Loading...
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/mm.h>
32#include <linux/random.h>
33#include <linux/sched/signal.h>
34#include <linux/export.h>
35#include <linux/swap.h>
36#include <linux/uio.h>
37#include <linux/khugepaged.h>
38#include <linux/hugetlb.h>
39#include <linux/frontswap.h>
40#include <linux/fs_parser.h>
41
42#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44static struct vfsmount *shm_mnt;
45
46#ifdef CONFIG_SHMEM
47/*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
53#include <linux/xattr.h>
54#include <linux/exportfs.h>
55#include <linux/posix_acl.h>
56#include <linux/posix_acl_xattr.h>
57#include <linux/mman.h>
58#include <linux/string.h>
59#include <linux/slab.h>
60#include <linux/backing-dev.h>
61#include <linux/shmem_fs.h>
62#include <linux/writeback.h>
63#include <linux/blkdev.h>
64#include <linux/pagevec.h>
65#include <linux/percpu_counter.h>
66#include <linux/falloc.h>
67#include <linux/splice.h>
68#include <linux/security.h>
69#include <linux/swapops.h>
70#include <linux/mempolicy.h>
71#include <linux/namei.h>
72#include <linux/ctype.h>
73#include <linux/migrate.h>
74#include <linux/highmem.h>
75#include <linux/seq_file.h>
76#include <linux/magic.h>
77#include <linux/syscalls.h>
78#include <linux/fcntl.h>
79#include <uapi/linux/memfd.h>
80#include <linux/userfaultfd_k.h>
81#include <linux/rmap.h>
82#include <linux/uuid.h>
83
84#include <linux/uaccess.h>
85#include <asm/pgtable.h>
86
87#include "internal.h"
88
89#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
90#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
91
92/* Pretend that each entry is of this size in directory's i_size */
93#define BOGO_DIRENT_SIZE 20
94
95/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96#define SHORT_SYMLINK_LEN 128
97
98/*
99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100 * inode->i_private (with i_mutex making sure that it has only one user at
101 * a time): we would prefer not to enlarge the shmem inode just for that.
102 */
103struct shmem_falloc {
104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105 pgoff_t start; /* start of range currently being fallocated */
106 pgoff_t next; /* the next page offset to be fallocated */
107 pgoff_t nr_falloced; /* how many new pages have been fallocated */
108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
109};
110
111struct shmem_options {
112 unsigned long long blocks;
113 unsigned long long inodes;
114 struct mempolicy *mpol;
115 kuid_t uid;
116 kgid_t gid;
117 umode_t mode;
118 int huge;
119 int seen;
120#define SHMEM_SEEN_BLOCKS 1
121#define SHMEM_SEEN_INODES 2
122#define SHMEM_SEEN_HUGE 4
123};
124
125#ifdef CONFIG_TMPFS
126static unsigned long shmem_default_max_blocks(void)
127{
128 return totalram_pages() / 2;
129}
130
131static unsigned long shmem_default_max_inodes(void)
132{
133 unsigned long nr_pages = totalram_pages();
134
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136}
137#endif
138
139static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141 struct shmem_inode_info *info, pgoff_t index);
142static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143 struct page **pagep, enum sgp_type sgp,
144 gfp_t gfp, struct vm_area_struct *vma,
145 vm_fault_t *fault_type);
146static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147 struct page **pagep, enum sgp_type sgp,
148 gfp_t gfp, struct vm_area_struct *vma,
149 struct vm_fault *vmf, vm_fault_t *fault_type);
150
151int shmem_getpage(struct inode *inode, pgoff_t index,
152 struct page **pagep, enum sgp_type sgp)
153{
154 return shmem_getpage_gfp(inode, index, pagep, sgp,
155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
156}
157
158static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159{
160 return sb->s_fs_info;
161}
162
163/*
164 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165 * for shared memory and for shared anonymous (/dev/zero) mappings
166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167 * consistent with the pre-accounting of private mappings ...
168 */
169static inline int shmem_acct_size(unsigned long flags, loff_t size)
170{
171 return (flags & VM_NORESERVE) ?
172 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
173}
174
175static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176{
177 if (!(flags & VM_NORESERVE))
178 vm_unacct_memory(VM_ACCT(size));
179}
180
181static inline int shmem_reacct_size(unsigned long flags,
182 loff_t oldsize, loff_t newsize)
183{
184 if (!(flags & VM_NORESERVE)) {
185 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186 return security_vm_enough_memory_mm(current->mm,
187 VM_ACCT(newsize) - VM_ACCT(oldsize));
188 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190 }
191 return 0;
192}
193
194/*
195 * ... whereas tmpfs objects are accounted incrementally as
196 * pages are allocated, in order to allow large sparse files.
197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199 */
200static inline int shmem_acct_block(unsigned long flags, long pages)
201{
202 if (!(flags & VM_NORESERVE))
203 return 0;
204
205 return security_vm_enough_memory_mm(current->mm,
206 pages * VM_ACCT(PAGE_SIZE));
207}
208
209static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210{
211 if (flags & VM_NORESERVE)
212 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
213}
214
215static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216{
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220 if (shmem_acct_block(info->flags, pages))
221 return false;
222
223 if (sbinfo->max_blocks) {
224 if (percpu_counter_compare(&sbinfo->used_blocks,
225 sbinfo->max_blocks - pages) > 0)
226 goto unacct;
227 percpu_counter_add(&sbinfo->used_blocks, pages);
228 }
229
230 return true;
231
232unacct:
233 shmem_unacct_blocks(info->flags, pages);
234 return false;
235}
236
237static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238{
239 struct shmem_inode_info *info = SHMEM_I(inode);
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241
242 if (sbinfo->max_blocks)
243 percpu_counter_sub(&sbinfo->used_blocks, pages);
244 shmem_unacct_blocks(info->flags, pages);
245}
246
247static const struct super_operations shmem_ops;
248static const struct address_space_operations shmem_aops;
249static const struct file_operations shmem_file_operations;
250static const struct inode_operations shmem_inode_operations;
251static const struct inode_operations shmem_dir_inode_operations;
252static const struct inode_operations shmem_special_inode_operations;
253static const struct vm_operations_struct shmem_vm_ops;
254static struct file_system_type shmem_fs_type;
255
256bool vma_is_shmem(struct vm_area_struct *vma)
257{
258 return vma->vm_ops == &shmem_vm_ops;
259}
260
261static LIST_HEAD(shmem_swaplist);
262static DEFINE_MUTEX(shmem_swaplist_mutex);
263
264static int shmem_reserve_inode(struct super_block *sb)
265{
266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 if (sbinfo->max_inodes) {
268 spin_lock(&sbinfo->stat_lock);
269 if (!sbinfo->free_inodes) {
270 spin_unlock(&sbinfo->stat_lock);
271 return -ENOSPC;
272 }
273 sbinfo->free_inodes--;
274 spin_unlock(&sbinfo->stat_lock);
275 }
276 return 0;
277}
278
279static void shmem_free_inode(struct super_block *sb)
280{
281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282 if (sbinfo->max_inodes) {
283 spin_lock(&sbinfo->stat_lock);
284 sbinfo->free_inodes++;
285 spin_unlock(&sbinfo->stat_lock);
286 }
287}
288
289/**
290 * shmem_recalc_inode - recalculate the block usage of an inode
291 * @inode: inode to recalc
292 *
293 * We have to calculate the free blocks since the mm can drop
294 * undirtied hole pages behind our back.
295 *
296 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298 *
299 * It has to be called with the spinlock held.
300 */
301static void shmem_recalc_inode(struct inode *inode)
302{
303 struct shmem_inode_info *info = SHMEM_I(inode);
304 long freed;
305
306 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307 if (freed > 0) {
308 info->alloced -= freed;
309 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310 shmem_inode_unacct_blocks(inode, freed);
311 }
312}
313
314bool shmem_charge(struct inode *inode, long pages)
315{
316 struct shmem_inode_info *info = SHMEM_I(inode);
317 unsigned long flags;
318
319 if (!shmem_inode_acct_block(inode, pages))
320 return false;
321
322 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323 inode->i_mapping->nrpages += pages;
324
325 spin_lock_irqsave(&info->lock, flags);
326 info->alloced += pages;
327 inode->i_blocks += pages * BLOCKS_PER_PAGE;
328 shmem_recalc_inode(inode);
329 spin_unlock_irqrestore(&info->lock, flags);
330
331 return true;
332}
333
334void shmem_uncharge(struct inode *inode, long pages)
335{
336 struct shmem_inode_info *info = SHMEM_I(inode);
337 unsigned long flags;
338
339 /* nrpages adjustment done by __delete_from_page_cache() or caller */
340
341 spin_lock_irqsave(&info->lock, flags);
342 info->alloced -= pages;
343 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344 shmem_recalc_inode(inode);
345 spin_unlock_irqrestore(&info->lock, flags);
346
347 shmem_inode_unacct_blocks(inode, pages);
348}
349
350/*
351 * Replace item expected in xarray by a new item, while holding xa_lock.
352 */
353static int shmem_replace_entry(struct address_space *mapping,
354 pgoff_t index, void *expected, void *replacement)
355{
356 XA_STATE(xas, &mapping->i_pages, index);
357 void *item;
358
359 VM_BUG_ON(!expected);
360 VM_BUG_ON(!replacement);
361 item = xas_load(&xas);
362 if (item != expected)
363 return -ENOENT;
364 xas_store(&xas, replacement);
365 return 0;
366}
367
368/*
369 * Sometimes, before we decide whether to proceed or to fail, we must check
370 * that an entry was not already brought back from swap by a racing thread.
371 *
372 * Checking page is not enough: by the time a SwapCache page is locked, it
373 * might be reused, and again be SwapCache, using the same swap as before.
374 */
375static bool shmem_confirm_swap(struct address_space *mapping,
376 pgoff_t index, swp_entry_t swap)
377{
378 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
379}
380
381/*
382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383 *
384 * SHMEM_HUGE_NEVER:
385 * disables huge pages for the mount;
386 * SHMEM_HUGE_ALWAYS:
387 * enables huge pages for the mount;
388 * SHMEM_HUGE_WITHIN_SIZE:
389 * only allocate huge pages if the page will be fully within i_size,
390 * also respect fadvise()/madvise() hints;
391 * SHMEM_HUGE_ADVISE:
392 * only allocate huge pages if requested with fadvise()/madvise();
393 */
394
395#define SHMEM_HUGE_NEVER 0
396#define SHMEM_HUGE_ALWAYS 1
397#define SHMEM_HUGE_WITHIN_SIZE 2
398#define SHMEM_HUGE_ADVISE 3
399
400/*
401 * Special values.
402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403 *
404 * SHMEM_HUGE_DENY:
405 * disables huge on shm_mnt and all mounts, for emergency use;
406 * SHMEM_HUGE_FORCE:
407 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408 *
409 */
410#define SHMEM_HUGE_DENY (-1)
411#define SHMEM_HUGE_FORCE (-2)
412
413#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
414/* ifdef here to avoid bloating shmem.o when not necessary */
415
416static int shmem_huge __read_mostly;
417
418#if defined(CONFIG_SYSFS)
419static int shmem_parse_huge(const char *str)
420{
421 if (!strcmp(str, "never"))
422 return SHMEM_HUGE_NEVER;
423 if (!strcmp(str, "always"))
424 return SHMEM_HUGE_ALWAYS;
425 if (!strcmp(str, "within_size"))
426 return SHMEM_HUGE_WITHIN_SIZE;
427 if (!strcmp(str, "advise"))
428 return SHMEM_HUGE_ADVISE;
429 if (!strcmp(str, "deny"))
430 return SHMEM_HUGE_DENY;
431 if (!strcmp(str, "force"))
432 return SHMEM_HUGE_FORCE;
433 return -EINVAL;
434}
435#endif
436
437#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
438static const char *shmem_format_huge(int huge)
439{
440 switch (huge) {
441 case SHMEM_HUGE_NEVER:
442 return "never";
443 case SHMEM_HUGE_ALWAYS:
444 return "always";
445 case SHMEM_HUGE_WITHIN_SIZE:
446 return "within_size";
447 case SHMEM_HUGE_ADVISE:
448 return "advise";
449 case SHMEM_HUGE_DENY:
450 return "deny";
451 case SHMEM_HUGE_FORCE:
452 return "force";
453 default:
454 VM_BUG_ON(1);
455 return "bad_val";
456 }
457}
458#endif
459
460static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461 struct shrink_control *sc, unsigned long nr_to_split)
462{
463 LIST_HEAD(list), *pos, *next;
464 LIST_HEAD(to_remove);
465 struct inode *inode;
466 struct shmem_inode_info *info;
467 struct page *page;
468 unsigned long batch = sc ? sc->nr_to_scan : 128;
469 int removed = 0, split = 0;
470
471 if (list_empty(&sbinfo->shrinklist))
472 return SHRINK_STOP;
473
474 spin_lock(&sbinfo->shrinklist_lock);
475 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476 info = list_entry(pos, struct shmem_inode_info, shrinklist);
477
478 /* pin the inode */
479 inode = igrab(&info->vfs_inode);
480
481 /* inode is about to be evicted */
482 if (!inode) {
483 list_del_init(&info->shrinklist);
484 removed++;
485 goto next;
486 }
487
488 /* Check if there's anything to gain */
489 if (round_up(inode->i_size, PAGE_SIZE) ==
490 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
491 list_move(&info->shrinklist, &to_remove);
492 removed++;
493 goto next;
494 }
495
496 list_move(&info->shrinklist, &list);
497next:
498 if (!--batch)
499 break;
500 }
501 spin_unlock(&sbinfo->shrinklist_lock);
502
503 list_for_each_safe(pos, next, &to_remove) {
504 info = list_entry(pos, struct shmem_inode_info, shrinklist);
505 inode = &info->vfs_inode;
506 list_del_init(&info->shrinklist);
507 iput(inode);
508 }
509
510 list_for_each_safe(pos, next, &list) {
511 int ret;
512
513 info = list_entry(pos, struct shmem_inode_info, shrinklist);
514 inode = &info->vfs_inode;
515
516 if (nr_to_split && split >= nr_to_split)
517 goto leave;
518
519 page = find_get_page(inode->i_mapping,
520 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
521 if (!page)
522 goto drop;
523
524 /* No huge page at the end of the file: nothing to split */
525 if (!PageTransHuge(page)) {
526 put_page(page);
527 goto drop;
528 }
529
530 /*
531 * Leave the inode on the list if we failed to lock
532 * the page at this time.
533 *
534 * Waiting for the lock may lead to deadlock in the
535 * reclaim path.
536 */
537 if (!trylock_page(page)) {
538 put_page(page);
539 goto leave;
540 }
541
542 ret = split_huge_page(page);
543 unlock_page(page);
544 put_page(page);
545
546 /* If split failed leave the inode on the list */
547 if (ret)
548 goto leave;
549
550 split++;
551drop:
552 list_del_init(&info->shrinklist);
553 removed++;
554leave:
555 iput(inode);
556 }
557
558 spin_lock(&sbinfo->shrinklist_lock);
559 list_splice_tail(&list, &sbinfo->shrinklist);
560 sbinfo->shrinklist_len -= removed;
561 spin_unlock(&sbinfo->shrinklist_lock);
562
563 return split;
564}
565
566static long shmem_unused_huge_scan(struct super_block *sb,
567 struct shrink_control *sc)
568{
569 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
570
571 if (!READ_ONCE(sbinfo->shrinklist_len))
572 return SHRINK_STOP;
573
574 return shmem_unused_huge_shrink(sbinfo, sc, 0);
575}
576
577static long shmem_unused_huge_count(struct super_block *sb,
578 struct shrink_control *sc)
579{
580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581 return READ_ONCE(sbinfo->shrinklist_len);
582}
583#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
584
585#define shmem_huge SHMEM_HUGE_DENY
586
587static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588 struct shrink_control *sc, unsigned long nr_to_split)
589{
590 return 0;
591}
592#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
593
594static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
595{
596 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
597 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598 shmem_huge != SHMEM_HUGE_DENY)
599 return true;
600 return false;
601}
602
603/*
604 * Like add_to_page_cache_locked, but error if expected item has gone.
605 */
606static int shmem_add_to_page_cache(struct page *page,
607 struct address_space *mapping,
608 pgoff_t index, void *expected, gfp_t gfp)
609{
610 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
611 unsigned long i = 0;
612 unsigned long nr = compound_nr(page);
613
614 VM_BUG_ON_PAGE(PageTail(page), page);
615 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
616 VM_BUG_ON_PAGE(!PageLocked(page), page);
617 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
618 VM_BUG_ON(expected && PageTransHuge(page));
619
620 page_ref_add(page, nr);
621 page->mapping = mapping;
622 page->index = index;
623
624 do {
625 void *entry;
626 xas_lock_irq(&xas);
627 entry = xas_find_conflict(&xas);
628 if (entry != expected)
629 xas_set_err(&xas, -EEXIST);
630 xas_create_range(&xas);
631 if (xas_error(&xas))
632 goto unlock;
633next:
634 xas_store(&xas, page);
635 if (++i < nr) {
636 xas_next(&xas);
637 goto next;
638 }
639 if (PageTransHuge(page)) {
640 count_vm_event(THP_FILE_ALLOC);
641 __inc_node_page_state(page, NR_SHMEM_THPS);
642 }
643 mapping->nrpages += nr;
644 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
645 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
646unlock:
647 xas_unlock_irq(&xas);
648 } while (xas_nomem(&xas, gfp));
649
650 if (xas_error(&xas)) {
651 page->mapping = NULL;
652 page_ref_sub(page, nr);
653 return xas_error(&xas);
654 }
655
656 return 0;
657}
658
659/*
660 * Like delete_from_page_cache, but substitutes swap for page.
661 */
662static void shmem_delete_from_page_cache(struct page *page, void *radswap)
663{
664 struct address_space *mapping = page->mapping;
665 int error;
666
667 VM_BUG_ON_PAGE(PageCompound(page), page);
668
669 xa_lock_irq(&mapping->i_pages);
670 error = shmem_replace_entry(mapping, page->index, page, radswap);
671 page->mapping = NULL;
672 mapping->nrpages--;
673 __dec_node_page_state(page, NR_FILE_PAGES);
674 __dec_node_page_state(page, NR_SHMEM);
675 xa_unlock_irq(&mapping->i_pages);
676 put_page(page);
677 BUG_ON(error);
678}
679
680/*
681 * Remove swap entry from page cache, free the swap and its page cache.
682 */
683static int shmem_free_swap(struct address_space *mapping,
684 pgoff_t index, void *radswap)
685{
686 void *old;
687
688 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
689 if (old != radswap)
690 return -ENOENT;
691 free_swap_and_cache(radix_to_swp_entry(radswap));
692 return 0;
693}
694
695/*
696 * Determine (in bytes) how many of the shmem object's pages mapped by the
697 * given offsets are swapped out.
698 *
699 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
700 * as long as the inode doesn't go away and racy results are not a problem.
701 */
702unsigned long shmem_partial_swap_usage(struct address_space *mapping,
703 pgoff_t start, pgoff_t end)
704{
705 XA_STATE(xas, &mapping->i_pages, start);
706 struct page *page;
707 unsigned long swapped = 0;
708
709 rcu_read_lock();
710 xas_for_each(&xas, page, end - 1) {
711 if (xas_retry(&xas, page))
712 continue;
713 if (xa_is_value(page))
714 swapped++;
715
716 if (need_resched()) {
717 xas_pause(&xas);
718 cond_resched_rcu();
719 }
720 }
721
722 rcu_read_unlock();
723
724 return swapped << PAGE_SHIFT;
725}
726
727/*
728 * Determine (in bytes) how many of the shmem object's pages mapped by the
729 * given vma is swapped out.
730 *
731 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
732 * as long as the inode doesn't go away and racy results are not a problem.
733 */
734unsigned long shmem_swap_usage(struct vm_area_struct *vma)
735{
736 struct inode *inode = file_inode(vma->vm_file);
737 struct shmem_inode_info *info = SHMEM_I(inode);
738 struct address_space *mapping = inode->i_mapping;
739 unsigned long swapped;
740
741 /* Be careful as we don't hold info->lock */
742 swapped = READ_ONCE(info->swapped);
743
744 /*
745 * The easier cases are when the shmem object has nothing in swap, or
746 * the vma maps it whole. Then we can simply use the stats that we
747 * already track.
748 */
749 if (!swapped)
750 return 0;
751
752 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
753 return swapped << PAGE_SHIFT;
754
755 /* Here comes the more involved part */
756 return shmem_partial_swap_usage(mapping,
757 linear_page_index(vma, vma->vm_start),
758 linear_page_index(vma, vma->vm_end));
759}
760
761/*
762 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
763 */
764void shmem_unlock_mapping(struct address_space *mapping)
765{
766 struct pagevec pvec;
767 pgoff_t indices[PAGEVEC_SIZE];
768 pgoff_t index = 0;
769
770 pagevec_init(&pvec);
771 /*
772 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
773 */
774 while (!mapping_unevictable(mapping)) {
775 /*
776 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
777 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
778 */
779 pvec.nr = find_get_entries(mapping, index,
780 PAGEVEC_SIZE, pvec.pages, indices);
781 if (!pvec.nr)
782 break;
783 index = indices[pvec.nr - 1] + 1;
784 pagevec_remove_exceptionals(&pvec);
785 check_move_unevictable_pages(&pvec);
786 pagevec_release(&pvec);
787 cond_resched();
788 }
789}
790
791/*
792 * Remove range of pages and swap entries from page cache, and free them.
793 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
794 */
795static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
796 bool unfalloc)
797{
798 struct address_space *mapping = inode->i_mapping;
799 struct shmem_inode_info *info = SHMEM_I(inode);
800 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
801 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
802 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
803 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
804 struct pagevec pvec;
805 pgoff_t indices[PAGEVEC_SIZE];
806 long nr_swaps_freed = 0;
807 pgoff_t index;
808 int i;
809
810 if (lend == -1)
811 end = -1; /* unsigned, so actually very big */
812
813 pagevec_init(&pvec);
814 index = start;
815 while (index < end) {
816 pvec.nr = find_get_entries(mapping, index,
817 min(end - index, (pgoff_t)PAGEVEC_SIZE),
818 pvec.pages, indices);
819 if (!pvec.nr)
820 break;
821 for (i = 0; i < pagevec_count(&pvec); i++) {
822 struct page *page = pvec.pages[i];
823
824 index = indices[i];
825 if (index >= end)
826 break;
827
828 if (xa_is_value(page)) {
829 if (unfalloc)
830 continue;
831 nr_swaps_freed += !shmem_free_swap(mapping,
832 index, page);
833 continue;
834 }
835
836 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
837
838 if (!trylock_page(page))
839 continue;
840
841 if (PageTransTail(page)) {
842 /* Middle of THP: zero out the page */
843 clear_highpage(page);
844 unlock_page(page);
845 continue;
846 } else if (PageTransHuge(page)) {
847 if (index == round_down(end, HPAGE_PMD_NR)) {
848 /*
849 * Range ends in the middle of THP:
850 * zero out the page
851 */
852 clear_highpage(page);
853 unlock_page(page);
854 continue;
855 }
856 index += HPAGE_PMD_NR - 1;
857 i += HPAGE_PMD_NR - 1;
858 }
859
860 if (!unfalloc || !PageUptodate(page)) {
861 VM_BUG_ON_PAGE(PageTail(page), page);
862 if (page_mapping(page) == mapping) {
863 VM_BUG_ON_PAGE(PageWriteback(page), page);
864 truncate_inode_page(mapping, page);
865 }
866 }
867 unlock_page(page);
868 }
869 pagevec_remove_exceptionals(&pvec);
870 pagevec_release(&pvec);
871 cond_resched();
872 index++;
873 }
874
875 if (partial_start) {
876 struct page *page = NULL;
877 shmem_getpage(inode, start - 1, &page, SGP_READ);
878 if (page) {
879 unsigned int top = PAGE_SIZE;
880 if (start > end) {
881 top = partial_end;
882 partial_end = 0;
883 }
884 zero_user_segment(page, partial_start, top);
885 set_page_dirty(page);
886 unlock_page(page);
887 put_page(page);
888 }
889 }
890 if (partial_end) {
891 struct page *page = NULL;
892 shmem_getpage(inode, end, &page, SGP_READ);
893 if (page) {
894 zero_user_segment(page, 0, partial_end);
895 set_page_dirty(page);
896 unlock_page(page);
897 put_page(page);
898 }
899 }
900 if (start >= end)
901 return;
902
903 index = start;
904 while (index < end) {
905 cond_resched();
906
907 pvec.nr = find_get_entries(mapping, index,
908 min(end - index, (pgoff_t)PAGEVEC_SIZE),
909 pvec.pages, indices);
910 if (!pvec.nr) {
911 /* If all gone or hole-punch or unfalloc, we're done */
912 if (index == start || end != -1)
913 break;
914 /* But if truncating, restart to make sure all gone */
915 index = start;
916 continue;
917 }
918 for (i = 0; i < pagevec_count(&pvec); i++) {
919 struct page *page = pvec.pages[i];
920
921 index = indices[i];
922 if (index >= end)
923 break;
924
925 if (xa_is_value(page)) {
926 if (unfalloc)
927 continue;
928 if (shmem_free_swap(mapping, index, page)) {
929 /* Swap was replaced by page: retry */
930 index--;
931 break;
932 }
933 nr_swaps_freed++;
934 continue;
935 }
936
937 lock_page(page);
938
939 if (PageTransTail(page)) {
940 /* Middle of THP: zero out the page */
941 clear_highpage(page);
942 unlock_page(page);
943 /*
944 * Partial thp truncate due 'start' in middle
945 * of THP: don't need to look on these pages
946 * again on !pvec.nr restart.
947 */
948 if (index != round_down(end, HPAGE_PMD_NR))
949 start++;
950 continue;
951 } else if (PageTransHuge(page)) {
952 if (index == round_down(end, HPAGE_PMD_NR)) {
953 /*
954 * Range ends in the middle of THP:
955 * zero out the page
956 */
957 clear_highpage(page);
958 unlock_page(page);
959 continue;
960 }
961 index += HPAGE_PMD_NR - 1;
962 i += HPAGE_PMD_NR - 1;
963 }
964
965 if (!unfalloc || !PageUptodate(page)) {
966 VM_BUG_ON_PAGE(PageTail(page), page);
967 if (page_mapping(page) == mapping) {
968 VM_BUG_ON_PAGE(PageWriteback(page), page);
969 truncate_inode_page(mapping, page);
970 } else {
971 /* Page was replaced by swap: retry */
972 unlock_page(page);
973 index--;
974 break;
975 }
976 }
977 unlock_page(page);
978 }
979 pagevec_remove_exceptionals(&pvec);
980 pagevec_release(&pvec);
981 index++;
982 }
983
984 spin_lock_irq(&info->lock);
985 info->swapped -= nr_swaps_freed;
986 shmem_recalc_inode(inode);
987 spin_unlock_irq(&info->lock);
988}
989
990void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
991{
992 shmem_undo_range(inode, lstart, lend, false);
993 inode->i_ctime = inode->i_mtime = current_time(inode);
994}
995EXPORT_SYMBOL_GPL(shmem_truncate_range);
996
997static int shmem_getattr(const struct path *path, struct kstat *stat,
998 u32 request_mask, unsigned int query_flags)
999{
1000 struct inode *inode = path->dentry->d_inode;
1001 struct shmem_inode_info *info = SHMEM_I(inode);
1002 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1003
1004 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1005 spin_lock_irq(&info->lock);
1006 shmem_recalc_inode(inode);
1007 spin_unlock_irq(&info->lock);
1008 }
1009 generic_fillattr(inode, stat);
1010
1011 if (is_huge_enabled(sb_info))
1012 stat->blksize = HPAGE_PMD_SIZE;
1013
1014 return 0;
1015}
1016
1017static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1018{
1019 struct inode *inode = d_inode(dentry);
1020 struct shmem_inode_info *info = SHMEM_I(inode);
1021 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1022 int error;
1023
1024 error = setattr_prepare(dentry, attr);
1025 if (error)
1026 return error;
1027
1028 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1029 loff_t oldsize = inode->i_size;
1030 loff_t newsize = attr->ia_size;
1031
1032 /* protected by i_mutex */
1033 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1034 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1035 return -EPERM;
1036
1037 if (newsize != oldsize) {
1038 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1039 oldsize, newsize);
1040 if (error)
1041 return error;
1042 i_size_write(inode, newsize);
1043 inode->i_ctime = inode->i_mtime = current_time(inode);
1044 }
1045 if (newsize <= oldsize) {
1046 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1047 if (oldsize > holebegin)
1048 unmap_mapping_range(inode->i_mapping,
1049 holebegin, 0, 1);
1050 if (info->alloced)
1051 shmem_truncate_range(inode,
1052 newsize, (loff_t)-1);
1053 /* unmap again to remove racily COWed private pages */
1054 if (oldsize > holebegin)
1055 unmap_mapping_range(inode->i_mapping,
1056 holebegin, 0, 1);
1057
1058 /*
1059 * Part of the huge page can be beyond i_size: subject
1060 * to shrink under memory pressure.
1061 */
1062 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1063 spin_lock(&sbinfo->shrinklist_lock);
1064 /*
1065 * _careful to defend against unlocked access to
1066 * ->shrink_list in shmem_unused_huge_shrink()
1067 */
1068 if (list_empty_careful(&info->shrinklist)) {
1069 list_add_tail(&info->shrinklist,
1070 &sbinfo->shrinklist);
1071 sbinfo->shrinklist_len++;
1072 }
1073 spin_unlock(&sbinfo->shrinklist_lock);
1074 }
1075 }
1076 }
1077
1078 setattr_copy(inode, attr);
1079 if (attr->ia_valid & ATTR_MODE)
1080 error = posix_acl_chmod(inode, inode->i_mode);
1081 return error;
1082}
1083
1084static void shmem_evict_inode(struct inode *inode)
1085{
1086 struct shmem_inode_info *info = SHMEM_I(inode);
1087 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1088
1089 if (inode->i_mapping->a_ops == &shmem_aops) {
1090 shmem_unacct_size(info->flags, inode->i_size);
1091 inode->i_size = 0;
1092 shmem_truncate_range(inode, 0, (loff_t)-1);
1093 if (!list_empty(&info->shrinklist)) {
1094 spin_lock(&sbinfo->shrinklist_lock);
1095 if (!list_empty(&info->shrinklist)) {
1096 list_del_init(&info->shrinklist);
1097 sbinfo->shrinklist_len--;
1098 }
1099 spin_unlock(&sbinfo->shrinklist_lock);
1100 }
1101 while (!list_empty(&info->swaplist)) {
1102 /* Wait while shmem_unuse() is scanning this inode... */
1103 wait_var_event(&info->stop_eviction,
1104 !atomic_read(&info->stop_eviction));
1105 mutex_lock(&shmem_swaplist_mutex);
1106 /* ...but beware of the race if we peeked too early */
1107 if (!atomic_read(&info->stop_eviction))
1108 list_del_init(&info->swaplist);
1109 mutex_unlock(&shmem_swaplist_mutex);
1110 }
1111 }
1112
1113 simple_xattrs_free(&info->xattrs);
1114 WARN_ON(inode->i_blocks);
1115 shmem_free_inode(inode->i_sb);
1116 clear_inode(inode);
1117}
1118
1119extern struct swap_info_struct *swap_info[];
1120
1121static int shmem_find_swap_entries(struct address_space *mapping,
1122 pgoff_t start, unsigned int nr_entries,
1123 struct page **entries, pgoff_t *indices,
1124 unsigned int type, bool frontswap)
1125{
1126 XA_STATE(xas, &mapping->i_pages, start);
1127 struct page *page;
1128 swp_entry_t entry;
1129 unsigned int ret = 0;
1130
1131 if (!nr_entries)
1132 return 0;
1133
1134 rcu_read_lock();
1135 xas_for_each(&xas, page, ULONG_MAX) {
1136 if (xas_retry(&xas, page))
1137 continue;
1138
1139 if (!xa_is_value(page))
1140 continue;
1141
1142 entry = radix_to_swp_entry(page);
1143 if (swp_type(entry) != type)
1144 continue;
1145 if (frontswap &&
1146 !frontswap_test(swap_info[type], swp_offset(entry)))
1147 continue;
1148
1149 indices[ret] = xas.xa_index;
1150 entries[ret] = page;
1151
1152 if (need_resched()) {
1153 xas_pause(&xas);
1154 cond_resched_rcu();
1155 }
1156 if (++ret == nr_entries)
1157 break;
1158 }
1159 rcu_read_unlock();
1160
1161 return ret;
1162}
1163
1164/*
1165 * Move the swapped pages for an inode to page cache. Returns the count
1166 * of pages swapped in, or the error in case of failure.
1167 */
1168static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1169 pgoff_t *indices)
1170{
1171 int i = 0;
1172 int ret = 0;
1173 int error = 0;
1174 struct address_space *mapping = inode->i_mapping;
1175
1176 for (i = 0; i < pvec.nr; i++) {
1177 struct page *page = pvec.pages[i];
1178
1179 if (!xa_is_value(page))
1180 continue;
1181 error = shmem_swapin_page(inode, indices[i],
1182 &page, SGP_CACHE,
1183 mapping_gfp_mask(mapping),
1184 NULL, NULL);
1185 if (error == 0) {
1186 unlock_page(page);
1187 put_page(page);
1188 ret++;
1189 }
1190 if (error == -ENOMEM)
1191 break;
1192 error = 0;
1193 }
1194 return error ? error : ret;
1195}
1196
1197/*
1198 * If swap found in inode, free it and move page from swapcache to filecache.
1199 */
1200static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1201 bool frontswap, unsigned long *fs_pages_to_unuse)
1202{
1203 struct address_space *mapping = inode->i_mapping;
1204 pgoff_t start = 0;
1205 struct pagevec pvec;
1206 pgoff_t indices[PAGEVEC_SIZE];
1207 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1208 int ret = 0;
1209
1210 pagevec_init(&pvec);
1211 do {
1212 unsigned int nr_entries = PAGEVEC_SIZE;
1213
1214 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1215 nr_entries = *fs_pages_to_unuse;
1216
1217 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1218 pvec.pages, indices,
1219 type, frontswap);
1220 if (pvec.nr == 0) {
1221 ret = 0;
1222 break;
1223 }
1224
1225 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1226 if (ret < 0)
1227 break;
1228
1229 if (frontswap_partial) {
1230 *fs_pages_to_unuse -= ret;
1231 if (*fs_pages_to_unuse == 0) {
1232 ret = FRONTSWAP_PAGES_UNUSED;
1233 break;
1234 }
1235 }
1236
1237 start = indices[pvec.nr - 1];
1238 } while (true);
1239
1240 return ret;
1241}
1242
1243/*
1244 * Read all the shared memory data that resides in the swap
1245 * device 'type' back into memory, so the swap device can be
1246 * unused.
1247 */
1248int shmem_unuse(unsigned int type, bool frontswap,
1249 unsigned long *fs_pages_to_unuse)
1250{
1251 struct shmem_inode_info *info, *next;
1252 int error = 0;
1253
1254 if (list_empty(&shmem_swaplist))
1255 return 0;
1256
1257 mutex_lock(&shmem_swaplist_mutex);
1258 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1259 if (!info->swapped) {
1260 list_del_init(&info->swaplist);
1261 continue;
1262 }
1263 /*
1264 * Drop the swaplist mutex while searching the inode for swap;
1265 * but before doing so, make sure shmem_evict_inode() will not
1266 * remove placeholder inode from swaplist, nor let it be freed
1267 * (igrab() would protect from unlink, but not from unmount).
1268 */
1269 atomic_inc(&info->stop_eviction);
1270 mutex_unlock(&shmem_swaplist_mutex);
1271
1272 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1273 fs_pages_to_unuse);
1274 cond_resched();
1275
1276 mutex_lock(&shmem_swaplist_mutex);
1277 next = list_next_entry(info, swaplist);
1278 if (!info->swapped)
1279 list_del_init(&info->swaplist);
1280 if (atomic_dec_and_test(&info->stop_eviction))
1281 wake_up_var(&info->stop_eviction);
1282 if (error)
1283 break;
1284 }
1285 mutex_unlock(&shmem_swaplist_mutex);
1286
1287 return error;
1288}
1289
1290/*
1291 * Move the page from the page cache to the swap cache.
1292 */
1293static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1294{
1295 struct shmem_inode_info *info;
1296 struct address_space *mapping;
1297 struct inode *inode;
1298 swp_entry_t swap;
1299 pgoff_t index;
1300
1301 VM_BUG_ON_PAGE(PageCompound(page), page);
1302 BUG_ON(!PageLocked(page));
1303 mapping = page->mapping;
1304 index = page->index;
1305 inode = mapping->host;
1306 info = SHMEM_I(inode);
1307 if (info->flags & VM_LOCKED)
1308 goto redirty;
1309 if (!total_swap_pages)
1310 goto redirty;
1311
1312 /*
1313 * Our capabilities prevent regular writeback or sync from ever calling
1314 * shmem_writepage; but a stacking filesystem might use ->writepage of
1315 * its underlying filesystem, in which case tmpfs should write out to
1316 * swap only in response to memory pressure, and not for the writeback
1317 * threads or sync.
1318 */
1319 if (!wbc->for_reclaim) {
1320 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1321 goto redirty;
1322 }
1323
1324 /*
1325 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1326 * value into swapfile.c, the only way we can correctly account for a
1327 * fallocated page arriving here is now to initialize it and write it.
1328 *
1329 * That's okay for a page already fallocated earlier, but if we have
1330 * not yet completed the fallocation, then (a) we want to keep track
1331 * of this page in case we have to undo it, and (b) it may not be a
1332 * good idea to continue anyway, once we're pushing into swap. So
1333 * reactivate the page, and let shmem_fallocate() quit when too many.
1334 */
1335 if (!PageUptodate(page)) {
1336 if (inode->i_private) {
1337 struct shmem_falloc *shmem_falloc;
1338 spin_lock(&inode->i_lock);
1339 shmem_falloc = inode->i_private;
1340 if (shmem_falloc &&
1341 !shmem_falloc->waitq &&
1342 index >= shmem_falloc->start &&
1343 index < shmem_falloc->next)
1344 shmem_falloc->nr_unswapped++;
1345 else
1346 shmem_falloc = NULL;
1347 spin_unlock(&inode->i_lock);
1348 if (shmem_falloc)
1349 goto redirty;
1350 }
1351 clear_highpage(page);
1352 flush_dcache_page(page);
1353 SetPageUptodate(page);
1354 }
1355
1356 swap = get_swap_page(page);
1357 if (!swap.val)
1358 goto redirty;
1359
1360 /*
1361 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1362 * if it's not already there. Do it now before the page is
1363 * moved to swap cache, when its pagelock no longer protects
1364 * the inode from eviction. But don't unlock the mutex until
1365 * we've incremented swapped, because shmem_unuse_inode() will
1366 * prune a !swapped inode from the swaplist under this mutex.
1367 */
1368 mutex_lock(&shmem_swaplist_mutex);
1369 if (list_empty(&info->swaplist))
1370 list_add(&info->swaplist, &shmem_swaplist);
1371
1372 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1373 spin_lock_irq(&info->lock);
1374 shmem_recalc_inode(inode);
1375 info->swapped++;
1376 spin_unlock_irq(&info->lock);
1377
1378 swap_shmem_alloc(swap);
1379 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1380
1381 mutex_unlock(&shmem_swaplist_mutex);
1382 BUG_ON(page_mapped(page));
1383 swap_writepage(page, wbc);
1384 return 0;
1385 }
1386
1387 mutex_unlock(&shmem_swaplist_mutex);
1388 put_swap_page(page, swap);
1389redirty:
1390 set_page_dirty(page);
1391 if (wbc->for_reclaim)
1392 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1393 unlock_page(page);
1394 return 0;
1395}
1396
1397#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1398static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1399{
1400 char buffer[64];
1401
1402 if (!mpol || mpol->mode == MPOL_DEFAULT)
1403 return; /* show nothing */
1404
1405 mpol_to_str(buffer, sizeof(buffer), mpol);
1406
1407 seq_printf(seq, ",mpol=%s", buffer);
1408}
1409
1410static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1411{
1412 struct mempolicy *mpol = NULL;
1413 if (sbinfo->mpol) {
1414 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1415 mpol = sbinfo->mpol;
1416 mpol_get(mpol);
1417 spin_unlock(&sbinfo->stat_lock);
1418 }
1419 return mpol;
1420}
1421#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1422static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1423{
1424}
1425static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1426{
1427 return NULL;
1428}
1429#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1430#ifndef CONFIG_NUMA
1431#define vm_policy vm_private_data
1432#endif
1433
1434static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1435 struct shmem_inode_info *info, pgoff_t index)
1436{
1437 /* Create a pseudo vma that just contains the policy */
1438 vma_init(vma, NULL);
1439 /* Bias interleave by inode number to distribute better across nodes */
1440 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1441 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1442}
1443
1444static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1445{
1446 /* Drop reference taken by mpol_shared_policy_lookup() */
1447 mpol_cond_put(vma->vm_policy);
1448}
1449
1450static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1451 struct shmem_inode_info *info, pgoff_t index)
1452{
1453 struct vm_area_struct pvma;
1454 struct page *page;
1455 struct vm_fault vmf;
1456
1457 shmem_pseudo_vma_init(&pvma, info, index);
1458 vmf.vma = &pvma;
1459 vmf.address = 0;
1460 page = swap_cluster_readahead(swap, gfp, &vmf);
1461 shmem_pseudo_vma_destroy(&pvma);
1462
1463 return page;
1464}
1465
1466static struct page *shmem_alloc_hugepage(gfp_t gfp,
1467 struct shmem_inode_info *info, pgoff_t index)
1468{
1469 struct vm_area_struct pvma;
1470 struct address_space *mapping = info->vfs_inode.i_mapping;
1471 pgoff_t hindex;
1472 struct page *page;
1473
1474 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1475 return NULL;
1476
1477 hindex = round_down(index, HPAGE_PMD_NR);
1478 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1479 XA_PRESENT))
1480 return NULL;
1481
1482 shmem_pseudo_vma_init(&pvma, info, hindex);
1483 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1484 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1485 shmem_pseudo_vma_destroy(&pvma);
1486 if (page)
1487 prep_transhuge_page(page);
1488 return page;
1489}
1490
1491static struct page *shmem_alloc_page(gfp_t gfp,
1492 struct shmem_inode_info *info, pgoff_t index)
1493{
1494 struct vm_area_struct pvma;
1495 struct page *page;
1496
1497 shmem_pseudo_vma_init(&pvma, info, index);
1498 page = alloc_page_vma(gfp, &pvma, 0);
1499 shmem_pseudo_vma_destroy(&pvma);
1500
1501 return page;
1502}
1503
1504static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1505 struct inode *inode,
1506 pgoff_t index, bool huge)
1507{
1508 struct shmem_inode_info *info = SHMEM_I(inode);
1509 struct page *page;
1510 int nr;
1511 int err = -ENOSPC;
1512
1513 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1514 huge = false;
1515 nr = huge ? HPAGE_PMD_NR : 1;
1516
1517 if (!shmem_inode_acct_block(inode, nr))
1518 goto failed;
1519
1520 if (huge)
1521 page = shmem_alloc_hugepage(gfp, info, index);
1522 else
1523 page = shmem_alloc_page(gfp, info, index);
1524 if (page) {
1525 __SetPageLocked(page);
1526 __SetPageSwapBacked(page);
1527 return page;
1528 }
1529
1530 err = -ENOMEM;
1531 shmem_inode_unacct_blocks(inode, nr);
1532failed:
1533 return ERR_PTR(err);
1534}
1535
1536/*
1537 * When a page is moved from swapcache to shmem filecache (either by the
1538 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1539 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1540 * ignorance of the mapping it belongs to. If that mapping has special
1541 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1542 * we may need to copy to a suitable page before moving to filecache.
1543 *
1544 * In a future release, this may well be extended to respect cpuset and
1545 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1546 * but for now it is a simple matter of zone.
1547 */
1548static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1549{
1550 return page_zonenum(page) > gfp_zone(gfp);
1551}
1552
1553static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1554 struct shmem_inode_info *info, pgoff_t index)
1555{
1556 struct page *oldpage, *newpage;
1557 struct address_space *swap_mapping;
1558 swp_entry_t entry;
1559 pgoff_t swap_index;
1560 int error;
1561
1562 oldpage = *pagep;
1563 entry.val = page_private(oldpage);
1564 swap_index = swp_offset(entry);
1565 swap_mapping = page_mapping(oldpage);
1566
1567 /*
1568 * We have arrived here because our zones are constrained, so don't
1569 * limit chance of success by further cpuset and node constraints.
1570 */
1571 gfp &= ~GFP_CONSTRAINT_MASK;
1572 newpage = shmem_alloc_page(gfp, info, index);
1573 if (!newpage)
1574 return -ENOMEM;
1575
1576 get_page(newpage);
1577 copy_highpage(newpage, oldpage);
1578 flush_dcache_page(newpage);
1579
1580 __SetPageLocked(newpage);
1581 __SetPageSwapBacked(newpage);
1582 SetPageUptodate(newpage);
1583 set_page_private(newpage, entry.val);
1584 SetPageSwapCache(newpage);
1585
1586 /*
1587 * Our caller will very soon move newpage out of swapcache, but it's
1588 * a nice clean interface for us to replace oldpage by newpage there.
1589 */
1590 xa_lock_irq(&swap_mapping->i_pages);
1591 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1592 if (!error) {
1593 __inc_node_page_state(newpage, NR_FILE_PAGES);
1594 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1595 }
1596 xa_unlock_irq(&swap_mapping->i_pages);
1597
1598 if (unlikely(error)) {
1599 /*
1600 * Is this possible? I think not, now that our callers check
1601 * both PageSwapCache and page_private after getting page lock;
1602 * but be defensive. Reverse old to newpage for clear and free.
1603 */
1604 oldpage = newpage;
1605 } else {
1606 mem_cgroup_migrate(oldpage, newpage);
1607 lru_cache_add_anon(newpage);
1608 *pagep = newpage;
1609 }
1610
1611 ClearPageSwapCache(oldpage);
1612 set_page_private(oldpage, 0);
1613
1614 unlock_page(oldpage);
1615 put_page(oldpage);
1616 put_page(oldpage);
1617 return error;
1618}
1619
1620/*
1621 * Swap in the page pointed to by *pagep.
1622 * Caller has to make sure that *pagep contains a valid swapped page.
1623 * Returns 0 and the page in pagep if success. On failure, returns the
1624 * the error code and NULL in *pagep.
1625 */
1626static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1627 struct page **pagep, enum sgp_type sgp,
1628 gfp_t gfp, struct vm_area_struct *vma,
1629 vm_fault_t *fault_type)
1630{
1631 struct address_space *mapping = inode->i_mapping;
1632 struct shmem_inode_info *info = SHMEM_I(inode);
1633 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1634 struct mem_cgroup *memcg;
1635 struct page *page;
1636 swp_entry_t swap;
1637 int error;
1638
1639 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1640 swap = radix_to_swp_entry(*pagep);
1641 *pagep = NULL;
1642
1643 /* Look it up and read it in.. */
1644 page = lookup_swap_cache(swap, NULL, 0);
1645 if (!page) {
1646 /* Or update major stats only when swapin succeeds?? */
1647 if (fault_type) {
1648 *fault_type |= VM_FAULT_MAJOR;
1649 count_vm_event(PGMAJFAULT);
1650 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1651 }
1652 /* Here we actually start the io */
1653 page = shmem_swapin(swap, gfp, info, index);
1654 if (!page) {
1655 error = -ENOMEM;
1656 goto failed;
1657 }
1658 }
1659
1660 /* We have to do this with page locked to prevent races */
1661 lock_page(page);
1662 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1663 !shmem_confirm_swap(mapping, index, swap)) {
1664 error = -EEXIST;
1665 goto unlock;
1666 }
1667 if (!PageUptodate(page)) {
1668 error = -EIO;
1669 goto failed;
1670 }
1671 wait_on_page_writeback(page);
1672
1673 if (shmem_should_replace_page(page, gfp)) {
1674 error = shmem_replace_page(&page, gfp, info, index);
1675 if (error)
1676 goto failed;
1677 }
1678
1679 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1680 false);
1681 if (!error) {
1682 error = shmem_add_to_page_cache(page, mapping, index,
1683 swp_to_radix_entry(swap), gfp);
1684 /*
1685 * We already confirmed swap under page lock, and make
1686 * no memory allocation here, so usually no possibility
1687 * of error; but free_swap_and_cache() only trylocks a
1688 * page, so it is just possible that the entry has been
1689 * truncated or holepunched since swap was confirmed.
1690 * shmem_undo_range() will have done some of the
1691 * unaccounting, now delete_from_swap_cache() will do
1692 * the rest.
1693 */
1694 if (error) {
1695 mem_cgroup_cancel_charge(page, memcg, false);
1696 delete_from_swap_cache(page);
1697 }
1698 }
1699 if (error)
1700 goto failed;
1701
1702 mem_cgroup_commit_charge(page, memcg, true, false);
1703
1704 spin_lock_irq(&info->lock);
1705 info->swapped--;
1706 shmem_recalc_inode(inode);
1707 spin_unlock_irq(&info->lock);
1708
1709 if (sgp == SGP_WRITE)
1710 mark_page_accessed(page);
1711
1712 delete_from_swap_cache(page);
1713 set_page_dirty(page);
1714 swap_free(swap);
1715
1716 *pagep = page;
1717 return 0;
1718failed:
1719 if (!shmem_confirm_swap(mapping, index, swap))
1720 error = -EEXIST;
1721unlock:
1722 if (page) {
1723 unlock_page(page);
1724 put_page(page);
1725 }
1726
1727 return error;
1728}
1729
1730/*
1731 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1732 *
1733 * If we allocate a new one we do not mark it dirty. That's up to the
1734 * vm. If we swap it in we mark it dirty since we also free the swap
1735 * entry since a page cannot live in both the swap and page cache.
1736 *
1737 * vmf and fault_type are only supplied by shmem_fault:
1738 * otherwise they are NULL.
1739 */
1740static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1741 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1742 struct vm_area_struct *vma, struct vm_fault *vmf,
1743 vm_fault_t *fault_type)
1744{
1745 struct address_space *mapping = inode->i_mapping;
1746 struct shmem_inode_info *info = SHMEM_I(inode);
1747 struct shmem_sb_info *sbinfo;
1748 struct mm_struct *charge_mm;
1749 struct mem_cgroup *memcg;
1750 struct page *page;
1751 enum sgp_type sgp_huge = sgp;
1752 pgoff_t hindex = index;
1753 int error;
1754 int once = 0;
1755 int alloced = 0;
1756
1757 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1758 return -EFBIG;
1759 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1760 sgp = SGP_CACHE;
1761repeat:
1762 if (sgp <= SGP_CACHE &&
1763 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1764 return -EINVAL;
1765 }
1766
1767 sbinfo = SHMEM_SB(inode->i_sb);
1768 charge_mm = vma ? vma->vm_mm : current->mm;
1769
1770 page = find_lock_entry(mapping, index);
1771 if (xa_is_value(page)) {
1772 error = shmem_swapin_page(inode, index, &page,
1773 sgp, gfp, vma, fault_type);
1774 if (error == -EEXIST)
1775 goto repeat;
1776
1777 *pagep = page;
1778 return error;
1779 }
1780
1781 if (page && sgp == SGP_WRITE)
1782 mark_page_accessed(page);
1783
1784 /* fallocated page? */
1785 if (page && !PageUptodate(page)) {
1786 if (sgp != SGP_READ)
1787 goto clear;
1788 unlock_page(page);
1789 put_page(page);
1790 page = NULL;
1791 }
1792 if (page || sgp == SGP_READ) {
1793 *pagep = page;
1794 return 0;
1795 }
1796
1797 /*
1798 * Fast cache lookup did not find it:
1799 * bring it back from swap or allocate.
1800 */
1801
1802 if (vma && userfaultfd_missing(vma)) {
1803 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1804 return 0;
1805 }
1806
1807 /* shmem_symlink() */
1808 if (mapping->a_ops != &shmem_aops)
1809 goto alloc_nohuge;
1810 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1811 goto alloc_nohuge;
1812 if (shmem_huge == SHMEM_HUGE_FORCE)
1813 goto alloc_huge;
1814 switch (sbinfo->huge) {
1815 loff_t i_size;
1816 pgoff_t off;
1817 case SHMEM_HUGE_NEVER:
1818 goto alloc_nohuge;
1819 case SHMEM_HUGE_WITHIN_SIZE:
1820 off = round_up(index, HPAGE_PMD_NR);
1821 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1822 if (i_size >= HPAGE_PMD_SIZE &&
1823 i_size >> PAGE_SHIFT >= off)
1824 goto alloc_huge;
1825 /* fallthrough */
1826 case SHMEM_HUGE_ADVISE:
1827 if (sgp_huge == SGP_HUGE)
1828 goto alloc_huge;
1829 /* TODO: implement fadvise() hints */
1830 goto alloc_nohuge;
1831 }
1832
1833alloc_huge:
1834 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1835 if (IS_ERR(page)) {
1836alloc_nohuge:
1837 page = shmem_alloc_and_acct_page(gfp, inode,
1838 index, false);
1839 }
1840 if (IS_ERR(page)) {
1841 int retry = 5;
1842
1843 error = PTR_ERR(page);
1844 page = NULL;
1845 if (error != -ENOSPC)
1846 goto unlock;
1847 /*
1848 * Try to reclaim some space by splitting a huge page
1849 * beyond i_size on the filesystem.
1850 */
1851 while (retry--) {
1852 int ret;
1853
1854 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1855 if (ret == SHRINK_STOP)
1856 break;
1857 if (ret)
1858 goto alloc_nohuge;
1859 }
1860 goto unlock;
1861 }
1862
1863 if (PageTransHuge(page))
1864 hindex = round_down(index, HPAGE_PMD_NR);
1865 else
1866 hindex = index;
1867
1868 if (sgp == SGP_WRITE)
1869 __SetPageReferenced(page);
1870
1871 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1872 PageTransHuge(page));
1873 if (error)
1874 goto unacct;
1875 error = shmem_add_to_page_cache(page, mapping, hindex,
1876 NULL, gfp & GFP_RECLAIM_MASK);
1877 if (error) {
1878 mem_cgroup_cancel_charge(page, memcg,
1879 PageTransHuge(page));
1880 goto unacct;
1881 }
1882 mem_cgroup_commit_charge(page, memcg, false,
1883 PageTransHuge(page));
1884 lru_cache_add_anon(page);
1885
1886 spin_lock_irq(&info->lock);
1887 info->alloced += compound_nr(page);
1888 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1889 shmem_recalc_inode(inode);
1890 spin_unlock_irq(&info->lock);
1891 alloced = true;
1892
1893 if (PageTransHuge(page) &&
1894 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1895 hindex + HPAGE_PMD_NR - 1) {
1896 /*
1897 * Part of the huge page is beyond i_size: subject
1898 * to shrink under memory pressure.
1899 */
1900 spin_lock(&sbinfo->shrinklist_lock);
1901 /*
1902 * _careful to defend against unlocked access to
1903 * ->shrink_list in shmem_unused_huge_shrink()
1904 */
1905 if (list_empty_careful(&info->shrinklist)) {
1906 list_add_tail(&info->shrinklist,
1907 &sbinfo->shrinklist);
1908 sbinfo->shrinklist_len++;
1909 }
1910 spin_unlock(&sbinfo->shrinklist_lock);
1911 }
1912
1913 /*
1914 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1915 */
1916 if (sgp == SGP_FALLOC)
1917 sgp = SGP_WRITE;
1918clear:
1919 /*
1920 * Let SGP_WRITE caller clear ends if write does not fill page;
1921 * but SGP_FALLOC on a page fallocated earlier must initialize
1922 * it now, lest undo on failure cancel our earlier guarantee.
1923 */
1924 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1925 struct page *head = compound_head(page);
1926 int i;
1927
1928 for (i = 0; i < compound_nr(head); i++) {
1929 clear_highpage(head + i);
1930 flush_dcache_page(head + i);
1931 }
1932 SetPageUptodate(head);
1933 }
1934
1935 /* Perhaps the file has been truncated since we checked */
1936 if (sgp <= SGP_CACHE &&
1937 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1938 if (alloced) {
1939 ClearPageDirty(page);
1940 delete_from_page_cache(page);
1941 spin_lock_irq(&info->lock);
1942 shmem_recalc_inode(inode);
1943 spin_unlock_irq(&info->lock);
1944 }
1945 error = -EINVAL;
1946 goto unlock;
1947 }
1948 *pagep = page + index - hindex;
1949 return 0;
1950
1951 /*
1952 * Error recovery.
1953 */
1954unacct:
1955 shmem_inode_unacct_blocks(inode, compound_nr(page));
1956
1957 if (PageTransHuge(page)) {
1958 unlock_page(page);
1959 put_page(page);
1960 goto alloc_nohuge;
1961 }
1962unlock:
1963 if (page) {
1964 unlock_page(page);
1965 put_page(page);
1966 }
1967 if (error == -ENOSPC && !once++) {
1968 spin_lock_irq(&info->lock);
1969 shmem_recalc_inode(inode);
1970 spin_unlock_irq(&info->lock);
1971 goto repeat;
1972 }
1973 if (error == -EEXIST)
1974 goto repeat;
1975 return error;
1976}
1977
1978/*
1979 * This is like autoremove_wake_function, but it removes the wait queue
1980 * entry unconditionally - even if something else had already woken the
1981 * target.
1982 */
1983static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1984{
1985 int ret = default_wake_function(wait, mode, sync, key);
1986 list_del_init(&wait->entry);
1987 return ret;
1988}
1989
1990static vm_fault_t shmem_fault(struct vm_fault *vmf)
1991{
1992 struct vm_area_struct *vma = vmf->vma;
1993 struct inode *inode = file_inode(vma->vm_file);
1994 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1995 enum sgp_type sgp;
1996 int err;
1997 vm_fault_t ret = VM_FAULT_LOCKED;
1998
1999 /*
2000 * Trinity finds that probing a hole which tmpfs is punching can
2001 * prevent the hole-punch from ever completing: which in turn
2002 * locks writers out with its hold on i_mutex. So refrain from
2003 * faulting pages into the hole while it's being punched. Although
2004 * shmem_undo_range() does remove the additions, it may be unable to
2005 * keep up, as each new page needs its own unmap_mapping_range() call,
2006 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2007 *
2008 * It does not matter if we sometimes reach this check just before the
2009 * hole-punch begins, so that one fault then races with the punch:
2010 * we just need to make racing faults a rare case.
2011 *
2012 * The implementation below would be much simpler if we just used a
2013 * standard mutex or completion: but we cannot take i_mutex in fault,
2014 * and bloating every shmem inode for this unlikely case would be sad.
2015 */
2016 if (unlikely(inode->i_private)) {
2017 struct shmem_falloc *shmem_falloc;
2018
2019 spin_lock(&inode->i_lock);
2020 shmem_falloc = inode->i_private;
2021 if (shmem_falloc &&
2022 shmem_falloc->waitq &&
2023 vmf->pgoff >= shmem_falloc->start &&
2024 vmf->pgoff < shmem_falloc->next) {
2025 wait_queue_head_t *shmem_falloc_waitq;
2026 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2027
2028 ret = VM_FAULT_NOPAGE;
2029 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
2030 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
2031 /* It's polite to up mmap_sem if we can */
2032 up_read(&vma->vm_mm->mmap_sem);
2033 ret = VM_FAULT_RETRY;
2034 }
2035
2036 shmem_falloc_waitq = shmem_falloc->waitq;
2037 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2038 TASK_UNINTERRUPTIBLE);
2039 spin_unlock(&inode->i_lock);
2040 schedule();
2041
2042 /*
2043 * shmem_falloc_waitq points into the shmem_fallocate()
2044 * stack of the hole-punching task: shmem_falloc_waitq
2045 * is usually invalid by the time we reach here, but
2046 * finish_wait() does not dereference it in that case;
2047 * though i_lock needed lest racing with wake_up_all().
2048 */
2049 spin_lock(&inode->i_lock);
2050 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2051 spin_unlock(&inode->i_lock);
2052 return ret;
2053 }
2054 spin_unlock(&inode->i_lock);
2055 }
2056
2057 sgp = SGP_CACHE;
2058
2059 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2060 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2061 sgp = SGP_NOHUGE;
2062 else if (vma->vm_flags & VM_HUGEPAGE)
2063 sgp = SGP_HUGE;
2064
2065 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2066 gfp, vma, vmf, &ret);
2067 if (err)
2068 return vmf_error(err);
2069 return ret;
2070}
2071
2072unsigned long shmem_get_unmapped_area(struct file *file,
2073 unsigned long uaddr, unsigned long len,
2074 unsigned long pgoff, unsigned long flags)
2075{
2076 unsigned long (*get_area)(struct file *,
2077 unsigned long, unsigned long, unsigned long, unsigned long);
2078 unsigned long addr;
2079 unsigned long offset;
2080 unsigned long inflated_len;
2081 unsigned long inflated_addr;
2082 unsigned long inflated_offset;
2083
2084 if (len > TASK_SIZE)
2085 return -ENOMEM;
2086
2087 get_area = current->mm->get_unmapped_area;
2088 addr = get_area(file, uaddr, len, pgoff, flags);
2089
2090 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2091 return addr;
2092 if (IS_ERR_VALUE(addr))
2093 return addr;
2094 if (addr & ~PAGE_MASK)
2095 return addr;
2096 if (addr > TASK_SIZE - len)
2097 return addr;
2098
2099 if (shmem_huge == SHMEM_HUGE_DENY)
2100 return addr;
2101 if (len < HPAGE_PMD_SIZE)
2102 return addr;
2103 if (flags & MAP_FIXED)
2104 return addr;
2105 /*
2106 * Our priority is to support MAP_SHARED mapped hugely;
2107 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2108 * But if caller specified an address hint, respect that as before.
2109 */
2110 if (uaddr)
2111 return addr;
2112
2113 if (shmem_huge != SHMEM_HUGE_FORCE) {
2114 struct super_block *sb;
2115
2116 if (file) {
2117 VM_BUG_ON(file->f_op != &shmem_file_operations);
2118 sb = file_inode(file)->i_sb;
2119 } else {
2120 /*
2121 * Called directly from mm/mmap.c, or drivers/char/mem.c
2122 * for "/dev/zero", to create a shared anonymous object.
2123 */
2124 if (IS_ERR(shm_mnt))
2125 return addr;
2126 sb = shm_mnt->mnt_sb;
2127 }
2128 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2129 return addr;
2130 }
2131
2132 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2133 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2134 return addr;
2135 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2136 return addr;
2137
2138 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2139 if (inflated_len > TASK_SIZE)
2140 return addr;
2141 if (inflated_len < len)
2142 return addr;
2143
2144 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2145 if (IS_ERR_VALUE(inflated_addr))
2146 return addr;
2147 if (inflated_addr & ~PAGE_MASK)
2148 return addr;
2149
2150 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2151 inflated_addr += offset - inflated_offset;
2152 if (inflated_offset > offset)
2153 inflated_addr += HPAGE_PMD_SIZE;
2154
2155 if (inflated_addr > TASK_SIZE - len)
2156 return addr;
2157 return inflated_addr;
2158}
2159
2160#ifdef CONFIG_NUMA
2161static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2162{
2163 struct inode *inode = file_inode(vma->vm_file);
2164 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2165}
2166
2167static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2168 unsigned long addr)
2169{
2170 struct inode *inode = file_inode(vma->vm_file);
2171 pgoff_t index;
2172
2173 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2174 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2175}
2176#endif
2177
2178int shmem_lock(struct file *file, int lock, struct user_struct *user)
2179{
2180 struct inode *inode = file_inode(file);
2181 struct shmem_inode_info *info = SHMEM_I(inode);
2182 int retval = -ENOMEM;
2183
2184 spin_lock_irq(&info->lock);
2185 if (lock && !(info->flags & VM_LOCKED)) {
2186 if (!user_shm_lock(inode->i_size, user))
2187 goto out_nomem;
2188 info->flags |= VM_LOCKED;
2189 mapping_set_unevictable(file->f_mapping);
2190 }
2191 if (!lock && (info->flags & VM_LOCKED) && user) {
2192 user_shm_unlock(inode->i_size, user);
2193 info->flags &= ~VM_LOCKED;
2194 mapping_clear_unevictable(file->f_mapping);
2195 }
2196 retval = 0;
2197
2198out_nomem:
2199 spin_unlock_irq(&info->lock);
2200 return retval;
2201}
2202
2203static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2204{
2205 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2206
2207 if (info->seals & F_SEAL_FUTURE_WRITE) {
2208 /*
2209 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2210 * "future write" seal active.
2211 */
2212 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2213 return -EPERM;
2214
2215 /*
2216 * Since the F_SEAL_FUTURE_WRITE seals allow for a MAP_SHARED
2217 * read-only mapping, take care to not allow mprotect to revert
2218 * protections.
2219 */
2220 vma->vm_flags &= ~(VM_MAYWRITE);
2221 }
2222
2223 file_accessed(file);
2224 vma->vm_ops = &shmem_vm_ops;
2225 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2226 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2227 (vma->vm_end & HPAGE_PMD_MASK)) {
2228 khugepaged_enter(vma, vma->vm_flags);
2229 }
2230 return 0;
2231}
2232
2233static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2234 umode_t mode, dev_t dev, unsigned long flags)
2235{
2236 struct inode *inode;
2237 struct shmem_inode_info *info;
2238 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2239
2240 if (shmem_reserve_inode(sb))
2241 return NULL;
2242
2243 inode = new_inode(sb);
2244 if (inode) {
2245 inode->i_ino = get_next_ino();
2246 inode_init_owner(inode, dir, mode);
2247 inode->i_blocks = 0;
2248 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2249 inode->i_generation = prandom_u32();
2250 info = SHMEM_I(inode);
2251 memset(info, 0, (char *)inode - (char *)info);
2252 spin_lock_init(&info->lock);
2253 atomic_set(&info->stop_eviction, 0);
2254 info->seals = F_SEAL_SEAL;
2255 info->flags = flags & VM_NORESERVE;
2256 INIT_LIST_HEAD(&info->shrinklist);
2257 INIT_LIST_HEAD(&info->swaplist);
2258 simple_xattrs_init(&info->xattrs);
2259 cache_no_acl(inode);
2260
2261 switch (mode & S_IFMT) {
2262 default:
2263 inode->i_op = &shmem_special_inode_operations;
2264 init_special_inode(inode, mode, dev);
2265 break;
2266 case S_IFREG:
2267 inode->i_mapping->a_ops = &shmem_aops;
2268 inode->i_op = &shmem_inode_operations;
2269 inode->i_fop = &shmem_file_operations;
2270 mpol_shared_policy_init(&info->policy,
2271 shmem_get_sbmpol(sbinfo));
2272 break;
2273 case S_IFDIR:
2274 inc_nlink(inode);
2275 /* Some things misbehave if size == 0 on a directory */
2276 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2277 inode->i_op = &shmem_dir_inode_operations;
2278 inode->i_fop = &simple_dir_operations;
2279 break;
2280 case S_IFLNK:
2281 /*
2282 * Must not load anything in the rbtree,
2283 * mpol_free_shared_policy will not be called.
2284 */
2285 mpol_shared_policy_init(&info->policy, NULL);
2286 break;
2287 }
2288
2289 lockdep_annotate_inode_mutex_key(inode);
2290 } else
2291 shmem_free_inode(sb);
2292 return inode;
2293}
2294
2295bool shmem_mapping(struct address_space *mapping)
2296{
2297 return mapping->a_ops == &shmem_aops;
2298}
2299
2300static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2301 pmd_t *dst_pmd,
2302 struct vm_area_struct *dst_vma,
2303 unsigned long dst_addr,
2304 unsigned long src_addr,
2305 bool zeropage,
2306 struct page **pagep)
2307{
2308 struct inode *inode = file_inode(dst_vma->vm_file);
2309 struct shmem_inode_info *info = SHMEM_I(inode);
2310 struct address_space *mapping = inode->i_mapping;
2311 gfp_t gfp = mapping_gfp_mask(mapping);
2312 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2313 struct mem_cgroup *memcg;
2314 spinlock_t *ptl;
2315 void *page_kaddr;
2316 struct page *page;
2317 pte_t _dst_pte, *dst_pte;
2318 int ret;
2319 pgoff_t offset, max_off;
2320
2321 ret = -ENOMEM;
2322 if (!shmem_inode_acct_block(inode, 1))
2323 goto out;
2324
2325 if (!*pagep) {
2326 page = shmem_alloc_page(gfp, info, pgoff);
2327 if (!page)
2328 goto out_unacct_blocks;
2329
2330 if (!zeropage) { /* mcopy_atomic */
2331 page_kaddr = kmap_atomic(page);
2332 ret = copy_from_user(page_kaddr,
2333 (const void __user *)src_addr,
2334 PAGE_SIZE);
2335 kunmap_atomic(page_kaddr);
2336
2337 /* fallback to copy_from_user outside mmap_sem */
2338 if (unlikely(ret)) {
2339 *pagep = page;
2340 shmem_inode_unacct_blocks(inode, 1);
2341 /* don't free the page */
2342 return -ENOENT;
2343 }
2344 } else { /* mfill_zeropage_atomic */
2345 clear_highpage(page);
2346 }
2347 } else {
2348 page = *pagep;
2349 *pagep = NULL;
2350 }
2351
2352 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2353 __SetPageLocked(page);
2354 __SetPageSwapBacked(page);
2355 __SetPageUptodate(page);
2356
2357 ret = -EFAULT;
2358 offset = linear_page_index(dst_vma, dst_addr);
2359 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2360 if (unlikely(offset >= max_off))
2361 goto out_release;
2362
2363 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2364 if (ret)
2365 goto out_release;
2366
2367 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2368 gfp & GFP_RECLAIM_MASK);
2369 if (ret)
2370 goto out_release_uncharge;
2371
2372 mem_cgroup_commit_charge(page, memcg, false, false);
2373
2374 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2375 if (dst_vma->vm_flags & VM_WRITE)
2376 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2377 else {
2378 /*
2379 * We don't set the pte dirty if the vma has no
2380 * VM_WRITE permission, so mark the page dirty or it
2381 * could be freed from under us. We could do it
2382 * unconditionally before unlock_page(), but doing it
2383 * only if VM_WRITE is not set is faster.
2384 */
2385 set_page_dirty(page);
2386 }
2387
2388 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2389
2390 ret = -EFAULT;
2391 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2392 if (unlikely(offset >= max_off))
2393 goto out_release_uncharge_unlock;
2394
2395 ret = -EEXIST;
2396 if (!pte_none(*dst_pte))
2397 goto out_release_uncharge_unlock;
2398
2399 lru_cache_add_anon(page);
2400
2401 spin_lock(&info->lock);
2402 info->alloced++;
2403 inode->i_blocks += BLOCKS_PER_PAGE;
2404 shmem_recalc_inode(inode);
2405 spin_unlock(&info->lock);
2406
2407 inc_mm_counter(dst_mm, mm_counter_file(page));
2408 page_add_file_rmap(page, false);
2409 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2410
2411 /* No need to invalidate - it was non-present before */
2412 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2413 pte_unmap_unlock(dst_pte, ptl);
2414 unlock_page(page);
2415 ret = 0;
2416out:
2417 return ret;
2418out_release_uncharge_unlock:
2419 pte_unmap_unlock(dst_pte, ptl);
2420 ClearPageDirty(page);
2421 delete_from_page_cache(page);
2422out_release_uncharge:
2423 mem_cgroup_cancel_charge(page, memcg, false);
2424out_release:
2425 unlock_page(page);
2426 put_page(page);
2427out_unacct_blocks:
2428 shmem_inode_unacct_blocks(inode, 1);
2429 goto out;
2430}
2431
2432int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2433 pmd_t *dst_pmd,
2434 struct vm_area_struct *dst_vma,
2435 unsigned long dst_addr,
2436 unsigned long src_addr,
2437 struct page **pagep)
2438{
2439 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2440 dst_addr, src_addr, false, pagep);
2441}
2442
2443int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2444 pmd_t *dst_pmd,
2445 struct vm_area_struct *dst_vma,
2446 unsigned long dst_addr)
2447{
2448 struct page *page = NULL;
2449
2450 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2451 dst_addr, 0, true, &page);
2452}
2453
2454#ifdef CONFIG_TMPFS
2455static const struct inode_operations shmem_symlink_inode_operations;
2456static const struct inode_operations shmem_short_symlink_operations;
2457
2458#ifdef CONFIG_TMPFS_XATTR
2459static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2460#else
2461#define shmem_initxattrs NULL
2462#endif
2463
2464static int
2465shmem_write_begin(struct file *file, struct address_space *mapping,
2466 loff_t pos, unsigned len, unsigned flags,
2467 struct page **pagep, void **fsdata)
2468{
2469 struct inode *inode = mapping->host;
2470 struct shmem_inode_info *info = SHMEM_I(inode);
2471 pgoff_t index = pos >> PAGE_SHIFT;
2472
2473 /* i_mutex is held by caller */
2474 if (unlikely(info->seals & (F_SEAL_GROW |
2475 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2476 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2477 return -EPERM;
2478 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2479 return -EPERM;
2480 }
2481
2482 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2483}
2484
2485static int
2486shmem_write_end(struct file *file, struct address_space *mapping,
2487 loff_t pos, unsigned len, unsigned copied,
2488 struct page *page, void *fsdata)
2489{
2490 struct inode *inode = mapping->host;
2491
2492 if (pos + copied > inode->i_size)
2493 i_size_write(inode, pos + copied);
2494
2495 if (!PageUptodate(page)) {
2496 struct page *head = compound_head(page);
2497 if (PageTransCompound(page)) {
2498 int i;
2499
2500 for (i = 0; i < HPAGE_PMD_NR; i++) {
2501 if (head + i == page)
2502 continue;
2503 clear_highpage(head + i);
2504 flush_dcache_page(head + i);
2505 }
2506 }
2507 if (copied < PAGE_SIZE) {
2508 unsigned from = pos & (PAGE_SIZE - 1);
2509 zero_user_segments(page, 0, from,
2510 from + copied, PAGE_SIZE);
2511 }
2512 SetPageUptodate(head);
2513 }
2514 set_page_dirty(page);
2515 unlock_page(page);
2516 put_page(page);
2517
2518 return copied;
2519}
2520
2521static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2522{
2523 struct file *file = iocb->ki_filp;
2524 struct inode *inode = file_inode(file);
2525 struct address_space *mapping = inode->i_mapping;
2526 pgoff_t index;
2527 unsigned long offset;
2528 enum sgp_type sgp = SGP_READ;
2529 int error = 0;
2530 ssize_t retval = 0;
2531 loff_t *ppos = &iocb->ki_pos;
2532
2533 /*
2534 * Might this read be for a stacking filesystem? Then when reading
2535 * holes of a sparse file, we actually need to allocate those pages,
2536 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2537 */
2538 if (!iter_is_iovec(to))
2539 sgp = SGP_CACHE;
2540
2541 index = *ppos >> PAGE_SHIFT;
2542 offset = *ppos & ~PAGE_MASK;
2543
2544 for (;;) {
2545 struct page *page = NULL;
2546 pgoff_t end_index;
2547 unsigned long nr, ret;
2548 loff_t i_size = i_size_read(inode);
2549
2550 end_index = i_size >> PAGE_SHIFT;
2551 if (index > end_index)
2552 break;
2553 if (index == end_index) {
2554 nr = i_size & ~PAGE_MASK;
2555 if (nr <= offset)
2556 break;
2557 }
2558
2559 error = shmem_getpage(inode, index, &page, sgp);
2560 if (error) {
2561 if (error == -EINVAL)
2562 error = 0;
2563 break;
2564 }
2565 if (page) {
2566 if (sgp == SGP_CACHE)
2567 set_page_dirty(page);
2568 unlock_page(page);
2569 }
2570
2571 /*
2572 * We must evaluate after, since reads (unlike writes)
2573 * are called without i_mutex protection against truncate
2574 */
2575 nr = PAGE_SIZE;
2576 i_size = i_size_read(inode);
2577 end_index = i_size >> PAGE_SHIFT;
2578 if (index == end_index) {
2579 nr = i_size & ~PAGE_MASK;
2580 if (nr <= offset) {
2581 if (page)
2582 put_page(page);
2583 break;
2584 }
2585 }
2586 nr -= offset;
2587
2588 if (page) {
2589 /*
2590 * If users can be writing to this page using arbitrary
2591 * virtual addresses, take care about potential aliasing
2592 * before reading the page on the kernel side.
2593 */
2594 if (mapping_writably_mapped(mapping))
2595 flush_dcache_page(page);
2596 /*
2597 * Mark the page accessed if we read the beginning.
2598 */
2599 if (!offset)
2600 mark_page_accessed(page);
2601 } else {
2602 page = ZERO_PAGE(0);
2603 get_page(page);
2604 }
2605
2606 /*
2607 * Ok, we have the page, and it's up-to-date, so
2608 * now we can copy it to user space...
2609 */
2610 ret = copy_page_to_iter(page, offset, nr, to);
2611 retval += ret;
2612 offset += ret;
2613 index += offset >> PAGE_SHIFT;
2614 offset &= ~PAGE_MASK;
2615
2616 put_page(page);
2617 if (!iov_iter_count(to))
2618 break;
2619 if (ret < nr) {
2620 error = -EFAULT;
2621 break;
2622 }
2623 cond_resched();
2624 }
2625
2626 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2627 file_accessed(file);
2628 return retval ? retval : error;
2629}
2630
2631/*
2632 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2633 */
2634static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2635 pgoff_t index, pgoff_t end, int whence)
2636{
2637 struct page *page;
2638 struct pagevec pvec;
2639 pgoff_t indices[PAGEVEC_SIZE];
2640 bool done = false;
2641 int i;
2642
2643 pagevec_init(&pvec);
2644 pvec.nr = 1; /* start small: we may be there already */
2645 while (!done) {
2646 pvec.nr = find_get_entries(mapping, index,
2647 pvec.nr, pvec.pages, indices);
2648 if (!pvec.nr) {
2649 if (whence == SEEK_DATA)
2650 index = end;
2651 break;
2652 }
2653 for (i = 0; i < pvec.nr; i++, index++) {
2654 if (index < indices[i]) {
2655 if (whence == SEEK_HOLE) {
2656 done = true;
2657 break;
2658 }
2659 index = indices[i];
2660 }
2661 page = pvec.pages[i];
2662 if (page && !xa_is_value(page)) {
2663 if (!PageUptodate(page))
2664 page = NULL;
2665 }
2666 if (index >= end ||
2667 (page && whence == SEEK_DATA) ||
2668 (!page && whence == SEEK_HOLE)) {
2669 done = true;
2670 break;
2671 }
2672 }
2673 pagevec_remove_exceptionals(&pvec);
2674 pagevec_release(&pvec);
2675 pvec.nr = PAGEVEC_SIZE;
2676 cond_resched();
2677 }
2678 return index;
2679}
2680
2681static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2682{
2683 struct address_space *mapping = file->f_mapping;
2684 struct inode *inode = mapping->host;
2685 pgoff_t start, end;
2686 loff_t new_offset;
2687
2688 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2689 return generic_file_llseek_size(file, offset, whence,
2690 MAX_LFS_FILESIZE, i_size_read(inode));
2691 inode_lock(inode);
2692 /* We're holding i_mutex so we can access i_size directly */
2693
2694 if (offset < 0 || offset >= inode->i_size)
2695 offset = -ENXIO;
2696 else {
2697 start = offset >> PAGE_SHIFT;
2698 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2699 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2700 new_offset <<= PAGE_SHIFT;
2701 if (new_offset > offset) {
2702 if (new_offset < inode->i_size)
2703 offset = new_offset;
2704 else if (whence == SEEK_DATA)
2705 offset = -ENXIO;
2706 else
2707 offset = inode->i_size;
2708 }
2709 }
2710
2711 if (offset >= 0)
2712 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2713 inode_unlock(inode);
2714 return offset;
2715}
2716
2717static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2718 loff_t len)
2719{
2720 struct inode *inode = file_inode(file);
2721 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2722 struct shmem_inode_info *info = SHMEM_I(inode);
2723 struct shmem_falloc shmem_falloc;
2724 pgoff_t start, index, end;
2725 int error;
2726
2727 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2728 return -EOPNOTSUPP;
2729
2730 inode_lock(inode);
2731
2732 if (mode & FALLOC_FL_PUNCH_HOLE) {
2733 struct address_space *mapping = file->f_mapping;
2734 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2735 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2736 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2737
2738 /* protected by i_mutex */
2739 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2740 error = -EPERM;
2741 goto out;
2742 }
2743
2744 shmem_falloc.waitq = &shmem_falloc_waitq;
2745 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2746 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2747 spin_lock(&inode->i_lock);
2748 inode->i_private = &shmem_falloc;
2749 spin_unlock(&inode->i_lock);
2750
2751 if ((u64)unmap_end > (u64)unmap_start)
2752 unmap_mapping_range(mapping, unmap_start,
2753 1 + unmap_end - unmap_start, 0);
2754 shmem_truncate_range(inode, offset, offset + len - 1);
2755 /* No need to unmap again: hole-punching leaves COWed pages */
2756
2757 spin_lock(&inode->i_lock);
2758 inode->i_private = NULL;
2759 wake_up_all(&shmem_falloc_waitq);
2760 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2761 spin_unlock(&inode->i_lock);
2762 error = 0;
2763 goto out;
2764 }
2765
2766 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2767 error = inode_newsize_ok(inode, offset + len);
2768 if (error)
2769 goto out;
2770
2771 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2772 error = -EPERM;
2773 goto out;
2774 }
2775
2776 start = offset >> PAGE_SHIFT;
2777 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2778 /* Try to avoid a swapstorm if len is impossible to satisfy */
2779 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2780 error = -ENOSPC;
2781 goto out;
2782 }
2783
2784 shmem_falloc.waitq = NULL;
2785 shmem_falloc.start = start;
2786 shmem_falloc.next = start;
2787 shmem_falloc.nr_falloced = 0;
2788 shmem_falloc.nr_unswapped = 0;
2789 spin_lock(&inode->i_lock);
2790 inode->i_private = &shmem_falloc;
2791 spin_unlock(&inode->i_lock);
2792
2793 for (index = start; index < end; index++) {
2794 struct page *page;
2795
2796 /*
2797 * Good, the fallocate(2) manpage permits EINTR: we may have
2798 * been interrupted because we are using up too much memory.
2799 */
2800 if (signal_pending(current))
2801 error = -EINTR;
2802 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2803 error = -ENOMEM;
2804 else
2805 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2806 if (error) {
2807 /* Remove the !PageUptodate pages we added */
2808 if (index > start) {
2809 shmem_undo_range(inode,
2810 (loff_t)start << PAGE_SHIFT,
2811 ((loff_t)index << PAGE_SHIFT) - 1, true);
2812 }
2813 goto undone;
2814 }
2815
2816 /*
2817 * Inform shmem_writepage() how far we have reached.
2818 * No need for lock or barrier: we have the page lock.
2819 */
2820 shmem_falloc.next++;
2821 if (!PageUptodate(page))
2822 shmem_falloc.nr_falloced++;
2823
2824 /*
2825 * If !PageUptodate, leave it that way so that freeable pages
2826 * can be recognized if we need to rollback on error later.
2827 * But set_page_dirty so that memory pressure will swap rather
2828 * than free the pages we are allocating (and SGP_CACHE pages
2829 * might still be clean: we now need to mark those dirty too).
2830 */
2831 set_page_dirty(page);
2832 unlock_page(page);
2833 put_page(page);
2834 cond_resched();
2835 }
2836
2837 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2838 i_size_write(inode, offset + len);
2839 inode->i_ctime = current_time(inode);
2840undone:
2841 spin_lock(&inode->i_lock);
2842 inode->i_private = NULL;
2843 spin_unlock(&inode->i_lock);
2844out:
2845 inode_unlock(inode);
2846 return error;
2847}
2848
2849static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2850{
2851 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2852
2853 buf->f_type = TMPFS_MAGIC;
2854 buf->f_bsize = PAGE_SIZE;
2855 buf->f_namelen = NAME_MAX;
2856 if (sbinfo->max_blocks) {
2857 buf->f_blocks = sbinfo->max_blocks;
2858 buf->f_bavail =
2859 buf->f_bfree = sbinfo->max_blocks -
2860 percpu_counter_sum(&sbinfo->used_blocks);
2861 }
2862 if (sbinfo->max_inodes) {
2863 buf->f_files = sbinfo->max_inodes;
2864 buf->f_ffree = sbinfo->free_inodes;
2865 }
2866 /* else leave those fields 0 like simple_statfs */
2867 return 0;
2868}
2869
2870/*
2871 * File creation. Allocate an inode, and we're done..
2872 */
2873static int
2874shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2875{
2876 struct inode *inode;
2877 int error = -ENOSPC;
2878
2879 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2880 if (inode) {
2881 error = simple_acl_create(dir, inode);
2882 if (error)
2883 goto out_iput;
2884 error = security_inode_init_security(inode, dir,
2885 &dentry->d_name,
2886 shmem_initxattrs, NULL);
2887 if (error && error != -EOPNOTSUPP)
2888 goto out_iput;
2889
2890 error = 0;
2891 dir->i_size += BOGO_DIRENT_SIZE;
2892 dir->i_ctime = dir->i_mtime = current_time(dir);
2893 d_instantiate(dentry, inode);
2894 dget(dentry); /* Extra count - pin the dentry in core */
2895 }
2896 return error;
2897out_iput:
2898 iput(inode);
2899 return error;
2900}
2901
2902static int
2903shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2904{
2905 struct inode *inode;
2906 int error = -ENOSPC;
2907
2908 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2909 if (inode) {
2910 error = security_inode_init_security(inode, dir,
2911 NULL,
2912 shmem_initxattrs, NULL);
2913 if (error && error != -EOPNOTSUPP)
2914 goto out_iput;
2915 error = simple_acl_create(dir, inode);
2916 if (error)
2917 goto out_iput;
2918 d_tmpfile(dentry, inode);
2919 }
2920 return error;
2921out_iput:
2922 iput(inode);
2923 return error;
2924}
2925
2926static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2927{
2928 int error;
2929
2930 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2931 return error;
2932 inc_nlink(dir);
2933 return 0;
2934}
2935
2936static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2937 bool excl)
2938{
2939 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2940}
2941
2942/*
2943 * Link a file..
2944 */
2945static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2946{
2947 struct inode *inode = d_inode(old_dentry);
2948 int ret = 0;
2949
2950 /*
2951 * No ordinary (disk based) filesystem counts links as inodes;
2952 * but each new link needs a new dentry, pinning lowmem, and
2953 * tmpfs dentries cannot be pruned until they are unlinked.
2954 * But if an O_TMPFILE file is linked into the tmpfs, the
2955 * first link must skip that, to get the accounting right.
2956 */
2957 if (inode->i_nlink) {
2958 ret = shmem_reserve_inode(inode->i_sb);
2959 if (ret)
2960 goto out;
2961 }
2962
2963 dir->i_size += BOGO_DIRENT_SIZE;
2964 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2965 inc_nlink(inode);
2966 ihold(inode); /* New dentry reference */
2967 dget(dentry); /* Extra pinning count for the created dentry */
2968 d_instantiate(dentry, inode);
2969out:
2970 return ret;
2971}
2972
2973static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2974{
2975 struct inode *inode = d_inode(dentry);
2976
2977 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2978 shmem_free_inode(inode->i_sb);
2979
2980 dir->i_size -= BOGO_DIRENT_SIZE;
2981 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2982 drop_nlink(inode);
2983 dput(dentry); /* Undo the count from "create" - this does all the work */
2984 return 0;
2985}
2986
2987static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2988{
2989 if (!simple_empty(dentry))
2990 return -ENOTEMPTY;
2991
2992 drop_nlink(d_inode(dentry));
2993 drop_nlink(dir);
2994 return shmem_unlink(dir, dentry);
2995}
2996
2997static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2998{
2999 bool old_is_dir = d_is_dir(old_dentry);
3000 bool new_is_dir = d_is_dir(new_dentry);
3001
3002 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3003 if (old_is_dir) {
3004 drop_nlink(old_dir);
3005 inc_nlink(new_dir);
3006 } else {
3007 drop_nlink(new_dir);
3008 inc_nlink(old_dir);
3009 }
3010 }
3011 old_dir->i_ctime = old_dir->i_mtime =
3012 new_dir->i_ctime = new_dir->i_mtime =
3013 d_inode(old_dentry)->i_ctime =
3014 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3015
3016 return 0;
3017}
3018
3019static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3020{
3021 struct dentry *whiteout;
3022 int error;
3023
3024 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3025 if (!whiteout)
3026 return -ENOMEM;
3027
3028 error = shmem_mknod(old_dir, whiteout,
3029 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3030 dput(whiteout);
3031 if (error)
3032 return error;
3033
3034 /*
3035 * Cheat and hash the whiteout while the old dentry is still in
3036 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3037 *
3038 * d_lookup() will consistently find one of them at this point,
3039 * not sure which one, but that isn't even important.
3040 */
3041 d_rehash(whiteout);
3042 return 0;
3043}
3044
3045/*
3046 * The VFS layer already does all the dentry stuff for rename,
3047 * we just have to decrement the usage count for the target if
3048 * it exists so that the VFS layer correctly free's it when it
3049 * gets overwritten.
3050 */
3051static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3052{
3053 struct inode *inode = d_inode(old_dentry);
3054 int they_are_dirs = S_ISDIR(inode->i_mode);
3055
3056 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3057 return -EINVAL;
3058
3059 if (flags & RENAME_EXCHANGE)
3060 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3061
3062 if (!simple_empty(new_dentry))
3063 return -ENOTEMPTY;
3064
3065 if (flags & RENAME_WHITEOUT) {
3066 int error;
3067
3068 error = shmem_whiteout(old_dir, old_dentry);
3069 if (error)
3070 return error;
3071 }
3072
3073 if (d_really_is_positive(new_dentry)) {
3074 (void) shmem_unlink(new_dir, new_dentry);
3075 if (they_are_dirs) {
3076 drop_nlink(d_inode(new_dentry));
3077 drop_nlink(old_dir);
3078 }
3079 } else if (they_are_dirs) {
3080 drop_nlink(old_dir);
3081 inc_nlink(new_dir);
3082 }
3083
3084 old_dir->i_size -= BOGO_DIRENT_SIZE;
3085 new_dir->i_size += BOGO_DIRENT_SIZE;
3086 old_dir->i_ctime = old_dir->i_mtime =
3087 new_dir->i_ctime = new_dir->i_mtime =
3088 inode->i_ctime = current_time(old_dir);
3089 return 0;
3090}
3091
3092static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3093{
3094 int error;
3095 int len;
3096 struct inode *inode;
3097 struct page *page;
3098
3099 len = strlen(symname) + 1;
3100 if (len > PAGE_SIZE)
3101 return -ENAMETOOLONG;
3102
3103 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3104 VM_NORESERVE);
3105 if (!inode)
3106 return -ENOSPC;
3107
3108 error = security_inode_init_security(inode, dir, &dentry->d_name,
3109 shmem_initxattrs, NULL);
3110 if (error) {
3111 if (error != -EOPNOTSUPP) {
3112 iput(inode);
3113 return error;
3114 }
3115 error = 0;
3116 }
3117
3118 inode->i_size = len-1;
3119 if (len <= SHORT_SYMLINK_LEN) {
3120 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3121 if (!inode->i_link) {
3122 iput(inode);
3123 return -ENOMEM;
3124 }
3125 inode->i_op = &shmem_short_symlink_operations;
3126 } else {
3127 inode_nohighmem(inode);
3128 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3129 if (error) {
3130 iput(inode);
3131 return error;
3132 }
3133 inode->i_mapping->a_ops = &shmem_aops;
3134 inode->i_op = &shmem_symlink_inode_operations;
3135 memcpy(page_address(page), symname, len);
3136 SetPageUptodate(page);
3137 set_page_dirty(page);
3138 unlock_page(page);
3139 put_page(page);
3140 }
3141 dir->i_size += BOGO_DIRENT_SIZE;
3142 dir->i_ctime = dir->i_mtime = current_time(dir);
3143 d_instantiate(dentry, inode);
3144 dget(dentry);
3145 return 0;
3146}
3147
3148static void shmem_put_link(void *arg)
3149{
3150 mark_page_accessed(arg);
3151 put_page(arg);
3152}
3153
3154static const char *shmem_get_link(struct dentry *dentry,
3155 struct inode *inode,
3156 struct delayed_call *done)
3157{
3158 struct page *page = NULL;
3159 int error;
3160 if (!dentry) {
3161 page = find_get_page(inode->i_mapping, 0);
3162 if (!page)
3163 return ERR_PTR(-ECHILD);
3164 if (!PageUptodate(page)) {
3165 put_page(page);
3166 return ERR_PTR(-ECHILD);
3167 }
3168 } else {
3169 error = shmem_getpage(inode, 0, &page, SGP_READ);
3170 if (error)
3171 return ERR_PTR(error);
3172 unlock_page(page);
3173 }
3174 set_delayed_call(done, shmem_put_link, page);
3175 return page_address(page);
3176}
3177
3178#ifdef CONFIG_TMPFS_XATTR
3179/*
3180 * Superblocks without xattr inode operations may get some security.* xattr
3181 * support from the LSM "for free". As soon as we have any other xattrs
3182 * like ACLs, we also need to implement the security.* handlers at
3183 * filesystem level, though.
3184 */
3185
3186/*
3187 * Callback for security_inode_init_security() for acquiring xattrs.
3188 */
3189static int shmem_initxattrs(struct inode *inode,
3190 const struct xattr *xattr_array,
3191 void *fs_info)
3192{
3193 struct shmem_inode_info *info = SHMEM_I(inode);
3194 const struct xattr *xattr;
3195 struct simple_xattr *new_xattr;
3196 size_t len;
3197
3198 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3199 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3200 if (!new_xattr)
3201 return -ENOMEM;
3202
3203 len = strlen(xattr->name) + 1;
3204 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3205 GFP_KERNEL);
3206 if (!new_xattr->name) {
3207 kfree(new_xattr);
3208 return -ENOMEM;
3209 }
3210
3211 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3212 XATTR_SECURITY_PREFIX_LEN);
3213 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3214 xattr->name, len);
3215
3216 simple_xattr_list_add(&info->xattrs, new_xattr);
3217 }
3218
3219 return 0;
3220}
3221
3222static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3223 struct dentry *unused, struct inode *inode,
3224 const char *name, void *buffer, size_t size)
3225{
3226 struct shmem_inode_info *info = SHMEM_I(inode);
3227
3228 name = xattr_full_name(handler, name);
3229 return simple_xattr_get(&info->xattrs, name, buffer, size);
3230}
3231
3232static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3233 struct dentry *unused, struct inode *inode,
3234 const char *name, const void *value,
3235 size_t size, int flags)
3236{
3237 struct shmem_inode_info *info = SHMEM_I(inode);
3238
3239 name = xattr_full_name(handler, name);
3240 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3241}
3242
3243static const struct xattr_handler shmem_security_xattr_handler = {
3244 .prefix = XATTR_SECURITY_PREFIX,
3245 .get = shmem_xattr_handler_get,
3246 .set = shmem_xattr_handler_set,
3247};
3248
3249static const struct xattr_handler shmem_trusted_xattr_handler = {
3250 .prefix = XATTR_TRUSTED_PREFIX,
3251 .get = shmem_xattr_handler_get,
3252 .set = shmem_xattr_handler_set,
3253};
3254
3255static const struct xattr_handler *shmem_xattr_handlers[] = {
3256#ifdef CONFIG_TMPFS_POSIX_ACL
3257 &posix_acl_access_xattr_handler,
3258 &posix_acl_default_xattr_handler,
3259#endif
3260 &shmem_security_xattr_handler,
3261 &shmem_trusted_xattr_handler,
3262 NULL
3263};
3264
3265static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3266{
3267 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3268 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3269}
3270#endif /* CONFIG_TMPFS_XATTR */
3271
3272static const struct inode_operations shmem_short_symlink_operations = {
3273 .get_link = simple_get_link,
3274#ifdef CONFIG_TMPFS_XATTR
3275 .listxattr = shmem_listxattr,
3276#endif
3277};
3278
3279static const struct inode_operations shmem_symlink_inode_operations = {
3280 .get_link = shmem_get_link,
3281#ifdef CONFIG_TMPFS_XATTR
3282 .listxattr = shmem_listxattr,
3283#endif
3284};
3285
3286static struct dentry *shmem_get_parent(struct dentry *child)
3287{
3288 return ERR_PTR(-ESTALE);
3289}
3290
3291static int shmem_match(struct inode *ino, void *vfh)
3292{
3293 __u32 *fh = vfh;
3294 __u64 inum = fh[2];
3295 inum = (inum << 32) | fh[1];
3296 return ino->i_ino == inum && fh[0] == ino->i_generation;
3297}
3298
3299/* Find any alias of inode, but prefer a hashed alias */
3300static struct dentry *shmem_find_alias(struct inode *inode)
3301{
3302 struct dentry *alias = d_find_alias(inode);
3303
3304 return alias ?: d_find_any_alias(inode);
3305}
3306
3307
3308static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3309 struct fid *fid, int fh_len, int fh_type)
3310{
3311 struct inode *inode;
3312 struct dentry *dentry = NULL;
3313 u64 inum;
3314
3315 if (fh_len < 3)
3316 return NULL;
3317
3318 inum = fid->raw[2];
3319 inum = (inum << 32) | fid->raw[1];
3320
3321 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3322 shmem_match, fid->raw);
3323 if (inode) {
3324 dentry = shmem_find_alias(inode);
3325 iput(inode);
3326 }
3327
3328 return dentry;
3329}
3330
3331static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3332 struct inode *parent)
3333{
3334 if (*len < 3) {
3335 *len = 3;
3336 return FILEID_INVALID;
3337 }
3338
3339 if (inode_unhashed(inode)) {
3340 /* Unfortunately insert_inode_hash is not idempotent,
3341 * so as we hash inodes here rather than at creation
3342 * time, we need a lock to ensure we only try
3343 * to do it once
3344 */
3345 static DEFINE_SPINLOCK(lock);
3346 spin_lock(&lock);
3347 if (inode_unhashed(inode))
3348 __insert_inode_hash(inode,
3349 inode->i_ino + inode->i_generation);
3350 spin_unlock(&lock);
3351 }
3352
3353 fh[0] = inode->i_generation;
3354 fh[1] = inode->i_ino;
3355 fh[2] = ((__u64)inode->i_ino) >> 32;
3356
3357 *len = 3;
3358 return 1;
3359}
3360
3361static const struct export_operations shmem_export_ops = {
3362 .get_parent = shmem_get_parent,
3363 .encode_fh = shmem_encode_fh,
3364 .fh_to_dentry = shmem_fh_to_dentry,
3365};
3366
3367enum shmem_param {
3368 Opt_gid,
3369 Opt_huge,
3370 Opt_mode,
3371 Opt_mpol,
3372 Opt_nr_blocks,
3373 Opt_nr_inodes,
3374 Opt_size,
3375 Opt_uid,
3376};
3377
3378static const struct fs_parameter_spec shmem_param_specs[] = {
3379 fsparam_u32 ("gid", Opt_gid),
3380 fsparam_enum ("huge", Opt_huge),
3381 fsparam_u32oct("mode", Opt_mode),
3382 fsparam_string("mpol", Opt_mpol),
3383 fsparam_string("nr_blocks", Opt_nr_blocks),
3384 fsparam_string("nr_inodes", Opt_nr_inodes),
3385 fsparam_string("size", Opt_size),
3386 fsparam_u32 ("uid", Opt_uid),
3387 {}
3388};
3389
3390static const struct fs_parameter_enum shmem_param_enums[] = {
3391 { Opt_huge, "never", SHMEM_HUGE_NEVER },
3392 { Opt_huge, "always", SHMEM_HUGE_ALWAYS },
3393 { Opt_huge, "within_size", SHMEM_HUGE_WITHIN_SIZE },
3394 { Opt_huge, "advise", SHMEM_HUGE_ADVISE },
3395 {}
3396};
3397
3398const struct fs_parameter_description shmem_fs_parameters = {
3399 .name = "tmpfs",
3400 .specs = shmem_param_specs,
3401 .enums = shmem_param_enums,
3402};
3403
3404static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3405{
3406 struct shmem_options *ctx = fc->fs_private;
3407 struct fs_parse_result result;
3408 unsigned long long size;
3409 char *rest;
3410 int opt;
3411
3412 opt = fs_parse(fc, &shmem_fs_parameters, param, &result);
3413 if (opt < 0)
3414 return opt;
3415
3416 switch (opt) {
3417 case Opt_size:
3418 size = memparse(param->string, &rest);
3419 if (*rest == '%') {
3420 size <<= PAGE_SHIFT;
3421 size *= totalram_pages();
3422 do_div(size, 100);
3423 rest++;
3424 }
3425 if (*rest)
3426 goto bad_value;
3427 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3428 ctx->seen |= SHMEM_SEEN_BLOCKS;
3429 break;
3430 case Opt_nr_blocks:
3431 ctx->blocks = memparse(param->string, &rest);
3432 if (*rest)
3433 goto bad_value;
3434 ctx->seen |= SHMEM_SEEN_BLOCKS;
3435 break;
3436 case Opt_nr_inodes:
3437 ctx->inodes = memparse(param->string, &rest);
3438 if (*rest)
3439 goto bad_value;
3440 ctx->seen |= SHMEM_SEEN_INODES;
3441 break;
3442 case Opt_mode:
3443 ctx->mode = result.uint_32 & 07777;
3444 break;
3445 case Opt_uid:
3446 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3447 if (!uid_valid(ctx->uid))
3448 goto bad_value;
3449 break;
3450 case Opt_gid:
3451 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3452 if (!gid_valid(ctx->gid))
3453 goto bad_value;
3454 break;
3455 case Opt_huge:
3456 ctx->huge = result.uint_32;
3457 if (ctx->huge != SHMEM_HUGE_NEVER &&
3458 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3459 has_transparent_hugepage()))
3460 goto unsupported_parameter;
3461 ctx->seen |= SHMEM_SEEN_HUGE;
3462 break;
3463 case Opt_mpol:
3464 if (IS_ENABLED(CONFIG_NUMA)) {
3465 mpol_put(ctx->mpol);
3466 ctx->mpol = NULL;
3467 if (mpol_parse_str(param->string, &ctx->mpol))
3468 goto bad_value;
3469 break;
3470 }
3471 goto unsupported_parameter;
3472 }
3473 return 0;
3474
3475unsupported_parameter:
3476 return invalf(fc, "tmpfs: Unsupported parameter '%s'", param->key);
3477bad_value:
3478 return invalf(fc, "tmpfs: Bad value for '%s'", param->key);
3479}
3480
3481static int shmem_parse_options(struct fs_context *fc, void *data)
3482{
3483 char *options = data;
3484
3485 if (options) {
3486 int err = security_sb_eat_lsm_opts(options, &fc->security);
3487 if (err)
3488 return err;
3489 }
3490
3491 while (options != NULL) {
3492 char *this_char = options;
3493 for (;;) {
3494 /*
3495 * NUL-terminate this option: unfortunately,
3496 * mount options form a comma-separated list,
3497 * but mpol's nodelist may also contain commas.
3498 */
3499 options = strchr(options, ',');
3500 if (options == NULL)
3501 break;
3502 options++;
3503 if (!isdigit(*options)) {
3504 options[-1] = '\0';
3505 break;
3506 }
3507 }
3508 if (*this_char) {
3509 char *value = strchr(this_char,'=');
3510 size_t len = 0;
3511 int err;
3512
3513 if (value) {
3514 *value++ = '\0';
3515 len = strlen(value);
3516 }
3517 err = vfs_parse_fs_string(fc, this_char, value, len);
3518 if (err < 0)
3519 return err;
3520 }
3521 }
3522 return 0;
3523}
3524
3525/*
3526 * Reconfigure a shmem filesystem.
3527 *
3528 * Note that we disallow change from limited->unlimited blocks/inodes while any
3529 * are in use; but we must separately disallow unlimited->limited, because in
3530 * that case we have no record of how much is already in use.
3531 */
3532static int shmem_reconfigure(struct fs_context *fc)
3533{
3534 struct shmem_options *ctx = fc->fs_private;
3535 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3536 unsigned long inodes;
3537 const char *err;
3538
3539 spin_lock(&sbinfo->stat_lock);
3540 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3541 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3542 if (!sbinfo->max_blocks) {
3543 err = "Cannot retroactively limit size";
3544 goto out;
3545 }
3546 if (percpu_counter_compare(&sbinfo->used_blocks,
3547 ctx->blocks) > 0) {
3548 err = "Too small a size for current use";
3549 goto out;
3550 }
3551 }
3552 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3553 if (!sbinfo->max_inodes) {
3554 err = "Cannot retroactively limit inodes";
3555 goto out;
3556 }
3557 if (ctx->inodes < inodes) {
3558 err = "Too few inodes for current use";
3559 goto out;
3560 }
3561 }
3562
3563 if (ctx->seen & SHMEM_SEEN_HUGE)
3564 sbinfo->huge = ctx->huge;
3565 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3566 sbinfo->max_blocks = ctx->blocks;
3567 if (ctx->seen & SHMEM_SEEN_INODES) {
3568 sbinfo->max_inodes = ctx->inodes;
3569 sbinfo->free_inodes = ctx->inodes - inodes;
3570 }
3571
3572 /*
3573 * Preserve previous mempolicy unless mpol remount option was specified.
3574 */
3575 if (ctx->mpol) {
3576 mpol_put(sbinfo->mpol);
3577 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3578 ctx->mpol = NULL;
3579 }
3580 spin_unlock(&sbinfo->stat_lock);
3581 return 0;
3582out:
3583 spin_unlock(&sbinfo->stat_lock);
3584 return invalf(fc, "tmpfs: %s", err);
3585}
3586
3587static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3588{
3589 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3590
3591 if (sbinfo->max_blocks != shmem_default_max_blocks())
3592 seq_printf(seq, ",size=%luk",
3593 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3594 if (sbinfo->max_inodes != shmem_default_max_inodes())
3595 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3596 if (sbinfo->mode != (0777 | S_ISVTX))
3597 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3598 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3599 seq_printf(seq, ",uid=%u",
3600 from_kuid_munged(&init_user_ns, sbinfo->uid));
3601 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3602 seq_printf(seq, ",gid=%u",
3603 from_kgid_munged(&init_user_ns, sbinfo->gid));
3604#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3605 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3606 if (sbinfo->huge)
3607 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3608#endif
3609 shmem_show_mpol(seq, sbinfo->mpol);
3610 return 0;
3611}
3612
3613#endif /* CONFIG_TMPFS */
3614
3615static void shmem_put_super(struct super_block *sb)
3616{
3617 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3618
3619 percpu_counter_destroy(&sbinfo->used_blocks);
3620 mpol_put(sbinfo->mpol);
3621 kfree(sbinfo);
3622 sb->s_fs_info = NULL;
3623}
3624
3625static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3626{
3627 struct shmem_options *ctx = fc->fs_private;
3628 struct inode *inode;
3629 struct shmem_sb_info *sbinfo;
3630 int err = -ENOMEM;
3631
3632 /* Round up to L1_CACHE_BYTES to resist false sharing */
3633 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3634 L1_CACHE_BYTES), GFP_KERNEL);
3635 if (!sbinfo)
3636 return -ENOMEM;
3637
3638 sb->s_fs_info = sbinfo;
3639
3640#ifdef CONFIG_TMPFS
3641 /*
3642 * Per default we only allow half of the physical ram per
3643 * tmpfs instance, limiting inodes to one per page of lowmem;
3644 * but the internal instance is left unlimited.
3645 */
3646 if (!(sb->s_flags & SB_KERNMOUNT)) {
3647 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3648 ctx->blocks = shmem_default_max_blocks();
3649 if (!(ctx->seen & SHMEM_SEEN_INODES))
3650 ctx->inodes = shmem_default_max_inodes();
3651 } else {
3652 sb->s_flags |= SB_NOUSER;
3653 }
3654 sb->s_export_op = &shmem_export_ops;
3655 sb->s_flags |= SB_NOSEC;
3656#else
3657 sb->s_flags |= SB_NOUSER;
3658#endif
3659 sbinfo->max_blocks = ctx->blocks;
3660 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3661 sbinfo->uid = ctx->uid;
3662 sbinfo->gid = ctx->gid;
3663 sbinfo->mode = ctx->mode;
3664 sbinfo->huge = ctx->huge;
3665 sbinfo->mpol = ctx->mpol;
3666 ctx->mpol = NULL;
3667
3668 spin_lock_init(&sbinfo->stat_lock);
3669 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3670 goto failed;
3671 spin_lock_init(&sbinfo->shrinklist_lock);
3672 INIT_LIST_HEAD(&sbinfo->shrinklist);
3673
3674 sb->s_maxbytes = MAX_LFS_FILESIZE;
3675 sb->s_blocksize = PAGE_SIZE;
3676 sb->s_blocksize_bits = PAGE_SHIFT;
3677 sb->s_magic = TMPFS_MAGIC;
3678 sb->s_op = &shmem_ops;
3679 sb->s_time_gran = 1;
3680#ifdef CONFIG_TMPFS_XATTR
3681 sb->s_xattr = shmem_xattr_handlers;
3682#endif
3683#ifdef CONFIG_TMPFS_POSIX_ACL
3684 sb->s_flags |= SB_POSIXACL;
3685#endif
3686 uuid_gen(&sb->s_uuid);
3687
3688 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3689 if (!inode)
3690 goto failed;
3691 inode->i_uid = sbinfo->uid;
3692 inode->i_gid = sbinfo->gid;
3693 sb->s_root = d_make_root(inode);
3694 if (!sb->s_root)
3695 goto failed;
3696 return 0;
3697
3698failed:
3699 shmem_put_super(sb);
3700 return err;
3701}
3702
3703static int shmem_get_tree(struct fs_context *fc)
3704{
3705 return get_tree_nodev(fc, shmem_fill_super);
3706}
3707
3708static void shmem_free_fc(struct fs_context *fc)
3709{
3710 struct shmem_options *ctx = fc->fs_private;
3711
3712 if (ctx) {
3713 mpol_put(ctx->mpol);
3714 kfree(ctx);
3715 }
3716}
3717
3718static const struct fs_context_operations shmem_fs_context_ops = {
3719 .free = shmem_free_fc,
3720 .get_tree = shmem_get_tree,
3721#ifdef CONFIG_TMPFS
3722 .parse_monolithic = shmem_parse_options,
3723 .parse_param = shmem_parse_one,
3724 .reconfigure = shmem_reconfigure,
3725#endif
3726};
3727
3728static struct kmem_cache *shmem_inode_cachep;
3729
3730static struct inode *shmem_alloc_inode(struct super_block *sb)
3731{
3732 struct shmem_inode_info *info;
3733 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3734 if (!info)
3735 return NULL;
3736 return &info->vfs_inode;
3737}
3738
3739static void shmem_free_in_core_inode(struct inode *inode)
3740{
3741 if (S_ISLNK(inode->i_mode))
3742 kfree(inode->i_link);
3743 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3744}
3745
3746static void shmem_destroy_inode(struct inode *inode)
3747{
3748 if (S_ISREG(inode->i_mode))
3749 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3750}
3751
3752static void shmem_init_inode(void *foo)
3753{
3754 struct shmem_inode_info *info = foo;
3755 inode_init_once(&info->vfs_inode);
3756}
3757
3758static void shmem_init_inodecache(void)
3759{
3760 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3761 sizeof(struct shmem_inode_info),
3762 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3763}
3764
3765static void shmem_destroy_inodecache(void)
3766{
3767 kmem_cache_destroy(shmem_inode_cachep);
3768}
3769
3770static const struct address_space_operations shmem_aops = {
3771 .writepage = shmem_writepage,
3772 .set_page_dirty = __set_page_dirty_no_writeback,
3773#ifdef CONFIG_TMPFS
3774 .write_begin = shmem_write_begin,
3775 .write_end = shmem_write_end,
3776#endif
3777#ifdef CONFIG_MIGRATION
3778 .migratepage = migrate_page,
3779#endif
3780 .error_remove_page = generic_error_remove_page,
3781};
3782
3783static const struct file_operations shmem_file_operations = {
3784 .mmap = shmem_mmap,
3785 .get_unmapped_area = shmem_get_unmapped_area,
3786#ifdef CONFIG_TMPFS
3787 .llseek = shmem_file_llseek,
3788 .read_iter = shmem_file_read_iter,
3789 .write_iter = generic_file_write_iter,
3790 .fsync = noop_fsync,
3791 .splice_read = generic_file_splice_read,
3792 .splice_write = iter_file_splice_write,
3793 .fallocate = shmem_fallocate,
3794#endif
3795};
3796
3797static const struct inode_operations shmem_inode_operations = {
3798 .getattr = shmem_getattr,
3799 .setattr = shmem_setattr,
3800#ifdef CONFIG_TMPFS_XATTR
3801 .listxattr = shmem_listxattr,
3802 .set_acl = simple_set_acl,
3803#endif
3804};
3805
3806static const struct inode_operations shmem_dir_inode_operations = {
3807#ifdef CONFIG_TMPFS
3808 .create = shmem_create,
3809 .lookup = simple_lookup,
3810 .link = shmem_link,
3811 .unlink = shmem_unlink,
3812 .symlink = shmem_symlink,
3813 .mkdir = shmem_mkdir,
3814 .rmdir = shmem_rmdir,
3815 .mknod = shmem_mknod,
3816 .rename = shmem_rename2,
3817 .tmpfile = shmem_tmpfile,
3818#endif
3819#ifdef CONFIG_TMPFS_XATTR
3820 .listxattr = shmem_listxattr,
3821#endif
3822#ifdef CONFIG_TMPFS_POSIX_ACL
3823 .setattr = shmem_setattr,
3824 .set_acl = simple_set_acl,
3825#endif
3826};
3827
3828static const struct inode_operations shmem_special_inode_operations = {
3829#ifdef CONFIG_TMPFS_XATTR
3830 .listxattr = shmem_listxattr,
3831#endif
3832#ifdef CONFIG_TMPFS_POSIX_ACL
3833 .setattr = shmem_setattr,
3834 .set_acl = simple_set_acl,
3835#endif
3836};
3837
3838static const struct super_operations shmem_ops = {
3839 .alloc_inode = shmem_alloc_inode,
3840 .free_inode = shmem_free_in_core_inode,
3841 .destroy_inode = shmem_destroy_inode,
3842#ifdef CONFIG_TMPFS
3843 .statfs = shmem_statfs,
3844 .show_options = shmem_show_options,
3845#endif
3846 .evict_inode = shmem_evict_inode,
3847 .drop_inode = generic_delete_inode,
3848 .put_super = shmem_put_super,
3849#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3850 .nr_cached_objects = shmem_unused_huge_count,
3851 .free_cached_objects = shmem_unused_huge_scan,
3852#endif
3853};
3854
3855static const struct vm_operations_struct shmem_vm_ops = {
3856 .fault = shmem_fault,
3857 .map_pages = filemap_map_pages,
3858#ifdef CONFIG_NUMA
3859 .set_policy = shmem_set_policy,
3860 .get_policy = shmem_get_policy,
3861#endif
3862};
3863
3864int shmem_init_fs_context(struct fs_context *fc)
3865{
3866 struct shmem_options *ctx;
3867
3868 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3869 if (!ctx)
3870 return -ENOMEM;
3871
3872 ctx->mode = 0777 | S_ISVTX;
3873 ctx->uid = current_fsuid();
3874 ctx->gid = current_fsgid();
3875
3876 fc->fs_private = ctx;
3877 fc->ops = &shmem_fs_context_ops;
3878 return 0;
3879}
3880
3881static struct file_system_type shmem_fs_type = {
3882 .owner = THIS_MODULE,
3883 .name = "tmpfs",
3884 .init_fs_context = shmem_init_fs_context,
3885#ifdef CONFIG_TMPFS
3886 .parameters = &shmem_fs_parameters,
3887#endif
3888 .kill_sb = kill_litter_super,
3889 .fs_flags = FS_USERNS_MOUNT,
3890};
3891
3892int __init shmem_init(void)
3893{
3894 int error;
3895
3896 shmem_init_inodecache();
3897
3898 error = register_filesystem(&shmem_fs_type);
3899 if (error) {
3900 pr_err("Could not register tmpfs\n");
3901 goto out2;
3902 }
3903
3904 shm_mnt = kern_mount(&shmem_fs_type);
3905 if (IS_ERR(shm_mnt)) {
3906 error = PTR_ERR(shm_mnt);
3907 pr_err("Could not kern_mount tmpfs\n");
3908 goto out1;
3909 }
3910
3911#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3912 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3913 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3914 else
3915 shmem_huge = 0; /* just in case it was patched */
3916#endif
3917 return 0;
3918
3919out1:
3920 unregister_filesystem(&shmem_fs_type);
3921out2:
3922 shmem_destroy_inodecache();
3923 shm_mnt = ERR_PTR(error);
3924 return error;
3925}
3926
3927#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3928static ssize_t shmem_enabled_show(struct kobject *kobj,
3929 struct kobj_attribute *attr, char *buf)
3930{
3931 int values[] = {
3932 SHMEM_HUGE_ALWAYS,
3933 SHMEM_HUGE_WITHIN_SIZE,
3934 SHMEM_HUGE_ADVISE,
3935 SHMEM_HUGE_NEVER,
3936 SHMEM_HUGE_DENY,
3937 SHMEM_HUGE_FORCE,
3938 };
3939 int i, count;
3940
3941 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3942 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3943
3944 count += sprintf(buf + count, fmt,
3945 shmem_format_huge(values[i]));
3946 }
3947 buf[count - 1] = '\n';
3948 return count;
3949}
3950
3951static ssize_t shmem_enabled_store(struct kobject *kobj,
3952 struct kobj_attribute *attr, const char *buf, size_t count)
3953{
3954 char tmp[16];
3955 int huge;
3956
3957 if (count + 1 > sizeof(tmp))
3958 return -EINVAL;
3959 memcpy(tmp, buf, count);
3960 tmp[count] = '\0';
3961 if (count && tmp[count - 1] == '\n')
3962 tmp[count - 1] = '\0';
3963
3964 huge = shmem_parse_huge(tmp);
3965 if (huge == -EINVAL)
3966 return -EINVAL;
3967 if (!has_transparent_hugepage() &&
3968 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3969 return -EINVAL;
3970
3971 shmem_huge = huge;
3972 if (shmem_huge > SHMEM_HUGE_DENY)
3973 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3974 return count;
3975}
3976
3977struct kobj_attribute shmem_enabled_attr =
3978 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3979#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3980
3981#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3982bool shmem_huge_enabled(struct vm_area_struct *vma)
3983{
3984 struct inode *inode = file_inode(vma->vm_file);
3985 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3986 loff_t i_size;
3987 pgoff_t off;
3988
3989 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3990 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3991 return false;
3992 if (shmem_huge == SHMEM_HUGE_FORCE)
3993 return true;
3994 if (shmem_huge == SHMEM_HUGE_DENY)
3995 return false;
3996 switch (sbinfo->huge) {
3997 case SHMEM_HUGE_NEVER:
3998 return false;
3999 case SHMEM_HUGE_ALWAYS:
4000 return true;
4001 case SHMEM_HUGE_WITHIN_SIZE:
4002 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4003 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4004 if (i_size >= HPAGE_PMD_SIZE &&
4005 i_size >> PAGE_SHIFT >= off)
4006 return true;
4007 /* fall through */
4008 case SHMEM_HUGE_ADVISE:
4009 /* TODO: implement fadvise() hints */
4010 return (vma->vm_flags & VM_HUGEPAGE);
4011 default:
4012 VM_BUG_ON(1);
4013 return false;
4014 }
4015}
4016#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4017
4018#else /* !CONFIG_SHMEM */
4019
4020/*
4021 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4022 *
4023 * This is intended for small system where the benefits of the full
4024 * shmem code (swap-backed and resource-limited) are outweighed by
4025 * their complexity. On systems without swap this code should be
4026 * effectively equivalent, but much lighter weight.
4027 */
4028
4029static struct file_system_type shmem_fs_type = {
4030 .name = "tmpfs",
4031 .init_fs_context = ramfs_init_fs_context,
4032 .parameters = &ramfs_fs_parameters,
4033 .kill_sb = kill_litter_super,
4034 .fs_flags = FS_USERNS_MOUNT,
4035};
4036
4037int __init shmem_init(void)
4038{
4039 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4040
4041 shm_mnt = kern_mount(&shmem_fs_type);
4042 BUG_ON(IS_ERR(shm_mnt));
4043
4044 return 0;
4045}
4046
4047int shmem_unuse(unsigned int type, bool frontswap,
4048 unsigned long *fs_pages_to_unuse)
4049{
4050 return 0;
4051}
4052
4053int shmem_lock(struct file *file, int lock, struct user_struct *user)
4054{
4055 return 0;
4056}
4057
4058void shmem_unlock_mapping(struct address_space *mapping)
4059{
4060}
4061
4062#ifdef CONFIG_MMU
4063unsigned long shmem_get_unmapped_area(struct file *file,
4064 unsigned long addr, unsigned long len,
4065 unsigned long pgoff, unsigned long flags)
4066{
4067 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4068}
4069#endif
4070
4071void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4072{
4073 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4074}
4075EXPORT_SYMBOL_GPL(shmem_truncate_range);
4076
4077#define shmem_vm_ops generic_file_vm_ops
4078#define shmem_file_operations ramfs_file_operations
4079#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4080#define shmem_acct_size(flags, size) 0
4081#define shmem_unacct_size(flags, size) do {} while (0)
4082
4083#endif /* CONFIG_SHMEM */
4084
4085/* common code */
4086
4087static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4088 unsigned long flags, unsigned int i_flags)
4089{
4090 struct inode *inode;
4091 struct file *res;
4092
4093 if (IS_ERR(mnt))
4094 return ERR_CAST(mnt);
4095
4096 if (size < 0 || size > MAX_LFS_FILESIZE)
4097 return ERR_PTR(-EINVAL);
4098
4099 if (shmem_acct_size(flags, size))
4100 return ERR_PTR(-ENOMEM);
4101
4102 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4103 flags);
4104 if (unlikely(!inode)) {
4105 shmem_unacct_size(flags, size);
4106 return ERR_PTR(-ENOSPC);
4107 }
4108 inode->i_flags |= i_flags;
4109 inode->i_size = size;
4110 clear_nlink(inode); /* It is unlinked */
4111 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4112 if (!IS_ERR(res))
4113 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4114 &shmem_file_operations);
4115 if (IS_ERR(res))
4116 iput(inode);
4117 return res;
4118}
4119
4120/**
4121 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4122 * kernel internal. There will be NO LSM permission checks against the
4123 * underlying inode. So users of this interface must do LSM checks at a
4124 * higher layer. The users are the big_key and shm implementations. LSM
4125 * checks are provided at the key or shm level rather than the inode.
4126 * @name: name for dentry (to be seen in /proc/<pid>/maps
4127 * @size: size to be set for the file
4128 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4129 */
4130struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4131{
4132 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4133}
4134
4135/**
4136 * shmem_file_setup - get an unlinked file living in tmpfs
4137 * @name: name for dentry (to be seen in /proc/<pid>/maps
4138 * @size: size to be set for the file
4139 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4140 */
4141struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4142{
4143 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4144}
4145EXPORT_SYMBOL_GPL(shmem_file_setup);
4146
4147/**
4148 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4149 * @mnt: the tmpfs mount where the file will be created
4150 * @name: name for dentry (to be seen in /proc/<pid>/maps
4151 * @size: size to be set for the file
4152 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4153 */
4154struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4155 loff_t size, unsigned long flags)
4156{
4157 return __shmem_file_setup(mnt, name, size, flags, 0);
4158}
4159EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4160
4161/**
4162 * shmem_zero_setup - setup a shared anonymous mapping
4163 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4164 */
4165int shmem_zero_setup(struct vm_area_struct *vma)
4166{
4167 struct file *file;
4168 loff_t size = vma->vm_end - vma->vm_start;
4169
4170 /*
4171 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4172 * between XFS directory reading and selinux: since this file is only
4173 * accessible to the user through its mapping, use S_PRIVATE flag to
4174 * bypass file security, in the same way as shmem_kernel_file_setup().
4175 */
4176 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4177 if (IS_ERR(file))
4178 return PTR_ERR(file);
4179
4180 if (vma->vm_file)
4181 fput(vma->vm_file);
4182 vma->vm_file = file;
4183 vma->vm_ops = &shmem_vm_ops;
4184
4185 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4186 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4187 (vma->vm_end & HPAGE_PMD_MASK)) {
4188 khugepaged_enter(vma, vma->vm_flags);
4189 }
4190
4191 return 0;
4192}
4193
4194/**
4195 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4196 * @mapping: the page's address_space
4197 * @index: the page index
4198 * @gfp: the page allocator flags to use if allocating
4199 *
4200 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4201 * with any new page allocations done using the specified allocation flags.
4202 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4203 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4204 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4205 *
4206 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4207 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4208 */
4209struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4210 pgoff_t index, gfp_t gfp)
4211{
4212#ifdef CONFIG_SHMEM
4213 struct inode *inode = mapping->host;
4214 struct page *page;
4215 int error;
4216
4217 BUG_ON(mapping->a_ops != &shmem_aops);
4218 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4219 gfp, NULL, NULL, NULL);
4220 if (error)
4221 page = ERR_PTR(error);
4222 else
4223 unlock_page(page);
4224 return page;
4225#else
4226 /*
4227 * The tiny !SHMEM case uses ramfs without swap
4228 */
4229 return read_cache_page_gfp(mapping, index, gfp);
4230#endif
4231}
4232EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/file.h>
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43#include <linux/xattr.h>
44#include <linux/exportfs.h>
45#include <linux/posix_acl.h>
46#include <linux/generic_acl.h>
47#include <linux/mman.h>
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
52#include <linux/writeback.h>
53#include <linux/blkdev.h>
54#include <linux/pagevec.h>
55#include <linux/percpu_counter.h>
56#include <linux/splice.h>
57#include <linux/security.h>
58#include <linux/swapops.h>
59#include <linux/mempolicy.h>
60#include <linux/namei.h>
61#include <linux/ctype.h>
62#include <linux/migrate.h>
63#include <linux/highmem.h>
64#include <linux/seq_file.h>
65#include <linux/magic.h>
66
67#include <asm/uaccess.h>
68#include <asm/pgtable.h>
69
70#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
71#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
72
73/* Pretend that each entry is of this size in directory's i_size */
74#define BOGO_DIRENT_SIZE 20
75
76/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
77#define SHORT_SYMLINK_LEN 128
78
79struct shmem_xattr {
80 struct list_head list; /* anchored by shmem_inode_info->xattr_list */
81 char *name; /* xattr name */
82 size_t size;
83 char value[0];
84};
85
86/* Flag allocation requirements to shmem_getpage */
87enum sgp_type {
88 SGP_READ, /* don't exceed i_size, don't allocate page */
89 SGP_CACHE, /* don't exceed i_size, may allocate page */
90 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
91 SGP_WRITE, /* may exceed i_size, may allocate page */
92};
93
94#ifdef CONFIG_TMPFS
95static unsigned long shmem_default_max_blocks(void)
96{
97 return totalram_pages / 2;
98}
99
100static unsigned long shmem_default_max_inodes(void)
101{
102 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
103}
104#endif
105
106static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
107 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
108
109static inline int shmem_getpage(struct inode *inode, pgoff_t index,
110 struct page **pagep, enum sgp_type sgp, int *fault_type)
111{
112 return shmem_getpage_gfp(inode, index, pagep, sgp,
113 mapping_gfp_mask(inode->i_mapping), fault_type);
114}
115
116static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
117{
118 return sb->s_fs_info;
119}
120
121/*
122 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
123 * for shared memory and for shared anonymous (/dev/zero) mappings
124 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
125 * consistent with the pre-accounting of private mappings ...
126 */
127static inline int shmem_acct_size(unsigned long flags, loff_t size)
128{
129 return (flags & VM_NORESERVE) ?
130 0 : security_vm_enough_memory_kern(VM_ACCT(size));
131}
132
133static inline void shmem_unacct_size(unsigned long flags, loff_t size)
134{
135 if (!(flags & VM_NORESERVE))
136 vm_unacct_memory(VM_ACCT(size));
137}
138
139/*
140 * ... whereas tmpfs objects are accounted incrementally as
141 * pages are allocated, in order to allow huge sparse files.
142 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
143 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
144 */
145static inline int shmem_acct_block(unsigned long flags)
146{
147 return (flags & VM_NORESERVE) ?
148 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
149}
150
151static inline void shmem_unacct_blocks(unsigned long flags, long pages)
152{
153 if (flags & VM_NORESERVE)
154 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
155}
156
157static const struct super_operations shmem_ops;
158static const struct address_space_operations shmem_aops;
159static const struct file_operations shmem_file_operations;
160static const struct inode_operations shmem_inode_operations;
161static const struct inode_operations shmem_dir_inode_operations;
162static const struct inode_operations shmem_special_inode_operations;
163static const struct vm_operations_struct shmem_vm_ops;
164
165static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
166 .ra_pages = 0, /* No readahead */
167 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
168};
169
170static LIST_HEAD(shmem_swaplist);
171static DEFINE_MUTEX(shmem_swaplist_mutex);
172
173static int shmem_reserve_inode(struct super_block *sb)
174{
175 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
176 if (sbinfo->max_inodes) {
177 spin_lock(&sbinfo->stat_lock);
178 if (!sbinfo->free_inodes) {
179 spin_unlock(&sbinfo->stat_lock);
180 return -ENOSPC;
181 }
182 sbinfo->free_inodes--;
183 spin_unlock(&sbinfo->stat_lock);
184 }
185 return 0;
186}
187
188static void shmem_free_inode(struct super_block *sb)
189{
190 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
191 if (sbinfo->max_inodes) {
192 spin_lock(&sbinfo->stat_lock);
193 sbinfo->free_inodes++;
194 spin_unlock(&sbinfo->stat_lock);
195 }
196}
197
198/**
199 * shmem_recalc_inode - recalculate the block usage of an inode
200 * @inode: inode to recalc
201 *
202 * We have to calculate the free blocks since the mm can drop
203 * undirtied hole pages behind our back.
204 *
205 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
206 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
207 *
208 * It has to be called with the spinlock held.
209 */
210static void shmem_recalc_inode(struct inode *inode)
211{
212 struct shmem_inode_info *info = SHMEM_I(inode);
213 long freed;
214
215 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
216 if (freed > 0) {
217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218 if (sbinfo->max_blocks)
219 percpu_counter_add(&sbinfo->used_blocks, -freed);
220 info->alloced -= freed;
221 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
222 shmem_unacct_blocks(info->flags, freed);
223 }
224}
225
226/*
227 * Replace item expected in radix tree by a new item, while holding tree lock.
228 */
229static int shmem_radix_tree_replace(struct address_space *mapping,
230 pgoff_t index, void *expected, void *replacement)
231{
232 void **pslot;
233 void *item = NULL;
234
235 VM_BUG_ON(!expected);
236 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
237 if (pslot)
238 item = radix_tree_deref_slot_protected(pslot,
239 &mapping->tree_lock);
240 if (item != expected)
241 return -ENOENT;
242 if (replacement)
243 radix_tree_replace_slot(pslot, replacement);
244 else
245 radix_tree_delete(&mapping->page_tree, index);
246 return 0;
247}
248
249/*
250 * Like add_to_page_cache_locked, but error if expected item has gone.
251 */
252static int shmem_add_to_page_cache(struct page *page,
253 struct address_space *mapping,
254 pgoff_t index, gfp_t gfp, void *expected)
255{
256 int error = 0;
257
258 VM_BUG_ON(!PageLocked(page));
259 VM_BUG_ON(!PageSwapBacked(page));
260
261 if (!expected)
262 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
263 if (!error) {
264 page_cache_get(page);
265 page->mapping = mapping;
266 page->index = index;
267
268 spin_lock_irq(&mapping->tree_lock);
269 if (!expected)
270 error = radix_tree_insert(&mapping->page_tree,
271 index, page);
272 else
273 error = shmem_radix_tree_replace(mapping, index,
274 expected, page);
275 if (!error) {
276 mapping->nrpages++;
277 __inc_zone_page_state(page, NR_FILE_PAGES);
278 __inc_zone_page_state(page, NR_SHMEM);
279 spin_unlock_irq(&mapping->tree_lock);
280 } else {
281 page->mapping = NULL;
282 spin_unlock_irq(&mapping->tree_lock);
283 page_cache_release(page);
284 }
285 if (!expected)
286 radix_tree_preload_end();
287 }
288 if (error)
289 mem_cgroup_uncharge_cache_page(page);
290 return error;
291}
292
293/*
294 * Like delete_from_page_cache, but substitutes swap for page.
295 */
296static void shmem_delete_from_page_cache(struct page *page, void *radswap)
297{
298 struct address_space *mapping = page->mapping;
299 int error;
300
301 spin_lock_irq(&mapping->tree_lock);
302 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
303 page->mapping = NULL;
304 mapping->nrpages--;
305 __dec_zone_page_state(page, NR_FILE_PAGES);
306 __dec_zone_page_state(page, NR_SHMEM);
307 spin_unlock_irq(&mapping->tree_lock);
308 page_cache_release(page);
309 BUG_ON(error);
310}
311
312/*
313 * Like find_get_pages, but collecting swap entries as well as pages.
314 */
315static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
316 pgoff_t start, unsigned int nr_pages,
317 struct page **pages, pgoff_t *indices)
318{
319 unsigned int i;
320 unsigned int ret;
321 unsigned int nr_found;
322
323 rcu_read_lock();
324restart:
325 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
326 (void ***)pages, indices, start, nr_pages);
327 ret = 0;
328 for (i = 0; i < nr_found; i++) {
329 struct page *page;
330repeat:
331 page = radix_tree_deref_slot((void **)pages[i]);
332 if (unlikely(!page))
333 continue;
334 if (radix_tree_exception(page)) {
335 if (radix_tree_deref_retry(page))
336 goto restart;
337 /*
338 * Otherwise, we must be storing a swap entry
339 * here as an exceptional entry: so return it
340 * without attempting to raise page count.
341 */
342 goto export;
343 }
344 if (!page_cache_get_speculative(page))
345 goto repeat;
346
347 /* Has the page moved? */
348 if (unlikely(page != *((void **)pages[i]))) {
349 page_cache_release(page);
350 goto repeat;
351 }
352export:
353 indices[ret] = indices[i];
354 pages[ret] = page;
355 ret++;
356 }
357 if (unlikely(!ret && nr_found))
358 goto restart;
359 rcu_read_unlock();
360 return ret;
361}
362
363/*
364 * Remove swap entry from radix tree, free the swap and its page cache.
365 */
366static int shmem_free_swap(struct address_space *mapping,
367 pgoff_t index, void *radswap)
368{
369 int error;
370
371 spin_lock_irq(&mapping->tree_lock);
372 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
373 spin_unlock_irq(&mapping->tree_lock);
374 if (!error)
375 free_swap_and_cache(radix_to_swp_entry(radswap));
376 return error;
377}
378
379/*
380 * Pagevec may contain swap entries, so shuffle up pages before releasing.
381 */
382static void shmem_pagevec_release(struct pagevec *pvec)
383{
384 int i, j;
385
386 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
387 struct page *page = pvec->pages[i];
388 if (!radix_tree_exceptional_entry(page))
389 pvec->pages[j++] = page;
390 }
391 pvec->nr = j;
392 pagevec_release(pvec);
393}
394
395/*
396 * Remove range of pages and swap entries from radix tree, and free them.
397 */
398void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
399{
400 struct address_space *mapping = inode->i_mapping;
401 struct shmem_inode_info *info = SHMEM_I(inode);
402 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
403 unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
404 pgoff_t end = (lend >> PAGE_CACHE_SHIFT);
405 struct pagevec pvec;
406 pgoff_t indices[PAGEVEC_SIZE];
407 long nr_swaps_freed = 0;
408 pgoff_t index;
409 int i;
410
411 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
412
413 pagevec_init(&pvec, 0);
414 index = start;
415 while (index <= end) {
416 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
417 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
418 pvec.pages, indices);
419 if (!pvec.nr)
420 break;
421 mem_cgroup_uncharge_start();
422 for (i = 0; i < pagevec_count(&pvec); i++) {
423 struct page *page = pvec.pages[i];
424
425 index = indices[i];
426 if (index > end)
427 break;
428
429 if (radix_tree_exceptional_entry(page)) {
430 nr_swaps_freed += !shmem_free_swap(mapping,
431 index, page);
432 continue;
433 }
434
435 if (!trylock_page(page))
436 continue;
437 if (page->mapping == mapping) {
438 VM_BUG_ON(PageWriteback(page));
439 truncate_inode_page(mapping, page);
440 }
441 unlock_page(page);
442 }
443 shmem_pagevec_release(&pvec);
444 mem_cgroup_uncharge_end();
445 cond_resched();
446 index++;
447 }
448
449 if (partial) {
450 struct page *page = NULL;
451 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
452 if (page) {
453 zero_user_segment(page, partial, PAGE_CACHE_SIZE);
454 set_page_dirty(page);
455 unlock_page(page);
456 page_cache_release(page);
457 }
458 }
459
460 index = start;
461 for ( ; ; ) {
462 cond_resched();
463 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
464 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
465 pvec.pages, indices);
466 if (!pvec.nr) {
467 if (index == start)
468 break;
469 index = start;
470 continue;
471 }
472 if (index == start && indices[0] > end) {
473 shmem_pagevec_release(&pvec);
474 break;
475 }
476 mem_cgroup_uncharge_start();
477 for (i = 0; i < pagevec_count(&pvec); i++) {
478 struct page *page = pvec.pages[i];
479
480 index = indices[i];
481 if (index > end)
482 break;
483
484 if (radix_tree_exceptional_entry(page)) {
485 nr_swaps_freed += !shmem_free_swap(mapping,
486 index, page);
487 continue;
488 }
489
490 lock_page(page);
491 if (page->mapping == mapping) {
492 VM_BUG_ON(PageWriteback(page));
493 truncate_inode_page(mapping, page);
494 }
495 unlock_page(page);
496 }
497 shmem_pagevec_release(&pvec);
498 mem_cgroup_uncharge_end();
499 index++;
500 }
501
502 spin_lock(&info->lock);
503 info->swapped -= nr_swaps_freed;
504 shmem_recalc_inode(inode);
505 spin_unlock(&info->lock);
506
507 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
508}
509EXPORT_SYMBOL_GPL(shmem_truncate_range);
510
511static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
512{
513 struct inode *inode = dentry->d_inode;
514 int error;
515
516 error = inode_change_ok(inode, attr);
517 if (error)
518 return error;
519
520 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
521 loff_t oldsize = inode->i_size;
522 loff_t newsize = attr->ia_size;
523
524 if (newsize != oldsize) {
525 i_size_write(inode, newsize);
526 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
527 }
528 if (newsize < oldsize) {
529 loff_t holebegin = round_up(newsize, PAGE_SIZE);
530 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
531 shmem_truncate_range(inode, newsize, (loff_t)-1);
532 /* unmap again to remove racily COWed private pages */
533 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
534 }
535 }
536
537 setattr_copy(inode, attr);
538#ifdef CONFIG_TMPFS_POSIX_ACL
539 if (attr->ia_valid & ATTR_MODE)
540 error = generic_acl_chmod(inode);
541#endif
542 return error;
543}
544
545static void shmem_evict_inode(struct inode *inode)
546{
547 struct shmem_inode_info *info = SHMEM_I(inode);
548 struct shmem_xattr *xattr, *nxattr;
549
550 if (inode->i_mapping->a_ops == &shmem_aops) {
551 shmem_unacct_size(info->flags, inode->i_size);
552 inode->i_size = 0;
553 shmem_truncate_range(inode, 0, (loff_t)-1);
554 if (!list_empty(&info->swaplist)) {
555 mutex_lock(&shmem_swaplist_mutex);
556 list_del_init(&info->swaplist);
557 mutex_unlock(&shmem_swaplist_mutex);
558 }
559 } else
560 kfree(info->symlink);
561
562 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
563 kfree(xattr->name);
564 kfree(xattr);
565 }
566 BUG_ON(inode->i_blocks);
567 shmem_free_inode(inode->i_sb);
568 end_writeback(inode);
569}
570
571/*
572 * If swap found in inode, free it and move page from swapcache to filecache.
573 */
574static int shmem_unuse_inode(struct shmem_inode_info *info,
575 swp_entry_t swap, struct page *page)
576{
577 struct address_space *mapping = info->vfs_inode.i_mapping;
578 void *radswap;
579 pgoff_t index;
580 int error;
581
582 radswap = swp_to_radix_entry(swap);
583 index = radix_tree_locate_item(&mapping->page_tree, radswap);
584 if (index == -1)
585 return 0;
586
587 /*
588 * Move _head_ to start search for next from here.
589 * But be careful: shmem_evict_inode checks list_empty without taking
590 * mutex, and there's an instant in list_move_tail when info->swaplist
591 * would appear empty, if it were the only one on shmem_swaplist.
592 */
593 if (shmem_swaplist.next != &info->swaplist)
594 list_move_tail(&shmem_swaplist, &info->swaplist);
595
596 /*
597 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
598 * but also to hold up shmem_evict_inode(): so inode cannot be freed
599 * beneath us (pagelock doesn't help until the page is in pagecache).
600 */
601 error = shmem_add_to_page_cache(page, mapping, index,
602 GFP_NOWAIT, radswap);
603 /* which does mem_cgroup_uncharge_cache_page on error */
604
605 if (error != -ENOMEM) {
606 /*
607 * Truncation and eviction use free_swap_and_cache(), which
608 * only does trylock page: if we raced, best clean up here.
609 */
610 delete_from_swap_cache(page);
611 set_page_dirty(page);
612 if (!error) {
613 spin_lock(&info->lock);
614 info->swapped--;
615 spin_unlock(&info->lock);
616 swap_free(swap);
617 }
618 error = 1; /* not an error, but entry was found */
619 }
620 return error;
621}
622
623/*
624 * Search through swapped inodes to find and replace swap by page.
625 */
626int shmem_unuse(swp_entry_t swap, struct page *page)
627{
628 struct list_head *this, *next;
629 struct shmem_inode_info *info;
630 int found = 0;
631 int error;
632
633 /*
634 * Charge page using GFP_KERNEL while we can wait, before taking
635 * the shmem_swaplist_mutex which might hold up shmem_writepage().
636 * Charged back to the user (not to caller) when swap account is used.
637 */
638 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
639 if (error)
640 goto out;
641 /* No radix_tree_preload: swap entry keeps a place for page in tree */
642
643 mutex_lock(&shmem_swaplist_mutex);
644 list_for_each_safe(this, next, &shmem_swaplist) {
645 info = list_entry(this, struct shmem_inode_info, swaplist);
646 if (info->swapped)
647 found = shmem_unuse_inode(info, swap, page);
648 else
649 list_del_init(&info->swaplist);
650 cond_resched();
651 if (found)
652 break;
653 }
654 mutex_unlock(&shmem_swaplist_mutex);
655
656 if (!found)
657 mem_cgroup_uncharge_cache_page(page);
658 if (found < 0)
659 error = found;
660out:
661 unlock_page(page);
662 page_cache_release(page);
663 return error;
664}
665
666/*
667 * Move the page from the page cache to the swap cache.
668 */
669static int shmem_writepage(struct page *page, struct writeback_control *wbc)
670{
671 struct shmem_inode_info *info;
672 struct address_space *mapping;
673 struct inode *inode;
674 swp_entry_t swap;
675 pgoff_t index;
676
677 BUG_ON(!PageLocked(page));
678 mapping = page->mapping;
679 index = page->index;
680 inode = mapping->host;
681 info = SHMEM_I(inode);
682 if (info->flags & VM_LOCKED)
683 goto redirty;
684 if (!total_swap_pages)
685 goto redirty;
686
687 /*
688 * shmem_backing_dev_info's capabilities prevent regular writeback or
689 * sync from ever calling shmem_writepage; but a stacking filesystem
690 * might use ->writepage of its underlying filesystem, in which case
691 * tmpfs should write out to swap only in response to memory pressure,
692 * and not for the writeback threads or sync.
693 */
694 if (!wbc->for_reclaim) {
695 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
696 goto redirty;
697 }
698 swap = get_swap_page();
699 if (!swap.val)
700 goto redirty;
701
702 /*
703 * Add inode to shmem_unuse()'s list of swapped-out inodes,
704 * if it's not already there. Do it now before the page is
705 * moved to swap cache, when its pagelock no longer protects
706 * the inode from eviction. But don't unlock the mutex until
707 * we've incremented swapped, because shmem_unuse_inode() will
708 * prune a !swapped inode from the swaplist under this mutex.
709 */
710 mutex_lock(&shmem_swaplist_mutex);
711 if (list_empty(&info->swaplist))
712 list_add_tail(&info->swaplist, &shmem_swaplist);
713
714 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
715 swap_shmem_alloc(swap);
716 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
717
718 spin_lock(&info->lock);
719 info->swapped++;
720 shmem_recalc_inode(inode);
721 spin_unlock(&info->lock);
722
723 mutex_unlock(&shmem_swaplist_mutex);
724 BUG_ON(page_mapped(page));
725 swap_writepage(page, wbc);
726 return 0;
727 }
728
729 mutex_unlock(&shmem_swaplist_mutex);
730 swapcache_free(swap, NULL);
731redirty:
732 set_page_dirty(page);
733 if (wbc->for_reclaim)
734 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
735 unlock_page(page);
736 return 0;
737}
738
739#ifdef CONFIG_NUMA
740#ifdef CONFIG_TMPFS
741static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
742{
743 char buffer[64];
744
745 if (!mpol || mpol->mode == MPOL_DEFAULT)
746 return; /* show nothing */
747
748 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
749
750 seq_printf(seq, ",mpol=%s", buffer);
751}
752
753static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
754{
755 struct mempolicy *mpol = NULL;
756 if (sbinfo->mpol) {
757 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
758 mpol = sbinfo->mpol;
759 mpol_get(mpol);
760 spin_unlock(&sbinfo->stat_lock);
761 }
762 return mpol;
763}
764#endif /* CONFIG_TMPFS */
765
766static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
767 struct shmem_inode_info *info, pgoff_t index)
768{
769 struct mempolicy mpol, *spol;
770 struct vm_area_struct pvma;
771
772 spol = mpol_cond_copy(&mpol,
773 mpol_shared_policy_lookup(&info->policy, index));
774
775 /* Create a pseudo vma that just contains the policy */
776 pvma.vm_start = 0;
777 pvma.vm_pgoff = index;
778 pvma.vm_ops = NULL;
779 pvma.vm_policy = spol;
780 return swapin_readahead(swap, gfp, &pvma, 0);
781}
782
783static struct page *shmem_alloc_page(gfp_t gfp,
784 struct shmem_inode_info *info, pgoff_t index)
785{
786 struct vm_area_struct pvma;
787
788 /* Create a pseudo vma that just contains the policy */
789 pvma.vm_start = 0;
790 pvma.vm_pgoff = index;
791 pvma.vm_ops = NULL;
792 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
793
794 /*
795 * alloc_page_vma() will drop the shared policy reference
796 */
797 return alloc_page_vma(gfp, &pvma, 0);
798}
799#else /* !CONFIG_NUMA */
800#ifdef CONFIG_TMPFS
801static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
802{
803}
804#endif /* CONFIG_TMPFS */
805
806static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
807 struct shmem_inode_info *info, pgoff_t index)
808{
809 return swapin_readahead(swap, gfp, NULL, 0);
810}
811
812static inline struct page *shmem_alloc_page(gfp_t gfp,
813 struct shmem_inode_info *info, pgoff_t index)
814{
815 return alloc_page(gfp);
816}
817#endif /* CONFIG_NUMA */
818
819#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
820static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
821{
822 return NULL;
823}
824#endif
825
826/*
827 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
828 *
829 * If we allocate a new one we do not mark it dirty. That's up to the
830 * vm. If we swap it in we mark it dirty since we also free the swap
831 * entry since a page cannot live in both the swap and page cache
832 */
833static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
834 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
835{
836 struct address_space *mapping = inode->i_mapping;
837 struct shmem_inode_info *info;
838 struct shmem_sb_info *sbinfo;
839 struct page *page;
840 swp_entry_t swap;
841 int error;
842 int once = 0;
843
844 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
845 return -EFBIG;
846repeat:
847 swap.val = 0;
848 page = find_lock_page(mapping, index);
849 if (radix_tree_exceptional_entry(page)) {
850 swap = radix_to_swp_entry(page);
851 page = NULL;
852 }
853
854 if (sgp != SGP_WRITE &&
855 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
856 error = -EINVAL;
857 goto failed;
858 }
859
860 if (page || (sgp == SGP_READ && !swap.val)) {
861 /*
862 * Once we can get the page lock, it must be uptodate:
863 * if there were an error in reading back from swap,
864 * the page would not be inserted into the filecache.
865 */
866 BUG_ON(page && !PageUptodate(page));
867 *pagep = page;
868 return 0;
869 }
870
871 /*
872 * Fast cache lookup did not find it:
873 * bring it back from swap or allocate.
874 */
875 info = SHMEM_I(inode);
876 sbinfo = SHMEM_SB(inode->i_sb);
877
878 if (swap.val) {
879 /* Look it up and read it in.. */
880 page = lookup_swap_cache(swap);
881 if (!page) {
882 /* here we actually do the io */
883 if (fault_type)
884 *fault_type |= VM_FAULT_MAJOR;
885 page = shmem_swapin(swap, gfp, info, index);
886 if (!page) {
887 error = -ENOMEM;
888 goto failed;
889 }
890 }
891
892 /* We have to do this with page locked to prevent races */
893 lock_page(page);
894 if (!PageUptodate(page)) {
895 error = -EIO;
896 goto failed;
897 }
898 wait_on_page_writeback(page);
899
900 /* Someone may have already done it for us */
901 if (page->mapping) {
902 if (page->mapping == mapping &&
903 page->index == index)
904 goto done;
905 error = -EEXIST;
906 goto failed;
907 }
908
909 error = mem_cgroup_cache_charge(page, current->mm,
910 gfp & GFP_RECLAIM_MASK);
911 if (!error)
912 error = shmem_add_to_page_cache(page, mapping, index,
913 gfp, swp_to_radix_entry(swap));
914 if (error)
915 goto failed;
916
917 spin_lock(&info->lock);
918 info->swapped--;
919 shmem_recalc_inode(inode);
920 spin_unlock(&info->lock);
921
922 delete_from_swap_cache(page);
923 set_page_dirty(page);
924 swap_free(swap);
925
926 } else {
927 if (shmem_acct_block(info->flags)) {
928 error = -ENOSPC;
929 goto failed;
930 }
931 if (sbinfo->max_blocks) {
932 if (percpu_counter_compare(&sbinfo->used_blocks,
933 sbinfo->max_blocks) >= 0) {
934 error = -ENOSPC;
935 goto unacct;
936 }
937 percpu_counter_inc(&sbinfo->used_blocks);
938 }
939
940 page = shmem_alloc_page(gfp, info, index);
941 if (!page) {
942 error = -ENOMEM;
943 goto decused;
944 }
945
946 SetPageSwapBacked(page);
947 __set_page_locked(page);
948 error = mem_cgroup_cache_charge(page, current->mm,
949 gfp & GFP_RECLAIM_MASK);
950 if (!error)
951 error = shmem_add_to_page_cache(page, mapping, index,
952 gfp, NULL);
953 if (error)
954 goto decused;
955 lru_cache_add_anon(page);
956
957 spin_lock(&info->lock);
958 info->alloced++;
959 inode->i_blocks += BLOCKS_PER_PAGE;
960 shmem_recalc_inode(inode);
961 spin_unlock(&info->lock);
962
963 clear_highpage(page);
964 flush_dcache_page(page);
965 SetPageUptodate(page);
966 if (sgp == SGP_DIRTY)
967 set_page_dirty(page);
968 }
969done:
970 /* Perhaps the file has been truncated since we checked */
971 if (sgp != SGP_WRITE &&
972 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
973 error = -EINVAL;
974 goto trunc;
975 }
976 *pagep = page;
977 return 0;
978
979 /*
980 * Error recovery.
981 */
982trunc:
983 ClearPageDirty(page);
984 delete_from_page_cache(page);
985 spin_lock(&info->lock);
986 info->alloced--;
987 inode->i_blocks -= BLOCKS_PER_PAGE;
988 spin_unlock(&info->lock);
989decused:
990 if (sbinfo->max_blocks)
991 percpu_counter_add(&sbinfo->used_blocks, -1);
992unacct:
993 shmem_unacct_blocks(info->flags, 1);
994failed:
995 if (swap.val && error != -EINVAL) {
996 struct page *test = find_get_page(mapping, index);
997 if (test && !radix_tree_exceptional_entry(test))
998 page_cache_release(test);
999 /* Have another try if the entry has changed */
1000 if (test != swp_to_radix_entry(swap))
1001 error = -EEXIST;
1002 }
1003 if (page) {
1004 unlock_page(page);
1005 page_cache_release(page);
1006 }
1007 if (error == -ENOSPC && !once++) {
1008 info = SHMEM_I(inode);
1009 spin_lock(&info->lock);
1010 shmem_recalc_inode(inode);
1011 spin_unlock(&info->lock);
1012 goto repeat;
1013 }
1014 if (error == -EEXIST)
1015 goto repeat;
1016 return error;
1017}
1018
1019static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1020{
1021 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1022 int error;
1023 int ret = VM_FAULT_LOCKED;
1024
1025 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1026 if (error)
1027 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1028
1029 if (ret & VM_FAULT_MAJOR) {
1030 count_vm_event(PGMAJFAULT);
1031 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1032 }
1033 return ret;
1034}
1035
1036#ifdef CONFIG_NUMA
1037static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1038{
1039 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1040 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1041}
1042
1043static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1044 unsigned long addr)
1045{
1046 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1047 pgoff_t index;
1048
1049 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1050 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1051}
1052#endif
1053
1054int shmem_lock(struct file *file, int lock, struct user_struct *user)
1055{
1056 struct inode *inode = file->f_path.dentry->d_inode;
1057 struct shmem_inode_info *info = SHMEM_I(inode);
1058 int retval = -ENOMEM;
1059
1060 spin_lock(&info->lock);
1061 if (lock && !(info->flags & VM_LOCKED)) {
1062 if (!user_shm_lock(inode->i_size, user))
1063 goto out_nomem;
1064 info->flags |= VM_LOCKED;
1065 mapping_set_unevictable(file->f_mapping);
1066 }
1067 if (!lock && (info->flags & VM_LOCKED) && user) {
1068 user_shm_unlock(inode->i_size, user);
1069 info->flags &= ~VM_LOCKED;
1070 mapping_clear_unevictable(file->f_mapping);
1071 scan_mapping_unevictable_pages(file->f_mapping);
1072 }
1073 retval = 0;
1074
1075out_nomem:
1076 spin_unlock(&info->lock);
1077 return retval;
1078}
1079
1080static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1081{
1082 file_accessed(file);
1083 vma->vm_ops = &shmem_vm_ops;
1084 vma->vm_flags |= VM_CAN_NONLINEAR;
1085 return 0;
1086}
1087
1088static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1089 int mode, dev_t dev, unsigned long flags)
1090{
1091 struct inode *inode;
1092 struct shmem_inode_info *info;
1093 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1094
1095 if (shmem_reserve_inode(sb))
1096 return NULL;
1097
1098 inode = new_inode(sb);
1099 if (inode) {
1100 inode->i_ino = get_next_ino();
1101 inode_init_owner(inode, dir, mode);
1102 inode->i_blocks = 0;
1103 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1104 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1105 inode->i_generation = get_seconds();
1106 info = SHMEM_I(inode);
1107 memset(info, 0, (char *)inode - (char *)info);
1108 spin_lock_init(&info->lock);
1109 info->flags = flags & VM_NORESERVE;
1110 INIT_LIST_HEAD(&info->swaplist);
1111 INIT_LIST_HEAD(&info->xattr_list);
1112 cache_no_acl(inode);
1113
1114 switch (mode & S_IFMT) {
1115 default:
1116 inode->i_op = &shmem_special_inode_operations;
1117 init_special_inode(inode, mode, dev);
1118 break;
1119 case S_IFREG:
1120 inode->i_mapping->a_ops = &shmem_aops;
1121 inode->i_op = &shmem_inode_operations;
1122 inode->i_fop = &shmem_file_operations;
1123 mpol_shared_policy_init(&info->policy,
1124 shmem_get_sbmpol(sbinfo));
1125 break;
1126 case S_IFDIR:
1127 inc_nlink(inode);
1128 /* Some things misbehave if size == 0 on a directory */
1129 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1130 inode->i_op = &shmem_dir_inode_operations;
1131 inode->i_fop = &simple_dir_operations;
1132 break;
1133 case S_IFLNK:
1134 /*
1135 * Must not load anything in the rbtree,
1136 * mpol_free_shared_policy will not be called.
1137 */
1138 mpol_shared_policy_init(&info->policy, NULL);
1139 break;
1140 }
1141 } else
1142 shmem_free_inode(sb);
1143 return inode;
1144}
1145
1146#ifdef CONFIG_TMPFS
1147static const struct inode_operations shmem_symlink_inode_operations;
1148static const struct inode_operations shmem_short_symlink_operations;
1149
1150static int
1151shmem_write_begin(struct file *file, struct address_space *mapping,
1152 loff_t pos, unsigned len, unsigned flags,
1153 struct page **pagep, void **fsdata)
1154{
1155 struct inode *inode = mapping->host;
1156 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1157 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1158}
1159
1160static int
1161shmem_write_end(struct file *file, struct address_space *mapping,
1162 loff_t pos, unsigned len, unsigned copied,
1163 struct page *page, void *fsdata)
1164{
1165 struct inode *inode = mapping->host;
1166
1167 if (pos + copied > inode->i_size)
1168 i_size_write(inode, pos + copied);
1169
1170 set_page_dirty(page);
1171 unlock_page(page);
1172 page_cache_release(page);
1173
1174 return copied;
1175}
1176
1177static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1178{
1179 struct inode *inode = filp->f_path.dentry->d_inode;
1180 struct address_space *mapping = inode->i_mapping;
1181 pgoff_t index;
1182 unsigned long offset;
1183 enum sgp_type sgp = SGP_READ;
1184
1185 /*
1186 * Might this read be for a stacking filesystem? Then when reading
1187 * holes of a sparse file, we actually need to allocate those pages,
1188 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1189 */
1190 if (segment_eq(get_fs(), KERNEL_DS))
1191 sgp = SGP_DIRTY;
1192
1193 index = *ppos >> PAGE_CACHE_SHIFT;
1194 offset = *ppos & ~PAGE_CACHE_MASK;
1195
1196 for (;;) {
1197 struct page *page = NULL;
1198 pgoff_t end_index;
1199 unsigned long nr, ret;
1200 loff_t i_size = i_size_read(inode);
1201
1202 end_index = i_size >> PAGE_CACHE_SHIFT;
1203 if (index > end_index)
1204 break;
1205 if (index == end_index) {
1206 nr = i_size & ~PAGE_CACHE_MASK;
1207 if (nr <= offset)
1208 break;
1209 }
1210
1211 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1212 if (desc->error) {
1213 if (desc->error == -EINVAL)
1214 desc->error = 0;
1215 break;
1216 }
1217 if (page)
1218 unlock_page(page);
1219
1220 /*
1221 * We must evaluate after, since reads (unlike writes)
1222 * are called without i_mutex protection against truncate
1223 */
1224 nr = PAGE_CACHE_SIZE;
1225 i_size = i_size_read(inode);
1226 end_index = i_size >> PAGE_CACHE_SHIFT;
1227 if (index == end_index) {
1228 nr = i_size & ~PAGE_CACHE_MASK;
1229 if (nr <= offset) {
1230 if (page)
1231 page_cache_release(page);
1232 break;
1233 }
1234 }
1235 nr -= offset;
1236
1237 if (page) {
1238 /*
1239 * If users can be writing to this page using arbitrary
1240 * virtual addresses, take care about potential aliasing
1241 * before reading the page on the kernel side.
1242 */
1243 if (mapping_writably_mapped(mapping))
1244 flush_dcache_page(page);
1245 /*
1246 * Mark the page accessed if we read the beginning.
1247 */
1248 if (!offset)
1249 mark_page_accessed(page);
1250 } else {
1251 page = ZERO_PAGE(0);
1252 page_cache_get(page);
1253 }
1254
1255 /*
1256 * Ok, we have the page, and it's up-to-date, so
1257 * now we can copy it to user space...
1258 *
1259 * The actor routine returns how many bytes were actually used..
1260 * NOTE! This may not be the same as how much of a user buffer
1261 * we filled up (we may be padding etc), so we can only update
1262 * "pos" here (the actor routine has to update the user buffer
1263 * pointers and the remaining count).
1264 */
1265 ret = actor(desc, page, offset, nr);
1266 offset += ret;
1267 index += offset >> PAGE_CACHE_SHIFT;
1268 offset &= ~PAGE_CACHE_MASK;
1269
1270 page_cache_release(page);
1271 if (ret != nr || !desc->count)
1272 break;
1273
1274 cond_resched();
1275 }
1276
1277 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1278 file_accessed(filp);
1279}
1280
1281static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1282 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1283{
1284 struct file *filp = iocb->ki_filp;
1285 ssize_t retval;
1286 unsigned long seg;
1287 size_t count;
1288 loff_t *ppos = &iocb->ki_pos;
1289
1290 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1291 if (retval)
1292 return retval;
1293
1294 for (seg = 0; seg < nr_segs; seg++) {
1295 read_descriptor_t desc;
1296
1297 desc.written = 0;
1298 desc.arg.buf = iov[seg].iov_base;
1299 desc.count = iov[seg].iov_len;
1300 if (desc.count == 0)
1301 continue;
1302 desc.error = 0;
1303 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1304 retval += desc.written;
1305 if (desc.error) {
1306 retval = retval ?: desc.error;
1307 break;
1308 }
1309 if (desc.count > 0)
1310 break;
1311 }
1312 return retval;
1313}
1314
1315static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1316 struct pipe_inode_info *pipe, size_t len,
1317 unsigned int flags)
1318{
1319 struct address_space *mapping = in->f_mapping;
1320 struct inode *inode = mapping->host;
1321 unsigned int loff, nr_pages, req_pages;
1322 struct page *pages[PIPE_DEF_BUFFERS];
1323 struct partial_page partial[PIPE_DEF_BUFFERS];
1324 struct page *page;
1325 pgoff_t index, end_index;
1326 loff_t isize, left;
1327 int error, page_nr;
1328 struct splice_pipe_desc spd = {
1329 .pages = pages,
1330 .partial = partial,
1331 .flags = flags,
1332 .ops = &page_cache_pipe_buf_ops,
1333 .spd_release = spd_release_page,
1334 };
1335
1336 isize = i_size_read(inode);
1337 if (unlikely(*ppos >= isize))
1338 return 0;
1339
1340 left = isize - *ppos;
1341 if (unlikely(left < len))
1342 len = left;
1343
1344 if (splice_grow_spd(pipe, &spd))
1345 return -ENOMEM;
1346
1347 index = *ppos >> PAGE_CACHE_SHIFT;
1348 loff = *ppos & ~PAGE_CACHE_MASK;
1349 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1350 nr_pages = min(req_pages, pipe->buffers);
1351
1352 spd.nr_pages = find_get_pages_contig(mapping, index,
1353 nr_pages, spd.pages);
1354 index += spd.nr_pages;
1355 error = 0;
1356
1357 while (spd.nr_pages < nr_pages) {
1358 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1359 if (error)
1360 break;
1361 unlock_page(page);
1362 spd.pages[spd.nr_pages++] = page;
1363 index++;
1364 }
1365
1366 index = *ppos >> PAGE_CACHE_SHIFT;
1367 nr_pages = spd.nr_pages;
1368 spd.nr_pages = 0;
1369
1370 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1371 unsigned int this_len;
1372
1373 if (!len)
1374 break;
1375
1376 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1377 page = spd.pages[page_nr];
1378
1379 if (!PageUptodate(page) || page->mapping != mapping) {
1380 error = shmem_getpage(inode, index, &page,
1381 SGP_CACHE, NULL);
1382 if (error)
1383 break;
1384 unlock_page(page);
1385 page_cache_release(spd.pages[page_nr]);
1386 spd.pages[page_nr] = page;
1387 }
1388
1389 isize = i_size_read(inode);
1390 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1391 if (unlikely(!isize || index > end_index))
1392 break;
1393
1394 if (end_index == index) {
1395 unsigned int plen;
1396
1397 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1398 if (plen <= loff)
1399 break;
1400
1401 this_len = min(this_len, plen - loff);
1402 len = this_len;
1403 }
1404
1405 spd.partial[page_nr].offset = loff;
1406 spd.partial[page_nr].len = this_len;
1407 len -= this_len;
1408 loff = 0;
1409 spd.nr_pages++;
1410 index++;
1411 }
1412
1413 while (page_nr < nr_pages)
1414 page_cache_release(spd.pages[page_nr++]);
1415
1416 if (spd.nr_pages)
1417 error = splice_to_pipe(pipe, &spd);
1418
1419 splice_shrink_spd(pipe, &spd);
1420
1421 if (error > 0) {
1422 *ppos += error;
1423 file_accessed(in);
1424 }
1425 return error;
1426}
1427
1428static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1429{
1430 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1431
1432 buf->f_type = TMPFS_MAGIC;
1433 buf->f_bsize = PAGE_CACHE_SIZE;
1434 buf->f_namelen = NAME_MAX;
1435 if (sbinfo->max_blocks) {
1436 buf->f_blocks = sbinfo->max_blocks;
1437 buf->f_bavail =
1438 buf->f_bfree = sbinfo->max_blocks -
1439 percpu_counter_sum(&sbinfo->used_blocks);
1440 }
1441 if (sbinfo->max_inodes) {
1442 buf->f_files = sbinfo->max_inodes;
1443 buf->f_ffree = sbinfo->free_inodes;
1444 }
1445 /* else leave those fields 0 like simple_statfs */
1446 return 0;
1447}
1448
1449/*
1450 * File creation. Allocate an inode, and we're done..
1451 */
1452static int
1453shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1454{
1455 struct inode *inode;
1456 int error = -ENOSPC;
1457
1458 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1459 if (inode) {
1460 error = security_inode_init_security(inode, dir,
1461 &dentry->d_name, NULL,
1462 NULL, NULL);
1463 if (error) {
1464 if (error != -EOPNOTSUPP) {
1465 iput(inode);
1466 return error;
1467 }
1468 }
1469#ifdef CONFIG_TMPFS_POSIX_ACL
1470 error = generic_acl_init(inode, dir);
1471 if (error) {
1472 iput(inode);
1473 return error;
1474 }
1475#else
1476 error = 0;
1477#endif
1478 dir->i_size += BOGO_DIRENT_SIZE;
1479 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1480 d_instantiate(dentry, inode);
1481 dget(dentry); /* Extra count - pin the dentry in core */
1482 }
1483 return error;
1484}
1485
1486static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1487{
1488 int error;
1489
1490 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1491 return error;
1492 inc_nlink(dir);
1493 return 0;
1494}
1495
1496static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1497 struct nameidata *nd)
1498{
1499 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1500}
1501
1502/*
1503 * Link a file..
1504 */
1505static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1506{
1507 struct inode *inode = old_dentry->d_inode;
1508 int ret;
1509
1510 /*
1511 * No ordinary (disk based) filesystem counts links as inodes;
1512 * but each new link needs a new dentry, pinning lowmem, and
1513 * tmpfs dentries cannot be pruned until they are unlinked.
1514 */
1515 ret = shmem_reserve_inode(inode->i_sb);
1516 if (ret)
1517 goto out;
1518
1519 dir->i_size += BOGO_DIRENT_SIZE;
1520 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1521 inc_nlink(inode);
1522 ihold(inode); /* New dentry reference */
1523 dget(dentry); /* Extra pinning count for the created dentry */
1524 d_instantiate(dentry, inode);
1525out:
1526 return ret;
1527}
1528
1529static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1530{
1531 struct inode *inode = dentry->d_inode;
1532
1533 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1534 shmem_free_inode(inode->i_sb);
1535
1536 dir->i_size -= BOGO_DIRENT_SIZE;
1537 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1538 drop_nlink(inode);
1539 dput(dentry); /* Undo the count from "create" - this does all the work */
1540 return 0;
1541}
1542
1543static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1544{
1545 if (!simple_empty(dentry))
1546 return -ENOTEMPTY;
1547
1548 drop_nlink(dentry->d_inode);
1549 drop_nlink(dir);
1550 return shmem_unlink(dir, dentry);
1551}
1552
1553/*
1554 * The VFS layer already does all the dentry stuff for rename,
1555 * we just have to decrement the usage count for the target if
1556 * it exists so that the VFS layer correctly free's it when it
1557 * gets overwritten.
1558 */
1559static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1560{
1561 struct inode *inode = old_dentry->d_inode;
1562 int they_are_dirs = S_ISDIR(inode->i_mode);
1563
1564 if (!simple_empty(new_dentry))
1565 return -ENOTEMPTY;
1566
1567 if (new_dentry->d_inode) {
1568 (void) shmem_unlink(new_dir, new_dentry);
1569 if (they_are_dirs)
1570 drop_nlink(old_dir);
1571 } else if (they_are_dirs) {
1572 drop_nlink(old_dir);
1573 inc_nlink(new_dir);
1574 }
1575
1576 old_dir->i_size -= BOGO_DIRENT_SIZE;
1577 new_dir->i_size += BOGO_DIRENT_SIZE;
1578 old_dir->i_ctime = old_dir->i_mtime =
1579 new_dir->i_ctime = new_dir->i_mtime =
1580 inode->i_ctime = CURRENT_TIME;
1581 return 0;
1582}
1583
1584static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1585{
1586 int error;
1587 int len;
1588 struct inode *inode;
1589 struct page *page;
1590 char *kaddr;
1591 struct shmem_inode_info *info;
1592
1593 len = strlen(symname) + 1;
1594 if (len > PAGE_CACHE_SIZE)
1595 return -ENAMETOOLONG;
1596
1597 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1598 if (!inode)
1599 return -ENOSPC;
1600
1601 error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
1602 NULL, NULL);
1603 if (error) {
1604 if (error != -EOPNOTSUPP) {
1605 iput(inode);
1606 return error;
1607 }
1608 error = 0;
1609 }
1610
1611 info = SHMEM_I(inode);
1612 inode->i_size = len-1;
1613 if (len <= SHORT_SYMLINK_LEN) {
1614 info->symlink = kmemdup(symname, len, GFP_KERNEL);
1615 if (!info->symlink) {
1616 iput(inode);
1617 return -ENOMEM;
1618 }
1619 inode->i_op = &shmem_short_symlink_operations;
1620 } else {
1621 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1622 if (error) {
1623 iput(inode);
1624 return error;
1625 }
1626 inode->i_mapping->a_ops = &shmem_aops;
1627 inode->i_op = &shmem_symlink_inode_operations;
1628 kaddr = kmap_atomic(page, KM_USER0);
1629 memcpy(kaddr, symname, len);
1630 kunmap_atomic(kaddr, KM_USER0);
1631 set_page_dirty(page);
1632 unlock_page(page);
1633 page_cache_release(page);
1634 }
1635 dir->i_size += BOGO_DIRENT_SIZE;
1636 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1637 d_instantiate(dentry, inode);
1638 dget(dentry);
1639 return 0;
1640}
1641
1642static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1643{
1644 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
1645 return NULL;
1646}
1647
1648static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1649{
1650 struct page *page = NULL;
1651 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1652 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1653 if (page)
1654 unlock_page(page);
1655 return page;
1656}
1657
1658static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1659{
1660 if (!IS_ERR(nd_get_link(nd))) {
1661 struct page *page = cookie;
1662 kunmap(page);
1663 mark_page_accessed(page);
1664 page_cache_release(page);
1665 }
1666}
1667
1668#ifdef CONFIG_TMPFS_XATTR
1669/*
1670 * Superblocks without xattr inode operations may get some security.* xattr
1671 * support from the LSM "for free". As soon as we have any other xattrs
1672 * like ACLs, we also need to implement the security.* handlers at
1673 * filesystem level, though.
1674 */
1675
1676static int shmem_xattr_get(struct dentry *dentry, const char *name,
1677 void *buffer, size_t size)
1678{
1679 struct shmem_inode_info *info;
1680 struct shmem_xattr *xattr;
1681 int ret = -ENODATA;
1682
1683 info = SHMEM_I(dentry->d_inode);
1684
1685 spin_lock(&info->lock);
1686 list_for_each_entry(xattr, &info->xattr_list, list) {
1687 if (strcmp(name, xattr->name))
1688 continue;
1689
1690 ret = xattr->size;
1691 if (buffer) {
1692 if (size < xattr->size)
1693 ret = -ERANGE;
1694 else
1695 memcpy(buffer, xattr->value, xattr->size);
1696 }
1697 break;
1698 }
1699 spin_unlock(&info->lock);
1700 return ret;
1701}
1702
1703static int shmem_xattr_set(struct dentry *dentry, const char *name,
1704 const void *value, size_t size, int flags)
1705{
1706 struct inode *inode = dentry->d_inode;
1707 struct shmem_inode_info *info = SHMEM_I(inode);
1708 struct shmem_xattr *xattr;
1709 struct shmem_xattr *new_xattr = NULL;
1710 size_t len;
1711 int err = 0;
1712
1713 /* value == NULL means remove */
1714 if (value) {
1715 /* wrap around? */
1716 len = sizeof(*new_xattr) + size;
1717 if (len <= sizeof(*new_xattr))
1718 return -ENOMEM;
1719
1720 new_xattr = kmalloc(len, GFP_KERNEL);
1721 if (!new_xattr)
1722 return -ENOMEM;
1723
1724 new_xattr->name = kstrdup(name, GFP_KERNEL);
1725 if (!new_xattr->name) {
1726 kfree(new_xattr);
1727 return -ENOMEM;
1728 }
1729
1730 new_xattr->size = size;
1731 memcpy(new_xattr->value, value, size);
1732 }
1733
1734 spin_lock(&info->lock);
1735 list_for_each_entry(xattr, &info->xattr_list, list) {
1736 if (!strcmp(name, xattr->name)) {
1737 if (flags & XATTR_CREATE) {
1738 xattr = new_xattr;
1739 err = -EEXIST;
1740 } else if (new_xattr) {
1741 list_replace(&xattr->list, &new_xattr->list);
1742 } else {
1743 list_del(&xattr->list);
1744 }
1745 goto out;
1746 }
1747 }
1748 if (flags & XATTR_REPLACE) {
1749 xattr = new_xattr;
1750 err = -ENODATA;
1751 } else {
1752 list_add(&new_xattr->list, &info->xattr_list);
1753 xattr = NULL;
1754 }
1755out:
1756 spin_unlock(&info->lock);
1757 if (xattr)
1758 kfree(xattr->name);
1759 kfree(xattr);
1760 return err;
1761}
1762
1763static const struct xattr_handler *shmem_xattr_handlers[] = {
1764#ifdef CONFIG_TMPFS_POSIX_ACL
1765 &generic_acl_access_handler,
1766 &generic_acl_default_handler,
1767#endif
1768 NULL
1769};
1770
1771static int shmem_xattr_validate(const char *name)
1772{
1773 struct { const char *prefix; size_t len; } arr[] = {
1774 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
1775 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
1776 };
1777 int i;
1778
1779 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1780 size_t preflen = arr[i].len;
1781 if (strncmp(name, arr[i].prefix, preflen) == 0) {
1782 if (!name[preflen])
1783 return -EINVAL;
1784 return 0;
1785 }
1786 }
1787 return -EOPNOTSUPP;
1788}
1789
1790static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
1791 void *buffer, size_t size)
1792{
1793 int err;
1794
1795 /*
1796 * If this is a request for a synthetic attribute in the system.*
1797 * namespace use the generic infrastructure to resolve a handler
1798 * for it via sb->s_xattr.
1799 */
1800 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1801 return generic_getxattr(dentry, name, buffer, size);
1802
1803 err = shmem_xattr_validate(name);
1804 if (err)
1805 return err;
1806
1807 return shmem_xattr_get(dentry, name, buffer, size);
1808}
1809
1810static int shmem_setxattr(struct dentry *dentry, const char *name,
1811 const void *value, size_t size, int flags)
1812{
1813 int err;
1814
1815 /*
1816 * If this is a request for a synthetic attribute in the system.*
1817 * namespace use the generic infrastructure to resolve a handler
1818 * for it via sb->s_xattr.
1819 */
1820 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1821 return generic_setxattr(dentry, name, value, size, flags);
1822
1823 err = shmem_xattr_validate(name);
1824 if (err)
1825 return err;
1826
1827 if (size == 0)
1828 value = ""; /* empty EA, do not remove */
1829
1830 return shmem_xattr_set(dentry, name, value, size, flags);
1831
1832}
1833
1834static int shmem_removexattr(struct dentry *dentry, const char *name)
1835{
1836 int err;
1837
1838 /*
1839 * If this is a request for a synthetic attribute in the system.*
1840 * namespace use the generic infrastructure to resolve a handler
1841 * for it via sb->s_xattr.
1842 */
1843 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1844 return generic_removexattr(dentry, name);
1845
1846 err = shmem_xattr_validate(name);
1847 if (err)
1848 return err;
1849
1850 return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
1851}
1852
1853static bool xattr_is_trusted(const char *name)
1854{
1855 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
1856}
1857
1858static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
1859{
1860 bool trusted = capable(CAP_SYS_ADMIN);
1861 struct shmem_xattr *xattr;
1862 struct shmem_inode_info *info;
1863 size_t used = 0;
1864
1865 info = SHMEM_I(dentry->d_inode);
1866
1867 spin_lock(&info->lock);
1868 list_for_each_entry(xattr, &info->xattr_list, list) {
1869 size_t len;
1870
1871 /* skip "trusted." attributes for unprivileged callers */
1872 if (!trusted && xattr_is_trusted(xattr->name))
1873 continue;
1874
1875 len = strlen(xattr->name) + 1;
1876 used += len;
1877 if (buffer) {
1878 if (size < used) {
1879 used = -ERANGE;
1880 break;
1881 }
1882 memcpy(buffer, xattr->name, len);
1883 buffer += len;
1884 }
1885 }
1886 spin_unlock(&info->lock);
1887
1888 return used;
1889}
1890#endif /* CONFIG_TMPFS_XATTR */
1891
1892static const struct inode_operations shmem_short_symlink_operations = {
1893 .readlink = generic_readlink,
1894 .follow_link = shmem_follow_short_symlink,
1895#ifdef CONFIG_TMPFS_XATTR
1896 .setxattr = shmem_setxattr,
1897 .getxattr = shmem_getxattr,
1898 .listxattr = shmem_listxattr,
1899 .removexattr = shmem_removexattr,
1900#endif
1901};
1902
1903static const struct inode_operations shmem_symlink_inode_operations = {
1904 .readlink = generic_readlink,
1905 .follow_link = shmem_follow_link,
1906 .put_link = shmem_put_link,
1907#ifdef CONFIG_TMPFS_XATTR
1908 .setxattr = shmem_setxattr,
1909 .getxattr = shmem_getxattr,
1910 .listxattr = shmem_listxattr,
1911 .removexattr = shmem_removexattr,
1912#endif
1913};
1914
1915static struct dentry *shmem_get_parent(struct dentry *child)
1916{
1917 return ERR_PTR(-ESTALE);
1918}
1919
1920static int shmem_match(struct inode *ino, void *vfh)
1921{
1922 __u32 *fh = vfh;
1923 __u64 inum = fh[2];
1924 inum = (inum << 32) | fh[1];
1925 return ino->i_ino == inum && fh[0] == ino->i_generation;
1926}
1927
1928static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1929 struct fid *fid, int fh_len, int fh_type)
1930{
1931 struct inode *inode;
1932 struct dentry *dentry = NULL;
1933 u64 inum = fid->raw[2];
1934 inum = (inum << 32) | fid->raw[1];
1935
1936 if (fh_len < 3)
1937 return NULL;
1938
1939 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1940 shmem_match, fid->raw);
1941 if (inode) {
1942 dentry = d_find_alias(inode);
1943 iput(inode);
1944 }
1945
1946 return dentry;
1947}
1948
1949static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
1950 int connectable)
1951{
1952 struct inode *inode = dentry->d_inode;
1953
1954 if (*len < 3) {
1955 *len = 3;
1956 return 255;
1957 }
1958
1959 if (inode_unhashed(inode)) {
1960 /* Unfortunately insert_inode_hash is not idempotent,
1961 * so as we hash inodes here rather than at creation
1962 * time, we need a lock to ensure we only try
1963 * to do it once
1964 */
1965 static DEFINE_SPINLOCK(lock);
1966 spin_lock(&lock);
1967 if (inode_unhashed(inode))
1968 __insert_inode_hash(inode,
1969 inode->i_ino + inode->i_generation);
1970 spin_unlock(&lock);
1971 }
1972
1973 fh[0] = inode->i_generation;
1974 fh[1] = inode->i_ino;
1975 fh[2] = ((__u64)inode->i_ino) >> 32;
1976
1977 *len = 3;
1978 return 1;
1979}
1980
1981static const struct export_operations shmem_export_ops = {
1982 .get_parent = shmem_get_parent,
1983 .encode_fh = shmem_encode_fh,
1984 .fh_to_dentry = shmem_fh_to_dentry,
1985};
1986
1987static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
1988 bool remount)
1989{
1990 char *this_char, *value, *rest;
1991
1992 while (options != NULL) {
1993 this_char = options;
1994 for (;;) {
1995 /*
1996 * NUL-terminate this option: unfortunately,
1997 * mount options form a comma-separated list,
1998 * but mpol's nodelist may also contain commas.
1999 */
2000 options = strchr(options, ',');
2001 if (options == NULL)
2002 break;
2003 options++;
2004 if (!isdigit(*options)) {
2005 options[-1] = '\0';
2006 break;
2007 }
2008 }
2009 if (!*this_char)
2010 continue;
2011 if ((value = strchr(this_char,'=')) != NULL) {
2012 *value++ = 0;
2013 } else {
2014 printk(KERN_ERR
2015 "tmpfs: No value for mount option '%s'\n",
2016 this_char);
2017 return 1;
2018 }
2019
2020 if (!strcmp(this_char,"size")) {
2021 unsigned long long size;
2022 size = memparse(value,&rest);
2023 if (*rest == '%') {
2024 size <<= PAGE_SHIFT;
2025 size *= totalram_pages;
2026 do_div(size, 100);
2027 rest++;
2028 }
2029 if (*rest)
2030 goto bad_val;
2031 sbinfo->max_blocks =
2032 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2033 } else if (!strcmp(this_char,"nr_blocks")) {
2034 sbinfo->max_blocks = memparse(value, &rest);
2035 if (*rest)
2036 goto bad_val;
2037 } else if (!strcmp(this_char,"nr_inodes")) {
2038 sbinfo->max_inodes = memparse(value, &rest);
2039 if (*rest)
2040 goto bad_val;
2041 } else if (!strcmp(this_char,"mode")) {
2042 if (remount)
2043 continue;
2044 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2045 if (*rest)
2046 goto bad_val;
2047 } else if (!strcmp(this_char,"uid")) {
2048 if (remount)
2049 continue;
2050 sbinfo->uid = simple_strtoul(value, &rest, 0);
2051 if (*rest)
2052 goto bad_val;
2053 } else if (!strcmp(this_char,"gid")) {
2054 if (remount)
2055 continue;
2056 sbinfo->gid = simple_strtoul(value, &rest, 0);
2057 if (*rest)
2058 goto bad_val;
2059 } else if (!strcmp(this_char,"mpol")) {
2060 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2061 goto bad_val;
2062 } else {
2063 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2064 this_char);
2065 return 1;
2066 }
2067 }
2068 return 0;
2069
2070bad_val:
2071 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2072 value, this_char);
2073 return 1;
2074
2075}
2076
2077static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2078{
2079 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2080 struct shmem_sb_info config = *sbinfo;
2081 unsigned long inodes;
2082 int error = -EINVAL;
2083
2084 if (shmem_parse_options(data, &config, true))
2085 return error;
2086
2087 spin_lock(&sbinfo->stat_lock);
2088 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2089 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2090 goto out;
2091 if (config.max_inodes < inodes)
2092 goto out;
2093 /*
2094 * Those tests disallow limited->unlimited while any are in use;
2095 * but we must separately disallow unlimited->limited, because
2096 * in that case we have no record of how much is already in use.
2097 */
2098 if (config.max_blocks && !sbinfo->max_blocks)
2099 goto out;
2100 if (config.max_inodes && !sbinfo->max_inodes)
2101 goto out;
2102
2103 error = 0;
2104 sbinfo->max_blocks = config.max_blocks;
2105 sbinfo->max_inodes = config.max_inodes;
2106 sbinfo->free_inodes = config.max_inodes - inodes;
2107
2108 mpol_put(sbinfo->mpol);
2109 sbinfo->mpol = config.mpol; /* transfers initial ref */
2110out:
2111 spin_unlock(&sbinfo->stat_lock);
2112 return error;
2113}
2114
2115static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2116{
2117 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2118
2119 if (sbinfo->max_blocks != shmem_default_max_blocks())
2120 seq_printf(seq, ",size=%luk",
2121 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2122 if (sbinfo->max_inodes != shmem_default_max_inodes())
2123 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2124 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2125 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2126 if (sbinfo->uid != 0)
2127 seq_printf(seq, ",uid=%u", sbinfo->uid);
2128 if (sbinfo->gid != 0)
2129 seq_printf(seq, ",gid=%u", sbinfo->gid);
2130 shmem_show_mpol(seq, sbinfo->mpol);
2131 return 0;
2132}
2133#endif /* CONFIG_TMPFS */
2134
2135static void shmem_put_super(struct super_block *sb)
2136{
2137 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2138
2139 percpu_counter_destroy(&sbinfo->used_blocks);
2140 kfree(sbinfo);
2141 sb->s_fs_info = NULL;
2142}
2143
2144int shmem_fill_super(struct super_block *sb, void *data, int silent)
2145{
2146 struct inode *inode;
2147 struct dentry *root;
2148 struct shmem_sb_info *sbinfo;
2149 int err = -ENOMEM;
2150
2151 /* Round up to L1_CACHE_BYTES to resist false sharing */
2152 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2153 L1_CACHE_BYTES), GFP_KERNEL);
2154 if (!sbinfo)
2155 return -ENOMEM;
2156
2157 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2158 sbinfo->uid = current_fsuid();
2159 sbinfo->gid = current_fsgid();
2160 sb->s_fs_info = sbinfo;
2161
2162#ifdef CONFIG_TMPFS
2163 /*
2164 * Per default we only allow half of the physical ram per
2165 * tmpfs instance, limiting inodes to one per page of lowmem;
2166 * but the internal instance is left unlimited.
2167 */
2168 if (!(sb->s_flags & MS_NOUSER)) {
2169 sbinfo->max_blocks = shmem_default_max_blocks();
2170 sbinfo->max_inodes = shmem_default_max_inodes();
2171 if (shmem_parse_options(data, sbinfo, false)) {
2172 err = -EINVAL;
2173 goto failed;
2174 }
2175 }
2176 sb->s_export_op = &shmem_export_ops;
2177#else
2178 sb->s_flags |= MS_NOUSER;
2179#endif
2180
2181 spin_lock_init(&sbinfo->stat_lock);
2182 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2183 goto failed;
2184 sbinfo->free_inodes = sbinfo->max_inodes;
2185
2186 sb->s_maxbytes = MAX_LFS_FILESIZE;
2187 sb->s_blocksize = PAGE_CACHE_SIZE;
2188 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2189 sb->s_magic = TMPFS_MAGIC;
2190 sb->s_op = &shmem_ops;
2191 sb->s_time_gran = 1;
2192#ifdef CONFIG_TMPFS_XATTR
2193 sb->s_xattr = shmem_xattr_handlers;
2194#endif
2195#ifdef CONFIG_TMPFS_POSIX_ACL
2196 sb->s_flags |= MS_POSIXACL;
2197#endif
2198
2199 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2200 if (!inode)
2201 goto failed;
2202 inode->i_uid = sbinfo->uid;
2203 inode->i_gid = sbinfo->gid;
2204 root = d_alloc_root(inode);
2205 if (!root)
2206 goto failed_iput;
2207 sb->s_root = root;
2208 return 0;
2209
2210failed_iput:
2211 iput(inode);
2212failed:
2213 shmem_put_super(sb);
2214 return err;
2215}
2216
2217static struct kmem_cache *shmem_inode_cachep;
2218
2219static struct inode *shmem_alloc_inode(struct super_block *sb)
2220{
2221 struct shmem_inode_info *info;
2222 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2223 if (!info)
2224 return NULL;
2225 return &info->vfs_inode;
2226}
2227
2228static void shmem_destroy_callback(struct rcu_head *head)
2229{
2230 struct inode *inode = container_of(head, struct inode, i_rcu);
2231 INIT_LIST_HEAD(&inode->i_dentry);
2232 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2233}
2234
2235static void shmem_destroy_inode(struct inode *inode)
2236{
2237 if ((inode->i_mode & S_IFMT) == S_IFREG)
2238 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2239 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2240}
2241
2242static void shmem_init_inode(void *foo)
2243{
2244 struct shmem_inode_info *info = foo;
2245 inode_init_once(&info->vfs_inode);
2246}
2247
2248static int shmem_init_inodecache(void)
2249{
2250 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2251 sizeof(struct shmem_inode_info),
2252 0, SLAB_PANIC, shmem_init_inode);
2253 return 0;
2254}
2255
2256static void shmem_destroy_inodecache(void)
2257{
2258 kmem_cache_destroy(shmem_inode_cachep);
2259}
2260
2261static const struct address_space_operations shmem_aops = {
2262 .writepage = shmem_writepage,
2263 .set_page_dirty = __set_page_dirty_no_writeback,
2264#ifdef CONFIG_TMPFS
2265 .write_begin = shmem_write_begin,
2266 .write_end = shmem_write_end,
2267#endif
2268 .migratepage = migrate_page,
2269 .error_remove_page = generic_error_remove_page,
2270};
2271
2272static const struct file_operations shmem_file_operations = {
2273 .mmap = shmem_mmap,
2274#ifdef CONFIG_TMPFS
2275 .llseek = generic_file_llseek,
2276 .read = do_sync_read,
2277 .write = do_sync_write,
2278 .aio_read = shmem_file_aio_read,
2279 .aio_write = generic_file_aio_write,
2280 .fsync = noop_fsync,
2281 .splice_read = shmem_file_splice_read,
2282 .splice_write = generic_file_splice_write,
2283#endif
2284};
2285
2286static const struct inode_operations shmem_inode_operations = {
2287 .setattr = shmem_setattr,
2288 .truncate_range = shmem_truncate_range,
2289#ifdef CONFIG_TMPFS_XATTR
2290 .setxattr = shmem_setxattr,
2291 .getxattr = shmem_getxattr,
2292 .listxattr = shmem_listxattr,
2293 .removexattr = shmem_removexattr,
2294#endif
2295};
2296
2297static const struct inode_operations shmem_dir_inode_operations = {
2298#ifdef CONFIG_TMPFS
2299 .create = shmem_create,
2300 .lookup = simple_lookup,
2301 .link = shmem_link,
2302 .unlink = shmem_unlink,
2303 .symlink = shmem_symlink,
2304 .mkdir = shmem_mkdir,
2305 .rmdir = shmem_rmdir,
2306 .mknod = shmem_mknod,
2307 .rename = shmem_rename,
2308#endif
2309#ifdef CONFIG_TMPFS_XATTR
2310 .setxattr = shmem_setxattr,
2311 .getxattr = shmem_getxattr,
2312 .listxattr = shmem_listxattr,
2313 .removexattr = shmem_removexattr,
2314#endif
2315#ifdef CONFIG_TMPFS_POSIX_ACL
2316 .setattr = shmem_setattr,
2317#endif
2318};
2319
2320static const struct inode_operations shmem_special_inode_operations = {
2321#ifdef CONFIG_TMPFS_XATTR
2322 .setxattr = shmem_setxattr,
2323 .getxattr = shmem_getxattr,
2324 .listxattr = shmem_listxattr,
2325 .removexattr = shmem_removexattr,
2326#endif
2327#ifdef CONFIG_TMPFS_POSIX_ACL
2328 .setattr = shmem_setattr,
2329#endif
2330};
2331
2332static const struct super_operations shmem_ops = {
2333 .alloc_inode = shmem_alloc_inode,
2334 .destroy_inode = shmem_destroy_inode,
2335#ifdef CONFIG_TMPFS
2336 .statfs = shmem_statfs,
2337 .remount_fs = shmem_remount_fs,
2338 .show_options = shmem_show_options,
2339#endif
2340 .evict_inode = shmem_evict_inode,
2341 .drop_inode = generic_delete_inode,
2342 .put_super = shmem_put_super,
2343};
2344
2345static const struct vm_operations_struct shmem_vm_ops = {
2346 .fault = shmem_fault,
2347#ifdef CONFIG_NUMA
2348 .set_policy = shmem_set_policy,
2349 .get_policy = shmem_get_policy,
2350#endif
2351};
2352
2353static struct dentry *shmem_mount(struct file_system_type *fs_type,
2354 int flags, const char *dev_name, void *data)
2355{
2356 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2357}
2358
2359static struct file_system_type shmem_fs_type = {
2360 .owner = THIS_MODULE,
2361 .name = "tmpfs",
2362 .mount = shmem_mount,
2363 .kill_sb = kill_litter_super,
2364};
2365
2366int __init shmem_init(void)
2367{
2368 int error;
2369
2370 error = bdi_init(&shmem_backing_dev_info);
2371 if (error)
2372 goto out4;
2373
2374 error = shmem_init_inodecache();
2375 if (error)
2376 goto out3;
2377
2378 error = register_filesystem(&shmem_fs_type);
2379 if (error) {
2380 printk(KERN_ERR "Could not register tmpfs\n");
2381 goto out2;
2382 }
2383
2384 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2385 shmem_fs_type.name, NULL);
2386 if (IS_ERR(shm_mnt)) {
2387 error = PTR_ERR(shm_mnt);
2388 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2389 goto out1;
2390 }
2391 return 0;
2392
2393out1:
2394 unregister_filesystem(&shmem_fs_type);
2395out2:
2396 shmem_destroy_inodecache();
2397out3:
2398 bdi_destroy(&shmem_backing_dev_info);
2399out4:
2400 shm_mnt = ERR_PTR(error);
2401 return error;
2402}
2403
2404#else /* !CONFIG_SHMEM */
2405
2406/*
2407 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2408 *
2409 * This is intended for small system where the benefits of the full
2410 * shmem code (swap-backed and resource-limited) are outweighed by
2411 * their complexity. On systems without swap this code should be
2412 * effectively equivalent, but much lighter weight.
2413 */
2414
2415#include <linux/ramfs.h>
2416
2417static struct file_system_type shmem_fs_type = {
2418 .name = "tmpfs",
2419 .mount = ramfs_mount,
2420 .kill_sb = kill_litter_super,
2421};
2422
2423int __init shmem_init(void)
2424{
2425 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2426
2427 shm_mnt = kern_mount(&shmem_fs_type);
2428 BUG_ON(IS_ERR(shm_mnt));
2429
2430 return 0;
2431}
2432
2433int shmem_unuse(swp_entry_t swap, struct page *page)
2434{
2435 return 0;
2436}
2437
2438int shmem_lock(struct file *file, int lock, struct user_struct *user)
2439{
2440 return 0;
2441}
2442
2443void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2444{
2445 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2446}
2447EXPORT_SYMBOL_GPL(shmem_truncate_range);
2448
2449#define shmem_vm_ops generic_file_vm_ops
2450#define shmem_file_operations ramfs_file_operations
2451#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2452#define shmem_acct_size(flags, size) 0
2453#define shmem_unacct_size(flags, size) do {} while (0)
2454
2455#endif /* CONFIG_SHMEM */
2456
2457/* common code */
2458
2459/**
2460 * shmem_file_setup - get an unlinked file living in tmpfs
2461 * @name: name for dentry (to be seen in /proc/<pid>/maps
2462 * @size: size to be set for the file
2463 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2464 */
2465struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2466{
2467 int error;
2468 struct file *file;
2469 struct inode *inode;
2470 struct path path;
2471 struct dentry *root;
2472 struct qstr this;
2473
2474 if (IS_ERR(shm_mnt))
2475 return (void *)shm_mnt;
2476
2477 if (size < 0 || size > MAX_LFS_FILESIZE)
2478 return ERR_PTR(-EINVAL);
2479
2480 if (shmem_acct_size(flags, size))
2481 return ERR_PTR(-ENOMEM);
2482
2483 error = -ENOMEM;
2484 this.name = name;
2485 this.len = strlen(name);
2486 this.hash = 0; /* will go */
2487 root = shm_mnt->mnt_root;
2488 path.dentry = d_alloc(root, &this);
2489 if (!path.dentry)
2490 goto put_memory;
2491 path.mnt = mntget(shm_mnt);
2492
2493 error = -ENOSPC;
2494 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2495 if (!inode)
2496 goto put_dentry;
2497
2498 d_instantiate(path.dentry, inode);
2499 inode->i_size = size;
2500 inode->i_nlink = 0; /* It is unlinked */
2501#ifndef CONFIG_MMU
2502 error = ramfs_nommu_expand_for_mapping(inode, size);
2503 if (error)
2504 goto put_dentry;
2505#endif
2506
2507 error = -ENFILE;
2508 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2509 &shmem_file_operations);
2510 if (!file)
2511 goto put_dentry;
2512
2513 return file;
2514
2515put_dentry:
2516 path_put(&path);
2517put_memory:
2518 shmem_unacct_size(flags, size);
2519 return ERR_PTR(error);
2520}
2521EXPORT_SYMBOL_GPL(shmem_file_setup);
2522
2523/**
2524 * shmem_zero_setup - setup a shared anonymous mapping
2525 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2526 */
2527int shmem_zero_setup(struct vm_area_struct *vma)
2528{
2529 struct file *file;
2530 loff_t size = vma->vm_end - vma->vm_start;
2531
2532 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2533 if (IS_ERR(file))
2534 return PTR_ERR(file);
2535
2536 if (vma->vm_file)
2537 fput(vma->vm_file);
2538 vma->vm_file = file;
2539 vma->vm_ops = &shmem_vm_ops;
2540 vma->vm_flags |= VM_CAN_NONLINEAR;
2541 return 0;
2542}
2543
2544/**
2545 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2546 * @mapping: the page's address_space
2547 * @index: the page index
2548 * @gfp: the page allocator flags to use if allocating
2549 *
2550 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2551 * with any new page allocations done using the specified allocation flags.
2552 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2553 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2554 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2555 *
2556 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2557 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2558 */
2559struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2560 pgoff_t index, gfp_t gfp)
2561{
2562#ifdef CONFIG_SHMEM
2563 struct inode *inode = mapping->host;
2564 struct page *page;
2565 int error;
2566
2567 BUG_ON(mapping->a_ops != &shmem_aops);
2568 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2569 if (error)
2570 page = ERR_PTR(error);
2571 else
2572 unlock_page(page);
2573 return page;
2574#else
2575 /*
2576 * The tiny !SHMEM case uses ramfs without swap
2577 */
2578 return read_cache_page_gfp(mapping, index, gfp);
2579#endif
2580}
2581EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);