Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the kernel access vector cache (AVC).
   4 *
   5 * Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
   9 *	Replaced the avc_lock spinlock by RCU.
  10 *
  11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 
 
 
 
  12 */
  13#include <linux/types.h>
  14#include <linux/stddef.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/fs.h>
  18#include <linux/dcache.h>
  19#include <linux/init.h>
  20#include <linux/skbuff.h>
  21#include <linux/percpu.h>
  22#include <linux/list.h>
  23#include <net/sock.h>
  24#include <linux/un.h>
  25#include <net/af_unix.h>
  26#include <linux/ip.h>
  27#include <linux/audit.h>
  28#include <linux/ipv6.h>
  29#include <net/ipv6.h>
  30#include "avc.h"
  31#include "avc_ss.h"
  32#include "classmap.h"
  33
  34#define AVC_CACHE_SLOTS			512
  35#define AVC_DEF_CACHE_THRESHOLD		512
  36#define AVC_CACHE_RECLAIM		16
  37
  38#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  39#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
  40#else
  41#define avc_cache_stats_incr(field)	do {} while (0)
  42#endif
  43
  44struct avc_entry {
  45	u32			ssid;
  46	u32			tsid;
  47	u16			tclass;
  48	struct av_decision	avd;
  49	struct avc_xperms_node	*xp_node;
  50};
  51
  52struct avc_node {
  53	struct avc_entry	ae;
  54	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
  55	struct rcu_head		rhead;
  56};
  57
  58struct avc_xperms_decision_node {
  59	struct extended_perms_decision xpd;
  60	struct list_head xpd_list; /* list of extended_perms_decision */
  61};
  62
  63struct avc_xperms_node {
  64	struct extended_perms xp;
  65	struct list_head xpd_head; /* list head of extended_perms_decision */
  66};
  67
  68struct avc_cache {
  69	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
  70	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
  71	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
  72	atomic_t		active_nodes;
  73	u32			latest_notif;	/* latest revocation notification */
  74};
  75
  76struct avc_callback_node {
  77	int (*callback) (u32 event);
 
 
  78	u32 events;
 
 
 
 
  79	struct avc_callback_node *next;
  80};
  81
 
 
 
  82#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  83DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
  84#endif
  85
  86struct selinux_avc {
  87	unsigned int avc_cache_threshold;
  88	struct avc_cache avc_cache;
  89};
  90
  91static struct selinux_avc selinux_avc;
 
 
 
  92
  93void selinux_avc_init(struct selinux_avc **avc)
 
 
 
 
 
  94{
  95	int i;
 
  96
  97	selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
  98	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
  99		INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
 100		spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
 101	}
 102	atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
 103	atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
 104	*avc = &selinux_avc;
 105}
 106
 107unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
 108{
 109	return avc->avc_cache_threshold;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110}
 111
 112void avc_set_cache_threshold(struct selinux_avc *avc,
 113			     unsigned int cache_threshold)
 
 
 
 
 
 114{
 115	avc->avc_cache_threshold = cache_threshold;
 116}
 
 117
 118static struct avc_callback_node *avc_callbacks;
 119static struct kmem_cache *avc_node_cachep;
 120static struct kmem_cache *avc_xperms_data_cachep;
 121static struct kmem_cache *avc_xperms_decision_cachep;
 122static struct kmem_cache *avc_xperms_cachep;
 
 
 123
 124static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 125{
 126	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 
 
 
 
 
 
 
 127}
 128
 129/**
 130 * avc_init - Initialize the AVC.
 131 *
 132 * Initialize the access vector cache.
 133 */
 134void __init avc_init(void)
 135{
 
 
 
 
 
 
 
 
 
 136	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
 137					0, SLAB_PANIC, NULL);
 138	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
 139					sizeof(struct avc_xperms_node),
 140					0, SLAB_PANIC, NULL);
 141	avc_xperms_decision_cachep = kmem_cache_create(
 142					"avc_xperms_decision_node",
 143					sizeof(struct avc_xperms_decision_node),
 144					0, SLAB_PANIC, NULL);
 145	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
 146					sizeof(struct extended_perms_data),
 147					0, SLAB_PANIC, NULL);
 148}
 149
 150int avc_get_hash_stats(struct selinux_avc *avc, char *page)
 151{
 152	int i, chain_len, max_chain_len, slots_used;
 153	struct avc_node *node;
 154	struct hlist_head *head;
 155
 156	rcu_read_lock();
 157
 158	slots_used = 0;
 159	max_chain_len = 0;
 160	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 161		head = &avc->avc_cache.slots[i];
 162		if (!hlist_empty(head)) {
 
 
 163			slots_used++;
 164			chain_len = 0;
 165			hlist_for_each_entry_rcu(node, head, list)
 166				chain_len++;
 167			if (chain_len > max_chain_len)
 168				max_chain_len = chain_len;
 169		}
 170	}
 171
 172	rcu_read_unlock();
 173
 174	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
 175			 "longest chain: %d\n",
 176			 atomic_read(&avc->avc_cache.active_nodes),
 177			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
 178}
 179
 180/*
 181 * using a linked list for extended_perms_decision lookup because the list is
 182 * always small. i.e. less than 5, typically 1
 183 */
 184static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
 185					struct avc_xperms_node *xp_node)
 186{
 187	struct avc_xperms_decision_node *xpd_node;
 188
 189	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
 190		if (xpd_node->xpd.driver == driver)
 191			return &xpd_node->xpd;
 192	}
 193	return NULL;
 194}
 195
 196static inline unsigned int
 197avc_xperms_has_perm(struct extended_perms_decision *xpd,
 198					u8 perm, u8 which)
 199{
 200	unsigned int rc = 0;
 201
 202	if ((which == XPERMS_ALLOWED) &&
 203			(xpd->used & XPERMS_ALLOWED))
 204		rc = security_xperm_test(xpd->allowed->p, perm);
 205	else if ((which == XPERMS_AUDITALLOW) &&
 206			(xpd->used & XPERMS_AUDITALLOW))
 207		rc = security_xperm_test(xpd->auditallow->p, perm);
 208	else if ((which == XPERMS_DONTAUDIT) &&
 209			(xpd->used & XPERMS_DONTAUDIT))
 210		rc = security_xperm_test(xpd->dontaudit->p, perm);
 211	return rc;
 212}
 213
 214static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
 215				u8 driver, u8 perm)
 216{
 217	struct extended_perms_decision *xpd;
 218	security_xperm_set(xp_node->xp.drivers.p, driver);
 219	xpd = avc_xperms_decision_lookup(driver, xp_node);
 220	if (xpd && xpd->allowed)
 221		security_xperm_set(xpd->allowed->p, perm);
 222}
 223
 224static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
 225{
 226	struct extended_perms_decision *xpd;
 227
 228	xpd = &xpd_node->xpd;
 229	if (xpd->allowed)
 230		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
 231	if (xpd->auditallow)
 232		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
 233	if (xpd->dontaudit)
 234		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
 235	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
 236}
 237
 238static void avc_xperms_free(struct avc_xperms_node *xp_node)
 239{
 240	struct avc_xperms_decision_node *xpd_node, *tmp;
 241
 242	if (!xp_node)
 243		return;
 244
 245	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
 246		list_del(&xpd_node->xpd_list);
 247		avc_xperms_decision_free(xpd_node);
 248	}
 249	kmem_cache_free(avc_xperms_cachep, xp_node);
 250}
 251
 252static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
 253					struct extended_perms_decision *src)
 254{
 255	dest->driver = src->driver;
 256	dest->used = src->used;
 257	if (dest->used & XPERMS_ALLOWED)
 258		memcpy(dest->allowed->p, src->allowed->p,
 259				sizeof(src->allowed->p));
 260	if (dest->used & XPERMS_AUDITALLOW)
 261		memcpy(dest->auditallow->p, src->auditallow->p,
 262				sizeof(src->auditallow->p));
 263	if (dest->used & XPERMS_DONTAUDIT)
 264		memcpy(dest->dontaudit->p, src->dontaudit->p,
 265				sizeof(src->dontaudit->p));
 266}
 267
 268/*
 269 * similar to avc_copy_xperms_decision, but only copy decision
 270 * information relevant to this perm
 271 */
 272static inline void avc_quick_copy_xperms_decision(u8 perm,
 273			struct extended_perms_decision *dest,
 274			struct extended_perms_decision *src)
 275{
 276	/*
 277	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
 278	 * command permission
 279	 */
 280	u8 i = perm >> 5;
 281
 282	dest->used = src->used;
 283	if (dest->used & XPERMS_ALLOWED)
 284		dest->allowed->p[i] = src->allowed->p[i];
 285	if (dest->used & XPERMS_AUDITALLOW)
 286		dest->auditallow->p[i] = src->auditallow->p[i];
 287	if (dest->used & XPERMS_DONTAUDIT)
 288		dest->dontaudit->p[i] = src->dontaudit->p[i];
 289}
 290
 291static struct avc_xperms_decision_node
 292		*avc_xperms_decision_alloc(u8 which)
 293{
 294	struct avc_xperms_decision_node *xpd_node;
 295	struct extended_perms_decision *xpd;
 296
 297	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT);
 298	if (!xpd_node)
 299		return NULL;
 300
 301	xpd = &xpd_node->xpd;
 302	if (which & XPERMS_ALLOWED) {
 303		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
 304						GFP_NOWAIT);
 305		if (!xpd->allowed)
 306			goto error;
 307	}
 308	if (which & XPERMS_AUDITALLOW) {
 309		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
 310						GFP_NOWAIT);
 311		if (!xpd->auditallow)
 312			goto error;
 313	}
 314	if (which & XPERMS_DONTAUDIT) {
 315		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
 316						GFP_NOWAIT);
 317		if (!xpd->dontaudit)
 318			goto error;
 319	}
 320	return xpd_node;
 321error:
 322	avc_xperms_decision_free(xpd_node);
 323	return NULL;
 324}
 325
 326static int avc_add_xperms_decision(struct avc_node *node,
 327			struct extended_perms_decision *src)
 328{
 329	struct avc_xperms_decision_node *dest_xpd;
 330
 331	node->ae.xp_node->xp.len++;
 332	dest_xpd = avc_xperms_decision_alloc(src->used);
 333	if (!dest_xpd)
 334		return -ENOMEM;
 335	avc_copy_xperms_decision(&dest_xpd->xpd, src);
 336	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
 337	return 0;
 338}
 339
 340static struct avc_xperms_node *avc_xperms_alloc(void)
 341{
 342	struct avc_xperms_node *xp_node;
 343
 344	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT);
 345	if (!xp_node)
 346		return xp_node;
 347	INIT_LIST_HEAD(&xp_node->xpd_head);
 348	return xp_node;
 349}
 350
 351static int avc_xperms_populate(struct avc_node *node,
 352				struct avc_xperms_node *src)
 353{
 354	struct avc_xperms_node *dest;
 355	struct avc_xperms_decision_node *dest_xpd;
 356	struct avc_xperms_decision_node *src_xpd;
 357
 358	if (src->xp.len == 0)
 359		return 0;
 360	dest = avc_xperms_alloc();
 361	if (!dest)
 362		return -ENOMEM;
 363
 364	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
 365	dest->xp.len = src->xp.len;
 366
 367	/* for each source xpd allocate a destination xpd and copy */
 368	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
 369		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
 370		if (!dest_xpd)
 371			goto error;
 372		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
 373		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
 374	}
 375	node->ae.xp_node = dest;
 376	return 0;
 377error:
 378	avc_xperms_free(dest);
 379	return -ENOMEM;
 380
 381}
 382
 383static inline u32 avc_xperms_audit_required(u32 requested,
 384					struct av_decision *avd,
 385					struct extended_perms_decision *xpd,
 386					u8 perm,
 387					int result,
 388					u32 *deniedp)
 389{
 390	u32 denied, audited;
 391
 392	denied = requested & ~avd->allowed;
 393	if (unlikely(denied)) {
 394		audited = denied & avd->auditdeny;
 395		if (audited && xpd) {
 396			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
 397				audited &= ~requested;
 398		}
 399	} else if (result) {
 400		audited = denied = requested;
 401	} else {
 402		audited = requested & avd->auditallow;
 403		if (audited && xpd) {
 404			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
 405				audited &= ~requested;
 406		}
 407	}
 408
 409	*deniedp = denied;
 410	return audited;
 411}
 412
 413static inline int avc_xperms_audit(struct selinux_state *state,
 414				   u32 ssid, u32 tsid, u16 tclass,
 415				   u32 requested, struct av_decision *avd,
 416				   struct extended_perms_decision *xpd,
 417				   u8 perm, int result,
 418				   struct common_audit_data *ad)
 419{
 420	u32 audited, denied;
 421
 422	audited = avc_xperms_audit_required(
 423			requested, avd, xpd, perm, result, &denied);
 424	if (likely(!audited))
 425		return 0;
 426	return slow_avc_audit(state, ssid, tsid, tclass, requested,
 427			audited, denied, result, ad, 0);
 428}
 429
 430static void avc_node_free(struct rcu_head *rhead)
 431{
 432	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 433	avc_xperms_free(node->ae.xp_node);
 434	kmem_cache_free(avc_node_cachep, node);
 435	avc_cache_stats_incr(frees);
 436}
 437
 438static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
 439{
 440	hlist_del_rcu(&node->list);
 441	call_rcu(&node->rhead, avc_node_free);
 442	atomic_dec(&avc->avc_cache.active_nodes);
 443}
 444
 445static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
 446{
 447	avc_xperms_free(node->ae.xp_node);
 448	kmem_cache_free(avc_node_cachep, node);
 449	avc_cache_stats_incr(frees);
 450	atomic_dec(&avc->avc_cache.active_nodes);
 451}
 452
 453static void avc_node_replace(struct selinux_avc *avc,
 454			     struct avc_node *new, struct avc_node *old)
 455{
 456	hlist_replace_rcu(&old->list, &new->list);
 457	call_rcu(&old->rhead, avc_node_free);
 458	atomic_dec(&avc->avc_cache.active_nodes);
 459}
 460
 461static inline int avc_reclaim_node(struct selinux_avc *avc)
 462{
 463	struct avc_node *node;
 464	int hvalue, try, ecx;
 465	unsigned long flags;
 466	struct hlist_head *head;
 
 467	spinlock_t *lock;
 468
 469	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
 470		hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
 471			(AVC_CACHE_SLOTS - 1);
 472		head = &avc->avc_cache.slots[hvalue];
 473		lock = &avc->avc_cache.slots_lock[hvalue];
 474
 475		if (!spin_trylock_irqsave(lock, flags))
 476			continue;
 477
 478		rcu_read_lock();
 479		hlist_for_each_entry(node, head, list) {
 480			avc_node_delete(avc, node);
 481			avc_cache_stats_incr(reclaims);
 482			ecx++;
 483			if (ecx >= AVC_CACHE_RECLAIM) {
 484				rcu_read_unlock();
 485				spin_unlock_irqrestore(lock, flags);
 486				goto out;
 487			}
 488		}
 489		rcu_read_unlock();
 490		spin_unlock_irqrestore(lock, flags);
 491	}
 492out:
 493	return ecx;
 494}
 495
 496static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
 497{
 498	struct avc_node *node;
 499
 500	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT);
 501	if (!node)
 502		goto out;
 503
 504	INIT_HLIST_NODE(&node->list);
 505	avc_cache_stats_incr(allocations);
 506
 507	if (atomic_inc_return(&avc->avc_cache.active_nodes) >
 508	    avc->avc_cache_threshold)
 509		avc_reclaim_node(avc);
 510
 511out:
 512	return node;
 513}
 514
 515static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 516{
 517	node->ae.ssid = ssid;
 518	node->ae.tsid = tsid;
 519	node->ae.tclass = tclass;
 520	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
 521}
 522
 523static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
 524					       u32 ssid, u32 tsid, u16 tclass)
 525{
 526	struct avc_node *node, *ret = NULL;
 527	int hvalue;
 528	struct hlist_head *head;
 
 529
 530	hvalue = avc_hash(ssid, tsid, tclass);
 531	head = &avc->avc_cache.slots[hvalue];
 532	hlist_for_each_entry_rcu(node, head, list) {
 533		if (ssid == node->ae.ssid &&
 534		    tclass == node->ae.tclass &&
 535		    tsid == node->ae.tsid) {
 536			ret = node;
 537			break;
 538		}
 539	}
 540
 541	return ret;
 542}
 543
 544/**
 545 * avc_lookup - Look up an AVC entry.
 546 * @ssid: source security identifier
 547 * @tsid: target security identifier
 548 * @tclass: target security class
 549 *
 550 * Look up an AVC entry that is valid for the
 551 * (@ssid, @tsid), interpreting the permissions
 552 * based on @tclass.  If a valid AVC entry exists,
 553 * then this function returns the avc_node.
 554 * Otherwise, this function returns NULL.
 555 */
 556static struct avc_node *avc_lookup(struct selinux_avc *avc,
 557				   u32 ssid, u32 tsid, u16 tclass)
 558{
 559	struct avc_node *node;
 560
 561	avc_cache_stats_incr(lookups);
 562	node = avc_search_node(avc, ssid, tsid, tclass);
 563
 564	if (node)
 565		return node;
 566
 567	avc_cache_stats_incr(misses);
 568	return NULL;
 569}
 570
 571static int avc_latest_notif_update(struct selinux_avc *avc,
 572				   int seqno, int is_insert)
 573{
 574	int ret = 0;
 575	static DEFINE_SPINLOCK(notif_lock);
 576	unsigned long flag;
 577
 578	spin_lock_irqsave(&notif_lock, flag);
 579	if (is_insert) {
 580		if (seqno < avc->avc_cache.latest_notif) {
 581			pr_warn("SELinux: avc:  seqno %d < latest_notif %d\n",
 582			       seqno, avc->avc_cache.latest_notif);
 583			ret = -EAGAIN;
 584		}
 585	} else {
 586		if (seqno > avc->avc_cache.latest_notif)
 587			avc->avc_cache.latest_notif = seqno;
 588	}
 589	spin_unlock_irqrestore(&notif_lock, flag);
 590
 591	return ret;
 592}
 593
 594/**
 595 * avc_insert - Insert an AVC entry.
 596 * @ssid: source security identifier
 597 * @tsid: target security identifier
 598 * @tclass: target security class
 599 * @avd: resulting av decision
 600 * @xp_node: resulting extended permissions
 601 *
 602 * Insert an AVC entry for the SID pair
 603 * (@ssid, @tsid) and class @tclass.
 604 * The access vectors and the sequence number are
 605 * normally provided by the security server in
 606 * response to a security_compute_av() call.  If the
 607 * sequence number @avd->seqno is not less than the latest
 608 * revocation notification, then the function copies
 609 * the access vectors into a cache entry, returns
 610 * avc_node inserted. Otherwise, this function returns NULL.
 611 */
 612static struct avc_node *avc_insert(struct selinux_avc *avc,
 613				   u32 ssid, u32 tsid, u16 tclass,
 614				   struct av_decision *avd,
 615				   struct avc_xperms_node *xp_node)
 616{
 617	struct avc_node *pos, *node = NULL;
 618	int hvalue;
 619	unsigned long flag;
 620
 621	if (avc_latest_notif_update(avc, avd->seqno, 1))
 622		goto out;
 623
 624	node = avc_alloc_node(avc);
 625	if (node) {
 626		struct hlist_head *head;
 
 627		spinlock_t *lock;
 628		int rc = 0;
 629
 630		hvalue = avc_hash(ssid, tsid, tclass);
 631		avc_node_populate(node, ssid, tsid, tclass, avd);
 632		rc = avc_xperms_populate(node, xp_node);
 633		if (rc) {
 634			kmem_cache_free(avc_node_cachep, node);
 635			return NULL;
 636		}
 637		head = &avc->avc_cache.slots[hvalue];
 638		lock = &avc->avc_cache.slots_lock[hvalue];
 639
 640		spin_lock_irqsave(lock, flag);
 641		hlist_for_each_entry(pos, head, list) {
 642			if (pos->ae.ssid == ssid &&
 643			    pos->ae.tsid == tsid &&
 644			    pos->ae.tclass == tclass) {
 645				avc_node_replace(avc, node, pos);
 646				goto found;
 647			}
 648		}
 649		hlist_add_head_rcu(&node->list, head);
 650found:
 651		spin_unlock_irqrestore(lock, flag);
 652	}
 653out:
 654	return node;
 655}
 656
 657/**
 658 * avc_audit_pre_callback - SELinux specific information
 659 * will be called by generic audit code
 660 * @ab: the audit buffer
 661 * @a: audit_data
 662 */
 663static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
 664{
 665	struct common_audit_data *ad = a;
 666	struct selinux_audit_data *sad = ad->selinux_audit_data;
 667	u32 av = sad->audited;
 668	const char **perms;
 669	int i, perm;
 670
 671	audit_log_format(ab, "avc:  %s ", sad->denied ? "denied" : "granted");
 672
 673	if (av == 0) {
 674		audit_log_format(ab, " null");
 675		return;
 676	}
 677
 678	perms = secclass_map[sad->tclass-1].perms;
 679
 680	audit_log_format(ab, " {");
 681	i = 0;
 682	perm = 1;
 683	while (i < (sizeof(av) * 8)) {
 684		if ((perm & av) && perms[i]) {
 685			audit_log_format(ab, " %s", perms[i]);
 686			av &= ~perm;
 687		}
 688		i++;
 689		perm <<= 1;
 690	}
 691
 692	if (av)
 693		audit_log_format(ab, " 0x%x", av);
 694
 695	audit_log_format(ab, " } for ");
 696}
 697
 698/**
 699 * avc_audit_post_callback - SELinux specific information
 700 * will be called by generic audit code
 701 * @ab: the audit buffer
 702 * @a: audit_data
 703 */
 704static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
 705{
 706	struct common_audit_data *ad = a;
 707	struct selinux_audit_data *sad = ad->selinux_audit_data;
 708	char *scontext;
 709	u32 scontext_len;
 710	int rc;
 711
 712	rc = security_sid_to_context(sad->state, sad->ssid, &scontext,
 713				     &scontext_len);
 714	if (rc)
 715		audit_log_format(ab, " ssid=%d", sad->ssid);
 716	else {
 717		audit_log_format(ab, " scontext=%s", scontext);
 718		kfree(scontext);
 719	}
 720
 721	rc = security_sid_to_context(sad->state, sad->tsid, &scontext,
 722				     &scontext_len);
 723	if (rc)
 724		audit_log_format(ab, " tsid=%d", sad->tsid);
 725	else {
 726		audit_log_format(ab, " tcontext=%s", scontext);
 727		kfree(scontext);
 728	}
 729
 730	audit_log_format(ab, " tclass=%s", secclass_map[sad->tclass-1].name);
 731
 732	if (sad->denied)
 733		audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
 734
 735	/* in case of invalid context report also the actual context string */
 736	rc = security_sid_to_context_inval(sad->state, sad->ssid, &scontext,
 737					   &scontext_len);
 738	if (!rc && scontext) {
 739		if (scontext_len && scontext[scontext_len - 1] == '\0')
 740			scontext_len--;
 741		audit_log_format(ab, " srawcon=");
 742		audit_log_n_untrustedstring(ab, scontext, scontext_len);
 743		kfree(scontext);
 744	}
 745
 746	rc = security_sid_to_context_inval(sad->state, sad->tsid, &scontext,
 747					   &scontext_len);
 748	if (!rc && scontext) {
 749		if (scontext_len && scontext[scontext_len - 1] == '\0')
 750			scontext_len--;
 751		audit_log_format(ab, " trawcon=");
 752		audit_log_n_untrustedstring(ab, scontext, scontext_len);
 753		kfree(scontext);
 754	}
 755}
 756
 757/* This is the slow part of avc audit with big stack footprint */
 758noinline int slow_avc_audit(struct selinux_state *state,
 759			    u32 ssid, u32 tsid, u16 tclass,
 760			    u32 requested, u32 audited, u32 denied, int result,
 761			    struct common_audit_data *a,
 762			    unsigned int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763{
 764	struct common_audit_data stack_data;
 765	struct selinux_audit_data sad;
 766
 767	if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
 768		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 769
 770	if (!a) {
 771		a = &stack_data;
 772		a->type = LSM_AUDIT_DATA_NONE;
 773	}
 774
 775	/*
 776	 * When in a RCU walk do the audit on the RCU retry.  This is because
 777	 * the collection of the dname in an inode audit message is not RCU
 778	 * safe.  Note this may drop some audits when the situation changes
 779	 * during retry. However this is logically just as if the operation
 780	 * happened a little later.
 781	 */
 782	if ((a->type == LSM_AUDIT_DATA_INODE) &&
 783	    (flags & MAY_NOT_BLOCK))
 784		return -ECHILD;
 785
 786	sad.tclass = tclass;
 787	sad.requested = requested;
 788	sad.ssid = ssid;
 789	sad.tsid = tsid;
 790	sad.audited = audited;
 791	sad.denied = denied;
 792	sad.result = result;
 793	sad.state = state;
 794
 795	a->selinux_audit_data = &sad;
 796
 797	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
 798	return 0;
 799}
 800
 801/**
 802 * avc_add_callback - Register a callback for security events.
 803 * @callback: callback function
 804 * @events: security events
 
 
 
 
 805 *
 806 * Register a callback function for events in the set @events.
 807 * Returns %0 on success or -%ENOMEM if insufficient memory
 808 * exists to add the callback.
 809 */
 810int __init avc_add_callback(int (*callback)(u32 event), u32 events)
 
 
 
 
 
 
 811{
 812	struct avc_callback_node *c;
 813	int rc = 0;
 814
 815	c = kmalloc(sizeof(*c), GFP_KERNEL);
 816	if (!c) {
 817		rc = -ENOMEM;
 818		goto out;
 819	}
 820
 821	c->callback = callback;
 822	c->events = events;
 
 
 
 823	c->next = avc_callbacks;
 824	avc_callbacks = c;
 825out:
 826	return rc;
 827}
 828
 
 
 
 
 
 829/**
 830 * avc_update_node Update an AVC entry
 831 * @event : Updating event
 832 * @perms : Permission mask bits
 833 * @ssid,@tsid,@tclass : identifier of an AVC entry
 834 * @seqno : sequence number when decision was made
 835 * @xpd: extended_perms_decision to be added to the node
 836 * @flags: the AVC_* flags, e.g. AVC_NONBLOCKING, AVC_EXTENDED_PERMS, or 0.
 837 *
 838 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
 839 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
 840 * otherwise, this function updates the AVC entry. The original AVC-entry object
 841 * will release later by RCU.
 842 */
 843static int avc_update_node(struct selinux_avc *avc,
 844			   u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
 845			   u32 tsid, u16 tclass, u32 seqno,
 846			   struct extended_perms_decision *xpd,
 847			   u32 flags)
 848{
 849	int hvalue, rc = 0;
 850	unsigned long flag;
 851	struct avc_node *pos, *node, *orig = NULL;
 852	struct hlist_head *head;
 
 853	spinlock_t *lock;
 854
 855	/*
 856	 * If we are in a non-blocking code path, e.g. VFS RCU walk,
 857	 * then we must not add permissions to a cache entry
 858	 * because we cannot safely audit the denial.  Otherwise,
 859	 * during the subsequent blocking retry (e.g. VFS ref walk), we
 860	 * will find the permissions already granted in the cache entry
 861	 * and won't audit anything at all, leading to silent denials in
 862	 * permissive mode that only appear when in enforcing mode.
 863	 *
 864	 * See the corresponding handling in slow_avc_audit(), and the
 865	 * logic in selinux_inode_permission for the MAY_NOT_BLOCK flag,
 866	 * which is transliterated into AVC_NONBLOCKING.
 867	 */
 868	if (flags & AVC_NONBLOCKING)
 869		return 0;
 870
 871	node = avc_alloc_node(avc);
 872	if (!node) {
 873		rc = -ENOMEM;
 874		goto out;
 875	}
 876
 877	/* Lock the target slot */
 878	hvalue = avc_hash(ssid, tsid, tclass);
 879
 880	head = &avc->avc_cache.slots[hvalue];
 881	lock = &avc->avc_cache.slots_lock[hvalue];
 882
 883	spin_lock_irqsave(lock, flag);
 884
 885	hlist_for_each_entry(pos, head, list) {
 886		if (ssid == pos->ae.ssid &&
 887		    tsid == pos->ae.tsid &&
 888		    tclass == pos->ae.tclass &&
 889		    seqno == pos->ae.avd.seqno){
 890			orig = pos;
 891			break;
 892		}
 893	}
 894
 895	if (!orig) {
 896		rc = -ENOENT;
 897		avc_node_kill(avc, node);
 898		goto out_unlock;
 899	}
 900
 901	/*
 902	 * Copy and replace original node.
 903	 */
 904
 905	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
 906
 907	if (orig->ae.xp_node) {
 908		rc = avc_xperms_populate(node, orig->ae.xp_node);
 909		if (rc) {
 910			kmem_cache_free(avc_node_cachep, node);
 911			goto out_unlock;
 912		}
 913	}
 914
 915	switch (event) {
 916	case AVC_CALLBACK_GRANT:
 917		node->ae.avd.allowed |= perms;
 918		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
 919			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
 920		break;
 921	case AVC_CALLBACK_TRY_REVOKE:
 922	case AVC_CALLBACK_REVOKE:
 923		node->ae.avd.allowed &= ~perms;
 924		break;
 925	case AVC_CALLBACK_AUDITALLOW_ENABLE:
 926		node->ae.avd.auditallow |= perms;
 927		break;
 928	case AVC_CALLBACK_AUDITALLOW_DISABLE:
 929		node->ae.avd.auditallow &= ~perms;
 930		break;
 931	case AVC_CALLBACK_AUDITDENY_ENABLE:
 932		node->ae.avd.auditdeny |= perms;
 933		break;
 934	case AVC_CALLBACK_AUDITDENY_DISABLE:
 935		node->ae.avd.auditdeny &= ~perms;
 936		break;
 937	case AVC_CALLBACK_ADD_XPERMS:
 938		avc_add_xperms_decision(node, xpd);
 939		break;
 940	}
 941	avc_node_replace(avc, node, orig);
 942out_unlock:
 943	spin_unlock_irqrestore(lock, flag);
 944out:
 945	return rc;
 946}
 947
 948/**
 949 * avc_flush - Flush the cache
 950 */
 951static void avc_flush(struct selinux_avc *avc)
 952{
 953	struct hlist_head *head;
 
 954	struct avc_node *node;
 955	spinlock_t *lock;
 956	unsigned long flag;
 957	int i;
 958
 959	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 960		head = &avc->avc_cache.slots[i];
 961		lock = &avc->avc_cache.slots_lock[i];
 962
 963		spin_lock_irqsave(lock, flag);
 964		/*
 965		 * With preemptable RCU, the outer spinlock does not
 966		 * prevent RCU grace periods from ending.
 967		 */
 968		rcu_read_lock();
 969		hlist_for_each_entry(node, head, list)
 970			avc_node_delete(avc, node);
 971		rcu_read_unlock();
 972		spin_unlock_irqrestore(lock, flag);
 973	}
 974}
 975
 976/**
 977 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
 978 * @seqno: policy sequence number
 979 */
 980int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
 981{
 982	struct avc_callback_node *c;
 983	int rc = 0, tmprc;
 984
 985	avc_flush(avc);
 986
 987	for (c = avc_callbacks; c; c = c->next) {
 988		if (c->events & AVC_CALLBACK_RESET) {
 989			tmprc = c->callback(AVC_CALLBACK_RESET);
 
 990			/* save the first error encountered for the return
 991			   value and continue processing the callbacks */
 992			if (!rc)
 993				rc = tmprc;
 994		}
 995	}
 996
 997	avc_latest_notif_update(avc, seqno, 0);
 998	return rc;
 999}
1000
1001/*
1002 * Slow-path helper function for avc_has_perm_noaudit,
1003 * when the avc_node lookup fails. We get called with
1004 * the RCU read lock held, and need to return with it
1005 * still held, but drop if for the security compute.
1006 *
1007 * Don't inline this, since it's the slow-path and just
1008 * results in a bigger stack frame.
1009 */
1010static noinline
1011struct avc_node *avc_compute_av(struct selinux_state *state,
1012				u32 ssid, u32 tsid,
1013				u16 tclass, struct av_decision *avd,
1014				struct avc_xperms_node *xp_node)
1015{
1016	rcu_read_unlock();
1017	INIT_LIST_HEAD(&xp_node->xpd_head);
1018	security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
1019	rcu_read_lock();
1020	return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
1021}
1022
1023static noinline int avc_denied(struct selinux_state *state,
1024			       u32 ssid, u32 tsid,
1025			       u16 tclass, u32 requested,
1026			       u8 driver, u8 xperm, unsigned int flags,
1027			       struct av_decision *avd)
1028{
1029	if (flags & AVC_STRICT)
1030		return -EACCES;
1031
1032	if (enforcing_enabled(state) &&
1033	    !(avd->flags & AVD_FLAGS_PERMISSIVE))
1034		return -EACCES;
1035
1036	avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
1037			xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1038	return 0;
1039}
1040
1041/*
1042 * The avc extended permissions logic adds an additional 256 bits of
1043 * permissions to an avc node when extended permissions for that node are
1044 * specified in the avtab. If the additional 256 permissions is not adequate,
1045 * as-is the case with ioctls, then multiple may be chained together and the
1046 * driver field is used to specify which set contains the permission.
1047 */
1048int avc_has_extended_perms(struct selinux_state *state,
1049			   u32 ssid, u32 tsid, u16 tclass, u32 requested,
1050			   u8 driver, u8 xperm, struct common_audit_data *ad)
1051{
1052	struct avc_node *node;
1053	struct av_decision avd;
1054	u32 denied;
1055	struct extended_perms_decision local_xpd;
1056	struct extended_perms_decision *xpd = NULL;
1057	struct extended_perms_data allowed;
1058	struct extended_perms_data auditallow;
1059	struct extended_perms_data dontaudit;
1060	struct avc_xperms_node local_xp_node;
1061	struct avc_xperms_node *xp_node;
1062	int rc = 0, rc2;
1063
1064	xp_node = &local_xp_node;
1065	if (WARN_ON(!requested))
1066		return -EACCES;
1067
1068	rcu_read_lock();
1069
1070	node = avc_lookup(state->avc, ssid, tsid, tclass);
1071	if (unlikely(!node)) {
1072		node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
1073	} else {
1074		memcpy(&avd, &node->ae.avd, sizeof(avd));
1075		xp_node = node->ae.xp_node;
1076	}
1077	/* if extended permissions are not defined, only consider av_decision */
1078	if (!xp_node || !xp_node->xp.len)
1079		goto decision;
1080
1081	local_xpd.allowed = &allowed;
1082	local_xpd.auditallow = &auditallow;
1083	local_xpd.dontaudit = &dontaudit;
1084
1085	xpd = avc_xperms_decision_lookup(driver, xp_node);
1086	if (unlikely(!xpd)) {
1087		/*
1088		 * Compute the extended_perms_decision only if the driver
1089		 * is flagged
1090		 */
1091		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1092			avd.allowed &= ~requested;
1093			goto decision;
1094		}
1095		rcu_read_unlock();
1096		security_compute_xperms_decision(state, ssid, tsid, tclass,
1097						 driver, &local_xpd);
1098		rcu_read_lock();
1099		avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
1100				driver, xperm, ssid, tsid, tclass, avd.seqno,
1101				&local_xpd, 0);
1102	} else {
1103		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1104	}
1105	xpd = &local_xpd;
1106
1107	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1108		avd.allowed &= ~requested;
1109
1110decision:
1111	denied = requested & ~(avd.allowed);
1112	if (unlikely(denied))
1113		rc = avc_denied(state, ssid, tsid, tclass, requested,
1114				driver, xperm, AVC_EXTENDED_PERMS, &avd);
1115
1116	rcu_read_unlock();
1117
1118	rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
1119			&avd, xpd, xperm, rc, ad);
1120	if (rc2)
1121		return rc2;
1122	return rc;
1123}
1124
1125/**
1126 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1127 * @ssid: source security identifier
1128 * @tsid: target security identifier
1129 * @tclass: target security class
1130 * @requested: requested permissions, interpreted based on @tclass
1131 * @flags:  AVC_STRICT, AVC_NONBLOCKING, or 0
1132 * @avd: access vector decisions
1133 *
1134 * Check the AVC to determine whether the @requested permissions are granted
1135 * for the SID pair (@ssid, @tsid), interpreting the permissions
1136 * based on @tclass, and call the security server on a cache miss to obtain
1137 * a new decision and add it to the cache.  Return a copy of the decisions
1138 * in @avd.  Return %0 if all @requested permissions are granted,
1139 * -%EACCES if any permissions are denied, or another -errno upon
1140 * other errors.  This function is typically called by avc_has_perm(),
1141 * but may also be called directly to separate permission checking from
1142 * auditing, e.g. in cases where a lock must be held for the check but
1143 * should be released for the auditing.
1144 */
1145inline int avc_has_perm_noaudit(struct selinux_state *state,
1146				u32 ssid, u32 tsid,
1147				u16 tclass, u32 requested,
1148				unsigned int flags,
1149				struct av_decision *avd)
1150{
1151	struct avc_node *node;
1152	struct avc_xperms_node xp_node;
1153	int rc = 0;
1154	u32 denied;
1155
1156	if (WARN_ON(!requested))
1157		return -EACCES;
1158
1159	rcu_read_lock();
1160
1161	node = avc_lookup(state->avc, ssid, tsid, tclass);
1162	if (unlikely(!node))
1163		node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
1164	else
 
 
 
1165		memcpy(avd, &node->ae.avd, sizeof(*avd));
 
 
1166
1167	denied = requested & ~(avd->allowed);
1168	if (unlikely(denied))
1169		rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
1170				flags, avd);
 
 
 
 
 
 
 
1171
1172	rcu_read_unlock();
1173	return rc;
1174}
1175
1176/**
1177 * avc_has_perm - Check permissions and perform any appropriate auditing.
1178 * @ssid: source security identifier
1179 * @tsid: target security identifier
1180 * @tclass: target security class
1181 * @requested: requested permissions, interpreted based on @tclass
1182 * @auditdata: auxiliary audit data
 
1183 *
1184 * Check the AVC to determine whether the @requested permissions are granted
1185 * for the SID pair (@ssid, @tsid), interpreting the permissions
1186 * based on @tclass, and call the security server on a cache miss to obtain
1187 * a new decision and add it to the cache.  Audit the granting or denial of
1188 * permissions in accordance with the policy.  Return %0 if all @requested
1189 * permissions are granted, -%EACCES if any permissions are denied, or
1190 * another -errno upon other errors.
1191 */
1192int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
1193		 u32 requested, struct common_audit_data *auditdata)
 
1194{
1195	struct av_decision avd;
1196	int rc, rc2;
1197
1198	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1199				  &avd);
1200
1201	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1202			auditdata, 0);
1203	if (rc2)
1204		return rc2;
1205	return rc;
1206}
1207
1208u32 avc_policy_seqno(struct selinux_state *state)
1209{
1210	return state->avc->avc_cache.latest_notif;
1211}
1212
1213void avc_disable(void)
1214{
1215	/*
1216	 * If you are looking at this because you have realized that we are
1217	 * not destroying the avc_node_cachep it might be easy to fix, but
1218	 * I don't know the memory barrier semantics well enough to know.  It's
1219	 * possible that some other task dereferenced security_ops when
1220	 * it still pointed to selinux operations.  If that is the case it's
1221	 * possible that it is about to use the avc and is about to need the
1222	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
1223	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
1224	 * the cache and get that memory back.
1225	 */
1226	if (avc_node_cachep) {
1227		avc_flush(selinux_state.avc);
1228		/* kmem_cache_destroy(avc_node_cachep); */
1229	}
1230}
v3.1
 
  1/*
  2 * Implementation of the kernel access vector cache (AVC).
  3 *
  4 * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
  5 *	     James Morris <jmorris@redhat.com>
  6 *
  7 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
  8 *	Replaced the avc_lock spinlock by RCU.
  9 *
 10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 11 *
 12 *	This program is free software; you can redistribute it and/or modify
 13 *	it under the terms of the GNU General Public License version 2,
 14 *	as published by the Free Software Foundation.
 15 */
 16#include <linux/types.h>
 17#include <linux/stddef.h>
 18#include <linux/kernel.h>
 19#include <linux/slab.h>
 20#include <linux/fs.h>
 21#include <linux/dcache.h>
 22#include <linux/init.h>
 23#include <linux/skbuff.h>
 24#include <linux/percpu.h>
 
 25#include <net/sock.h>
 26#include <linux/un.h>
 27#include <net/af_unix.h>
 28#include <linux/ip.h>
 29#include <linux/audit.h>
 30#include <linux/ipv6.h>
 31#include <net/ipv6.h>
 32#include "avc.h"
 33#include "avc_ss.h"
 34#include "classmap.h"
 35
 36#define AVC_CACHE_SLOTS			512
 37#define AVC_DEF_CACHE_THRESHOLD		512
 38#define AVC_CACHE_RECLAIM		16
 39
 40#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
 41#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
 42#else
 43#define avc_cache_stats_incr(field)	do {} while (0)
 44#endif
 45
 46struct avc_entry {
 47	u32			ssid;
 48	u32			tsid;
 49	u16			tclass;
 50	struct av_decision	avd;
 
 51};
 52
 53struct avc_node {
 54	struct avc_entry	ae;
 55	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
 56	struct rcu_head		rhead;
 57};
 58
 
 
 
 
 
 
 
 
 
 
 59struct avc_cache {
 60	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
 61	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
 62	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
 63	atomic_t		active_nodes;
 64	u32			latest_notif;	/* latest revocation notification */
 65};
 66
 67struct avc_callback_node {
 68	int (*callback) (u32 event, u32 ssid, u32 tsid,
 69			 u16 tclass, u32 perms,
 70			 u32 *out_retained);
 71	u32 events;
 72	u32 ssid;
 73	u32 tsid;
 74	u16 tclass;
 75	u32 perms;
 76	struct avc_callback_node *next;
 77};
 78
 79/* Exported via selinufs */
 80unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
 81
 82#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
 83DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
 84#endif
 85
 86static struct avc_cache avc_cache;
 87static struct avc_callback_node *avc_callbacks;
 88static struct kmem_cache *avc_node_cachep;
 
 89
 90static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 91{
 92	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 93}
 94
 95/**
 96 * avc_dump_av - Display an access vector in human-readable form.
 97 * @tclass: target security class
 98 * @av: access vector
 99 */
100static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
101{
102	const char **perms;
103	int i, perm;
104
105	if (av == 0) {
106		audit_log_format(ab, " null");
107		return;
 
108	}
 
 
 
 
109
110	perms = secclass_map[tclass-1].perms;
111
112	audit_log_format(ab, " {");
113	i = 0;
114	perm = 1;
115	while (i < (sizeof(av) * 8)) {
116		if ((perm & av) && perms[i]) {
117			audit_log_format(ab, " %s", perms[i]);
118			av &= ~perm;
119		}
120		i++;
121		perm <<= 1;
122	}
123
124	if (av)
125		audit_log_format(ab, " 0x%x", av);
126
127	audit_log_format(ab, " }");
128}
129
130/**
131 * avc_dump_query - Display a SID pair and a class in human-readable form.
132 * @ssid: source security identifier
133 * @tsid: target security identifier
134 * @tclass: target security class
135 */
136static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
137{
138	int rc;
139	char *scontext;
140	u32 scontext_len;
141
142	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
143	if (rc)
144		audit_log_format(ab, "ssid=%d", ssid);
145	else {
146		audit_log_format(ab, "scontext=%s", scontext);
147		kfree(scontext);
148	}
149
150	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
151	if (rc)
152		audit_log_format(ab, " tsid=%d", tsid);
153	else {
154		audit_log_format(ab, " tcontext=%s", scontext);
155		kfree(scontext);
156	}
157
158	BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
159	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
160}
161
162/**
163 * avc_init - Initialize the AVC.
164 *
165 * Initialize the access vector cache.
166 */
167void __init avc_init(void)
168{
169	int i;
170
171	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
172		INIT_HLIST_HEAD(&avc_cache.slots[i]);
173		spin_lock_init(&avc_cache.slots_lock[i]);
174	}
175	atomic_set(&avc_cache.active_nodes, 0);
176	atomic_set(&avc_cache.lru_hint, 0);
177
178	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
179					     0, SLAB_PANIC, NULL);
180
181	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
 
 
 
 
 
 
 
 
182}
183
184int avc_get_hash_stats(char *page)
185{
186	int i, chain_len, max_chain_len, slots_used;
187	struct avc_node *node;
188	struct hlist_head *head;
189
190	rcu_read_lock();
191
192	slots_used = 0;
193	max_chain_len = 0;
194	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
195		head = &avc_cache.slots[i];
196		if (!hlist_empty(head)) {
197			struct hlist_node *next;
198
199			slots_used++;
200			chain_len = 0;
201			hlist_for_each_entry_rcu(node, next, head, list)
202				chain_len++;
203			if (chain_len > max_chain_len)
204				max_chain_len = chain_len;
205		}
206	}
207
208	rcu_read_unlock();
209
210	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
211			 "longest chain: %d\n",
212			 atomic_read(&avc_cache.active_nodes),
213			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
214}
215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216static void avc_node_free(struct rcu_head *rhead)
217{
218	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 
219	kmem_cache_free(avc_node_cachep, node);
220	avc_cache_stats_incr(frees);
221}
222
223static void avc_node_delete(struct avc_node *node)
224{
225	hlist_del_rcu(&node->list);
226	call_rcu(&node->rhead, avc_node_free);
227	atomic_dec(&avc_cache.active_nodes);
228}
229
230static void avc_node_kill(struct avc_node *node)
231{
 
232	kmem_cache_free(avc_node_cachep, node);
233	avc_cache_stats_incr(frees);
234	atomic_dec(&avc_cache.active_nodes);
235}
236
237static void avc_node_replace(struct avc_node *new, struct avc_node *old)
 
238{
239	hlist_replace_rcu(&old->list, &new->list);
240	call_rcu(&old->rhead, avc_node_free);
241	atomic_dec(&avc_cache.active_nodes);
242}
243
244static inline int avc_reclaim_node(void)
245{
246	struct avc_node *node;
247	int hvalue, try, ecx;
248	unsigned long flags;
249	struct hlist_head *head;
250	struct hlist_node *next;
251	spinlock_t *lock;
252
253	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
254		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
255		head = &avc_cache.slots[hvalue];
256		lock = &avc_cache.slots_lock[hvalue];
 
257
258		if (!spin_trylock_irqsave(lock, flags))
259			continue;
260
261		rcu_read_lock();
262		hlist_for_each_entry(node, next, head, list) {
263			avc_node_delete(node);
264			avc_cache_stats_incr(reclaims);
265			ecx++;
266			if (ecx >= AVC_CACHE_RECLAIM) {
267				rcu_read_unlock();
268				spin_unlock_irqrestore(lock, flags);
269				goto out;
270			}
271		}
272		rcu_read_unlock();
273		spin_unlock_irqrestore(lock, flags);
274	}
275out:
276	return ecx;
277}
278
279static struct avc_node *avc_alloc_node(void)
280{
281	struct avc_node *node;
282
283	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
284	if (!node)
285		goto out;
286
287	INIT_HLIST_NODE(&node->list);
288	avc_cache_stats_incr(allocations);
289
290	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
291		avc_reclaim_node();
 
292
293out:
294	return node;
295}
296
297static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
298{
299	node->ae.ssid = ssid;
300	node->ae.tsid = tsid;
301	node->ae.tclass = tclass;
302	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
303}
304
305static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
 
306{
307	struct avc_node *node, *ret = NULL;
308	int hvalue;
309	struct hlist_head *head;
310	struct hlist_node *next;
311
312	hvalue = avc_hash(ssid, tsid, tclass);
313	head = &avc_cache.slots[hvalue];
314	hlist_for_each_entry_rcu(node, next, head, list) {
315		if (ssid == node->ae.ssid &&
316		    tclass == node->ae.tclass &&
317		    tsid == node->ae.tsid) {
318			ret = node;
319			break;
320		}
321	}
322
323	return ret;
324}
325
326/**
327 * avc_lookup - Look up an AVC entry.
328 * @ssid: source security identifier
329 * @tsid: target security identifier
330 * @tclass: target security class
331 *
332 * Look up an AVC entry that is valid for the
333 * (@ssid, @tsid), interpreting the permissions
334 * based on @tclass.  If a valid AVC entry exists,
335 * then this function returns the avc_node.
336 * Otherwise, this function returns NULL.
337 */
338static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
 
339{
340	struct avc_node *node;
341
342	avc_cache_stats_incr(lookups);
343	node = avc_search_node(ssid, tsid, tclass);
344
345	if (node)
346		return node;
347
348	avc_cache_stats_incr(misses);
349	return NULL;
350}
351
352static int avc_latest_notif_update(int seqno, int is_insert)
 
353{
354	int ret = 0;
355	static DEFINE_SPINLOCK(notif_lock);
356	unsigned long flag;
357
358	spin_lock_irqsave(&notif_lock, flag);
359	if (is_insert) {
360		if (seqno < avc_cache.latest_notif) {
361			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
362			       seqno, avc_cache.latest_notif);
363			ret = -EAGAIN;
364		}
365	} else {
366		if (seqno > avc_cache.latest_notif)
367			avc_cache.latest_notif = seqno;
368	}
369	spin_unlock_irqrestore(&notif_lock, flag);
370
371	return ret;
372}
373
374/**
375 * avc_insert - Insert an AVC entry.
376 * @ssid: source security identifier
377 * @tsid: target security identifier
378 * @tclass: target security class
379 * @avd: resulting av decision
 
380 *
381 * Insert an AVC entry for the SID pair
382 * (@ssid, @tsid) and class @tclass.
383 * The access vectors and the sequence number are
384 * normally provided by the security server in
385 * response to a security_compute_av() call.  If the
386 * sequence number @avd->seqno is not less than the latest
387 * revocation notification, then the function copies
388 * the access vectors into a cache entry, returns
389 * avc_node inserted. Otherwise, this function returns NULL.
390 */
391static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 
 
 
392{
393	struct avc_node *pos, *node = NULL;
394	int hvalue;
395	unsigned long flag;
396
397	if (avc_latest_notif_update(avd->seqno, 1))
398		goto out;
399
400	node = avc_alloc_node();
401	if (node) {
402		struct hlist_head *head;
403		struct hlist_node *next;
404		spinlock_t *lock;
 
405
406		hvalue = avc_hash(ssid, tsid, tclass);
407		avc_node_populate(node, ssid, tsid, tclass, avd);
408
409		head = &avc_cache.slots[hvalue];
410		lock = &avc_cache.slots_lock[hvalue];
 
 
 
 
411
412		spin_lock_irqsave(lock, flag);
413		hlist_for_each_entry(pos, next, head, list) {
414			if (pos->ae.ssid == ssid &&
415			    pos->ae.tsid == tsid &&
416			    pos->ae.tclass == tclass) {
417				avc_node_replace(node, pos);
418				goto found;
419			}
420		}
421		hlist_add_head_rcu(&node->list, head);
422found:
423		spin_unlock_irqrestore(lock, flag);
424	}
425out:
426	return node;
427}
428
429/**
430 * avc_audit_pre_callback - SELinux specific information
431 * will be called by generic audit code
432 * @ab: the audit buffer
433 * @a: audit_data
434 */
435static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
436{
437	struct common_audit_data *ad = a;
438	audit_log_format(ab, "avc:  %s ",
439			 ad->selinux_audit_data.denied ? "denied" : "granted");
440	avc_dump_av(ab, ad->selinux_audit_data.tclass,
441			ad->selinux_audit_data.audited);
442	audit_log_format(ab, " for ");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443}
444
445/**
446 * avc_audit_post_callback - SELinux specific information
447 * will be called by generic audit code
448 * @ab: the audit buffer
449 * @a: audit_data
450 */
451static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
452{
453	struct common_audit_data *ad = a;
454	audit_log_format(ab, " ");
455	avc_dump_query(ab, ad->selinux_audit_data.ssid,
456			   ad->selinux_audit_data.tsid,
457			   ad->selinux_audit_data.tclass);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
458}
459
460/**
461 * avc_audit - Audit the granting or denial of permissions.
462 * @ssid: source security identifier
463 * @tsid: target security identifier
464 * @tclass: target security class
465 * @requested: requested permissions
466 * @avd: access vector decisions
467 * @result: result from avc_has_perm_noaudit
468 * @a:  auxiliary audit data
469 * @flags: VFS walk flags
470 *
471 * Audit the granting or denial of permissions in accordance
472 * with the policy.  This function is typically called by
473 * avc_has_perm() after a permission check, but can also be
474 * called directly by callers who use avc_has_perm_noaudit()
475 * in order to separate the permission check from the auditing.
476 * For example, this separation is useful when the permission check must
477 * be performed under a lock, to allow the lock to be released
478 * before calling the auditing code.
479 */
480int avc_audit(u32 ssid, u32 tsid,
481	       u16 tclass, u32 requested,
482	       struct av_decision *avd, int result, struct common_audit_data *a,
483	       unsigned flags)
484{
485	struct common_audit_data stack_data;
486	u32 denied, audited;
487	denied = requested & ~avd->allowed;
488	if (denied) {
489		audited = denied & avd->auditdeny;
490		/*
491		 * a->selinux_audit_data.auditdeny is TRICKY!  Setting a bit in
492		 * this field means that ANY denials should NOT be audited if
493		 * the policy contains an explicit dontaudit rule for that
494		 * permission.  Take notice that this is unrelated to the
495		 * actual permissions that were denied.  As an example lets
496		 * assume:
497		 *
498		 * denied == READ
499		 * avd.auditdeny & ACCESS == 0 (not set means explicit rule)
500		 * selinux_audit_data.auditdeny & ACCESS == 1
501		 *
502		 * We will NOT audit the denial even though the denied
503		 * permission was READ and the auditdeny checks were for
504		 * ACCESS
505		 */
506		if (a &&
507		    a->selinux_audit_data.auditdeny &&
508		    !(a->selinux_audit_data.auditdeny & avd->auditdeny))
509			audited = 0;
510	} else if (result)
511		audited = denied = requested;
512	else
513		audited = requested & avd->auditallow;
514	if (!audited)
515		return 0;
516
517	if (!a) {
518		a = &stack_data;
519		COMMON_AUDIT_DATA_INIT(a, NONE);
520	}
521
522	/*
523	 * When in a RCU walk do the audit on the RCU retry.  This is because
524	 * the collection of the dname in an inode audit message is not RCU
525	 * safe.  Note this may drop some audits when the situation changes
526	 * during retry. However this is logically just as if the operation
527	 * happened a little later.
528	 */
529	if ((a->type == LSM_AUDIT_DATA_INODE) &&
530	    (flags & MAY_NOT_BLOCK))
531		return -ECHILD;
532
533	a->selinux_audit_data.tclass = tclass;
534	a->selinux_audit_data.requested = requested;
535	a->selinux_audit_data.ssid = ssid;
536	a->selinux_audit_data.tsid = tsid;
537	a->selinux_audit_data.audited = audited;
538	a->selinux_audit_data.denied = denied;
539	a->lsm_pre_audit = avc_audit_pre_callback;
540	a->lsm_post_audit = avc_audit_post_callback;
541	common_lsm_audit(a);
 
 
 
542	return 0;
543}
544
545/**
546 * avc_add_callback - Register a callback for security events.
547 * @callback: callback function
548 * @events: security events
549 * @ssid: source security identifier or %SECSID_WILD
550 * @tsid: target security identifier or %SECSID_WILD
551 * @tclass: target security class
552 * @perms: permissions
553 *
554 * Register a callback function for events in the set @events
555 * related to the SID pair (@ssid, @tsid) 
556 * and the permissions @perms, interpreting
557 * @perms based on @tclass.  Returns %0 on success or
558 * -%ENOMEM if insufficient memory exists to add the callback.
559 */
560int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
561				     u16 tclass, u32 perms,
562				     u32 *out_retained),
563		     u32 events, u32 ssid, u32 tsid,
564		     u16 tclass, u32 perms)
565{
566	struct avc_callback_node *c;
567	int rc = 0;
568
569	c = kmalloc(sizeof(*c), GFP_ATOMIC);
570	if (!c) {
571		rc = -ENOMEM;
572		goto out;
573	}
574
575	c->callback = callback;
576	c->events = events;
577	c->ssid = ssid;
578	c->tsid = tsid;
579	c->perms = perms;
580	c->next = avc_callbacks;
581	avc_callbacks = c;
582out:
583	return rc;
584}
585
586static inline int avc_sidcmp(u32 x, u32 y)
587{
588	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
589}
590
591/**
592 * avc_update_node Update an AVC entry
593 * @event : Updating event
594 * @perms : Permission mask bits
595 * @ssid,@tsid,@tclass : identifier of an AVC entry
596 * @seqno : sequence number when decision was made
 
 
597 *
598 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
599 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
600 * otherwise, this function updates the AVC entry. The original AVC-entry object
601 * will release later by RCU.
602 */
603static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
604			   u32 seqno)
 
 
 
605{
606	int hvalue, rc = 0;
607	unsigned long flag;
608	struct avc_node *pos, *node, *orig = NULL;
609	struct hlist_head *head;
610	struct hlist_node *next;
611	spinlock_t *lock;
612
613	node = avc_alloc_node();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
614	if (!node) {
615		rc = -ENOMEM;
616		goto out;
617	}
618
619	/* Lock the target slot */
620	hvalue = avc_hash(ssid, tsid, tclass);
621
622	head = &avc_cache.slots[hvalue];
623	lock = &avc_cache.slots_lock[hvalue];
624
625	spin_lock_irqsave(lock, flag);
626
627	hlist_for_each_entry(pos, next, head, list) {
628		if (ssid == pos->ae.ssid &&
629		    tsid == pos->ae.tsid &&
630		    tclass == pos->ae.tclass &&
631		    seqno == pos->ae.avd.seqno){
632			orig = pos;
633			break;
634		}
635	}
636
637	if (!orig) {
638		rc = -ENOENT;
639		avc_node_kill(node);
640		goto out_unlock;
641	}
642
643	/*
644	 * Copy and replace original node.
645	 */
646
647	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
648
 
 
 
 
 
 
 
 
649	switch (event) {
650	case AVC_CALLBACK_GRANT:
651		node->ae.avd.allowed |= perms;
 
 
652		break;
653	case AVC_CALLBACK_TRY_REVOKE:
654	case AVC_CALLBACK_REVOKE:
655		node->ae.avd.allowed &= ~perms;
656		break;
657	case AVC_CALLBACK_AUDITALLOW_ENABLE:
658		node->ae.avd.auditallow |= perms;
659		break;
660	case AVC_CALLBACK_AUDITALLOW_DISABLE:
661		node->ae.avd.auditallow &= ~perms;
662		break;
663	case AVC_CALLBACK_AUDITDENY_ENABLE:
664		node->ae.avd.auditdeny |= perms;
665		break;
666	case AVC_CALLBACK_AUDITDENY_DISABLE:
667		node->ae.avd.auditdeny &= ~perms;
668		break;
 
 
 
669	}
670	avc_node_replace(node, orig);
671out_unlock:
672	spin_unlock_irqrestore(lock, flag);
673out:
674	return rc;
675}
676
677/**
678 * avc_flush - Flush the cache
679 */
680static void avc_flush(void)
681{
682	struct hlist_head *head;
683	struct hlist_node *next;
684	struct avc_node *node;
685	spinlock_t *lock;
686	unsigned long flag;
687	int i;
688
689	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
690		head = &avc_cache.slots[i];
691		lock = &avc_cache.slots_lock[i];
692
693		spin_lock_irqsave(lock, flag);
694		/*
695		 * With preemptable RCU, the outer spinlock does not
696		 * prevent RCU grace periods from ending.
697		 */
698		rcu_read_lock();
699		hlist_for_each_entry(node, next, head, list)
700			avc_node_delete(node);
701		rcu_read_unlock();
702		spin_unlock_irqrestore(lock, flag);
703	}
704}
705
706/**
707 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
708 * @seqno: policy sequence number
709 */
710int avc_ss_reset(u32 seqno)
711{
712	struct avc_callback_node *c;
713	int rc = 0, tmprc;
714
715	avc_flush();
716
717	for (c = avc_callbacks; c; c = c->next) {
718		if (c->events & AVC_CALLBACK_RESET) {
719			tmprc = c->callback(AVC_CALLBACK_RESET,
720					    0, 0, 0, 0, NULL);
721			/* save the first error encountered for the return
722			   value and continue processing the callbacks */
723			if (!rc)
724				rc = tmprc;
725		}
726	}
727
728	avc_latest_notif_update(seqno, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729	return rc;
730}
731
732/**
733 * avc_has_perm_noaudit - Check permissions but perform no auditing.
734 * @ssid: source security identifier
735 * @tsid: target security identifier
736 * @tclass: target security class
737 * @requested: requested permissions, interpreted based on @tclass
738 * @flags:  AVC_STRICT or 0
739 * @avd: access vector decisions
740 *
741 * Check the AVC to determine whether the @requested permissions are granted
742 * for the SID pair (@ssid, @tsid), interpreting the permissions
743 * based on @tclass, and call the security server on a cache miss to obtain
744 * a new decision and add it to the cache.  Return a copy of the decisions
745 * in @avd.  Return %0 if all @requested permissions are granted,
746 * -%EACCES if any permissions are denied, or another -errno upon
747 * other errors.  This function is typically called by avc_has_perm(),
748 * but may also be called directly to separate permission checking from
749 * auditing, e.g. in cases where a lock must be held for the check but
750 * should be released for the auditing.
751 */
752int avc_has_perm_noaudit(u32 ssid, u32 tsid,
753			 u16 tclass, u32 requested,
754			 unsigned flags,
755			 struct av_decision *avd)
 
756{
757	struct avc_node *node;
 
758	int rc = 0;
759	u32 denied;
760
761	BUG_ON(!requested);
 
762
763	rcu_read_lock();
764
765	node = avc_lookup(ssid, tsid, tclass);
766	if (unlikely(!node)) {
767		rcu_read_unlock();
768		security_compute_av(ssid, tsid, tclass, avd);
769		rcu_read_lock();
770		node = avc_insert(ssid, tsid, tclass, avd);
771	} else {
772		memcpy(avd, &node->ae.avd, sizeof(*avd));
773		avd = &node->ae.avd;
774	}
775
776	denied = requested & ~(avd->allowed);
777
778	if (denied) {
779		if (flags & AVC_STRICT)
780			rc = -EACCES;
781		else if (!selinux_enforcing || (avd->flags & AVD_FLAGS_PERMISSIVE))
782			avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
783					tsid, tclass, avd->seqno);
784		else
785			rc = -EACCES;
786	}
787
788	rcu_read_unlock();
789	return rc;
790}
791
792/**
793 * avc_has_perm - Check permissions and perform any appropriate auditing.
794 * @ssid: source security identifier
795 * @tsid: target security identifier
796 * @tclass: target security class
797 * @requested: requested permissions, interpreted based on @tclass
798 * @auditdata: auxiliary audit data
799 * @flags: VFS walk flags
800 *
801 * Check the AVC to determine whether the @requested permissions are granted
802 * for the SID pair (@ssid, @tsid), interpreting the permissions
803 * based on @tclass, and call the security server on a cache miss to obtain
804 * a new decision and add it to the cache.  Audit the granting or denial of
805 * permissions in accordance with the policy.  Return %0 if all @requested
806 * permissions are granted, -%EACCES if any permissions are denied, or
807 * another -errno upon other errors.
808 */
809int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
810		       u32 requested, struct common_audit_data *auditdata,
811		       unsigned flags)
812{
813	struct av_decision avd;
814	int rc, rc2;
815
816	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
 
817
818	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata,
819			flags);
820	if (rc2)
821		return rc2;
822	return rc;
823}
824
825u32 avc_policy_seqno(void)
826{
827	return avc_cache.latest_notif;
828}
829
830void avc_disable(void)
831{
832	/*
833	 * If you are looking at this because you have realized that we are
834	 * not destroying the avc_node_cachep it might be easy to fix, but
835	 * I don't know the memory barrier semantics well enough to know.  It's
836	 * possible that some other task dereferenced security_ops when
837	 * it still pointed to selinux operations.  If that is the case it's
838	 * possible that it is about to use the avc and is about to need the
839	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
840	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
841	 * the cache and get that memory back.
842	 */
843	if (avc_node_cachep) {
844		avc_flush();
845		/* kmem_cache_destroy(avc_node_cachep); */
846	}
847}