Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/mm.h>
  32#include <linux/random.h>
  33#include <linux/sched/signal.h>
  34#include <linux/export.h>
  35#include <linux/swap.h>
  36#include <linux/uio.h>
  37#include <linux/khugepaged.h>
  38#include <linux/hugetlb.h>
  39#include <linux/frontswap.h>
  40#include <linux/fs_parser.h>
  41
  42#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
  43
  44static struct vfsmount *shm_mnt;
  45
  46#ifdef CONFIG_SHMEM
  47/*
  48 * This virtual memory filesystem is heavily based on the ramfs. It
  49 * extends ramfs by the ability to use swap and honor resource limits
  50 * which makes it a completely usable filesystem.
  51 */
  52
  53#include <linux/xattr.h>
  54#include <linux/exportfs.h>
  55#include <linux/posix_acl.h>
  56#include <linux/posix_acl_xattr.h>
  57#include <linux/mman.h>
  58#include <linux/string.h>
  59#include <linux/slab.h>
  60#include <linux/backing-dev.h>
  61#include <linux/shmem_fs.h>
  62#include <linux/writeback.h>
  63#include <linux/blkdev.h>
  64#include <linux/pagevec.h>
  65#include <linux/percpu_counter.h>
  66#include <linux/falloc.h>
  67#include <linux/splice.h>
  68#include <linux/security.h>
  69#include <linux/swapops.h>
  70#include <linux/mempolicy.h>
  71#include <linux/namei.h>
  72#include <linux/ctype.h>
  73#include <linux/migrate.h>
  74#include <linux/highmem.h>
  75#include <linux/seq_file.h>
  76#include <linux/magic.h>
  77#include <linux/syscalls.h>
  78#include <linux/fcntl.h>
  79#include <uapi/linux/memfd.h>
  80#include <linux/userfaultfd_k.h>
  81#include <linux/rmap.h>
  82#include <linux/uuid.h>
  83
  84#include <linux/uaccess.h>
  85#include <asm/pgtable.h>
  86
  87#include "internal.h"
  88
  89#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  90#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  91
  92/* Pretend that each entry is of this size in directory's i_size */
  93#define BOGO_DIRENT_SIZE 20
  94
  95/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  96#define SHORT_SYMLINK_LEN 128
  97
  98/*
  99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
 100 * inode->i_private (with i_mutex making sure that it has only one user at
 101 * a time): we would prefer not to enlarge the shmem inode just for that.
 102 */
 103struct shmem_falloc {
 104	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
 105	pgoff_t start;		/* start of range currently being fallocated */
 106	pgoff_t next;		/* the next page offset to be fallocated */
 107	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
 108	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
 109};
 110
 111struct shmem_options {
 112	unsigned long long blocks;
 113	unsigned long long inodes;
 114	struct mempolicy *mpol;
 115	kuid_t uid;
 116	kgid_t gid;
 117	umode_t mode;
 118	int huge;
 119	int seen;
 120#define SHMEM_SEEN_BLOCKS 1
 121#define SHMEM_SEEN_INODES 2
 122#define SHMEM_SEEN_HUGE 4
 123};
 124
 125#ifdef CONFIG_TMPFS
 126static unsigned long shmem_default_max_blocks(void)
 127{
 128	return totalram_pages() / 2;
 129}
 130
 131static unsigned long shmem_default_max_inodes(void)
 132{
 133	unsigned long nr_pages = totalram_pages();
 134
 135	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
 136}
 137#endif
 138
 139static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 140static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 141				struct shmem_inode_info *info, pgoff_t index);
 142static int shmem_swapin_page(struct inode *inode, pgoff_t index,
 143			     struct page **pagep, enum sgp_type sgp,
 144			     gfp_t gfp, struct vm_area_struct *vma,
 145			     vm_fault_t *fault_type);
 146static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 147		struct page **pagep, enum sgp_type sgp,
 148		gfp_t gfp, struct vm_area_struct *vma,
 149		struct vm_fault *vmf, vm_fault_t *fault_type);
 150
 151int shmem_getpage(struct inode *inode, pgoff_t index,
 152		struct page **pagep, enum sgp_type sgp)
 153{
 154	return shmem_getpage_gfp(inode, index, pagep, sgp,
 155		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
 156}
 157
 158static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 159{
 160	return sb->s_fs_info;
 161}
 162
 163/*
 164 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 165 * for shared memory and for shared anonymous (/dev/zero) mappings
 166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 167 * consistent with the pre-accounting of private mappings ...
 168 */
 169static inline int shmem_acct_size(unsigned long flags, loff_t size)
 170{
 171	return (flags & VM_NORESERVE) ?
 172		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 173}
 174
 175static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 176{
 177	if (!(flags & VM_NORESERVE))
 178		vm_unacct_memory(VM_ACCT(size));
 179}
 180
 181static inline int shmem_reacct_size(unsigned long flags,
 182		loff_t oldsize, loff_t newsize)
 183{
 184	if (!(flags & VM_NORESERVE)) {
 185		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 186			return security_vm_enough_memory_mm(current->mm,
 187					VM_ACCT(newsize) - VM_ACCT(oldsize));
 188		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 189			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 190	}
 191	return 0;
 192}
 193
 194/*
 195 * ... whereas tmpfs objects are accounted incrementally as
 196 * pages are allocated, in order to allow large sparse files.
 197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 199 */
 200static inline int shmem_acct_block(unsigned long flags, long pages)
 201{
 202	if (!(flags & VM_NORESERVE))
 203		return 0;
 204
 205	return security_vm_enough_memory_mm(current->mm,
 206			pages * VM_ACCT(PAGE_SIZE));
 207}
 208
 209static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 210{
 211	if (flags & VM_NORESERVE)
 212		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 213}
 214
 215static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
 216{
 217	struct shmem_inode_info *info = SHMEM_I(inode);
 218	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 219
 220	if (shmem_acct_block(info->flags, pages))
 221		return false;
 222
 223	if (sbinfo->max_blocks) {
 224		if (percpu_counter_compare(&sbinfo->used_blocks,
 225					   sbinfo->max_blocks - pages) > 0)
 226			goto unacct;
 227		percpu_counter_add(&sbinfo->used_blocks, pages);
 228	}
 229
 230	return true;
 231
 232unacct:
 233	shmem_unacct_blocks(info->flags, pages);
 234	return false;
 235}
 236
 237static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
 238{
 239	struct shmem_inode_info *info = SHMEM_I(inode);
 240	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 241
 242	if (sbinfo->max_blocks)
 243		percpu_counter_sub(&sbinfo->used_blocks, pages);
 244	shmem_unacct_blocks(info->flags, pages);
 245}
 246
 247static const struct super_operations shmem_ops;
 248static const struct address_space_operations shmem_aops;
 249static const struct file_operations shmem_file_operations;
 250static const struct inode_operations shmem_inode_operations;
 251static const struct inode_operations shmem_dir_inode_operations;
 252static const struct inode_operations shmem_special_inode_operations;
 253static const struct vm_operations_struct shmem_vm_ops;
 254static struct file_system_type shmem_fs_type;
 255
 256bool vma_is_shmem(struct vm_area_struct *vma)
 257{
 258	return vma->vm_ops == &shmem_vm_ops;
 259}
 260
 261static LIST_HEAD(shmem_swaplist);
 262static DEFINE_MUTEX(shmem_swaplist_mutex);
 263
 264static int shmem_reserve_inode(struct super_block *sb)
 265{
 266	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 267	if (sbinfo->max_inodes) {
 268		spin_lock(&sbinfo->stat_lock);
 269		if (!sbinfo->free_inodes) {
 270			spin_unlock(&sbinfo->stat_lock);
 271			return -ENOSPC;
 272		}
 273		sbinfo->free_inodes--;
 274		spin_unlock(&sbinfo->stat_lock);
 275	}
 276	return 0;
 277}
 278
 279static void shmem_free_inode(struct super_block *sb)
 280{
 281	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 282	if (sbinfo->max_inodes) {
 283		spin_lock(&sbinfo->stat_lock);
 284		sbinfo->free_inodes++;
 285		spin_unlock(&sbinfo->stat_lock);
 286	}
 287}
 288
 289/**
 290 * shmem_recalc_inode - recalculate the block usage of an inode
 291 * @inode: inode to recalc
 292 *
 293 * We have to calculate the free blocks since the mm can drop
 294 * undirtied hole pages behind our back.
 295 *
 296 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 298 *
 299 * It has to be called with the spinlock held.
 300 */
 301static void shmem_recalc_inode(struct inode *inode)
 302{
 303	struct shmem_inode_info *info = SHMEM_I(inode);
 304	long freed;
 305
 306	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 307	if (freed > 0) {
 
 
 
 308		info->alloced -= freed;
 309		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 310		shmem_inode_unacct_blocks(inode, freed);
 311	}
 312}
 313
 314bool shmem_charge(struct inode *inode, long pages)
 315{
 316	struct shmem_inode_info *info = SHMEM_I(inode);
 317	unsigned long flags;
 318
 319	if (!shmem_inode_acct_block(inode, pages))
 320		return false;
 321
 322	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
 323	inode->i_mapping->nrpages += pages;
 324
 325	spin_lock_irqsave(&info->lock, flags);
 326	info->alloced += pages;
 327	inode->i_blocks += pages * BLOCKS_PER_PAGE;
 328	shmem_recalc_inode(inode);
 329	spin_unlock_irqrestore(&info->lock, flags);
 330
 331	return true;
 332}
 333
 334void shmem_uncharge(struct inode *inode, long pages)
 335{
 336	struct shmem_inode_info *info = SHMEM_I(inode);
 337	unsigned long flags;
 338
 339	/* nrpages adjustment done by __delete_from_page_cache() or caller */
 340
 341	spin_lock_irqsave(&info->lock, flags);
 342	info->alloced -= pages;
 343	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
 344	shmem_recalc_inode(inode);
 345	spin_unlock_irqrestore(&info->lock, flags);
 346
 347	shmem_inode_unacct_blocks(inode, pages);
 348}
 349
 350/*
 351 * Replace item expected in xarray by a new item, while holding xa_lock.
 352 */
 353static int shmem_replace_entry(struct address_space *mapping,
 354			pgoff_t index, void *expected, void *replacement)
 355{
 356	XA_STATE(xas, &mapping->i_pages, index);
 357	void *item;
 358
 359	VM_BUG_ON(!expected);
 360	VM_BUG_ON(!replacement);
 361	item = xas_load(&xas);
 
 
 
 362	if (item != expected)
 363		return -ENOENT;
 364	xas_store(&xas, replacement);
 365	return 0;
 366}
 367
 368/*
 369 * Sometimes, before we decide whether to proceed or to fail, we must check
 370 * that an entry was not already brought back from swap by a racing thread.
 371 *
 372 * Checking page is not enough: by the time a SwapCache page is locked, it
 373 * might be reused, and again be SwapCache, using the same swap as before.
 374 */
 375static bool shmem_confirm_swap(struct address_space *mapping,
 376			       pgoff_t index, swp_entry_t swap)
 377{
 378	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
 379}
 380
 381/*
 382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
 383 *
 384 * SHMEM_HUGE_NEVER:
 385 *	disables huge pages for the mount;
 386 * SHMEM_HUGE_ALWAYS:
 387 *	enables huge pages for the mount;
 388 * SHMEM_HUGE_WITHIN_SIZE:
 389 *	only allocate huge pages if the page will be fully within i_size,
 390 *	also respect fadvise()/madvise() hints;
 391 * SHMEM_HUGE_ADVISE:
 392 *	only allocate huge pages if requested with fadvise()/madvise();
 393 */
 394
 395#define SHMEM_HUGE_NEVER	0
 396#define SHMEM_HUGE_ALWAYS	1
 397#define SHMEM_HUGE_WITHIN_SIZE	2
 398#define SHMEM_HUGE_ADVISE	3
 399
 400/*
 401 * Special values.
 402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
 403 *
 404 * SHMEM_HUGE_DENY:
 405 *	disables huge on shm_mnt and all mounts, for emergency use;
 406 * SHMEM_HUGE_FORCE:
 407 *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
 408 *
 409 */
 410#define SHMEM_HUGE_DENY		(-1)
 411#define SHMEM_HUGE_FORCE	(-2)
 412
 413#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
 414/* ifdef here to avoid bloating shmem.o when not necessary */
 415
 416static int shmem_huge __read_mostly;
 417
 418#if defined(CONFIG_SYSFS)
 419static int shmem_parse_huge(const char *str)
 420{
 421	if (!strcmp(str, "never"))
 422		return SHMEM_HUGE_NEVER;
 423	if (!strcmp(str, "always"))
 424		return SHMEM_HUGE_ALWAYS;
 425	if (!strcmp(str, "within_size"))
 426		return SHMEM_HUGE_WITHIN_SIZE;
 427	if (!strcmp(str, "advise"))
 428		return SHMEM_HUGE_ADVISE;
 429	if (!strcmp(str, "deny"))
 430		return SHMEM_HUGE_DENY;
 431	if (!strcmp(str, "force"))
 432		return SHMEM_HUGE_FORCE;
 433	return -EINVAL;
 434}
 435#endif
 436
 437#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
 438static const char *shmem_format_huge(int huge)
 439{
 440	switch (huge) {
 441	case SHMEM_HUGE_NEVER:
 442		return "never";
 443	case SHMEM_HUGE_ALWAYS:
 444		return "always";
 445	case SHMEM_HUGE_WITHIN_SIZE:
 446		return "within_size";
 447	case SHMEM_HUGE_ADVISE:
 448		return "advise";
 449	case SHMEM_HUGE_DENY:
 450		return "deny";
 451	case SHMEM_HUGE_FORCE:
 452		return "force";
 453	default:
 454		VM_BUG_ON(1);
 455		return "bad_val";
 456	}
 457}
 458#endif
 459
 460static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 461		struct shrink_control *sc, unsigned long nr_to_split)
 462{
 463	LIST_HEAD(list), *pos, *next;
 464	LIST_HEAD(to_remove);
 465	struct inode *inode;
 466	struct shmem_inode_info *info;
 467	struct page *page;
 468	unsigned long batch = sc ? sc->nr_to_scan : 128;
 469	int removed = 0, split = 0;
 470
 471	if (list_empty(&sbinfo->shrinklist))
 472		return SHRINK_STOP;
 473
 474	spin_lock(&sbinfo->shrinklist_lock);
 475	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
 476		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 477
 478		/* pin the inode */
 479		inode = igrab(&info->vfs_inode);
 480
 481		/* inode is about to be evicted */
 482		if (!inode) {
 483			list_del_init(&info->shrinklist);
 484			removed++;
 485			goto next;
 486		}
 487
 488		/* Check if there's anything to gain */
 489		if (round_up(inode->i_size, PAGE_SIZE) ==
 490				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
 491			list_move(&info->shrinklist, &to_remove);
 492			removed++;
 493			goto next;
 494		}
 495
 496		list_move(&info->shrinklist, &list);
 497next:
 498		if (!--batch)
 499			break;
 500	}
 501	spin_unlock(&sbinfo->shrinklist_lock);
 502
 503	list_for_each_safe(pos, next, &to_remove) {
 504		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 505		inode = &info->vfs_inode;
 506		list_del_init(&info->shrinklist);
 507		iput(inode);
 508	}
 509
 510	list_for_each_safe(pos, next, &list) {
 511		int ret;
 512
 513		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 514		inode = &info->vfs_inode;
 515
 516		if (nr_to_split && split >= nr_to_split)
 517			goto leave;
 518
 519		page = find_get_page(inode->i_mapping,
 520				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
 521		if (!page)
 522			goto drop;
 523
 524		/* No huge page at the end of the file: nothing to split */
 525		if (!PageTransHuge(page)) {
 526			put_page(page);
 527			goto drop;
 528		}
 529
 530		/*
 531		 * Leave the inode on the list if we failed to lock
 532		 * the page at this time.
 533		 *
 534		 * Waiting for the lock may lead to deadlock in the
 535		 * reclaim path.
 536		 */
 537		if (!trylock_page(page)) {
 538			put_page(page);
 539			goto leave;
 540		}
 541
 542		ret = split_huge_page(page);
 543		unlock_page(page);
 544		put_page(page);
 545
 546		/* If split failed leave the inode on the list */
 547		if (ret)
 548			goto leave;
 549
 550		split++;
 551drop:
 552		list_del_init(&info->shrinklist);
 553		removed++;
 554leave:
 555		iput(inode);
 556	}
 557
 558	spin_lock(&sbinfo->shrinklist_lock);
 559	list_splice_tail(&list, &sbinfo->shrinklist);
 560	sbinfo->shrinklist_len -= removed;
 561	spin_unlock(&sbinfo->shrinklist_lock);
 562
 563	return split;
 564}
 565
 566static long shmem_unused_huge_scan(struct super_block *sb,
 567		struct shrink_control *sc)
 568{
 569	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 570
 571	if (!READ_ONCE(sbinfo->shrinklist_len))
 572		return SHRINK_STOP;
 573
 574	return shmem_unused_huge_shrink(sbinfo, sc, 0);
 575}
 576
 577static long shmem_unused_huge_count(struct super_block *sb,
 578		struct shrink_control *sc)
 579{
 580	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 581	return READ_ONCE(sbinfo->shrinklist_len);
 582}
 583#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
 584
 585#define shmem_huge SHMEM_HUGE_DENY
 586
 587static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 588		struct shrink_control *sc, unsigned long nr_to_split)
 589{
 590	return 0;
 591}
 592#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
 593
 594static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
 595{
 596	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
 597	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
 598	    shmem_huge != SHMEM_HUGE_DENY)
 599		return true;
 600	return false;
 601}
 602
 603/*
 604 * Like add_to_page_cache_locked, but error if expected item has gone.
 605 */
 606static int shmem_add_to_page_cache(struct page *page,
 607				   struct address_space *mapping,
 608				   pgoff_t index, void *expected, gfp_t gfp)
 609{
 610	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
 611	unsigned long i = 0;
 612	unsigned long nr = compound_nr(page);
 613
 614	VM_BUG_ON_PAGE(PageTail(page), page);
 615	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
 616	VM_BUG_ON_PAGE(!PageLocked(page), page);
 617	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 618	VM_BUG_ON(expected && PageTransHuge(page));
 619
 620	page_ref_add(page, nr);
 621	page->mapping = mapping;
 622	page->index = index;
 623
 624	do {
 625		void *entry;
 626		xas_lock_irq(&xas);
 627		entry = xas_find_conflict(&xas);
 628		if (entry != expected)
 629			xas_set_err(&xas, -EEXIST);
 630		xas_create_range(&xas);
 631		if (xas_error(&xas))
 632			goto unlock;
 633next:
 634		xas_store(&xas, page);
 635		if (++i < nr) {
 636			xas_next(&xas);
 637			goto next;
 638		}
 639		if (PageTransHuge(page)) {
 640			count_vm_event(THP_FILE_ALLOC);
 641			__inc_node_page_state(page, NR_SHMEM_THPS);
 642		}
 643		mapping->nrpages += nr;
 644		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
 645		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
 646unlock:
 647		xas_unlock_irq(&xas);
 648	} while (xas_nomem(&xas, gfp));
 649
 650	if (xas_error(&xas)) {
 651		page->mapping = NULL;
 652		page_ref_sub(page, nr);
 653		return xas_error(&xas);
 654	}
 655
 656	return 0;
 657}
 658
 659/*
 660 * Like delete_from_page_cache, but substitutes swap for page.
 661 */
 662static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 663{
 664	struct address_space *mapping = page->mapping;
 665	int error;
 666
 667	VM_BUG_ON_PAGE(PageCompound(page), page);
 668
 669	xa_lock_irq(&mapping->i_pages);
 670	error = shmem_replace_entry(mapping, page->index, page, radswap);
 671	page->mapping = NULL;
 672	mapping->nrpages--;
 673	__dec_node_page_state(page, NR_FILE_PAGES);
 674	__dec_node_page_state(page, NR_SHMEM);
 675	xa_unlock_irq(&mapping->i_pages);
 676	put_page(page);
 677	BUG_ON(error);
 678}
 679
 680/*
 681 * Remove swap entry from page cache, free the swap and its page cache.
 682 */
 683static int shmem_free_swap(struct address_space *mapping,
 684			   pgoff_t index, void *radswap)
 685{
 686	void *old;
 687
 688	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
 
 
 689	if (old != radswap)
 690		return -ENOENT;
 691	free_swap_and_cache(radix_to_swp_entry(radswap));
 692	return 0;
 693}
 694
 695/*
 696 * Determine (in bytes) how many of the shmem object's pages mapped by the
 697 * given offsets are swapped out.
 698 *
 699 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 700 * as long as the inode doesn't go away and racy results are not a problem.
 701 */
 702unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 703						pgoff_t start, pgoff_t end)
 704{
 705	XA_STATE(xas, &mapping->i_pages, start);
 
 706	struct page *page;
 707	unsigned long swapped = 0;
 708
 709	rcu_read_lock();
 710	xas_for_each(&xas, page, end - 1) {
 711		if (xas_retry(&xas, page))
 
 
 
 
 
 
 
 712			continue;
 713		if (xa_is_value(page))
 
 
 714			swapped++;
 715
 716		if (need_resched()) {
 717			xas_pause(&xas);
 718			cond_resched_rcu();
 
 719		}
 720	}
 721
 722	rcu_read_unlock();
 723
 724	return swapped << PAGE_SHIFT;
 725}
 726
 727/*
 728 * Determine (in bytes) how many of the shmem object's pages mapped by the
 729 * given vma is swapped out.
 730 *
 731 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 732 * as long as the inode doesn't go away and racy results are not a problem.
 733 */
 734unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 735{
 736	struct inode *inode = file_inode(vma->vm_file);
 737	struct shmem_inode_info *info = SHMEM_I(inode);
 738	struct address_space *mapping = inode->i_mapping;
 739	unsigned long swapped;
 740
 741	/* Be careful as we don't hold info->lock */
 742	swapped = READ_ONCE(info->swapped);
 743
 744	/*
 745	 * The easier cases are when the shmem object has nothing in swap, or
 746	 * the vma maps it whole. Then we can simply use the stats that we
 747	 * already track.
 748	 */
 749	if (!swapped)
 750		return 0;
 751
 752	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 753		return swapped << PAGE_SHIFT;
 754
 755	/* Here comes the more involved part */
 756	return shmem_partial_swap_usage(mapping,
 757			linear_page_index(vma, vma->vm_start),
 758			linear_page_index(vma, vma->vm_end));
 759}
 760
 761/*
 762 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 763 */
 764void shmem_unlock_mapping(struct address_space *mapping)
 765{
 766	struct pagevec pvec;
 767	pgoff_t indices[PAGEVEC_SIZE];
 768	pgoff_t index = 0;
 769
 770	pagevec_init(&pvec);
 771	/*
 772	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 773	 */
 774	while (!mapping_unevictable(mapping)) {
 775		/*
 776		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
 777		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
 778		 */
 779		pvec.nr = find_get_entries(mapping, index,
 780					   PAGEVEC_SIZE, pvec.pages, indices);
 781		if (!pvec.nr)
 782			break;
 783		index = indices[pvec.nr - 1] + 1;
 784		pagevec_remove_exceptionals(&pvec);
 785		check_move_unevictable_pages(&pvec);
 786		pagevec_release(&pvec);
 787		cond_resched();
 788	}
 789}
 790
 791/*
 792 * Remove range of pages and swap entries from page cache, and free them.
 793 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 794 */
 795static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 796								 bool unfalloc)
 797{
 798	struct address_space *mapping = inode->i_mapping;
 799	struct shmem_inode_info *info = SHMEM_I(inode);
 800	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 801	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 802	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
 803	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
 804	struct pagevec pvec;
 805	pgoff_t indices[PAGEVEC_SIZE];
 806	long nr_swaps_freed = 0;
 807	pgoff_t index;
 808	int i;
 809
 810	if (lend == -1)
 811		end = -1;	/* unsigned, so actually very big */
 812
 813	pagevec_init(&pvec);
 814	index = start;
 815	while (index < end) {
 816		pvec.nr = find_get_entries(mapping, index,
 817			min(end - index, (pgoff_t)PAGEVEC_SIZE),
 818			pvec.pages, indices);
 819		if (!pvec.nr)
 820			break;
 821		for (i = 0; i < pagevec_count(&pvec); i++) {
 822			struct page *page = pvec.pages[i];
 823
 824			index = indices[i];
 825			if (index >= end)
 826				break;
 827
 828			if (xa_is_value(page)) {
 829				if (unfalloc)
 830					continue;
 831				nr_swaps_freed += !shmem_free_swap(mapping,
 832								index, page);
 833				continue;
 834			}
 835
 836			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
 837
 838			if (!trylock_page(page))
 839				continue;
 840
 841			if (PageTransTail(page)) {
 842				/* Middle of THP: zero out the page */
 843				clear_highpage(page);
 844				unlock_page(page);
 845				continue;
 846			} else if (PageTransHuge(page)) {
 847				if (index == round_down(end, HPAGE_PMD_NR)) {
 848					/*
 849					 * Range ends in the middle of THP:
 850					 * zero out the page
 851					 */
 852					clear_highpage(page);
 853					unlock_page(page);
 854					continue;
 855				}
 856				index += HPAGE_PMD_NR - 1;
 857				i += HPAGE_PMD_NR - 1;
 858			}
 859
 860			if (!unfalloc || !PageUptodate(page)) {
 861				VM_BUG_ON_PAGE(PageTail(page), page);
 862				if (page_mapping(page) == mapping) {
 863					VM_BUG_ON_PAGE(PageWriteback(page), page);
 864					truncate_inode_page(mapping, page);
 865				}
 866			}
 867			unlock_page(page);
 868		}
 869		pagevec_remove_exceptionals(&pvec);
 870		pagevec_release(&pvec);
 871		cond_resched();
 872		index++;
 873	}
 874
 875	if (partial_start) {
 876		struct page *page = NULL;
 877		shmem_getpage(inode, start - 1, &page, SGP_READ);
 878		if (page) {
 879			unsigned int top = PAGE_SIZE;
 880			if (start > end) {
 881				top = partial_end;
 882				partial_end = 0;
 883			}
 884			zero_user_segment(page, partial_start, top);
 885			set_page_dirty(page);
 886			unlock_page(page);
 887			put_page(page);
 888		}
 889	}
 890	if (partial_end) {
 891		struct page *page = NULL;
 892		shmem_getpage(inode, end, &page, SGP_READ);
 893		if (page) {
 894			zero_user_segment(page, 0, partial_end);
 895			set_page_dirty(page);
 896			unlock_page(page);
 897			put_page(page);
 898		}
 899	}
 900	if (start >= end)
 901		return;
 902
 903	index = start;
 904	while (index < end) {
 905		cond_resched();
 906
 907		pvec.nr = find_get_entries(mapping, index,
 908				min(end - index, (pgoff_t)PAGEVEC_SIZE),
 909				pvec.pages, indices);
 910		if (!pvec.nr) {
 911			/* If all gone or hole-punch or unfalloc, we're done */
 912			if (index == start || end != -1)
 913				break;
 914			/* But if truncating, restart to make sure all gone */
 915			index = start;
 916			continue;
 917		}
 918		for (i = 0; i < pagevec_count(&pvec); i++) {
 919			struct page *page = pvec.pages[i];
 920
 921			index = indices[i];
 922			if (index >= end)
 923				break;
 924
 925			if (xa_is_value(page)) {
 926				if (unfalloc)
 927					continue;
 928				if (shmem_free_swap(mapping, index, page)) {
 929					/* Swap was replaced by page: retry */
 930					index--;
 931					break;
 932				}
 933				nr_swaps_freed++;
 934				continue;
 935			}
 936
 937			lock_page(page);
 938
 939			if (PageTransTail(page)) {
 940				/* Middle of THP: zero out the page */
 941				clear_highpage(page);
 942				unlock_page(page);
 943				/*
 944				 * Partial thp truncate due 'start' in middle
 945				 * of THP: don't need to look on these pages
 946				 * again on !pvec.nr restart.
 947				 */
 948				if (index != round_down(end, HPAGE_PMD_NR))
 949					start++;
 950				continue;
 951			} else if (PageTransHuge(page)) {
 952				if (index == round_down(end, HPAGE_PMD_NR)) {
 953					/*
 954					 * Range ends in the middle of THP:
 955					 * zero out the page
 956					 */
 957					clear_highpage(page);
 958					unlock_page(page);
 959					continue;
 960				}
 961				index += HPAGE_PMD_NR - 1;
 962				i += HPAGE_PMD_NR - 1;
 963			}
 964
 965			if (!unfalloc || !PageUptodate(page)) {
 966				VM_BUG_ON_PAGE(PageTail(page), page);
 967				if (page_mapping(page) == mapping) {
 968					VM_BUG_ON_PAGE(PageWriteback(page), page);
 969					truncate_inode_page(mapping, page);
 970				} else {
 971					/* Page was replaced by swap: retry */
 972					unlock_page(page);
 973					index--;
 974					break;
 975				}
 976			}
 977			unlock_page(page);
 978		}
 979		pagevec_remove_exceptionals(&pvec);
 980		pagevec_release(&pvec);
 981		index++;
 982	}
 983
 984	spin_lock_irq(&info->lock);
 985	info->swapped -= nr_swaps_freed;
 986	shmem_recalc_inode(inode);
 987	spin_unlock_irq(&info->lock);
 988}
 989
 990void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 991{
 992	shmem_undo_range(inode, lstart, lend, false);
 993	inode->i_ctime = inode->i_mtime = current_time(inode);
 994}
 995EXPORT_SYMBOL_GPL(shmem_truncate_range);
 996
 997static int shmem_getattr(const struct path *path, struct kstat *stat,
 998			 u32 request_mask, unsigned int query_flags)
 999{
1000	struct inode *inode = path->dentry->d_inode;
1001	struct shmem_inode_info *info = SHMEM_I(inode);
1002	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1003
1004	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1005		spin_lock_irq(&info->lock);
1006		shmem_recalc_inode(inode);
1007		spin_unlock_irq(&info->lock);
1008	}
1009	generic_fillattr(inode, stat);
1010
1011	if (is_huge_enabled(sb_info))
1012		stat->blksize = HPAGE_PMD_SIZE;
1013
1014	return 0;
1015}
1016
1017static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1018{
1019	struct inode *inode = d_inode(dentry);
1020	struct shmem_inode_info *info = SHMEM_I(inode);
1021	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1022	int error;
1023
1024	error = setattr_prepare(dentry, attr);
1025	if (error)
1026		return error;
1027
1028	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1029		loff_t oldsize = inode->i_size;
1030		loff_t newsize = attr->ia_size;
1031
1032		/* protected by i_mutex */
1033		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1034		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1035			return -EPERM;
1036
1037		if (newsize != oldsize) {
1038			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1039					oldsize, newsize);
1040			if (error)
1041				return error;
1042			i_size_write(inode, newsize);
1043			inode->i_ctime = inode->i_mtime = current_time(inode);
1044		}
1045		if (newsize <= oldsize) {
1046			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1047			if (oldsize > holebegin)
1048				unmap_mapping_range(inode->i_mapping,
1049							holebegin, 0, 1);
1050			if (info->alloced)
1051				shmem_truncate_range(inode,
1052							newsize, (loff_t)-1);
1053			/* unmap again to remove racily COWed private pages */
1054			if (oldsize > holebegin)
1055				unmap_mapping_range(inode->i_mapping,
1056							holebegin, 0, 1);
1057
1058			/*
1059			 * Part of the huge page can be beyond i_size: subject
1060			 * to shrink under memory pressure.
1061			 */
1062			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1063				spin_lock(&sbinfo->shrinklist_lock);
1064				/*
1065				 * _careful to defend against unlocked access to
1066				 * ->shrink_list in shmem_unused_huge_shrink()
1067				 */
1068				if (list_empty_careful(&info->shrinklist)) {
1069					list_add_tail(&info->shrinklist,
1070							&sbinfo->shrinklist);
1071					sbinfo->shrinklist_len++;
1072				}
1073				spin_unlock(&sbinfo->shrinklist_lock);
1074			}
1075		}
1076	}
1077
1078	setattr_copy(inode, attr);
1079	if (attr->ia_valid & ATTR_MODE)
1080		error = posix_acl_chmod(inode, inode->i_mode);
1081	return error;
1082}
1083
1084static void shmem_evict_inode(struct inode *inode)
1085{
1086	struct shmem_inode_info *info = SHMEM_I(inode);
1087	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1088
1089	if (inode->i_mapping->a_ops == &shmem_aops) {
1090		shmem_unacct_size(info->flags, inode->i_size);
1091		inode->i_size = 0;
1092		shmem_truncate_range(inode, 0, (loff_t)-1);
1093		if (!list_empty(&info->shrinklist)) {
1094			spin_lock(&sbinfo->shrinklist_lock);
1095			if (!list_empty(&info->shrinklist)) {
1096				list_del_init(&info->shrinklist);
1097				sbinfo->shrinklist_len--;
1098			}
1099			spin_unlock(&sbinfo->shrinklist_lock);
1100		}
1101		while (!list_empty(&info->swaplist)) {
1102			/* Wait while shmem_unuse() is scanning this inode... */
1103			wait_var_event(&info->stop_eviction,
1104				       !atomic_read(&info->stop_eviction));
1105			mutex_lock(&shmem_swaplist_mutex);
1106			/* ...but beware of the race if we peeked too early */
1107			if (!atomic_read(&info->stop_eviction))
1108				list_del_init(&info->swaplist);
1109			mutex_unlock(&shmem_swaplist_mutex);
1110		}
1111	}
1112
1113	simple_xattrs_free(&info->xattrs);
1114	WARN_ON(inode->i_blocks);
1115	shmem_free_inode(inode->i_sb);
1116	clear_inode(inode);
1117}
1118
1119extern struct swap_info_struct *swap_info[];
1120
1121static int shmem_find_swap_entries(struct address_space *mapping,
1122				   pgoff_t start, unsigned int nr_entries,
1123				   struct page **entries, pgoff_t *indices,
1124				   unsigned int type, bool frontswap)
1125{
1126	XA_STATE(xas, &mapping->i_pages, start);
1127	struct page *page;
1128	swp_entry_t entry;
1129	unsigned int ret = 0;
1130
1131	if (!nr_entries)
1132		return 0;
1133
1134	rcu_read_lock();
1135	xas_for_each(&xas, page, ULONG_MAX) {
1136		if (xas_retry(&xas, page))
1137			continue;
1138
1139		if (!xa_is_value(page))
1140			continue;
1141
1142		entry = radix_to_swp_entry(page);
1143		if (swp_type(entry) != type)
1144			continue;
1145		if (frontswap &&
1146		    !frontswap_test(swap_info[type], swp_offset(entry)))
1147			continue;
1148
1149		indices[ret] = xas.xa_index;
1150		entries[ret] = page;
1151
1152		if (need_resched()) {
1153			xas_pause(&xas);
1154			cond_resched_rcu();
1155		}
1156		if (++ret == nr_entries)
1157			break;
1158	}
1159	rcu_read_unlock();
1160
1161	return ret;
1162}
1163
1164/*
1165 * Move the swapped pages for an inode to page cache. Returns the count
1166 * of pages swapped in, or the error in case of failure.
1167 */
1168static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1169				    pgoff_t *indices)
1170{
1171	int i = 0;
1172	int ret = 0;
 
 
1173	int error = 0;
1174	struct address_space *mapping = inode->i_mapping;
1175
1176	for (i = 0; i < pvec.nr; i++) {
1177		struct page *page = pvec.pages[i];
1178
1179		if (!xa_is_value(page))
1180			continue;
1181		error = shmem_swapin_page(inode, indices[i],
1182					  &page, SGP_CACHE,
1183					  mapping_gfp_mask(mapping),
1184					  NULL, NULL);
1185		if (error == 0) {
1186			unlock_page(page);
1187			put_page(page);
1188			ret++;
1189		}
1190		if (error == -ENOMEM)
1191			break;
1192		error = 0;
1193	}
1194	return error ? error : ret;
1195}
1196
1197/*
1198 * If swap found in inode, free it and move page from swapcache to filecache.
1199 */
1200static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1201			     bool frontswap, unsigned long *fs_pages_to_unuse)
1202{
1203	struct address_space *mapping = inode->i_mapping;
1204	pgoff_t start = 0;
1205	struct pagevec pvec;
1206	pgoff_t indices[PAGEVEC_SIZE];
1207	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1208	int ret = 0;
1209
1210	pagevec_init(&pvec);
1211	do {
1212		unsigned int nr_entries = PAGEVEC_SIZE;
1213
1214		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1215			nr_entries = *fs_pages_to_unuse;
1216
1217		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1218						  pvec.pages, indices,
1219						  type, frontswap);
1220		if (pvec.nr == 0) {
1221			ret = 0;
1222			break;
1223		}
1224
1225		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1226		if (ret < 0)
1227			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1228
1229		if (frontswap_partial) {
1230			*fs_pages_to_unuse -= ret;
1231			if (*fs_pages_to_unuse == 0) {
1232				ret = FRONTSWAP_PAGES_UNUSED;
1233				break;
1234			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235		}
1236
1237		start = indices[pvec.nr - 1];
1238	} while (true);
1239
1240	return ret;
1241}
1242
1243/*
1244 * Read all the shared memory data that resides in the swap
1245 * device 'type' back into memory, so the swap device can be
1246 * unused.
1247 */
1248int shmem_unuse(unsigned int type, bool frontswap,
1249		unsigned long *fs_pages_to_unuse)
1250{
1251	struct shmem_inode_info *info, *next;
 
 
1252	int error = 0;
1253
1254	if (list_empty(&shmem_swaplist))
1255		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1256
1257	mutex_lock(&shmem_swaplist_mutex);
1258	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1259		if (!info->swapped) {
 
 
 
1260			list_del_init(&info->swaplist);
1261			continue;
1262		}
1263		/*
1264		 * Drop the swaplist mutex while searching the inode for swap;
1265		 * but before doing so, make sure shmem_evict_inode() will not
1266		 * remove placeholder inode from swaplist, nor let it be freed
1267		 * (igrab() would protect from unlink, but not from unmount).
1268		 */
1269		atomic_inc(&info->stop_eviction);
1270		mutex_unlock(&shmem_swaplist_mutex);
1271
1272		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1273					  fs_pages_to_unuse);
1274		cond_resched();
1275
1276		mutex_lock(&shmem_swaplist_mutex);
1277		next = list_next_entry(info, swaplist);
1278		if (!info->swapped)
1279			list_del_init(&info->swaplist);
1280		if (atomic_dec_and_test(&info->stop_eviction))
1281			wake_up_var(&info->stop_eviction);
1282		if (error)
1283			break;
 
1284	}
1285	mutex_unlock(&shmem_swaplist_mutex);
1286
 
 
 
 
 
 
 
 
 
1287	return error;
1288}
1289
1290/*
1291 * Move the page from the page cache to the swap cache.
1292 */
1293static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1294{
1295	struct shmem_inode_info *info;
1296	struct address_space *mapping;
1297	struct inode *inode;
1298	swp_entry_t swap;
1299	pgoff_t index;
1300
1301	VM_BUG_ON_PAGE(PageCompound(page), page);
1302	BUG_ON(!PageLocked(page));
1303	mapping = page->mapping;
1304	index = page->index;
1305	inode = mapping->host;
1306	info = SHMEM_I(inode);
1307	if (info->flags & VM_LOCKED)
1308		goto redirty;
1309	if (!total_swap_pages)
1310		goto redirty;
1311
1312	/*
1313	 * Our capabilities prevent regular writeback or sync from ever calling
1314	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1315	 * its underlying filesystem, in which case tmpfs should write out to
1316	 * swap only in response to memory pressure, and not for the writeback
1317	 * threads or sync.
1318	 */
1319	if (!wbc->for_reclaim) {
1320		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1321		goto redirty;
1322	}
1323
1324	/*
1325	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1326	 * value into swapfile.c, the only way we can correctly account for a
1327	 * fallocated page arriving here is now to initialize it and write it.
1328	 *
1329	 * That's okay for a page already fallocated earlier, but if we have
1330	 * not yet completed the fallocation, then (a) we want to keep track
1331	 * of this page in case we have to undo it, and (b) it may not be a
1332	 * good idea to continue anyway, once we're pushing into swap.  So
1333	 * reactivate the page, and let shmem_fallocate() quit when too many.
1334	 */
1335	if (!PageUptodate(page)) {
1336		if (inode->i_private) {
1337			struct shmem_falloc *shmem_falloc;
1338			spin_lock(&inode->i_lock);
1339			shmem_falloc = inode->i_private;
1340			if (shmem_falloc &&
1341			    !shmem_falloc->waitq &&
1342			    index >= shmem_falloc->start &&
1343			    index < shmem_falloc->next)
1344				shmem_falloc->nr_unswapped++;
1345			else
1346				shmem_falloc = NULL;
1347			spin_unlock(&inode->i_lock);
1348			if (shmem_falloc)
1349				goto redirty;
1350		}
1351		clear_highpage(page);
1352		flush_dcache_page(page);
1353		SetPageUptodate(page);
1354	}
1355
1356	swap = get_swap_page(page);
1357	if (!swap.val)
1358		goto redirty;
1359
 
 
 
1360	/*
1361	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1362	 * if it's not already there.  Do it now before the page is
1363	 * moved to swap cache, when its pagelock no longer protects
1364	 * the inode from eviction.  But don't unlock the mutex until
1365	 * we've incremented swapped, because shmem_unuse_inode() will
1366	 * prune a !swapped inode from the swaplist under this mutex.
1367	 */
1368	mutex_lock(&shmem_swaplist_mutex);
1369	if (list_empty(&info->swaplist))
1370		list_add(&info->swaplist, &shmem_swaplist);
1371
1372	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1373		spin_lock_irq(&info->lock);
1374		shmem_recalc_inode(inode);
1375		info->swapped++;
1376		spin_unlock_irq(&info->lock);
1377
1378		swap_shmem_alloc(swap);
1379		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1380
1381		mutex_unlock(&shmem_swaplist_mutex);
1382		BUG_ON(page_mapped(page));
1383		swap_writepage(page, wbc);
1384		return 0;
1385	}
1386
1387	mutex_unlock(&shmem_swaplist_mutex);
1388	put_swap_page(page, swap);
 
1389redirty:
1390	set_page_dirty(page);
1391	if (wbc->for_reclaim)
1392		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1393	unlock_page(page);
1394	return 0;
1395}
1396
1397#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
 
1398static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1399{
1400	char buffer[64];
1401
1402	if (!mpol || mpol->mode == MPOL_DEFAULT)
1403		return;		/* show nothing */
1404
1405	mpol_to_str(buffer, sizeof(buffer), mpol);
1406
1407	seq_printf(seq, ",mpol=%s", buffer);
1408}
1409
1410static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1411{
1412	struct mempolicy *mpol = NULL;
1413	if (sbinfo->mpol) {
1414		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1415		mpol = sbinfo->mpol;
1416		mpol_get(mpol);
1417		spin_unlock(&sbinfo->stat_lock);
1418	}
1419	return mpol;
1420}
1421#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1422static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1423{
1424}
1425static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1426{
1427	return NULL;
1428}
1429#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1430#ifndef CONFIG_NUMA
1431#define vm_policy vm_private_data
1432#endif
1433
1434static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1435		struct shmem_inode_info *info, pgoff_t index)
1436{
1437	/* Create a pseudo vma that just contains the policy */
1438	vma_init(vma, NULL);
1439	/* Bias interleave by inode number to distribute better across nodes */
1440	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1441	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1442}
1443
1444static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1445{
1446	/* Drop reference taken by mpol_shared_policy_lookup() */
1447	mpol_cond_put(vma->vm_policy);
1448}
1449
1450static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1451			struct shmem_inode_info *info, pgoff_t index)
1452{
1453	struct vm_area_struct pvma;
1454	struct page *page;
1455	struct vm_fault vmf;
1456
1457	shmem_pseudo_vma_init(&pvma, info, index);
1458	vmf.vma = &pvma;
1459	vmf.address = 0;
1460	page = swap_cluster_readahead(swap, gfp, &vmf);
1461	shmem_pseudo_vma_destroy(&pvma);
1462
1463	return page;
1464}
1465
1466static struct page *shmem_alloc_hugepage(gfp_t gfp,
1467		struct shmem_inode_info *info, pgoff_t index)
1468{
1469	struct vm_area_struct pvma;
1470	struct address_space *mapping = info->vfs_inode.i_mapping;
1471	pgoff_t hindex;
1472	struct page *page;
1473
1474	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1475		return NULL;
1476
1477	hindex = round_down(index, HPAGE_PMD_NR);
1478	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1479								XA_PRESENT))
1480		return NULL;
1481
1482	shmem_pseudo_vma_init(&pvma, info, hindex);
1483	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1484			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1485	shmem_pseudo_vma_destroy(&pvma);
1486	if (page)
1487		prep_transhuge_page(page);
1488	return page;
1489}
1490
1491static struct page *shmem_alloc_page(gfp_t gfp,
1492			struct shmem_inode_info *info, pgoff_t index)
1493{
1494	struct vm_area_struct pvma;
1495	struct page *page;
1496
1497	shmem_pseudo_vma_init(&pvma, info, index);
 
 
 
 
 
 
1498	page = alloc_page_vma(gfp, &pvma, 0);
1499	shmem_pseudo_vma_destroy(&pvma);
 
 
1500
1501	return page;
1502}
1503
1504static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1505		struct inode *inode,
1506		pgoff_t index, bool huge)
1507{
1508	struct shmem_inode_info *info = SHMEM_I(inode);
1509	struct page *page;
1510	int nr;
1511	int err = -ENOSPC;
1512
1513	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1514		huge = false;
1515	nr = huge ? HPAGE_PMD_NR : 1;
1516
1517	if (!shmem_inode_acct_block(inode, nr))
1518		goto failed;
 
 
 
1519
1520	if (huge)
1521		page = shmem_alloc_hugepage(gfp, info, index);
1522	else
1523		page = shmem_alloc_page(gfp, info, index);
1524	if (page) {
1525		__SetPageLocked(page);
1526		__SetPageSwapBacked(page);
1527		return page;
1528	}
1529
1530	err = -ENOMEM;
1531	shmem_inode_unacct_blocks(inode, nr);
1532failed:
1533	return ERR_PTR(err);
1534}
 
1535
1536/*
1537 * When a page is moved from swapcache to shmem filecache (either by the
1538 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1539 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1540 * ignorance of the mapping it belongs to.  If that mapping has special
1541 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1542 * we may need to copy to a suitable page before moving to filecache.
1543 *
1544 * In a future release, this may well be extended to respect cpuset and
1545 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1546 * but for now it is a simple matter of zone.
1547 */
1548static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1549{
1550	return page_zonenum(page) > gfp_zone(gfp);
1551}
1552
1553static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1554				struct shmem_inode_info *info, pgoff_t index)
1555{
1556	struct page *oldpage, *newpage;
1557	struct address_space *swap_mapping;
1558	swp_entry_t entry;
1559	pgoff_t swap_index;
1560	int error;
1561
1562	oldpage = *pagep;
1563	entry.val = page_private(oldpage);
1564	swap_index = swp_offset(entry);
1565	swap_mapping = page_mapping(oldpage);
1566
1567	/*
1568	 * We have arrived here because our zones are constrained, so don't
1569	 * limit chance of success by further cpuset and node constraints.
1570	 */
1571	gfp &= ~GFP_CONSTRAINT_MASK;
1572	newpage = shmem_alloc_page(gfp, info, index);
1573	if (!newpage)
1574		return -ENOMEM;
1575
1576	get_page(newpage);
1577	copy_highpage(newpage, oldpage);
1578	flush_dcache_page(newpage);
1579
1580	__SetPageLocked(newpage);
1581	__SetPageSwapBacked(newpage);
1582	SetPageUptodate(newpage);
1583	set_page_private(newpage, entry.val);
 
1584	SetPageSwapCache(newpage);
1585
1586	/*
1587	 * Our caller will very soon move newpage out of swapcache, but it's
1588	 * a nice clean interface for us to replace oldpage by newpage there.
1589	 */
1590	xa_lock_irq(&swap_mapping->i_pages);
1591	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
 
1592	if (!error) {
1593		__inc_node_page_state(newpage, NR_FILE_PAGES);
1594		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1595	}
1596	xa_unlock_irq(&swap_mapping->i_pages);
1597
1598	if (unlikely(error)) {
1599		/*
1600		 * Is this possible?  I think not, now that our callers check
1601		 * both PageSwapCache and page_private after getting page lock;
1602		 * but be defensive.  Reverse old to newpage for clear and free.
1603		 */
1604		oldpage = newpage;
1605	} else {
1606		mem_cgroup_migrate(oldpage, newpage);
1607		lru_cache_add_anon(newpage);
1608		*pagep = newpage;
1609	}
1610
1611	ClearPageSwapCache(oldpage);
1612	set_page_private(oldpage, 0);
1613
1614	unlock_page(oldpage);
1615	put_page(oldpage);
1616	put_page(oldpage);
1617	return error;
1618}
1619
1620/*
1621 * Swap in the page pointed to by *pagep.
1622 * Caller has to make sure that *pagep contains a valid swapped page.
1623 * Returns 0 and the page in pagep if success. On failure, returns the
1624 * the error code and NULL in *pagep.
1625 */
1626static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1627			     struct page **pagep, enum sgp_type sgp,
1628			     gfp_t gfp, struct vm_area_struct *vma,
1629			     vm_fault_t *fault_type)
1630{
1631	struct address_space *mapping = inode->i_mapping;
1632	struct shmem_inode_info *info = SHMEM_I(inode);
1633	struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1634	struct mem_cgroup *memcg;
1635	struct page *page;
1636	swp_entry_t swap;
1637	int error;
1638
1639	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1640	swap = radix_to_swp_entry(*pagep);
1641	*pagep = NULL;
1642
1643	/* Look it up and read it in.. */
1644	page = lookup_swap_cache(swap, NULL, 0);
1645	if (!page) {
1646		/* Or update major stats only when swapin succeeds?? */
1647		if (fault_type) {
1648			*fault_type |= VM_FAULT_MAJOR;
1649			count_vm_event(PGMAJFAULT);
1650			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1651		}
1652		/* Here we actually start the io */
1653		page = shmem_swapin(swap, gfp, info, index);
1654		if (!page) {
1655			error = -ENOMEM;
1656			goto failed;
1657		}
1658	}
1659
1660	/* We have to do this with page locked to prevent races */
1661	lock_page(page);
1662	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1663	    !shmem_confirm_swap(mapping, index, swap)) {
1664		error = -EEXIST;
1665		goto unlock;
1666	}
1667	if (!PageUptodate(page)) {
1668		error = -EIO;
1669		goto failed;
1670	}
1671	wait_on_page_writeback(page);
1672
1673	if (shmem_should_replace_page(page, gfp)) {
1674		error = shmem_replace_page(&page, gfp, info, index);
1675		if (error)
1676			goto failed;
1677	}
1678
1679	error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1680					    false);
1681	if (!error) {
1682		error = shmem_add_to_page_cache(page, mapping, index,
1683						swp_to_radix_entry(swap), gfp);
1684		/*
1685		 * We already confirmed swap under page lock, and make
1686		 * no memory allocation here, so usually no possibility
1687		 * of error; but free_swap_and_cache() only trylocks a
1688		 * page, so it is just possible that the entry has been
1689		 * truncated or holepunched since swap was confirmed.
1690		 * shmem_undo_range() will have done some of the
1691		 * unaccounting, now delete_from_swap_cache() will do
1692		 * the rest.
1693		 */
1694		if (error) {
1695			mem_cgroup_cancel_charge(page, memcg, false);
1696			delete_from_swap_cache(page);
1697		}
1698	}
1699	if (error)
1700		goto failed;
1701
1702	mem_cgroup_commit_charge(page, memcg, true, false);
1703
1704	spin_lock_irq(&info->lock);
1705	info->swapped--;
1706	shmem_recalc_inode(inode);
1707	spin_unlock_irq(&info->lock);
1708
1709	if (sgp == SGP_WRITE)
1710		mark_page_accessed(page);
1711
1712	delete_from_swap_cache(page);
1713	set_page_dirty(page);
1714	swap_free(swap);
1715
1716	*pagep = page;
1717	return 0;
1718failed:
1719	if (!shmem_confirm_swap(mapping, index, swap))
1720		error = -EEXIST;
1721unlock:
1722	if (page) {
1723		unlock_page(page);
1724		put_page(page);
1725	}
1726
1727	return error;
1728}
1729
1730/*
1731 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1732 *
1733 * If we allocate a new one we do not mark it dirty. That's up to the
1734 * vm. If we swap it in we mark it dirty since we also free the swap
1735 * entry since a page cannot live in both the swap and page cache.
1736 *
1737 * vmf and fault_type are only supplied by shmem_fault:
1738 * otherwise they are NULL.
1739 */
1740static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1741	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1742	struct vm_area_struct *vma, struct vm_fault *vmf,
1743			vm_fault_t *fault_type)
1744{
1745	struct address_space *mapping = inode->i_mapping;
1746	struct shmem_inode_info *info = SHMEM_I(inode);
1747	struct shmem_sb_info *sbinfo;
1748	struct mm_struct *charge_mm;
1749	struct mem_cgroup *memcg;
1750	struct page *page;
1751	enum sgp_type sgp_huge = sgp;
1752	pgoff_t hindex = index;
1753	int error;
1754	int once = 0;
1755	int alloced = 0;
1756
1757	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1758		return -EFBIG;
1759	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1760		sgp = SGP_CACHE;
1761repeat:
1762	if (sgp <= SGP_CACHE &&
1763	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1764		return -EINVAL;
1765	}
1766
1767	sbinfo = SHMEM_SB(inode->i_sb);
1768	charge_mm = vma ? vma->vm_mm : current->mm;
1769
1770	page = find_lock_entry(mapping, index);
1771	if (xa_is_value(page)) {
1772		error = shmem_swapin_page(inode, index, &page,
1773					  sgp, gfp, vma, fault_type);
1774		if (error == -EEXIST)
1775			goto repeat;
1776
1777		*pagep = page;
1778		return error;
 
 
1779	}
1780
1781	if (page && sgp == SGP_WRITE)
1782		mark_page_accessed(page);
1783
1784	/* fallocated page? */
1785	if (page && !PageUptodate(page)) {
1786		if (sgp != SGP_READ)
1787			goto clear;
1788		unlock_page(page);
1789		put_page(page);
1790		page = NULL;
1791	}
1792	if (page || sgp == SGP_READ) {
1793		*pagep = page;
1794		return 0;
1795	}
1796
1797	/*
1798	 * Fast cache lookup did not find it:
1799	 * bring it back from swap or allocate.
1800	 */
 
 
1801
1802	if (vma && userfaultfd_missing(vma)) {
1803		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1804		return 0;
1805	}
1806
1807	/* shmem_symlink() */
1808	if (mapping->a_ops != &shmem_aops)
1809		goto alloc_nohuge;
1810	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1811		goto alloc_nohuge;
1812	if (shmem_huge == SHMEM_HUGE_FORCE)
1813		goto alloc_huge;
1814	switch (sbinfo->huge) {
1815		loff_t i_size;
1816		pgoff_t off;
1817	case SHMEM_HUGE_NEVER:
1818		goto alloc_nohuge;
1819	case SHMEM_HUGE_WITHIN_SIZE:
1820		off = round_up(index, HPAGE_PMD_NR);
1821		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1822		if (i_size >= HPAGE_PMD_SIZE &&
1823		    i_size >> PAGE_SHIFT >= off)
1824			goto alloc_huge;
1825		/* fallthrough */
1826	case SHMEM_HUGE_ADVISE:
1827		if (sgp_huge == SGP_HUGE)
1828			goto alloc_huge;
1829		/* TODO: implement fadvise() hints */
1830		goto alloc_nohuge;
1831	}
1832
1833alloc_huge:
1834	page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1835	if (IS_ERR(page)) {
1836alloc_nohuge:
1837		page = shmem_alloc_and_acct_page(gfp, inode,
1838						 index, false);
1839	}
1840	if (IS_ERR(page)) {
1841		int retry = 5;
1842
1843		error = PTR_ERR(page);
1844		page = NULL;
1845		if (error != -ENOSPC)
 
 
1846			goto unlock;
1847		/*
1848		 * Try to reclaim some space by splitting a huge page
1849		 * beyond i_size on the filesystem.
1850		 */
1851		while (retry--) {
1852			int ret;
1853
1854			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1855			if (ret == SHRINK_STOP)
1856				break;
1857			if (ret)
1858				goto alloc_nohuge;
1859		}
1860		goto unlock;
1861	}
1862
1863	if (PageTransHuge(page))
1864		hindex = round_down(index, HPAGE_PMD_NR);
1865	else
1866		hindex = index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1867
1868	if (sgp == SGP_WRITE)
1869		__SetPageReferenced(page);
1870
1871	error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1872					    PageTransHuge(page));
1873	if (error)
1874		goto unacct;
1875	error = shmem_add_to_page_cache(page, mapping, hindex,
1876					NULL, gfp & GFP_RECLAIM_MASK);
1877	if (error) {
1878		mem_cgroup_cancel_charge(page, memcg,
1879					 PageTransHuge(page));
1880		goto unacct;
1881	}
1882	mem_cgroup_commit_charge(page, memcg, false,
1883				 PageTransHuge(page));
1884	lru_cache_add_anon(page);
1885
1886	spin_lock_irq(&info->lock);
1887	info->alloced += compound_nr(page);
1888	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1889	shmem_recalc_inode(inode);
1890	spin_unlock_irq(&info->lock);
1891	alloced = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1892
1893	if (PageTransHuge(page) &&
1894	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1895			hindex + HPAGE_PMD_NR - 1) {
1896		/*
1897		 * Part of the huge page is beyond i_size: subject
1898		 * to shrink under memory pressure.
1899		 */
1900		spin_lock(&sbinfo->shrinklist_lock);
 
 
1901		/*
1902		 * _careful to defend against unlocked access to
1903		 * ->shrink_list in shmem_unused_huge_shrink()
 
1904		 */
1905		if (list_empty_careful(&info->shrinklist)) {
1906			list_add_tail(&info->shrinklist,
1907				      &sbinfo->shrinklist);
1908			sbinfo->shrinklist_len++;
1909		}
1910		spin_unlock(&sbinfo->shrinklist_lock);
1911	}
1912
1913	/*
1914	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1915	 */
1916	if (sgp == SGP_FALLOC)
1917		sgp = SGP_WRITE;
1918clear:
1919	/*
1920	 * Let SGP_WRITE caller clear ends if write does not fill page;
1921	 * but SGP_FALLOC on a page fallocated earlier must initialize
1922	 * it now, lest undo on failure cancel our earlier guarantee.
1923	 */
1924	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1925		struct page *head = compound_head(page);
1926		int i;
1927
1928		for (i = 0; i < compound_nr(head); i++) {
1929			clear_highpage(head + i);
1930			flush_dcache_page(head + i);
1931		}
1932		SetPageUptodate(head);
 
1933	}
1934
1935	/* Perhaps the file has been truncated since we checked */
1936	if (sgp <= SGP_CACHE &&
1937	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1938		if (alloced) {
1939			ClearPageDirty(page);
1940			delete_from_page_cache(page);
1941			spin_lock_irq(&info->lock);
1942			shmem_recalc_inode(inode);
1943			spin_unlock_irq(&info->lock);
1944		}
1945		error = -EINVAL;
1946		goto unlock;
1947	}
1948	*pagep = page + index - hindex;
1949	return 0;
1950
1951	/*
1952	 * Error recovery.
1953	 */
 
 
 
1954unacct:
1955	shmem_inode_unacct_blocks(inode, compound_nr(page));
1956
1957	if (PageTransHuge(page)) {
1958		unlock_page(page);
1959		put_page(page);
1960		goto alloc_nohuge;
1961	}
1962unlock:
1963	if (page) {
1964		unlock_page(page);
1965		put_page(page);
1966	}
1967	if (error == -ENOSPC && !once++) {
1968		spin_lock_irq(&info->lock);
 
1969		shmem_recalc_inode(inode);
1970		spin_unlock_irq(&info->lock);
1971		goto repeat;
1972	}
1973	if (error == -EEXIST)
1974		goto repeat;
1975	return error;
1976}
1977
1978/*
1979 * This is like autoremove_wake_function, but it removes the wait queue
1980 * entry unconditionally - even if something else had already woken the
1981 * target.
1982 */
1983static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1984{
1985	int ret = default_wake_function(wait, mode, sync, key);
1986	list_del_init(&wait->entry);
1987	return ret;
1988}
1989
1990static vm_fault_t shmem_fault(struct vm_fault *vmf)
1991{
1992	struct vm_area_struct *vma = vmf->vma;
1993	struct inode *inode = file_inode(vma->vm_file);
1994	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1995	enum sgp_type sgp;
1996	int err;
1997	vm_fault_t ret = VM_FAULT_LOCKED;
1998
1999	/*
2000	 * Trinity finds that probing a hole which tmpfs is punching can
2001	 * prevent the hole-punch from ever completing: which in turn
2002	 * locks writers out with its hold on i_mutex.  So refrain from
2003	 * faulting pages into the hole while it's being punched.  Although
2004	 * shmem_undo_range() does remove the additions, it may be unable to
2005	 * keep up, as each new page needs its own unmap_mapping_range() call,
2006	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2007	 *
2008	 * It does not matter if we sometimes reach this check just before the
2009	 * hole-punch begins, so that one fault then races with the punch:
2010	 * we just need to make racing faults a rare case.
2011	 *
2012	 * The implementation below would be much simpler if we just used a
2013	 * standard mutex or completion: but we cannot take i_mutex in fault,
2014	 * and bloating every shmem inode for this unlikely case would be sad.
2015	 */
2016	if (unlikely(inode->i_private)) {
2017		struct shmem_falloc *shmem_falloc;
2018
2019		spin_lock(&inode->i_lock);
2020		shmem_falloc = inode->i_private;
2021		if (shmem_falloc &&
2022		    shmem_falloc->waitq &&
2023		    vmf->pgoff >= shmem_falloc->start &&
2024		    vmf->pgoff < shmem_falloc->next) {
2025			wait_queue_head_t *shmem_falloc_waitq;
2026			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2027
2028			ret = VM_FAULT_NOPAGE;
2029			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
2030			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
2031				/* It's polite to up mmap_sem if we can */
2032				up_read(&vma->vm_mm->mmap_sem);
2033				ret = VM_FAULT_RETRY;
2034			}
2035
2036			shmem_falloc_waitq = shmem_falloc->waitq;
2037			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2038					TASK_UNINTERRUPTIBLE);
2039			spin_unlock(&inode->i_lock);
2040			schedule();
2041
2042			/*
2043			 * shmem_falloc_waitq points into the shmem_fallocate()
2044			 * stack of the hole-punching task: shmem_falloc_waitq
2045			 * is usually invalid by the time we reach here, but
2046			 * finish_wait() does not dereference it in that case;
2047			 * though i_lock needed lest racing with wake_up_all().
2048			 */
2049			spin_lock(&inode->i_lock);
2050			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2051			spin_unlock(&inode->i_lock);
2052			return ret;
2053		}
2054		spin_unlock(&inode->i_lock);
2055	}
2056
2057	sgp = SGP_CACHE;
 
 
2058
2059	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2060	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2061		sgp = SGP_NOHUGE;
2062	else if (vma->vm_flags & VM_HUGEPAGE)
2063		sgp = SGP_HUGE;
2064
2065	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2066				  gfp, vma, vmf, &ret);
2067	if (err)
2068		return vmf_error(err);
2069	return ret;
2070}
2071
2072unsigned long shmem_get_unmapped_area(struct file *file,
2073				      unsigned long uaddr, unsigned long len,
2074				      unsigned long pgoff, unsigned long flags)
2075{
2076	unsigned long (*get_area)(struct file *,
2077		unsigned long, unsigned long, unsigned long, unsigned long);
2078	unsigned long addr;
2079	unsigned long offset;
2080	unsigned long inflated_len;
2081	unsigned long inflated_addr;
2082	unsigned long inflated_offset;
2083
2084	if (len > TASK_SIZE)
2085		return -ENOMEM;
2086
2087	get_area = current->mm->get_unmapped_area;
2088	addr = get_area(file, uaddr, len, pgoff, flags);
2089
2090	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2091		return addr;
2092	if (IS_ERR_VALUE(addr))
2093		return addr;
2094	if (addr & ~PAGE_MASK)
2095		return addr;
2096	if (addr > TASK_SIZE - len)
2097		return addr;
2098
2099	if (shmem_huge == SHMEM_HUGE_DENY)
2100		return addr;
2101	if (len < HPAGE_PMD_SIZE)
2102		return addr;
2103	if (flags & MAP_FIXED)
2104		return addr;
2105	/*
2106	 * Our priority is to support MAP_SHARED mapped hugely;
2107	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2108	 * But if caller specified an address hint, respect that as before.
2109	 */
2110	if (uaddr)
2111		return addr;
2112
2113	if (shmem_huge != SHMEM_HUGE_FORCE) {
2114		struct super_block *sb;
2115
2116		if (file) {
2117			VM_BUG_ON(file->f_op != &shmem_file_operations);
2118			sb = file_inode(file)->i_sb;
2119		} else {
2120			/*
2121			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2122			 * for "/dev/zero", to create a shared anonymous object.
2123			 */
2124			if (IS_ERR(shm_mnt))
2125				return addr;
2126			sb = shm_mnt->mnt_sb;
2127		}
2128		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2129			return addr;
2130	}
2131
2132	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2133	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2134		return addr;
2135	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2136		return addr;
2137
2138	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2139	if (inflated_len > TASK_SIZE)
2140		return addr;
2141	if (inflated_len < len)
2142		return addr;
2143
2144	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2145	if (IS_ERR_VALUE(inflated_addr))
2146		return addr;
2147	if (inflated_addr & ~PAGE_MASK)
2148		return addr;
2149
2150	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2151	inflated_addr += offset - inflated_offset;
2152	if (inflated_offset > offset)
2153		inflated_addr += HPAGE_PMD_SIZE;
2154
2155	if (inflated_addr > TASK_SIZE - len)
2156		return addr;
2157	return inflated_addr;
2158}
2159
2160#ifdef CONFIG_NUMA
2161static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2162{
2163	struct inode *inode = file_inode(vma->vm_file);
2164	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2165}
2166
2167static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2168					  unsigned long addr)
2169{
2170	struct inode *inode = file_inode(vma->vm_file);
2171	pgoff_t index;
2172
2173	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2174	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2175}
2176#endif
2177
2178int shmem_lock(struct file *file, int lock, struct user_struct *user)
2179{
2180	struct inode *inode = file_inode(file);
2181	struct shmem_inode_info *info = SHMEM_I(inode);
2182	int retval = -ENOMEM;
2183
2184	spin_lock_irq(&info->lock);
2185	if (lock && !(info->flags & VM_LOCKED)) {
2186		if (!user_shm_lock(inode->i_size, user))
2187			goto out_nomem;
2188		info->flags |= VM_LOCKED;
2189		mapping_set_unevictable(file->f_mapping);
2190	}
2191	if (!lock && (info->flags & VM_LOCKED) && user) {
2192		user_shm_unlock(inode->i_size, user);
2193		info->flags &= ~VM_LOCKED;
2194		mapping_clear_unevictable(file->f_mapping);
2195	}
2196	retval = 0;
2197
2198out_nomem:
2199	spin_unlock_irq(&info->lock);
2200	return retval;
2201}
2202
2203static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2204{
2205	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2206
2207	if (info->seals & F_SEAL_FUTURE_WRITE) {
2208		/*
2209		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2210		 * "future write" seal active.
2211		 */
2212		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2213			return -EPERM;
2214
2215		/*
2216		 * Since the F_SEAL_FUTURE_WRITE seals allow for a MAP_SHARED
2217		 * read-only mapping, take care to not allow mprotect to revert
2218		 * protections.
2219		 */
2220		vma->vm_flags &= ~(VM_MAYWRITE);
2221	}
2222
2223	file_accessed(file);
2224	vma->vm_ops = &shmem_vm_ops;
2225	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2226			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2227			(vma->vm_end & HPAGE_PMD_MASK)) {
2228		khugepaged_enter(vma, vma->vm_flags);
2229	}
2230	return 0;
2231}
2232
2233static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2234				     umode_t mode, dev_t dev, unsigned long flags)
2235{
2236	struct inode *inode;
2237	struct shmem_inode_info *info;
2238	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2239
2240	if (shmem_reserve_inode(sb))
2241		return NULL;
2242
2243	inode = new_inode(sb);
2244	if (inode) {
2245		inode->i_ino = get_next_ino();
2246		inode_init_owner(inode, dir, mode);
2247		inode->i_blocks = 0;
2248		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2249		inode->i_generation = prandom_u32();
2250		info = SHMEM_I(inode);
2251		memset(info, 0, (char *)inode - (char *)info);
2252		spin_lock_init(&info->lock);
2253		atomic_set(&info->stop_eviction, 0);
2254		info->seals = F_SEAL_SEAL;
2255		info->flags = flags & VM_NORESERVE;
2256		INIT_LIST_HEAD(&info->shrinklist);
2257		INIT_LIST_HEAD(&info->swaplist);
2258		simple_xattrs_init(&info->xattrs);
2259		cache_no_acl(inode);
2260
2261		switch (mode & S_IFMT) {
2262		default:
2263			inode->i_op = &shmem_special_inode_operations;
2264			init_special_inode(inode, mode, dev);
2265			break;
2266		case S_IFREG:
2267			inode->i_mapping->a_ops = &shmem_aops;
2268			inode->i_op = &shmem_inode_operations;
2269			inode->i_fop = &shmem_file_operations;
2270			mpol_shared_policy_init(&info->policy,
2271						 shmem_get_sbmpol(sbinfo));
2272			break;
2273		case S_IFDIR:
2274			inc_nlink(inode);
2275			/* Some things misbehave if size == 0 on a directory */
2276			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2277			inode->i_op = &shmem_dir_inode_operations;
2278			inode->i_fop = &simple_dir_operations;
2279			break;
2280		case S_IFLNK:
2281			/*
2282			 * Must not load anything in the rbtree,
2283			 * mpol_free_shared_policy will not be called.
2284			 */
2285			mpol_shared_policy_init(&info->policy, NULL);
2286			break;
2287		}
2288
2289		lockdep_annotate_inode_mutex_key(inode);
2290	} else
2291		shmem_free_inode(sb);
2292	return inode;
2293}
2294
2295bool shmem_mapping(struct address_space *mapping)
2296{
2297	return mapping->a_ops == &shmem_aops;
2298}
2299
2300static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2301				  pmd_t *dst_pmd,
2302				  struct vm_area_struct *dst_vma,
2303				  unsigned long dst_addr,
2304				  unsigned long src_addr,
2305				  bool zeropage,
2306				  struct page **pagep)
2307{
2308	struct inode *inode = file_inode(dst_vma->vm_file);
2309	struct shmem_inode_info *info = SHMEM_I(inode);
2310	struct address_space *mapping = inode->i_mapping;
2311	gfp_t gfp = mapping_gfp_mask(mapping);
2312	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2313	struct mem_cgroup *memcg;
2314	spinlock_t *ptl;
2315	void *page_kaddr;
2316	struct page *page;
2317	pte_t _dst_pte, *dst_pte;
2318	int ret;
2319	pgoff_t offset, max_off;
2320
2321	ret = -ENOMEM;
2322	if (!shmem_inode_acct_block(inode, 1))
2323		goto out;
2324
2325	if (!*pagep) {
2326		page = shmem_alloc_page(gfp, info, pgoff);
2327		if (!page)
2328			goto out_unacct_blocks;
2329
2330		if (!zeropage) {	/* mcopy_atomic */
2331			page_kaddr = kmap_atomic(page);
2332			ret = copy_from_user(page_kaddr,
2333					     (const void __user *)src_addr,
2334					     PAGE_SIZE);
2335			kunmap_atomic(page_kaddr);
2336
2337			/* fallback to copy_from_user outside mmap_sem */
2338			if (unlikely(ret)) {
2339				*pagep = page;
2340				shmem_inode_unacct_blocks(inode, 1);
2341				/* don't free the page */
2342				return -ENOENT;
2343			}
2344		} else {		/* mfill_zeropage_atomic */
2345			clear_highpage(page);
2346		}
2347	} else {
2348		page = *pagep;
2349		*pagep = NULL;
2350	}
2351
2352	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2353	__SetPageLocked(page);
2354	__SetPageSwapBacked(page);
2355	__SetPageUptodate(page);
2356
2357	ret = -EFAULT;
2358	offset = linear_page_index(dst_vma, dst_addr);
2359	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2360	if (unlikely(offset >= max_off))
2361		goto out_release;
2362
2363	ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2364	if (ret)
2365		goto out_release;
2366
2367	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2368						gfp & GFP_RECLAIM_MASK);
2369	if (ret)
2370		goto out_release_uncharge;
2371
2372	mem_cgroup_commit_charge(page, memcg, false, false);
2373
2374	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2375	if (dst_vma->vm_flags & VM_WRITE)
2376		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2377	else {
2378		/*
2379		 * We don't set the pte dirty if the vma has no
2380		 * VM_WRITE permission, so mark the page dirty or it
2381		 * could be freed from under us. We could do it
2382		 * unconditionally before unlock_page(), but doing it
2383		 * only if VM_WRITE is not set is faster.
2384		 */
2385		set_page_dirty(page);
2386	}
2387
2388	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2389
2390	ret = -EFAULT;
2391	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2392	if (unlikely(offset >= max_off))
2393		goto out_release_uncharge_unlock;
2394
2395	ret = -EEXIST;
2396	if (!pte_none(*dst_pte))
2397		goto out_release_uncharge_unlock;
2398
2399	lru_cache_add_anon(page);
2400
2401	spin_lock(&info->lock);
2402	info->alloced++;
2403	inode->i_blocks += BLOCKS_PER_PAGE;
2404	shmem_recalc_inode(inode);
2405	spin_unlock(&info->lock);
2406
2407	inc_mm_counter(dst_mm, mm_counter_file(page));
2408	page_add_file_rmap(page, false);
2409	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2410
2411	/* No need to invalidate - it was non-present before */
2412	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2413	pte_unmap_unlock(dst_pte, ptl);
2414	unlock_page(page);
2415	ret = 0;
2416out:
2417	return ret;
2418out_release_uncharge_unlock:
2419	pte_unmap_unlock(dst_pte, ptl);
2420	ClearPageDirty(page);
2421	delete_from_page_cache(page);
2422out_release_uncharge:
2423	mem_cgroup_cancel_charge(page, memcg, false);
2424out_release:
2425	unlock_page(page);
2426	put_page(page);
2427out_unacct_blocks:
2428	shmem_inode_unacct_blocks(inode, 1);
2429	goto out;
2430}
2431
2432int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2433			   pmd_t *dst_pmd,
2434			   struct vm_area_struct *dst_vma,
2435			   unsigned long dst_addr,
2436			   unsigned long src_addr,
2437			   struct page **pagep)
2438{
2439	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2440				      dst_addr, src_addr, false, pagep);
2441}
2442
2443int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2444			     pmd_t *dst_pmd,
2445			     struct vm_area_struct *dst_vma,
2446			     unsigned long dst_addr)
2447{
2448	struct page *page = NULL;
2449
2450	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2451				      dst_addr, 0, true, &page);
2452}
2453
2454#ifdef CONFIG_TMPFS
2455static const struct inode_operations shmem_symlink_inode_operations;
2456static const struct inode_operations shmem_short_symlink_operations;
2457
2458#ifdef CONFIG_TMPFS_XATTR
2459static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2460#else
2461#define shmem_initxattrs NULL
2462#endif
2463
2464static int
2465shmem_write_begin(struct file *file, struct address_space *mapping,
2466			loff_t pos, unsigned len, unsigned flags,
2467			struct page **pagep, void **fsdata)
2468{
2469	struct inode *inode = mapping->host;
2470	struct shmem_inode_info *info = SHMEM_I(inode);
2471	pgoff_t index = pos >> PAGE_SHIFT;
2472
2473	/* i_mutex is held by caller */
2474	if (unlikely(info->seals & (F_SEAL_GROW |
2475				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2476		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2477			return -EPERM;
2478		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2479			return -EPERM;
2480	}
2481
2482	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2483}
2484
2485static int
2486shmem_write_end(struct file *file, struct address_space *mapping,
2487			loff_t pos, unsigned len, unsigned copied,
2488			struct page *page, void *fsdata)
2489{
2490	struct inode *inode = mapping->host;
2491
2492	if (pos + copied > inode->i_size)
2493		i_size_write(inode, pos + copied);
2494
2495	if (!PageUptodate(page)) {
2496		struct page *head = compound_head(page);
2497		if (PageTransCompound(page)) {
2498			int i;
2499
2500			for (i = 0; i < HPAGE_PMD_NR; i++) {
2501				if (head + i == page)
2502					continue;
2503				clear_highpage(head + i);
2504				flush_dcache_page(head + i);
2505			}
2506		}
2507		if (copied < PAGE_SIZE) {
2508			unsigned from = pos & (PAGE_SIZE - 1);
2509			zero_user_segments(page, 0, from,
2510					from + copied, PAGE_SIZE);
2511		}
2512		SetPageUptodate(head);
2513	}
2514	set_page_dirty(page);
2515	unlock_page(page);
2516	put_page(page);
2517
2518	return copied;
2519}
2520
2521static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2522{
2523	struct file *file = iocb->ki_filp;
2524	struct inode *inode = file_inode(file);
2525	struct address_space *mapping = inode->i_mapping;
2526	pgoff_t index;
2527	unsigned long offset;
2528	enum sgp_type sgp = SGP_READ;
2529	int error = 0;
2530	ssize_t retval = 0;
2531	loff_t *ppos = &iocb->ki_pos;
2532
2533	/*
2534	 * Might this read be for a stacking filesystem?  Then when reading
2535	 * holes of a sparse file, we actually need to allocate those pages,
2536	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2537	 */
2538	if (!iter_is_iovec(to))
2539		sgp = SGP_CACHE;
2540
2541	index = *ppos >> PAGE_SHIFT;
2542	offset = *ppos & ~PAGE_MASK;
2543
2544	for (;;) {
2545		struct page *page = NULL;
2546		pgoff_t end_index;
2547		unsigned long nr, ret;
2548		loff_t i_size = i_size_read(inode);
2549
2550		end_index = i_size >> PAGE_SHIFT;
2551		if (index > end_index)
2552			break;
2553		if (index == end_index) {
2554			nr = i_size & ~PAGE_MASK;
2555			if (nr <= offset)
2556				break;
2557		}
2558
2559		error = shmem_getpage(inode, index, &page, sgp);
2560		if (error) {
2561			if (error == -EINVAL)
2562				error = 0;
2563			break;
2564		}
2565		if (page) {
2566			if (sgp == SGP_CACHE)
2567				set_page_dirty(page);
2568			unlock_page(page);
2569		}
2570
2571		/*
2572		 * We must evaluate after, since reads (unlike writes)
2573		 * are called without i_mutex protection against truncate
2574		 */
2575		nr = PAGE_SIZE;
2576		i_size = i_size_read(inode);
2577		end_index = i_size >> PAGE_SHIFT;
2578		if (index == end_index) {
2579			nr = i_size & ~PAGE_MASK;
2580			if (nr <= offset) {
2581				if (page)
2582					put_page(page);
2583				break;
2584			}
2585		}
2586		nr -= offset;
2587
2588		if (page) {
2589			/*
2590			 * If users can be writing to this page using arbitrary
2591			 * virtual addresses, take care about potential aliasing
2592			 * before reading the page on the kernel side.
2593			 */
2594			if (mapping_writably_mapped(mapping))
2595				flush_dcache_page(page);
2596			/*
2597			 * Mark the page accessed if we read the beginning.
2598			 */
2599			if (!offset)
2600				mark_page_accessed(page);
2601		} else {
2602			page = ZERO_PAGE(0);
2603			get_page(page);
2604		}
2605
2606		/*
2607		 * Ok, we have the page, and it's up-to-date, so
2608		 * now we can copy it to user space...
2609		 */
2610		ret = copy_page_to_iter(page, offset, nr, to);
2611		retval += ret;
2612		offset += ret;
2613		index += offset >> PAGE_SHIFT;
2614		offset &= ~PAGE_MASK;
2615
2616		put_page(page);
2617		if (!iov_iter_count(to))
2618			break;
2619		if (ret < nr) {
2620			error = -EFAULT;
2621			break;
2622		}
2623		cond_resched();
2624	}
2625
2626	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2627	file_accessed(file);
2628	return retval ? retval : error;
2629}
2630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2631/*
2632 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2633 */
2634static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2635				    pgoff_t index, pgoff_t end, int whence)
2636{
2637	struct page *page;
2638	struct pagevec pvec;
2639	pgoff_t indices[PAGEVEC_SIZE];
2640	bool done = false;
2641	int i;
2642
2643	pagevec_init(&pvec);
2644	pvec.nr = 1;		/* start small: we may be there already */
2645	while (!done) {
2646		pvec.nr = find_get_entries(mapping, index,
2647					pvec.nr, pvec.pages, indices);
2648		if (!pvec.nr) {
2649			if (whence == SEEK_DATA)
2650				index = end;
2651			break;
2652		}
2653		for (i = 0; i < pvec.nr; i++, index++) {
2654			if (index < indices[i]) {
2655				if (whence == SEEK_HOLE) {
2656					done = true;
2657					break;
2658				}
2659				index = indices[i];
2660			}
2661			page = pvec.pages[i];
2662			if (page && !xa_is_value(page)) {
2663				if (!PageUptodate(page))
2664					page = NULL;
2665			}
2666			if (index >= end ||
2667			    (page && whence == SEEK_DATA) ||
2668			    (!page && whence == SEEK_HOLE)) {
2669				done = true;
2670				break;
2671			}
2672		}
2673		pagevec_remove_exceptionals(&pvec);
2674		pagevec_release(&pvec);
2675		pvec.nr = PAGEVEC_SIZE;
2676		cond_resched();
2677	}
2678	return index;
2679}
2680
2681static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2682{
2683	struct address_space *mapping = file->f_mapping;
2684	struct inode *inode = mapping->host;
2685	pgoff_t start, end;
2686	loff_t new_offset;
2687
2688	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2689		return generic_file_llseek_size(file, offset, whence,
2690					MAX_LFS_FILESIZE, i_size_read(inode));
2691	inode_lock(inode);
2692	/* We're holding i_mutex so we can access i_size directly */
2693
2694	if (offset < 0 || offset >= inode->i_size)
 
 
2695		offset = -ENXIO;
2696	else {
2697		start = offset >> PAGE_SHIFT;
2698		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2699		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2700		new_offset <<= PAGE_SHIFT;
2701		if (new_offset > offset) {
2702			if (new_offset < inode->i_size)
2703				offset = new_offset;
2704			else if (whence == SEEK_DATA)
2705				offset = -ENXIO;
2706			else
2707				offset = inode->i_size;
2708		}
2709	}
2710
2711	if (offset >= 0)
2712		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2713	inode_unlock(inode);
2714	return offset;
2715}
2716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2717static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2718							 loff_t len)
2719{
2720	struct inode *inode = file_inode(file);
2721	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2722	struct shmem_inode_info *info = SHMEM_I(inode);
2723	struct shmem_falloc shmem_falloc;
2724	pgoff_t start, index, end;
2725	int error;
2726
2727	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2728		return -EOPNOTSUPP;
2729
2730	inode_lock(inode);
2731
2732	if (mode & FALLOC_FL_PUNCH_HOLE) {
2733		struct address_space *mapping = file->f_mapping;
2734		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2735		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2736		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2737
2738		/* protected by i_mutex */
2739		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2740			error = -EPERM;
2741			goto out;
2742		}
2743
2744		shmem_falloc.waitq = &shmem_falloc_waitq;
2745		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2746		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2747		spin_lock(&inode->i_lock);
2748		inode->i_private = &shmem_falloc;
2749		spin_unlock(&inode->i_lock);
2750
2751		if ((u64)unmap_end > (u64)unmap_start)
2752			unmap_mapping_range(mapping, unmap_start,
2753					    1 + unmap_end - unmap_start, 0);
2754		shmem_truncate_range(inode, offset, offset + len - 1);
2755		/* No need to unmap again: hole-punching leaves COWed pages */
2756
2757		spin_lock(&inode->i_lock);
2758		inode->i_private = NULL;
2759		wake_up_all(&shmem_falloc_waitq);
2760		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2761		spin_unlock(&inode->i_lock);
2762		error = 0;
2763		goto out;
2764	}
2765
2766	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2767	error = inode_newsize_ok(inode, offset + len);
2768	if (error)
2769		goto out;
2770
2771	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2772		error = -EPERM;
2773		goto out;
2774	}
2775
2776	start = offset >> PAGE_SHIFT;
2777	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2778	/* Try to avoid a swapstorm if len is impossible to satisfy */
2779	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2780		error = -ENOSPC;
2781		goto out;
2782	}
2783
2784	shmem_falloc.waitq = NULL;
2785	shmem_falloc.start = start;
2786	shmem_falloc.next  = start;
2787	shmem_falloc.nr_falloced = 0;
2788	shmem_falloc.nr_unswapped = 0;
2789	spin_lock(&inode->i_lock);
2790	inode->i_private = &shmem_falloc;
2791	spin_unlock(&inode->i_lock);
2792
2793	for (index = start; index < end; index++) {
2794		struct page *page;
2795
2796		/*
2797		 * Good, the fallocate(2) manpage permits EINTR: we may have
2798		 * been interrupted because we are using up too much memory.
2799		 */
2800		if (signal_pending(current))
2801			error = -EINTR;
2802		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2803			error = -ENOMEM;
2804		else
2805			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
 
2806		if (error) {
2807			/* Remove the !PageUptodate pages we added */
2808			if (index > start) {
2809				shmem_undo_range(inode,
2810				    (loff_t)start << PAGE_SHIFT,
2811				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2812			}
2813			goto undone;
2814		}
2815
2816		/*
2817		 * Inform shmem_writepage() how far we have reached.
2818		 * No need for lock or barrier: we have the page lock.
2819		 */
2820		shmem_falloc.next++;
2821		if (!PageUptodate(page))
2822			shmem_falloc.nr_falloced++;
2823
2824		/*
2825		 * If !PageUptodate, leave it that way so that freeable pages
2826		 * can be recognized if we need to rollback on error later.
2827		 * But set_page_dirty so that memory pressure will swap rather
2828		 * than free the pages we are allocating (and SGP_CACHE pages
2829		 * might still be clean: we now need to mark those dirty too).
2830		 */
2831		set_page_dirty(page);
2832		unlock_page(page);
2833		put_page(page);
2834		cond_resched();
2835	}
2836
2837	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2838		i_size_write(inode, offset + len);
2839	inode->i_ctime = current_time(inode);
2840undone:
2841	spin_lock(&inode->i_lock);
2842	inode->i_private = NULL;
2843	spin_unlock(&inode->i_lock);
2844out:
2845	inode_unlock(inode);
2846	return error;
2847}
2848
2849static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2850{
2851	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2852
2853	buf->f_type = TMPFS_MAGIC;
2854	buf->f_bsize = PAGE_SIZE;
2855	buf->f_namelen = NAME_MAX;
2856	if (sbinfo->max_blocks) {
2857		buf->f_blocks = sbinfo->max_blocks;
2858		buf->f_bavail =
2859		buf->f_bfree  = sbinfo->max_blocks -
2860				percpu_counter_sum(&sbinfo->used_blocks);
2861	}
2862	if (sbinfo->max_inodes) {
2863		buf->f_files = sbinfo->max_inodes;
2864		buf->f_ffree = sbinfo->free_inodes;
2865	}
2866	/* else leave those fields 0 like simple_statfs */
2867	return 0;
2868}
2869
2870/*
2871 * File creation. Allocate an inode, and we're done..
2872 */
2873static int
2874shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2875{
2876	struct inode *inode;
2877	int error = -ENOSPC;
2878
2879	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2880	if (inode) {
2881		error = simple_acl_create(dir, inode);
2882		if (error)
2883			goto out_iput;
2884		error = security_inode_init_security(inode, dir,
2885						     &dentry->d_name,
2886						     shmem_initxattrs, NULL);
2887		if (error && error != -EOPNOTSUPP)
2888			goto out_iput;
2889
2890		error = 0;
2891		dir->i_size += BOGO_DIRENT_SIZE;
2892		dir->i_ctime = dir->i_mtime = current_time(dir);
2893		d_instantiate(dentry, inode);
2894		dget(dentry); /* Extra count - pin the dentry in core */
2895	}
2896	return error;
2897out_iput:
2898	iput(inode);
2899	return error;
2900}
2901
2902static int
2903shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2904{
2905	struct inode *inode;
2906	int error = -ENOSPC;
2907
2908	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2909	if (inode) {
2910		error = security_inode_init_security(inode, dir,
2911						     NULL,
2912						     shmem_initxattrs, NULL);
2913		if (error && error != -EOPNOTSUPP)
2914			goto out_iput;
2915		error = simple_acl_create(dir, inode);
2916		if (error)
2917			goto out_iput;
2918		d_tmpfile(dentry, inode);
2919	}
2920	return error;
2921out_iput:
2922	iput(inode);
2923	return error;
2924}
2925
2926static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2927{
2928	int error;
2929
2930	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2931		return error;
2932	inc_nlink(dir);
2933	return 0;
2934}
2935
2936static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2937		bool excl)
2938{
2939	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2940}
2941
2942/*
2943 * Link a file..
2944 */
2945static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2946{
2947	struct inode *inode = d_inode(old_dentry);
2948	int ret = 0;
2949
2950	/*
2951	 * No ordinary (disk based) filesystem counts links as inodes;
2952	 * but each new link needs a new dentry, pinning lowmem, and
2953	 * tmpfs dentries cannot be pruned until they are unlinked.
2954	 * But if an O_TMPFILE file is linked into the tmpfs, the
2955	 * first link must skip that, to get the accounting right.
2956	 */
2957	if (inode->i_nlink) {
2958		ret = shmem_reserve_inode(inode->i_sb);
2959		if (ret)
2960			goto out;
2961	}
2962
2963	dir->i_size += BOGO_DIRENT_SIZE;
2964	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2965	inc_nlink(inode);
2966	ihold(inode);	/* New dentry reference */
2967	dget(dentry);		/* Extra pinning count for the created dentry */
2968	d_instantiate(dentry, inode);
2969out:
2970	return ret;
2971}
2972
2973static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2974{
2975	struct inode *inode = d_inode(dentry);
2976
2977	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2978		shmem_free_inode(inode->i_sb);
2979
2980	dir->i_size -= BOGO_DIRENT_SIZE;
2981	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2982	drop_nlink(inode);
2983	dput(dentry);	/* Undo the count from "create" - this does all the work */
2984	return 0;
2985}
2986
2987static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2988{
2989	if (!simple_empty(dentry))
2990		return -ENOTEMPTY;
2991
2992	drop_nlink(d_inode(dentry));
2993	drop_nlink(dir);
2994	return shmem_unlink(dir, dentry);
2995}
2996
2997static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2998{
2999	bool old_is_dir = d_is_dir(old_dentry);
3000	bool new_is_dir = d_is_dir(new_dentry);
3001
3002	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3003		if (old_is_dir) {
3004			drop_nlink(old_dir);
3005			inc_nlink(new_dir);
3006		} else {
3007			drop_nlink(new_dir);
3008			inc_nlink(old_dir);
3009		}
3010	}
3011	old_dir->i_ctime = old_dir->i_mtime =
3012	new_dir->i_ctime = new_dir->i_mtime =
3013	d_inode(old_dentry)->i_ctime =
3014	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3015
3016	return 0;
3017}
3018
3019static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3020{
3021	struct dentry *whiteout;
3022	int error;
3023
3024	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3025	if (!whiteout)
3026		return -ENOMEM;
3027
3028	error = shmem_mknod(old_dir, whiteout,
3029			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3030	dput(whiteout);
3031	if (error)
3032		return error;
3033
3034	/*
3035	 * Cheat and hash the whiteout while the old dentry is still in
3036	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3037	 *
3038	 * d_lookup() will consistently find one of them at this point,
3039	 * not sure which one, but that isn't even important.
3040	 */
3041	d_rehash(whiteout);
3042	return 0;
3043}
3044
3045/*
3046 * The VFS layer already does all the dentry stuff for rename,
3047 * we just have to decrement the usage count for the target if
3048 * it exists so that the VFS layer correctly free's it when it
3049 * gets overwritten.
3050 */
3051static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3052{
3053	struct inode *inode = d_inode(old_dentry);
3054	int they_are_dirs = S_ISDIR(inode->i_mode);
3055
3056	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3057		return -EINVAL;
3058
3059	if (flags & RENAME_EXCHANGE)
3060		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3061
3062	if (!simple_empty(new_dentry))
3063		return -ENOTEMPTY;
3064
3065	if (flags & RENAME_WHITEOUT) {
3066		int error;
3067
3068		error = shmem_whiteout(old_dir, old_dentry);
3069		if (error)
3070			return error;
3071	}
3072
3073	if (d_really_is_positive(new_dentry)) {
3074		(void) shmem_unlink(new_dir, new_dentry);
3075		if (they_are_dirs) {
3076			drop_nlink(d_inode(new_dentry));
3077			drop_nlink(old_dir);
3078		}
3079	} else if (they_are_dirs) {
3080		drop_nlink(old_dir);
3081		inc_nlink(new_dir);
3082	}
3083
3084	old_dir->i_size -= BOGO_DIRENT_SIZE;
3085	new_dir->i_size += BOGO_DIRENT_SIZE;
3086	old_dir->i_ctime = old_dir->i_mtime =
3087	new_dir->i_ctime = new_dir->i_mtime =
3088	inode->i_ctime = current_time(old_dir);
3089	return 0;
3090}
3091
3092static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3093{
3094	int error;
3095	int len;
3096	struct inode *inode;
3097	struct page *page;
 
3098
3099	len = strlen(symname) + 1;
3100	if (len > PAGE_SIZE)
3101		return -ENAMETOOLONG;
3102
3103	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3104				VM_NORESERVE);
3105	if (!inode)
3106		return -ENOSPC;
3107
3108	error = security_inode_init_security(inode, dir, &dentry->d_name,
3109					     shmem_initxattrs, NULL);
3110	if (error) {
3111		if (error != -EOPNOTSUPP) {
3112			iput(inode);
3113			return error;
3114		}
3115		error = 0;
3116	}
3117
 
3118	inode->i_size = len-1;
3119	if (len <= SHORT_SYMLINK_LEN) {
3120		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3121		if (!inode->i_link) {
3122			iput(inode);
3123			return -ENOMEM;
3124		}
3125		inode->i_op = &shmem_short_symlink_operations;
3126	} else {
3127		inode_nohighmem(inode);
3128		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3129		if (error) {
3130			iput(inode);
3131			return error;
3132		}
3133		inode->i_mapping->a_ops = &shmem_aops;
3134		inode->i_op = &shmem_symlink_inode_operations;
3135		memcpy(page_address(page), symname, len);
3136		SetPageUptodate(page);
3137		set_page_dirty(page);
3138		unlock_page(page);
3139		put_page(page);
3140	}
3141	dir->i_size += BOGO_DIRENT_SIZE;
3142	dir->i_ctime = dir->i_mtime = current_time(dir);
3143	d_instantiate(dentry, inode);
3144	dget(dentry);
3145	return 0;
3146}
3147
3148static void shmem_put_link(void *arg)
3149{
3150	mark_page_accessed(arg);
3151	put_page(arg);
3152}
3153
3154static const char *shmem_get_link(struct dentry *dentry,
3155				  struct inode *inode,
3156				  struct delayed_call *done)
3157{
3158	struct page *page = NULL;
3159	int error;
3160	if (!dentry) {
3161		page = find_get_page(inode->i_mapping, 0);
3162		if (!page)
3163			return ERR_PTR(-ECHILD);
3164		if (!PageUptodate(page)) {
3165			put_page(page);
3166			return ERR_PTR(-ECHILD);
3167		}
3168	} else {
3169		error = shmem_getpage(inode, 0, &page, SGP_READ);
3170		if (error)
3171			return ERR_PTR(error);
3172		unlock_page(page);
3173	}
3174	set_delayed_call(done, shmem_put_link, page);
3175	return page_address(page);
3176}
3177
3178#ifdef CONFIG_TMPFS_XATTR
3179/*
3180 * Superblocks without xattr inode operations may get some security.* xattr
3181 * support from the LSM "for free". As soon as we have any other xattrs
3182 * like ACLs, we also need to implement the security.* handlers at
3183 * filesystem level, though.
3184 */
3185
3186/*
3187 * Callback for security_inode_init_security() for acquiring xattrs.
3188 */
3189static int shmem_initxattrs(struct inode *inode,
3190			    const struct xattr *xattr_array,
3191			    void *fs_info)
3192{
3193	struct shmem_inode_info *info = SHMEM_I(inode);
3194	const struct xattr *xattr;
3195	struct simple_xattr *new_xattr;
3196	size_t len;
3197
3198	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3199		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3200		if (!new_xattr)
3201			return -ENOMEM;
3202
3203		len = strlen(xattr->name) + 1;
3204		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3205					  GFP_KERNEL);
3206		if (!new_xattr->name) {
3207			kfree(new_xattr);
3208			return -ENOMEM;
3209		}
3210
3211		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3212		       XATTR_SECURITY_PREFIX_LEN);
3213		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3214		       xattr->name, len);
3215
3216		simple_xattr_list_add(&info->xattrs, new_xattr);
3217	}
3218
3219	return 0;
3220}
3221
3222static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3223				   struct dentry *unused, struct inode *inode,
3224				   const char *name, void *buffer, size_t size)
3225{
3226	struct shmem_inode_info *info = SHMEM_I(inode);
3227
3228	name = xattr_full_name(handler, name);
3229	return simple_xattr_get(&info->xattrs, name, buffer, size);
3230}
3231
3232static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3233				   struct dentry *unused, struct inode *inode,
3234				   const char *name, const void *value,
3235				   size_t size, int flags)
3236{
3237	struct shmem_inode_info *info = SHMEM_I(inode);
3238
3239	name = xattr_full_name(handler, name);
3240	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3241}
3242
3243static const struct xattr_handler shmem_security_xattr_handler = {
3244	.prefix = XATTR_SECURITY_PREFIX,
3245	.get = shmem_xattr_handler_get,
3246	.set = shmem_xattr_handler_set,
3247};
3248
3249static const struct xattr_handler shmem_trusted_xattr_handler = {
3250	.prefix = XATTR_TRUSTED_PREFIX,
3251	.get = shmem_xattr_handler_get,
3252	.set = shmem_xattr_handler_set,
3253};
3254
3255static const struct xattr_handler *shmem_xattr_handlers[] = {
3256#ifdef CONFIG_TMPFS_POSIX_ACL
3257	&posix_acl_access_xattr_handler,
3258	&posix_acl_default_xattr_handler,
3259#endif
3260	&shmem_security_xattr_handler,
3261	&shmem_trusted_xattr_handler,
3262	NULL
3263};
3264
3265static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3266{
3267	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3268	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3269}
3270#endif /* CONFIG_TMPFS_XATTR */
3271
3272static const struct inode_operations shmem_short_symlink_operations = {
 
3273	.get_link	= simple_get_link,
3274#ifdef CONFIG_TMPFS_XATTR
 
 
3275	.listxattr	= shmem_listxattr,
 
3276#endif
3277};
3278
3279static const struct inode_operations shmem_symlink_inode_operations = {
 
3280	.get_link	= shmem_get_link,
3281#ifdef CONFIG_TMPFS_XATTR
 
 
3282	.listxattr	= shmem_listxattr,
 
3283#endif
3284};
3285
3286static struct dentry *shmem_get_parent(struct dentry *child)
3287{
3288	return ERR_PTR(-ESTALE);
3289}
3290
3291static int shmem_match(struct inode *ino, void *vfh)
3292{
3293	__u32 *fh = vfh;
3294	__u64 inum = fh[2];
3295	inum = (inum << 32) | fh[1];
3296	return ino->i_ino == inum && fh[0] == ino->i_generation;
3297}
3298
3299/* Find any alias of inode, but prefer a hashed alias */
3300static struct dentry *shmem_find_alias(struct inode *inode)
3301{
3302	struct dentry *alias = d_find_alias(inode);
3303
3304	return alias ?: d_find_any_alias(inode);
3305}
3306
3307
3308static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3309		struct fid *fid, int fh_len, int fh_type)
3310{
3311	struct inode *inode;
3312	struct dentry *dentry = NULL;
3313	u64 inum;
3314
3315	if (fh_len < 3)
3316		return NULL;
3317
3318	inum = fid->raw[2];
3319	inum = (inum << 32) | fid->raw[1];
3320
3321	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3322			shmem_match, fid->raw);
3323	if (inode) {
3324		dentry = shmem_find_alias(inode);
3325		iput(inode);
3326	}
3327
3328	return dentry;
3329}
3330
3331static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3332				struct inode *parent)
3333{
3334	if (*len < 3) {
3335		*len = 3;
3336		return FILEID_INVALID;
3337	}
3338
3339	if (inode_unhashed(inode)) {
3340		/* Unfortunately insert_inode_hash is not idempotent,
3341		 * so as we hash inodes here rather than at creation
3342		 * time, we need a lock to ensure we only try
3343		 * to do it once
3344		 */
3345		static DEFINE_SPINLOCK(lock);
3346		spin_lock(&lock);
3347		if (inode_unhashed(inode))
3348			__insert_inode_hash(inode,
3349					    inode->i_ino + inode->i_generation);
3350		spin_unlock(&lock);
3351	}
3352
3353	fh[0] = inode->i_generation;
3354	fh[1] = inode->i_ino;
3355	fh[2] = ((__u64)inode->i_ino) >> 32;
3356
3357	*len = 3;
3358	return 1;
3359}
3360
3361static const struct export_operations shmem_export_ops = {
3362	.get_parent     = shmem_get_parent,
3363	.encode_fh      = shmem_encode_fh,
3364	.fh_to_dentry	= shmem_fh_to_dentry,
3365};
3366
3367enum shmem_param {
3368	Opt_gid,
3369	Opt_huge,
3370	Opt_mode,
3371	Opt_mpol,
3372	Opt_nr_blocks,
3373	Opt_nr_inodes,
3374	Opt_size,
3375	Opt_uid,
3376};
3377
3378static const struct fs_parameter_spec shmem_param_specs[] = {
3379	fsparam_u32   ("gid",		Opt_gid),
3380	fsparam_enum  ("huge",		Opt_huge),
3381	fsparam_u32oct("mode",		Opt_mode),
3382	fsparam_string("mpol",		Opt_mpol),
3383	fsparam_string("nr_blocks",	Opt_nr_blocks),
3384	fsparam_string("nr_inodes",	Opt_nr_inodes),
3385	fsparam_string("size",		Opt_size),
3386	fsparam_u32   ("uid",		Opt_uid),
3387	{}
3388};
3389
3390static const struct fs_parameter_enum shmem_param_enums[] = {
3391	{ Opt_huge,	"never",	SHMEM_HUGE_NEVER },
3392	{ Opt_huge,	"always",	SHMEM_HUGE_ALWAYS },
3393	{ Opt_huge,	"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3394	{ Opt_huge,	"advise",	SHMEM_HUGE_ADVISE },
3395	{}
3396};
3397
3398const struct fs_parameter_description shmem_fs_parameters = {
3399	.name		= "tmpfs",
3400	.specs		= shmem_param_specs,
3401	.enums		= shmem_param_enums,
3402};
3403
3404static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3405{
3406	struct shmem_options *ctx = fc->fs_private;
3407	struct fs_parse_result result;
3408	unsigned long long size;
3409	char *rest;
3410	int opt;
3411
3412	opt = fs_parse(fc, &shmem_fs_parameters, param, &result);
3413	if (opt < 0)
3414		return opt;
3415
3416	switch (opt) {
3417	case Opt_size:
3418		size = memparse(param->string, &rest);
3419		if (*rest == '%') {
3420			size <<= PAGE_SHIFT;
3421			size *= totalram_pages();
3422			do_div(size, 100);
3423			rest++;
3424		}
3425		if (*rest)
3426			goto bad_value;
3427		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3428		ctx->seen |= SHMEM_SEEN_BLOCKS;
3429		break;
3430	case Opt_nr_blocks:
3431		ctx->blocks = memparse(param->string, &rest);
3432		if (*rest)
3433			goto bad_value;
3434		ctx->seen |= SHMEM_SEEN_BLOCKS;
3435		break;
3436	case Opt_nr_inodes:
3437		ctx->inodes = memparse(param->string, &rest);
3438		if (*rest)
3439			goto bad_value;
3440		ctx->seen |= SHMEM_SEEN_INODES;
3441		break;
3442	case Opt_mode:
3443		ctx->mode = result.uint_32 & 07777;
3444		break;
3445	case Opt_uid:
3446		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3447		if (!uid_valid(ctx->uid))
3448			goto bad_value;
3449		break;
3450	case Opt_gid:
3451		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3452		if (!gid_valid(ctx->gid))
3453			goto bad_value;
3454		break;
3455	case Opt_huge:
3456		ctx->huge = result.uint_32;
3457		if (ctx->huge != SHMEM_HUGE_NEVER &&
3458		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3459		      has_transparent_hugepage()))
3460			goto unsupported_parameter;
3461		ctx->seen |= SHMEM_SEEN_HUGE;
3462		break;
3463	case Opt_mpol:
3464		if (IS_ENABLED(CONFIG_NUMA)) {
3465			mpol_put(ctx->mpol);
3466			ctx->mpol = NULL;
3467			if (mpol_parse_str(param->string, &ctx->mpol))
3468				goto bad_value;
3469			break;
3470		}
3471		goto unsupported_parameter;
3472	}
3473	return 0;
3474
3475unsupported_parameter:
3476	return invalf(fc, "tmpfs: Unsupported parameter '%s'", param->key);
3477bad_value:
3478	return invalf(fc, "tmpfs: Bad value for '%s'", param->key);
3479}
3480
3481static int shmem_parse_options(struct fs_context *fc, void *data)
3482{
3483	char *options = data;
3484
3485	if (options) {
3486		int err = security_sb_eat_lsm_opts(options, &fc->security);
3487		if (err)
3488			return err;
3489	}
3490
3491	while (options != NULL) {
3492		char *this_char = options;
3493		for (;;) {
3494			/*
3495			 * NUL-terminate this option: unfortunately,
3496			 * mount options form a comma-separated list,
3497			 * but mpol's nodelist may also contain commas.
3498			 */
3499			options = strchr(options, ',');
3500			if (options == NULL)
3501				break;
3502			options++;
3503			if (!isdigit(*options)) {
3504				options[-1] = '\0';
3505				break;
3506			}
3507		}
3508		if (*this_char) {
3509			char *value = strchr(this_char,'=');
3510			size_t len = 0;
3511			int err;
3512
3513			if (value) {
3514				*value++ = '\0';
3515				len = strlen(value);
 
 
 
 
 
 
 
 
 
 
3516			}
3517			err = vfs_parse_fs_string(fc, this_char, value, len);
3518			if (err < 0)
3519				return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3520		}
3521	}
 
3522	return 0;
 
 
 
 
 
 
 
 
3523}
3524
3525/*
3526 * Reconfigure a shmem filesystem.
3527 *
3528 * Note that we disallow change from limited->unlimited blocks/inodes while any
3529 * are in use; but we must separately disallow unlimited->limited, because in
3530 * that case we have no record of how much is already in use.
3531 */
3532static int shmem_reconfigure(struct fs_context *fc)
3533{
3534	struct shmem_options *ctx = fc->fs_private;
3535	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3536	unsigned long inodes;
3537	const char *err;
 
 
 
 
3538
3539	spin_lock(&sbinfo->stat_lock);
3540	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3541	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3542		if (!sbinfo->max_blocks) {
3543			err = "Cannot retroactively limit size";
3544			goto out;
3545		}
3546		if (percpu_counter_compare(&sbinfo->used_blocks,
3547					   ctx->blocks) > 0) {
3548			err = "Too small a size for current use";
3549			goto out;
3550		}
3551	}
3552	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3553		if (!sbinfo->max_inodes) {
3554			err = "Cannot retroactively limit inodes";
3555			goto out;
3556		}
3557		if (ctx->inodes < inodes) {
3558			err = "Too few inodes for current use";
3559			goto out;
3560		}
3561	}
3562
3563	if (ctx->seen & SHMEM_SEEN_HUGE)
3564		sbinfo->huge = ctx->huge;
3565	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3566		sbinfo->max_blocks  = ctx->blocks;
3567	if (ctx->seen & SHMEM_SEEN_INODES) {
3568		sbinfo->max_inodes  = ctx->inodes;
3569		sbinfo->free_inodes = ctx->inodes - inodes;
3570	}
3571
3572	/*
3573	 * Preserve previous mempolicy unless mpol remount option was specified.
3574	 */
3575	if (ctx->mpol) {
3576		mpol_put(sbinfo->mpol);
3577		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3578		ctx->mpol = NULL;
3579	}
3580	spin_unlock(&sbinfo->stat_lock);
3581	return 0;
3582out:
3583	spin_unlock(&sbinfo->stat_lock);
3584	return invalf(fc, "tmpfs: %s", err);
3585}
3586
3587static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3588{
3589	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3590
3591	if (sbinfo->max_blocks != shmem_default_max_blocks())
3592		seq_printf(seq, ",size=%luk",
3593			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3594	if (sbinfo->max_inodes != shmem_default_max_inodes())
3595		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3596	if (sbinfo->mode != (0777 | S_ISVTX))
3597		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3598	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3599		seq_printf(seq, ",uid=%u",
3600				from_kuid_munged(&init_user_ns, sbinfo->uid));
3601	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3602		seq_printf(seq, ",gid=%u",
3603				from_kgid_munged(&init_user_ns, sbinfo->gid));
3604#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3605	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3606	if (sbinfo->huge)
3607		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3608#endif
3609	shmem_show_mpol(seq, sbinfo->mpol);
3610	return 0;
3611}
3612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3613#endif /* CONFIG_TMPFS */
3614
3615static void shmem_put_super(struct super_block *sb)
3616{
3617	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3618
3619	percpu_counter_destroy(&sbinfo->used_blocks);
3620	mpol_put(sbinfo->mpol);
3621	kfree(sbinfo);
3622	sb->s_fs_info = NULL;
3623}
3624
3625static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3626{
3627	struct shmem_options *ctx = fc->fs_private;
3628	struct inode *inode;
3629	struct shmem_sb_info *sbinfo;
3630	int err = -ENOMEM;
3631
3632	/* Round up to L1_CACHE_BYTES to resist false sharing */
3633	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3634				L1_CACHE_BYTES), GFP_KERNEL);
3635	if (!sbinfo)
3636		return -ENOMEM;
3637
 
 
 
3638	sb->s_fs_info = sbinfo;
3639
3640#ifdef CONFIG_TMPFS
3641	/*
3642	 * Per default we only allow half of the physical ram per
3643	 * tmpfs instance, limiting inodes to one per page of lowmem;
3644	 * but the internal instance is left unlimited.
3645	 */
3646	if (!(sb->s_flags & SB_KERNMOUNT)) {
3647		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3648			ctx->blocks = shmem_default_max_blocks();
3649		if (!(ctx->seen & SHMEM_SEEN_INODES))
3650			ctx->inodes = shmem_default_max_inodes();
 
 
3651	} else {
3652		sb->s_flags |= SB_NOUSER;
3653	}
3654	sb->s_export_op = &shmem_export_ops;
3655	sb->s_flags |= SB_NOSEC;
3656#else
3657	sb->s_flags |= SB_NOUSER;
3658#endif
3659	sbinfo->max_blocks = ctx->blocks;
3660	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3661	sbinfo->uid = ctx->uid;
3662	sbinfo->gid = ctx->gid;
3663	sbinfo->mode = ctx->mode;
3664	sbinfo->huge = ctx->huge;
3665	sbinfo->mpol = ctx->mpol;
3666	ctx->mpol = NULL;
3667
3668	spin_lock_init(&sbinfo->stat_lock);
3669	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3670		goto failed;
3671	spin_lock_init(&sbinfo->shrinklist_lock);
3672	INIT_LIST_HEAD(&sbinfo->shrinklist);
3673
3674	sb->s_maxbytes = MAX_LFS_FILESIZE;
3675	sb->s_blocksize = PAGE_SIZE;
3676	sb->s_blocksize_bits = PAGE_SHIFT;
3677	sb->s_magic = TMPFS_MAGIC;
3678	sb->s_op = &shmem_ops;
3679	sb->s_time_gran = 1;
3680#ifdef CONFIG_TMPFS_XATTR
3681	sb->s_xattr = shmem_xattr_handlers;
3682#endif
3683#ifdef CONFIG_TMPFS_POSIX_ACL
3684	sb->s_flags |= SB_POSIXACL;
3685#endif
3686	uuid_gen(&sb->s_uuid);
3687
3688	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3689	if (!inode)
3690		goto failed;
3691	inode->i_uid = sbinfo->uid;
3692	inode->i_gid = sbinfo->gid;
3693	sb->s_root = d_make_root(inode);
3694	if (!sb->s_root)
3695		goto failed;
3696	return 0;
3697
3698failed:
3699	shmem_put_super(sb);
3700	return err;
3701}
3702
3703static int shmem_get_tree(struct fs_context *fc)
3704{
3705	return get_tree_nodev(fc, shmem_fill_super);
3706}
3707
3708static void shmem_free_fc(struct fs_context *fc)
3709{
3710	struct shmem_options *ctx = fc->fs_private;
3711
3712	if (ctx) {
3713		mpol_put(ctx->mpol);
3714		kfree(ctx);
3715	}
3716}
3717
3718static const struct fs_context_operations shmem_fs_context_ops = {
3719	.free			= shmem_free_fc,
3720	.get_tree		= shmem_get_tree,
3721#ifdef CONFIG_TMPFS
3722	.parse_monolithic	= shmem_parse_options,
3723	.parse_param		= shmem_parse_one,
3724	.reconfigure		= shmem_reconfigure,
3725#endif
3726};
3727
3728static struct kmem_cache *shmem_inode_cachep;
3729
3730static struct inode *shmem_alloc_inode(struct super_block *sb)
3731{
3732	struct shmem_inode_info *info;
3733	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3734	if (!info)
3735		return NULL;
3736	return &info->vfs_inode;
3737}
3738
3739static void shmem_free_in_core_inode(struct inode *inode)
3740{
3741	if (S_ISLNK(inode->i_mode))
3742		kfree(inode->i_link);
3743	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3744}
3745
3746static void shmem_destroy_inode(struct inode *inode)
3747{
3748	if (S_ISREG(inode->i_mode))
3749		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
 
3750}
3751
3752static void shmem_init_inode(void *foo)
3753{
3754	struct shmem_inode_info *info = foo;
3755	inode_init_once(&info->vfs_inode);
3756}
3757
3758static void shmem_init_inodecache(void)
3759{
3760	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3761				sizeof(struct shmem_inode_info),
3762				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
 
3763}
3764
3765static void shmem_destroy_inodecache(void)
3766{
3767	kmem_cache_destroy(shmem_inode_cachep);
3768}
3769
3770static const struct address_space_operations shmem_aops = {
3771	.writepage	= shmem_writepage,
3772	.set_page_dirty	= __set_page_dirty_no_writeback,
3773#ifdef CONFIG_TMPFS
3774	.write_begin	= shmem_write_begin,
3775	.write_end	= shmem_write_end,
3776#endif
3777#ifdef CONFIG_MIGRATION
3778	.migratepage	= migrate_page,
3779#endif
3780	.error_remove_page = generic_error_remove_page,
3781};
3782
3783static const struct file_operations shmem_file_operations = {
3784	.mmap		= shmem_mmap,
3785	.get_unmapped_area = shmem_get_unmapped_area,
3786#ifdef CONFIG_TMPFS
3787	.llseek		= shmem_file_llseek,
3788	.read_iter	= shmem_file_read_iter,
3789	.write_iter	= generic_file_write_iter,
3790	.fsync		= noop_fsync,
3791	.splice_read	= generic_file_splice_read,
3792	.splice_write	= iter_file_splice_write,
3793	.fallocate	= shmem_fallocate,
3794#endif
3795};
3796
3797static const struct inode_operations shmem_inode_operations = {
3798	.getattr	= shmem_getattr,
3799	.setattr	= shmem_setattr,
3800#ifdef CONFIG_TMPFS_XATTR
 
 
3801	.listxattr	= shmem_listxattr,
 
3802	.set_acl	= simple_set_acl,
3803#endif
3804};
3805
3806static const struct inode_operations shmem_dir_inode_operations = {
3807#ifdef CONFIG_TMPFS
3808	.create		= shmem_create,
3809	.lookup		= simple_lookup,
3810	.link		= shmem_link,
3811	.unlink		= shmem_unlink,
3812	.symlink	= shmem_symlink,
3813	.mkdir		= shmem_mkdir,
3814	.rmdir		= shmem_rmdir,
3815	.mknod		= shmem_mknod,
3816	.rename		= shmem_rename2,
3817	.tmpfile	= shmem_tmpfile,
3818#endif
3819#ifdef CONFIG_TMPFS_XATTR
 
 
3820	.listxattr	= shmem_listxattr,
 
3821#endif
3822#ifdef CONFIG_TMPFS_POSIX_ACL
3823	.setattr	= shmem_setattr,
3824	.set_acl	= simple_set_acl,
3825#endif
3826};
3827
3828static const struct inode_operations shmem_special_inode_operations = {
3829#ifdef CONFIG_TMPFS_XATTR
 
 
3830	.listxattr	= shmem_listxattr,
 
3831#endif
3832#ifdef CONFIG_TMPFS_POSIX_ACL
3833	.setattr	= shmem_setattr,
3834	.set_acl	= simple_set_acl,
3835#endif
3836};
3837
3838static const struct super_operations shmem_ops = {
3839	.alloc_inode	= shmem_alloc_inode,
3840	.free_inode	= shmem_free_in_core_inode,
3841	.destroy_inode	= shmem_destroy_inode,
3842#ifdef CONFIG_TMPFS
3843	.statfs		= shmem_statfs,
 
3844	.show_options	= shmem_show_options,
3845#endif
3846	.evict_inode	= shmem_evict_inode,
3847	.drop_inode	= generic_delete_inode,
3848	.put_super	= shmem_put_super,
3849#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3850	.nr_cached_objects	= shmem_unused_huge_count,
3851	.free_cached_objects	= shmem_unused_huge_scan,
3852#endif
3853};
3854
3855static const struct vm_operations_struct shmem_vm_ops = {
3856	.fault		= shmem_fault,
3857	.map_pages	= filemap_map_pages,
3858#ifdef CONFIG_NUMA
3859	.set_policy     = shmem_set_policy,
3860	.get_policy     = shmem_get_policy,
3861#endif
3862};
3863
3864int shmem_init_fs_context(struct fs_context *fc)
 
3865{
3866	struct shmem_options *ctx;
3867
3868	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3869	if (!ctx)
3870		return -ENOMEM;
3871
3872	ctx->mode = 0777 | S_ISVTX;
3873	ctx->uid = current_fsuid();
3874	ctx->gid = current_fsgid();
3875
3876	fc->fs_private = ctx;
3877	fc->ops = &shmem_fs_context_ops;
3878	return 0;
3879}
3880
3881static struct file_system_type shmem_fs_type = {
3882	.owner		= THIS_MODULE,
3883	.name		= "tmpfs",
3884	.init_fs_context = shmem_init_fs_context,
3885#ifdef CONFIG_TMPFS
3886	.parameters	= &shmem_fs_parameters,
3887#endif
3888	.kill_sb	= kill_litter_super,
3889	.fs_flags	= FS_USERNS_MOUNT,
3890};
3891
3892int __init shmem_init(void)
3893{
3894	int error;
3895
3896	shmem_init_inodecache();
 
 
 
 
 
 
3897
3898	error = register_filesystem(&shmem_fs_type);
3899	if (error) {
3900		pr_err("Could not register tmpfs\n");
3901		goto out2;
3902	}
3903
3904	shm_mnt = kern_mount(&shmem_fs_type);
3905	if (IS_ERR(shm_mnt)) {
3906		error = PTR_ERR(shm_mnt);
3907		pr_err("Could not kern_mount tmpfs\n");
3908		goto out1;
3909	}
3910
3911#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3912	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3913		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3914	else
3915		shmem_huge = 0; /* just in case it was patched */
3916#endif
3917	return 0;
3918
3919out1:
3920	unregister_filesystem(&shmem_fs_type);
3921out2:
3922	shmem_destroy_inodecache();
 
3923	shm_mnt = ERR_PTR(error);
3924	return error;
3925}
3926
3927#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3928static ssize_t shmem_enabled_show(struct kobject *kobj,
3929		struct kobj_attribute *attr, char *buf)
3930{
3931	int values[] = {
3932		SHMEM_HUGE_ALWAYS,
3933		SHMEM_HUGE_WITHIN_SIZE,
3934		SHMEM_HUGE_ADVISE,
3935		SHMEM_HUGE_NEVER,
3936		SHMEM_HUGE_DENY,
3937		SHMEM_HUGE_FORCE,
3938	};
3939	int i, count;
3940
3941	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3942		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3943
3944		count += sprintf(buf + count, fmt,
3945				shmem_format_huge(values[i]));
3946	}
3947	buf[count - 1] = '\n';
3948	return count;
3949}
3950
3951static ssize_t shmem_enabled_store(struct kobject *kobj,
3952		struct kobj_attribute *attr, const char *buf, size_t count)
3953{
3954	char tmp[16];
3955	int huge;
3956
3957	if (count + 1 > sizeof(tmp))
3958		return -EINVAL;
3959	memcpy(tmp, buf, count);
3960	tmp[count] = '\0';
3961	if (count && tmp[count - 1] == '\n')
3962		tmp[count - 1] = '\0';
3963
3964	huge = shmem_parse_huge(tmp);
3965	if (huge == -EINVAL)
3966		return -EINVAL;
3967	if (!has_transparent_hugepage() &&
3968			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3969		return -EINVAL;
3970
3971	shmem_huge = huge;
3972	if (shmem_huge > SHMEM_HUGE_DENY)
3973		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3974	return count;
3975}
3976
3977struct kobj_attribute shmem_enabled_attr =
3978	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3979#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3980
3981#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3982bool shmem_huge_enabled(struct vm_area_struct *vma)
3983{
3984	struct inode *inode = file_inode(vma->vm_file);
3985	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3986	loff_t i_size;
3987	pgoff_t off;
3988
3989	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3990	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3991		return false;
3992	if (shmem_huge == SHMEM_HUGE_FORCE)
3993		return true;
3994	if (shmem_huge == SHMEM_HUGE_DENY)
3995		return false;
3996	switch (sbinfo->huge) {
3997		case SHMEM_HUGE_NEVER:
3998			return false;
3999		case SHMEM_HUGE_ALWAYS:
4000			return true;
4001		case SHMEM_HUGE_WITHIN_SIZE:
4002			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4003			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4004			if (i_size >= HPAGE_PMD_SIZE &&
4005					i_size >> PAGE_SHIFT >= off)
4006				return true;
4007			/* fall through */
4008		case SHMEM_HUGE_ADVISE:
4009			/* TODO: implement fadvise() hints */
4010			return (vma->vm_flags & VM_HUGEPAGE);
4011		default:
4012			VM_BUG_ON(1);
4013			return false;
4014	}
4015}
4016#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4017
4018#else /* !CONFIG_SHMEM */
4019
4020/*
4021 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4022 *
4023 * This is intended for small system where the benefits of the full
4024 * shmem code (swap-backed and resource-limited) are outweighed by
4025 * their complexity. On systems without swap this code should be
4026 * effectively equivalent, but much lighter weight.
4027 */
4028
4029static struct file_system_type shmem_fs_type = {
4030	.name		= "tmpfs",
4031	.init_fs_context = ramfs_init_fs_context,
4032	.parameters	= &ramfs_fs_parameters,
4033	.kill_sb	= kill_litter_super,
4034	.fs_flags	= FS_USERNS_MOUNT,
4035};
4036
4037int __init shmem_init(void)
4038{
4039	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4040
4041	shm_mnt = kern_mount(&shmem_fs_type);
4042	BUG_ON(IS_ERR(shm_mnt));
4043
4044	return 0;
4045}
4046
4047int shmem_unuse(unsigned int type, bool frontswap,
4048		unsigned long *fs_pages_to_unuse)
4049{
4050	return 0;
4051}
4052
4053int shmem_lock(struct file *file, int lock, struct user_struct *user)
4054{
4055	return 0;
4056}
4057
4058void shmem_unlock_mapping(struct address_space *mapping)
4059{
4060}
4061
4062#ifdef CONFIG_MMU
4063unsigned long shmem_get_unmapped_area(struct file *file,
4064				      unsigned long addr, unsigned long len,
4065				      unsigned long pgoff, unsigned long flags)
4066{
4067	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4068}
4069#endif
4070
4071void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4072{
4073	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4074}
4075EXPORT_SYMBOL_GPL(shmem_truncate_range);
4076
4077#define shmem_vm_ops				generic_file_vm_ops
4078#define shmem_file_operations			ramfs_file_operations
4079#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4080#define shmem_acct_size(flags, size)		0
4081#define shmem_unacct_size(flags, size)		do {} while (0)
4082
4083#endif /* CONFIG_SHMEM */
4084
4085/* common code */
4086
4087static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
 
 
 
 
4088				       unsigned long flags, unsigned int i_flags)
4089{
4090	struct inode *inode;
4091	struct file *res;
 
 
 
 
4092
4093	if (IS_ERR(mnt))
4094		return ERR_CAST(mnt);
4095
4096	if (size < 0 || size > MAX_LFS_FILESIZE)
4097		return ERR_PTR(-EINVAL);
4098
4099	if (shmem_acct_size(flags, size))
4100		return ERR_PTR(-ENOMEM);
4101
4102	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4103				flags);
4104	if (unlikely(!inode)) {
4105		shmem_unacct_size(flags, size);
4106		return ERR_PTR(-ENOSPC);
4107	}
 
 
 
 
 
 
 
 
 
 
4108	inode->i_flags |= i_flags;
 
4109	inode->i_size = size;
4110	clear_nlink(inode);	/* It is unlinked */
4111	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4112	if (!IS_ERR(res))
4113		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4114				&shmem_file_operations);
4115	if (IS_ERR(res))
4116		iput(inode);
 
 
 
 
 
 
 
 
 
 
 
 
4117	return res;
4118}
4119
4120/**
4121 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4122 * 	kernel internal.  There will be NO LSM permission checks against the
4123 * 	underlying inode.  So users of this interface must do LSM checks at a
4124 *	higher layer.  The users are the big_key and shm implementations.  LSM
4125 *	checks are provided at the key or shm level rather than the inode.
4126 * @name: name for dentry (to be seen in /proc/<pid>/maps
4127 * @size: size to be set for the file
4128 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4129 */
4130struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4131{
4132	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4133}
4134
4135/**
4136 * shmem_file_setup - get an unlinked file living in tmpfs
4137 * @name: name for dentry (to be seen in /proc/<pid>/maps
4138 * @size: size to be set for the file
4139 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4140 */
4141struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4142{
4143	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4144}
4145EXPORT_SYMBOL_GPL(shmem_file_setup);
4146
4147/**
4148 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4149 * @mnt: the tmpfs mount where the file will be created
4150 * @name: name for dentry (to be seen in /proc/<pid>/maps
4151 * @size: size to be set for the file
4152 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4153 */
4154struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4155				       loff_t size, unsigned long flags)
4156{
4157	return __shmem_file_setup(mnt, name, size, flags, 0);
4158}
4159EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4160
4161/**
4162 * shmem_zero_setup - setup a shared anonymous mapping
4163 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4164 */
4165int shmem_zero_setup(struct vm_area_struct *vma)
4166{
4167	struct file *file;
4168	loff_t size = vma->vm_end - vma->vm_start;
4169
4170	/*
4171	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4172	 * between XFS directory reading and selinux: since this file is only
4173	 * accessible to the user through its mapping, use S_PRIVATE flag to
4174	 * bypass file security, in the same way as shmem_kernel_file_setup().
4175	 */
4176	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4177	if (IS_ERR(file))
4178		return PTR_ERR(file);
4179
4180	if (vma->vm_file)
4181		fput(vma->vm_file);
4182	vma->vm_file = file;
4183	vma->vm_ops = &shmem_vm_ops;
4184
4185	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4186			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4187			(vma->vm_end & HPAGE_PMD_MASK)) {
4188		khugepaged_enter(vma, vma->vm_flags);
4189	}
4190
4191	return 0;
4192}
4193
4194/**
4195 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4196 * @mapping:	the page's address_space
4197 * @index:	the page index
4198 * @gfp:	the page allocator flags to use if allocating
4199 *
4200 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4201 * with any new page allocations done using the specified allocation flags.
4202 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4203 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4204 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4205 *
4206 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4207 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4208 */
4209struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4210					 pgoff_t index, gfp_t gfp)
4211{
4212#ifdef CONFIG_SHMEM
4213	struct inode *inode = mapping->host;
4214	struct page *page;
4215	int error;
4216
4217	BUG_ON(mapping->a_ops != &shmem_aops);
4218	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4219				  gfp, NULL, NULL, NULL);
4220	if (error)
4221		page = ERR_PTR(error);
4222	else
4223		unlock_page(page);
4224	return page;
4225#else
4226	/*
4227	 * The tiny !SHMEM case uses ramfs without swap
4228	 */
4229	return read_cache_page_gfp(mapping, index, gfp);
4230#endif
4231}
4232EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
v4.6
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/mm.h>
 
 
  32#include <linux/export.h>
  33#include <linux/swap.h>
  34#include <linux/uio.h>
 
 
 
 
 
 
  35
  36static struct vfsmount *shm_mnt;
  37
  38#ifdef CONFIG_SHMEM
  39/*
  40 * This virtual memory filesystem is heavily based on the ramfs. It
  41 * extends ramfs by the ability to use swap and honor resource limits
  42 * which makes it a completely usable filesystem.
  43 */
  44
  45#include <linux/xattr.h>
  46#include <linux/exportfs.h>
  47#include <linux/posix_acl.h>
  48#include <linux/posix_acl_xattr.h>
  49#include <linux/mman.h>
  50#include <linux/string.h>
  51#include <linux/slab.h>
  52#include <linux/backing-dev.h>
  53#include <linux/shmem_fs.h>
  54#include <linux/writeback.h>
  55#include <linux/blkdev.h>
  56#include <linux/pagevec.h>
  57#include <linux/percpu_counter.h>
  58#include <linux/falloc.h>
  59#include <linux/splice.h>
  60#include <linux/security.h>
  61#include <linux/swapops.h>
  62#include <linux/mempolicy.h>
  63#include <linux/namei.h>
  64#include <linux/ctype.h>
  65#include <linux/migrate.h>
  66#include <linux/highmem.h>
  67#include <linux/seq_file.h>
  68#include <linux/magic.h>
  69#include <linux/syscalls.h>
  70#include <linux/fcntl.h>
  71#include <uapi/linux/memfd.h>
 
 
 
  72
  73#include <asm/uaccess.h>
  74#include <asm/pgtable.h>
  75
  76#include "internal.h"
  77
  78#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  79#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  80
  81/* Pretend that each entry is of this size in directory's i_size */
  82#define BOGO_DIRENT_SIZE 20
  83
  84/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  85#define SHORT_SYMLINK_LEN 128
  86
  87/*
  88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  89 * inode->i_private (with i_mutex making sure that it has only one user at
  90 * a time): we would prefer not to enlarge the shmem inode just for that.
  91 */
  92struct shmem_falloc {
  93	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
  94	pgoff_t start;		/* start of range currently being fallocated */
  95	pgoff_t next;		/* the next page offset to be fallocated */
  96	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
  97	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
  98};
  99
 100/* Flag allocation requirements to shmem_getpage */
 101enum sgp_type {
 102	SGP_READ,	/* don't exceed i_size, don't allocate page */
 103	SGP_CACHE,	/* don't exceed i_size, may allocate page */
 104	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
 105	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
 106	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
 
 
 
 
 
 107};
 108
 109#ifdef CONFIG_TMPFS
 110static unsigned long shmem_default_max_blocks(void)
 111{
 112	return totalram_pages / 2;
 113}
 114
 115static unsigned long shmem_default_max_inodes(void)
 116{
 117	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
 
 
 118}
 119#endif
 120
 121static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 122static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 123				struct shmem_inode_info *info, pgoff_t index);
 
 
 
 
 124static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 125	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
 
 
 126
 127static inline int shmem_getpage(struct inode *inode, pgoff_t index,
 128	struct page **pagep, enum sgp_type sgp, int *fault_type)
 129{
 130	return shmem_getpage_gfp(inode, index, pagep, sgp,
 131			mapping_gfp_mask(inode->i_mapping), fault_type);
 132}
 133
 134static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 135{
 136	return sb->s_fs_info;
 137}
 138
 139/*
 140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 141 * for shared memory and for shared anonymous (/dev/zero) mappings
 142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 143 * consistent with the pre-accounting of private mappings ...
 144 */
 145static inline int shmem_acct_size(unsigned long flags, loff_t size)
 146{
 147	return (flags & VM_NORESERVE) ?
 148		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 149}
 150
 151static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 152{
 153	if (!(flags & VM_NORESERVE))
 154		vm_unacct_memory(VM_ACCT(size));
 155}
 156
 157static inline int shmem_reacct_size(unsigned long flags,
 158		loff_t oldsize, loff_t newsize)
 159{
 160	if (!(flags & VM_NORESERVE)) {
 161		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 162			return security_vm_enough_memory_mm(current->mm,
 163					VM_ACCT(newsize) - VM_ACCT(oldsize));
 164		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 165			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 166	}
 167	return 0;
 168}
 169
 170/*
 171 * ... whereas tmpfs objects are accounted incrementally as
 172 * pages are allocated, in order to allow huge sparse files.
 173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 175 */
 176static inline int shmem_acct_block(unsigned long flags)
 177{
 178	return (flags & VM_NORESERVE) ?
 179		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_SIZE)) : 0;
 
 
 
 180}
 181
 182static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 183{
 184	if (flags & VM_NORESERVE)
 185		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 186}
 187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188static const struct super_operations shmem_ops;
 189static const struct address_space_operations shmem_aops;
 190static const struct file_operations shmem_file_operations;
 191static const struct inode_operations shmem_inode_operations;
 192static const struct inode_operations shmem_dir_inode_operations;
 193static const struct inode_operations shmem_special_inode_operations;
 194static const struct vm_operations_struct shmem_vm_ops;
 
 
 
 
 
 
 195
 196static LIST_HEAD(shmem_swaplist);
 197static DEFINE_MUTEX(shmem_swaplist_mutex);
 198
 199static int shmem_reserve_inode(struct super_block *sb)
 200{
 201	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 202	if (sbinfo->max_inodes) {
 203		spin_lock(&sbinfo->stat_lock);
 204		if (!sbinfo->free_inodes) {
 205			spin_unlock(&sbinfo->stat_lock);
 206			return -ENOSPC;
 207		}
 208		sbinfo->free_inodes--;
 209		spin_unlock(&sbinfo->stat_lock);
 210	}
 211	return 0;
 212}
 213
 214static void shmem_free_inode(struct super_block *sb)
 215{
 216	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 217	if (sbinfo->max_inodes) {
 218		spin_lock(&sbinfo->stat_lock);
 219		sbinfo->free_inodes++;
 220		spin_unlock(&sbinfo->stat_lock);
 221	}
 222}
 223
 224/**
 225 * shmem_recalc_inode - recalculate the block usage of an inode
 226 * @inode: inode to recalc
 227 *
 228 * We have to calculate the free blocks since the mm can drop
 229 * undirtied hole pages behind our back.
 230 *
 231 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 233 *
 234 * It has to be called with the spinlock held.
 235 */
 236static void shmem_recalc_inode(struct inode *inode)
 237{
 238	struct shmem_inode_info *info = SHMEM_I(inode);
 239	long freed;
 240
 241	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 242	if (freed > 0) {
 243		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 244		if (sbinfo->max_blocks)
 245			percpu_counter_add(&sbinfo->used_blocks, -freed);
 246		info->alloced -= freed;
 247		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 248		shmem_unacct_blocks(info->flags, freed);
 249	}
 250}
 251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 252/*
 253 * Replace item expected in radix tree by a new item, while holding tree lock.
 254 */
 255static int shmem_radix_tree_replace(struct address_space *mapping,
 256			pgoff_t index, void *expected, void *replacement)
 257{
 258	void **pslot;
 259	void *item;
 260
 261	VM_BUG_ON(!expected);
 262	VM_BUG_ON(!replacement);
 263	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
 264	if (!pslot)
 265		return -ENOENT;
 266	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
 267	if (item != expected)
 268		return -ENOENT;
 269	radix_tree_replace_slot(pslot, replacement);
 270	return 0;
 271}
 272
 273/*
 274 * Sometimes, before we decide whether to proceed or to fail, we must check
 275 * that an entry was not already brought back from swap by a racing thread.
 276 *
 277 * Checking page is not enough: by the time a SwapCache page is locked, it
 278 * might be reused, and again be SwapCache, using the same swap as before.
 279 */
 280static bool shmem_confirm_swap(struct address_space *mapping,
 281			       pgoff_t index, swp_entry_t swap)
 282{
 283	void *item;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284
 285	rcu_read_lock();
 286	item = radix_tree_lookup(&mapping->page_tree, index);
 287	rcu_read_unlock();
 288	return item == swp_to_radix_entry(swap);
 
 
 
 289}
 290
 291/*
 292 * Like add_to_page_cache_locked, but error if expected item has gone.
 293 */
 294static int shmem_add_to_page_cache(struct page *page,
 295				   struct address_space *mapping,
 296				   pgoff_t index, void *expected)
 297{
 298	int error;
 
 
 299
 
 
 300	VM_BUG_ON_PAGE(!PageLocked(page), page);
 301	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 
 302
 303	get_page(page);
 304	page->mapping = mapping;
 305	page->index = index;
 306
 307	spin_lock_irq(&mapping->tree_lock);
 308	if (!expected)
 309		error = radix_tree_insert(&mapping->page_tree, index, page);
 310	else
 311		error = shmem_radix_tree_replace(mapping, index, expected,
 312								 page);
 313	if (!error) {
 314		mapping->nrpages++;
 315		__inc_zone_page_state(page, NR_FILE_PAGES);
 316		__inc_zone_page_state(page, NR_SHMEM);
 317		spin_unlock_irq(&mapping->tree_lock);
 318	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319		page->mapping = NULL;
 320		spin_unlock_irq(&mapping->tree_lock);
 321		put_page(page);
 322	}
 323	return error;
 
 324}
 325
 326/*
 327 * Like delete_from_page_cache, but substitutes swap for page.
 328 */
 329static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 330{
 331	struct address_space *mapping = page->mapping;
 332	int error;
 333
 334	spin_lock_irq(&mapping->tree_lock);
 335	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
 
 
 336	page->mapping = NULL;
 337	mapping->nrpages--;
 338	__dec_zone_page_state(page, NR_FILE_PAGES);
 339	__dec_zone_page_state(page, NR_SHMEM);
 340	spin_unlock_irq(&mapping->tree_lock);
 341	put_page(page);
 342	BUG_ON(error);
 343}
 344
 345/*
 346 * Remove swap entry from radix tree, free the swap and its page cache.
 347 */
 348static int shmem_free_swap(struct address_space *mapping,
 349			   pgoff_t index, void *radswap)
 350{
 351	void *old;
 352
 353	spin_lock_irq(&mapping->tree_lock);
 354	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
 355	spin_unlock_irq(&mapping->tree_lock);
 356	if (old != radswap)
 357		return -ENOENT;
 358	free_swap_and_cache(radix_to_swp_entry(radswap));
 359	return 0;
 360}
 361
 362/*
 363 * Determine (in bytes) how many of the shmem object's pages mapped by the
 364 * given offsets are swapped out.
 365 *
 366 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
 367 * as long as the inode doesn't go away and racy results are not a problem.
 368 */
 369unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 370						pgoff_t start, pgoff_t end)
 371{
 372	struct radix_tree_iter iter;
 373	void **slot;
 374	struct page *page;
 375	unsigned long swapped = 0;
 376
 377	rcu_read_lock();
 378
 379	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
 380		if (iter.index >= end)
 381			break;
 382
 383		page = radix_tree_deref_slot(slot);
 384
 385		if (radix_tree_deref_retry(page)) {
 386			slot = radix_tree_iter_retry(&iter);
 387			continue;
 388		}
 389
 390		if (radix_tree_exceptional_entry(page))
 391			swapped++;
 392
 393		if (need_resched()) {
 
 394			cond_resched_rcu();
 395			slot = radix_tree_iter_next(&iter);
 396		}
 397	}
 398
 399	rcu_read_unlock();
 400
 401	return swapped << PAGE_SHIFT;
 402}
 403
 404/*
 405 * Determine (in bytes) how many of the shmem object's pages mapped by the
 406 * given vma is swapped out.
 407 *
 408 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
 409 * as long as the inode doesn't go away and racy results are not a problem.
 410 */
 411unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 412{
 413	struct inode *inode = file_inode(vma->vm_file);
 414	struct shmem_inode_info *info = SHMEM_I(inode);
 415	struct address_space *mapping = inode->i_mapping;
 416	unsigned long swapped;
 417
 418	/* Be careful as we don't hold info->lock */
 419	swapped = READ_ONCE(info->swapped);
 420
 421	/*
 422	 * The easier cases are when the shmem object has nothing in swap, or
 423	 * the vma maps it whole. Then we can simply use the stats that we
 424	 * already track.
 425	 */
 426	if (!swapped)
 427		return 0;
 428
 429	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 430		return swapped << PAGE_SHIFT;
 431
 432	/* Here comes the more involved part */
 433	return shmem_partial_swap_usage(mapping,
 434			linear_page_index(vma, vma->vm_start),
 435			linear_page_index(vma, vma->vm_end));
 436}
 437
 438/*
 439 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 440 */
 441void shmem_unlock_mapping(struct address_space *mapping)
 442{
 443	struct pagevec pvec;
 444	pgoff_t indices[PAGEVEC_SIZE];
 445	pgoff_t index = 0;
 446
 447	pagevec_init(&pvec, 0);
 448	/*
 449	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 450	 */
 451	while (!mapping_unevictable(mapping)) {
 452		/*
 453		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
 454		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
 455		 */
 456		pvec.nr = find_get_entries(mapping, index,
 457					   PAGEVEC_SIZE, pvec.pages, indices);
 458		if (!pvec.nr)
 459			break;
 460		index = indices[pvec.nr - 1] + 1;
 461		pagevec_remove_exceptionals(&pvec);
 462		check_move_unevictable_pages(pvec.pages, pvec.nr);
 463		pagevec_release(&pvec);
 464		cond_resched();
 465	}
 466}
 467
 468/*
 469 * Remove range of pages and swap entries from radix tree, and free them.
 470 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 471 */
 472static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 473								 bool unfalloc)
 474{
 475	struct address_space *mapping = inode->i_mapping;
 476	struct shmem_inode_info *info = SHMEM_I(inode);
 477	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 478	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 479	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
 480	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
 481	struct pagevec pvec;
 482	pgoff_t indices[PAGEVEC_SIZE];
 483	long nr_swaps_freed = 0;
 484	pgoff_t index;
 485	int i;
 486
 487	if (lend == -1)
 488		end = -1;	/* unsigned, so actually very big */
 489
 490	pagevec_init(&pvec, 0);
 491	index = start;
 492	while (index < end) {
 493		pvec.nr = find_get_entries(mapping, index,
 494			min(end - index, (pgoff_t)PAGEVEC_SIZE),
 495			pvec.pages, indices);
 496		if (!pvec.nr)
 497			break;
 498		for (i = 0; i < pagevec_count(&pvec); i++) {
 499			struct page *page = pvec.pages[i];
 500
 501			index = indices[i];
 502			if (index >= end)
 503				break;
 504
 505			if (radix_tree_exceptional_entry(page)) {
 506				if (unfalloc)
 507					continue;
 508				nr_swaps_freed += !shmem_free_swap(mapping,
 509								index, page);
 510				continue;
 511			}
 512
 
 
 513			if (!trylock_page(page))
 514				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515			if (!unfalloc || !PageUptodate(page)) {
 516				if (page->mapping == mapping) {
 
 517					VM_BUG_ON_PAGE(PageWriteback(page), page);
 518					truncate_inode_page(mapping, page);
 519				}
 520			}
 521			unlock_page(page);
 522		}
 523		pagevec_remove_exceptionals(&pvec);
 524		pagevec_release(&pvec);
 525		cond_resched();
 526		index++;
 527	}
 528
 529	if (partial_start) {
 530		struct page *page = NULL;
 531		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
 532		if (page) {
 533			unsigned int top = PAGE_SIZE;
 534			if (start > end) {
 535				top = partial_end;
 536				partial_end = 0;
 537			}
 538			zero_user_segment(page, partial_start, top);
 539			set_page_dirty(page);
 540			unlock_page(page);
 541			put_page(page);
 542		}
 543	}
 544	if (partial_end) {
 545		struct page *page = NULL;
 546		shmem_getpage(inode, end, &page, SGP_READ, NULL);
 547		if (page) {
 548			zero_user_segment(page, 0, partial_end);
 549			set_page_dirty(page);
 550			unlock_page(page);
 551			put_page(page);
 552		}
 553	}
 554	if (start >= end)
 555		return;
 556
 557	index = start;
 558	while (index < end) {
 559		cond_resched();
 560
 561		pvec.nr = find_get_entries(mapping, index,
 562				min(end - index, (pgoff_t)PAGEVEC_SIZE),
 563				pvec.pages, indices);
 564		if (!pvec.nr) {
 565			/* If all gone or hole-punch or unfalloc, we're done */
 566			if (index == start || end != -1)
 567				break;
 568			/* But if truncating, restart to make sure all gone */
 569			index = start;
 570			continue;
 571		}
 572		for (i = 0; i < pagevec_count(&pvec); i++) {
 573			struct page *page = pvec.pages[i];
 574
 575			index = indices[i];
 576			if (index >= end)
 577				break;
 578
 579			if (radix_tree_exceptional_entry(page)) {
 580				if (unfalloc)
 581					continue;
 582				if (shmem_free_swap(mapping, index, page)) {
 583					/* Swap was replaced by page: retry */
 584					index--;
 585					break;
 586				}
 587				nr_swaps_freed++;
 588				continue;
 589			}
 590
 591			lock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592			if (!unfalloc || !PageUptodate(page)) {
 593				if (page->mapping == mapping) {
 
 594					VM_BUG_ON_PAGE(PageWriteback(page), page);
 595					truncate_inode_page(mapping, page);
 596				} else {
 597					/* Page was replaced by swap: retry */
 598					unlock_page(page);
 599					index--;
 600					break;
 601				}
 602			}
 603			unlock_page(page);
 604		}
 605		pagevec_remove_exceptionals(&pvec);
 606		pagevec_release(&pvec);
 607		index++;
 608	}
 609
 610	spin_lock(&info->lock);
 611	info->swapped -= nr_swaps_freed;
 612	shmem_recalc_inode(inode);
 613	spin_unlock(&info->lock);
 614}
 615
 616void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 617{
 618	shmem_undo_range(inode, lstart, lend, false);
 619	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 620}
 621EXPORT_SYMBOL_GPL(shmem_truncate_range);
 622
 623static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
 624			 struct kstat *stat)
 625{
 626	struct inode *inode = dentry->d_inode;
 627	struct shmem_inode_info *info = SHMEM_I(inode);
 
 628
 629	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
 630		spin_lock(&info->lock);
 631		shmem_recalc_inode(inode);
 632		spin_unlock(&info->lock);
 633	}
 634	generic_fillattr(inode, stat);
 
 
 
 
 635	return 0;
 636}
 637
 638static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
 639{
 640	struct inode *inode = d_inode(dentry);
 641	struct shmem_inode_info *info = SHMEM_I(inode);
 
 642	int error;
 643
 644	error = inode_change_ok(inode, attr);
 645	if (error)
 646		return error;
 647
 648	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
 649		loff_t oldsize = inode->i_size;
 650		loff_t newsize = attr->ia_size;
 651
 652		/* protected by i_mutex */
 653		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
 654		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
 655			return -EPERM;
 656
 657		if (newsize != oldsize) {
 658			error = shmem_reacct_size(SHMEM_I(inode)->flags,
 659					oldsize, newsize);
 660			if (error)
 661				return error;
 662			i_size_write(inode, newsize);
 663			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 664		}
 665		if (newsize <= oldsize) {
 666			loff_t holebegin = round_up(newsize, PAGE_SIZE);
 667			if (oldsize > holebegin)
 668				unmap_mapping_range(inode->i_mapping,
 669							holebegin, 0, 1);
 670			if (info->alloced)
 671				shmem_truncate_range(inode,
 672							newsize, (loff_t)-1);
 673			/* unmap again to remove racily COWed private pages */
 674			if (oldsize > holebegin)
 675				unmap_mapping_range(inode->i_mapping,
 676							holebegin, 0, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 677		}
 678	}
 679
 680	setattr_copy(inode, attr);
 681	if (attr->ia_valid & ATTR_MODE)
 682		error = posix_acl_chmod(inode, inode->i_mode);
 683	return error;
 684}
 685
 686static void shmem_evict_inode(struct inode *inode)
 687{
 688	struct shmem_inode_info *info = SHMEM_I(inode);
 
 689
 690	if (inode->i_mapping->a_ops == &shmem_aops) {
 691		shmem_unacct_size(info->flags, inode->i_size);
 692		inode->i_size = 0;
 693		shmem_truncate_range(inode, 0, (loff_t)-1);
 694		if (!list_empty(&info->swaplist)) {
 
 
 
 
 
 
 
 
 
 
 
 695			mutex_lock(&shmem_swaplist_mutex);
 696			list_del_init(&info->swaplist);
 
 
 697			mutex_unlock(&shmem_swaplist_mutex);
 698		}
 699	}
 700
 701	simple_xattrs_free(&info->xattrs);
 702	WARN_ON(inode->i_blocks);
 703	shmem_free_inode(inode->i_sb);
 704	clear_inode(inode);
 705}
 706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707/*
 708 * If swap found in inode, free it and move page from swapcache to filecache.
 
 709 */
 710static int shmem_unuse_inode(struct shmem_inode_info *info,
 711			     swp_entry_t swap, struct page **pagep)
 712{
 713	struct address_space *mapping = info->vfs_inode.i_mapping;
 714	void *radswap;
 715	pgoff_t index;
 716	gfp_t gfp;
 717	int error = 0;
 
 
 
 
 718
 719	radswap = swp_to_radix_entry(swap);
 720	index = radix_tree_locate_item(&mapping->page_tree, radswap);
 721	if (index == -1)
 722		return -EAGAIN;	/* tell shmem_unuse we found nothing */
 
 
 
 
 
 
 
 
 
 
 
 
 
 723
 724	/*
 725	 * Move _head_ to start search for next from here.
 726	 * But be careful: shmem_evict_inode checks list_empty without taking
 727	 * mutex, and there's an instant in list_move_tail when info->swaplist
 728	 * would appear empty, if it were the only one on shmem_swaplist.
 729	 */
 730	if (shmem_swaplist.next != &info->swaplist)
 731		list_move_tail(&shmem_swaplist, &info->swaplist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732
 733	gfp = mapping_gfp_mask(mapping);
 734	if (shmem_should_replace_page(*pagep, gfp)) {
 735		mutex_unlock(&shmem_swaplist_mutex);
 736		error = shmem_replace_page(pagep, gfp, info, index);
 737		mutex_lock(&shmem_swaplist_mutex);
 738		/*
 739		 * We needed to drop mutex to make that restrictive page
 740		 * allocation, but the inode might have been freed while we
 741		 * dropped it: although a racing shmem_evict_inode() cannot
 742		 * complete without emptying the radix_tree, our page lock
 743		 * on this swapcache page is not enough to prevent that -
 744		 * free_swap_and_cache() of our swap entry will only
 745		 * trylock_page(), removing swap from radix_tree whatever.
 746		 *
 747		 * We must not proceed to shmem_add_to_page_cache() if the
 748		 * inode has been freed, but of course we cannot rely on
 749		 * inode or mapping or info to check that.  However, we can
 750		 * safely check if our swap entry is still in use (and here
 751		 * it can't have got reused for another page): if it's still
 752		 * in use, then the inode cannot have been freed yet, and we
 753		 * can safely proceed (if it's no longer in use, that tells
 754		 * nothing about the inode, but we don't need to unuse swap).
 755		 */
 756		if (!page_swapcount(*pagep))
 757			error = -ENOENT;
 758	}
 759
 760	/*
 761	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
 762	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
 763	 * beneath us (pagelock doesn't help until the page is in pagecache).
 764	 */
 765	if (!error)
 766		error = shmem_add_to_page_cache(*pagep, mapping, index,
 767						radswap);
 768	if (error != -ENOMEM) {
 769		/*
 770		 * Truncation and eviction use free_swap_and_cache(), which
 771		 * only does trylock page: if we raced, best clean up here.
 772		 */
 773		delete_from_swap_cache(*pagep);
 774		set_page_dirty(*pagep);
 775		if (!error) {
 776			spin_lock(&info->lock);
 777			info->swapped--;
 778			spin_unlock(&info->lock);
 779			swap_free(swap);
 780		}
 781	}
 782	return error;
 
 
 
 783}
 784
 785/*
 786 * Search through swapped inodes to find and replace swap by page.
 
 
 787 */
 788int shmem_unuse(swp_entry_t swap, struct page *page)
 
 789{
 790	struct list_head *this, *next;
 791	struct shmem_inode_info *info;
 792	struct mem_cgroup *memcg;
 793	int error = 0;
 794
 795	/*
 796	 * There's a faint possibility that swap page was replaced before
 797	 * caller locked it: caller will come back later with the right page.
 798	 */
 799	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
 800		goto out;
 801
 802	/*
 803	 * Charge page using GFP_KERNEL while we can wait, before taking
 804	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
 805	 * Charged back to the user (not to caller) when swap account is used.
 806	 */
 807	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
 808			false);
 809	if (error)
 810		goto out;
 811	/* No radix_tree_preload: swap entry keeps a place for page in tree */
 812	error = -EAGAIN;
 813
 814	mutex_lock(&shmem_swaplist_mutex);
 815	list_for_each_safe(this, next, &shmem_swaplist) {
 816		info = list_entry(this, struct shmem_inode_info, swaplist);
 817		if (info->swapped)
 818			error = shmem_unuse_inode(info, swap, &page);
 819		else
 820			list_del_init(&info->swaplist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 821		cond_resched();
 822		if (error != -EAGAIN)
 
 
 
 
 
 
 
 823			break;
 824		/* found nothing in this: move on to search the next */
 825	}
 826	mutex_unlock(&shmem_swaplist_mutex);
 827
 828	if (error) {
 829		if (error != -ENOMEM)
 830			error = 0;
 831		mem_cgroup_cancel_charge(page, memcg, false);
 832	} else
 833		mem_cgroup_commit_charge(page, memcg, true, false);
 834out:
 835	unlock_page(page);
 836	put_page(page);
 837	return error;
 838}
 839
 840/*
 841 * Move the page from the page cache to the swap cache.
 842 */
 843static int shmem_writepage(struct page *page, struct writeback_control *wbc)
 844{
 845	struct shmem_inode_info *info;
 846	struct address_space *mapping;
 847	struct inode *inode;
 848	swp_entry_t swap;
 849	pgoff_t index;
 850
 
 851	BUG_ON(!PageLocked(page));
 852	mapping = page->mapping;
 853	index = page->index;
 854	inode = mapping->host;
 855	info = SHMEM_I(inode);
 856	if (info->flags & VM_LOCKED)
 857		goto redirty;
 858	if (!total_swap_pages)
 859		goto redirty;
 860
 861	/*
 862	 * Our capabilities prevent regular writeback or sync from ever calling
 863	 * shmem_writepage; but a stacking filesystem might use ->writepage of
 864	 * its underlying filesystem, in which case tmpfs should write out to
 865	 * swap only in response to memory pressure, and not for the writeback
 866	 * threads or sync.
 867	 */
 868	if (!wbc->for_reclaim) {
 869		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
 870		goto redirty;
 871	}
 872
 873	/*
 874	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
 875	 * value into swapfile.c, the only way we can correctly account for a
 876	 * fallocated page arriving here is now to initialize it and write it.
 877	 *
 878	 * That's okay for a page already fallocated earlier, but if we have
 879	 * not yet completed the fallocation, then (a) we want to keep track
 880	 * of this page in case we have to undo it, and (b) it may not be a
 881	 * good idea to continue anyway, once we're pushing into swap.  So
 882	 * reactivate the page, and let shmem_fallocate() quit when too many.
 883	 */
 884	if (!PageUptodate(page)) {
 885		if (inode->i_private) {
 886			struct shmem_falloc *shmem_falloc;
 887			spin_lock(&inode->i_lock);
 888			shmem_falloc = inode->i_private;
 889			if (shmem_falloc &&
 890			    !shmem_falloc->waitq &&
 891			    index >= shmem_falloc->start &&
 892			    index < shmem_falloc->next)
 893				shmem_falloc->nr_unswapped++;
 894			else
 895				shmem_falloc = NULL;
 896			spin_unlock(&inode->i_lock);
 897			if (shmem_falloc)
 898				goto redirty;
 899		}
 900		clear_highpage(page);
 901		flush_dcache_page(page);
 902		SetPageUptodate(page);
 903	}
 904
 905	swap = get_swap_page();
 906	if (!swap.val)
 907		goto redirty;
 908
 909	if (mem_cgroup_try_charge_swap(page, swap))
 910		goto free_swap;
 911
 912	/*
 913	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
 914	 * if it's not already there.  Do it now before the page is
 915	 * moved to swap cache, when its pagelock no longer protects
 916	 * the inode from eviction.  But don't unlock the mutex until
 917	 * we've incremented swapped, because shmem_unuse_inode() will
 918	 * prune a !swapped inode from the swaplist under this mutex.
 919	 */
 920	mutex_lock(&shmem_swaplist_mutex);
 921	if (list_empty(&info->swaplist))
 922		list_add_tail(&info->swaplist, &shmem_swaplist);
 923
 924	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
 925		spin_lock(&info->lock);
 926		shmem_recalc_inode(inode);
 927		info->swapped++;
 928		spin_unlock(&info->lock);
 929
 930		swap_shmem_alloc(swap);
 931		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
 932
 933		mutex_unlock(&shmem_swaplist_mutex);
 934		BUG_ON(page_mapped(page));
 935		swap_writepage(page, wbc);
 936		return 0;
 937	}
 938
 939	mutex_unlock(&shmem_swaplist_mutex);
 940free_swap:
 941	swapcache_free(swap);
 942redirty:
 943	set_page_dirty(page);
 944	if (wbc->for_reclaim)
 945		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
 946	unlock_page(page);
 947	return 0;
 948}
 949
 950#ifdef CONFIG_NUMA
 951#ifdef CONFIG_TMPFS
 952static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 953{
 954	char buffer[64];
 955
 956	if (!mpol || mpol->mode == MPOL_DEFAULT)
 957		return;		/* show nothing */
 958
 959	mpol_to_str(buffer, sizeof(buffer), mpol);
 960
 961	seq_printf(seq, ",mpol=%s", buffer);
 962}
 963
 964static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 965{
 966	struct mempolicy *mpol = NULL;
 967	if (sbinfo->mpol) {
 968		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
 969		mpol = sbinfo->mpol;
 970		mpol_get(mpol);
 971		spin_unlock(&sbinfo->stat_lock);
 972	}
 973	return mpol;
 974}
 975#endif /* CONFIG_TMPFS */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976
 977static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 978			struct shmem_inode_info *info, pgoff_t index)
 979{
 980	struct vm_area_struct pvma;
 981	struct page *page;
 
 982
 983	/* Create a pseudo vma that just contains the policy */
 984	pvma.vm_start = 0;
 985	/* Bias interleave by inode number to distribute better across nodes */
 986	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
 987	pvma.vm_ops = NULL;
 988	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
 
 
 
 
 
 
 
 
 
 
 989
 990	page = swapin_readahead(swap, gfp, &pvma, 0);
 
 991
 992	/* Drop reference taken by mpol_shared_policy_lookup() */
 993	mpol_cond_put(pvma.vm_policy);
 
 
 994
 
 
 
 
 
 
 995	return page;
 996}
 997
 998static struct page *shmem_alloc_page(gfp_t gfp,
 999			struct shmem_inode_info *info, pgoff_t index)
1000{
1001	struct vm_area_struct pvma;
1002	struct page *page;
1003
1004	/* Create a pseudo vma that just contains the policy */
1005	pvma.vm_start = 0;
1006	/* Bias interleave by inode number to distribute better across nodes */
1007	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1008	pvma.vm_ops = NULL;
1009	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1010
1011	page = alloc_page_vma(gfp, &pvma, 0);
1012
1013	/* Drop reference taken by mpol_shared_policy_lookup() */
1014	mpol_cond_put(pvma.vm_policy);
1015
1016	return page;
1017}
1018#else /* !CONFIG_NUMA */
1019#ifdef CONFIG_TMPFS
1020static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 
1021{
1022}
1023#endif /* CONFIG_TMPFS */
 
 
 
 
 
 
1024
1025static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1026			struct shmem_inode_info *info, pgoff_t index)
1027{
1028	return swapin_readahead(swap, gfp, NULL, 0);
1029}
1030
1031static inline struct page *shmem_alloc_page(gfp_t gfp,
1032			struct shmem_inode_info *info, pgoff_t index)
1033{
1034	return alloc_page(gfp);
1035}
1036#endif /* CONFIG_NUMA */
 
 
 
1037
1038#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1039static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1040{
1041	return NULL;
1042}
1043#endif
1044
1045/*
1046 * When a page is moved from swapcache to shmem filecache (either by the
1047 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1048 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1049 * ignorance of the mapping it belongs to.  If that mapping has special
1050 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1051 * we may need to copy to a suitable page before moving to filecache.
1052 *
1053 * In a future release, this may well be extended to respect cpuset and
1054 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1055 * but for now it is a simple matter of zone.
1056 */
1057static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1058{
1059	return page_zonenum(page) > gfp_zone(gfp);
1060}
1061
1062static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1063				struct shmem_inode_info *info, pgoff_t index)
1064{
1065	struct page *oldpage, *newpage;
1066	struct address_space *swap_mapping;
 
1067	pgoff_t swap_index;
1068	int error;
1069
1070	oldpage = *pagep;
1071	swap_index = page_private(oldpage);
 
1072	swap_mapping = page_mapping(oldpage);
1073
1074	/*
1075	 * We have arrived here because our zones are constrained, so don't
1076	 * limit chance of success by further cpuset and node constraints.
1077	 */
1078	gfp &= ~GFP_CONSTRAINT_MASK;
1079	newpage = shmem_alloc_page(gfp, info, index);
1080	if (!newpage)
1081		return -ENOMEM;
1082
1083	get_page(newpage);
1084	copy_highpage(newpage, oldpage);
1085	flush_dcache_page(newpage);
1086
1087	__SetPageLocked(newpage);
 
1088	SetPageUptodate(newpage);
1089	SetPageSwapBacked(newpage);
1090	set_page_private(newpage, swap_index);
1091	SetPageSwapCache(newpage);
1092
1093	/*
1094	 * Our caller will very soon move newpage out of swapcache, but it's
1095	 * a nice clean interface for us to replace oldpage by newpage there.
1096	 */
1097	spin_lock_irq(&swap_mapping->tree_lock);
1098	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1099								   newpage);
1100	if (!error) {
1101		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1102		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1103	}
1104	spin_unlock_irq(&swap_mapping->tree_lock);
1105
1106	if (unlikely(error)) {
1107		/*
1108		 * Is this possible?  I think not, now that our callers check
1109		 * both PageSwapCache and page_private after getting page lock;
1110		 * but be defensive.  Reverse old to newpage for clear and free.
1111		 */
1112		oldpage = newpage;
1113	} else {
1114		mem_cgroup_migrate(oldpage, newpage);
1115		lru_cache_add_anon(newpage);
1116		*pagep = newpage;
1117	}
1118
1119	ClearPageSwapCache(oldpage);
1120	set_page_private(oldpage, 0);
1121
1122	unlock_page(oldpage);
1123	put_page(oldpage);
1124	put_page(oldpage);
1125	return error;
1126}
1127
1128/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1129 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1130 *
1131 * If we allocate a new one we do not mark it dirty. That's up to the
1132 * vm. If we swap it in we mark it dirty since we also free the swap
1133 * entry since a page cannot live in both the swap and page cache
 
 
 
1134 */
1135static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1136	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
 
 
1137{
1138	struct address_space *mapping = inode->i_mapping;
1139	struct shmem_inode_info *info;
1140	struct shmem_sb_info *sbinfo;
 
1141	struct mem_cgroup *memcg;
1142	struct page *page;
1143	swp_entry_t swap;
 
1144	int error;
1145	int once = 0;
1146	int alloced = 0;
1147
1148	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1149		return -EFBIG;
 
 
1150repeat:
1151	swap.val = 0;
 
 
 
 
 
 
 
1152	page = find_lock_entry(mapping, index);
1153	if (radix_tree_exceptional_entry(page)) {
1154		swap = radix_to_swp_entry(page);
1155		page = NULL;
1156	}
 
1157
1158	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1159	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1160		error = -EINVAL;
1161		goto unlock;
1162	}
1163
1164	if (page && sgp == SGP_WRITE)
1165		mark_page_accessed(page);
1166
1167	/* fallocated page? */
1168	if (page && !PageUptodate(page)) {
1169		if (sgp != SGP_READ)
1170			goto clear;
1171		unlock_page(page);
1172		put_page(page);
1173		page = NULL;
1174	}
1175	if (page || (sgp == SGP_READ && !swap.val)) {
1176		*pagep = page;
1177		return 0;
1178	}
1179
1180	/*
1181	 * Fast cache lookup did not find it:
1182	 * bring it back from swap or allocate.
1183	 */
1184	info = SHMEM_I(inode);
1185	sbinfo = SHMEM_SB(inode->i_sb);
1186
1187	if (swap.val) {
1188		/* Look it up and read it in.. */
1189		page = lookup_swap_cache(swap);
1190		if (!page) {
1191			/* here we actually do the io */
1192			if (fault_type)
1193				*fault_type |= VM_FAULT_MAJOR;
1194			page = shmem_swapin(swap, gfp, info, index);
1195			if (!page) {
1196				error = -ENOMEM;
1197				goto failed;
1198			}
1199		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1200
1201		/* We have to do this with page locked to prevent races */
1202		lock_page(page);
1203		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1204		    !shmem_confirm_swap(mapping, index, swap)) {
1205			error = -EEXIST;	/* try again */
1206			goto unlock;
1207		}
1208		if (!PageUptodate(page)) {
1209			error = -EIO;
1210			goto failed;
1211		}
1212		wait_on_page_writeback(page);
1213
1214		if (shmem_should_replace_page(page, gfp)) {
1215			error = shmem_replace_page(&page, gfp, info, index);
1216			if (error)
1217				goto failed;
 
1218		}
 
 
1219
1220		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1221				false);
1222		if (!error) {
1223			error = shmem_add_to_page_cache(page, mapping, index,
1224						swp_to_radix_entry(swap));
1225			/*
1226			 * We already confirmed swap under page lock, and make
1227			 * no memory allocation here, so usually no possibility
1228			 * of error; but free_swap_and_cache() only trylocks a
1229			 * page, so it is just possible that the entry has been
1230			 * truncated or holepunched since swap was confirmed.
1231			 * shmem_undo_range() will have done some of the
1232			 * unaccounting, now delete_from_swap_cache() will do
1233			 * the rest.
1234			 * Reset swap.val? No, leave it so "failed" goes back to
1235			 * "repeat": reading a hole and writing should succeed.
1236			 */
1237			if (error) {
1238				mem_cgroup_cancel_charge(page, memcg, false);
1239				delete_from_swap_cache(page);
1240			}
1241		}
1242		if (error)
1243			goto failed;
1244
1245		mem_cgroup_commit_charge(page, memcg, true, false);
 
1246
1247		spin_lock(&info->lock);
1248		info->swapped--;
1249		shmem_recalc_inode(inode);
1250		spin_unlock(&info->lock);
1251
1252		if (sgp == SGP_WRITE)
1253			mark_page_accessed(page);
1254
1255		delete_from_swap_cache(page);
1256		set_page_dirty(page);
1257		swap_free(swap);
1258
1259	} else {
1260		if (shmem_acct_block(info->flags)) {
1261			error = -ENOSPC;
1262			goto failed;
1263		}
1264		if (sbinfo->max_blocks) {
1265			if (percpu_counter_compare(&sbinfo->used_blocks,
1266						sbinfo->max_blocks) >= 0) {
1267				error = -ENOSPC;
1268				goto unacct;
1269			}
1270			percpu_counter_inc(&sbinfo->used_blocks);
1271		}
1272
1273		page = shmem_alloc_page(gfp, info, index);
1274		if (!page) {
1275			error = -ENOMEM;
1276			goto decused;
1277		}
1278
1279		__SetPageSwapBacked(page);
1280		__SetPageLocked(page);
1281		if (sgp == SGP_WRITE)
1282			__SetPageReferenced(page);
1283
1284		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1285				false);
1286		if (error)
1287			goto decused;
1288		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1289		if (!error) {
1290			error = shmem_add_to_page_cache(page, mapping, index,
1291							NULL);
1292			radix_tree_preload_end();
1293		}
1294		if (error) {
1295			mem_cgroup_cancel_charge(page, memcg, false);
1296			goto decused;
1297		}
1298		mem_cgroup_commit_charge(page, memcg, false, false);
1299		lru_cache_add_anon(page);
1300
1301		spin_lock(&info->lock);
1302		info->alloced++;
1303		inode->i_blocks += BLOCKS_PER_PAGE;
1304		shmem_recalc_inode(inode);
1305		spin_unlock(&info->lock);
1306		alloced = true;
1307
 
 
 
1308		/*
1309		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
 
1310		 */
1311		if (sgp == SGP_FALLOC)
1312			sgp = SGP_WRITE;
1313clear:
1314		/*
1315		 * Let SGP_WRITE caller clear ends if write does not fill page;
1316		 * but SGP_FALLOC on a page fallocated earlier must initialize
1317		 * it now, lest undo on failure cancel our earlier guarantee.
1318		 */
1319		if (sgp != SGP_WRITE) {
1320			clear_highpage(page);
1321			flush_dcache_page(page);
1322			SetPageUptodate(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1323		}
1324		if (sgp == SGP_DIRTY)
1325			set_page_dirty(page);
1326	}
1327
1328	/* Perhaps the file has been truncated since we checked */
1329	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1330	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1331		if (alloced) {
1332			ClearPageDirty(page);
1333			delete_from_page_cache(page);
1334			spin_lock(&info->lock);
1335			shmem_recalc_inode(inode);
1336			spin_unlock(&info->lock);
1337		}
1338		error = -EINVAL;
1339		goto unlock;
1340	}
1341	*pagep = page;
1342	return 0;
1343
1344	/*
1345	 * Error recovery.
1346	 */
1347decused:
1348	if (sbinfo->max_blocks)
1349		percpu_counter_add(&sbinfo->used_blocks, -1);
1350unacct:
1351	shmem_unacct_blocks(info->flags, 1);
1352failed:
1353	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1354		error = -EEXIST;
 
 
 
1355unlock:
1356	if (page) {
1357		unlock_page(page);
1358		put_page(page);
1359	}
1360	if (error == -ENOSPC && !once++) {
1361		info = SHMEM_I(inode);
1362		spin_lock(&info->lock);
1363		shmem_recalc_inode(inode);
1364		spin_unlock(&info->lock);
1365		goto repeat;
1366	}
1367	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1368		goto repeat;
1369	return error;
1370}
1371
1372static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
 
 
 
 
 
 
 
 
 
 
 
 
1373{
 
1374	struct inode *inode = file_inode(vma->vm_file);
1375	int error;
1376	int ret = VM_FAULT_LOCKED;
 
 
1377
1378	/*
1379	 * Trinity finds that probing a hole which tmpfs is punching can
1380	 * prevent the hole-punch from ever completing: which in turn
1381	 * locks writers out with its hold on i_mutex.  So refrain from
1382	 * faulting pages into the hole while it's being punched.  Although
1383	 * shmem_undo_range() does remove the additions, it may be unable to
1384	 * keep up, as each new page needs its own unmap_mapping_range() call,
1385	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1386	 *
1387	 * It does not matter if we sometimes reach this check just before the
1388	 * hole-punch begins, so that one fault then races with the punch:
1389	 * we just need to make racing faults a rare case.
1390	 *
1391	 * The implementation below would be much simpler if we just used a
1392	 * standard mutex or completion: but we cannot take i_mutex in fault,
1393	 * and bloating every shmem inode for this unlikely case would be sad.
1394	 */
1395	if (unlikely(inode->i_private)) {
1396		struct shmem_falloc *shmem_falloc;
1397
1398		spin_lock(&inode->i_lock);
1399		shmem_falloc = inode->i_private;
1400		if (shmem_falloc &&
1401		    shmem_falloc->waitq &&
1402		    vmf->pgoff >= shmem_falloc->start &&
1403		    vmf->pgoff < shmem_falloc->next) {
1404			wait_queue_head_t *shmem_falloc_waitq;
1405			DEFINE_WAIT(shmem_fault_wait);
1406
1407			ret = VM_FAULT_NOPAGE;
1408			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1409			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1410				/* It's polite to up mmap_sem if we can */
1411				up_read(&vma->vm_mm->mmap_sem);
1412				ret = VM_FAULT_RETRY;
1413			}
1414
1415			shmem_falloc_waitq = shmem_falloc->waitq;
1416			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1417					TASK_UNINTERRUPTIBLE);
1418			spin_unlock(&inode->i_lock);
1419			schedule();
1420
1421			/*
1422			 * shmem_falloc_waitq points into the shmem_fallocate()
1423			 * stack of the hole-punching task: shmem_falloc_waitq
1424			 * is usually invalid by the time we reach here, but
1425			 * finish_wait() does not dereference it in that case;
1426			 * though i_lock needed lest racing with wake_up_all().
1427			 */
1428			spin_lock(&inode->i_lock);
1429			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1430			spin_unlock(&inode->i_lock);
1431			return ret;
1432		}
1433		spin_unlock(&inode->i_lock);
1434	}
1435
1436	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1437	if (error)
1438		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1439
1440	if (ret & VM_FAULT_MAJOR) {
1441		count_vm_event(PGMAJFAULT);
1442		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1443	}
 
 
 
 
 
 
1444	return ret;
1445}
1446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1447#ifdef CONFIG_NUMA
1448static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1449{
1450	struct inode *inode = file_inode(vma->vm_file);
1451	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1452}
1453
1454static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1455					  unsigned long addr)
1456{
1457	struct inode *inode = file_inode(vma->vm_file);
1458	pgoff_t index;
1459
1460	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1461	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1462}
1463#endif
1464
1465int shmem_lock(struct file *file, int lock, struct user_struct *user)
1466{
1467	struct inode *inode = file_inode(file);
1468	struct shmem_inode_info *info = SHMEM_I(inode);
1469	int retval = -ENOMEM;
1470
1471	spin_lock(&info->lock);
1472	if (lock && !(info->flags & VM_LOCKED)) {
1473		if (!user_shm_lock(inode->i_size, user))
1474			goto out_nomem;
1475		info->flags |= VM_LOCKED;
1476		mapping_set_unevictable(file->f_mapping);
1477	}
1478	if (!lock && (info->flags & VM_LOCKED) && user) {
1479		user_shm_unlock(inode->i_size, user);
1480		info->flags &= ~VM_LOCKED;
1481		mapping_clear_unevictable(file->f_mapping);
1482	}
1483	retval = 0;
1484
1485out_nomem:
1486	spin_unlock(&info->lock);
1487	return retval;
1488}
1489
1490static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1491{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1492	file_accessed(file);
1493	vma->vm_ops = &shmem_vm_ops;
 
 
 
 
 
1494	return 0;
1495}
1496
1497static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1498				     umode_t mode, dev_t dev, unsigned long flags)
1499{
1500	struct inode *inode;
1501	struct shmem_inode_info *info;
1502	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1503
1504	if (shmem_reserve_inode(sb))
1505		return NULL;
1506
1507	inode = new_inode(sb);
1508	if (inode) {
1509		inode->i_ino = get_next_ino();
1510		inode_init_owner(inode, dir, mode);
1511		inode->i_blocks = 0;
1512		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1513		inode->i_generation = get_seconds();
1514		info = SHMEM_I(inode);
1515		memset(info, 0, (char *)inode - (char *)info);
1516		spin_lock_init(&info->lock);
 
1517		info->seals = F_SEAL_SEAL;
1518		info->flags = flags & VM_NORESERVE;
 
1519		INIT_LIST_HEAD(&info->swaplist);
1520		simple_xattrs_init(&info->xattrs);
1521		cache_no_acl(inode);
1522
1523		switch (mode & S_IFMT) {
1524		default:
1525			inode->i_op = &shmem_special_inode_operations;
1526			init_special_inode(inode, mode, dev);
1527			break;
1528		case S_IFREG:
1529			inode->i_mapping->a_ops = &shmem_aops;
1530			inode->i_op = &shmem_inode_operations;
1531			inode->i_fop = &shmem_file_operations;
1532			mpol_shared_policy_init(&info->policy,
1533						 shmem_get_sbmpol(sbinfo));
1534			break;
1535		case S_IFDIR:
1536			inc_nlink(inode);
1537			/* Some things misbehave if size == 0 on a directory */
1538			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1539			inode->i_op = &shmem_dir_inode_operations;
1540			inode->i_fop = &simple_dir_operations;
1541			break;
1542		case S_IFLNK:
1543			/*
1544			 * Must not load anything in the rbtree,
1545			 * mpol_free_shared_policy will not be called.
1546			 */
1547			mpol_shared_policy_init(&info->policy, NULL);
1548			break;
1549		}
 
 
1550	} else
1551		shmem_free_inode(sb);
1552	return inode;
1553}
1554
1555bool shmem_mapping(struct address_space *mapping)
1556{
1557	if (!mapping->host)
1558		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1559
1560	return mapping->host->i_sb->s_op == &shmem_ops;
 
1561}
1562
1563#ifdef CONFIG_TMPFS
1564static const struct inode_operations shmem_symlink_inode_operations;
1565static const struct inode_operations shmem_short_symlink_operations;
1566
1567#ifdef CONFIG_TMPFS_XATTR
1568static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1569#else
1570#define shmem_initxattrs NULL
1571#endif
1572
1573static int
1574shmem_write_begin(struct file *file, struct address_space *mapping,
1575			loff_t pos, unsigned len, unsigned flags,
1576			struct page **pagep, void **fsdata)
1577{
1578	struct inode *inode = mapping->host;
1579	struct shmem_inode_info *info = SHMEM_I(inode);
1580	pgoff_t index = pos >> PAGE_SHIFT;
1581
1582	/* i_mutex is held by caller */
1583	if (unlikely(info->seals)) {
1584		if (info->seals & F_SEAL_WRITE)
 
1585			return -EPERM;
1586		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1587			return -EPERM;
1588	}
1589
1590	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1591}
1592
1593static int
1594shmem_write_end(struct file *file, struct address_space *mapping,
1595			loff_t pos, unsigned len, unsigned copied,
1596			struct page *page, void *fsdata)
1597{
1598	struct inode *inode = mapping->host;
1599
1600	if (pos + copied > inode->i_size)
1601		i_size_write(inode, pos + copied);
1602
1603	if (!PageUptodate(page)) {
 
 
 
 
 
 
 
 
 
 
 
1604		if (copied < PAGE_SIZE) {
1605			unsigned from = pos & (PAGE_SIZE - 1);
1606			zero_user_segments(page, 0, from,
1607					from + copied, PAGE_SIZE);
1608		}
1609		SetPageUptodate(page);
1610	}
1611	set_page_dirty(page);
1612	unlock_page(page);
1613	put_page(page);
1614
1615	return copied;
1616}
1617
1618static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1619{
1620	struct file *file = iocb->ki_filp;
1621	struct inode *inode = file_inode(file);
1622	struct address_space *mapping = inode->i_mapping;
1623	pgoff_t index;
1624	unsigned long offset;
1625	enum sgp_type sgp = SGP_READ;
1626	int error = 0;
1627	ssize_t retval = 0;
1628	loff_t *ppos = &iocb->ki_pos;
1629
1630	/*
1631	 * Might this read be for a stacking filesystem?  Then when reading
1632	 * holes of a sparse file, we actually need to allocate those pages,
1633	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1634	 */
1635	if (!iter_is_iovec(to))
1636		sgp = SGP_DIRTY;
1637
1638	index = *ppos >> PAGE_SHIFT;
1639	offset = *ppos & ~PAGE_MASK;
1640
1641	for (;;) {
1642		struct page *page = NULL;
1643		pgoff_t end_index;
1644		unsigned long nr, ret;
1645		loff_t i_size = i_size_read(inode);
1646
1647		end_index = i_size >> PAGE_SHIFT;
1648		if (index > end_index)
1649			break;
1650		if (index == end_index) {
1651			nr = i_size & ~PAGE_MASK;
1652			if (nr <= offset)
1653				break;
1654		}
1655
1656		error = shmem_getpage(inode, index, &page, sgp, NULL);
1657		if (error) {
1658			if (error == -EINVAL)
1659				error = 0;
1660			break;
1661		}
1662		if (page)
 
 
1663			unlock_page(page);
 
1664
1665		/*
1666		 * We must evaluate after, since reads (unlike writes)
1667		 * are called without i_mutex protection against truncate
1668		 */
1669		nr = PAGE_SIZE;
1670		i_size = i_size_read(inode);
1671		end_index = i_size >> PAGE_SHIFT;
1672		if (index == end_index) {
1673			nr = i_size & ~PAGE_MASK;
1674			if (nr <= offset) {
1675				if (page)
1676					put_page(page);
1677				break;
1678			}
1679		}
1680		nr -= offset;
1681
1682		if (page) {
1683			/*
1684			 * If users can be writing to this page using arbitrary
1685			 * virtual addresses, take care about potential aliasing
1686			 * before reading the page on the kernel side.
1687			 */
1688			if (mapping_writably_mapped(mapping))
1689				flush_dcache_page(page);
1690			/*
1691			 * Mark the page accessed if we read the beginning.
1692			 */
1693			if (!offset)
1694				mark_page_accessed(page);
1695		} else {
1696			page = ZERO_PAGE(0);
1697			get_page(page);
1698		}
1699
1700		/*
1701		 * Ok, we have the page, and it's up-to-date, so
1702		 * now we can copy it to user space...
1703		 */
1704		ret = copy_page_to_iter(page, offset, nr, to);
1705		retval += ret;
1706		offset += ret;
1707		index += offset >> PAGE_SHIFT;
1708		offset &= ~PAGE_MASK;
1709
1710		put_page(page);
1711		if (!iov_iter_count(to))
1712			break;
1713		if (ret < nr) {
1714			error = -EFAULT;
1715			break;
1716		}
1717		cond_resched();
1718	}
1719
1720	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
1721	file_accessed(file);
1722	return retval ? retval : error;
1723}
1724
1725static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1726				struct pipe_inode_info *pipe, size_t len,
1727				unsigned int flags)
1728{
1729	struct address_space *mapping = in->f_mapping;
1730	struct inode *inode = mapping->host;
1731	unsigned int loff, nr_pages, req_pages;
1732	struct page *pages[PIPE_DEF_BUFFERS];
1733	struct partial_page partial[PIPE_DEF_BUFFERS];
1734	struct page *page;
1735	pgoff_t index, end_index;
1736	loff_t isize, left;
1737	int error, page_nr;
1738	struct splice_pipe_desc spd = {
1739		.pages = pages,
1740		.partial = partial,
1741		.nr_pages_max = PIPE_DEF_BUFFERS,
1742		.flags = flags,
1743		.ops = &page_cache_pipe_buf_ops,
1744		.spd_release = spd_release_page,
1745	};
1746
1747	isize = i_size_read(inode);
1748	if (unlikely(*ppos >= isize))
1749		return 0;
1750
1751	left = isize - *ppos;
1752	if (unlikely(left < len))
1753		len = left;
1754
1755	if (splice_grow_spd(pipe, &spd))
1756		return -ENOMEM;
1757
1758	index = *ppos >> PAGE_SHIFT;
1759	loff = *ppos & ~PAGE_MASK;
1760	req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
1761	nr_pages = min(req_pages, spd.nr_pages_max);
1762
1763	spd.nr_pages = find_get_pages_contig(mapping, index,
1764						nr_pages, spd.pages);
1765	index += spd.nr_pages;
1766	error = 0;
1767
1768	while (spd.nr_pages < nr_pages) {
1769		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1770		if (error)
1771			break;
1772		unlock_page(page);
1773		spd.pages[spd.nr_pages++] = page;
1774		index++;
1775	}
1776
1777	index = *ppos >> PAGE_SHIFT;
1778	nr_pages = spd.nr_pages;
1779	spd.nr_pages = 0;
1780
1781	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1782		unsigned int this_len;
1783
1784		if (!len)
1785			break;
1786
1787		this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
1788		page = spd.pages[page_nr];
1789
1790		if (!PageUptodate(page) || page->mapping != mapping) {
1791			error = shmem_getpage(inode, index, &page,
1792							SGP_CACHE, NULL);
1793			if (error)
1794				break;
1795			unlock_page(page);
1796			put_page(spd.pages[page_nr]);
1797			spd.pages[page_nr] = page;
1798		}
1799
1800		isize = i_size_read(inode);
1801		end_index = (isize - 1) >> PAGE_SHIFT;
1802		if (unlikely(!isize || index > end_index))
1803			break;
1804
1805		if (end_index == index) {
1806			unsigned int plen;
1807
1808			plen = ((isize - 1) & ~PAGE_MASK) + 1;
1809			if (plen <= loff)
1810				break;
1811
1812			this_len = min(this_len, plen - loff);
1813			len = this_len;
1814		}
1815
1816		spd.partial[page_nr].offset = loff;
1817		spd.partial[page_nr].len = this_len;
1818		len -= this_len;
1819		loff = 0;
1820		spd.nr_pages++;
1821		index++;
1822	}
1823
1824	while (page_nr < nr_pages)
1825		put_page(spd.pages[page_nr++]);
1826
1827	if (spd.nr_pages)
1828		error = splice_to_pipe(pipe, &spd);
1829
1830	splice_shrink_spd(&spd);
1831
1832	if (error > 0) {
1833		*ppos += error;
1834		file_accessed(in);
1835	}
1836	return error;
1837}
1838
1839/*
1840 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1841 */
1842static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1843				    pgoff_t index, pgoff_t end, int whence)
1844{
1845	struct page *page;
1846	struct pagevec pvec;
1847	pgoff_t indices[PAGEVEC_SIZE];
1848	bool done = false;
1849	int i;
1850
1851	pagevec_init(&pvec, 0);
1852	pvec.nr = 1;		/* start small: we may be there already */
1853	while (!done) {
1854		pvec.nr = find_get_entries(mapping, index,
1855					pvec.nr, pvec.pages, indices);
1856		if (!pvec.nr) {
1857			if (whence == SEEK_DATA)
1858				index = end;
1859			break;
1860		}
1861		for (i = 0; i < pvec.nr; i++, index++) {
1862			if (index < indices[i]) {
1863				if (whence == SEEK_HOLE) {
1864					done = true;
1865					break;
1866				}
1867				index = indices[i];
1868			}
1869			page = pvec.pages[i];
1870			if (page && !radix_tree_exceptional_entry(page)) {
1871				if (!PageUptodate(page))
1872					page = NULL;
1873			}
1874			if (index >= end ||
1875			    (page && whence == SEEK_DATA) ||
1876			    (!page && whence == SEEK_HOLE)) {
1877				done = true;
1878				break;
1879			}
1880		}
1881		pagevec_remove_exceptionals(&pvec);
1882		pagevec_release(&pvec);
1883		pvec.nr = PAGEVEC_SIZE;
1884		cond_resched();
1885	}
1886	return index;
1887}
1888
1889static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1890{
1891	struct address_space *mapping = file->f_mapping;
1892	struct inode *inode = mapping->host;
1893	pgoff_t start, end;
1894	loff_t new_offset;
1895
1896	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1897		return generic_file_llseek_size(file, offset, whence,
1898					MAX_LFS_FILESIZE, i_size_read(inode));
1899	inode_lock(inode);
1900	/* We're holding i_mutex so we can access i_size directly */
1901
1902	if (offset < 0)
1903		offset = -EINVAL;
1904	else if (offset >= inode->i_size)
1905		offset = -ENXIO;
1906	else {
1907		start = offset >> PAGE_SHIFT;
1908		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1909		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1910		new_offset <<= PAGE_SHIFT;
1911		if (new_offset > offset) {
1912			if (new_offset < inode->i_size)
1913				offset = new_offset;
1914			else if (whence == SEEK_DATA)
1915				offset = -ENXIO;
1916			else
1917				offset = inode->i_size;
1918		}
1919	}
1920
1921	if (offset >= 0)
1922		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1923	inode_unlock(inode);
1924	return offset;
1925}
1926
1927/*
1928 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1929 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1930 */
1931#define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1932#define LAST_SCAN               4       /* about 150ms max */
1933
1934static void shmem_tag_pins(struct address_space *mapping)
1935{
1936	struct radix_tree_iter iter;
1937	void **slot;
1938	pgoff_t start;
1939	struct page *page;
1940
1941	lru_add_drain();
1942	start = 0;
1943	rcu_read_lock();
1944
1945	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1946		page = radix_tree_deref_slot(slot);
1947		if (!page || radix_tree_exception(page)) {
1948			if (radix_tree_deref_retry(page)) {
1949				slot = radix_tree_iter_retry(&iter);
1950				continue;
1951			}
1952		} else if (page_count(page) - page_mapcount(page) > 1) {
1953			spin_lock_irq(&mapping->tree_lock);
1954			radix_tree_tag_set(&mapping->page_tree, iter.index,
1955					   SHMEM_TAG_PINNED);
1956			spin_unlock_irq(&mapping->tree_lock);
1957		}
1958
1959		if (need_resched()) {
1960			cond_resched_rcu();
1961			slot = radix_tree_iter_next(&iter);
1962		}
1963	}
1964	rcu_read_unlock();
1965}
1966
1967/*
1968 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1969 * via get_user_pages(), drivers might have some pending I/O without any active
1970 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1971 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1972 * them to be dropped.
1973 * The caller must guarantee that no new user will acquire writable references
1974 * to those pages to avoid races.
1975 */
1976static int shmem_wait_for_pins(struct address_space *mapping)
1977{
1978	struct radix_tree_iter iter;
1979	void **slot;
1980	pgoff_t start;
1981	struct page *page;
1982	int error, scan;
1983
1984	shmem_tag_pins(mapping);
1985
1986	error = 0;
1987	for (scan = 0; scan <= LAST_SCAN; scan++) {
1988		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1989			break;
1990
1991		if (!scan)
1992			lru_add_drain_all();
1993		else if (schedule_timeout_killable((HZ << scan) / 200))
1994			scan = LAST_SCAN;
1995
1996		start = 0;
1997		rcu_read_lock();
1998		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1999					   start, SHMEM_TAG_PINNED) {
2000
2001			page = radix_tree_deref_slot(slot);
2002			if (radix_tree_exception(page)) {
2003				if (radix_tree_deref_retry(page)) {
2004					slot = radix_tree_iter_retry(&iter);
2005					continue;
2006				}
2007
2008				page = NULL;
2009			}
2010
2011			if (page &&
2012			    page_count(page) - page_mapcount(page) != 1) {
2013				if (scan < LAST_SCAN)
2014					goto continue_resched;
2015
2016				/*
2017				 * On the last scan, we clean up all those tags
2018				 * we inserted; but make a note that we still
2019				 * found pages pinned.
2020				 */
2021				error = -EBUSY;
2022			}
2023
2024			spin_lock_irq(&mapping->tree_lock);
2025			radix_tree_tag_clear(&mapping->page_tree,
2026					     iter.index, SHMEM_TAG_PINNED);
2027			spin_unlock_irq(&mapping->tree_lock);
2028continue_resched:
2029			if (need_resched()) {
2030				cond_resched_rcu();
2031				slot = radix_tree_iter_next(&iter);
2032			}
2033		}
2034		rcu_read_unlock();
2035	}
2036
2037	return error;
2038}
2039
2040#define F_ALL_SEALS (F_SEAL_SEAL | \
2041		     F_SEAL_SHRINK | \
2042		     F_SEAL_GROW | \
2043		     F_SEAL_WRITE)
2044
2045int shmem_add_seals(struct file *file, unsigned int seals)
2046{
2047	struct inode *inode = file_inode(file);
2048	struct shmem_inode_info *info = SHMEM_I(inode);
2049	int error;
2050
2051	/*
2052	 * SEALING
2053	 * Sealing allows multiple parties to share a shmem-file but restrict
2054	 * access to a specific subset of file operations. Seals can only be
2055	 * added, but never removed. This way, mutually untrusted parties can
2056	 * share common memory regions with a well-defined policy. A malicious
2057	 * peer can thus never perform unwanted operations on a shared object.
2058	 *
2059	 * Seals are only supported on special shmem-files and always affect
2060	 * the whole underlying inode. Once a seal is set, it may prevent some
2061	 * kinds of access to the file. Currently, the following seals are
2062	 * defined:
2063	 *   SEAL_SEAL: Prevent further seals from being set on this file
2064	 *   SEAL_SHRINK: Prevent the file from shrinking
2065	 *   SEAL_GROW: Prevent the file from growing
2066	 *   SEAL_WRITE: Prevent write access to the file
2067	 *
2068	 * As we don't require any trust relationship between two parties, we
2069	 * must prevent seals from being removed. Therefore, sealing a file
2070	 * only adds a given set of seals to the file, it never touches
2071	 * existing seals. Furthermore, the "setting seals"-operation can be
2072	 * sealed itself, which basically prevents any further seal from being
2073	 * added.
2074	 *
2075	 * Semantics of sealing are only defined on volatile files. Only
2076	 * anonymous shmem files support sealing. More importantly, seals are
2077	 * never written to disk. Therefore, there's no plan to support it on
2078	 * other file types.
2079	 */
2080
2081	if (file->f_op != &shmem_file_operations)
2082		return -EINVAL;
2083	if (!(file->f_mode & FMODE_WRITE))
2084		return -EPERM;
2085	if (seals & ~(unsigned int)F_ALL_SEALS)
2086		return -EINVAL;
2087
2088	inode_lock(inode);
2089
2090	if (info->seals & F_SEAL_SEAL) {
2091		error = -EPERM;
2092		goto unlock;
2093	}
2094
2095	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2096		error = mapping_deny_writable(file->f_mapping);
2097		if (error)
2098			goto unlock;
2099
2100		error = shmem_wait_for_pins(file->f_mapping);
2101		if (error) {
2102			mapping_allow_writable(file->f_mapping);
2103			goto unlock;
2104		}
2105	}
2106
2107	info->seals |= seals;
2108	error = 0;
2109
2110unlock:
2111	inode_unlock(inode);
2112	return error;
2113}
2114EXPORT_SYMBOL_GPL(shmem_add_seals);
2115
2116int shmem_get_seals(struct file *file)
2117{
2118	if (file->f_op != &shmem_file_operations)
2119		return -EINVAL;
2120
2121	return SHMEM_I(file_inode(file))->seals;
2122}
2123EXPORT_SYMBOL_GPL(shmem_get_seals);
2124
2125long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2126{
2127	long error;
2128
2129	switch (cmd) {
2130	case F_ADD_SEALS:
2131		/* disallow upper 32bit */
2132		if (arg > UINT_MAX)
2133			return -EINVAL;
2134
2135		error = shmem_add_seals(file, arg);
2136		break;
2137	case F_GET_SEALS:
2138		error = shmem_get_seals(file);
2139		break;
2140	default:
2141		error = -EINVAL;
2142		break;
2143	}
2144
2145	return error;
2146}
2147
2148static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2149							 loff_t len)
2150{
2151	struct inode *inode = file_inode(file);
2152	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2153	struct shmem_inode_info *info = SHMEM_I(inode);
2154	struct shmem_falloc shmem_falloc;
2155	pgoff_t start, index, end;
2156	int error;
2157
2158	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2159		return -EOPNOTSUPP;
2160
2161	inode_lock(inode);
2162
2163	if (mode & FALLOC_FL_PUNCH_HOLE) {
2164		struct address_space *mapping = file->f_mapping;
2165		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2166		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2167		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2168
2169		/* protected by i_mutex */
2170		if (info->seals & F_SEAL_WRITE) {
2171			error = -EPERM;
2172			goto out;
2173		}
2174
2175		shmem_falloc.waitq = &shmem_falloc_waitq;
2176		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2177		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2178		spin_lock(&inode->i_lock);
2179		inode->i_private = &shmem_falloc;
2180		spin_unlock(&inode->i_lock);
2181
2182		if ((u64)unmap_end > (u64)unmap_start)
2183			unmap_mapping_range(mapping, unmap_start,
2184					    1 + unmap_end - unmap_start, 0);
2185		shmem_truncate_range(inode, offset, offset + len - 1);
2186		/* No need to unmap again: hole-punching leaves COWed pages */
2187
2188		spin_lock(&inode->i_lock);
2189		inode->i_private = NULL;
2190		wake_up_all(&shmem_falloc_waitq);
 
2191		spin_unlock(&inode->i_lock);
2192		error = 0;
2193		goto out;
2194	}
2195
2196	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2197	error = inode_newsize_ok(inode, offset + len);
2198	if (error)
2199		goto out;
2200
2201	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2202		error = -EPERM;
2203		goto out;
2204	}
2205
2206	start = offset >> PAGE_SHIFT;
2207	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2208	/* Try to avoid a swapstorm if len is impossible to satisfy */
2209	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2210		error = -ENOSPC;
2211		goto out;
2212	}
2213
2214	shmem_falloc.waitq = NULL;
2215	shmem_falloc.start = start;
2216	shmem_falloc.next  = start;
2217	shmem_falloc.nr_falloced = 0;
2218	shmem_falloc.nr_unswapped = 0;
2219	spin_lock(&inode->i_lock);
2220	inode->i_private = &shmem_falloc;
2221	spin_unlock(&inode->i_lock);
2222
2223	for (index = start; index < end; index++) {
2224		struct page *page;
2225
2226		/*
2227		 * Good, the fallocate(2) manpage permits EINTR: we may have
2228		 * been interrupted because we are using up too much memory.
2229		 */
2230		if (signal_pending(current))
2231			error = -EINTR;
2232		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2233			error = -ENOMEM;
2234		else
2235			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2236									NULL);
2237		if (error) {
2238			/* Remove the !PageUptodate pages we added */
2239			shmem_undo_range(inode,
2240				(loff_t)start << PAGE_SHIFT,
2241				(loff_t)index << PAGE_SHIFT, true);
 
 
2242			goto undone;
2243		}
2244
2245		/*
2246		 * Inform shmem_writepage() how far we have reached.
2247		 * No need for lock or barrier: we have the page lock.
2248		 */
2249		shmem_falloc.next++;
2250		if (!PageUptodate(page))
2251			shmem_falloc.nr_falloced++;
2252
2253		/*
2254		 * If !PageUptodate, leave it that way so that freeable pages
2255		 * can be recognized if we need to rollback on error later.
2256		 * But set_page_dirty so that memory pressure will swap rather
2257		 * than free the pages we are allocating (and SGP_CACHE pages
2258		 * might still be clean: we now need to mark those dirty too).
2259		 */
2260		set_page_dirty(page);
2261		unlock_page(page);
2262		put_page(page);
2263		cond_resched();
2264	}
2265
2266	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2267		i_size_write(inode, offset + len);
2268	inode->i_ctime = CURRENT_TIME;
2269undone:
2270	spin_lock(&inode->i_lock);
2271	inode->i_private = NULL;
2272	spin_unlock(&inode->i_lock);
2273out:
2274	inode_unlock(inode);
2275	return error;
2276}
2277
2278static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2279{
2280	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2281
2282	buf->f_type = TMPFS_MAGIC;
2283	buf->f_bsize = PAGE_SIZE;
2284	buf->f_namelen = NAME_MAX;
2285	if (sbinfo->max_blocks) {
2286		buf->f_blocks = sbinfo->max_blocks;
2287		buf->f_bavail =
2288		buf->f_bfree  = sbinfo->max_blocks -
2289				percpu_counter_sum(&sbinfo->used_blocks);
2290	}
2291	if (sbinfo->max_inodes) {
2292		buf->f_files = sbinfo->max_inodes;
2293		buf->f_ffree = sbinfo->free_inodes;
2294	}
2295	/* else leave those fields 0 like simple_statfs */
2296	return 0;
2297}
2298
2299/*
2300 * File creation. Allocate an inode, and we're done..
2301 */
2302static int
2303shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2304{
2305	struct inode *inode;
2306	int error = -ENOSPC;
2307
2308	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2309	if (inode) {
2310		error = simple_acl_create(dir, inode);
2311		if (error)
2312			goto out_iput;
2313		error = security_inode_init_security(inode, dir,
2314						     &dentry->d_name,
2315						     shmem_initxattrs, NULL);
2316		if (error && error != -EOPNOTSUPP)
2317			goto out_iput;
2318
2319		error = 0;
2320		dir->i_size += BOGO_DIRENT_SIZE;
2321		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2322		d_instantiate(dentry, inode);
2323		dget(dentry); /* Extra count - pin the dentry in core */
2324	}
2325	return error;
2326out_iput:
2327	iput(inode);
2328	return error;
2329}
2330
2331static int
2332shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2333{
2334	struct inode *inode;
2335	int error = -ENOSPC;
2336
2337	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2338	if (inode) {
2339		error = security_inode_init_security(inode, dir,
2340						     NULL,
2341						     shmem_initxattrs, NULL);
2342		if (error && error != -EOPNOTSUPP)
2343			goto out_iput;
2344		error = simple_acl_create(dir, inode);
2345		if (error)
2346			goto out_iput;
2347		d_tmpfile(dentry, inode);
2348	}
2349	return error;
2350out_iput:
2351	iput(inode);
2352	return error;
2353}
2354
2355static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2356{
2357	int error;
2358
2359	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2360		return error;
2361	inc_nlink(dir);
2362	return 0;
2363}
2364
2365static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2366		bool excl)
2367{
2368	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2369}
2370
2371/*
2372 * Link a file..
2373 */
2374static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2375{
2376	struct inode *inode = d_inode(old_dentry);
2377	int ret;
2378
2379	/*
2380	 * No ordinary (disk based) filesystem counts links as inodes;
2381	 * but each new link needs a new dentry, pinning lowmem, and
2382	 * tmpfs dentries cannot be pruned until they are unlinked.
 
 
2383	 */
2384	ret = shmem_reserve_inode(inode->i_sb);
2385	if (ret)
2386		goto out;
 
 
2387
2388	dir->i_size += BOGO_DIRENT_SIZE;
2389	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2390	inc_nlink(inode);
2391	ihold(inode);	/* New dentry reference */
2392	dget(dentry);		/* Extra pinning count for the created dentry */
2393	d_instantiate(dentry, inode);
2394out:
2395	return ret;
2396}
2397
2398static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2399{
2400	struct inode *inode = d_inode(dentry);
2401
2402	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2403		shmem_free_inode(inode->i_sb);
2404
2405	dir->i_size -= BOGO_DIRENT_SIZE;
2406	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2407	drop_nlink(inode);
2408	dput(dentry);	/* Undo the count from "create" - this does all the work */
2409	return 0;
2410}
2411
2412static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2413{
2414	if (!simple_empty(dentry))
2415		return -ENOTEMPTY;
2416
2417	drop_nlink(d_inode(dentry));
2418	drop_nlink(dir);
2419	return shmem_unlink(dir, dentry);
2420}
2421
2422static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2423{
2424	bool old_is_dir = d_is_dir(old_dentry);
2425	bool new_is_dir = d_is_dir(new_dentry);
2426
2427	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2428		if (old_is_dir) {
2429			drop_nlink(old_dir);
2430			inc_nlink(new_dir);
2431		} else {
2432			drop_nlink(new_dir);
2433			inc_nlink(old_dir);
2434		}
2435	}
2436	old_dir->i_ctime = old_dir->i_mtime =
2437	new_dir->i_ctime = new_dir->i_mtime =
2438	d_inode(old_dentry)->i_ctime =
2439	d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2440
2441	return 0;
2442}
2443
2444static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2445{
2446	struct dentry *whiteout;
2447	int error;
2448
2449	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2450	if (!whiteout)
2451		return -ENOMEM;
2452
2453	error = shmem_mknod(old_dir, whiteout,
2454			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2455	dput(whiteout);
2456	if (error)
2457		return error;
2458
2459	/*
2460	 * Cheat and hash the whiteout while the old dentry is still in
2461	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2462	 *
2463	 * d_lookup() will consistently find one of them at this point,
2464	 * not sure which one, but that isn't even important.
2465	 */
2466	d_rehash(whiteout);
2467	return 0;
2468}
2469
2470/*
2471 * The VFS layer already does all the dentry stuff for rename,
2472 * we just have to decrement the usage count for the target if
2473 * it exists so that the VFS layer correctly free's it when it
2474 * gets overwritten.
2475 */
2476static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2477{
2478	struct inode *inode = d_inode(old_dentry);
2479	int they_are_dirs = S_ISDIR(inode->i_mode);
2480
2481	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2482		return -EINVAL;
2483
2484	if (flags & RENAME_EXCHANGE)
2485		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2486
2487	if (!simple_empty(new_dentry))
2488		return -ENOTEMPTY;
2489
2490	if (flags & RENAME_WHITEOUT) {
2491		int error;
2492
2493		error = shmem_whiteout(old_dir, old_dentry);
2494		if (error)
2495			return error;
2496	}
2497
2498	if (d_really_is_positive(new_dentry)) {
2499		(void) shmem_unlink(new_dir, new_dentry);
2500		if (they_are_dirs) {
2501			drop_nlink(d_inode(new_dentry));
2502			drop_nlink(old_dir);
2503		}
2504	} else if (they_are_dirs) {
2505		drop_nlink(old_dir);
2506		inc_nlink(new_dir);
2507	}
2508
2509	old_dir->i_size -= BOGO_DIRENT_SIZE;
2510	new_dir->i_size += BOGO_DIRENT_SIZE;
2511	old_dir->i_ctime = old_dir->i_mtime =
2512	new_dir->i_ctime = new_dir->i_mtime =
2513	inode->i_ctime = CURRENT_TIME;
2514	return 0;
2515}
2516
2517static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2518{
2519	int error;
2520	int len;
2521	struct inode *inode;
2522	struct page *page;
2523	struct shmem_inode_info *info;
2524
2525	len = strlen(symname) + 1;
2526	if (len > PAGE_SIZE)
2527		return -ENAMETOOLONG;
2528
2529	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
 
2530	if (!inode)
2531		return -ENOSPC;
2532
2533	error = security_inode_init_security(inode, dir, &dentry->d_name,
2534					     shmem_initxattrs, NULL);
2535	if (error) {
2536		if (error != -EOPNOTSUPP) {
2537			iput(inode);
2538			return error;
2539		}
2540		error = 0;
2541	}
2542
2543	info = SHMEM_I(inode);
2544	inode->i_size = len-1;
2545	if (len <= SHORT_SYMLINK_LEN) {
2546		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2547		if (!inode->i_link) {
2548			iput(inode);
2549			return -ENOMEM;
2550		}
2551		inode->i_op = &shmem_short_symlink_operations;
2552	} else {
2553		inode_nohighmem(inode);
2554		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2555		if (error) {
2556			iput(inode);
2557			return error;
2558		}
2559		inode->i_mapping->a_ops = &shmem_aops;
2560		inode->i_op = &shmem_symlink_inode_operations;
2561		memcpy(page_address(page), symname, len);
2562		SetPageUptodate(page);
2563		set_page_dirty(page);
2564		unlock_page(page);
2565		put_page(page);
2566	}
2567	dir->i_size += BOGO_DIRENT_SIZE;
2568	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2569	d_instantiate(dentry, inode);
2570	dget(dentry);
2571	return 0;
2572}
2573
2574static void shmem_put_link(void *arg)
2575{
2576	mark_page_accessed(arg);
2577	put_page(arg);
2578}
2579
2580static const char *shmem_get_link(struct dentry *dentry,
2581				  struct inode *inode,
2582				  struct delayed_call *done)
2583{
2584	struct page *page = NULL;
2585	int error;
2586	if (!dentry) {
2587		page = find_get_page(inode->i_mapping, 0);
2588		if (!page)
2589			return ERR_PTR(-ECHILD);
2590		if (!PageUptodate(page)) {
2591			put_page(page);
2592			return ERR_PTR(-ECHILD);
2593		}
2594	} else {
2595		error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2596		if (error)
2597			return ERR_PTR(error);
2598		unlock_page(page);
2599	}
2600	set_delayed_call(done, shmem_put_link, page);
2601	return page_address(page);
2602}
2603
2604#ifdef CONFIG_TMPFS_XATTR
2605/*
2606 * Superblocks without xattr inode operations may get some security.* xattr
2607 * support from the LSM "for free". As soon as we have any other xattrs
2608 * like ACLs, we also need to implement the security.* handlers at
2609 * filesystem level, though.
2610 */
2611
2612/*
2613 * Callback for security_inode_init_security() for acquiring xattrs.
2614 */
2615static int shmem_initxattrs(struct inode *inode,
2616			    const struct xattr *xattr_array,
2617			    void *fs_info)
2618{
2619	struct shmem_inode_info *info = SHMEM_I(inode);
2620	const struct xattr *xattr;
2621	struct simple_xattr *new_xattr;
2622	size_t len;
2623
2624	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2625		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2626		if (!new_xattr)
2627			return -ENOMEM;
2628
2629		len = strlen(xattr->name) + 1;
2630		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2631					  GFP_KERNEL);
2632		if (!new_xattr->name) {
2633			kfree(new_xattr);
2634			return -ENOMEM;
2635		}
2636
2637		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2638		       XATTR_SECURITY_PREFIX_LEN);
2639		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2640		       xattr->name, len);
2641
2642		simple_xattr_list_add(&info->xattrs, new_xattr);
2643	}
2644
2645	return 0;
2646}
2647
2648static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2649				   struct dentry *dentry, const char *name,
2650				   void *buffer, size_t size)
2651{
2652	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2653
2654	name = xattr_full_name(handler, name);
2655	return simple_xattr_get(&info->xattrs, name, buffer, size);
2656}
2657
2658static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2659				   struct dentry *dentry, const char *name,
2660				   const void *value, size_t size, int flags)
 
2661{
2662	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2663
2664	name = xattr_full_name(handler, name);
2665	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2666}
2667
2668static const struct xattr_handler shmem_security_xattr_handler = {
2669	.prefix = XATTR_SECURITY_PREFIX,
2670	.get = shmem_xattr_handler_get,
2671	.set = shmem_xattr_handler_set,
2672};
2673
2674static const struct xattr_handler shmem_trusted_xattr_handler = {
2675	.prefix = XATTR_TRUSTED_PREFIX,
2676	.get = shmem_xattr_handler_get,
2677	.set = shmem_xattr_handler_set,
2678};
2679
2680static const struct xattr_handler *shmem_xattr_handlers[] = {
2681#ifdef CONFIG_TMPFS_POSIX_ACL
2682	&posix_acl_access_xattr_handler,
2683	&posix_acl_default_xattr_handler,
2684#endif
2685	&shmem_security_xattr_handler,
2686	&shmem_trusted_xattr_handler,
2687	NULL
2688};
2689
2690static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2691{
2692	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2693	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2694}
2695#endif /* CONFIG_TMPFS_XATTR */
2696
2697static const struct inode_operations shmem_short_symlink_operations = {
2698	.readlink	= generic_readlink,
2699	.get_link	= simple_get_link,
2700#ifdef CONFIG_TMPFS_XATTR
2701	.setxattr	= generic_setxattr,
2702	.getxattr	= generic_getxattr,
2703	.listxattr	= shmem_listxattr,
2704	.removexattr	= generic_removexattr,
2705#endif
2706};
2707
2708static const struct inode_operations shmem_symlink_inode_operations = {
2709	.readlink	= generic_readlink,
2710	.get_link	= shmem_get_link,
2711#ifdef CONFIG_TMPFS_XATTR
2712	.setxattr	= generic_setxattr,
2713	.getxattr	= generic_getxattr,
2714	.listxattr	= shmem_listxattr,
2715	.removexattr	= generic_removexattr,
2716#endif
2717};
2718
2719static struct dentry *shmem_get_parent(struct dentry *child)
2720{
2721	return ERR_PTR(-ESTALE);
2722}
2723
2724static int shmem_match(struct inode *ino, void *vfh)
2725{
2726	__u32 *fh = vfh;
2727	__u64 inum = fh[2];
2728	inum = (inum << 32) | fh[1];
2729	return ino->i_ino == inum && fh[0] == ino->i_generation;
2730}
2731
 
 
 
 
 
 
 
 
 
2732static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2733		struct fid *fid, int fh_len, int fh_type)
2734{
2735	struct inode *inode;
2736	struct dentry *dentry = NULL;
2737	u64 inum;
2738
2739	if (fh_len < 3)
2740		return NULL;
2741
2742	inum = fid->raw[2];
2743	inum = (inum << 32) | fid->raw[1];
2744
2745	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2746			shmem_match, fid->raw);
2747	if (inode) {
2748		dentry = d_find_alias(inode);
2749		iput(inode);
2750	}
2751
2752	return dentry;
2753}
2754
2755static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2756				struct inode *parent)
2757{
2758	if (*len < 3) {
2759		*len = 3;
2760		return FILEID_INVALID;
2761	}
2762
2763	if (inode_unhashed(inode)) {
2764		/* Unfortunately insert_inode_hash is not idempotent,
2765		 * so as we hash inodes here rather than at creation
2766		 * time, we need a lock to ensure we only try
2767		 * to do it once
2768		 */
2769		static DEFINE_SPINLOCK(lock);
2770		spin_lock(&lock);
2771		if (inode_unhashed(inode))
2772			__insert_inode_hash(inode,
2773					    inode->i_ino + inode->i_generation);
2774		spin_unlock(&lock);
2775	}
2776
2777	fh[0] = inode->i_generation;
2778	fh[1] = inode->i_ino;
2779	fh[2] = ((__u64)inode->i_ino) >> 32;
2780
2781	*len = 3;
2782	return 1;
2783}
2784
2785static const struct export_operations shmem_export_ops = {
2786	.get_parent     = shmem_get_parent,
2787	.encode_fh      = shmem_encode_fh,
2788	.fh_to_dentry	= shmem_fh_to_dentry,
2789};
2790
2791static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2792			       bool remount)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2793{
2794	char *this_char, *value, *rest;
2795	struct mempolicy *mpol = NULL;
2796	uid_t uid;
2797	gid_t gid;
 
 
 
2798
2799	while (options != NULL) {
2800		this_char = options;
2801		for (;;) {
2802			/*
2803			 * NUL-terminate this option: unfortunately,
2804			 * mount options form a comma-separated list,
2805			 * but mpol's nodelist may also contain commas.
2806			 */
2807			options = strchr(options, ',');
2808			if (options == NULL)
2809				break;
2810			options++;
2811			if (!isdigit(*options)) {
2812				options[-1] = '\0';
2813				break;
2814			}
2815		}
2816		if (!*this_char)
2817			continue;
2818		if ((value = strchr(this_char,'=')) != NULL) {
2819			*value++ = 0;
2820		} else {
2821			pr_err("tmpfs: No value for mount option '%s'\n",
2822			       this_char);
2823			goto error;
2824		}
2825
2826		if (!strcmp(this_char,"size")) {
2827			unsigned long long size;
2828			size = memparse(value,&rest);
2829			if (*rest == '%') {
2830				size <<= PAGE_SHIFT;
2831				size *= totalram_pages;
2832				do_div(size, 100);
2833				rest++;
2834			}
2835			if (*rest)
2836				goto bad_val;
2837			sbinfo->max_blocks =
2838				DIV_ROUND_UP(size, PAGE_SIZE);
2839		} else if (!strcmp(this_char,"nr_blocks")) {
2840			sbinfo->max_blocks = memparse(value, &rest);
2841			if (*rest)
2842				goto bad_val;
2843		} else if (!strcmp(this_char,"nr_inodes")) {
2844			sbinfo->max_inodes = memparse(value, &rest);
2845			if (*rest)
2846				goto bad_val;
2847		} else if (!strcmp(this_char,"mode")) {
2848			if (remount)
2849				continue;
2850			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2851			if (*rest)
2852				goto bad_val;
2853		} else if (!strcmp(this_char,"uid")) {
2854			if (remount)
2855				continue;
2856			uid = simple_strtoul(value, &rest, 0);
2857			if (*rest)
2858				goto bad_val;
2859			sbinfo->uid = make_kuid(current_user_ns(), uid);
2860			if (!uid_valid(sbinfo->uid))
2861				goto bad_val;
2862		} else if (!strcmp(this_char,"gid")) {
2863			if (remount)
2864				continue;
2865			gid = simple_strtoul(value, &rest, 0);
2866			if (*rest)
2867				goto bad_val;
2868			sbinfo->gid = make_kgid(current_user_ns(), gid);
2869			if (!gid_valid(sbinfo->gid))
2870				goto bad_val;
2871		} else if (!strcmp(this_char,"mpol")) {
2872			mpol_put(mpol);
2873			mpol = NULL;
2874			if (mpol_parse_str(value, &mpol))
2875				goto bad_val;
2876		} else {
2877			pr_err("tmpfs: Bad mount option %s\n", this_char);
2878			goto error;
2879		}
2880	}
2881	sbinfo->mpol = mpol;
2882	return 0;
2883
2884bad_val:
2885	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
2886	       value, this_char);
2887error:
2888	mpol_put(mpol);
2889	return 1;
2890
2891}
2892
2893static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
 
 
 
 
 
 
 
2894{
2895	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2896	struct shmem_sb_info config = *sbinfo;
2897	unsigned long inodes;
2898	int error = -EINVAL;
2899
2900	config.mpol = NULL;
2901	if (shmem_parse_options(data, &config, true))
2902		return error;
2903
2904	spin_lock(&sbinfo->stat_lock);
2905	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2906	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2907		goto out;
2908	if (config.max_inodes < inodes)
2909		goto out;
2910	/*
2911	 * Those tests disallow limited->unlimited while any are in use;
2912	 * but we must separately disallow unlimited->limited, because
2913	 * in that case we have no record of how much is already in use.
2914	 */
2915	if (config.max_blocks && !sbinfo->max_blocks)
2916		goto out;
2917	if (config.max_inodes && !sbinfo->max_inodes)
2918		goto out;
 
 
 
 
 
 
 
 
2919
2920	error = 0;
2921	sbinfo->max_blocks  = config.max_blocks;
2922	sbinfo->max_inodes  = config.max_inodes;
2923	sbinfo->free_inodes = config.max_inodes - inodes;
 
 
 
 
2924
2925	/*
2926	 * Preserve previous mempolicy unless mpol remount option was specified.
2927	 */
2928	if (config.mpol) {
2929		mpol_put(sbinfo->mpol);
2930		sbinfo->mpol = config.mpol;	/* transfers initial ref */
 
2931	}
 
 
2932out:
2933	spin_unlock(&sbinfo->stat_lock);
2934	return error;
2935}
2936
2937static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2938{
2939	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2940
2941	if (sbinfo->max_blocks != shmem_default_max_blocks())
2942		seq_printf(seq, ",size=%luk",
2943			sbinfo->max_blocks << (PAGE_SHIFT - 10));
2944	if (sbinfo->max_inodes != shmem_default_max_inodes())
2945		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2946	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2947		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2948	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2949		seq_printf(seq, ",uid=%u",
2950				from_kuid_munged(&init_user_ns, sbinfo->uid));
2951	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2952		seq_printf(seq, ",gid=%u",
2953				from_kgid_munged(&init_user_ns, sbinfo->gid));
 
 
 
 
 
2954	shmem_show_mpol(seq, sbinfo->mpol);
2955	return 0;
2956}
2957
2958#define MFD_NAME_PREFIX "memfd:"
2959#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2960#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2961
2962#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2963
2964SYSCALL_DEFINE2(memfd_create,
2965		const char __user *, uname,
2966		unsigned int, flags)
2967{
2968	struct shmem_inode_info *info;
2969	struct file *file;
2970	int fd, error;
2971	char *name;
2972	long len;
2973
2974	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2975		return -EINVAL;
2976
2977	/* length includes terminating zero */
2978	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2979	if (len <= 0)
2980		return -EFAULT;
2981	if (len > MFD_NAME_MAX_LEN + 1)
2982		return -EINVAL;
2983
2984	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2985	if (!name)
2986		return -ENOMEM;
2987
2988	strcpy(name, MFD_NAME_PREFIX);
2989	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2990		error = -EFAULT;
2991		goto err_name;
2992	}
2993
2994	/* terminating-zero may have changed after strnlen_user() returned */
2995	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2996		error = -EFAULT;
2997		goto err_name;
2998	}
2999
3000	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3001	if (fd < 0) {
3002		error = fd;
3003		goto err_name;
3004	}
3005
3006	file = shmem_file_setup(name, 0, VM_NORESERVE);
3007	if (IS_ERR(file)) {
3008		error = PTR_ERR(file);
3009		goto err_fd;
3010	}
3011	info = SHMEM_I(file_inode(file));
3012	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3013	file->f_flags |= O_RDWR | O_LARGEFILE;
3014	if (flags & MFD_ALLOW_SEALING)
3015		info->seals &= ~F_SEAL_SEAL;
3016
3017	fd_install(fd, file);
3018	kfree(name);
3019	return fd;
3020
3021err_fd:
3022	put_unused_fd(fd);
3023err_name:
3024	kfree(name);
3025	return error;
3026}
3027
3028#endif /* CONFIG_TMPFS */
3029
3030static void shmem_put_super(struct super_block *sb)
3031{
3032	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3033
3034	percpu_counter_destroy(&sbinfo->used_blocks);
3035	mpol_put(sbinfo->mpol);
3036	kfree(sbinfo);
3037	sb->s_fs_info = NULL;
3038}
3039
3040int shmem_fill_super(struct super_block *sb, void *data, int silent)
3041{
 
3042	struct inode *inode;
3043	struct shmem_sb_info *sbinfo;
3044	int err = -ENOMEM;
3045
3046	/* Round up to L1_CACHE_BYTES to resist false sharing */
3047	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3048				L1_CACHE_BYTES), GFP_KERNEL);
3049	if (!sbinfo)
3050		return -ENOMEM;
3051
3052	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3053	sbinfo->uid = current_fsuid();
3054	sbinfo->gid = current_fsgid();
3055	sb->s_fs_info = sbinfo;
3056
3057#ifdef CONFIG_TMPFS
3058	/*
3059	 * Per default we only allow half of the physical ram per
3060	 * tmpfs instance, limiting inodes to one per page of lowmem;
3061	 * but the internal instance is left unlimited.
3062	 */
3063	if (!(sb->s_flags & MS_KERNMOUNT)) {
3064		sbinfo->max_blocks = shmem_default_max_blocks();
3065		sbinfo->max_inodes = shmem_default_max_inodes();
3066		if (shmem_parse_options(data, sbinfo, false)) {
3067			err = -EINVAL;
3068			goto failed;
3069		}
3070	} else {
3071		sb->s_flags |= MS_NOUSER;
3072	}
3073	sb->s_export_op = &shmem_export_ops;
3074	sb->s_flags |= MS_NOSEC;
3075#else
3076	sb->s_flags |= MS_NOUSER;
3077#endif
 
 
 
 
 
 
 
 
3078
3079	spin_lock_init(&sbinfo->stat_lock);
3080	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3081		goto failed;
3082	sbinfo->free_inodes = sbinfo->max_inodes;
 
3083
3084	sb->s_maxbytes = MAX_LFS_FILESIZE;
3085	sb->s_blocksize = PAGE_SIZE;
3086	sb->s_blocksize_bits = PAGE_SHIFT;
3087	sb->s_magic = TMPFS_MAGIC;
3088	sb->s_op = &shmem_ops;
3089	sb->s_time_gran = 1;
3090#ifdef CONFIG_TMPFS_XATTR
3091	sb->s_xattr = shmem_xattr_handlers;
3092#endif
3093#ifdef CONFIG_TMPFS_POSIX_ACL
3094	sb->s_flags |= MS_POSIXACL;
3095#endif
 
3096
3097	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3098	if (!inode)
3099		goto failed;
3100	inode->i_uid = sbinfo->uid;
3101	inode->i_gid = sbinfo->gid;
3102	sb->s_root = d_make_root(inode);
3103	if (!sb->s_root)
3104		goto failed;
3105	return 0;
3106
3107failed:
3108	shmem_put_super(sb);
3109	return err;
3110}
3111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3112static struct kmem_cache *shmem_inode_cachep;
3113
3114static struct inode *shmem_alloc_inode(struct super_block *sb)
3115{
3116	struct shmem_inode_info *info;
3117	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3118	if (!info)
3119		return NULL;
3120	return &info->vfs_inode;
3121}
3122
3123static void shmem_destroy_callback(struct rcu_head *head)
3124{
3125	struct inode *inode = container_of(head, struct inode, i_rcu);
3126	kfree(inode->i_link);
3127	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3128}
3129
3130static void shmem_destroy_inode(struct inode *inode)
3131{
3132	if (S_ISREG(inode->i_mode))
3133		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3134	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3135}
3136
3137static void shmem_init_inode(void *foo)
3138{
3139	struct shmem_inode_info *info = foo;
3140	inode_init_once(&info->vfs_inode);
3141}
3142
3143static int shmem_init_inodecache(void)
3144{
3145	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3146				sizeof(struct shmem_inode_info),
3147				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3148	return 0;
3149}
3150
3151static void shmem_destroy_inodecache(void)
3152{
3153	kmem_cache_destroy(shmem_inode_cachep);
3154}
3155
3156static const struct address_space_operations shmem_aops = {
3157	.writepage	= shmem_writepage,
3158	.set_page_dirty	= __set_page_dirty_no_writeback,
3159#ifdef CONFIG_TMPFS
3160	.write_begin	= shmem_write_begin,
3161	.write_end	= shmem_write_end,
3162#endif
3163#ifdef CONFIG_MIGRATION
3164	.migratepage	= migrate_page,
3165#endif
3166	.error_remove_page = generic_error_remove_page,
3167};
3168
3169static const struct file_operations shmem_file_operations = {
3170	.mmap		= shmem_mmap,
 
3171#ifdef CONFIG_TMPFS
3172	.llseek		= shmem_file_llseek,
3173	.read_iter	= shmem_file_read_iter,
3174	.write_iter	= generic_file_write_iter,
3175	.fsync		= noop_fsync,
3176	.splice_read	= shmem_file_splice_read,
3177	.splice_write	= iter_file_splice_write,
3178	.fallocate	= shmem_fallocate,
3179#endif
3180};
3181
3182static const struct inode_operations shmem_inode_operations = {
3183	.getattr	= shmem_getattr,
3184	.setattr	= shmem_setattr,
3185#ifdef CONFIG_TMPFS_XATTR
3186	.setxattr	= generic_setxattr,
3187	.getxattr	= generic_getxattr,
3188	.listxattr	= shmem_listxattr,
3189	.removexattr	= generic_removexattr,
3190	.set_acl	= simple_set_acl,
3191#endif
3192};
3193
3194static const struct inode_operations shmem_dir_inode_operations = {
3195#ifdef CONFIG_TMPFS
3196	.create		= shmem_create,
3197	.lookup		= simple_lookup,
3198	.link		= shmem_link,
3199	.unlink		= shmem_unlink,
3200	.symlink	= shmem_symlink,
3201	.mkdir		= shmem_mkdir,
3202	.rmdir		= shmem_rmdir,
3203	.mknod		= shmem_mknod,
3204	.rename2	= shmem_rename2,
3205	.tmpfile	= shmem_tmpfile,
3206#endif
3207#ifdef CONFIG_TMPFS_XATTR
3208	.setxattr	= generic_setxattr,
3209	.getxattr	= generic_getxattr,
3210	.listxattr	= shmem_listxattr,
3211	.removexattr	= generic_removexattr,
3212#endif
3213#ifdef CONFIG_TMPFS_POSIX_ACL
3214	.setattr	= shmem_setattr,
3215	.set_acl	= simple_set_acl,
3216#endif
3217};
3218
3219static const struct inode_operations shmem_special_inode_operations = {
3220#ifdef CONFIG_TMPFS_XATTR
3221	.setxattr	= generic_setxattr,
3222	.getxattr	= generic_getxattr,
3223	.listxattr	= shmem_listxattr,
3224	.removexattr	= generic_removexattr,
3225#endif
3226#ifdef CONFIG_TMPFS_POSIX_ACL
3227	.setattr	= shmem_setattr,
3228	.set_acl	= simple_set_acl,
3229#endif
3230};
3231
3232static const struct super_operations shmem_ops = {
3233	.alloc_inode	= shmem_alloc_inode,
 
3234	.destroy_inode	= shmem_destroy_inode,
3235#ifdef CONFIG_TMPFS
3236	.statfs		= shmem_statfs,
3237	.remount_fs	= shmem_remount_fs,
3238	.show_options	= shmem_show_options,
3239#endif
3240	.evict_inode	= shmem_evict_inode,
3241	.drop_inode	= generic_delete_inode,
3242	.put_super	= shmem_put_super,
 
 
 
 
3243};
3244
3245static const struct vm_operations_struct shmem_vm_ops = {
3246	.fault		= shmem_fault,
3247	.map_pages	= filemap_map_pages,
3248#ifdef CONFIG_NUMA
3249	.set_policy     = shmem_set_policy,
3250	.get_policy     = shmem_get_policy,
3251#endif
3252};
3253
3254static struct dentry *shmem_mount(struct file_system_type *fs_type,
3255	int flags, const char *dev_name, void *data)
3256{
3257	return mount_nodev(fs_type, flags, data, shmem_fill_super);
 
 
 
 
 
 
 
 
 
 
 
 
3258}
3259
3260static struct file_system_type shmem_fs_type = {
3261	.owner		= THIS_MODULE,
3262	.name		= "tmpfs",
3263	.mount		= shmem_mount,
 
 
 
3264	.kill_sb	= kill_litter_super,
3265	.fs_flags	= FS_USERNS_MOUNT,
3266};
3267
3268int __init shmem_init(void)
3269{
3270	int error;
3271
3272	/* If rootfs called this, don't re-init */
3273	if (shmem_inode_cachep)
3274		return 0;
3275
3276	error = shmem_init_inodecache();
3277	if (error)
3278		goto out3;
3279
3280	error = register_filesystem(&shmem_fs_type);
3281	if (error) {
3282		pr_err("Could not register tmpfs\n");
3283		goto out2;
3284	}
3285
3286	shm_mnt = kern_mount(&shmem_fs_type);
3287	if (IS_ERR(shm_mnt)) {
3288		error = PTR_ERR(shm_mnt);
3289		pr_err("Could not kern_mount tmpfs\n");
3290		goto out1;
3291	}
 
 
 
 
 
 
 
3292	return 0;
3293
3294out1:
3295	unregister_filesystem(&shmem_fs_type);
3296out2:
3297	shmem_destroy_inodecache();
3298out3:
3299	shm_mnt = ERR_PTR(error);
3300	return error;
3301}
3302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3303#else /* !CONFIG_SHMEM */
3304
3305/*
3306 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3307 *
3308 * This is intended for small system where the benefits of the full
3309 * shmem code (swap-backed and resource-limited) are outweighed by
3310 * their complexity. On systems without swap this code should be
3311 * effectively equivalent, but much lighter weight.
3312 */
3313
3314static struct file_system_type shmem_fs_type = {
3315	.name		= "tmpfs",
3316	.mount		= ramfs_mount,
 
3317	.kill_sb	= kill_litter_super,
3318	.fs_flags	= FS_USERNS_MOUNT,
3319};
3320
3321int __init shmem_init(void)
3322{
3323	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3324
3325	shm_mnt = kern_mount(&shmem_fs_type);
3326	BUG_ON(IS_ERR(shm_mnt));
3327
3328	return 0;
3329}
3330
3331int shmem_unuse(swp_entry_t swap, struct page *page)
 
3332{
3333	return 0;
3334}
3335
3336int shmem_lock(struct file *file, int lock, struct user_struct *user)
3337{
3338	return 0;
3339}
3340
3341void shmem_unlock_mapping(struct address_space *mapping)
3342{
3343}
3344
 
 
 
 
 
 
 
 
 
3345void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3346{
3347	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3348}
3349EXPORT_SYMBOL_GPL(shmem_truncate_range);
3350
3351#define shmem_vm_ops				generic_file_vm_ops
3352#define shmem_file_operations			ramfs_file_operations
3353#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3354#define shmem_acct_size(flags, size)		0
3355#define shmem_unacct_size(flags, size)		do {} while (0)
3356
3357#endif /* CONFIG_SHMEM */
3358
3359/* common code */
3360
3361static struct dentry_operations anon_ops = {
3362	.d_dname = simple_dname
3363};
3364
3365static struct file *__shmem_file_setup(const char *name, loff_t size,
3366				       unsigned long flags, unsigned int i_flags)
3367{
 
3368	struct file *res;
3369	struct inode *inode;
3370	struct path path;
3371	struct super_block *sb;
3372	struct qstr this;
3373
3374	if (IS_ERR(shm_mnt))
3375		return ERR_CAST(shm_mnt);
3376
3377	if (size < 0 || size > MAX_LFS_FILESIZE)
3378		return ERR_PTR(-EINVAL);
3379
3380	if (shmem_acct_size(flags, size))
3381		return ERR_PTR(-ENOMEM);
3382
3383	res = ERR_PTR(-ENOMEM);
3384	this.name = name;
3385	this.len = strlen(name);
3386	this.hash = 0; /* will go */
3387	sb = shm_mnt->mnt_sb;
3388	path.mnt = mntget(shm_mnt);
3389	path.dentry = d_alloc_pseudo(sb, &this);
3390	if (!path.dentry)
3391		goto put_memory;
3392	d_set_d_op(path.dentry, &anon_ops);
3393
3394	res = ERR_PTR(-ENOSPC);
3395	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3396	if (!inode)
3397		goto put_memory;
3398
3399	inode->i_flags |= i_flags;
3400	d_instantiate(path.dentry, inode);
3401	inode->i_size = size;
3402	clear_nlink(inode);	/* It is unlinked */
3403	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
 
 
 
3404	if (IS_ERR(res))
3405		goto put_path;
3406
3407	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3408		  &shmem_file_operations);
3409	if (IS_ERR(res))
3410		goto put_path;
3411
3412	return res;
3413
3414put_memory:
3415	shmem_unacct_size(flags, size);
3416put_path:
3417	path_put(&path);
3418	return res;
3419}
3420
3421/**
3422 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3423 * 	kernel internal.  There will be NO LSM permission checks against the
3424 * 	underlying inode.  So users of this interface must do LSM checks at a
3425 *	higher layer.  The users are the big_key and shm implementations.  LSM
3426 *	checks are provided at the key or shm level rather than the inode.
3427 * @name: name for dentry (to be seen in /proc/<pid>/maps
3428 * @size: size to be set for the file
3429 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3430 */
3431struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3432{
3433	return __shmem_file_setup(name, size, flags, S_PRIVATE);
3434}
3435
3436/**
3437 * shmem_file_setup - get an unlinked file living in tmpfs
3438 * @name: name for dentry (to be seen in /proc/<pid>/maps
3439 * @size: size to be set for the file
3440 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3441 */
3442struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3443{
3444	return __shmem_file_setup(name, size, flags, 0);
3445}
3446EXPORT_SYMBOL_GPL(shmem_file_setup);
3447
3448/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3449 * shmem_zero_setup - setup a shared anonymous mapping
3450 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3451 */
3452int shmem_zero_setup(struct vm_area_struct *vma)
3453{
3454	struct file *file;
3455	loff_t size = vma->vm_end - vma->vm_start;
3456
3457	/*
3458	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3459	 * between XFS directory reading and selinux: since this file is only
3460	 * accessible to the user through its mapping, use S_PRIVATE flag to
3461	 * bypass file security, in the same way as shmem_kernel_file_setup().
3462	 */
3463	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3464	if (IS_ERR(file))
3465		return PTR_ERR(file);
3466
3467	if (vma->vm_file)
3468		fput(vma->vm_file);
3469	vma->vm_file = file;
3470	vma->vm_ops = &shmem_vm_ops;
 
 
 
 
 
 
 
3471	return 0;
3472}
3473
3474/**
3475 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3476 * @mapping:	the page's address_space
3477 * @index:	the page index
3478 * @gfp:	the page allocator flags to use if allocating
3479 *
3480 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3481 * with any new page allocations done using the specified allocation flags.
3482 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3483 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3484 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3485 *
3486 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3487 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3488 */
3489struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3490					 pgoff_t index, gfp_t gfp)
3491{
3492#ifdef CONFIG_SHMEM
3493	struct inode *inode = mapping->host;
3494	struct page *page;
3495	int error;
3496
3497	BUG_ON(mapping->a_ops != &shmem_aops);
3498	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
 
3499	if (error)
3500		page = ERR_PTR(error);
3501	else
3502		unlock_page(page);
3503	return page;
3504#else
3505	/*
3506	 * The tiny !SHMEM case uses ramfs without swap
3507	 */
3508	return read_cache_page_gfp(mapping, index, gfp);
3509#endif
3510}
3511EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);