Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Implementation of the kernel access vector cache (AVC).
4 *
5 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
6 * James Morris <jmorris@redhat.com>
7 *
8 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
9 * Replaced the avc_lock spinlock by RCU.
10 *
11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
12 */
13#include <linux/types.h>
14#include <linux/stddef.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/fs.h>
18#include <linux/dcache.h>
19#include <linux/init.h>
20#include <linux/skbuff.h>
21#include <linux/percpu.h>
22#include <linux/list.h>
23#include <net/sock.h>
24#include <linux/un.h>
25#include <net/af_unix.h>
26#include <linux/ip.h>
27#include <linux/audit.h>
28#include <linux/ipv6.h>
29#include <net/ipv6.h>
30#include "avc.h"
31#include "avc_ss.h"
32#include "classmap.h"
33
34#define AVC_CACHE_SLOTS 512
35#define AVC_DEF_CACHE_THRESHOLD 512
36#define AVC_CACHE_RECLAIM 16
37
38#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
39#define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field)
40#else
41#define avc_cache_stats_incr(field) do {} while (0)
42#endif
43
44struct avc_entry {
45 u32 ssid;
46 u32 tsid;
47 u16 tclass;
48 struct av_decision avd;
49 struct avc_xperms_node *xp_node;
50};
51
52struct avc_node {
53 struct avc_entry ae;
54 struct hlist_node list; /* anchored in avc_cache->slots[i] */
55 struct rcu_head rhead;
56};
57
58struct avc_xperms_decision_node {
59 struct extended_perms_decision xpd;
60 struct list_head xpd_list; /* list of extended_perms_decision */
61};
62
63struct avc_xperms_node {
64 struct extended_perms xp;
65 struct list_head xpd_head; /* list head of extended_perms_decision */
66};
67
68struct avc_cache {
69 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
70 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
71 atomic_t lru_hint; /* LRU hint for reclaim scan */
72 atomic_t active_nodes;
73 u32 latest_notif; /* latest revocation notification */
74};
75
76struct avc_callback_node {
77 int (*callback) (u32 event);
78 u32 events;
79 struct avc_callback_node *next;
80};
81
82#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
83DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
84#endif
85
86struct selinux_avc {
87 unsigned int avc_cache_threshold;
88 struct avc_cache avc_cache;
89};
90
91static struct selinux_avc selinux_avc;
92
93void selinux_avc_init(struct selinux_avc **avc)
94{
95 int i;
96
97 selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
98 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
99 INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
100 spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
101 }
102 atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
103 atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
104 *avc = &selinux_avc;
105}
106
107unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
108{
109 return avc->avc_cache_threshold;
110}
111
112void avc_set_cache_threshold(struct selinux_avc *avc,
113 unsigned int cache_threshold)
114{
115 avc->avc_cache_threshold = cache_threshold;
116}
117
118static struct avc_callback_node *avc_callbacks;
119static struct kmem_cache *avc_node_cachep;
120static struct kmem_cache *avc_xperms_data_cachep;
121static struct kmem_cache *avc_xperms_decision_cachep;
122static struct kmem_cache *avc_xperms_cachep;
123
124static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
125{
126 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
127}
128
129/**
130 * avc_init - Initialize the AVC.
131 *
132 * Initialize the access vector cache.
133 */
134void __init avc_init(void)
135{
136 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
137 0, SLAB_PANIC, NULL);
138 avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
139 sizeof(struct avc_xperms_node),
140 0, SLAB_PANIC, NULL);
141 avc_xperms_decision_cachep = kmem_cache_create(
142 "avc_xperms_decision_node",
143 sizeof(struct avc_xperms_decision_node),
144 0, SLAB_PANIC, NULL);
145 avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
146 sizeof(struct extended_perms_data),
147 0, SLAB_PANIC, NULL);
148}
149
150int avc_get_hash_stats(struct selinux_avc *avc, char *page)
151{
152 int i, chain_len, max_chain_len, slots_used;
153 struct avc_node *node;
154 struct hlist_head *head;
155
156 rcu_read_lock();
157
158 slots_used = 0;
159 max_chain_len = 0;
160 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
161 head = &avc->avc_cache.slots[i];
162 if (!hlist_empty(head)) {
163 slots_used++;
164 chain_len = 0;
165 hlist_for_each_entry_rcu(node, head, list)
166 chain_len++;
167 if (chain_len > max_chain_len)
168 max_chain_len = chain_len;
169 }
170 }
171
172 rcu_read_unlock();
173
174 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
175 "longest chain: %d\n",
176 atomic_read(&avc->avc_cache.active_nodes),
177 slots_used, AVC_CACHE_SLOTS, max_chain_len);
178}
179
180/*
181 * using a linked list for extended_perms_decision lookup because the list is
182 * always small. i.e. less than 5, typically 1
183 */
184static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
185 struct avc_xperms_node *xp_node)
186{
187 struct avc_xperms_decision_node *xpd_node;
188
189 list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
190 if (xpd_node->xpd.driver == driver)
191 return &xpd_node->xpd;
192 }
193 return NULL;
194}
195
196static inline unsigned int
197avc_xperms_has_perm(struct extended_perms_decision *xpd,
198 u8 perm, u8 which)
199{
200 unsigned int rc = 0;
201
202 if ((which == XPERMS_ALLOWED) &&
203 (xpd->used & XPERMS_ALLOWED))
204 rc = security_xperm_test(xpd->allowed->p, perm);
205 else if ((which == XPERMS_AUDITALLOW) &&
206 (xpd->used & XPERMS_AUDITALLOW))
207 rc = security_xperm_test(xpd->auditallow->p, perm);
208 else if ((which == XPERMS_DONTAUDIT) &&
209 (xpd->used & XPERMS_DONTAUDIT))
210 rc = security_xperm_test(xpd->dontaudit->p, perm);
211 return rc;
212}
213
214static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
215 u8 driver, u8 perm)
216{
217 struct extended_perms_decision *xpd;
218 security_xperm_set(xp_node->xp.drivers.p, driver);
219 xpd = avc_xperms_decision_lookup(driver, xp_node);
220 if (xpd && xpd->allowed)
221 security_xperm_set(xpd->allowed->p, perm);
222}
223
224static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
225{
226 struct extended_perms_decision *xpd;
227
228 xpd = &xpd_node->xpd;
229 if (xpd->allowed)
230 kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
231 if (xpd->auditallow)
232 kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
233 if (xpd->dontaudit)
234 kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
235 kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
236}
237
238static void avc_xperms_free(struct avc_xperms_node *xp_node)
239{
240 struct avc_xperms_decision_node *xpd_node, *tmp;
241
242 if (!xp_node)
243 return;
244
245 list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
246 list_del(&xpd_node->xpd_list);
247 avc_xperms_decision_free(xpd_node);
248 }
249 kmem_cache_free(avc_xperms_cachep, xp_node);
250}
251
252static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
253 struct extended_perms_decision *src)
254{
255 dest->driver = src->driver;
256 dest->used = src->used;
257 if (dest->used & XPERMS_ALLOWED)
258 memcpy(dest->allowed->p, src->allowed->p,
259 sizeof(src->allowed->p));
260 if (dest->used & XPERMS_AUDITALLOW)
261 memcpy(dest->auditallow->p, src->auditallow->p,
262 sizeof(src->auditallow->p));
263 if (dest->used & XPERMS_DONTAUDIT)
264 memcpy(dest->dontaudit->p, src->dontaudit->p,
265 sizeof(src->dontaudit->p));
266}
267
268/*
269 * similar to avc_copy_xperms_decision, but only copy decision
270 * information relevant to this perm
271 */
272static inline void avc_quick_copy_xperms_decision(u8 perm,
273 struct extended_perms_decision *dest,
274 struct extended_perms_decision *src)
275{
276 /*
277 * compute index of the u32 of the 256 bits (8 u32s) that contain this
278 * command permission
279 */
280 u8 i = perm >> 5;
281
282 dest->used = src->used;
283 if (dest->used & XPERMS_ALLOWED)
284 dest->allowed->p[i] = src->allowed->p[i];
285 if (dest->used & XPERMS_AUDITALLOW)
286 dest->auditallow->p[i] = src->auditallow->p[i];
287 if (dest->used & XPERMS_DONTAUDIT)
288 dest->dontaudit->p[i] = src->dontaudit->p[i];
289}
290
291static struct avc_xperms_decision_node
292 *avc_xperms_decision_alloc(u8 which)
293{
294 struct avc_xperms_decision_node *xpd_node;
295 struct extended_perms_decision *xpd;
296
297 xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT);
298 if (!xpd_node)
299 return NULL;
300
301 xpd = &xpd_node->xpd;
302 if (which & XPERMS_ALLOWED) {
303 xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
304 GFP_NOWAIT);
305 if (!xpd->allowed)
306 goto error;
307 }
308 if (which & XPERMS_AUDITALLOW) {
309 xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
310 GFP_NOWAIT);
311 if (!xpd->auditallow)
312 goto error;
313 }
314 if (which & XPERMS_DONTAUDIT) {
315 xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
316 GFP_NOWAIT);
317 if (!xpd->dontaudit)
318 goto error;
319 }
320 return xpd_node;
321error:
322 avc_xperms_decision_free(xpd_node);
323 return NULL;
324}
325
326static int avc_add_xperms_decision(struct avc_node *node,
327 struct extended_perms_decision *src)
328{
329 struct avc_xperms_decision_node *dest_xpd;
330
331 node->ae.xp_node->xp.len++;
332 dest_xpd = avc_xperms_decision_alloc(src->used);
333 if (!dest_xpd)
334 return -ENOMEM;
335 avc_copy_xperms_decision(&dest_xpd->xpd, src);
336 list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
337 return 0;
338}
339
340static struct avc_xperms_node *avc_xperms_alloc(void)
341{
342 struct avc_xperms_node *xp_node;
343
344 xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT);
345 if (!xp_node)
346 return xp_node;
347 INIT_LIST_HEAD(&xp_node->xpd_head);
348 return xp_node;
349}
350
351static int avc_xperms_populate(struct avc_node *node,
352 struct avc_xperms_node *src)
353{
354 struct avc_xperms_node *dest;
355 struct avc_xperms_decision_node *dest_xpd;
356 struct avc_xperms_decision_node *src_xpd;
357
358 if (src->xp.len == 0)
359 return 0;
360 dest = avc_xperms_alloc();
361 if (!dest)
362 return -ENOMEM;
363
364 memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
365 dest->xp.len = src->xp.len;
366
367 /* for each source xpd allocate a destination xpd and copy */
368 list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
369 dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
370 if (!dest_xpd)
371 goto error;
372 avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
373 list_add(&dest_xpd->xpd_list, &dest->xpd_head);
374 }
375 node->ae.xp_node = dest;
376 return 0;
377error:
378 avc_xperms_free(dest);
379 return -ENOMEM;
380
381}
382
383static inline u32 avc_xperms_audit_required(u32 requested,
384 struct av_decision *avd,
385 struct extended_perms_decision *xpd,
386 u8 perm,
387 int result,
388 u32 *deniedp)
389{
390 u32 denied, audited;
391
392 denied = requested & ~avd->allowed;
393 if (unlikely(denied)) {
394 audited = denied & avd->auditdeny;
395 if (audited && xpd) {
396 if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
397 audited &= ~requested;
398 }
399 } else if (result) {
400 audited = denied = requested;
401 } else {
402 audited = requested & avd->auditallow;
403 if (audited && xpd) {
404 if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
405 audited &= ~requested;
406 }
407 }
408
409 *deniedp = denied;
410 return audited;
411}
412
413static inline int avc_xperms_audit(struct selinux_state *state,
414 u32 ssid, u32 tsid, u16 tclass,
415 u32 requested, struct av_decision *avd,
416 struct extended_perms_decision *xpd,
417 u8 perm, int result,
418 struct common_audit_data *ad)
419{
420 u32 audited, denied;
421
422 audited = avc_xperms_audit_required(
423 requested, avd, xpd, perm, result, &denied);
424 if (likely(!audited))
425 return 0;
426 return slow_avc_audit(state, ssid, tsid, tclass, requested,
427 audited, denied, result, ad, 0);
428}
429
430static void avc_node_free(struct rcu_head *rhead)
431{
432 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
433 avc_xperms_free(node->ae.xp_node);
434 kmem_cache_free(avc_node_cachep, node);
435 avc_cache_stats_incr(frees);
436}
437
438static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
439{
440 hlist_del_rcu(&node->list);
441 call_rcu(&node->rhead, avc_node_free);
442 atomic_dec(&avc->avc_cache.active_nodes);
443}
444
445static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
446{
447 avc_xperms_free(node->ae.xp_node);
448 kmem_cache_free(avc_node_cachep, node);
449 avc_cache_stats_incr(frees);
450 atomic_dec(&avc->avc_cache.active_nodes);
451}
452
453static void avc_node_replace(struct selinux_avc *avc,
454 struct avc_node *new, struct avc_node *old)
455{
456 hlist_replace_rcu(&old->list, &new->list);
457 call_rcu(&old->rhead, avc_node_free);
458 atomic_dec(&avc->avc_cache.active_nodes);
459}
460
461static inline int avc_reclaim_node(struct selinux_avc *avc)
462{
463 struct avc_node *node;
464 int hvalue, try, ecx;
465 unsigned long flags;
466 struct hlist_head *head;
467 spinlock_t *lock;
468
469 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
470 hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
471 (AVC_CACHE_SLOTS - 1);
472 head = &avc->avc_cache.slots[hvalue];
473 lock = &avc->avc_cache.slots_lock[hvalue];
474
475 if (!spin_trylock_irqsave(lock, flags))
476 continue;
477
478 rcu_read_lock();
479 hlist_for_each_entry(node, head, list) {
480 avc_node_delete(avc, node);
481 avc_cache_stats_incr(reclaims);
482 ecx++;
483 if (ecx >= AVC_CACHE_RECLAIM) {
484 rcu_read_unlock();
485 spin_unlock_irqrestore(lock, flags);
486 goto out;
487 }
488 }
489 rcu_read_unlock();
490 spin_unlock_irqrestore(lock, flags);
491 }
492out:
493 return ecx;
494}
495
496static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
497{
498 struct avc_node *node;
499
500 node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT);
501 if (!node)
502 goto out;
503
504 INIT_HLIST_NODE(&node->list);
505 avc_cache_stats_incr(allocations);
506
507 if (atomic_inc_return(&avc->avc_cache.active_nodes) >
508 avc->avc_cache_threshold)
509 avc_reclaim_node(avc);
510
511out:
512 return node;
513}
514
515static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
516{
517 node->ae.ssid = ssid;
518 node->ae.tsid = tsid;
519 node->ae.tclass = tclass;
520 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
521}
522
523static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
524 u32 ssid, u32 tsid, u16 tclass)
525{
526 struct avc_node *node, *ret = NULL;
527 int hvalue;
528 struct hlist_head *head;
529
530 hvalue = avc_hash(ssid, tsid, tclass);
531 head = &avc->avc_cache.slots[hvalue];
532 hlist_for_each_entry_rcu(node, head, list) {
533 if (ssid == node->ae.ssid &&
534 tclass == node->ae.tclass &&
535 tsid == node->ae.tsid) {
536 ret = node;
537 break;
538 }
539 }
540
541 return ret;
542}
543
544/**
545 * avc_lookup - Look up an AVC entry.
546 * @ssid: source security identifier
547 * @tsid: target security identifier
548 * @tclass: target security class
549 *
550 * Look up an AVC entry that is valid for the
551 * (@ssid, @tsid), interpreting the permissions
552 * based on @tclass. If a valid AVC entry exists,
553 * then this function returns the avc_node.
554 * Otherwise, this function returns NULL.
555 */
556static struct avc_node *avc_lookup(struct selinux_avc *avc,
557 u32 ssid, u32 tsid, u16 tclass)
558{
559 struct avc_node *node;
560
561 avc_cache_stats_incr(lookups);
562 node = avc_search_node(avc, ssid, tsid, tclass);
563
564 if (node)
565 return node;
566
567 avc_cache_stats_incr(misses);
568 return NULL;
569}
570
571static int avc_latest_notif_update(struct selinux_avc *avc,
572 int seqno, int is_insert)
573{
574 int ret = 0;
575 static DEFINE_SPINLOCK(notif_lock);
576 unsigned long flag;
577
578 spin_lock_irqsave(¬if_lock, flag);
579 if (is_insert) {
580 if (seqno < avc->avc_cache.latest_notif) {
581 pr_warn("SELinux: avc: seqno %d < latest_notif %d\n",
582 seqno, avc->avc_cache.latest_notif);
583 ret = -EAGAIN;
584 }
585 } else {
586 if (seqno > avc->avc_cache.latest_notif)
587 avc->avc_cache.latest_notif = seqno;
588 }
589 spin_unlock_irqrestore(¬if_lock, flag);
590
591 return ret;
592}
593
594/**
595 * avc_insert - Insert an AVC entry.
596 * @ssid: source security identifier
597 * @tsid: target security identifier
598 * @tclass: target security class
599 * @avd: resulting av decision
600 * @xp_node: resulting extended permissions
601 *
602 * Insert an AVC entry for the SID pair
603 * (@ssid, @tsid) and class @tclass.
604 * The access vectors and the sequence number are
605 * normally provided by the security server in
606 * response to a security_compute_av() call. If the
607 * sequence number @avd->seqno is not less than the latest
608 * revocation notification, then the function copies
609 * the access vectors into a cache entry, returns
610 * avc_node inserted. Otherwise, this function returns NULL.
611 */
612static struct avc_node *avc_insert(struct selinux_avc *avc,
613 u32 ssid, u32 tsid, u16 tclass,
614 struct av_decision *avd,
615 struct avc_xperms_node *xp_node)
616{
617 struct avc_node *pos, *node = NULL;
618 int hvalue;
619 unsigned long flag;
620
621 if (avc_latest_notif_update(avc, avd->seqno, 1))
622 goto out;
623
624 node = avc_alloc_node(avc);
625 if (node) {
626 struct hlist_head *head;
627 spinlock_t *lock;
628 int rc = 0;
629
630 hvalue = avc_hash(ssid, tsid, tclass);
631 avc_node_populate(node, ssid, tsid, tclass, avd);
632 rc = avc_xperms_populate(node, xp_node);
633 if (rc) {
634 kmem_cache_free(avc_node_cachep, node);
635 return NULL;
636 }
637 head = &avc->avc_cache.slots[hvalue];
638 lock = &avc->avc_cache.slots_lock[hvalue];
639
640 spin_lock_irqsave(lock, flag);
641 hlist_for_each_entry(pos, head, list) {
642 if (pos->ae.ssid == ssid &&
643 pos->ae.tsid == tsid &&
644 pos->ae.tclass == tclass) {
645 avc_node_replace(avc, node, pos);
646 goto found;
647 }
648 }
649 hlist_add_head_rcu(&node->list, head);
650found:
651 spin_unlock_irqrestore(lock, flag);
652 }
653out:
654 return node;
655}
656
657/**
658 * avc_audit_pre_callback - SELinux specific information
659 * will be called by generic audit code
660 * @ab: the audit buffer
661 * @a: audit_data
662 */
663static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
664{
665 struct common_audit_data *ad = a;
666 struct selinux_audit_data *sad = ad->selinux_audit_data;
667 u32 av = sad->audited;
668 const char **perms;
669 int i, perm;
670
671 audit_log_format(ab, "avc: %s ", sad->denied ? "denied" : "granted");
672
673 if (av == 0) {
674 audit_log_format(ab, " null");
675 return;
676 }
677
678 perms = secclass_map[sad->tclass-1].perms;
679
680 audit_log_format(ab, " {");
681 i = 0;
682 perm = 1;
683 while (i < (sizeof(av) * 8)) {
684 if ((perm & av) && perms[i]) {
685 audit_log_format(ab, " %s", perms[i]);
686 av &= ~perm;
687 }
688 i++;
689 perm <<= 1;
690 }
691
692 if (av)
693 audit_log_format(ab, " 0x%x", av);
694
695 audit_log_format(ab, " } for ");
696}
697
698/**
699 * avc_audit_post_callback - SELinux specific information
700 * will be called by generic audit code
701 * @ab: the audit buffer
702 * @a: audit_data
703 */
704static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
705{
706 struct common_audit_data *ad = a;
707 struct selinux_audit_data *sad = ad->selinux_audit_data;
708 char *scontext;
709 u32 scontext_len;
710 int rc;
711
712 rc = security_sid_to_context(sad->state, sad->ssid, &scontext,
713 &scontext_len);
714 if (rc)
715 audit_log_format(ab, " ssid=%d", sad->ssid);
716 else {
717 audit_log_format(ab, " scontext=%s", scontext);
718 kfree(scontext);
719 }
720
721 rc = security_sid_to_context(sad->state, sad->tsid, &scontext,
722 &scontext_len);
723 if (rc)
724 audit_log_format(ab, " tsid=%d", sad->tsid);
725 else {
726 audit_log_format(ab, " tcontext=%s", scontext);
727 kfree(scontext);
728 }
729
730 audit_log_format(ab, " tclass=%s", secclass_map[sad->tclass-1].name);
731
732 if (sad->denied)
733 audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
734
735 /* in case of invalid context report also the actual context string */
736 rc = security_sid_to_context_inval(sad->state, sad->ssid, &scontext,
737 &scontext_len);
738 if (!rc && scontext) {
739 if (scontext_len && scontext[scontext_len - 1] == '\0')
740 scontext_len--;
741 audit_log_format(ab, " srawcon=");
742 audit_log_n_untrustedstring(ab, scontext, scontext_len);
743 kfree(scontext);
744 }
745
746 rc = security_sid_to_context_inval(sad->state, sad->tsid, &scontext,
747 &scontext_len);
748 if (!rc && scontext) {
749 if (scontext_len && scontext[scontext_len - 1] == '\0')
750 scontext_len--;
751 audit_log_format(ab, " trawcon=");
752 audit_log_n_untrustedstring(ab, scontext, scontext_len);
753 kfree(scontext);
754 }
755}
756
757/* This is the slow part of avc audit with big stack footprint */
758noinline int slow_avc_audit(struct selinux_state *state,
759 u32 ssid, u32 tsid, u16 tclass,
760 u32 requested, u32 audited, u32 denied, int result,
761 struct common_audit_data *a,
762 unsigned int flags)
763{
764 struct common_audit_data stack_data;
765 struct selinux_audit_data sad;
766
767 if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
768 return -EINVAL;
769
770 if (!a) {
771 a = &stack_data;
772 a->type = LSM_AUDIT_DATA_NONE;
773 }
774
775 /*
776 * When in a RCU walk do the audit on the RCU retry. This is because
777 * the collection of the dname in an inode audit message is not RCU
778 * safe. Note this may drop some audits when the situation changes
779 * during retry. However this is logically just as if the operation
780 * happened a little later.
781 */
782 if ((a->type == LSM_AUDIT_DATA_INODE) &&
783 (flags & MAY_NOT_BLOCK))
784 return -ECHILD;
785
786 sad.tclass = tclass;
787 sad.requested = requested;
788 sad.ssid = ssid;
789 sad.tsid = tsid;
790 sad.audited = audited;
791 sad.denied = denied;
792 sad.result = result;
793 sad.state = state;
794
795 a->selinux_audit_data = &sad;
796
797 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
798 return 0;
799}
800
801/**
802 * avc_add_callback - Register a callback for security events.
803 * @callback: callback function
804 * @events: security events
805 *
806 * Register a callback function for events in the set @events.
807 * Returns %0 on success or -%ENOMEM if insufficient memory
808 * exists to add the callback.
809 */
810int __init avc_add_callback(int (*callback)(u32 event), u32 events)
811{
812 struct avc_callback_node *c;
813 int rc = 0;
814
815 c = kmalloc(sizeof(*c), GFP_KERNEL);
816 if (!c) {
817 rc = -ENOMEM;
818 goto out;
819 }
820
821 c->callback = callback;
822 c->events = events;
823 c->next = avc_callbacks;
824 avc_callbacks = c;
825out:
826 return rc;
827}
828
829/**
830 * avc_update_node Update an AVC entry
831 * @event : Updating event
832 * @perms : Permission mask bits
833 * @ssid,@tsid,@tclass : identifier of an AVC entry
834 * @seqno : sequence number when decision was made
835 * @xpd: extended_perms_decision to be added to the node
836 * @flags: the AVC_* flags, e.g. AVC_NONBLOCKING, AVC_EXTENDED_PERMS, or 0.
837 *
838 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
839 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
840 * otherwise, this function updates the AVC entry. The original AVC-entry object
841 * will release later by RCU.
842 */
843static int avc_update_node(struct selinux_avc *avc,
844 u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
845 u32 tsid, u16 tclass, u32 seqno,
846 struct extended_perms_decision *xpd,
847 u32 flags)
848{
849 int hvalue, rc = 0;
850 unsigned long flag;
851 struct avc_node *pos, *node, *orig = NULL;
852 struct hlist_head *head;
853 spinlock_t *lock;
854
855 /*
856 * If we are in a non-blocking code path, e.g. VFS RCU walk,
857 * then we must not add permissions to a cache entry
858 * because we cannot safely audit the denial. Otherwise,
859 * during the subsequent blocking retry (e.g. VFS ref walk), we
860 * will find the permissions already granted in the cache entry
861 * and won't audit anything at all, leading to silent denials in
862 * permissive mode that only appear when in enforcing mode.
863 *
864 * See the corresponding handling in slow_avc_audit(), and the
865 * logic in selinux_inode_permission for the MAY_NOT_BLOCK flag,
866 * which is transliterated into AVC_NONBLOCKING.
867 */
868 if (flags & AVC_NONBLOCKING)
869 return 0;
870
871 node = avc_alloc_node(avc);
872 if (!node) {
873 rc = -ENOMEM;
874 goto out;
875 }
876
877 /* Lock the target slot */
878 hvalue = avc_hash(ssid, tsid, tclass);
879
880 head = &avc->avc_cache.slots[hvalue];
881 lock = &avc->avc_cache.slots_lock[hvalue];
882
883 spin_lock_irqsave(lock, flag);
884
885 hlist_for_each_entry(pos, head, list) {
886 if (ssid == pos->ae.ssid &&
887 tsid == pos->ae.tsid &&
888 tclass == pos->ae.tclass &&
889 seqno == pos->ae.avd.seqno){
890 orig = pos;
891 break;
892 }
893 }
894
895 if (!orig) {
896 rc = -ENOENT;
897 avc_node_kill(avc, node);
898 goto out_unlock;
899 }
900
901 /*
902 * Copy and replace original node.
903 */
904
905 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
906
907 if (orig->ae.xp_node) {
908 rc = avc_xperms_populate(node, orig->ae.xp_node);
909 if (rc) {
910 kmem_cache_free(avc_node_cachep, node);
911 goto out_unlock;
912 }
913 }
914
915 switch (event) {
916 case AVC_CALLBACK_GRANT:
917 node->ae.avd.allowed |= perms;
918 if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
919 avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
920 break;
921 case AVC_CALLBACK_TRY_REVOKE:
922 case AVC_CALLBACK_REVOKE:
923 node->ae.avd.allowed &= ~perms;
924 break;
925 case AVC_CALLBACK_AUDITALLOW_ENABLE:
926 node->ae.avd.auditallow |= perms;
927 break;
928 case AVC_CALLBACK_AUDITALLOW_DISABLE:
929 node->ae.avd.auditallow &= ~perms;
930 break;
931 case AVC_CALLBACK_AUDITDENY_ENABLE:
932 node->ae.avd.auditdeny |= perms;
933 break;
934 case AVC_CALLBACK_AUDITDENY_DISABLE:
935 node->ae.avd.auditdeny &= ~perms;
936 break;
937 case AVC_CALLBACK_ADD_XPERMS:
938 avc_add_xperms_decision(node, xpd);
939 break;
940 }
941 avc_node_replace(avc, node, orig);
942out_unlock:
943 spin_unlock_irqrestore(lock, flag);
944out:
945 return rc;
946}
947
948/**
949 * avc_flush - Flush the cache
950 */
951static void avc_flush(struct selinux_avc *avc)
952{
953 struct hlist_head *head;
954 struct avc_node *node;
955 spinlock_t *lock;
956 unsigned long flag;
957 int i;
958
959 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
960 head = &avc->avc_cache.slots[i];
961 lock = &avc->avc_cache.slots_lock[i];
962
963 spin_lock_irqsave(lock, flag);
964 /*
965 * With preemptable RCU, the outer spinlock does not
966 * prevent RCU grace periods from ending.
967 */
968 rcu_read_lock();
969 hlist_for_each_entry(node, head, list)
970 avc_node_delete(avc, node);
971 rcu_read_unlock();
972 spin_unlock_irqrestore(lock, flag);
973 }
974}
975
976/**
977 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
978 * @seqno: policy sequence number
979 */
980int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
981{
982 struct avc_callback_node *c;
983 int rc = 0, tmprc;
984
985 avc_flush(avc);
986
987 for (c = avc_callbacks; c; c = c->next) {
988 if (c->events & AVC_CALLBACK_RESET) {
989 tmprc = c->callback(AVC_CALLBACK_RESET);
990 /* save the first error encountered for the return
991 value and continue processing the callbacks */
992 if (!rc)
993 rc = tmprc;
994 }
995 }
996
997 avc_latest_notif_update(avc, seqno, 0);
998 return rc;
999}
1000
1001/*
1002 * Slow-path helper function for avc_has_perm_noaudit,
1003 * when the avc_node lookup fails. We get called with
1004 * the RCU read lock held, and need to return with it
1005 * still held, but drop if for the security compute.
1006 *
1007 * Don't inline this, since it's the slow-path and just
1008 * results in a bigger stack frame.
1009 */
1010static noinline
1011struct avc_node *avc_compute_av(struct selinux_state *state,
1012 u32 ssid, u32 tsid,
1013 u16 tclass, struct av_decision *avd,
1014 struct avc_xperms_node *xp_node)
1015{
1016 rcu_read_unlock();
1017 INIT_LIST_HEAD(&xp_node->xpd_head);
1018 security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
1019 rcu_read_lock();
1020 return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
1021}
1022
1023static noinline int avc_denied(struct selinux_state *state,
1024 u32 ssid, u32 tsid,
1025 u16 tclass, u32 requested,
1026 u8 driver, u8 xperm, unsigned int flags,
1027 struct av_decision *avd)
1028{
1029 if (flags & AVC_STRICT)
1030 return -EACCES;
1031
1032 if (enforcing_enabled(state) &&
1033 !(avd->flags & AVD_FLAGS_PERMISSIVE))
1034 return -EACCES;
1035
1036 avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
1037 xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1038 return 0;
1039}
1040
1041/*
1042 * The avc extended permissions logic adds an additional 256 bits of
1043 * permissions to an avc node when extended permissions for that node are
1044 * specified in the avtab. If the additional 256 permissions is not adequate,
1045 * as-is the case with ioctls, then multiple may be chained together and the
1046 * driver field is used to specify which set contains the permission.
1047 */
1048int avc_has_extended_perms(struct selinux_state *state,
1049 u32 ssid, u32 tsid, u16 tclass, u32 requested,
1050 u8 driver, u8 xperm, struct common_audit_data *ad)
1051{
1052 struct avc_node *node;
1053 struct av_decision avd;
1054 u32 denied;
1055 struct extended_perms_decision local_xpd;
1056 struct extended_perms_decision *xpd = NULL;
1057 struct extended_perms_data allowed;
1058 struct extended_perms_data auditallow;
1059 struct extended_perms_data dontaudit;
1060 struct avc_xperms_node local_xp_node;
1061 struct avc_xperms_node *xp_node;
1062 int rc = 0, rc2;
1063
1064 xp_node = &local_xp_node;
1065 if (WARN_ON(!requested))
1066 return -EACCES;
1067
1068 rcu_read_lock();
1069
1070 node = avc_lookup(state->avc, ssid, tsid, tclass);
1071 if (unlikely(!node)) {
1072 node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
1073 } else {
1074 memcpy(&avd, &node->ae.avd, sizeof(avd));
1075 xp_node = node->ae.xp_node;
1076 }
1077 /* if extended permissions are not defined, only consider av_decision */
1078 if (!xp_node || !xp_node->xp.len)
1079 goto decision;
1080
1081 local_xpd.allowed = &allowed;
1082 local_xpd.auditallow = &auditallow;
1083 local_xpd.dontaudit = &dontaudit;
1084
1085 xpd = avc_xperms_decision_lookup(driver, xp_node);
1086 if (unlikely(!xpd)) {
1087 /*
1088 * Compute the extended_perms_decision only if the driver
1089 * is flagged
1090 */
1091 if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1092 avd.allowed &= ~requested;
1093 goto decision;
1094 }
1095 rcu_read_unlock();
1096 security_compute_xperms_decision(state, ssid, tsid, tclass,
1097 driver, &local_xpd);
1098 rcu_read_lock();
1099 avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
1100 driver, xperm, ssid, tsid, tclass, avd.seqno,
1101 &local_xpd, 0);
1102 } else {
1103 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1104 }
1105 xpd = &local_xpd;
1106
1107 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1108 avd.allowed &= ~requested;
1109
1110decision:
1111 denied = requested & ~(avd.allowed);
1112 if (unlikely(denied))
1113 rc = avc_denied(state, ssid, tsid, tclass, requested,
1114 driver, xperm, AVC_EXTENDED_PERMS, &avd);
1115
1116 rcu_read_unlock();
1117
1118 rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
1119 &avd, xpd, xperm, rc, ad);
1120 if (rc2)
1121 return rc2;
1122 return rc;
1123}
1124
1125/**
1126 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1127 * @ssid: source security identifier
1128 * @tsid: target security identifier
1129 * @tclass: target security class
1130 * @requested: requested permissions, interpreted based on @tclass
1131 * @flags: AVC_STRICT, AVC_NONBLOCKING, or 0
1132 * @avd: access vector decisions
1133 *
1134 * Check the AVC to determine whether the @requested permissions are granted
1135 * for the SID pair (@ssid, @tsid), interpreting the permissions
1136 * based on @tclass, and call the security server on a cache miss to obtain
1137 * a new decision and add it to the cache. Return a copy of the decisions
1138 * in @avd. Return %0 if all @requested permissions are granted,
1139 * -%EACCES if any permissions are denied, or another -errno upon
1140 * other errors. This function is typically called by avc_has_perm(),
1141 * but may also be called directly to separate permission checking from
1142 * auditing, e.g. in cases where a lock must be held for the check but
1143 * should be released for the auditing.
1144 */
1145inline int avc_has_perm_noaudit(struct selinux_state *state,
1146 u32 ssid, u32 tsid,
1147 u16 tclass, u32 requested,
1148 unsigned int flags,
1149 struct av_decision *avd)
1150{
1151 struct avc_node *node;
1152 struct avc_xperms_node xp_node;
1153 int rc = 0;
1154 u32 denied;
1155
1156 if (WARN_ON(!requested))
1157 return -EACCES;
1158
1159 rcu_read_lock();
1160
1161 node = avc_lookup(state->avc, ssid, tsid, tclass);
1162 if (unlikely(!node))
1163 node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
1164 else
1165 memcpy(avd, &node->ae.avd, sizeof(*avd));
1166
1167 denied = requested & ~(avd->allowed);
1168 if (unlikely(denied))
1169 rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
1170 flags, avd);
1171
1172 rcu_read_unlock();
1173 return rc;
1174}
1175
1176/**
1177 * avc_has_perm - Check permissions and perform any appropriate auditing.
1178 * @ssid: source security identifier
1179 * @tsid: target security identifier
1180 * @tclass: target security class
1181 * @requested: requested permissions, interpreted based on @tclass
1182 * @auditdata: auxiliary audit data
1183 *
1184 * Check the AVC to determine whether the @requested permissions are granted
1185 * for the SID pair (@ssid, @tsid), interpreting the permissions
1186 * based on @tclass, and call the security server on a cache miss to obtain
1187 * a new decision and add it to the cache. Audit the granting or denial of
1188 * permissions in accordance with the policy. Return %0 if all @requested
1189 * permissions are granted, -%EACCES if any permissions are denied, or
1190 * another -errno upon other errors.
1191 */
1192int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
1193 u32 requested, struct common_audit_data *auditdata)
1194{
1195 struct av_decision avd;
1196 int rc, rc2;
1197
1198 rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1199 &avd);
1200
1201 rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1202 auditdata, 0);
1203 if (rc2)
1204 return rc2;
1205 return rc;
1206}
1207
1208u32 avc_policy_seqno(struct selinux_state *state)
1209{
1210 return state->avc->avc_cache.latest_notif;
1211}
1212
1213void avc_disable(void)
1214{
1215 /*
1216 * If you are looking at this because you have realized that we are
1217 * not destroying the avc_node_cachep it might be easy to fix, but
1218 * I don't know the memory barrier semantics well enough to know. It's
1219 * possible that some other task dereferenced security_ops when
1220 * it still pointed to selinux operations. If that is the case it's
1221 * possible that it is about to use the avc and is about to need the
1222 * avc_node_cachep. I know I could wrap the security.c security_ops call
1223 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush
1224 * the cache and get that memory back.
1225 */
1226 if (avc_node_cachep) {
1227 avc_flush(selinux_state.avc);
1228 /* kmem_cache_destroy(avc_node_cachep); */
1229 }
1230}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Implementation of the kernel access vector cache (AVC).
4 *
5 * Authors: Stephen Smalley, <stephen.smalley.work@gmail.com>
6 * James Morris <jmorris@redhat.com>
7 *
8 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
9 * Replaced the avc_lock spinlock by RCU.
10 *
11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
12 */
13#include <linux/types.h>
14#include <linux/stddef.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/fs.h>
18#include <linux/dcache.h>
19#include <linux/init.h>
20#include <linux/skbuff.h>
21#include <linux/percpu.h>
22#include <linux/list.h>
23#include <net/sock.h>
24#include <linux/un.h>
25#include <net/af_unix.h>
26#include <linux/ip.h>
27#include <linux/audit.h>
28#include <linux/ipv6.h>
29#include <net/ipv6.h>
30#include "avc.h"
31#include "avc_ss.h"
32#include "classmap.h"
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/avc.h>
36
37#define AVC_CACHE_SLOTS 512
38#define AVC_DEF_CACHE_THRESHOLD 512
39#define AVC_CACHE_RECLAIM 16
40
41#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
42#define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field)
43#else
44#define avc_cache_stats_incr(field) do {} while (0)
45#endif
46
47struct avc_entry {
48 u32 ssid;
49 u32 tsid;
50 u16 tclass;
51 struct av_decision avd;
52 struct avc_xperms_node *xp_node;
53};
54
55struct avc_node {
56 struct avc_entry ae;
57 struct hlist_node list; /* anchored in avc_cache->slots[i] */
58 struct rcu_head rhead;
59};
60
61struct avc_xperms_decision_node {
62 struct extended_perms_decision xpd;
63 struct list_head xpd_list; /* list of extended_perms_decision */
64};
65
66struct avc_xperms_node {
67 struct extended_perms xp;
68 struct list_head xpd_head; /* list head of extended_perms_decision */
69};
70
71struct avc_cache {
72 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
73 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
74 atomic_t lru_hint; /* LRU hint for reclaim scan */
75 atomic_t active_nodes;
76 u32 latest_notif; /* latest revocation notification */
77};
78
79struct avc_callback_node {
80 int (*callback) (u32 event);
81 u32 events;
82 struct avc_callback_node *next;
83};
84
85#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
86DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
87#endif
88
89struct selinux_avc {
90 unsigned int avc_cache_threshold;
91 struct avc_cache avc_cache;
92};
93
94static struct selinux_avc selinux_avc;
95
96void selinux_avc_init(void)
97{
98 int i;
99
100 selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
101 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
102 INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
103 spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
104 }
105 atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
106 atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
107}
108
109unsigned int avc_get_cache_threshold(void)
110{
111 return selinux_avc.avc_cache_threshold;
112}
113
114void avc_set_cache_threshold(unsigned int cache_threshold)
115{
116 selinux_avc.avc_cache_threshold = cache_threshold;
117}
118
119static struct avc_callback_node *avc_callbacks __ro_after_init;
120static struct kmem_cache *avc_node_cachep __ro_after_init;
121static struct kmem_cache *avc_xperms_data_cachep __ro_after_init;
122static struct kmem_cache *avc_xperms_decision_cachep __ro_after_init;
123static struct kmem_cache *avc_xperms_cachep __ro_after_init;
124
125static inline u32 avc_hash(u32 ssid, u32 tsid, u16 tclass)
126{
127 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
128}
129
130/**
131 * avc_init - Initialize the AVC.
132 *
133 * Initialize the access vector cache.
134 */
135void __init avc_init(void)
136{
137 avc_node_cachep = KMEM_CACHE(avc_node, SLAB_PANIC);
138 avc_xperms_cachep = KMEM_CACHE(avc_xperms_node, SLAB_PANIC);
139 avc_xperms_decision_cachep = KMEM_CACHE(avc_xperms_decision_node, SLAB_PANIC);
140 avc_xperms_data_cachep = KMEM_CACHE(extended_perms_data, SLAB_PANIC);
141}
142
143int avc_get_hash_stats(char *page)
144{
145 int i, chain_len, max_chain_len, slots_used;
146 struct avc_node *node;
147 struct hlist_head *head;
148
149 rcu_read_lock();
150
151 slots_used = 0;
152 max_chain_len = 0;
153 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
154 head = &selinux_avc.avc_cache.slots[i];
155 if (!hlist_empty(head)) {
156 slots_used++;
157 chain_len = 0;
158 hlist_for_each_entry_rcu(node, head, list)
159 chain_len++;
160 if (chain_len > max_chain_len)
161 max_chain_len = chain_len;
162 }
163 }
164
165 rcu_read_unlock();
166
167 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
168 "longest chain: %d\n",
169 atomic_read(&selinux_avc.avc_cache.active_nodes),
170 slots_used, AVC_CACHE_SLOTS, max_chain_len);
171}
172
173/*
174 * using a linked list for extended_perms_decision lookup because the list is
175 * always small. i.e. less than 5, typically 1
176 */
177static struct extended_perms_decision *
178avc_xperms_decision_lookup(u8 driver, u8 base_perm,
179 struct avc_xperms_node *xp_node)
180{
181 struct avc_xperms_decision_node *xpd_node;
182
183 list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
184 if (xpd_node->xpd.driver == driver &&
185 xpd_node->xpd.base_perm == base_perm)
186 return &xpd_node->xpd;
187 }
188 return NULL;
189}
190
191static inline unsigned int
192avc_xperms_has_perm(struct extended_perms_decision *xpd,
193 u8 perm, u8 which)
194{
195 unsigned int rc = 0;
196
197 if ((which == XPERMS_ALLOWED) &&
198 (xpd->used & XPERMS_ALLOWED))
199 rc = security_xperm_test(xpd->allowed->p, perm);
200 else if ((which == XPERMS_AUDITALLOW) &&
201 (xpd->used & XPERMS_AUDITALLOW))
202 rc = security_xperm_test(xpd->auditallow->p, perm);
203 else if ((which == XPERMS_DONTAUDIT) &&
204 (xpd->used & XPERMS_DONTAUDIT))
205 rc = security_xperm_test(xpd->dontaudit->p, perm);
206 return rc;
207}
208
209static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
210 u8 driver, u8 base_perm, u8 perm)
211{
212 struct extended_perms_decision *xpd;
213 security_xperm_set(xp_node->xp.drivers.p, driver);
214 xp_node->xp.base_perms |= base_perm;
215 xpd = avc_xperms_decision_lookup(driver, base_perm, xp_node);
216 if (xpd && xpd->allowed)
217 security_xperm_set(xpd->allowed->p, perm);
218}
219
220static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
221{
222 struct extended_perms_decision *xpd;
223
224 xpd = &xpd_node->xpd;
225 if (xpd->allowed)
226 kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
227 if (xpd->auditallow)
228 kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
229 if (xpd->dontaudit)
230 kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
231 kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
232}
233
234static void avc_xperms_free(struct avc_xperms_node *xp_node)
235{
236 struct avc_xperms_decision_node *xpd_node, *tmp;
237
238 if (!xp_node)
239 return;
240
241 list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
242 list_del(&xpd_node->xpd_list);
243 avc_xperms_decision_free(xpd_node);
244 }
245 kmem_cache_free(avc_xperms_cachep, xp_node);
246}
247
248static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
249 struct extended_perms_decision *src)
250{
251 dest->base_perm = src->base_perm;
252 dest->driver = src->driver;
253 dest->used = src->used;
254 if (dest->used & XPERMS_ALLOWED)
255 memcpy(dest->allowed->p, src->allowed->p,
256 sizeof(src->allowed->p));
257 if (dest->used & XPERMS_AUDITALLOW)
258 memcpy(dest->auditallow->p, src->auditallow->p,
259 sizeof(src->auditallow->p));
260 if (dest->used & XPERMS_DONTAUDIT)
261 memcpy(dest->dontaudit->p, src->dontaudit->p,
262 sizeof(src->dontaudit->p));
263}
264
265/*
266 * similar to avc_copy_xperms_decision, but only copy decision
267 * information relevant to this perm
268 */
269static inline void avc_quick_copy_xperms_decision(u8 perm,
270 struct extended_perms_decision *dest,
271 struct extended_perms_decision *src)
272{
273 /*
274 * compute index of the u32 of the 256 bits (8 u32s) that contain this
275 * command permission
276 */
277 u8 i = perm >> 5;
278
279 dest->base_perm = src->base_perm;
280 dest->used = src->used;
281 if (dest->used & XPERMS_ALLOWED)
282 dest->allowed->p[i] = src->allowed->p[i];
283 if (dest->used & XPERMS_AUDITALLOW)
284 dest->auditallow->p[i] = src->auditallow->p[i];
285 if (dest->used & XPERMS_DONTAUDIT)
286 dest->dontaudit->p[i] = src->dontaudit->p[i];
287}
288
289static struct avc_xperms_decision_node
290 *avc_xperms_decision_alloc(u8 which)
291{
292 struct avc_xperms_decision_node *xpd_node;
293 struct extended_perms_decision *xpd;
294
295 xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep,
296 GFP_NOWAIT | __GFP_NOWARN);
297 if (!xpd_node)
298 return NULL;
299
300 xpd = &xpd_node->xpd;
301 if (which & XPERMS_ALLOWED) {
302 xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
303 GFP_NOWAIT | __GFP_NOWARN);
304 if (!xpd->allowed)
305 goto error;
306 }
307 if (which & XPERMS_AUDITALLOW) {
308 xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
309 GFP_NOWAIT | __GFP_NOWARN);
310 if (!xpd->auditallow)
311 goto error;
312 }
313 if (which & XPERMS_DONTAUDIT) {
314 xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
315 GFP_NOWAIT | __GFP_NOWARN);
316 if (!xpd->dontaudit)
317 goto error;
318 }
319 return xpd_node;
320error:
321 avc_xperms_decision_free(xpd_node);
322 return NULL;
323}
324
325static int avc_add_xperms_decision(struct avc_node *node,
326 struct extended_perms_decision *src)
327{
328 struct avc_xperms_decision_node *dest_xpd;
329
330 dest_xpd = avc_xperms_decision_alloc(src->used);
331 if (!dest_xpd)
332 return -ENOMEM;
333 avc_copy_xperms_decision(&dest_xpd->xpd, src);
334 list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
335 node->ae.xp_node->xp.len++;
336 return 0;
337}
338
339static struct avc_xperms_node *avc_xperms_alloc(void)
340{
341 struct avc_xperms_node *xp_node;
342
343 xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN);
344 if (!xp_node)
345 return xp_node;
346 INIT_LIST_HEAD(&xp_node->xpd_head);
347 return xp_node;
348}
349
350static int avc_xperms_populate(struct avc_node *node,
351 struct avc_xperms_node *src)
352{
353 struct avc_xperms_node *dest;
354 struct avc_xperms_decision_node *dest_xpd;
355 struct avc_xperms_decision_node *src_xpd;
356
357 if (src->xp.len == 0)
358 return 0;
359 dest = avc_xperms_alloc();
360 if (!dest)
361 return -ENOMEM;
362
363 memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
364 dest->xp.len = src->xp.len;
365 dest->xp.base_perms = src->xp.base_perms;
366
367 /* for each source xpd allocate a destination xpd and copy */
368 list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
369 dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
370 if (!dest_xpd)
371 goto error;
372 avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
373 list_add(&dest_xpd->xpd_list, &dest->xpd_head);
374 }
375 node->ae.xp_node = dest;
376 return 0;
377error:
378 avc_xperms_free(dest);
379 return -ENOMEM;
380
381}
382
383static inline u32 avc_xperms_audit_required(u32 requested,
384 struct av_decision *avd,
385 struct extended_perms_decision *xpd,
386 u8 perm,
387 int result,
388 u32 *deniedp)
389{
390 u32 denied, audited;
391
392 denied = requested & ~avd->allowed;
393 if (unlikely(denied)) {
394 audited = denied & avd->auditdeny;
395 if (audited && xpd) {
396 if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
397 audited = 0;
398 }
399 } else if (result) {
400 audited = denied = requested;
401 } else {
402 audited = requested & avd->auditallow;
403 if (audited && xpd) {
404 if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
405 audited = 0;
406 }
407 }
408
409 *deniedp = denied;
410 return audited;
411}
412
413static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass,
414 u32 requested, struct av_decision *avd,
415 struct extended_perms_decision *xpd,
416 u8 perm, int result,
417 struct common_audit_data *ad)
418{
419 u32 audited, denied;
420
421 audited = avc_xperms_audit_required(
422 requested, avd, xpd, perm, result, &denied);
423 if (likely(!audited))
424 return 0;
425 return slow_avc_audit(ssid, tsid, tclass, requested,
426 audited, denied, result, ad);
427}
428
429static void avc_node_free(struct rcu_head *rhead)
430{
431 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
432 avc_xperms_free(node->ae.xp_node);
433 kmem_cache_free(avc_node_cachep, node);
434 avc_cache_stats_incr(frees);
435}
436
437static void avc_node_delete(struct avc_node *node)
438{
439 hlist_del_rcu(&node->list);
440 call_rcu(&node->rhead, avc_node_free);
441 atomic_dec(&selinux_avc.avc_cache.active_nodes);
442}
443
444static void avc_node_kill(struct avc_node *node)
445{
446 avc_xperms_free(node->ae.xp_node);
447 kmem_cache_free(avc_node_cachep, node);
448 avc_cache_stats_incr(frees);
449 atomic_dec(&selinux_avc.avc_cache.active_nodes);
450}
451
452static void avc_node_replace(struct avc_node *new, struct avc_node *old)
453{
454 hlist_replace_rcu(&old->list, &new->list);
455 call_rcu(&old->rhead, avc_node_free);
456 atomic_dec(&selinux_avc.avc_cache.active_nodes);
457}
458
459static inline int avc_reclaim_node(void)
460{
461 struct avc_node *node;
462 int hvalue, try, ecx;
463 unsigned long flags;
464 struct hlist_head *head;
465 spinlock_t *lock;
466
467 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
468 hvalue = atomic_inc_return(&selinux_avc.avc_cache.lru_hint) &
469 (AVC_CACHE_SLOTS - 1);
470 head = &selinux_avc.avc_cache.slots[hvalue];
471 lock = &selinux_avc.avc_cache.slots_lock[hvalue];
472
473 if (!spin_trylock_irqsave(lock, flags))
474 continue;
475
476 rcu_read_lock();
477 hlist_for_each_entry(node, head, list) {
478 avc_node_delete(node);
479 avc_cache_stats_incr(reclaims);
480 ecx++;
481 if (ecx >= AVC_CACHE_RECLAIM) {
482 rcu_read_unlock();
483 spin_unlock_irqrestore(lock, flags);
484 goto out;
485 }
486 }
487 rcu_read_unlock();
488 spin_unlock_irqrestore(lock, flags);
489 }
490out:
491 return ecx;
492}
493
494static struct avc_node *avc_alloc_node(void)
495{
496 struct avc_node *node;
497
498 node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN);
499 if (!node)
500 goto out;
501
502 INIT_HLIST_NODE(&node->list);
503 avc_cache_stats_incr(allocations);
504
505 if (atomic_inc_return(&selinux_avc.avc_cache.active_nodes) >
506 selinux_avc.avc_cache_threshold)
507 avc_reclaim_node();
508
509out:
510 return node;
511}
512
513static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
514{
515 node->ae.ssid = ssid;
516 node->ae.tsid = tsid;
517 node->ae.tclass = tclass;
518 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
519}
520
521static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
522{
523 struct avc_node *node, *ret = NULL;
524 u32 hvalue;
525 struct hlist_head *head;
526
527 hvalue = avc_hash(ssid, tsid, tclass);
528 head = &selinux_avc.avc_cache.slots[hvalue];
529 hlist_for_each_entry_rcu(node, head, list) {
530 if (ssid == node->ae.ssid &&
531 tclass == node->ae.tclass &&
532 tsid == node->ae.tsid) {
533 ret = node;
534 break;
535 }
536 }
537
538 return ret;
539}
540
541/**
542 * avc_lookup - Look up an AVC entry.
543 * @ssid: source security identifier
544 * @tsid: target security identifier
545 * @tclass: target security class
546 *
547 * Look up an AVC entry that is valid for the
548 * (@ssid, @tsid), interpreting the permissions
549 * based on @tclass. If a valid AVC entry exists,
550 * then this function returns the avc_node.
551 * Otherwise, this function returns NULL.
552 */
553static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
554{
555 struct avc_node *node;
556
557 avc_cache_stats_incr(lookups);
558 node = avc_search_node(ssid, tsid, tclass);
559
560 if (node)
561 return node;
562
563 avc_cache_stats_incr(misses);
564 return NULL;
565}
566
567static int avc_latest_notif_update(u32 seqno, int is_insert)
568{
569 int ret = 0;
570 static DEFINE_SPINLOCK(notif_lock);
571 unsigned long flag;
572
573 spin_lock_irqsave(¬if_lock, flag);
574 if (is_insert) {
575 if (seqno < selinux_avc.avc_cache.latest_notif) {
576 pr_warn("SELinux: avc: seqno %d < latest_notif %d\n",
577 seqno, selinux_avc.avc_cache.latest_notif);
578 ret = -EAGAIN;
579 }
580 } else {
581 if (seqno > selinux_avc.avc_cache.latest_notif)
582 selinux_avc.avc_cache.latest_notif = seqno;
583 }
584 spin_unlock_irqrestore(¬if_lock, flag);
585
586 return ret;
587}
588
589/**
590 * avc_insert - Insert an AVC entry.
591 * @ssid: source security identifier
592 * @tsid: target security identifier
593 * @tclass: target security class
594 * @avd: resulting av decision
595 * @xp_node: resulting extended permissions
596 *
597 * Insert an AVC entry for the SID pair
598 * (@ssid, @tsid) and class @tclass.
599 * The access vectors and the sequence number are
600 * normally provided by the security server in
601 * response to a security_compute_av() call. If the
602 * sequence number @avd->seqno is not less than the latest
603 * revocation notification, then the function copies
604 * the access vectors into a cache entry.
605 */
606static void avc_insert(u32 ssid, u32 tsid, u16 tclass,
607 struct av_decision *avd, struct avc_xperms_node *xp_node)
608{
609 struct avc_node *pos, *node = NULL;
610 u32 hvalue;
611 unsigned long flag;
612 spinlock_t *lock;
613 struct hlist_head *head;
614
615 if (avc_latest_notif_update(avd->seqno, 1))
616 return;
617
618 node = avc_alloc_node();
619 if (!node)
620 return;
621
622 avc_node_populate(node, ssid, tsid, tclass, avd);
623 if (avc_xperms_populate(node, xp_node)) {
624 avc_node_kill(node);
625 return;
626 }
627
628 hvalue = avc_hash(ssid, tsid, tclass);
629 head = &selinux_avc.avc_cache.slots[hvalue];
630 lock = &selinux_avc.avc_cache.slots_lock[hvalue];
631 spin_lock_irqsave(lock, flag);
632 hlist_for_each_entry(pos, head, list) {
633 if (pos->ae.ssid == ssid &&
634 pos->ae.tsid == tsid &&
635 pos->ae.tclass == tclass) {
636 avc_node_replace(node, pos);
637 goto found;
638 }
639 }
640 hlist_add_head_rcu(&node->list, head);
641found:
642 spin_unlock_irqrestore(lock, flag);
643}
644
645/**
646 * avc_audit_pre_callback - SELinux specific information
647 * will be called by generic audit code
648 * @ab: the audit buffer
649 * @a: audit_data
650 */
651static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
652{
653 struct common_audit_data *ad = a;
654 struct selinux_audit_data *sad = ad->selinux_audit_data;
655 u32 av = sad->audited, perm;
656 const char *const *perms;
657 u32 i;
658
659 audit_log_format(ab, "avc: %s ", sad->denied ? "denied" : "granted");
660
661 if (av == 0) {
662 audit_log_format(ab, " null");
663 return;
664 }
665
666 perms = secclass_map[sad->tclass-1].perms;
667
668 audit_log_format(ab, " {");
669 i = 0;
670 perm = 1;
671 while (i < (sizeof(av) * 8)) {
672 if ((perm & av) && perms[i]) {
673 audit_log_format(ab, " %s", perms[i]);
674 av &= ~perm;
675 }
676 i++;
677 perm <<= 1;
678 }
679
680 if (av)
681 audit_log_format(ab, " 0x%x", av);
682
683 audit_log_format(ab, " } for ");
684}
685
686/**
687 * avc_audit_post_callback - SELinux specific information
688 * will be called by generic audit code
689 * @ab: the audit buffer
690 * @a: audit_data
691 */
692static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
693{
694 struct common_audit_data *ad = a;
695 struct selinux_audit_data *sad = ad->selinux_audit_data;
696 char *scontext = NULL;
697 char *tcontext = NULL;
698 const char *tclass = NULL;
699 u32 scontext_len;
700 u32 tcontext_len;
701 int rc;
702
703 rc = security_sid_to_context(sad->ssid, &scontext,
704 &scontext_len);
705 if (rc)
706 audit_log_format(ab, " ssid=%d", sad->ssid);
707 else
708 audit_log_format(ab, " scontext=%s", scontext);
709
710 rc = security_sid_to_context(sad->tsid, &tcontext,
711 &tcontext_len);
712 if (rc)
713 audit_log_format(ab, " tsid=%d", sad->tsid);
714 else
715 audit_log_format(ab, " tcontext=%s", tcontext);
716
717 tclass = secclass_map[sad->tclass-1].name;
718 audit_log_format(ab, " tclass=%s", tclass);
719
720 if (sad->denied)
721 audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
722
723 trace_selinux_audited(sad, scontext, tcontext, tclass);
724 kfree(tcontext);
725 kfree(scontext);
726
727 /* in case of invalid context report also the actual context string */
728 rc = security_sid_to_context_inval(sad->ssid, &scontext,
729 &scontext_len);
730 if (!rc && scontext) {
731 if (scontext_len && scontext[scontext_len - 1] == '\0')
732 scontext_len--;
733 audit_log_format(ab, " srawcon=");
734 audit_log_n_untrustedstring(ab, scontext, scontext_len);
735 kfree(scontext);
736 }
737
738 rc = security_sid_to_context_inval(sad->tsid, &scontext,
739 &scontext_len);
740 if (!rc && scontext) {
741 if (scontext_len && scontext[scontext_len - 1] == '\0')
742 scontext_len--;
743 audit_log_format(ab, " trawcon=");
744 audit_log_n_untrustedstring(ab, scontext, scontext_len);
745 kfree(scontext);
746 }
747}
748
749/*
750 * This is the slow part of avc audit with big stack footprint.
751 * Note that it is non-blocking and can be called from under
752 * rcu_read_lock().
753 */
754noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
755 u32 requested, u32 audited, u32 denied, int result,
756 struct common_audit_data *a)
757{
758 struct common_audit_data stack_data;
759 struct selinux_audit_data sad;
760
761 if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
762 return -EINVAL;
763
764 if (!a) {
765 a = &stack_data;
766 a->type = LSM_AUDIT_DATA_NONE;
767 }
768
769 sad.tclass = tclass;
770 sad.requested = requested;
771 sad.ssid = ssid;
772 sad.tsid = tsid;
773 sad.audited = audited;
774 sad.denied = denied;
775 sad.result = result;
776
777 a->selinux_audit_data = &sad;
778
779 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
780 return 0;
781}
782
783/**
784 * avc_add_callback - Register a callback for security events.
785 * @callback: callback function
786 * @events: security events
787 *
788 * Register a callback function for events in the set @events.
789 * Returns %0 on success or -%ENOMEM if insufficient memory
790 * exists to add the callback.
791 */
792int __init avc_add_callback(int (*callback)(u32 event), u32 events)
793{
794 struct avc_callback_node *c;
795 int rc = 0;
796
797 c = kmalloc(sizeof(*c), GFP_KERNEL);
798 if (!c) {
799 rc = -ENOMEM;
800 goto out;
801 }
802
803 c->callback = callback;
804 c->events = events;
805 c->next = avc_callbacks;
806 avc_callbacks = c;
807out:
808 return rc;
809}
810
811/**
812 * avc_update_node - Update an AVC entry
813 * @event : Updating event
814 * @perms : Permission mask bits
815 * @driver: xperm driver information
816 * @base_perm: the base permission associated with the extended permission
817 * @xperm: xperm permissions
818 * @ssid: AVC entry source sid
819 * @tsid: AVC entry target sid
820 * @tclass : AVC entry target object class
821 * @seqno : sequence number when decision was made
822 * @xpd: extended_perms_decision to be added to the node
823 * @flags: the AVC_* flags, e.g. AVC_EXTENDED_PERMS, or 0.
824 *
825 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
826 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
827 * otherwise, this function updates the AVC entry. The original AVC-entry object
828 * will release later by RCU.
829 */
830static int avc_update_node(u32 event, u32 perms, u8 driver, u8 base_perm,
831 u8 xperm, u32 ssid, u32 tsid, u16 tclass, u32 seqno,
832 struct extended_perms_decision *xpd, u32 flags)
833{
834 u32 hvalue;
835 int rc = 0;
836 unsigned long flag;
837 struct avc_node *pos, *node, *orig = NULL;
838 struct hlist_head *head;
839 spinlock_t *lock;
840
841 node = avc_alloc_node();
842 if (!node) {
843 rc = -ENOMEM;
844 goto out;
845 }
846
847 /* Lock the target slot */
848 hvalue = avc_hash(ssid, tsid, tclass);
849
850 head = &selinux_avc.avc_cache.slots[hvalue];
851 lock = &selinux_avc.avc_cache.slots_lock[hvalue];
852
853 spin_lock_irqsave(lock, flag);
854
855 hlist_for_each_entry(pos, head, list) {
856 if (ssid == pos->ae.ssid &&
857 tsid == pos->ae.tsid &&
858 tclass == pos->ae.tclass &&
859 seqno == pos->ae.avd.seqno){
860 orig = pos;
861 break;
862 }
863 }
864
865 if (!orig) {
866 rc = -ENOENT;
867 avc_node_kill(node);
868 goto out_unlock;
869 }
870
871 /*
872 * Copy and replace original node.
873 */
874
875 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
876
877 if (orig->ae.xp_node) {
878 rc = avc_xperms_populate(node, orig->ae.xp_node);
879 if (rc) {
880 avc_node_kill(node);
881 goto out_unlock;
882 }
883 }
884
885 switch (event) {
886 case AVC_CALLBACK_GRANT:
887 node->ae.avd.allowed |= perms;
888 if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
889 avc_xperms_allow_perm(node->ae.xp_node, driver, base_perm, xperm);
890 break;
891 case AVC_CALLBACK_TRY_REVOKE:
892 case AVC_CALLBACK_REVOKE:
893 node->ae.avd.allowed &= ~perms;
894 break;
895 case AVC_CALLBACK_AUDITALLOW_ENABLE:
896 node->ae.avd.auditallow |= perms;
897 break;
898 case AVC_CALLBACK_AUDITALLOW_DISABLE:
899 node->ae.avd.auditallow &= ~perms;
900 break;
901 case AVC_CALLBACK_AUDITDENY_ENABLE:
902 node->ae.avd.auditdeny |= perms;
903 break;
904 case AVC_CALLBACK_AUDITDENY_DISABLE:
905 node->ae.avd.auditdeny &= ~perms;
906 break;
907 case AVC_CALLBACK_ADD_XPERMS:
908 rc = avc_add_xperms_decision(node, xpd);
909 if (rc) {
910 avc_node_kill(node);
911 goto out_unlock;
912 }
913 break;
914 }
915 avc_node_replace(node, orig);
916out_unlock:
917 spin_unlock_irqrestore(lock, flag);
918out:
919 return rc;
920}
921
922/**
923 * avc_flush - Flush the cache
924 */
925static void avc_flush(void)
926{
927 struct hlist_head *head;
928 struct avc_node *node;
929 spinlock_t *lock;
930 unsigned long flag;
931 int i;
932
933 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
934 head = &selinux_avc.avc_cache.slots[i];
935 lock = &selinux_avc.avc_cache.slots_lock[i];
936
937 spin_lock_irqsave(lock, flag);
938 /*
939 * With preemptable RCU, the outer spinlock does not
940 * prevent RCU grace periods from ending.
941 */
942 rcu_read_lock();
943 hlist_for_each_entry(node, head, list)
944 avc_node_delete(node);
945 rcu_read_unlock();
946 spin_unlock_irqrestore(lock, flag);
947 }
948}
949
950/**
951 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
952 * @seqno: policy sequence number
953 */
954int avc_ss_reset(u32 seqno)
955{
956 struct avc_callback_node *c;
957 int rc = 0, tmprc;
958
959 avc_flush();
960
961 for (c = avc_callbacks; c; c = c->next) {
962 if (c->events & AVC_CALLBACK_RESET) {
963 tmprc = c->callback(AVC_CALLBACK_RESET);
964 /* save the first error encountered for the return
965 value and continue processing the callbacks */
966 if (!rc)
967 rc = tmprc;
968 }
969 }
970
971 avc_latest_notif_update(seqno, 0);
972 return rc;
973}
974
975/**
976 * avc_compute_av - Add an entry to the AVC based on the security policy
977 * @ssid: subject
978 * @tsid: object/target
979 * @tclass: object class
980 * @avd: access vector decision
981 * @xp_node: AVC extended permissions node
982 *
983 * Slow-path helper function for avc_has_perm_noaudit, when the avc_node lookup
984 * fails. Don't inline this, since it's the slow-path and just results in a
985 * bigger stack frame.
986 */
987static noinline void avc_compute_av(u32 ssid, u32 tsid, u16 tclass,
988 struct av_decision *avd,
989 struct avc_xperms_node *xp_node)
990{
991 INIT_LIST_HEAD(&xp_node->xpd_head);
992 security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp);
993 avc_insert(ssid, tsid, tclass, avd, xp_node);
994}
995
996static noinline int avc_denied(u32 ssid, u32 tsid, u16 tclass, u32 requested,
997 u8 driver, u8 base_perm, u8 xperm,
998 unsigned int flags, struct av_decision *avd)
999{
1000 if (flags & AVC_STRICT)
1001 return -EACCES;
1002
1003 if (enforcing_enabled() &&
1004 !(avd->flags & AVD_FLAGS_PERMISSIVE))
1005 return -EACCES;
1006
1007 avc_update_node(AVC_CALLBACK_GRANT, requested, driver, base_perm,
1008 xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1009 return 0;
1010}
1011
1012/*
1013 * The avc extended permissions logic adds an additional 256 bits of
1014 * permissions to an avc node when extended permissions for that node are
1015 * specified in the avtab. If the additional 256 permissions is not adequate,
1016 * as-is the case with ioctls, then multiple may be chained together and the
1017 * driver field is used to specify which set contains the permission.
1018 */
1019int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested,
1020 u8 driver, u8 base_perm, u8 xperm,
1021 struct common_audit_data *ad)
1022{
1023 struct avc_node *node;
1024 struct av_decision avd;
1025 u32 denied;
1026 struct extended_perms_decision local_xpd;
1027 struct extended_perms_decision *xpd = NULL;
1028 struct extended_perms_data allowed;
1029 struct extended_perms_data auditallow;
1030 struct extended_perms_data dontaudit;
1031 struct avc_xperms_node local_xp_node;
1032 struct avc_xperms_node *xp_node;
1033 int rc = 0, rc2;
1034
1035 xp_node = &local_xp_node;
1036 if (WARN_ON(!requested))
1037 return -EACCES;
1038
1039 rcu_read_lock();
1040
1041 node = avc_lookup(ssid, tsid, tclass);
1042 if (unlikely(!node)) {
1043 avc_compute_av(ssid, tsid, tclass, &avd, xp_node);
1044 } else {
1045 memcpy(&avd, &node->ae.avd, sizeof(avd));
1046 xp_node = node->ae.xp_node;
1047 }
1048 /* if extended permissions are not defined, only consider av_decision */
1049 if (!xp_node || !xp_node->xp.len)
1050 goto decision;
1051
1052 local_xpd.allowed = &allowed;
1053 local_xpd.auditallow = &auditallow;
1054 local_xpd.dontaudit = &dontaudit;
1055
1056 xpd = avc_xperms_decision_lookup(driver, base_perm, xp_node);
1057 if (unlikely(!xpd)) {
1058 /*
1059 * Compute the extended_perms_decision only if the driver
1060 * is flagged and the base permission is known.
1061 */
1062 if (!security_xperm_test(xp_node->xp.drivers.p, driver) ||
1063 !(xp_node->xp.base_perms & base_perm)) {
1064 avd.allowed &= ~requested;
1065 goto decision;
1066 }
1067 rcu_read_unlock();
1068 security_compute_xperms_decision(ssid, tsid, tclass, driver,
1069 base_perm, &local_xpd);
1070 rcu_read_lock();
1071 avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested, driver,
1072 base_perm, xperm, ssid, tsid, tclass, avd.seqno,
1073 &local_xpd, 0);
1074 } else {
1075 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1076 }
1077 xpd = &local_xpd;
1078
1079 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1080 avd.allowed &= ~requested;
1081
1082decision:
1083 denied = requested & ~(avd.allowed);
1084 if (unlikely(denied))
1085 rc = avc_denied(ssid, tsid, tclass, requested, driver,
1086 base_perm, xperm, AVC_EXTENDED_PERMS, &avd);
1087
1088 rcu_read_unlock();
1089
1090 rc2 = avc_xperms_audit(ssid, tsid, tclass, requested,
1091 &avd, xpd, xperm, rc, ad);
1092 if (rc2)
1093 return rc2;
1094 return rc;
1095}
1096
1097/**
1098 * avc_perm_nonode - Add an entry to the AVC
1099 * @ssid: subject
1100 * @tsid: object/target
1101 * @tclass: object class
1102 * @requested: requested permissions
1103 * @flags: AVC flags
1104 * @avd: access vector decision
1105 *
1106 * This is the "we have no node" part of avc_has_perm_noaudit(), which is
1107 * unlikely and needs extra stack space for the new node that we generate, so
1108 * don't inline it.
1109 */
1110static noinline int avc_perm_nonode(u32 ssid, u32 tsid, u16 tclass,
1111 u32 requested, unsigned int flags,
1112 struct av_decision *avd)
1113{
1114 u32 denied;
1115 struct avc_xperms_node xp_node;
1116
1117 avc_compute_av(ssid, tsid, tclass, avd, &xp_node);
1118 denied = requested & ~(avd->allowed);
1119 if (unlikely(denied))
1120 return avc_denied(ssid, tsid, tclass, requested, 0, 0, 0,
1121 flags, avd);
1122 return 0;
1123}
1124
1125/**
1126 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1127 * @ssid: source security identifier
1128 * @tsid: target security identifier
1129 * @tclass: target security class
1130 * @requested: requested permissions, interpreted based on @tclass
1131 * @flags: AVC_STRICT or 0
1132 * @avd: access vector decisions
1133 *
1134 * Check the AVC to determine whether the @requested permissions are granted
1135 * for the SID pair (@ssid, @tsid), interpreting the permissions
1136 * based on @tclass, and call the security server on a cache miss to obtain
1137 * a new decision and add it to the cache. Return a copy of the decisions
1138 * in @avd. Return %0 if all @requested permissions are granted,
1139 * -%EACCES if any permissions are denied, or another -errno upon
1140 * other errors. This function is typically called by avc_has_perm(),
1141 * but may also be called directly to separate permission checking from
1142 * auditing, e.g. in cases where a lock must be held for the check but
1143 * should be released for the auditing.
1144 */
1145inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
1146 u16 tclass, u32 requested,
1147 unsigned int flags,
1148 struct av_decision *avd)
1149{
1150 u32 denied;
1151 struct avc_node *node;
1152
1153 if (WARN_ON(!requested))
1154 return -EACCES;
1155
1156 rcu_read_lock();
1157 node = avc_lookup(ssid, tsid, tclass);
1158 if (unlikely(!node)) {
1159 rcu_read_unlock();
1160 return avc_perm_nonode(ssid, tsid, tclass, requested,
1161 flags, avd);
1162 }
1163 denied = requested & ~node->ae.avd.allowed;
1164 memcpy(avd, &node->ae.avd, sizeof(*avd));
1165 rcu_read_unlock();
1166
1167 if (unlikely(denied))
1168 return avc_denied(ssid, tsid, tclass, requested, 0, 0, 0,
1169 flags, avd);
1170 return 0;
1171}
1172
1173/**
1174 * avc_has_perm - Check permissions and perform any appropriate auditing.
1175 * @ssid: source security identifier
1176 * @tsid: target security identifier
1177 * @tclass: target security class
1178 * @requested: requested permissions, interpreted based on @tclass
1179 * @auditdata: auxiliary audit data
1180 *
1181 * Check the AVC to determine whether the @requested permissions are granted
1182 * for the SID pair (@ssid, @tsid), interpreting the permissions
1183 * based on @tclass, and call the security server on a cache miss to obtain
1184 * a new decision and add it to the cache. Audit the granting or denial of
1185 * permissions in accordance with the policy. Return %0 if all @requested
1186 * permissions are granted, -%EACCES if any permissions are denied, or
1187 * another -errno upon other errors.
1188 */
1189int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
1190 u32 requested, struct common_audit_data *auditdata)
1191{
1192 struct av_decision avd;
1193 int rc, rc2;
1194
1195 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0,
1196 &avd);
1197
1198 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc,
1199 auditdata);
1200 if (rc2)
1201 return rc2;
1202 return rc;
1203}
1204
1205u32 avc_policy_seqno(void)
1206{
1207 return selinux_avc.avc_cache.latest_notif;
1208}