Linux Audio

Check our new training course

Loading...
  1/*
  2 * Implementation of the kernel access vector cache (AVC).
  3 *
  4 * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
  5 *	     James Morris <jmorris@redhat.com>
  6 *
  7 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
  8 *	Replaced the avc_lock spinlock by RCU.
  9 *
 10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 11 *
 12 *	This program is free software; you can redistribute it and/or modify
 13 *	it under the terms of the GNU General Public License version 2,
 14 *	as published by the Free Software Foundation.
 15 */
 16#include <linux/types.h>
 17#include <linux/stddef.h>
 18#include <linux/kernel.h>
 19#include <linux/slab.h>
 20#include <linux/fs.h>
 21#include <linux/dcache.h>
 22#include <linux/init.h>
 23#include <linux/skbuff.h>
 24#include <linux/percpu.h>
 25#include <net/sock.h>
 26#include <linux/un.h>
 27#include <net/af_unix.h>
 28#include <linux/ip.h>
 29#include <linux/audit.h>
 30#include <linux/ipv6.h>
 31#include <net/ipv6.h>
 32#include "avc.h"
 33#include "avc_ss.h"
 34#include "classmap.h"
 35
 36#define AVC_CACHE_SLOTS			512
 37#define AVC_DEF_CACHE_THRESHOLD		512
 38#define AVC_CACHE_RECLAIM		16
 39
 40#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
 41#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
 42#else
 43#define avc_cache_stats_incr(field)	do {} while (0)
 44#endif
 45
 46struct avc_entry {
 47	u32			ssid;
 48	u32			tsid;
 49	u16			tclass;
 50	struct av_decision	avd;
 51};
 52
 53struct avc_node {
 54	struct avc_entry	ae;
 55	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
 56	struct rcu_head		rhead;
 57};
 58
 59struct avc_cache {
 60	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
 61	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
 62	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
 63	atomic_t		active_nodes;
 64	u32			latest_notif;	/* latest revocation notification */
 65};
 66
 67struct avc_callback_node {
 68	int (*callback) (u32 event);
 69	u32 events;
 70	struct avc_callback_node *next;
 71};
 72
 73/* Exported via selinufs */
 74unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
 75
 76#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
 77DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
 78#endif
 79
 80static struct avc_cache avc_cache;
 81static struct avc_callback_node *avc_callbacks;
 82static struct kmem_cache *avc_node_cachep;
 83
 84static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 85{
 86	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 87}
 88
 89/**
 90 * avc_dump_av - Display an access vector in human-readable form.
 91 * @tclass: target security class
 92 * @av: access vector
 93 */
 94static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
 95{
 96	const char **perms;
 97	int i, perm;
 98
 99	if (av == 0) {
100		audit_log_format(ab, " null");
101		return;
102	}
103
104	perms = secclass_map[tclass-1].perms;
105
106	audit_log_format(ab, " {");
107	i = 0;
108	perm = 1;
109	while (i < (sizeof(av) * 8)) {
110		if ((perm & av) && perms[i]) {
111			audit_log_format(ab, " %s", perms[i]);
112			av &= ~perm;
113		}
114		i++;
115		perm <<= 1;
116	}
117
118	if (av)
119		audit_log_format(ab, " 0x%x", av);
120
121	audit_log_format(ab, " }");
122}
123
124/**
125 * avc_dump_query - Display a SID pair and a class in human-readable form.
126 * @ssid: source security identifier
127 * @tsid: target security identifier
128 * @tclass: target security class
129 */
130static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
131{
132	int rc;
133	char *scontext;
134	u32 scontext_len;
135
136	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
137	if (rc)
138		audit_log_format(ab, "ssid=%d", ssid);
139	else {
140		audit_log_format(ab, "scontext=%s", scontext);
141		kfree(scontext);
142	}
143
144	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
145	if (rc)
146		audit_log_format(ab, " tsid=%d", tsid);
147	else {
148		audit_log_format(ab, " tcontext=%s", scontext);
149		kfree(scontext);
150	}
151
152	BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
153	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
154}
155
156/**
157 * avc_init - Initialize the AVC.
158 *
159 * Initialize the access vector cache.
160 */
161void __init avc_init(void)
162{
163	int i;
164
165	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
166		INIT_HLIST_HEAD(&avc_cache.slots[i]);
167		spin_lock_init(&avc_cache.slots_lock[i]);
168	}
169	atomic_set(&avc_cache.active_nodes, 0);
170	atomic_set(&avc_cache.lru_hint, 0);
171
172	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
173					     0, SLAB_PANIC, NULL);
174
175	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
176}
177
178int avc_get_hash_stats(char *page)
179{
180	int i, chain_len, max_chain_len, slots_used;
181	struct avc_node *node;
182	struct hlist_head *head;
183
184	rcu_read_lock();
185
186	slots_used = 0;
187	max_chain_len = 0;
188	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
189		head = &avc_cache.slots[i];
190		if (!hlist_empty(head)) {
191			struct hlist_node *next;
192
193			slots_used++;
194			chain_len = 0;
195			hlist_for_each_entry_rcu(node, next, head, list)
196				chain_len++;
197			if (chain_len > max_chain_len)
198				max_chain_len = chain_len;
199		}
200	}
201
202	rcu_read_unlock();
203
204	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
205			 "longest chain: %d\n",
206			 atomic_read(&avc_cache.active_nodes),
207			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
208}
209
210static void avc_node_free(struct rcu_head *rhead)
211{
212	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
213	kmem_cache_free(avc_node_cachep, node);
214	avc_cache_stats_incr(frees);
215}
216
217static void avc_node_delete(struct avc_node *node)
218{
219	hlist_del_rcu(&node->list);
220	call_rcu(&node->rhead, avc_node_free);
221	atomic_dec(&avc_cache.active_nodes);
222}
223
224static void avc_node_kill(struct avc_node *node)
225{
226	kmem_cache_free(avc_node_cachep, node);
227	avc_cache_stats_incr(frees);
228	atomic_dec(&avc_cache.active_nodes);
229}
230
231static void avc_node_replace(struct avc_node *new, struct avc_node *old)
232{
233	hlist_replace_rcu(&old->list, &new->list);
234	call_rcu(&old->rhead, avc_node_free);
235	atomic_dec(&avc_cache.active_nodes);
236}
237
238static inline int avc_reclaim_node(void)
239{
240	struct avc_node *node;
241	int hvalue, try, ecx;
242	unsigned long flags;
243	struct hlist_head *head;
244	struct hlist_node *next;
245	spinlock_t *lock;
246
247	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
248		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
249		head = &avc_cache.slots[hvalue];
250		lock = &avc_cache.slots_lock[hvalue];
251
252		if (!spin_trylock_irqsave(lock, flags))
253			continue;
254
255		rcu_read_lock();
256		hlist_for_each_entry(node, next, head, list) {
257			avc_node_delete(node);
258			avc_cache_stats_incr(reclaims);
259			ecx++;
260			if (ecx >= AVC_CACHE_RECLAIM) {
261				rcu_read_unlock();
262				spin_unlock_irqrestore(lock, flags);
263				goto out;
264			}
265		}
266		rcu_read_unlock();
267		spin_unlock_irqrestore(lock, flags);
268	}
269out:
270	return ecx;
271}
272
273static struct avc_node *avc_alloc_node(void)
274{
275	struct avc_node *node;
276
277	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
278	if (!node)
279		goto out;
280
281	INIT_HLIST_NODE(&node->list);
282	avc_cache_stats_incr(allocations);
283
284	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
285		avc_reclaim_node();
286
287out:
288	return node;
289}
290
291static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
292{
293	node->ae.ssid = ssid;
294	node->ae.tsid = tsid;
295	node->ae.tclass = tclass;
296	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
297}
298
299static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
300{
301	struct avc_node *node, *ret = NULL;
302	int hvalue;
303	struct hlist_head *head;
304	struct hlist_node *next;
305
306	hvalue = avc_hash(ssid, tsid, tclass);
307	head = &avc_cache.slots[hvalue];
308	hlist_for_each_entry_rcu(node, next, head, list) {
309		if (ssid == node->ae.ssid &&
310		    tclass == node->ae.tclass &&
311		    tsid == node->ae.tsid) {
312			ret = node;
313			break;
314		}
315	}
316
317	return ret;
318}
319
320/**
321 * avc_lookup - Look up an AVC entry.
322 * @ssid: source security identifier
323 * @tsid: target security identifier
324 * @tclass: target security class
325 *
326 * Look up an AVC entry that is valid for the
327 * (@ssid, @tsid), interpreting the permissions
328 * based on @tclass.  If a valid AVC entry exists,
329 * then this function returns the avc_node.
330 * Otherwise, this function returns NULL.
331 */
332static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
333{
334	struct avc_node *node;
335
336	avc_cache_stats_incr(lookups);
337	node = avc_search_node(ssid, tsid, tclass);
338
339	if (node)
340		return node;
341
342	avc_cache_stats_incr(misses);
343	return NULL;
344}
345
346static int avc_latest_notif_update(int seqno, int is_insert)
347{
348	int ret = 0;
349	static DEFINE_SPINLOCK(notif_lock);
350	unsigned long flag;
351
352	spin_lock_irqsave(&notif_lock, flag);
353	if (is_insert) {
354		if (seqno < avc_cache.latest_notif) {
355			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
356			       seqno, avc_cache.latest_notif);
357			ret = -EAGAIN;
358		}
359	} else {
360		if (seqno > avc_cache.latest_notif)
361			avc_cache.latest_notif = seqno;
362	}
363	spin_unlock_irqrestore(&notif_lock, flag);
364
365	return ret;
366}
367
368/**
369 * avc_insert - Insert an AVC entry.
370 * @ssid: source security identifier
371 * @tsid: target security identifier
372 * @tclass: target security class
373 * @avd: resulting av decision
374 *
375 * Insert an AVC entry for the SID pair
376 * (@ssid, @tsid) and class @tclass.
377 * The access vectors and the sequence number are
378 * normally provided by the security server in
379 * response to a security_compute_av() call.  If the
380 * sequence number @avd->seqno is not less than the latest
381 * revocation notification, then the function copies
382 * the access vectors into a cache entry, returns
383 * avc_node inserted. Otherwise, this function returns NULL.
384 */
385static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
386{
387	struct avc_node *pos, *node = NULL;
388	int hvalue;
389	unsigned long flag;
390
391	if (avc_latest_notif_update(avd->seqno, 1))
392		goto out;
393
394	node = avc_alloc_node();
395	if (node) {
396		struct hlist_head *head;
397		struct hlist_node *next;
398		spinlock_t *lock;
399
400		hvalue = avc_hash(ssid, tsid, tclass);
401		avc_node_populate(node, ssid, tsid, tclass, avd);
402
403		head = &avc_cache.slots[hvalue];
404		lock = &avc_cache.slots_lock[hvalue];
405
406		spin_lock_irqsave(lock, flag);
407		hlist_for_each_entry(pos, next, head, list) {
408			if (pos->ae.ssid == ssid &&
409			    pos->ae.tsid == tsid &&
410			    pos->ae.tclass == tclass) {
411				avc_node_replace(node, pos);
412				goto found;
413			}
414		}
415		hlist_add_head_rcu(&node->list, head);
416found:
417		spin_unlock_irqrestore(lock, flag);
418	}
419out:
420	return node;
421}
422
423/**
424 * avc_audit_pre_callback - SELinux specific information
425 * will be called by generic audit code
426 * @ab: the audit buffer
427 * @a: audit_data
428 */
429static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
430{
431	struct common_audit_data *ad = a;
432	audit_log_format(ab, "avc:  %s ",
433			 ad->selinux_audit_data->denied ? "denied" : "granted");
434	avc_dump_av(ab, ad->selinux_audit_data->tclass,
435			ad->selinux_audit_data->audited);
436	audit_log_format(ab, " for ");
437}
438
439/**
440 * avc_audit_post_callback - SELinux specific information
441 * will be called by generic audit code
442 * @ab: the audit buffer
443 * @a: audit_data
444 */
445static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
446{
447	struct common_audit_data *ad = a;
448	audit_log_format(ab, " ");
449	avc_dump_query(ab, ad->selinux_audit_data->ssid,
450			   ad->selinux_audit_data->tsid,
451			   ad->selinux_audit_data->tclass);
452}
453
454/* This is the slow part of avc audit with big stack footprint */
455noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
456		u32 requested, u32 audited, u32 denied,
457		struct common_audit_data *a,
458		unsigned flags)
459{
460	struct common_audit_data stack_data;
461	struct selinux_audit_data sad;
462
463	if (!a) {
464		a = &stack_data;
465		a->type = LSM_AUDIT_DATA_NONE;
466	}
467
468	/*
469	 * When in a RCU walk do the audit on the RCU retry.  This is because
470	 * the collection of the dname in an inode audit message is not RCU
471	 * safe.  Note this may drop some audits when the situation changes
472	 * during retry. However this is logically just as if the operation
473	 * happened a little later.
474	 */
475	if ((a->type == LSM_AUDIT_DATA_INODE) &&
476	    (flags & MAY_NOT_BLOCK))
477		return -ECHILD;
478
479	sad.tclass = tclass;
480	sad.requested = requested;
481	sad.ssid = ssid;
482	sad.tsid = tsid;
483	sad.audited = audited;
484	sad.denied = denied;
485
486	a->selinux_audit_data = &sad;
487
488	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
489	return 0;
490}
491
492/**
493 * avc_add_callback - Register a callback for security events.
494 * @callback: callback function
495 * @events: security events
496 *
497 * Register a callback function for events in the set @events.
498 * Returns %0 on success or -%ENOMEM if insufficient memory
499 * exists to add the callback.
500 */
501int __init avc_add_callback(int (*callback)(u32 event), u32 events)
502{
503	struct avc_callback_node *c;
504	int rc = 0;
505
506	c = kmalloc(sizeof(*c), GFP_KERNEL);
507	if (!c) {
508		rc = -ENOMEM;
509		goto out;
510	}
511
512	c->callback = callback;
513	c->events = events;
514	c->next = avc_callbacks;
515	avc_callbacks = c;
516out:
517	return rc;
518}
519
520static inline int avc_sidcmp(u32 x, u32 y)
521{
522	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
523}
524
525/**
526 * avc_update_node Update an AVC entry
527 * @event : Updating event
528 * @perms : Permission mask bits
529 * @ssid,@tsid,@tclass : identifier of an AVC entry
530 * @seqno : sequence number when decision was made
531 *
532 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
533 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
534 * otherwise, this function updates the AVC entry. The original AVC-entry object
535 * will release later by RCU.
536 */
537static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
538			   u32 seqno)
539{
540	int hvalue, rc = 0;
541	unsigned long flag;
542	struct avc_node *pos, *node, *orig = NULL;
543	struct hlist_head *head;
544	struct hlist_node *next;
545	spinlock_t *lock;
546
547	node = avc_alloc_node();
548	if (!node) {
549		rc = -ENOMEM;
550		goto out;
551	}
552
553	/* Lock the target slot */
554	hvalue = avc_hash(ssid, tsid, tclass);
555
556	head = &avc_cache.slots[hvalue];
557	lock = &avc_cache.slots_lock[hvalue];
558
559	spin_lock_irqsave(lock, flag);
560
561	hlist_for_each_entry(pos, next, head, list) {
562		if (ssid == pos->ae.ssid &&
563		    tsid == pos->ae.tsid &&
564		    tclass == pos->ae.tclass &&
565		    seqno == pos->ae.avd.seqno){
566			orig = pos;
567			break;
568		}
569	}
570
571	if (!orig) {
572		rc = -ENOENT;
573		avc_node_kill(node);
574		goto out_unlock;
575	}
576
577	/*
578	 * Copy and replace original node.
579	 */
580
581	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
582
583	switch (event) {
584	case AVC_CALLBACK_GRANT:
585		node->ae.avd.allowed |= perms;
586		break;
587	case AVC_CALLBACK_TRY_REVOKE:
588	case AVC_CALLBACK_REVOKE:
589		node->ae.avd.allowed &= ~perms;
590		break;
591	case AVC_CALLBACK_AUDITALLOW_ENABLE:
592		node->ae.avd.auditallow |= perms;
593		break;
594	case AVC_CALLBACK_AUDITALLOW_DISABLE:
595		node->ae.avd.auditallow &= ~perms;
596		break;
597	case AVC_CALLBACK_AUDITDENY_ENABLE:
598		node->ae.avd.auditdeny |= perms;
599		break;
600	case AVC_CALLBACK_AUDITDENY_DISABLE:
601		node->ae.avd.auditdeny &= ~perms;
602		break;
603	}
604	avc_node_replace(node, orig);
605out_unlock:
606	spin_unlock_irqrestore(lock, flag);
607out:
608	return rc;
609}
610
611/**
612 * avc_flush - Flush the cache
613 */
614static void avc_flush(void)
615{
616	struct hlist_head *head;
617	struct hlist_node *next;
618	struct avc_node *node;
619	spinlock_t *lock;
620	unsigned long flag;
621	int i;
622
623	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
624		head = &avc_cache.slots[i];
625		lock = &avc_cache.slots_lock[i];
626
627		spin_lock_irqsave(lock, flag);
628		/*
629		 * With preemptable RCU, the outer spinlock does not
630		 * prevent RCU grace periods from ending.
631		 */
632		rcu_read_lock();
633		hlist_for_each_entry(node, next, head, list)
634			avc_node_delete(node);
635		rcu_read_unlock();
636		spin_unlock_irqrestore(lock, flag);
637	}
638}
639
640/**
641 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
642 * @seqno: policy sequence number
643 */
644int avc_ss_reset(u32 seqno)
645{
646	struct avc_callback_node *c;
647	int rc = 0, tmprc;
648
649	avc_flush();
650
651	for (c = avc_callbacks; c; c = c->next) {
652		if (c->events & AVC_CALLBACK_RESET) {
653			tmprc = c->callback(AVC_CALLBACK_RESET);
654			/* save the first error encountered for the return
655			   value and continue processing the callbacks */
656			if (!rc)
657				rc = tmprc;
658		}
659	}
660
661	avc_latest_notif_update(seqno, 0);
662	return rc;
663}
664
665/*
666 * Slow-path helper function for avc_has_perm_noaudit,
667 * when the avc_node lookup fails. We get called with
668 * the RCU read lock held, and need to return with it
669 * still held, but drop if for the security compute.
670 *
671 * Don't inline this, since it's the slow-path and just
672 * results in a bigger stack frame.
673 */
674static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
675			 u16 tclass, struct av_decision *avd)
676{
677	rcu_read_unlock();
678	security_compute_av(ssid, tsid, tclass, avd);
679	rcu_read_lock();
680	return avc_insert(ssid, tsid, tclass, avd);
681}
682
683static noinline int avc_denied(u32 ssid, u32 tsid,
684			 u16 tclass, u32 requested,
685			 unsigned flags,
686			 struct av_decision *avd)
687{
688	if (flags & AVC_STRICT)
689		return -EACCES;
690
691	if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
692		return -EACCES;
693
694	avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
695				tsid, tclass, avd->seqno);
696	return 0;
697}
698
699
700/**
701 * avc_has_perm_noaudit - Check permissions but perform no auditing.
702 * @ssid: source security identifier
703 * @tsid: target security identifier
704 * @tclass: target security class
705 * @requested: requested permissions, interpreted based on @tclass
706 * @flags:  AVC_STRICT or 0
707 * @avd: access vector decisions
708 *
709 * Check the AVC to determine whether the @requested permissions are granted
710 * for the SID pair (@ssid, @tsid), interpreting the permissions
711 * based on @tclass, and call the security server on a cache miss to obtain
712 * a new decision and add it to the cache.  Return a copy of the decisions
713 * in @avd.  Return %0 if all @requested permissions are granted,
714 * -%EACCES if any permissions are denied, or another -errno upon
715 * other errors.  This function is typically called by avc_has_perm(),
716 * but may also be called directly to separate permission checking from
717 * auditing, e.g. in cases where a lock must be held for the check but
718 * should be released for the auditing.
719 */
720inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
721			 u16 tclass, u32 requested,
722			 unsigned flags,
723			 struct av_decision *avd)
724{
725	struct avc_node *node;
726	int rc = 0;
727	u32 denied;
728
729	BUG_ON(!requested);
730
731	rcu_read_lock();
732
733	node = avc_lookup(ssid, tsid, tclass);
734	if (unlikely(!node)) {
735		node = avc_compute_av(ssid, tsid, tclass, avd);
736	} else {
737		memcpy(avd, &node->ae.avd, sizeof(*avd));
738		avd = &node->ae.avd;
739	}
740
741	denied = requested & ~(avd->allowed);
742	if (unlikely(denied))
743		rc = avc_denied(ssid, tsid, tclass, requested, flags, avd);
744
745	rcu_read_unlock();
746	return rc;
747}
748
749/**
750 * avc_has_perm - Check permissions and perform any appropriate auditing.
751 * @ssid: source security identifier
752 * @tsid: target security identifier
753 * @tclass: target security class
754 * @requested: requested permissions, interpreted based on @tclass
755 * @auditdata: auxiliary audit data
756 * @flags: VFS walk flags
757 *
758 * Check the AVC to determine whether the @requested permissions are granted
759 * for the SID pair (@ssid, @tsid), interpreting the permissions
760 * based on @tclass, and call the security server on a cache miss to obtain
761 * a new decision and add it to the cache.  Audit the granting or denial of
762 * permissions in accordance with the policy.  Return %0 if all @requested
763 * permissions are granted, -%EACCES if any permissions are denied, or
764 * another -errno upon other errors.
765 */
766int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
767		       u32 requested, struct common_audit_data *auditdata,
768		       unsigned flags)
769{
770	struct av_decision avd;
771	int rc, rc2;
772
773	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
774
775	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata,
776			flags);
777	if (rc2)
778		return rc2;
779	return rc;
780}
781
782u32 avc_policy_seqno(void)
783{
784	return avc_cache.latest_notif;
785}
786
787void avc_disable(void)
788{
789	/*
790	 * If you are looking at this because you have realized that we are
791	 * not destroying the avc_node_cachep it might be easy to fix, but
792	 * I don't know the memory barrier semantics well enough to know.  It's
793	 * possible that some other task dereferenced security_ops when
794	 * it still pointed to selinux operations.  If that is the case it's
795	 * possible that it is about to use the avc and is about to need the
796	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
797	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
798	 * the cache and get that memory back.
799	 */
800	if (avc_node_cachep) {
801		avc_flush();
802		/* kmem_cache_destroy(avc_node_cachep); */
803	}
804}