_MIPSR2) || defined(CONFIG_CPU_MIPSR6)
131	} else if (kernel_uses_llsc && __builtin_constant_p(bit)) {
132		loongson_llsc_mb();
133		do {
134			__asm__ __volatile__(
135			"	" __LL "%0, %1		# clear_bit	\n"
136			"	" __INS "%0, $0, %2, 1			\n"
137			"	" __SC "%0, %1				\n"
138			: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m)
139			: "ir" (bit)
140			: __LLSC_CLOBBER);
141		} while (unlikely(!temp));
142#endif /* CONFIG_CPU_MIPSR2 || CONFIG_CPU_MIPSR6 */
143	} else if (kernel_uses_llsc) {
144		loongson_llsc_mb();
145		do {
146			__asm__ __volatile__(
147			"	.set	push				\n"
148			"	.set	"MIPS_ISA_ARCH_LEVEL"		\n"
149			"	" __LL "%0, %1		# clear_bit	\n"
150			"	and	%0, %2				\n"
151			"	" __SC "%0, %1				\n"
152			"	.set	pop				\n"
153			: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m)
154			: "ir" (~(1UL << bit))
155			: __LLSC_CLOBBER);
156		} while (unlikely(!temp));
157	} else
158		__mips_clear_bit(nr, addr);
 
 
 
 
 
 
 
 
 
159}
160
161/*
162 * clear_bit_unlock - Clears a bit in memory
163 * @nr: Bit to clear
164 * @addr: Address to start counting from
165 *
166 * clear_bit() is atomic and implies release semantics before the memory
167 * operation. It can be used for an unlock.
168 */
169static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
170{
171	smp_mb__before_atomic();
172	clear_bit(nr, addr);
173}
174
175/*
176 * change_bit - Toggle a bit in memory
177 * @nr: Bit to change
178 * @addr: Address to start counting from
179 *
180 * change_bit() is atomic and may not be reordered.
181 * Note that @nr may be almost arbitrarily large; this function is not
182 * restricted to acting on a single-word quantity.
183 */
184static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
185{
186	int bit = nr & SZLONG_MASK;
 
187
188	if (kernel_uses_llsc && R10000_LLSC_WAR) {
189		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
190		unsigned long temp;
191
192		__asm__ __volatile__(
193		"	.set	push				\n"
194		"	.set	arch=r4000			\n"
195		"1:	" __LL "%0, %1		# change_bit	\n"
196		"	xor	%0, %2				\n"
197		"	" __SC	"%0, %1				\n"
198		"	beqzl	%0, 1b				\n"
199		"	.set	pop				\n"
200		: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m)
201		: "ir" (1UL << bit)
202		: __LLSC_CLOBBER);
203	} else if (kernel_uses_llsc) {
204		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
205		unsigned long temp;
206
207		loongson_llsc_mb();
208		do {
209			__asm__ __volatile__(
210			"	.set	push				\n"
211			"	.set	"MIPS_ISA_ARCH_LEVEL"		\n"
212			"	" __LL "%0, %1		# change_bit	\n"
213			"	xor	%0, %2				\n"
214			"	" __SC	"%0, %1				\n"
215			"	.set	pop				\n"
216			: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m)
217			: "ir" (1UL << bit)
218			: __LLSC_CLOBBER);
219		} while (unlikely(!temp));
220	} else
221		__mips_change_bit(nr, addr);
 
 
 
 
222}
223
224/*
225 * test_and_set_bit - Set a bit and return its old value
226 * @nr: Bit to set
227 * @addr: Address to count from
228 *
229 * This operation is atomic and cannot be reordered.
230 * It also implies a memory barrier.
231 */
232static inline int test_and_set_bit(unsigned long nr,
233	volatile unsigned long *addr)
234{
235	int bit = nr & SZLONG_MASK;
236	unsigned long res;
237
238	smp_mb__before_llsc();
239
240	if (kernel_uses_llsc && R10000_LLSC_WAR) {
241		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
242		unsigned long temp;
243
244		__asm__ __volatile__(
245		"	.set	push					\n"
246		"	.set	arch=r4000				\n"
247		"1:	" __LL "%0, %1		# test_and_set_bit	\n"
248		"	or	%2, %0, %3				\n"
249		"	" __SC	"%2, %1					\n"
250		"	beqzl	%2, 1b					\n"
251		"	and	%2, %0, %3				\n"
252		"	.set	pop					\n"
253		: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
254		: "r" (1UL << bit)
255		: __LLSC_CLOBBER);
256	} else if (kernel_uses_llsc) {
257		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
258		unsigned long temp;
259
260		loongson_llsc_mb();
261		do {
262			__asm__ __volatile__(
263			"	.set	push				\n"
264			"	.set	"MIPS_ISA_ARCH_LEVEL"		\n"
265			"	" __LL "%0, %1	# test_and_set_bit	\n"
266			"	or	%2, %0, %3			\n"
267			"	" __SC	"%2, %1				\n"
268			"	.set	pop				\n"
269			: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
270			: "r" (1UL << bit)
271			: __LLSC_CLOBBER);
272		} while (unlikely(!res));
273
274		res = temp & (1UL << bit);
275	} else
276		res = __mips_test_and_set_bit(nr, addr);
277
278	smp_llsc_mb();
279
280	return res != 0;
281}
282
283/*
284 * test_and_set_bit_lock - Set a bit and return its old value
285 * @nr: Bit to set
286 * @addr: Address to count from
287 *
288 * This operation is atomic and implies acquire ordering semantics
289 * after the memory operation.
290 */
291static inline int test_and_set_bit_lock(unsigned long nr,
292	volatile unsigned long *addr)
293{
294	int bit = nr & SZLONG_MASK;
295	unsigned long res;
296
297	if (kernel_uses_llsc && R10000_LLSC_WAR) {
298		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
299		unsigned long temp;
300
301		__asm__ __volatile__(
302		"	.set	push					\n"
303		"	.set	arch=r4000				\n"
304		"1:	" __LL "%0, %1		# test_and_set_bit	\n"
305		"	or	%2, %0, %3				\n"
306		"	" __SC	"%2, %1					\n"
307		"	beqzl	%2, 1b					\n"
308		"	and	%2, %0, %3				\n"
309		"	.set	pop					\n"
310		: "=&r" (temp), "+m" (*m), "=&r" (res)
311		: "r" (1UL << bit)
312		: __LLSC_CLOBBER);
313	} else if (kernel_uses_llsc) {
314		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
315		unsigned long temp;
316
317		loongson_llsc_mb();
318		do {
319			__asm__ __volatile__(
320			"	.set	push				\n"
321			"	.set	"MIPS_ISA_ARCH_LEVEL"		\n"
322			"	" __LL "%0, %1	# test_and_set_bit	\n"
323			"	or	%2, %0, %3			\n"
324			"	" __SC	"%2, %1				\n"
325			"	.set	pop				\n"
326			: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
327			: "r" (1UL << bit)
328			: __LLSC_CLOBBER);
329		} while (unlikely(!res));
330
331		res = temp & (1UL << bit);
332	} else
333		res = __mips_test_and_set_bit_lock(nr, addr);
334
335	smp_llsc_mb();
336
337	return res != 0;
338}
 
339/*
340 * test_and_clear_bit - Clear a bit and return its old value
341 * @nr: Bit to clear
342 * @addr: Address to count from
343 *
344 * This operation is atomic and cannot be reordered.
345 * It also implies a memory barrier.
346 */
347static inline int test_and_clear_bit(unsigned long nr,
348	volatile unsigned long *addr)
349{
350	int bit = nr & SZLONG_MASK;
351	unsigned long res;
 
352
353	smp_mb__before_llsc();
354
355	if (kernel_uses_llsc && R10000_LLSC_WAR) {
356		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
357		unsigned long temp;
358
359		__asm__ __volatile__(
360		"	.set	push					\n"
361		"	.set	arch=r4000				\n"
362		"1:	" __LL	"%0, %1		# test_and_clear_bit	\n"
363		"	or	%2, %0, %3				\n"
364		"	xor	%2, %3					\n"
365		"	" __SC	"%2, %1					\n"
366		"	beqzl	%2, 1b					\n"
367		"	and	%2, %0, %3				\n"
368		"	.set	pop					\n"
369		: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
370		: "r" (1UL << bit)
371		: __LLSC_CLOBBER);
372#if defined(CONFIG_CPU_MIPSR2) || defined(CONFIG_CPU_MIPSR6)
373	} else if (kernel_uses_llsc && __builtin_constant_p(nr)) {
374		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
375		unsigned long temp;
376
377		loongson_llsc_mb();
378		do {
379			__asm__ __volatile__(
380			"	" __LL	"%0, %1 # test_and_clear_bit	\n"
381			"	" __EXT "%2, %0, %3, 1			\n"
382			"	" __INS "%0, $0, %3, 1			\n"
383			"	" __SC	"%0, %1				\n"
384			: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
385			: "ir" (bit)
386			: __LLSC_CLOBBER);
387		} while (unlikely(!temp));
388#endif
389	} else if (kernel_uses_llsc) {
390		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
391		unsigned long temp;
392
393		loongson_llsc_mb();
394		do {
395			__asm__ __volatile__(
396			"	.set	push				\n"
397			"	.set	"MIPS_ISA_ARCH_LEVEL"		\n"
398			"	" __LL	"%0, %1 # test_and_clear_bit	\n"
399			"	or	%2, %0, %3			\n"
400			"	xor	%2, %3				\n"
401			"	" __SC	"%2, %1				\n"
402			"	.set	pop				\n"
403			: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
404			: "r" (1UL << bit)
405			: __LLSC_CLOBBER);
406		} while (unlikely(!res));
407
408		res = temp & (1UL << bit);
409	} else
410		res = __mips_test_and_clear_bit(nr, addr);
 
 
 
 
 
 
 
 
 
 
 
 
411
412	smp_llsc_mb();
413
414	return res != 0;
415}
416
417/*
418 * test_and_change_bit - Change a bit and return its old value
419 * @nr: Bit to change
420 * @addr: Address to count from
421 *
422 * This operation is atomic and cannot be reordered.
423 * It also implies a memory barrier.
424 */
425static inline int test_and_change_bit(unsigned long nr,
426	volatile unsigned long *addr)
427{
428	int bit = nr & SZLONG_MASK;
429	unsigned long res;
 
430
431	smp_mb__before_llsc();
432
433	if (kernel_uses_llsc && R10000_LLSC_WAR) {
434		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
435		unsigned long temp;
436
437		__asm__ __volatile__(
438		"	.set	push					\n"
439		"	.set	arch=r4000				\n"
440		"1:	" __LL	"%0, %1		# test_and_change_bit	\n"
441		"	xor	%2, %0, %3				\n"
442		"	" __SC	"%2, %1					\n"
443		"	beqzl	%2, 1b					\n"
444		"	and	%2, %0, %3				\n"
445		"	.set	pop					\n"
446		: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
447		: "r" (1UL << bit)
448		: __LLSC_CLOBBER);
449	} else if (kernel_uses_llsc) {
450		unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
451		unsigned long temp;
452
453		loongson_llsc_mb();
454		do {
455			__asm__ __volatile__(
456			"	.set	push				\n"
457			"	.set	"MIPS_ISA_ARCH_LEVEL"		\n"
458			"	" __LL	"%0, %1 # test_and_change_bit	\n"
459			"	xor	%2, %0, %3			\n"
460			"	" __SC	"\t%2, %1			\n"
461			"	.set	pop				\n"
462			: "=&r" (temp), "+" GCC_OFF_SMALL_ASM() (*m), "=&r" (res)
463			: "r" (1UL << bit)
464			: __LLSC_CLOBBER);
465		} while (unlikely(!res));
466
467		res = temp & (1UL << bit);
468	} else
469		res = __mips_test_and_change_bit(nr, addr);
 
 
 
 
 
 
470
471	smp_llsc_mb();
472
473	return res != 0;
474}
475
 
 
 
476#include <asm-generic/bitops/non-atomic.h>
477
478/*
479 * __clear_bit_unlock - Clears a bit in memory
480 * @nr: Bit to clear
481 * @addr: Address to start counting from
482 *
483 * __clear_bit() is non-atomic and implies release semantics before the memory
484 * operation. It can be used for an unlock if no other CPUs can concurrently
485 * modify other bits in the word.
486 */
487static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
488{
489	smp_mb__before_llsc();
490	__clear_bit(nr, addr);
491	nudge_writes();
492}
493
494/*
495 * Return the bit position (0..63) of the most significant 1 bit in a word
496 * Returns -1 if no 1 bit exists
497 */
498static __always_inline unsigned long __fls(unsigned long word)
499{
500	int num;
501
502	if (BITS_PER_LONG == 32 && !__builtin_constant_p(word) &&
503	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
504		__asm__(
505		"	.set	push					\n"
506		"	.set	"MIPS_ISA_LEVEL"			\n"
507		"	clz	%0, %1					\n"
508		"	.set	pop					\n"
509		: "=r" (num)
510		: "r" (word));
511
512		return 31 - num;
513	}
514
515	if (BITS_PER_LONG == 64 && !__builtin_constant_p(word) &&
516	    __builtin_constant_p(cpu_has_mips64) && cpu_has_mips64) {
517		__asm__(
518		"	.set	push					\n"
519		"	.set	"MIPS_ISA_LEVEL"			\n"
520		"	dclz	%0, %1					\n"
521		"	.set	pop					\n"
522		: "=r" (num)
523		: "r" (word));
524
525		return 63 - num;
526	}
527
528	num = BITS_PER_LONG - 1;
529
530#if BITS_PER_LONG == 64
531	if (!(word & (~0ul << 32))) {
532		num -= 32;
533		word <<= 32;
534	}
535#endif
536	if (!(word & (~0ul << (BITS_PER_LONG-16)))) {
537		num -= 16;
538		word <<= 16;
539	}
540	if (!(word & (~0ul << (BITS_PER_LONG-8)))) {
541		num -= 8;
542		word <<= 8;
543	}
544	if (!(word & (~0ul << (BITS_PER_LONG-4)))) {
545		num -= 4;
546		word <<= 4;
547	}
548	if (!(word & (~0ul << (BITS_PER_LONG-2)))) {
549		num -= 2;
550		word <<= 2;
551	}
552	if (!(word & (~0ul << (BITS_PER_LONG-1))))
553		num -= 1;
554	return num;
555}
556
557/*
558 * __ffs - find first bit in word.
559 * @word: The word to search
560 *
561 * Returns 0..SZLONG-1
562 * Undefined if no bit exists, so code should check against 0 first.
563 */
564static __always_inline unsigned long __ffs(unsigned long word)
565{
566	return __fls(word & -word);
567}
568
569/*
570 * fls - find last bit set.
571 * @word: The word to search
572 *
573 * This is defined the same way as ffs.
574 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
575 */
576static inline int fls(unsigned int x)
577{
578	int r;
579
580	if (!__builtin_constant_p(x) &&
581	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
582		__asm__(
583		"	.set	push					\n"
584		"	.set	"MIPS_ISA_LEVEL"			\n"
585		"	clz	%0, %1					\n"
586		"	.set	pop					\n"
587		: "=r" (x)
588		: "r" (x));
589
590		return 32 - x;
591	}
592
593	r = 32;
594	if (!x)
595		return 0;
596	if (!(x & 0xffff0000u)) {
597		x <<= 16;
598		r -= 16;
599	}
600	if (!(x & 0xff000000u)) {
601		x <<= 8;
602		r -= 8;
603	}
604	if (!(x & 0xf0000000u)) {
605		x <<= 4;
606		r -= 4;
607	}
608	if (!(x & 0xc0000000u)) {
609		x <<= 2;
610		r -= 2;
611	}
612	if (!(x & 0x80000000u)) {
613		x <<= 1;
614		r -= 1;
615	}
616	return r;
617}
618
619#include <asm-generic/bitops/fls64.h>
620
621/*
622 * ffs - find first bit set.
623 * @word: The word to search
624 *
625 * This is defined the same way as
626 * the libc and compiler builtin ffs routines, therefore
627 * differs in spirit from the above ffz (man ffs).
628 */
629static inline int ffs(int word)
630{
631	if (!word)
632		return 0;
633
634	return fls(word & -word);
635}
636
637#include <asm-generic/bitops/ffz.h>
638#include <asm-generic/bitops/find.h>
639
640#ifdef __KERNEL__
641
642#include <asm-generic/bitops/sched.h>
643
644#include <asm/arch_hweight.h>
645#include <asm-generic/bitops/const_hweight.h>
646
647#include <asm-generic/bitops/le.h>
648#include <asm-generic/bitops/ext2-atomic.h>
649
650#endif /* __KERNEL__ */
651
652#endif /* _ASM_BITOPS_H */
v6.2
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (c) 1994 - 1997, 99, 2000, 06, 07  Ralf Baechle (ralf@linux-mips.org)
  7 * Copyright (c) 1999, 2000  Silicon Graphics, Inc.
  8 */
  9#ifndef _ASM_BITOPS_H
 10#define _ASM_BITOPS_H
 11
 12#ifndef _LINUX_BITOPS_H
 13#error only <linux/bitops.h> can be included directly
 14#endif
 15
 16#include <linux/bits.h>
 17#include <linux/compiler.h>
 18#include <linux/types.h>
 19#include <asm/asm.h>
 20#include <asm/barrier.h>
 21#include <asm/byteorder.h>		/* sigh ... */
 22#include <asm/compiler.h>
 23#include <asm/cpu-features.h>
 
 24#include <asm/sgidefs.h>
 25
 26#define __bit_op(mem, insn, inputs...) do {			\
 27	unsigned long __temp;					\
 28								\
 29	asm volatile(						\
 30	"	.set		push			\n"	\
 31	"	.set		" MIPS_ISA_LEVEL "	\n"	\
 32	"	" __SYNC(full, loongson3_war) "		\n"	\
 33	"1:	" __stringify(LONG_LL)	"	%0, %1	\n"	\
 34	"	" insn		"			\n"	\
 35	"	" __stringify(LONG_SC)	"	%0, %1	\n"	\
 36	"	" __stringify(SC_BEQZ)	"	%0, 1b	\n"	\
 37	"	.set		pop			\n"	\
 38	: "=&r"(__temp), "+" GCC_OFF_SMALL_ASM()(mem)		\
 39	: inputs						\
 40	: __LLSC_CLOBBER);					\
 41} while (0)
 42
 43#define __test_bit_op(mem, ll_dst, insn, inputs...) ({		\
 44	unsigned long __orig, __temp;				\
 45								\
 46	asm volatile(						\
 47	"	.set		push			\n"	\
 48	"	.set		" MIPS_ISA_LEVEL "	\n"	\
 49	"	" __SYNC(full, loongson3_war) "		\n"	\
 50	"1:	" __stringify(LONG_LL) " "	ll_dst ", %2\n"	\
 51	"	" insn		"			\n"	\
 52	"	" __stringify(LONG_SC)	"	%1, %2	\n"	\
 53	"	" __stringify(SC_BEQZ)	"	%1, 1b	\n"	\
 54	"	.set		pop			\n"	\
 55	: "=&r"(__orig), "=&r"(__temp),				\
 56	  "+" GCC_OFF_SMALL_ASM()(mem)				\
 57	: inputs						\
 58	: __LLSC_CLOBBER);					\
 59								\
 60	__orig;							\
 61})
 62
 63/*
 64 * These are the "slower" versions of the functions and are in bitops.c.
 65 * These functions call raw_local_irq_{save,restore}().
 66 */
 67void __mips_set_bit(unsigned long nr, volatile unsigned long *addr);
 68void __mips_clear_bit(unsigned long nr, volatile unsigned long *addr);
 69void __mips_change_bit(unsigned long nr, volatile unsigned long *addr);
 
 
 70int __mips_test_and_set_bit_lock(unsigned long nr,
 71				 volatile unsigned long *addr);
 72int __mips_test_and_clear_bit(unsigned long nr,
 73			      volatile unsigned long *addr);
 74int __mips_test_and_change_bit(unsigned long nr,
 75			       volatile unsigned long *addr);
 76
 77
 78/*
 79 * set_bit - Atomically set a bit in memory
 80 * @nr: the bit to set
 81 * @addr: the address to start counting from
 82 *
 83 * This function is atomic and may not be reordered.  See __set_bit()
 84 * if you do not require the atomic guarantees.
 85 * Note that @nr may be almost arbitrarily large; this function is not
 86 * restricted to acting on a single-word quantity.
 87 */
 88static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
 89{
 90	volatile unsigned long *m = &addr[BIT_WORD(nr)];
 91	int bit = nr % BITS_PER_LONG;
 
 92
 93	if (!kernel_uses_llsc) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 94		__mips_set_bit(nr, addr);
 95		return;
 96	}
 97
 98	if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(bit) && (bit >= 16)) {
 99		__bit_op(*m, __stringify(LONG_INS) " %0, %3, %2, 1", "i"(bit), "r"(~0));
100		return;
101	}
102
103	__bit_op(*m, "or\t%0, %2", "ir"(BIT(bit)));
104}
105
106/*
107 * clear_bit - Clears a bit in memory
108 * @nr: Bit to clear
109 * @addr: Address to start counting from
110 *
111 * clear_bit() is atomic and may not be reordered.  However, it does
112 * not contain a memory barrier, so if it is used for locking purposes,
113 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
114 * in order to ensure changes are visible on other processors.
115 */
116static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
117{
118	volatile unsigned long *m = &addr[BIT_WORD(nr)];
119	int bit = nr % BITS_PER_LONG;
 
120
121	if (!kernel_uses_llsc) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122		__mips_clear_bit(nr, addr);
123		return;
124	}
125
126	if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(bit)) {
127		__bit_op(*m, __stringify(LONG_INS) " %0, $0, %2, 1", "i"(bit));
128		return;
129	}
130
131	__bit_op(*m, "and\t%0, %2", "ir"(~BIT(bit)));
132}
133
134/*
135 * clear_bit_unlock - Clears a bit in memory
136 * @nr: Bit to clear
137 * @addr: Address to start counting from
138 *
139 * clear_bit() is atomic and implies release semantics before the memory
140 * operation. It can be used for an unlock.
141 */
142static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
143{
144	smp_mb__before_atomic();
145	clear_bit(nr, addr);
146}
147
148/*
149 * change_bit - Toggle a bit in memory
150 * @nr: Bit to change
151 * @addr: Address to start counting from
152 *
153 * change_bit() is atomic and may not be reordered.
154 * Note that @nr may be almost arbitrarily large; this function is not
155 * restricted to acting on a single-word quantity.
156 */
157static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
158{
159	volatile unsigned long *m = &addr[BIT_WORD(nr)];
160	int bit = nr % BITS_PER_LONG;
161
162	if (!kernel_uses_llsc) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163		__mips_change_bit(nr, addr);
164		return;
165	}
166
167	__bit_op(*m, "xor\t%0, %2", "ir"(BIT(bit)));
168}
169
170/*
171 * test_and_set_bit_lock - Set a bit and return its old value
172 * @nr: Bit to set
173 * @addr: Address to count from
174 *
175 * This operation is atomic and implies acquire ordering semantics
176 * after the memory operation.
177 */
178static inline int test_and_set_bit_lock(unsigned long nr,
179	volatile unsigned long *addr)
180{
181	volatile unsigned long *m = &addr[BIT_WORD(nr)];
182	int bit = nr % BITS_PER_LONG;
183	unsigned long res, orig;
 
184
185	if (!kernel_uses_llsc) {
186		res = __mips_test_and_set_bit_lock(nr, addr);
187	} else {
188		orig = __test_bit_op(*m, "%0",
189				     "or\t%1, %0, %3",
190				     "ir"(BIT(bit)));
191		res = (orig & BIT(bit)) != 0;
192	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
193
194	smp_llsc_mb();
195
196	return res;
197}
198
199/*
200 * test_and_set_bit - Set a bit and return its old value
201 * @nr: Bit to set
202 * @addr: Address to count from
203 *
204 * This operation is atomic and cannot be reordered.
205 * It also implies a memory barrier.
206 */
207static inline int test_and_set_bit(unsigned long nr,
208	volatile unsigned long *addr)
209{
210	smp_mb__before_atomic();
211	return test_and_set_bit_lock(nr, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212}
213
214/*
215 * test_and_clear_bit - Clear a bit and return its old value
216 * @nr: Bit to clear
217 * @addr: Address to count from
218 *
219 * This operation is atomic and cannot be reordered.
220 * It also implies a memory barrier.
221 */
222static inline int test_and_clear_bit(unsigned long nr,
223	volatile unsigned long *addr)
224{
225	volatile unsigned long *m = &addr[BIT_WORD(nr)];
226	int bit = nr % BITS_PER_LONG;
227	unsigned long res, orig;
228
229	smp_mb__before_atomic();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
230
231	if (!kernel_uses_llsc) {
 
232		res = __mips_test_and_clear_bit(nr, addr);
233	} else if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(nr)) {
234		res = __test_bit_op(*m, "%1",
235				    __stringify(LONG_EXT) " %0, %1, %3, 1;"
236				    __stringify(LONG_INS) " %1, $0, %3, 1",
237				    "i"(bit));
238	} else {
239		orig = __test_bit_op(*m, "%0",
240				     "or\t%1, %0, %3;"
241				     "xor\t%1, %1, %3",
242				     "ir"(BIT(bit)));
243		res = (orig & BIT(bit)) != 0;
244	}
245
246	smp_llsc_mb();
247
248	return res;
249}
250
251/*
252 * test_and_change_bit - Change a bit and return its old value
253 * @nr: Bit to change
254 * @addr: Address to count from
255 *
256 * This operation is atomic and cannot be reordered.
257 * It also implies a memory barrier.
258 */
259static inline int test_and_change_bit(unsigned long nr,
260	volatile unsigned long *addr)
261{
262	volatile unsigned long *m = &addr[BIT_WORD(nr)];
263	int bit = nr % BITS_PER_LONG;
264	unsigned long res, orig;
265
266	smp_mb__before_atomic();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267
268	if (!kernel_uses_llsc) {
 
269		res = __mips_test_and_change_bit(nr, addr);
270	} else {
271		orig = __test_bit_op(*m, "%0",
272				     "xor\t%1, %0, %3",
273				     "ir"(BIT(bit)));
274		res = (orig & BIT(bit)) != 0;
275	}
276
277	smp_llsc_mb();
278
279	return res;
280}
281
282#undef __bit_op
283#undef __test_bit_op
284
285#include <asm-generic/bitops/non-atomic.h>
286
287/*
288 * __clear_bit_unlock - Clears a bit in memory
289 * @nr: Bit to clear
290 * @addr: Address to start counting from
291 *
292 * __clear_bit() is non-atomic and implies release semantics before the memory
293 * operation. It can be used for an unlock if no other CPUs can concurrently
294 * modify other bits in the word.
295 */
296static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
297{
298	smp_mb__before_llsc();
299	__clear_bit(nr, addr);
300	nudge_writes();
301}
302
303/*
304 * Return the bit position (0..63) of the most significant 1 bit in a word
305 * Returns -1 if no 1 bit exists
306 */
307static __always_inline unsigned long __fls(unsigned long word)
308{
309	int num;
310
311	if (BITS_PER_LONG == 32 && !__builtin_constant_p(word) &&
312	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
313		__asm__(
314		"	.set	push					\n"
315		"	.set	"MIPS_ISA_LEVEL"			\n"
316		"	clz	%0, %1					\n"
317		"	.set	pop					\n"
318		: "=r" (num)
319		: "r" (word));
320
321		return 31 - num;
322	}
323
324	if (BITS_PER_LONG == 64 && !__builtin_constant_p(word) &&
325	    __builtin_constant_p(cpu_has_mips64) && cpu_has_mips64) {
326		__asm__(
327		"	.set	push					\n"
328		"	.set	"MIPS_ISA_LEVEL"			\n"
329		"	dclz	%0, %1					\n"
330		"	.set	pop					\n"
331		: "=r" (num)
332		: "r" (word));
333
334		return 63 - num;
335	}
336
337	num = BITS_PER_LONG - 1;
338
339#if BITS_PER_LONG == 64
340	if (!(word & (~0ul << 32))) {
341		num -= 32;
342		word <<= 32;
343	}
344#endif
345	if (!(word & (~0ul << (BITS_PER_LONG-16)))) {
346		num -= 16;
347		word <<= 16;
348	}
349	if (!(word & (~0ul << (BITS_PER_LONG-8)))) {
350		num -= 8;
351		word <<= 8;
352	}
353	if (!(word & (~0ul << (BITS_PER_LONG-4)))) {
354		num -= 4;
355		word <<= 4;
356	}
357	if (!(word & (~0ul << (BITS_PER_LONG-2)))) {
358		num -= 2;
359		word <<= 2;
360	}
361	if (!(word & (~0ul << (BITS_PER_LONG-1))))
362		num -= 1;
363	return num;
364}
365
366/*
367 * __ffs - find first bit in word.
368 * @word: The word to search
369 *
370 * Returns 0..SZLONG-1
371 * Undefined if no bit exists, so code should check against 0 first.
372 */
373static __always_inline unsigned long __ffs(unsigned long word)
374{
375	return __fls(word & -word);
376}
377
378/*
379 * fls - find last bit set.
380 * @word: The word to search
381 *
382 * This is defined the same way as ffs.
383 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
384 */
385static inline int fls(unsigned int x)
386{
387	int r;
388
389	if (!__builtin_constant_p(x) &&
390	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
391		__asm__(
392		"	.set	push					\n"
393		"	.set	"MIPS_ISA_LEVEL"			\n"
394		"	clz	%0, %1					\n"
395		"	.set	pop					\n"
396		: "=r" (x)
397		: "r" (x));
398
399		return 32 - x;
400	}
401
402	r = 32;
403	if (!x)
404		return 0;
405	if (!(x & 0xffff0000u)) {
406		x <<= 16;
407		r -= 16;
408	}
409	if (!(x & 0xff000000u)) {
410		x <<= 8;
411		r -= 8;
412	}
413	if (!(x & 0xf0000000u)) {
414		x <<= 4;
415		r -= 4;
416	}
417	if (!(x & 0xc0000000u)) {
418		x <<= 2;
419		r -= 2;
420	}
421	if (!(x & 0x80000000u)) {
422		x <<= 1;
423		r -= 1;
424	}
425	return r;
426}
427
428#include <asm-generic/bitops/fls64.h>
429
430/*
431 * ffs - find first bit set.
432 * @word: The word to search
433 *
434 * This is defined the same way as
435 * the libc and compiler builtin ffs routines, therefore
436 * differs in spirit from the below ffz (man ffs).
437 */
438static inline int ffs(int word)
439{
440	if (!word)
441		return 0;
442
443	return fls(word & -word);
444}
445
446#include <asm-generic/bitops/ffz.h>
 
447
448#ifdef __KERNEL__
449
450#include <asm-generic/bitops/sched.h>
451
452#include <asm/arch_hweight.h>
453#include <asm-generic/bitops/const_hweight.h>
454
455#include <asm-generic/bitops/le.h>
456#include <asm-generic/bitops/ext2-atomic.h>
457
458#endif /* __KERNEL__ */
459
460#endif /* _ASM_BITOPS_H */