Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
 
  31#include <linux/mm.h>
  32#include <linux/random.h>
  33#include <linux/sched/signal.h>
  34#include <linux/export.h>
  35#include <linux/swap.h>
  36#include <linux/uio.h>
  37#include <linux/khugepaged.h>
  38#include <linux/hugetlb.h>
  39#include <linux/frontswap.h>
  40#include <linux/fs_parser.h>
  41
  42#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
 
  43
  44static struct vfsmount *shm_mnt;
  45
  46#ifdef CONFIG_SHMEM
  47/*
  48 * This virtual memory filesystem is heavily based on the ramfs. It
  49 * extends ramfs by the ability to use swap and honor resource limits
  50 * which makes it a completely usable filesystem.
  51 */
  52
  53#include <linux/xattr.h>
  54#include <linux/exportfs.h>
  55#include <linux/posix_acl.h>
  56#include <linux/posix_acl_xattr.h>
  57#include <linux/mman.h>
  58#include <linux/string.h>
  59#include <linux/slab.h>
  60#include <linux/backing-dev.h>
  61#include <linux/shmem_fs.h>
  62#include <linux/writeback.h>
  63#include <linux/blkdev.h>
  64#include <linux/pagevec.h>
  65#include <linux/percpu_counter.h>
  66#include <linux/falloc.h>
  67#include <linux/splice.h>
  68#include <linux/security.h>
  69#include <linux/swapops.h>
  70#include <linux/mempolicy.h>
  71#include <linux/namei.h>
  72#include <linux/ctype.h>
  73#include <linux/migrate.h>
  74#include <linux/highmem.h>
  75#include <linux/seq_file.h>
  76#include <linux/magic.h>
  77#include <linux/syscalls.h>
  78#include <linux/fcntl.h>
  79#include <uapi/linux/memfd.h>
  80#include <linux/userfaultfd_k.h>
  81#include <linux/rmap.h>
  82#include <linux/uuid.h>
  83
  84#include <linux/uaccess.h>
  85#include <asm/pgtable.h>
  86
  87#include "internal.h"
  88
  89#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  90#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  91
  92/* Pretend that each entry is of this size in directory's i_size */
  93#define BOGO_DIRENT_SIZE 20
  94
  95/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  96#define SHORT_SYMLINK_LEN 128
  97
  98/*
  99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
 100 * inode->i_private (with i_mutex making sure that it has only one user at
 101 * a time): we would prefer not to enlarge the shmem inode just for that.
 102 */
 103struct shmem_falloc {
 104	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
 105	pgoff_t start;		/* start of range currently being fallocated */
 106	pgoff_t next;		/* the next page offset to be fallocated */
 107	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
 108	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
 109};
 110
 111struct shmem_options {
 112	unsigned long long blocks;
 113	unsigned long long inodes;
 114	struct mempolicy *mpol;
 115	kuid_t uid;
 116	kgid_t gid;
 117	umode_t mode;
 
 118	int huge;
 119	int seen;
 120#define SHMEM_SEEN_BLOCKS 1
 121#define SHMEM_SEEN_INODES 2
 122#define SHMEM_SEEN_HUGE 4
 
 123};
 124
 125#ifdef CONFIG_TMPFS
 126static unsigned long shmem_default_max_blocks(void)
 127{
 128	return totalram_pages() / 2;
 129}
 130
 131static unsigned long shmem_default_max_inodes(void)
 132{
 133	unsigned long nr_pages = totalram_pages();
 134
 135	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
 136}
 137#endif
 138
 139static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 140static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 141				struct shmem_inode_info *info, pgoff_t index);
 142static int shmem_swapin_page(struct inode *inode, pgoff_t index,
 143			     struct page **pagep, enum sgp_type sgp,
 144			     gfp_t gfp, struct vm_area_struct *vma,
 145			     vm_fault_t *fault_type);
 146static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 147		struct page **pagep, enum sgp_type sgp,
 148		gfp_t gfp, struct vm_area_struct *vma,
 149		struct vm_fault *vmf, vm_fault_t *fault_type);
 150
 151int shmem_getpage(struct inode *inode, pgoff_t index,
 152		struct page **pagep, enum sgp_type sgp)
 153{
 154	return shmem_getpage_gfp(inode, index, pagep, sgp,
 155		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
 156}
 157
 158static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 159{
 160	return sb->s_fs_info;
 161}
 162
 163/*
 164 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 165 * for shared memory and for shared anonymous (/dev/zero) mappings
 166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 167 * consistent with the pre-accounting of private mappings ...
 168 */
 169static inline int shmem_acct_size(unsigned long flags, loff_t size)
 170{
 171	return (flags & VM_NORESERVE) ?
 172		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 173}
 174
 175static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 176{
 177	if (!(flags & VM_NORESERVE))
 178		vm_unacct_memory(VM_ACCT(size));
 179}
 180
 181static inline int shmem_reacct_size(unsigned long flags,
 182		loff_t oldsize, loff_t newsize)
 183{
 184	if (!(flags & VM_NORESERVE)) {
 185		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 186			return security_vm_enough_memory_mm(current->mm,
 187					VM_ACCT(newsize) - VM_ACCT(oldsize));
 188		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 189			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 190	}
 191	return 0;
 192}
 193
 194/*
 195 * ... whereas tmpfs objects are accounted incrementally as
 196 * pages are allocated, in order to allow large sparse files.
 197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 199 */
 200static inline int shmem_acct_block(unsigned long flags, long pages)
 201{
 202	if (!(flags & VM_NORESERVE))
 203		return 0;
 204
 205	return security_vm_enough_memory_mm(current->mm,
 206			pages * VM_ACCT(PAGE_SIZE));
 207}
 208
 209static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 210{
 211	if (flags & VM_NORESERVE)
 212		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 213}
 214
 215static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
 216{
 217	struct shmem_inode_info *info = SHMEM_I(inode);
 218	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 219
 220	if (shmem_acct_block(info->flags, pages))
 221		return false;
 222
 223	if (sbinfo->max_blocks) {
 224		if (percpu_counter_compare(&sbinfo->used_blocks,
 225					   sbinfo->max_blocks - pages) > 0)
 226			goto unacct;
 227		percpu_counter_add(&sbinfo->used_blocks, pages);
 228	}
 229
 230	return true;
 231
 232unacct:
 233	shmem_unacct_blocks(info->flags, pages);
 234	return false;
 235}
 236
 237static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
 238{
 239	struct shmem_inode_info *info = SHMEM_I(inode);
 240	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 241
 242	if (sbinfo->max_blocks)
 243		percpu_counter_sub(&sbinfo->used_blocks, pages);
 244	shmem_unacct_blocks(info->flags, pages);
 245}
 246
 247static const struct super_operations shmem_ops;
 248static const struct address_space_operations shmem_aops;
 249static const struct file_operations shmem_file_operations;
 250static const struct inode_operations shmem_inode_operations;
 251static const struct inode_operations shmem_dir_inode_operations;
 252static const struct inode_operations shmem_special_inode_operations;
 253static const struct vm_operations_struct shmem_vm_ops;
 
 254static struct file_system_type shmem_fs_type;
 255
 
 
 
 
 
 256bool vma_is_shmem(struct vm_area_struct *vma)
 257{
 258	return vma->vm_ops == &shmem_vm_ops;
 259}
 260
 261static LIST_HEAD(shmem_swaplist);
 262static DEFINE_MUTEX(shmem_swaplist_mutex);
 263
 264static int shmem_reserve_inode(struct super_block *sb)
 
 
 
 
 
 
 
 
 
 
 265{
 266	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 267	if (sbinfo->max_inodes) {
 268		spin_lock(&sbinfo->stat_lock);
 269		if (!sbinfo->free_inodes) {
 270			spin_unlock(&sbinfo->stat_lock);
 271			return -ENOSPC;
 
 
 
 
 
 272		}
 273		sbinfo->free_inodes--;
 274		spin_unlock(&sbinfo->stat_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275	}
 
 276	return 0;
 277}
 278
 279static void shmem_free_inode(struct super_block *sb)
 280{
 281	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 282	if (sbinfo->max_inodes) {
 283		spin_lock(&sbinfo->stat_lock);
 284		sbinfo->free_inodes++;
 285		spin_unlock(&sbinfo->stat_lock);
 286	}
 287}
 288
 289/**
 290 * shmem_recalc_inode - recalculate the block usage of an inode
 291 * @inode: inode to recalc
 292 *
 293 * We have to calculate the free blocks since the mm can drop
 294 * undirtied hole pages behind our back.
 295 *
 296 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 298 *
 299 * It has to be called with the spinlock held.
 300 */
 301static void shmem_recalc_inode(struct inode *inode)
 302{
 303	struct shmem_inode_info *info = SHMEM_I(inode);
 304	long freed;
 305
 306	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 307	if (freed > 0) {
 308		info->alloced -= freed;
 309		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 310		shmem_inode_unacct_blocks(inode, freed);
 311	}
 312}
 313
 314bool shmem_charge(struct inode *inode, long pages)
 315{
 316	struct shmem_inode_info *info = SHMEM_I(inode);
 317	unsigned long flags;
 318
 319	if (!shmem_inode_acct_block(inode, pages))
 320		return false;
 321
 322	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
 323	inode->i_mapping->nrpages += pages;
 324
 325	spin_lock_irqsave(&info->lock, flags);
 326	info->alloced += pages;
 327	inode->i_blocks += pages * BLOCKS_PER_PAGE;
 328	shmem_recalc_inode(inode);
 329	spin_unlock_irqrestore(&info->lock, flags);
 330
 331	return true;
 332}
 333
 334void shmem_uncharge(struct inode *inode, long pages)
 335{
 336	struct shmem_inode_info *info = SHMEM_I(inode);
 337	unsigned long flags;
 338
 339	/* nrpages adjustment done by __delete_from_page_cache() or caller */
 340
 341	spin_lock_irqsave(&info->lock, flags);
 342	info->alloced -= pages;
 343	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
 344	shmem_recalc_inode(inode);
 345	spin_unlock_irqrestore(&info->lock, flags);
 346
 347	shmem_inode_unacct_blocks(inode, pages);
 348}
 349
 350/*
 351 * Replace item expected in xarray by a new item, while holding xa_lock.
 352 */
 353static int shmem_replace_entry(struct address_space *mapping,
 354			pgoff_t index, void *expected, void *replacement)
 355{
 356	XA_STATE(xas, &mapping->i_pages, index);
 357	void *item;
 358
 359	VM_BUG_ON(!expected);
 360	VM_BUG_ON(!replacement);
 361	item = xas_load(&xas);
 362	if (item != expected)
 363		return -ENOENT;
 364	xas_store(&xas, replacement);
 365	return 0;
 366}
 367
 368/*
 369 * Sometimes, before we decide whether to proceed or to fail, we must check
 370 * that an entry was not already brought back from swap by a racing thread.
 371 *
 372 * Checking page is not enough: by the time a SwapCache page is locked, it
 373 * might be reused, and again be SwapCache, using the same swap as before.
 374 */
 375static bool shmem_confirm_swap(struct address_space *mapping,
 376			       pgoff_t index, swp_entry_t swap)
 377{
 378	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
 379}
 380
 381/*
 382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
 383 *
 384 * SHMEM_HUGE_NEVER:
 385 *	disables huge pages for the mount;
 386 * SHMEM_HUGE_ALWAYS:
 387 *	enables huge pages for the mount;
 388 * SHMEM_HUGE_WITHIN_SIZE:
 389 *	only allocate huge pages if the page will be fully within i_size,
 390 *	also respect fadvise()/madvise() hints;
 391 * SHMEM_HUGE_ADVISE:
 392 *	only allocate huge pages if requested with fadvise()/madvise();
 393 */
 394
 395#define SHMEM_HUGE_NEVER	0
 396#define SHMEM_HUGE_ALWAYS	1
 397#define SHMEM_HUGE_WITHIN_SIZE	2
 398#define SHMEM_HUGE_ADVISE	3
 399
 400/*
 401 * Special values.
 402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
 403 *
 404 * SHMEM_HUGE_DENY:
 405 *	disables huge on shm_mnt and all mounts, for emergency use;
 406 * SHMEM_HUGE_FORCE:
 407 *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
 408 *
 409 */
 410#define SHMEM_HUGE_DENY		(-1)
 411#define SHMEM_HUGE_FORCE	(-2)
 412
 413#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
 414/* ifdef here to avoid bloating shmem.o when not necessary */
 415
 416static int shmem_huge __read_mostly;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 417
 418#if defined(CONFIG_SYSFS)
 419static int shmem_parse_huge(const char *str)
 420{
 421	if (!strcmp(str, "never"))
 422		return SHMEM_HUGE_NEVER;
 423	if (!strcmp(str, "always"))
 424		return SHMEM_HUGE_ALWAYS;
 425	if (!strcmp(str, "within_size"))
 426		return SHMEM_HUGE_WITHIN_SIZE;
 427	if (!strcmp(str, "advise"))
 428		return SHMEM_HUGE_ADVISE;
 429	if (!strcmp(str, "deny"))
 430		return SHMEM_HUGE_DENY;
 431	if (!strcmp(str, "force"))
 432		return SHMEM_HUGE_FORCE;
 433	return -EINVAL;
 434}
 435#endif
 436
 437#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
 438static const char *shmem_format_huge(int huge)
 439{
 440	switch (huge) {
 441	case SHMEM_HUGE_NEVER:
 442		return "never";
 443	case SHMEM_HUGE_ALWAYS:
 444		return "always";
 445	case SHMEM_HUGE_WITHIN_SIZE:
 446		return "within_size";
 447	case SHMEM_HUGE_ADVISE:
 448		return "advise";
 449	case SHMEM_HUGE_DENY:
 450		return "deny";
 451	case SHMEM_HUGE_FORCE:
 452		return "force";
 453	default:
 454		VM_BUG_ON(1);
 455		return "bad_val";
 456	}
 457}
 458#endif
 459
 460static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 461		struct shrink_control *sc, unsigned long nr_to_split)
 462{
 463	LIST_HEAD(list), *pos, *next;
 464	LIST_HEAD(to_remove);
 465	struct inode *inode;
 466	struct shmem_inode_info *info;
 467	struct page *page;
 468	unsigned long batch = sc ? sc->nr_to_scan : 128;
 469	int removed = 0, split = 0;
 470
 471	if (list_empty(&sbinfo->shrinklist))
 472		return SHRINK_STOP;
 473
 474	spin_lock(&sbinfo->shrinklist_lock);
 475	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
 476		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 477
 478		/* pin the inode */
 479		inode = igrab(&info->vfs_inode);
 480
 481		/* inode is about to be evicted */
 482		if (!inode) {
 483			list_del_init(&info->shrinklist);
 484			removed++;
 485			goto next;
 486		}
 487
 488		/* Check if there's anything to gain */
 489		if (round_up(inode->i_size, PAGE_SIZE) ==
 490				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
 491			list_move(&info->shrinklist, &to_remove);
 492			removed++;
 493			goto next;
 494		}
 495
 496		list_move(&info->shrinklist, &list);
 497next:
 
 498		if (!--batch)
 499			break;
 500	}
 501	spin_unlock(&sbinfo->shrinklist_lock);
 502
 503	list_for_each_safe(pos, next, &to_remove) {
 504		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 505		inode = &info->vfs_inode;
 506		list_del_init(&info->shrinklist);
 507		iput(inode);
 508	}
 509
 510	list_for_each_safe(pos, next, &list) {
 511		int ret;
 
 512
 513		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 514		inode = &info->vfs_inode;
 515
 516		if (nr_to_split && split >= nr_to_split)
 517			goto leave;
 518
 519		page = find_get_page(inode->i_mapping,
 520				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
 521		if (!page)
 522			goto drop;
 523
 524		/* No huge page at the end of the file: nothing to split */
 525		if (!PageTransHuge(page)) {
 526			put_page(page);
 527			goto drop;
 528		}
 529
 530		/*
 531		 * Leave the inode on the list if we failed to lock
 532		 * the page at this time.
 533		 *
 534		 * Waiting for the lock may lead to deadlock in the
 535		 * reclaim path.
 536		 */
 537		if (!trylock_page(page)) {
 538			put_page(page);
 539			goto leave;
 540		}
 541
 542		ret = split_huge_page(page);
 543		unlock_page(page);
 544		put_page(page);
 545
 546		/* If split failed leave the inode on the list */
 547		if (ret)
 548			goto leave;
 549
 550		split++;
 551drop:
 552		list_del_init(&info->shrinklist);
 553		removed++;
 554leave:
 
 
 
 
 
 
 
 
 
 
 
 555		iput(inode);
 556	}
 557
 558	spin_lock(&sbinfo->shrinklist_lock);
 559	list_splice_tail(&list, &sbinfo->shrinklist);
 560	sbinfo->shrinklist_len -= removed;
 561	spin_unlock(&sbinfo->shrinklist_lock);
 562
 563	return split;
 564}
 565
 566static long shmem_unused_huge_scan(struct super_block *sb,
 567		struct shrink_control *sc)
 568{
 569	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 570
 571	if (!READ_ONCE(sbinfo->shrinklist_len))
 572		return SHRINK_STOP;
 573
 574	return shmem_unused_huge_shrink(sbinfo, sc, 0);
 575}
 576
 577static long shmem_unused_huge_count(struct super_block *sb,
 578		struct shrink_control *sc)
 579{
 580	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 581	return READ_ONCE(sbinfo->shrinklist_len);
 582}
 583#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
 584
 585#define shmem_huge SHMEM_HUGE_DENY
 586
 587static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 588		struct shrink_control *sc, unsigned long nr_to_split)
 589{
 590	return 0;
 591}
 592#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
 593
 594static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
 
 595{
 596	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
 597	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
 598	    shmem_huge != SHMEM_HUGE_DENY)
 599		return true;
 600	return false;
 601}
 
 602
 603/*
 604 * Like add_to_page_cache_locked, but error if expected item has gone.
 605 */
 606static int shmem_add_to_page_cache(struct page *page,
 607				   struct address_space *mapping,
 608				   pgoff_t index, void *expected, gfp_t gfp)
 
 609{
 610	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
 611	unsigned long i = 0;
 612	unsigned long nr = compound_nr(page);
 613
 614	VM_BUG_ON_PAGE(PageTail(page), page);
 615	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
 616	VM_BUG_ON_PAGE(!PageLocked(page), page);
 617	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 618	VM_BUG_ON(expected && PageTransHuge(page));
 619
 620	page_ref_add(page, nr);
 621	page->mapping = mapping;
 622	page->index = index;
 
 
 
 
 
 
 
 
 
 
 
 623
 624	do {
 625		void *entry;
 626		xas_lock_irq(&xas);
 627		entry = xas_find_conflict(&xas);
 628		if (entry != expected)
 
 
 
 629			xas_set_err(&xas, -EEXIST);
 630		xas_create_range(&xas);
 631		if (xas_error(&xas))
 632			goto unlock;
 633next:
 634		xas_store(&xas, page);
 635		if (++i < nr) {
 636			xas_next(&xas);
 637			goto next;
 638		}
 639		if (PageTransHuge(page)) {
 
 
 
 640			count_vm_event(THP_FILE_ALLOC);
 641			__inc_node_page_state(page, NR_SHMEM_THPS);
 642		}
 643		mapping->nrpages += nr;
 644		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
 645		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
 646unlock:
 647		xas_unlock_irq(&xas);
 648	} while (xas_nomem(&xas, gfp));
 649
 650	if (xas_error(&xas)) {
 651		page->mapping = NULL;
 652		page_ref_sub(page, nr);
 653		return xas_error(&xas);
 654	}
 655
 656	return 0;
 
 
 
 
 657}
 658
 659/*
 660 * Like delete_from_page_cache, but substitutes swap for page.
 661 */
 662static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 663{
 664	struct address_space *mapping = page->mapping;
 
 665	int error;
 666
 667	VM_BUG_ON_PAGE(PageCompound(page), page);
 668
 669	xa_lock_irq(&mapping->i_pages);
 670	error = shmem_replace_entry(mapping, page->index, page, radswap);
 671	page->mapping = NULL;
 672	mapping->nrpages--;
 673	__dec_node_page_state(page, NR_FILE_PAGES);
 674	__dec_node_page_state(page, NR_SHMEM);
 675	xa_unlock_irq(&mapping->i_pages);
 676	put_page(page);
 677	BUG_ON(error);
 678}
 679
 680/*
 681 * Remove swap entry from page cache, free the swap and its page cache.
 682 */
 683static int shmem_free_swap(struct address_space *mapping,
 684			   pgoff_t index, void *radswap)
 685{
 686	void *old;
 687
 688	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
 689	if (old != radswap)
 690		return -ENOENT;
 691	free_swap_and_cache(radix_to_swp_entry(radswap));
 692	return 0;
 693}
 694
 695/*
 696 * Determine (in bytes) how many of the shmem object's pages mapped by the
 697 * given offsets are swapped out.
 698 *
 699 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 700 * as long as the inode doesn't go away and racy results are not a problem.
 701 */
 702unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 703						pgoff_t start, pgoff_t end)
 704{
 705	XA_STATE(xas, &mapping->i_pages, start);
 706	struct page *page;
 707	unsigned long swapped = 0;
 708
 709	rcu_read_lock();
 710	xas_for_each(&xas, page, end - 1) {
 711		if (xas_retry(&xas, page))
 712			continue;
 713		if (xa_is_value(page))
 714			swapped++;
 715
 716		if (need_resched()) {
 717			xas_pause(&xas);
 718			cond_resched_rcu();
 719		}
 720	}
 721
 722	rcu_read_unlock();
 723
 724	return swapped << PAGE_SHIFT;
 725}
 726
 727/*
 728 * Determine (in bytes) how many of the shmem object's pages mapped by the
 729 * given vma is swapped out.
 730 *
 731 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 732 * as long as the inode doesn't go away and racy results are not a problem.
 733 */
 734unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 735{
 736	struct inode *inode = file_inode(vma->vm_file);
 737	struct shmem_inode_info *info = SHMEM_I(inode);
 738	struct address_space *mapping = inode->i_mapping;
 739	unsigned long swapped;
 740
 741	/* Be careful as we don't hold info->lock */
 742	swapped = READ_ONCE(info->swapped);
 743
 744	/*
 745	 * The easier cases are when the shmem object has nothing in swap, or
 746	 * the vma maps it whole. Then we can simply use the stats that we
 747	 * already track.
 748	 */
 749	if (!swapped)
 750		return 0;
 751
 752	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 753		return swapped << PAGE_SHIFT;
 754
 755	/* Here comes the more involved part */
 756	return shmem_partial_swap_usage(mapping,
 757			linear_page_index(vma, vma->vm_start),
 758			linear_page_index(vma, vma->vm_end));
 759}
 760
 761/*
 762 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 763 */
 764void shmem_unlock_mapping(struct address_space *mapping)
 765{
 766	struct pagevec pvec;
 767	pgoff_t indices[PAGEVEC_SIZE];
 768	pgoff_t index = 0;
 769
 770	pagevec_init(&pvec);
 771	/*
 772	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 773	 */
 774	while (!mapping_unevictable(mapping)) {
 775		/*
 776		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
 777		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
 778		 */
 779		pvec.nr = find_get_entries(mapping, index,
 780					   PAGEVEC_SIZE, pvec.pages, indices);
 781		if (!pvec.nr)
 782			break;
 783		index = indices[pvec.nr - 1] + 1;
 784		pagevec_remove_exceptionals(&pvec);
 785		check_move_unevictable_pages(&pvec);
 786		pagevec_release(&pvec);
 787		cond_resched();
 788	}
 789}
 790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791/*
 792 * Remove range of pages and swap entries from page cache, and free them.
 793 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 794 */
 795static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 796								 bool unfalloc)
 797{
 798	struct address_space *mapping = inode->i_mapping;
 799	struct shmem_inode_info *info = SHMEM_I(inode);
 800	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 801	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 802	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
 803	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
 804	struct pagevec pvec;
 805	pgoff_t indices[PAGEVEC_SIZE];
 
 
 806	long nr_swaps_freed = 0;
 807	pgoff_t index;
 808	int i;
 809
 810	if (lend == -1)
 811		end = -1;	/* unsigned, so actually very big */
 812
 813	pagevec_init(&pvec);
 814	index = start;
 815	while (index < end) {
 816		pvec.nr = find_get_entries(mapping, index,
 817			min(end - index, (pgoff_t)PAGEVEC_SIZE),
 818			pvec.pages, indices);
 819		if (!pvec.nr)
 820			break;
 821		for (i = 0; i < pagevec_count(&pvec); i++) {
 822			struct page *page = pvec.pages[i];
 823
 824			index = indices[i];
 825			if (index >= end)
 826				break;
 
 
 
 827
 828			if (xa_is_value(page)) {
 829				if (unfalloc)
 830					continue;
 831				nr_swaps_freed += !shmem_free_swap(mapping,
 832								index, page);
 833				continue;
 834			}
 835
 836			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
 837
 838			if (!trylock_page(page))
 839				continue;
 840
 841			if (PageTransTail(page)) {
 842				/* Middle of THP: zero out the page */
 843				clear_highpage(page);
 844				unlock_page(page);
 845				continue;
 846			} else if (PageTransHuge(page)) {
 847				if (index == round_down(end, HPAGE_PMD_NR)) {
 848					/*
 849					 * Range ends in the middle of THP:
 850					 * zero out the page
 851					 */
 852					clear_highpage(page);
 853					unlock_page(page);
 854					continue;
 855				}
 856				index += HPAGE_PMD_NR - 1;
 857				i += HPAGE_PMD_NR - 1;
 858			}
 859
 860			if (!unfalloc || !PageUptodate(page)) {
 861				VM_BUG_ON_PAGE(PageTail(page), page);
 862				if (page_mapping(page) == mapping) {
 863					VM_BUG_ON_PAGE(PageWriteback(page), page);
 864					truncate_inode_page(mapping, page);
 865				}
 866			}
 867			unlock_page(page);
 868		}
 869		pagevec_remove_exceptionals(&pvec);
 870		pagevec_release(&pvec);
 871		cond_resched();
 872		index++;
 873	}
 874
 875	if (partial_start) {
 876		struct page *page = NULL;
 877		shmem_getpage(inode, start - 1, &page, SGP_READ);
 878		if (page) {
 879			unsigned int top = PAGE_SIZE;
 880			if (start > end) {
 881				top = partial_end;
 882				partial_end = 0;
 883			}
 884			zero_user_segment(page, partial_start, top);
 885			set_page_dirty(page);
 886			unlock_page(page);
 887			put_page(page);
 888		}
 889	}
 890	if (partial_end) {
 891		struct page *page = NULL;
 892		shmem_getpage(inode, end, &page, SGP_READ);
 893		if (page) {
 894			zero_user_segment(page, 0, partial_end);
 895			set_page_dirty(page);
 896			unlock_page(page);
 897			put_page(page);
 898		}
 
 
 
 
 
 
 
 
 899	}
 900	if (start >= end)
 901		return;
 902
 903	index = start;
 904	while (index < end) {
 905		cond_resched();
 906
 907		pvec.nr = find_get_entries(mapping, index,
 908				min(end - index, (pgoff_t)PAGEVEC_SIZE),
 909				pvec.pages, indices);
 910		if (!pvec.nr) {
 911			/* If all gone or hole-punch or unfalloc, we're done */
 912			if (index == start || end != -1)
 913				break;
 914			/* But if truncating, restart to make sure all gone */
 915			index = start;
 916			continue;
 917		}
 918		for (i = 0; i < pagevec_count(&pvec); i++) {
 919			struct page *page = pvec.pages[i];
 920
 921			index = indices[i];
 922			if (index >= end)
 923				break;
 924
 925			if (xa_is_value(page)) {
 926				if (unfalloc)
 927					continue;
 928				if (shmem_free_swap(mapping, index, page)) {
 929					/* Swap was replaced by page: retry */
 930					index--;
 931					break;
 932				}
 933				nr_swaps_freed++;
 934				continue;
 935			}
 936
 937			lock_page(page);
 938
 939			if (PageTransTail(page)) {
 940				/* Middle of THP: zero out the page */
 941				clear_highpage(page);
 942				unlock_page(page);
 943				/*
 944				 * Partial thp truncate due 'start' in middle
 945				 * of THP: don't need to look on these pages
 946				 * again on !pvec.nr restart.
 947				 */
 948				if (index != round_down(end, HPAGE_PMD_NR))
 949					start++;
 950				continue;
 951			} else if (PageTransHuge(page)) {
 952				if (index == round_down(end, HPAGE_PMD_NR)) {
 953					/*
 954					 * Range ends in the middle of THP:
 955					 * zero out the page
 956					 */
 957					clear_highpage(page);
 958					unlock_page(page);
 959					continue;
 960				}
 961				index += HPAGE_PMD_NR - 1;
 962				i += HPAGE_PMD_NR - 1;
 963			}
 964
 965			if (!unfalloc || !PageUptodate(page)) {
 966				VM_BUG_ON_PAGE(PageTail(page), page);
 967				if (page_mapping(page) == mapping) {
 968					VM_BUG_ON_PAGE(PageWriteback(page), page);
 969					truncate_inode_page(mapping, page);
 970				} else {
 971					/* Page was replaced by swap: retry */
 972					unlock_page(page);
 973					index--;
 974					break;
 975				}
 
 
 
 976			}
 977			unlock_page(page);
 978		}
 979		pagevec_remove_exceptionals(&pvec);
 980		pagevec_release(&pvec);
 981		index++;
 982	}
 983
 984	spin_lock_irq(&info->lock);
 985	info->swapped -= nr_swaps_freed;
 986	shmem_recalc_inode(inode);
 987	spin_unlock_irq(&info->lock);
 988}
 989
 990void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 991{
 992	shmem_undo_range(inode, lstart, lend, false);
 993	inode->i_ctime = inode->i_mtime = current_time(inode);
 
 994}
 995EXPORT_SYMBOL_GPL(shmem_truncate_range);
 996
 997static int shmem_getattr(const struct path *path, struct kstat *stat,
 
 998			 u32 request_mask, unsigned int query_flags)
 999{
1000	struct inode *inode = path->dentry->d_inode;
1001	struct shmem_inode_info *info = SHMEM_I(inode);
1002	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1003
1004	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1005		spin_lock_irq(&info->lock);
1006		shmem_recalc_inode(inode);
1007		spin_unlock_irq(&info->lock);
1008	}
1009	generic_fillattr(inode, stat);
 
 
 
 
 
 
 
 
 
1010
1011	if (is_huge_enabled(sb_info))
1012		stat->blksize = HPAGE_PMD_SIZE;
1013
 
 
 
 
 
 
1014	return 0;
1015}
1016
1017static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
 
1018{
1019	struct inode *inode = d_inode(dentry);
1020	struct shmem_inode_info *info = SHMEM_I(inode);
1021	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1022	int error;
 
 
1023
1024	error = setattr_prepare(dentry, attr);
1025	if (error)
1026		return error;
1027
1028	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1029		loff_t oldsize = inode->i_size;
1030		loff_t newsize = attr->ia_size;
1031
1032		/* protected by i_mutex */
1033		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1034		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1035			return -EPERM;
1036
1037		if (newsize != oldsize) {
1038			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1039					oldsize, newsize);
1040			if (error)
1041				return error;
1042			i_size_write(inode, newsize);
1043			inode->i_ctime = inode->i_mtime = current_time(inode);
 
 
1044		}
1045		if (newsize <= oldsize) {
1046			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1047			if (oldsize > holebegin)
1048				unmap_mapping_range(inode->i_mapping,
1049							holebegin, 0, 1);
1050			if (info->alloced)
1051				shmem_truncate_range(inode,
1052							newsize, (loff_t)-1);
1053			/* unmap again to remove racily COWed private pages */
1054			if (oldsize > holebegin)
1055				unmap_mapping_range(inode->i_mapping,
1056							holebegin, 0, 1);
1057
1058			/*
1059			 * Part of the huge page can be beyond i_size: subject
1060			 * to shrink under memory pressure.
1061			 */
1062			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1063				spin_lock(&sbinfo->shrinklist_lock);
1064				/*
1065				 * _careful to defend against unlocked access to
1066				 * ->shrink_list in shmem_unused_huge_shrink()
1067				 */
1068				if (list_empty_careful(&info->shrinklist)) {
1069					list_add_tail(&info->shrinklist,
1070							&sbinfo->shrinklist);
1071					sbinfo->shrinklist_len++;
1072				}
1073				spin_unlock(&sbinfo->shrinklist_lock);
1074			}
1075		}
1076	}
1077
1078	setattr_copy(inode, attr);
1079	if (attr->ia_valid & ATTR_MODE)
1080		error = posix_acl_chmod(inode, inode->i_mode);
 
 
 
 
 
 
1081	return error;
1082}
1083
1084static void shmem_evict_inode(struct inode *inode)
1085{
1086	struct shmem_inode_info *info = SHMEM_I(inode);
1087	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1088
1089	if (inode->i_mapping->a_ops == &shmem_aops) {
1090		shmem_unacct_size(info->flags, inode->i_size);
1091		inode->i_size = 0;
 
1092		shmem_truncate_range(inode, 0, (loff_t)-1);
1093		if (!list_empty(&info->shrinklist)) {
1094			spin_lock(&sbinfo->shrinklist_lock);
1095			if (!list_empty(&info->shrinklist)) {
1096				list_del_init(&info->shrinklist);
1097				sbinfo->shrinklist_len--;
1098			}
1099			spin_unlock(&sbinfo->shrinklist_lock);
1100		}
1101		while (!list_empty(&info->swaplist)) {
1102			/* Wait while shmem_unuse() is scanning this inode... */
1103			wait_var_event(&info->stop_eviction,
1104				       !atomic_read(&info->stop_eviction));
1105			mutex_lock(&shmem_swaplist_mutex);
1106			/* ...but beware of the race if we peeked too early */
1107			if (!atomic_read(&info->stop_eviction))
1108				list_del_init(&info->swaplist);
1109			mutex_unlock(&shmem_swaplist_mutex);
1110		}
1111	}
1112
1113	simple_xattrs_free(&info->xattrs);
1114	WARN_ON(inode->i_blocks);
1115	shmem_free_inode(inode->i_sb);
1116	clear_inode(inode);
1117}
1118
1119extern struct swap_info_struct *swap_info[];
1120
1121static int shmem_find_swap_entries(struct address_space *mapping,
1122				   pgoff_t start, unsigned int nr_entries,
1123				   struct page **entries, pgoff_t *indices,
1124				   unsigned int type, bool frontswap)
1125{
1126	XA_STATE(xas, &mapping->i_pages, start);
1127	struct page *page;
1128	swp_entry_t entry;
1129	unsigned int ret = 0;
1130
1131	if (!nr_entries)
1132		return 0;
1133
1134	rcu_read_lock();
1135	xas_for_each(&xas, page, ULONG_MAX) {
1136		if (xas_retry(&xas, page))
1137			continue;
1138
1139		if (!xa_is_value(page))
1140			continue;
1141
1142		entry = radix_to_swp_entry(page);
 
 
 
 
1143		if (swp_type(entry) != type)
1144			continue;
1145		if (frontswap &&
1146		    !frontswap_test(swap_info[type], swp_offset(entry)))
1147			continue;
1148
1149		indices[ret] = xas.xa_index;
1150		entries[ret] = page;
 
1151
1152		if (need_resched()) {
1153			xas_pause(&xas);
1154			cond_resched_rcu();
1155		}
1156		if (++ret == nr_entries)
1157			break;
1158	}
1159	rcu_read_unlock();
1160
1161	return ret;
1162}
1163
1164/*
1165 * Move the swapped pages for an inode to page cache. Returns the count
1166 * of pages swapped in, or the error in case of failure.
1167 */
1168static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1169				    pgoff_t *indices)
1170{
1171	int i = 0;
1172	int ret = 0;
1173	int error = 0;
1174	struct address_space *mapping = inode->i_mapping;
1175
1176	for (i = 0; i < pvec.nr; i++) {
1177		struct page *page = pvec.pages[i];
1178
1179		if (!xa_is_value(page))
1180			continue;
1181		error = shmem_swapin_page(inode, indices[i],
1182					  &page, SGP_CACHE,
1183					  mapping_gfp_mask(mapping),
1184					  NULL, NULL);
1185		if (error == 0) {
1186			unlock_page(page);
1187			put_page(page);
1188			ret++;
1189		}
1190		if (error == -ENOMEM)
1191			break;
1192		error = 0;
1193	}
1194	return error ? error : ret;
1195}
1196
1197/*
1198 * If swap found in inode, free it and move page from swapcache to filecache.
1199 */
1200static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1201			     bool frontswap, unsigned long *fs_pages_to_unuse)
1202{
1203	struct address_space *mapping = inode->i_mapping;
1204	pgoff_t start = 0;
1205	struct pagevec pvec;
1206	pgoff_t indices[PAGEVEC_SIZE];
1207	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1208	int ret = 0;
1209
1210	pagevec_init(&pvec);
1211	do {
1212		unsigned int nr_entries = PAGEVEC_SIZE;
1213
1214		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1215			nr_entries = *fs_pages_to_unuse;
1216
1217		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1218						  pvec.pages, indices,
1219						  type, frontswap);
1220		if (pvec.nr == 0) {
1221			ret = 0;
1222			break;
1223		}
1224
1225		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1226		if (ret < 0)
1227			break;
1228
1229		if (frontswap_partial) {
1230			*fs_pages_to_unuse -= ret;
1231			if (*fs_pages_to_unuse == 0) {
1232				ret = FRONTSWAP_PAGES_UNUSED;
1233				break;
1234			}
1235		}
1236
1237		start = indices[pvec.nr - 1];
1238	} while (true);
1239
1240	return ret;
1241}
1242
1243/*
1244 * Read all the shared memory data that resides in the swap
1245 * device 'type' back into memory, so the swap device can be
1246 * unused.
1247 */
1248int shmem_unuse(unsigned int type, bool frontswap,
1249		unsigned long *fs_pages_to_unuse)
1250{
1251	struct shmem_inode_info *info, *next;
1252	int error = 0;
1253
1254	if (list_empty(&shmem_swaplist))
1255		return 0;
1256
1257	mutex_lock(&shmem_swaplist_mutex);
1258	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1259		if (!info->swapped) {
1260			list_del_init(&info->swaplist);
1261			continue;
1262		}
1263		/*
1264		 * Drop the swaplist mutex while searching the inode for swap;
1265		 * but before doing so, make sure shmem_evict_inode() will not
1266		 * remove placeholder inode from swaplist, nor let it be freed
1267		 * (igrab() would protect from unlink, but not from unmount).
1268		 */
1269		atomic_inc(&info->stop_eviction);
1270		mutex_unlock(&shmem_swaplist_mutex);
1271
1272		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1273					  fs_pages_to_unuse);
1274		cond_resched();
1275
1276		mutex_lock(&shmem_swaplist_mutex);
1277		next = list_next_entry(info, swaplist);
1278		if (!info->swapped)
1279			list_del_init(&info->swaplist);
1280		if (atomic_dec_and_test(&info->stop_eviction))
1281			wake_up_var(&info->stop_eviction);
1282		if (error)
1283			break;
1284	}
1285	mutex_unlock(&shmem_swaplist_mutex);
1286
1287	return error;
1288}
1289
1290/*
1291 * Move the page from the page cache to the swap cache.
1292 */
1293static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1294{
 
1295	struct shmem_inode_info *info;
1296	struct address_space *mapping;
1297	struct inode *inode;
1298	swp_entry_t swap;
1299	pgoff_t index;
1300
1301	VM_BUG_ON_PAGE(PageCompound(page), page);
1302	BUG_ON(!PageLocked(page));
1303	mapping = page->mapping;
1304	index = page->index;
 
 
 
 
 
 
 
 
 
 
 
 
 
1305	inode = mapping->host;
1306	info = SHMEM_I(inode);
1307	if (info->flags & VM_LOCKED)
1308		goto redirty;
1309	if (!total_swap_pages)
1310		goto redirty;
1311
1312	/*
1313	 * Our capabilities prevent regular writeback or sync from ever calling
1314	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1315	 * its underlying filesystem, in which case tmpfs should write out to
1316	 * swap only in response to memory pressure, and not for the writeback
1317	 * threads or sync.
1318	 */
1319	if (!wbc->for_reclaim) {
1320		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1321		goto redirty;
1322	}
1323
1324	/*
1325	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1326	 * value into swapfile.c, the only way we can correctly account for a
1327	 * fallocated page arriving here is now to initialize it and write it.
1328	 *
1329	 * That's okay for a page already fallocated earlier, but if we have
1330	 * not yet completed the fallocation, then (a) we want to keep track
1331	 * of this page in case we have to undo it, and (b) it may not be a
1332	 * good idea to continue anyway, once we're pushing into swap.  So
1333	 * reactivate the page, and let shmem_fallocate() quit when too many.
1334	 */
1335	if (!PageUptodate(page)) {
1336		if (inode->i_private) {
1337			struct shmem_falloc *shmem_falloc;
1338			spin_lock(&inode->i_lock);
1339			shmem_falloc = inode->i_private;
1340			if (shmem_falloc &&
1341			    !shmem_falloc->waitq &&
1342			    index >= shmem_falloc->start &&
1343			    index < shmem_falloc->next)
1344				shmem_falloc->nr_unswapped++;
1345			else
1346				shmem_falloc = NULL;
1347			spin_unlock(&inode->i_lock);
1348			if (shmem_falloc)
1349				goto redirty;
1350		}
1351		clear_highpage(page);
1352		flush_dcache_page(page);
1353		SetPageUptodate(page);
1354	}
1355
1356	swap = get_swap_page(page);
1357	if (!swap.val)
1358		goto redirty;
1359
1360	/*
1361	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1362	 * if it's not already there.  Do it now before the page is
1363	 * moved to swap cache, when its pagelock no longer protects
1364	 * the inode from eviction.  But don't unlock the mutex until
1365	 * we've incremented swapped, because shmem_unuse_inode() will
1366	 * prune a !swapped inode from the swaplist under this mutex.
1367	 */
1368	mutex_lock(&shmem_swaplist_mutex);
1369	if (list_empty(&info->swaplist))
1370		list_add(&info->swaplist, &shmem_swaplist);
1371
1372	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
 
 
1373		spin_lock_irq(&info->lock);
1374		shmem_recalc_inode(inode);
1375		info->swapped++;
1376		spin_unlock_irq(&info->lock);
1377
1378		swap_shmem_alloc(swap);
1379		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1380
1381		mutex_unlock(&shmem_swaplist_mutex);
1382		BUG_ON(page_mapped(page));
1383		swap_writepage(page, wbc);
1384		return 0;
1385	}
1386
1387	mutex_unlock(&shmem_swaplist_mutex);
1388	put_swap_page(page, swap);
1389redirty:
1390	set_page_dirty(page);
1391	if (wbc->for_reclaim)
1392		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1393	unlock_page(page);
1394	return 0;
1395}
1396
1397#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1398static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1399{
1400	char buffer[64];
1401
1402	if (!mpol || mpol->mode == MPOL_DEFAULT)
1403		return;		/* show nothing */
1404
1405	mpol_to_str(buffer, sizeof(buffer), mpol);
1406
1407	seq_printf(seq, ",mpol=%s", buffer);
1408}
1409
1410static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1411{
1412	struct mempolicy *mpol = NULL;
1413	if (sbinfo->mpol) {
1414		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1415		mpol = sbinfo->mpol;
1416		mpol_get(mpol);
1417		spin_unlock(&sbinfo->stat_lock);
1418	}
1419	return mpol;
1420}
1421#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1422static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1423{
1424}
1425static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1426{
1427	return NULL;
1428}
1429#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1430#ifndef CONFIG_NUMA
1431#define vm_policy vm_private_data
1432#endif
1433
1434static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1435		struct shmem_inode_info *info, pgoff_t index)
1436{
1437	/* Create a pseudo vma that just contains the policy */
1438	vma_init(vma, NULL);
1439	/* Bias interleave by inode number to distribute better across nodes */
1440	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1441	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1442}
1443
1444static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1445{
1446	/* Drop reference taken by mpol_shared_policy_lookup() */
1447	mpol_cond_put(vma->vm_policy);
1448}
1449
1450static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1451			struct shmem_inode_info *info, pgoff_t index)
1452{
1453	struct vm_area_struct pvma;
1454	struct page *page;
1455	struct vm_fault vmf;
 
 
1456
1457	shmem_pseudo_vma_init(&pvma, info, index);
1458	vmf.vma = &pvma;
1459	vmf.address = 0;
1460	page = swap_cluster_readahead(swap, gfp, &vmf);
1461	shmem_pseudo_vma_destroy(&pvma);
1462
1463	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1464}
1465
1466static struct page *shmem_alloc_hugepage(gfp_t gfp,
1467		struct shmem_inode_info *info, pgoff_t index)
1468{
1469	struct vm_area_struct pvma;
1470	struct address_space *mapping = info->vfs_inode.i_mapping;
1471	pgoff_t hindex;
1472	struct page *page;
1473
1474	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1475		return NULL;
1476
1477	hindex = round_down(index, HPAGE_PMD_NR);
1478	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1479								XA_PRESENT))
1480		return NULL;
1481
1482	shmem_pseudo_vma_init(&pvma, info, hindex);
1483	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1484			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1485	shmem_pseudo_vma_destroy(&pvma);
1486	if (page)
1487		prep_transhuge_page(page);
1488	return page;
1489}
1490
1491static struct page *shmem_alloc_page(gfp_t gfp,
1492			struct shmem_inode_info *info, pgoff_t index)
1493{
1494	struct vm_area_struct pvma;
1495	struct page *page;
1496
1497	shmem_pseudo_vma_init(&pvma, info, index);
1498	page = alloc_page_vma(gfp, &pvma, 0);
1499	shmem_pseudo_vma_destroy(&pvma);
1500
1501	return page;
1502}
1503
1504static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1505		struct inode *inode,
1506		pgoff_t index, bool huge)
1507{
1508	struct shmem_inode_info *info = SHMEM_I(inode);
1509	struct page *page;
1510	int nr;
1511	int err = -ENOSPC;
1512
1513	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1514		huge = false;
1515	nr = huge ? HPAGE_PMD_NR : 1;
1516
1517	if (!shmem_inode_acct_block(inode, nr))
1518		goto failed;
1519
1520	if (huge)
1521		page = shmem_alloc_hugepage(gfp, info, index);
1522	else
1523		page = shmem_alloc_page(gfp, info, index);
1524	if (page) {
1525		__SetPageLocked(page);
1526		__SetPageSwapBacked(page);
1527		return page;
1528	}
1529
1530	err = -ENOMEM;
1531	shmem_inode_unacct_blocks(inode, nr);
1532failed:
1533	return ERR_PTR(err);
1534}
1535
1536/*
1537 * When a page is moved from swapcache to shmem filecache (either by the
1538 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1539 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1540 * ignorance of the mapping it belongs to.  If that mapping has special
1541 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1542 * we may need to copy to a suitable page before moving to filecache.
1543 *
1544 * In a future release, this may well be extended to respect cpuset and
1545 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1546 * but for now it is a simple matter of zone.
1547 */
1548static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1549{
1550	return page_zonenum(page) > gfp_zone(gfp);
1551}
1552
1553static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1554				struct shmem_inode_info *info, pgoff_t index)
1555{
1556	struct page *oldpage, *newpage;
1557	struct address_space *swap_mapping;
1558	swp_entry_t entry;
1559	pgoff_t swap_index;
1560	int error;
1561
1562	oldpage = *pagep;
1563	entry.val = page_private(oldpage);
1564	swap_index = swp_offset(entry);
1565	swap_mapping = page_mapping(oldpage);
1566
1567	/*
1568	 * We have arrived here because our zones are constrained, so don't
1569	 * limit chance of success by further cpuset and node constraints.
1570	 */
1571	gfp &= ~GFP_CONSTRAINT_MASK;
1572	newpage = shmem_alloc_page(gfp, info, index);
1573	if (!newpage)
 
1574		return -ENOMEM;
1575
1576	get_page(newpage);
1577	copy_highpage(newpage, oldpage);
1578	flush_dcache_page(newpage);
1579
1580	__SetPageLocked(newpage);
1581	__SetPageSwapBacked(newpage);
1582	SetPageUptodate(newpage);
1583	set_page_private(newpage, entry.val);
1584	SetPageSwapCache(newpage);
1585
1586	/*
1587	 * Our caller will very soon move newpage out of swapcache, but it's
1588	 * a nice clean interface for us to replace oldpage by newpage there.
1589	 */
1590	xa_lock_irq(&swap_mapping->i_pages);
1591	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1592	if (!error) {
1593		__inc_node_page_state(newpage, NR_FILE_PAGES);
1594		__dec_node_page_state(oldpage, NR_FILE_PAGES);
 
 
 
1595	}
1596	xa_unlock_irq(&swap_mapping->i_pages);
1597
1598	if (unlikely(error)) {
1599		/*
1600		 * Is this possible?  I think not, now that our callers check
1601		 * both PageSwapCache and page_private after getting page lock;
1602		 * but be defensive.  Reverse old to newpage for clear and free.
1603		 */
1604		oldpage = newpage;
1605	} else {
1606		mem_cgroup_migrate(oldpage, newpage);
1607		lru_cache_add_anon(newpage);
1608		*pagep = newpage;
1609	}
1610
1611	ClearPageSwapCache(oldpage);
1612	set_page_private(oldpage, 0);
1613
1614	unlock_page(oldpage);
1615	put_page(oldpage);
1616	put_page(oldpage);
1617	return error;
1618}
1619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1620/*
1621 * Swap in the page pointed to by *pagep.
1622 * Caller has to make sure that *pagep contains a valid swapped page.
1623 * Returns 0 and the page in pagep if success. On failure, returns the
1624 * the error code and NULL in *pagep.
1625 */
1626static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1627			     struct page **pagep, enum sgp_type sgp,
1628			     gfp_t gfp, struct vm_area_struct *vma,
1629			     vm_fault_t *fault_type)
1630{
1631	struct address_space *mapping = inode->i_mapping;
1632	struct shmem_inode_info *info = SHMEM_I(inode);
1633	struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1634	struct mem_cgroup *memcg;
1635	struct page *page;
1636	swp_entry_t swap;
1637	int error;
1638
1639	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1640	swap = radix_to_swp_entry(*pagep);
1641	*pagep = NULL;
 
 
 
1642
1643	/* Look it up and read it in.. */
1644	page = lookup_swap_cache(swap, NULL, 0);
1645	if (!page) {
1646		/* Or update major stats only when swapin succeeds?? */
1647		if (fault_type) {
1648			*fault_type |= VM_FAULT_MAJOR;
1649			count_vm_event(PGMAJFAULT);
1650			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1651		}
1652		/* Here we actually start the io */
1653		page = shmem_swapin(swap, gfp, info, index);
1654		if (!page) {
1655			error = -ENOMEM;
1656			goto failed;
1657		}
1658	}
1659
1660	/* We have to do this with page locked to prevent races */
1661	lock_page(page);
1662	if (!PageSwapCache(page) || page_private(page) != swap.val ||
 
1663	    !shmem_confirm_swap(mapping, index, swap)) {
1664		error = -EEXIST;
1665		goto unlock;
1666	}
1667	if (!PageUptodate(page)) {
1668		error = -EIO;
1669		goto failed;
1670	}
1671	wait_on_page_writeback(page);
 
 
 
 
 
 
1672
1673	if (shmem_should_replace_page(page, gfp)) {
1674		error = shmem_replace_page(&page, gfp, info, index);
1675		if (error)
1676			goto failed;
1677	}
1678
1679	error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1680					    false);
1681	if (!error) {
1682		error = shmem_add_to_page_cache(page, mapping, index,
1683						swp_to_radix_entry(swap), gfp);
1684		/*
1685		 * We already confirmed swap under page lock, and make
1686		 * no memory allocation here, so usually no possibility
1687		 * of error; but free_swap_and_cache() only trylocks a
1688		 * page, so it is just possible that the entry has been
1689		 * truncated or holepunched since swap was confirmed.
1690		 * shmem_undo_range() will have done some of the
1691		 * unaccounting, now delete_from_swap_cache() will do
1692		 * the rest.
1693		 */
1694		if (error) {
1695			mem_cgroup_cancel_charge(page, memcg, false);
1696			delete_from_swap_cache(page);
1697		}
1698	}
1699	if (error)
1700		goto failed;
1701
1702	mem_cgroup_commit_charge(page, memcg, true, false);
1703
1704	spin_lock_irq(&info->lock);
1705	info->swapped--;
1706	shmem_recalc_inode(inode);
1707	spin_unlock_irq(&info->lock);
1708
1709	if (sgp == SGP_WRITE)
1710		mark_page_accessed(page);
1711
1712	delete_from_swap_cache(page);
1713	set_page_dirty(page);
1714	swap_free(swap);
1715
1716	*pagep = page;
1717	return 0;
1718failed:
1719	if (!shmem_confirm_swap(mapping, index, swap))
1720		error = -EEXIST;
 
 
1721unlock:
1722	if (page) {
1723		unlock_page(page);
1724		put_page(page);
1725	}
1726
1727	return error;
1728}
1729
1730/*
1731 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1732 *
1733 * If we allocate a new one we do not mark it dirty. That's up to the
1734 * vm. If we swap it in we mark it dirty since we also free the swap
1735 * entry since a page cannot live in both the swap and page cache.
1736 *
1737 * vmf and fault_type are only supplied by shmem_fault:
1738 * otherwise they are NULL.
1739 */
1740static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1741	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1742	struct vm_area_struct *vma, struct vm_fault *vmf,
1743			vm_fault_t *fault_type)
1744{
1745	struct address_space *mapping = inode->i_mapping;
1746	struct shmem_inode_info *info = SHMEM_I(inode);
1747	struct shmem_sb_info *sbinfo;
1748	struct mm_struct *charge_mm;
1749	struct mem_cgroup *memcg;
1750	struct page *page;
1751	enum sgp_type sgp_huge = sgp;
1752	pgoff_t hindex = index;
1753	int error;
1754	int once = 0;
1755	int alloced = 0;
1756
1757	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1758		return -EFBIG;
1759	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1760		sgp = SGP_CACHE;
1761repeat:
1762	if (sgp <= SGP_CACHE &&
1763	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1764		return -EINVAL;
1765	}
1766
1767	sbinfo = SHMEM_SB(inode->i_sb);
1768	charge_mm = vma ? vma->vm_mm : current->mm;
 
 
 
 
 
 
 
 
 
 
1769
1770	page = find_lock_entry(mapping, index);
1771	if (xa_is_value(page)) {
1772		error = shmem_swapin_page(inode, index, &page,
1773					  sgp, gfp, vma, fault_type);
1774		if (error == -EEXIST)
1775			goto repeat;
1776
1777		*pagep = page;
1778		return error;
1779	}
1780
1781	if (page && sgp == SGP_WRITE)
1782		mark_page_accessed(page);
1783
1784	/* fallocated page? */
1785	if (page && !PageUptodate(page)) {
 
1786		if (sgp != SGP_READ)
1787			goto clear;
1788		unlock_page(page);
1789		put_page(page);
1790		page = NULL;
1791	}
1792	if (page || sgp == SGP_READ) {
1793		*pagep = page;
 
 
 
 
 
1794		return 0;
1795	}
 
1796
1797	/*
1798	 * Fast cache lookup did not find it:
1799	 * bring it back from swap or allocate.
1800	 */
1801
1802	if (vma && userfaultfd_missing(vma)) {
1803		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1804		return 0;
1805	}
1806
1807	/* shmem_symlink() */
1808	if (mapping->a_ops != &shmem_aops)
1809		goto alloc_nohuge;
1810	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1811		goto alloc_nohuge;
1812	if (shmem_huge == SHMEM_HUGE_FORCE)
1813		goto alloc_huge;
1814	switch (sbinfo->huge) {
1815		loff_t i_size;
1816		pgoff_t off;
1817	case SHMEM_HUGE_NEVER:
1818		goto alloc_nohuge;
1819	case SHMEM_HUGE_WITHIN_SIZE:
1820		off = round_up(index, HPAGE_PMD_NR);
1821		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1822		if (i_size >= HPAGE_PMD_SIZE &&
1823		    i_size >> PAGE_SHIFT >= off)
1824			goto alloc_huge;
1825		/* fallthrough */
1826	case SHMEM_HUGE_ADVISE:
1827		if (sgp_huge == SGP_HUGE)
1828			goto alloc_huge;
1829		/* TODO: implement fadvise() hints */
1830		goto alloc_nohuge;
1831	}
1832
1833alloc_huge:
1834	page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1835	if (IS_ERR(page)) {
 
1836alloc_nohuge:
1837		page = shmem_alloc_and_acct_page(gfp, inode,
1838						 index, false);
1839	}
1840	if (IS_ERR(page)) {
1841		int retry = 5;
1842
1843		error = PTR_ERR(page);
1844		page = NULL;
1845		if (error != -ENOSPC)
1846			goto unlock;
1847		/*
1848		 * Try to reclaim some space by splitting a huge page
1849		 * beyond i_size on the filesystem.
1850		 */
1851		while (retry--) {
1852			int ret;
1853
1854			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1855			if (ret == SHRINK_STOP)
1856				break;
1857			if (ret)
1858				goto alloc_nohuge;
1859		}
1860		goto unlock;
1861	}
1862
1863	if (PageTransHuge(page))
1864		hindex = round_down(index, HPAGE_PMD_NR);
1865	else
1866		hindex = index;
1867
1868	if (sgp == SGP_WRITE)
1869		__SetPageReferenced(page);
1870
1871	error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1872					    PageTransHuge(page));
 
1873	if (error)
1874		goto unacct;
1875	error = shmem_add_to_page_cache(page, mapping, hindex,
1876					NULL, gfp & GFP_RECLAIM_MASK);
1877	if (error) {
1878		mem_cgroup_cancel_charge(page, memcg,
1879					 PageTransHuge(page));
1880		goto unacct;
1881	}
1882	mem_cgroup_commit_charge(page, memcg, false,
1883				 PageTransHuge(page));
1884	lru_cache_add_anon(page);
1885
1886	spin_lock_irq(&info->lock);
1887	info->alloced += compound_nr(page);
1888	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1889	shmem_recalc_inode(inode);
1890	spin_unlock_irq(&info->lock);
1891	alloced = true;
1892
1893	if (PageTransHuge(page) &&
1894	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1895			hindex + HPAGE_PMD_NR - 1) {
1896		/*
1897		 * Part of the huge page is beyond i_size: subject
1898		 * to shrink under memory pressure.
1899		 */
1900		spin_lock(&sbinfo->shrinklist_lock);
1901		/*
1902		 * _careful to defend against unlocked access to
1903		 * ->shrink_list in shmem_unused_huge_shrink()
1904		 */
1905		if (list_empty_careful(&info->shrinklist)) {
1906			list_add_tail(&info->shrinklist,
1907				      &sbinfo->shrinklist);
1908			sbinfo->shrinklist_len++;
1909		}
1910		spin_unlock(&sbinfo->shrinklist_lock);
1911	}
1912
1913	/*
1914	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1915	 */
1916	if (sgp == SGP_FALLOC)
1917		sgp = SGP_WRITE;
1918clear:
1919	/*
1920	 * Let SGP_WRITE caller clear ends if write does not fill page;
1921	 * but SGP_FALLOC on a page fallocated earlier must initialize
1922	 * it now, lest undo on failure cancel our earlier guarantee.
1923	 */
1924	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1925		struct page *head = compound_head(page);
1926		int i;
1927
1928		for (i = 0; i < compound_nr(head); i++) {
1929			clear_highpage(head + i);
1930			flush_dcache_page(head + i);
1931		}
1932		SetPageUptodate(head);
1933	}
1934
1935	/* Perhaps the file has been truncated since we checked */
1936	if (sgp <= SGP_CACHE &&
1937	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1938		if (alloced) {
1939			ClearPageDirty(page);
1940			delete_from_page_cache(page);
1941			spin_lock_irq(&info->lock);
1942			shmem_recalc_inode(inode);
1943			spin_unlock_irq(&info->lock);
1944		}
1945		error = -EINVAL;
1946		goto unlock;
1947	}
1948	*pagep = page + index - hindex;
 
1949	return 0;
1950
1951	/*
1952	 * Error recovery.
1953	 */
1954unacct:
1955	shmem_inode_unacct_blocks(inode, compound_nr(page));
1956
1957	if (PageTransHuge(page)) {
1958		unlock_page(page);
1959		put_page(page);
1960		goto alloc_nohuge;
1961	}
1962unlock:
1963	if (page) {
1964		unlock_page(page);
1965		put_page(page);
1966	}
1967	if (error == -ENOSPC && !once++) {
1968		spin_lock_irq(&info->lock);
1969		shmem_recalc_inode(inode);
1970		spin_unlock_irq(&info->lock);
1971		goto repeat;
1972	}
1973	if (error == -EEXIST)
1974		goto repeat;
1975	return error;
1976}
1977
 
 
 
 
 
 
 
1978/*
1979 * This is like autoremove_wake_function, but it removes the wait queue
1980 * entry unconditionally - even if something else had already woken the
1981 * target.
1982 */
1983static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1984{
1985	int ret = default_wake_function(wait, mode, sync, key);
1986	list_del_init(&wait->entry);
1987	return ret;
1988}
1989
1990static vm_fault_t shmem_fault(struct vm_fault *vmf)
1991{
1992	struct vm_area_struct *vma = vmf->vma;
1993	struct inode *inode = file_inode(vma->vm_file);
1994	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1995	enum sgp_type sgp;
1996	int err;
1997	vm_fault_t ret = VM_FAULT_LOCKED;
1998
1999	/*
2000	 * Trinity finds that probing a hole which tmpfs is punching can
2001	 * prevent the hole-punch from ever completing: which in turn
2002	 * locks writers out with its hold on i_mutex.  So refrain from
2003	 * faulting pages into the hole while it's being punched.  Although
2004	 * shmem_undo_range() does remove the additions, it may be unable to
2005	 * keep up, as each new page needs its own unmap_mapping_range() call,
2006	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2007	 *
2008	 * It does not matter if we sometimes reach this check just before the
2009	 * hole-punch begins, so that one fault then races with the punch:
2010	 * we just need to make racing faults a rare case.
2011	 *
2012	 * The implementation below would be much simpler if we just used a
2013	 * standard mutex or completion: but we cannot take i_mutex in fault,
2014	 * and bloating every shmem inode for this unlikely case would be sad.
2015	 */
2016	if (unlikely(inode->i_private)) {
2017		struct shmem_falloc *shmem_falloc;
2018
2019		spin_lock(&inode->i_lock);
2020		shmem_falloc = inode->i_private;
2021		if (shmem_falloc &&
2022		    shmem_falloc->waitq &&
2023		    vmf->pgoff >= shmem_falloc->start &&
2024		    vmf->pgoff < shmem_falloc->next) {
 
2025			wait_queue_head_t *shmem_falloc_waitq;
2026			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2027
2028			ret = VM_FAULT_NOPAGE;
2029			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
2030			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
2031				/* It's polite to up mmap_sem if we can */
2032				up_read(&vma->vm_mm->mmap_sem);
2033				ret = VM_FAULT_RETRY;
2034			}
2035
2036			shmem_falloc_waitq = shmem_falloc->waitq;
2037			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2038					TASK_UNINTERRUPTIBLE);
2039			spin_unlock(&inode->i_lock);
2040			schedule();
2041
2042			/*
2043			 * shmem_falloc_waitq points into the shmem_fallocate()
2044			 * stack of the hole-punching task: shmem_falloc_waitq
2045			 * is usually invalid by the time we reach here, but
2046			 * finish_wait() does not dereference it in that case;
2047			 * though i_lock needed lest racing with wake_up_all().
2048			 */
2049			spin_lock(&inode->i_lock);
2050			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2051			spin_unlock(&inode->i_lock);
 
 
 
2052			return ret;
2053		}
2054		spin_unlock(&inode->i_lock);
2055	}
2056
2057	sgp = SGP_CACHE;
2058
2059	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2060	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2061		sgp = SGP_NOHUGE;
2062	else if (vma->vm_flags & VM_HUGEPAGE)
2063		sgp = SGP_HUGE;
2064
2065	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2066				  gfp, vma, vmf, &ret);
2067	if (err)
2068		return vmf_error(err);
 
 
2069	return ret;
2070}
2071
2072unsigned long shmem_get_unmapped_area(struct file *file,
2073				      unsigned long uaddr, unsigned long len,
2074				      unsigned long pgoff, unsigned long flags)
2075{
2076	unsigned long (*get_area)(struct file *,
2077		unsigned long, unsigned long, unsigned long, unsigned long);
2078	unsigned long addr;
2079	unsigned long offset;
2080	unsigned long inflated_len;
2081	unsigned long inflated_addr;
2082	unsigned long inflated_offset;
2083
2084	if (len > TASK_SIZE)
2085		return -ENOMEM;
2086
2087	get_area = current->mm->get_unmapped_area;
2088	addr = get_area(file, uaddr, len, pgoff, flags);
2089
2090	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2091		return addr;
2092	if (IS_ERR_VALUE(addr))
2093		return addr;
2094	if (addr & ~PAGE_MASK)
2095		return addr;
2096	if (addr > TASK_SIZE - len)
2097		return addr;
2098
2099	if (shmem_huge == SHMEM_HUGE_DENY)
2100		return addr;
2101	if (len < HPAGE_PMD_SIZE)
2102		return addr;
2103	if (flags & MAP_FIXED)
2104		return addr;
2105	/*
2106	 * Our priority is to support MAP_SHARED mapped hugely;
2107	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2108	 * But if caller specified an address hint, respect that as before.
 
2109	 */
2110	if (uaddr)
2111		return addr;
2112
2113	if (shmem_huge != SHMEM_HUGE_FORCE) {
2114		struct super_block *sb;
2115
2116		if (file) {
2117			VM_BUG_ON(file->f_op != &shmem_file_operations);
2118			sb = file_inode(file)->i_sb;
2119		} else {
2120			/*
2121			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2122			 * for "/dev/zero", to create a shared anonymous object.
2123			 */
2124			if (IS_ERR(shm_mnt))
2125				return addr;
2126			sb = shm_mnt->mnt_sb;
2127		}
2128		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2129			return addr;
2130	}
2131
2132	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2133	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2134		return addr;
2135	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2136		return addr;
2137
2138	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2139	if (inflated_len > TASK_SIZE)
2140		return addr;
2141	if (inflated_len < len)
2142		return addr;
2143
2144	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2145	if (IS_ERR_VALUE(inflated_addr))
2146		return addr;
2147	if (inflated_addr & ~PAGE_MASK)
2148		return addr;
2149
2150	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2151	inflated_addr += offset - inflated_offset;
2152	if (inflated_offset > offset)
2153		inflated_addr += HPAGE_PMD_SIZE;
2154
2155	if (inflated_addr > TASK_SIZE - len)
2156		return addr;
2157	return inflated_addr;
2158}
2159
2160#ifdef CONFIG_NUMA
2161static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2162{
2163	struct inode *inode = file_inode(vma->vm_file);
2164	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2165}
2166
2167static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2168					  unsigned long addr)
2169{
2170	struct inode *inode = file_inode(vma->vm_file);
2171	pgoff_t index;
2172
2173	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2174	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2175}
2176#endif
2177
2178int shmem_lock(struct file *file, int lock, struct user_struct *user)
2179{
2180	struct inode *inode = file_inode(file);
2181	struct shmem_inode_info *info = SHMEM_I(inode);
2182	int retval = -ENOMEM;
2183
2184	spin_lock_irq(&info->lock);
 
 
 
 
2185	if (lock && !(info->flags & VM_LOCKED)) {
2186		if (!user_shm_lock(inode->i_size, user))
2187			goto out_nomem;
2188		info->flags |= VM_LOCKED;
2189		mapping_set_unevictable(file->f_mapping);
2190	}
2191	if (!lock && (info->flags & VM_LOCKED) && user) {
2192		user_shm_unlock(inode->i_size, user);
2193		info->flags &= ~VM_LOCKED;
2194		mapping_clear_unevictable(file->f_mapping);
2195	}
2196	retval = 0;
2197
2198out_nomem:
2199	spin_unlock_irq(&info->lock);
2200	return retval;
2201}
2202
2203static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2204{
2205	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
 
 
2206
2207	if (info->seals & F_SEAL_FUTURE_WRITE) {
2208		/*
2209		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2210		 * "future write" seal active.
2211		 */
2212		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2213			return -EPERM;
2214
2215		/*
2216		 * Since the F_SEAL_FUTURE_WRITE seals allow for a MAP_SHARED
2217		 * read-only mapping, take care to not allow mprotect to revert
2218		 * protections.
2219		 */
2220		vma->vm_flags &= ~(VM_MAYWRITE);
2221	}
2222
2223	file_accessed(file);
2224	vma->vm_ops = &shmem_vm_ops;
2225	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2226			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2227			(vma->vm_end & HPAGE_PMD_MASK)) {
2228		khugepaged_enter(vma, vma->vm_flags);
2229	}
2230	return 0;
2231}
2232
2233static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2234				     umode_t mode, dev_t dev, unsigned long flags)
2235{
2236	struct inode *inode;
2237	struct shmem_inode_info *info;
2238	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 
2239
2240	if (shmem_reserve_inode(sb))
2241		return NULL;
2242
2243	inode = new_inode(sb);
2244	if (inode) {
2245		inode->i_ino = get_next_ino();
2246		inode_init_owner(inode, dir, mode);
2247		inode->i_blocks = 0;
2248		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2249		inode->i_generation = prandom_u32();
2250		info = SHMEM_I(inode);
2251		memset(info, 0, (char *)inode - (char *)info);
2252		spin_lock_init(&info->lock);
2253		atomic_set(&info->stop_eviction, 0);
2254		info->seals = F_SEAL_SEAL;
2255		info->flags = flags & VM_NORESERVE;
 
 
 
 
 
2256		INIT_LIST_HEAD(&info->shrinklist);
2257		INIT_LIST_HEAD(&info->swaplist);
2258		simple_xattrs_init(&info->xattrs);
2259		cache_no_acl(inode);
 
2260
2261		switch (mode & S_IFMT) {
2262		default:
2263			inode->i_op = &shmem_special_inode_operations;
2264			init_special_inode(inode, mode, dev);
2265			break;
2266		case S_IFREG:
2267			inode->i_mapping->a_ops = &shmem_aops;
2268			inode->i_op = &shmem_inode_operations;
2269			inode->i_fop = &shmem_file_operations;
2270			mpol_shared_policy_init(&info->policy,
2271						 shmem_get_sbmpol(sbinfo));
2272			break;
2273		case S_IFDIR:
2274			inc_nlink(inode);
2275			/* Some things misbehave if size == 0 on a directory */
2276			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2277			inode->i_op = &shmem_dir_inode_operations;
2278			inode->i_fop = &simple_dir_operations;
2279			break;
2280		case S_IFLNK:
2281			/*
2282			 * Must not load anything in the rbtree,
2283			 * mpol_free_shared_policy will not be called.
2284			 */
2285			mpol_shared_policy_init(&info->policy, NULL);
2286			break;
2287		}
2288
2289		lockdep_annotate_inode_mutex_key(inode);
2290	} else
2291		shmem_free_inode(sb);
2292	return inode;
2293}
2294
2295bool shmem_mapping(struct address_space *mapping)
2296{
2297	return mapping->a_ops == &shmem_aops;
2298}
2299
2300static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2301				  pmd_t *dst_pmd,
2302				  struct vm_area_struct *dst_vma,
2303				  unsigned long dst_addr,
2304				  unsigned long src_addr,
2305				  bool zeropage,
2306				  struct page **pagep)
2307{
2308	struct inode *inode = file_inode(dst_vma->vm_file);
2309	struct shmem_inode_info *info = SHMEM_I(inode);
2310	struct address_space *mapping = inode->i_mapping;
2311	gfp_t gfp = mapping_gfp_mask(mapping);
2312	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2313	struct mem_cgroup *memcg;
2314	spinlock_t *ptl;
2315	void *page_kaddr;
2316	struct page *page;
2317	pte_t _dst_pte, *dst_pte;
2318	int ret;
2319	pgoff_t offset, max_off;
2320
2321	ret = -ENOMEM;
2322	if (!shmem_inode_acct_block(inode, 1))
2323		goto out;
 
 
 
 
 
 
 
 
 
2324
2325	if (!*pagep) {
2326		page = shmem_alloc_page(gfp, info, pgoff);
2327		if (!page)
 
2328			goto out_unacct_blocks;
2329
2330		if (!zeropage) {	/* mcopy_atomic */
2331			page_kaddr = kmap_atomic(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2332			ret = copy_from_user(page_kaddr,
2333					     (const void __user *)src_addr,
2334					     PAGE_SIZE);
2335			kunmap_atomic(page_kaddr);
 
2336
2337			/* fallback to copy_from_user outside mmap_sem */
2338			if (unlikely(ret)) {
2339				*pagep = page;
2340				shmem_inode_unacct_blocks(inode, 1);
2341				/* don't free the page */
2342				return -ENOENT;
2343			}
2344		} else {		/* mfill_zeropage_atomic */
2345			clear_highpage(page);
 
 
2346		}
2347	} else {
2348		page = *pagep;
 
2349		*pagep = NULL;
2350	}
2351
2352	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2353	__SetPageLocked(page);
2354	__SetPageSwapBacked(page);
2355	__SetPageUptodate(page);
 
2356
2357	ret = -EFAULT;
2358	offset = linear_page_index(dst_vma, dst_addr);
2359	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2360	if (unlikely(offset >= max_off))
2361		goto out_release;
2362
2363	ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
 
2364	if (ret)
2365		goto out_release;
2366
2367	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2368						gfp & GFP_RECLAIM_MASK);
2369	if (ret)
2370		goto out_release_uncharge;
2371
2372	mem_cgroup_commit_charge(page, memcg, false, false);
2373
2374	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2375	if (dst_vma->vm_flags & VM_WRITE)
2376		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2377	else {
2378		/*
2379		 * We don't set the pte dirty if the vma has no
2380		 * VM_WRITE permission, so mark the page dirty or it
2381		 * could be freed from under us. We could do it
2382		 * unconditionally before unlock_page(), but doing it
2383		 * only if VM_WRITE is not set is faster.
2384		 */
2385		set_page_dirty(page);
2386	}
2387
2388	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2389
2390	ret = -EFAULT;
2391	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2392	if (unlikely(offset >= max_off))
2393		goto out_release_uncharge_unlock;
2394
2395	ret = -EEXIST;
2396	if (!pte_none(*dst_pte))
2397		goto out_release_uncharge_unlock;
2398
2399	lru_cache_add_anon(page);
2400
2401	spin_lock(&info->lock);
2402	info->alloced++;
2403	inode->i_blocks += BLOCKS_PER_PAGE;
2404	shmem_recalc_inode(inode);
2405	spin_unlock(&info->lock);
2406
2407	inc_mm_counter(dst_mm, mm_counter_file(page));
2408	page_add_file_rmap(page, false);
2409	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2410
2411	/* No need to invalidate - it was non-present before */
2412	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2413	pte_unmap_unlock(dst_pte, ptl);
2414	unlock_page(page);
2415	ret = 0;
2416out:
2417	return ret;
2418out_release_uncharge_unlock:
2419	pte_unmap_unlock(dst_pte, ptl);
2420	ClearPageDirty(page);
2421	delete_from_page_cache(page);
2422out_release_uncharge:
2423	mem_cgroup_cancel_charge(page, memcg, false);
2424out_release:
2425	unlock_page(page);
2426	put_page(page);
2427out_unacct_blocks:
2428	shmem_inode_unacct_blocks(inode, 1);
2429	goto out;
2430}
2431
2432int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2433			   pmd_t *dst_pmd,
2434			   struct vm_area_struct *dst_vma,
2435			   unsigned long dst_addr,
2436			   unsigned long src_addr,
2437			   struct page **pagep)
2438{
2439	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2440				      dst_addr, src_addr, false, pagep);
2441}
2442
2443int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2444			     pmd_t *dst_pmd,
2445			     struct vm_area_struct *dst_vma,
2446			     unsigned long dst_addr)
2447{
2448	struct page *page = NULL;
2449
2450	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2451				      dst_addr, 0, true, &page);
2452}
 
2453
2454#ifdef CONFIG_TMPFS
2455static const struct inode_operations shmem_symlink_inode_operations;
2456static const struct inode_operations shmem_short_symlink_operations;
2457
2458#ifdef CONFIG_TMPFS_XATTR
2459static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2460#else
2461#define shmem_initxattrs NULL
2462#endif
2463
2464static int
2465shmem_write_begin(struct file *file, struct address_space *mapping,
2466			loff_t pos, unsigned len, unsigned flags,
2467			struct page **pagep, void **fsdata)
2468{
2469	struct inode *inode = mapping->host;
2470	struct shmem_inode_info *info = SHMEM_I(inode);
2471	pgoff_t index = pos >> PAGE_SHIFT;
 
 
2472
2473	/* i_mutex is held by caller */
2474	if (unlikely(info->seals & (F_SEAL_GROW |
2475				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2476		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2477			return -EPERM;
2478		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2479			return -EPERM;
2480	}
2481
2482	return shmem_getpage(inode, index, pagep, SGP_WRITE);
 
 
 
 
 
 
 
 
 
 
 
 
 
2483}
2484
2485static int
2486shmem_write_end(struct file *file, struct address_space *mapping,
2487			loff_t pos, unsigned len, unsigned copied,
2488			struct page *page, void *fsdata)
2489{
2490	struct inode *inode = mapping->host;
2491
2492	if (pos + copied > inode->i_size)
2493		i_size_write(inode, pos + copied);
2494
2495	if (!PageUptodate(page)) {
2496		struct page *head = compound_head(page);
2497		if (PageTransCompound(page)) {
2498			int i;
2499
2500			for (i = 0; i < HPAGE_PMD_NR; i++) {
2501				if (head + i == page)
2502					continue;
2503				clear_highpage(head + i);
2504				flush_dcache_page(head + i);
2505			}
2506		}
2507		if (copied < PAGE_SIZE) {
2508			unsigned from = pos & (PAGE_SIZE - 1);
2509			zero_user_segments(page, 0, from,
2510					from + copied, PAGE_SIZE);
2511		}
2512		SetPageUptodate(head);
2513	}
2514	set_page_dirty(page);
2515	unlock_page(page);
2516	put_page(page);
2517
2518	return copied;
2519}
2520
2521static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2522{
2523	struct file *file = iocb->ki_filp;
2524	struct inode *inode = file_inode(file);
2525	struct address_space *mapping = inode->i_mapping;
2526	pgoff_t index;
2527	unsigned long offset;
2528	enum sgp_type sgp = SGP_READ;
2529	int error = 0;
2530	ssize_t retval = 0;
2531	loff_t *ppos = &iocb->ki_pos;
2532
2533	/*
2534	 * Might this read be for a stacking filesystem?  Then when reading
2535	 * holes of a sparse file, we actually need to allocate those pages,
2536	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2537	 */
2538	if (!iter_is_iovec(to))
2539		sgp = SGP_CACHE;
2540
2541	index = *ppos >> PAGE_SHIFT;
2542	offset = *ppos & ~PAGE_MASK;
2543
2544	for (;;) {
 
2545		struct page *page = NULL;
2546		pgoff_t end_index;
2547		unsigned long nr, ret;
2548		loff_t i_size = i_size_read(inode);
2549
2550		end_index = i_size >> PAGE_SHIFT;
2551		if (index > end_index)
2552			break;
2553		if (index == end_index) {
2554			nr = i_size & ~PAGE_MASK;
2555			if (nr <= offset)
2556				break;
2557		}
2558
2559		error = shmem_getpage(inode, index, &page, sgp);
2560		if (error) {
2561			if (error == -EINVAL)
2562				error = 0;
2563			break;
2564		}
2565		if (page) {
2566			if (sgp == SGP_CACHE)
2567				set_page_dirty(page);
2568			unlock_page(page);
 
 
 
 
 
2569		}
2570
2571		/*
2572		 * We must evaluate after, since reads (unlike writes)
2573		 * are called without i_mutex protection against truncate
2574		 */
2575		nr = PAGE_SIZE;
2576		i_size = i_size_read(inode);
2577		end_index = i_size >> PAGE_SHIFT;
2578		if (index == end_index) {
2579			nr = i_size & ~PAGE_MASK;
2580			if (nr <= offset) {
2581				if (page)
2582					put_page(page);
2583				break;
2584			}
2585		}
2586		nr -= offset;
2587
2588		if (page) {
2589			/*
2590			 * If users can be writing to this page using arbitrary
2591			 * virtual addresses, take care about potential aliasing
2592			 * before reading the page on the kernel side.
2593			 */
2594			if (mapping_writably_mapped(mapping))
2595				flush_dcache_page(page);
2596			/*
2597			 * Mark the page accessed if we read the beginning.
2598			 */
2599			if (!offset)
2600				mark_page_accessed(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2601		} else {
2602			page = ZERO_PAGE(0);
2603			get_page(page);
 
 
 
 
2604		}
2605
2606		/*
2607		 * Ok, we have the page, and it's up-to-date, so
2608		 * now we can copy it to user space...
2609		 */
2610		ret = copy_page_to_iter(page, offset, nr, to);
2611		retval += ret;
2612		offset += ret;
2613		index += offset >> PAGE_SHIFT;
2614		offset &= ~PAGE_MASK;
2615
2616		put_page(page);
2617		if (!iov_iter_count(to))
2618			break;
2619		if (ret < nr) {
2620			error = -EFAULT;
2621			break;
2622		}
2623		cond_resched();
2624	}
2625
2626	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2627	file_accessed(file);
2628	return retval ? retval : error;
2629}
2630
2631/*
2632 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2633 */
2634static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2635				    pgoff_t index, pgoff_t end, int whence)
2636{
2637	struct page *page;
2638	struct pagevec pvec;
2639	pgoff_t indices[PAGEVEC_SIZE];
2640	bool done = false;
2641	int i;
2642
2643	pagevec_init(&pvec);
2644	pvec.nr = 1;		/* start small: we may be there already */
2645	while (!done) {
2646		pvec.nr = find_get_entries(mapping, index,
2647					pvec.nr, pvec.pages, indices);
2648		if (!pvec.nr) {
2649			if (whence == SEEK_DATA)
2650				index = end;
2651			break;
2652		}
2653		for (i = 0; i < pvec.nr; i++, index++) {
2654			if (index < indices[i]) {
2655				if (whence == SEEK_HOLE) {
2656					done = true;
2657					break;
2658				}
2659				index = indices[i];
2660			}
2661			page = pvec.pages[i];
2662			if (page && !xa_is_value(page)) {
2663				if (!PageUptodate(page))
2664					page = NULL;
2665			}
2666			if (index >= end ||
2667			    (page && whence == SEEK_DATA) ||
2668			    (!page && whence == SEEK_HOLE)) {
2669				done = true;
2670				break;
2671			}
2672		}
2673		pagevec_remove_exceptionals(&pvec);
2674		pagevec_release(&pvec);
2675		pvec.nr = PAGEVEC_SIZE;
2676		cond_resched();
2677	}
2678	return index;
2679}
2680
2681static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2682{
2683	struct address_space *mapping = file->f_mapping;
2684	struct inode *inode = mapping->host;
2685	pgoff_t start, end;
2686	loff_t new_offset;
2687
2688	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2689		return generic_file_llseek_size(file, offset, whence,
2690					MAX_LFS_FILESIZE, i_size_read(inode));
2691	inode_lock(inode);
2692	/* We're holding i_mutex so we can access i_size directly */
2693
2694	if (offset < 0 || offset >= inode->i_size)
2695		offset = -ENXIO;
2696	else {
2697		start = offset >> PAGE_SHIFT;
2698		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2699		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2700		new_offset <<= PAGE_SHIFT;
2701		if (new_offset > offset) {
2702			if (new_offset < inode->i_size)
2703				offset = new_offset;
2704			else if (whence == SEEK_DATA)
2705				offset = -ENXIO;
2706			else
2707				offset = inode->i_size;
2708		}
2709	}
2710
 
 
 
2711	if (offset >= 0)
2712		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2713	inode_unlock(inode);
2714	return offset;
2715}
2716
2717static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2718							 loff_t len)
2719{
2720	struct inode *inode = file_inode(file);
2721	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2722	struct shmem_inode_info *info = SHMEM_I(inode);
2723	struct shmem_falloc shmem_falloc;
2724	pgoff_t start, index, end;
2725	int error;
2726
2727	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2728		return -EOPNOTSUPP;
2729
2730	inode_lock(inode);
2731
2732	if (mode & FALLOC_FL_PUNCH_HOLE) {
2733		struct address_space *mapping = file->f_mapping;
2734		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2735		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2736		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2737
2738		/* protected by i_mutex */
2739		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2740			error = -EPERM;
2741			goto out;
2742		}
2743
2744		shmem_falloc.waitq = &shmem_falloc_waitq;
2745		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2746		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2747		spin_lock(&inode->i_lock);
2748		inode->i_private = &shmem_falloc;
2749		spin_unlock(&inode->i_lock);
2750
2751		if ((u64)unmap_end > (u64)unmap_start)
2752			unmap_mapping_range(mapping, unmap_start,
2753					    1 + unmap_end - unmap_start, 0);
2754		shmem_truncate_range(inode, offset, offset + len - 1);
2755		/* No need to unmap again: hole-punching leaves COWed pages */
2756
2757		spin_lock(&inode->i_lock);
2758		inode->i_private = NULL;
2759		wake_up_all(&shmem_falloc_waitq);
2760		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2761		spin_unlock(&inode->i_lock);
2762		error = 0;
2763		goto out;
2764	}
2765
2766	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2767	error = inode_newsize_ok(inode, offset + len);
2768	if (error)
2769		goto out;
2770
2771	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2772		error = -EPERM;
2773		goto out;
2774	}
2775
2776	start = offset >> PAGE_SHIFT;
2777	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2778	/* Try to avoid a swapstorm if len is impossible to satisfy */
2779	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2780		error = -ENOSPC;
2781		goto out;
2782	}
2783
2784	shmem_falloc.waitq = NULL;
2785	shmem_falloc.start = start;
2786	shmem_falloc.next  = start;
2787	shmem_falloc.nr_falloced = 0;
2788	shmem_falloc.nr_unswapped = 0;
2789	spin_lock(&inode->i_lock);
2790	inode->i_private = &shmem_falloc;
2791	spin_unlock(&inode->i_lock);
2792
2793	for (index = start; index < end; index++) {
2794		struct page *page;
 
 
 
 
 
 
 
 
 
2795
2796		/*
2797		 * Good, the fallocate(2) manpage permits EINTR: we may have
2798		 * been interrupted because we are using up too much memory.
2799		 */
2800		if (signal_pending(current))
2801			error = -EINTR;
2802		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2803			error = -ENOMEM;
2804		else
2805			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
 
2806		if (error) {
2807			/* Remove the !PageUptodate pages we added */
 
2808			if (index > start) {
2809				shmem_undo_range(inode,
2810				    (loff_t)start << PAGE_SHIFT,
2811				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2812			}
2813			goto undone;
2814		}
2815
2816		/*
 
 
 
 
 
 
 
 
 
 
2817		 * Inform shmem_writepage() how far we have reached.
2818		 * No need for lock or barrier: we have the page lock.
2819		 */
2820		shmem_falloc.next++;
2821		if (!PageUptodate(page))
2822			shmem_falloc.nr_falloced++;
2823
2824		/*
2825		 * If !PageUptodate, leave it that way so that freeable pages
2826		 * can be recognized if we need to rollback on error later.
2827		 * But set_page_dirty so that memory pressure will swap rather
2828		 * than free the pages we are allocating (and SGP_CACHE pages
2829		 * might still be clean: we now need to mark those dirty too).
2830		 */
2831		set_page_dirty(page);
2832		unlock_page(page);
2833		put_page(page);
2834		cond_resched();
2835	}
2836
2837	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2838		i_size_write(inode, offset + len);
2839	inode->i_ctime = current_time(inode);
2840undone:
2841	spin_lock(&inode->i_lock);
2842	inode->i_private = NULL;
2843	spin_unlock(&inode->i_lock);
2844out:
 
 
2845	inode_unlock(inode);
2846	return error;
2847}
2848
2849static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2850{
2851	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2852
2853	buf->f_type = TMPFS_MAGIC;
2854	buf->f_bsize = PAGE_SIZE;
2855	buf->f_namelen = NAME_MAX;
2856	if (sbinfo->max_blocks) {
2857		buf->f_blocks = sbinfo->max_blocks;
2858		buf->f_bavail =
2859		buf->f_bfree  = sbinfo->max_blocks -
2860				percpu_counter_sum(&sbinfo->used_blocks);
2861	}
2862	if (sbinfo->max_inodes) {
2863		buf->f_files = sbinfo->max_inodes;
2864		buf->f_ffree = sbinfo->free_inodes;
2865	}
2866	/* else leave those fields 0 like simple_statfs */
 
 
 
2867	return 0;
2868}
2869
2870/*
2871 * File creation. Allocate an inode, and we're done..
2872 */
2873static int
2874shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 
2875{
2876	struct inode *inode;
2877	int error = -ENOSPC;
2878
2879	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2880	if (inode) {
2881		error = simple_acl_create(dir, inode);
2882		if (error)
2883			goto out_iput;
2884		error = security_inode_init_security(inode, dir,
2885						     &dentry->d_name,
2886						     shmem_initxattrs, NULL);
2887		if (error && error != -EOPNOTSUPP)
2888			goto out_iput;
2889
2890		error = 0;
2891		dir->i_size += BOGO_DIRENT_SIZE;
2892		dir->i_ctime = dir->i_mtime = current_time(dir);
 
2893		d_instantiate(dentry, inode);
2894		dget(dentry); /* Extra count - pin the dentry in core */
2895	}
2896	return error;
2897out_iput:
2898	iput(inode);
2899	return error;
2900}
2901
2902static int
2903shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
 
2904{
2905	struct inode *inode;
2906	int error = -ENOSPC;
2907
2908	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2909	if (inode) {
2910		error = security_inode_init_security(inode, dir,
2911						     NULL,
2912						     shmem_initxattrs, NULL);
2913		if (error && error != -EOPNOTSUPP)
2914			goto out_iput;
2915		error = simple_acl_create(dir, inode);
2916		if (error)
2917			goto out_iput;
2918		d_tmpfile(dentry, inode);
2919	}
2920	return error;
2921out_iput:
2922	iput(inode);
2923	return error;
2924}
2925
2926static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 
2927{
2928	int error;
2929
2930	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
 
2931		return error;
2932	inc_nlink(dir);
2933	return 0;
2934}
2935
2936static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2937		bool excl)
2938{
2939	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2940}
2941
2942/*
2943 * Link a file..
2944 */
2945static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2946{
2947	struct inode *inode = d_inode(old_dentry);
2948	int ret = 0;
2949
2950	/*
2951	 * No ordinary (disk based) filesystem counts links as inodes;
2952	 * but each new link needs a new dentry, pinning lowmem, and
2953	 * tmpfs dentries cannot be pruned until they are unlinked.
2954	 * But if an O_TMPFILE file is linked into the tmpfs, the
2955	 * first link must skip that, to get the accounting right.
2956	 */
2957	if (inode->i_nlink) {
2958		ret = shmem_reserve_inode(inode->i_sb);
2959		if (ret)
2960			goto out;
2961	}
2962
2963	dir->i_size += BOGO_DIRENT_SIZE;
2964	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 
2965	inc_nlink(inode);
2966	ihold(inode);	/* New dentry reference */
2967	dget(dentry);		/* Extra pinning count for the created dentry */
2968	d_instantiate(dentry, inode);
2969out:
2970	return ret;
2971}
2972
2973static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2974{
2975	struct inode *inode = d_inode(dentry);
2976
2977	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2978		shmem_free_inode(inode->i_sb);
2979
2980	dir->i_size -= BOGO_DIRENT_SIZE;
2981	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 
2982	drop_nlink(inode);
2983	dput(dentry);	/* Undo the count from "create" - this does all the work */
2984	return 0;
2985}
2986
2987static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2988{
2989	if (!simple_empty(dentry))
2990		return -ENOTEMPTY;
2991
2992	drop_nlink(d_inode(dentry));
2993	drop_nlink(dir);
2994	return shmem_unlink(dir, dentry);
2995}
2996
2997static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2998{
2999	bool old_is_dir = d_is_dir(old_dentry);
3000	bool new_is_dir = d_is_dir(new_dentry);
3001
3002	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3003		if (old_is_dir) {
3004			drop_nlink(old_dir);
3005			inc_nlink(new_dir);
3006		} else {
3007			drop_nlink(new_dir);
3008			inc_nlink(old_dir);
3009		}
3010	}
3011	old_dir->i_ctime = old_dir->i_mtime =
3012	new_dir->i_ctime = new_dir->i_mtime =
3013	d_inode(old_dentry)->i_ctime =
3014	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3015
3016	return 0;
3017}
3018
3019static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3020{
3021	struct dentry *whiteout;
3022	int error;
3023
3024	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3025	if (!whiteout)
3026		return -ENOMEM;
3027
3028	error = shmem_mknod(old_dir, whiteout,
3029			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3030	dput(whiteout);
3031	if (error)
3032		return error;
3033
3034	/*
3035	 * Cheat and hash the whiteout while the old dentry is still in
3036	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3037	 *
3038	 * d_lookup() will consistently find one of them at this point,
3039	 * not sure which one, but that isn't even important.
3040	 */
3041	d_rehash(whiteout);
3042	return 0;
3043}
3044
3045/*
3046 * The VFS layer already does all the dentry stuff for rename,
3047 * we just have to decrement the usage count for the target if
3048 * it exists so that the VFS layer correctly free's it when it
3049 * gets overwritten.
3050 */
3051static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
 
 
 
3052{
3053	struct inode *inode = d_inode(old_dentry);
3054	int they_are_dirs = S_ISDIR(inode->i_mode);
3055
3056	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3057		return -EINVAL;
3058
3059	if (flags & RENAME_EXCHANGE)
3060		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3061
3062	if (!simple_empty(new_dentry))
3063		return -ENOTEMPTY;
3064
3065	if (flags & RENAME_WHITEOUT) {
3066		int error;
3067
3068		error = shmem_whiteout(old_dir, old_dentry);
3069		if (error)
3070			return error;
3071	}
3072
3073	if (d_really_is_positive(new_dentry)) {
3074		(void) shmem_unlink(new_dir, new_dentry);
3075		if (they_are_dirs) {
3076			drop_nlink(d_inode(new_dentry));
3077			drop_nlink(old_dir);
3078		}
3079	} else if (they_are_dirs) {
3080		drop_nlink(old_dir);
3081		inc_nlink(new_dir);
3082	}
3083
3084	old_dir->i_size -= BOGO_DIRENT_SIZE;
3085	new_dir->i_size += BOGO_DIRENT_SIZE;
3086	old_dir->i_ctime = old_dir->i_mtime =
3087	new_dir->i_ctime = new_dir->i_mtime =
3088	inode->i_ctime = current_time(old_dir);
 
 
3089	return 0;
3090}
3091
3092static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
 
3093{
3094	int error;
3095	int len;
3096	struct inode *inode;
3097	struct page *page;
3098
3099	len = strlen(symname) + 1;
3100	if (len > PAGE_SIZE)
3101		return -ENAMETOOLONG;
3102
3103	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3104				VM_NORESERVE);
3105	if (!inode)
3106		return -ENOSPC;
3107
3108	error = security_inode_init_security(inode, dir, &dentry->d_name,
3109					     shmem_initxattrs, NULL);
3110	if (error) {
3111		if (error != -EOPNOTSUPP) {
3112			iput(inode);
3113			return error;
3114		}
3115		error = 0;
3116	}
3117
3118	inode->i_size = len-1;
3119	if (len <= SHORT_SYMLINK_LEN) {
3120		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3121		if (!inode->i_link) {
3122			iput(inode);
3123			return -ENOMEM;
3124		}
3125		inode->i_op = &shmem_short_symlink_operations;
3126	} else {
3127		inode_nohighmem(inode);
3128		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3129		if (error) {
3130			iput(inode);
3131			return error;
3132		}
3133		inode->i_mapping->a_ops = &shmem_aops;
3134		inode->i_op = &shmem_symlink_inode_operations;
3135		memcpy(page_address(page), symname, len);
3136		SetPageUptodate(page);
3137		set_page_dirty(page);
3138		unlock_page(page);
3139		put_page(page);
3140	}
3141	dir->i_size += BOGO_DIRENT_SIZE;
3142	dir->i_ctime = dir->i_mtime = current_time(dir);
 
3143	d_instantiate(dentry, inode);
3144	dget(dentry);
3145	return 0;
3146}
3147
3148static void shmem_put_link(void *arg)
3149{
3150	mark_page_accessed(arg);
3151	put_page(arg);
3152}
3153
3154static const char *shmem_get_link(struct dentry *dentry,
3155				  struct inode *inode,
3156				  struct delayed_call *done)
3157{
3158	struct page *page = NULL;
3159	int error;
 
3160	if (!dentry) {
3161		page = find_get_page(inode->i_mapping, 0);
3162		if (!page)
3163			return ERR_PTR(-ECHILD);
3164		if (!PageUptodate(page)) {
3165			put_page(page);
 
3166			return ERR_PTR(-ECHILD);
3167		}
3168	} else {
3169		error = shmem_getpage(inode, 0, &page, SGP_READ);
3170		if (error)
3171			return ERR_PTR(error);
3172		unlock_page(page);
 
 
 
 
 
 
 
3173	}
3174	set_delayed_call(done, shmem_put_link, page);
3175	return page_address(page);
3176}
3177
3178#ifdef CONFIG_TMPFS_XATTR
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3179/*
3180 * Superblocks without xattr inode operations may get some security.* xattr
3181 * support from the LSM "for free". As soon as we have any other xattrs
3182 * like ACLs, we also need to implement the security.* handlers at
3183 * filesystem level, though.
3184 */
3185
3186/*
3187 * Callback for security_inode_init_security() for acquiring xattrs.
3188 */
3189static int shmem_initxattrs(struct inode *inode,
3190			    const struct xattr *xattr_array,
3191			    void *fs_info)
3192{
3193	struct shmem_inode_info *info = SHMEM_I(inode);
3194	const struct xattr *xattr;
3195	struct simple_xattr *new_xattr;
3196	size_t len;
3197
3198	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3199		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3200		if (!new_xattr)
3201			return -ENOMEM;
3202
3203		len = strlen(xattr->name) + 1;
3204		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3205					  GFP_KERNEL);
3206		if (!new_xattr->name) {
3207			kfree(new_xattr);
3208			return -ENOMEM;
3209		}
3210
3211		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3212		       XATTR_SECURITY_PREFIX_LEN);
3213		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3214		       xattr->name, len);
3215
3216		simple_xattr_list_add(&info->xattrs, new_xattr);
3217	}
3218
3219	return 0;
3220}
3221
3222static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3223				   struct dentry *unused, struct inode *inode,
3224				   const char *name, void *buffer, size_t size)
3225{
3226	struct shmem_inode_info *info = SHMEM_I(inode);
3227
3228	name = xattr_full_name(handler, name);
3229	return simple_xattr_get(&info->xattrs, name, buffer, size);
3230}
3231
3232static int shmem_xattr_handler_set(const struct xattr_handler *handler,
 
3233				   struct dentry *unused, struct inode *inode,
3234				   const char *name, const void *value,
3235				   size_t size, int flags)
3236{
3237	struct shmem_inode_info *info = SHMEM_I(inode);
 
3238
3239	name = xattr_full_name(handler, name);
3240	return simple_xattr_set(&info->xattrs, name, value, size, flags);
 
 
 
 
 
3241}
3242
3243static const struct xattr_handler shmem_security_xattr_handler = {
3244	.prefix = XATTR_SECURITY_PREFIX,
3245	.get = shmem_xattr_handler_get,
3246	.set = shmem_xattr_handler_set,
3247};
3248
3249static const struct xattr_handler shmem_trusted_xattr_handler = {
3250	.prefix = XATTR_TRUSTED_PREFIX,
3251	.get = shmem_xattr_handler_get,
3252	.set = shmem_xattr_handler_set,
3253};
3254
3255static const struct xattr_handler *shmem_xattr_handlers[] = {
3256#ifdef CONFIG_TMPFS_POSIX_ACL
3257	&posix_acl_access_xattr_handler,
3258	&posix_acl_default_xattr_handler,
3259#endif
3260	&shmem_security_xattr_handler,
3261	&shmem_trusted_xattr_handler,
3262	NULL
3263};
3264
3265static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3266{
3267	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3268	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3269}
3270#endif /* CONFIG_TMPFS_XATTR */
3271
3272static const struct inode_operations shmem_short_symlink_operations = {
 
3273	.get_link	= simple_get_link,
3274#ifdef CONFIG_TMPFS_XATTR
3275	.listxattr	= shmem_listxattr,
3276#endif
3277};
3278
3279static const struct inode_operations shmem_symlink_inode_operations = {
 
3280	.get_link	= shmem_get_link,
3281#ifdef CONFIG_TMPFS_XATTR
3282	.listxattr	= shmem_listxattr,
3283#endif
3284};
3285
3286static struct dentry *shmem_get_parent(struct dentry *child)
3287{
3288	return ERR_PTR(-ESTALE);
3289}
3290
3291static int shmem_match(struct inode *ino, void *vfh)
3292{
3293	__u32 *fh = vfh;
3294	__u64 inum = fh[2];
3295	inum = (inum << 32) | fh[1];
3296	return ino->i_ino == inum && fh[0] == ino->i_generation;
3297}
3298
3299/* Find any alias of inode, but prefer a hashed alias */
3300static struct dentry *shmem_find_alias(struct inode *inode)
3301{
3302	struct dentry *alias = d_find_alias(inode);
3303
3304	return alias ?: d_find_any_alias(inode);
3305}
3306
3307
3308static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3309		struct fid *fid, int fh_len, int fh_type)
3310{
3311	struct inode *inode;
3312	struct dentry *dentry = NULL;
3313	u64 inum;
3314
3315	if (fh_len < 3)
3316		return NULL;
3317
3318	inum = fid->raw[2];
3319	inum = (inum << 32) | fid->raw[1];
3320
3321	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3322			shmem_match, fid->raw);
3323	if (inode) {
3324		dentry = shmem_find_alias(inode);
3325		iput(inode);
3326	}
3327
3328	return dentry;
3329}
3330
3331static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3332				struct inode *parent)
3333{
3334	if (*len < 3) {
3335		*len = 3;
3336		return FILEID_INVALID;
3337	}
3338
3339	if (inode_unhashed(inode)) {
3340		/* Unfortunately insert_inode_hash is not idempotent,
3341		 * so as we hash inodes here rather than at creation
3342		 * time, we need a lock to ensure we only try
3343		 * to do it once
3344		 */
3345		static DEFINE_SPINLOCK(lock);
3346		spin_lock(&lock);
3347		if (inode_unhashed(inode))
3348			__insert_inode_hash(inode,
3349					    inode->i_ino + inode->i_generation);
3350		spin_unlock(&lock);
3351	}
3352
3353	fh[0] = inode->i_generation;
3354	fh[1] = inode->i_ino;
3355	fh[2] = ((__u64)inode->i_ino) >> 32;
3356
3357	*len = 3;
3358	return 1;
3359}
3360
3361static const struct export_operations shmem_export_ops = {
3362	.get_parent     = shmem_get_parent,
3363	.encode_fh      = shmem_encode_fh,
3364	.fh_to_dentry	= shmem_fh_to_dentry,
3365};
3366
3367enum shmem_param {
3368	Opt_gid,
3369	Opt_huge,
3370	Opt_mode,
3371	Opt_mpol,
3372	Opt_nr_blocks,
3373	Opt_nr_inodes,
3374	Opt_size,
3375	Opt_uid,
 
 
3376};
3377
3378static const struct fs_parameter_spec shmem_param_specs[] = {
 
 
 
 
 
 
 
 
3379	fsparam_u32   ("gid",		Opt_gid),
3380	fsparam_enum  ("huge",		Opt_huge),
3381	fsparam_u32oct("mode",		Opt_mode),
3382	fsparam_string("mpol",		Opt_mpol),
3383	fsparam_string("nr_blocks",	Opt_nr_blocks),
3384	fsparam_string("nr_inodes",	Opt_nr_inodes),
3385	fsparam_string("size",		Opt_size),
3386	fsparam_u32   ("uid",		Opt_uid),
 
 
3387	{}
3388};
3389
3390static const struct fs_parameter_enum shmem_param_enums[] = {
3391	{ Opt_huge,	"never",	SHMEM_HUGE_NEVER },
3392	{ Opt_huge,	"always",	SHMEM_HUGE_ALWAYS },
3393	{ Opt_huge,	"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3394	{ Opt_huge,	"advise",	SHMEM_HUGE_ADVISE },
3395	{}
3396};
3397
3398const struct fs_parameter_description shmem_fs_parameters = {
3399	.name		= "tmpfs",
3400	.specs		= shmem_param_specs,
3401	.enums		= shmem_param_enums,
3402};
3403
3404static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3405{
3406	struct shmem_options *ctx = fc->fs_private;
3407	struct fs_parse_result result;
3408	unsigned long long size;
3409	char *rest;
3410	int opt;
3411
3412	opt = fs_parse(fc, &shmem_fs_parameters, param, &result);
3413	if (opt < 0)
3414		return opt;
3415
3416	switch (opt) {
3417	case Opt_size:
3418		size = memparse(param->string, &rest);
3419		if (*rest == '%') {
3420			size <<= PAGE_SHIFT;
3421			size *= totalram_pages();
3422			do_div(size, 100);
3423			rest++;
3424		}
3425		if (*rest)
3426			goto bad_value;
3427		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3428		ctx->seen |= SHMEM_SEEN_BLOCKS;
3429		break;
3430	case Opt_nr_blocks:
3431		ctx->blocks = memparse(param->string, &rest);
3432		if (*rest)
3433			goto bad_value;
3434		ctx->seen |= SHMEM_SEEN_BLOCKS;
3435		break;
3436	case Opt_nr_inodes:
3437		ctx->inodes = memparse(param->string, &rest);
3438		if (*rest)
3439			goto bad_value;
3440		ctx->seen |= SHMEM_SEEN_INODES;
3441		break;
3442	case Opt_mode:
3443		ctx->mode = result.uint_32 & 07777;
3444		break;
3445	case Opt_uid:
3446		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3447		if (!uid_valid(ctx->uid))
3448			goto bad_value;
3449		break;
3450	case Opt_gid:
3451		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3452		if (!gid_valid(ctx->gid))
3453			goto bad_value;
3454		break;
3455	case Opt_huge:
3456		ctx->huge = result.uint_32;
3457		if (ctx->huge != SHMEM_HUGE_NEVER &&
3458		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3459		      has_transparent_hugepage()))
3460			goto unsupported_parameter;
3461		ctx->seen |= SHMEM_SEEN_HUGE;
3462		break;
3463	case Opt_mpol:
3464		if (IS_ENABLED(CONFIG_NUMA)) {
3465			mpol_put(ctx->mpol);
3466			ctx->mpol = NULL;
3467			if (mpol_parse_str(param->string, &ctx->mpol))
3468				goto bad_value;
3469			break;
3470		}
3471		goto unsupported_parameter;
 
 
 
 
 
 
 
 
 
 
 
 
3472	}
3473	return 0;
3474
3475unsupported_parameter:
3476	return invalf(fc, "tmpfs: Unsupported parameter '%s'", param->key);
3477bad_value:
3478	return invalf(fc, "tmpfs: Bad value for '%s'", param->key);
3479}
3480
3481static int shmem_parse_options(struct fs_context *fc, void *data)
3482{
3483	char *options = data;
3484
3485	if (options) {
3486		int err = security_sb_eat_lsm_opts(options, &fc->security);
3487		if (err)
3488			return err;
3489	}
3490
3491	while (options != NULL) {
3492		char *this_char = options;
3493		for (;;) {
3494			/*
3495			 * NUL-terminate this option: unfortunately,
3496			 * mount options form a comma-separated list,
3497			 * but mpol's nodelist may also contain commas.
3498			 */
3499			options = strchr(options, ',');
3500			if (options == NULL)
3501				break;
3502			options++;
3503			if (!isdigit(*options)) {
3504				options[-1] = '\0';
3505				break;
3506			}
3507		}
3508		if (*this_char) {
3509			char *value = strchr(this_char,'=');
3510			size_t len = 0;
3511			int err;
3512
3513			if (value) {
3514				*value++ = '\0';
3515				len = strlen(value);
3516			}
3517			err = vfs_parse_fs_string(fc, this_char, value, len);
3518			if (err < 0)
3519				return err;
3520		}
3521	}
3522	return 0;
3523}
3524
3525/*
3526 * Reconfigure a shmem filesystem.
3527 *
3528 * Note that we disallow change from limited->unlimited blocks/inodes while any
3529 * are in use; but we must separately disallow unlimited->limited, because in
3530 * that case we have no record of how much is already in use.
3531 */
3532static int shmem_reconfigure(struct fs_context *fc)
3533{
3534	struct shmem_options *ctx = fc->fs_private;
3535	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3536	unsigned long inodes;
 
3537	const char *err;
3538
3539	spin_lock(&sbinfo->stat_lock);
3540	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
 
3541	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3542		if (!sbinfo->max_blocks) {
3543			err = "Cannot retroactively limit size";
3544			goto out;
3545		}
3546		if (percpu_counter_compare(&sbinfo->used_blocks,
3547					   ctx->blocks) > 0) {
3548			err = "Too small a size for current use";
3549			goto out;
3550		}
3551	}
3552	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3553		if (!sbinfo->max_inodes) {
3554			err = "Cannot retroactively limit inodes";
3555			goto out;
3556		}
3557		if (ctx->inodes < inodes) {
3558			err = "Too few inodes for current use";
3559			goto out;
3560		}
3561	}
3562
 
 
 
 
 
 
3563	if (ctx->seen & SHMEM_SEEN_HUGE)
3564		sbinfo->huge = ctx->huge;
 
 
3565	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3566		sbinfo->max_blocks  = ctx->blocks;
3567	if (ctx->seen & SHMEM_SEEN_INODES) {
3568		sbinfo->max_inodes  = ctx->inodes;
3569		sbinfo->free_inodes = ctx->inodes - inodes;
3570	}
3571
3572	/*
3573	 * Preserve previous mempolicy unless mpol remount option was specified.
3574	 */
3575	if (ctx->mpol) {
3576		mpol_put(sbinfo->mpol);
3577		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3578		ctx->mpol = NULL;
3579	}
3580	spin_unlock(&sbinfo->stat_lock);
 
3581	return 0;
3582out:
3583	spin_unlock(&sbinfo->stat_lock);
3584	return invalf(fc, "tmpfs: %s", err);
3585}
3586
3587static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3588{
3589	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3590
3591	if (sbinfo->max_blocks != shmem_default_max_blocks())
3592		seq_printf(seq, ",size=%luk",
3593			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3594	if (sbinfo->max_inodes != shmem_default_max_inodes())
3595		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3596	if (sbinfo->mode != (0777 | S_ISVTX))
3597		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3598	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3599		seq_printf(seq, ",uid=%u",
3600				from_kuid_munged(&init_user_ns, sbinfo->uid));
3601	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3602		seq_printf(seq, ",gid=%u",
3603				from_kgid_munged(&init_user_ns, sbinfo->gid));
3604#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3605	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3606	if (sbinfo->huge)
3607		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3608#endif
3609	shmem_show_mpol(seq, sbinfo->mpol);
3610	return 0;
3611}
3612
3613#endif /* CONFIG_TMPFS */
3614
3615static void shmem_put_super(struct super_block *sb)
3616{
3617	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3618
 
3619	percpu_counter_destroy(&sbinfo->used_blocks);
3620	mpol_put(sbinfo->mpol);
3621	kfree(sbinfo);
3622	sb->s_fs_info = NULL;
3623}
3624
3625static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3626{
3627	struct shmem_options *ctx = fc->fs_private;
3628	struct inode *inode;
3629	struct shmem_sb_info *sbinfo;
3630	int err = -ENOMEM;
3631
3632	/* Round up to L1_CACHE_BYTES to resist false sharing */
3633	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3634				L1_CACHE_BYTES), GFP_KERNEL);
3635	if (!sbinfo)
3636		return -ENOMEM;
3637
3638	sb->s_fs_info = sbinfo;
3639
3640#ifdef CONFIG_TMPFS
3641	/*
3642	 * Per default we only allow half of the physical ram per
3643	 * tmpfs instance, limiting inodes to one per page of lowmem;
3644	 * but the internal instance is left unlimited.
3645	 */
3646	if (!(sb->s_flags & SB_KERNMOUNT)) {
3647		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3648			ctx->blocks = shmem_default_max_blocks();
3649		if (!(ctx->seen & SHMEM_SEEN_INODES))
3650			ctx->inodes = shmem_default_max_inodes();
 
 
3651	} else {
3652		sb->s_flags |= SB_NOUSER;
3653	}
3654	sb->s_export_op = &shmem_export_ops;
3655	sb->s_flags |= SB_NOSEC;
3656#else
3657	sb->s_flags |= SB_NOUSER;
3658#endif
3659	sbinfo->max_blocks = ctx->blocks;
3660	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
 
 
 
 
 
3661	sbinfo->uid = ctx->uid;
3662	sbinfo->gid = ctx->gid;
 
3663	sbinfo->mode = ctx->mode;
3664	sbinfo->huge = ctx->huge;
3665	sbinfo->mpol = ctx->mpol;
3666	ctx->mpol = NULL;
3667
3668	spin_lock_init(&sbinfo->stat_lock);
3669	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3670		goto failed;
3671	spin_lock_init(&sbinfo->shrinklist_lock);
3672	INIT_LIST_HEAD(&sbinfo->shrinklist);
3673
3674	sb->s_maxbytes = MAX_LFS_FILESIZE;
3675	sb->s_blocksize = PAGE_SIZE;
3676	sb->s_blocksize_bits = PAGE_SHIFT;
3677	sb->s_magic = TMPFS_MAGIC;
3678	sb->s_op = &shmem_ops;
3679	sb->s_time_gran = 1;
3680#ifdef CONFIG_TMPFS_XATTR
3681	sb->s_xattr = shmem_xattr_handlers;
3682#endif
3683#ifdef CONFIG_TMPFS_POSIX_ACL
3684	sb->s_flags |= SB_POSIXACL;
3685#endif
3686	uuid_gen(&sb->s_uuid);
3687
3688	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3689	if (!inode)
3690		goto failed;
3691	inode->i_uid = sbinfo->uid;
3692	inode->i_gid = sbinfo->gid;
3693	sb->s_root = d_make_root(inode);
3694	if (!sb->s_root)
3695		goto failed;
3696	return 0;
3697
3698failed:
3699	shmem_put_super(sb);
3700	return err;
3701}
3702
3703static int shmem_get_tree(struct fs_context *fc)
3704{
3705	return get_tree_nodev(fc, shmem_fill_super);
3706}
3707
3708static void shmem_free_fc(struct fs_context *fc)
3709{
3710	struct shmem_options *ctx = fc->fs_private;
3711
3712	if (ctx) {
3713		mpol_put(ctx->mpol);
3714		kfree(ctx);
3715	}
3716}
3717
3718static const struct fs_context_operations shmem_fs_context_ops = {
3719	.free			= shmem_free_fc,
3720	.get_tree		= shmem_get_tree,
3721#ifdef CONFIG_TMPFS
3722	.parse_monolithic	= shmem_parse_options,
3723	.parse_param		= shmem_parse_one,
3724	.reconfigure		= shmem_reconfigure,
3725#endif
3726};
3727
3728static struct kmem_cache *shmem_inode_cachep;
3729
3730static struct inode *shmem_alloc_inode(struct super_block *sb)
3731{
3732	struct shmem_inode_info *info;
3733	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3734	if (!info)
3735		return NULL;
3736	return &info->vfs_inode;
3737}
3738
3739static void shmem_free_in_core_inode(struct inode *inode)
3740{
3741	if (S_ISLNK(inode->i_mode))
3742		kfree(inode->i_link);
3743	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3744}
3745
3746static void shmem_destroy_inode(struct inode *inode)
3747{
3748	if (S_ISREG(inode->i_mode))
3749		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3750}
3751
3752static void shmem_init_inode(void *foo)
3753{
3754	struct shmem_inode_info *info = foo;
3755	inode_init_once(&info->vfs_inode);
3756}
3757
3758static void shmem_init_inodecache(void)
3759{
3760	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3761				sizeof(struct shmem_inode_info),
3762				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3763}
3764
3765static void shmem_destroy_inodecache(void)
3766{
3767	kmem_cache_destroy(shmem_inode_cachep);
3768}
3769
3770static const struct address_space_operations shmem_aops = {
 
 
 
 
 
 
 
3771	.writepage	= shmem_writepage,
3772	.set_page_dirty	= __set_page_dirty_no_writeback,
3773#ifdef CONFIG_TMPFS
3774	.write_begin	= shmem_write_begin,
3775	.write_end	= shmem_write_end,
3776#endif
3777#ifdef CONFIG_MIGRATION
3778	.migratepage	= migrate_page,
3779#endif
3780	.error_remove_page = generic_error_remove_page,
3781};
 
3782
3783static const struct file_operations shmem_file_operations = {
3784	.mmap		= shmem_mmap,
 
3785	.get_unmapped_area = shmem_get_unmapped_area,
3786#ifdef CONFIG_TMPFS
3787	.llseek		= shmem_file_llseek,
3788	.read_iter	= shmem_file_read_iter,
3789	.write_iter	= generic_file_write_iter,
3790	.fsync		= noop_fsync,
3791	.splice_read	= generic_file_splice_read,
3792	.splice_write	= iter_file_splice_write,
3793	.fallocate	= shmem_fallocate,
3794#endif
3795};
3796
3797static const struct inode_operations shmem_inode_operations = {
3798	.getattr	= shmem_getattr,
3799	.setattr	= shmem_setattr,
3800#ifdef CONFIG_TMPFS_XATTR
3801	.listxattr	= shmem_listxattr,
3802	.set_acl	= simple_set_acl,
 
 
3803#endif
3804};
3805
3806static const struct inode_operations shmem_dir_inode_operations = {
3807#ifdef CONFIG_TMPFS
 
3808	.create		= shmem_create,
3809	.lookup		= simple_lookup,
3810	.link		= shmem_link,
3811	.unlink		= shmem_unlink,
3812	.symlink	= shmem_symlink,
3813	.mkdir		= shmem_mkdir,
3814	.rmdir		= shmem_rmdir,
3815	.mknod		= shmem_mknod,
3816	.rename		= shmem_rename2,
3817	.tmpfile	= shmem_tmpfile,
3818#endif
3819#ifdef CONFIG_TMPFS_XATTR
3820	.listxattr	= shmem_listxattr,
 
 
3821#endif
3822#ifdef CONFIG_TMPFS_POSIX_ACL
3823	.setattr	= shmem_setattr,
3824	.set_acl	= simple_set_acl,
3825#endif
3826};
3827
3828static const struct inode_operations shmem_special_inode_operations = {
 
3829#ifdef CONFIG_TMPFS_XATTR
3830	.listxattr	= shmem_listxattr,
3831#endif
3832#ifdef CONFIG_TMPFS_POSIX_ACL
3833	.setattr	= shmem_setattr,
3834	.set_acl	= simple_set_acl,
3835#endif
3836};
3837
3838static const struct super_operations shmem_ops = {
3839	.alloc_inode	= shmem_alloc_inode,
3840	.free_inode	= shmem_free_in_core_inode,
3841	.destroy_inode	= shmem_destroy_inode,
3842#ifdef CONFIG_TMPFS
3843	.statfs		= shmem_statfs,
3844	.show_options	= shmem_show_options,
3845#endif
3846	.evict_inode	= shmem_evict_inode,
3847	.drop_inode	= generic_delete_inode,
3848	.put_super	= shmem_put_super,
3849#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3850	.nr_cached_objects	= shmem_unused_huge_count,
3851	.free_cached_objects	= shmem_unused_huge_scan,
3852#endif
3853};
3854
3855static const struct vm_operations_struct shmem_vm_ops = {
3856	.fault		= shmem_fault,
3857	.map_pages	= filemap_map_pages,
3858#ifdef CONFIG_NUMA
3859	.set_policy     = shmem_set_policy,
3860	.get_policy     = shmem_get_policy,
3861#endif
3862};
3863
 
 
 
 
 
 
 
 
 
3864int shmem_init_fs_context(struct fs_context *fc)
3865{
3866	struct shmem_options *ctx;
3867
3868	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3869	if (!ctx)
3870		return -ENOMEM;
3871
3872	ctx->mode = 0777 | S_ISVTX;
3873	ctx->uid = current_fsuid();
3874	ctx->gid = current_fsgid();
3875
3876	fc->fs_private = ctx;
3877	fc->ops = &shmem_fs_context_ops;
3878	return 0;
3879}
3880
3881static struct file_system_type shmem_fs_type = {
3882	.owner		= THIS_MODULE,
3883	.name		= "tmpfs",
3884	.init_fs_context = shmem_init_fs_context,
3885#ifdef CONFIG_TMPFS
3886	.parameters	= &shmem_fs_parameters,
3887#endif
3888	.kill_sb	= kill_litter_super,
3889	.fs_flags	= FS_USERNS_MOUNT,
3890};
3891
3892int __init shmem_init(void)
3893{
3894	int error;
3895
3896	shmem_init_inodecache();
3897
3898	error = register_filesystem(&shmem_fs_type);
3899	if (error) {
3900		pr_err("Could not register tmpfs\n");
3901		goto out2;
3902	}
3903
3904	shm_mnt = kern_mount(&shmem_fs_type);
3905	if (IS_ERR(shm_mnt)) {
3906		error = PTR_ERR(shm_mnt);
3907		pr_err("Could not kern_mount tmpfs\n");
3908		goto out1;
3909	}
3910
3911#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3912	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3913		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3914	else
3915		shmem_huge = 0; /* just in case it was patched */
3916#endif
3917	return 0;
3918
3919out1:
3920	unregister_filesystem(&shmem_fs_type);
3921out2:
3922	shmem_destroy_inodecache();
3923	shm_mnt = ERR_PTR(error);
3924	return error;
3925}
3926
3927#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3928static ssize_t shmem_enabled_show(struct kobject *kobj,
3929		struct kobj_attribute *attr, char *buf)
3930{
3931	int values[] = {
3932		SHMEM_HUGE_ALWAYS,
3933		SHMEM_HUGE_WITHIN_SIZE,
3934		SHMEM_HUGE_ADVISE,
3935		SHMEM_HUGE_NEVER,
3936		SHMEM_HUGE_DENY,
3937		SHMEM_HUGE_FORCE,
3938	};
3939	int i, count;
3940
3941	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3942		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3943
3944		count += sprintf(buf + count, fmt,
3945				shmem_format_huge(values[i]));
 
 
 
3946	}
3947	buf[count - 1] = '\n';
3948	return count;
 
 
3949}
3950
3951static ssize_t shmem_enabled_store(struct kobject *kobj,
3952		struct kobj_attribute *attr, const char *buf, size_t count)
3953{
3954	char tmp[16];
3955	int huge;
3956
3957	if (count + 1 > sizeof(tmp))
3958		return -EINVAL;
3959	memcpy(tmp, buf, count);
3960	tmp[count] = '\0';
3961	if (count && tmp[count - 1] == '\n')
3962		tmp[count - 1] = '\0';
3963
3964	huge = shmem_parse_huge(tmp);
3965	if (huge == -EINVAL)
3966		return -EINVAL;
3967	if (!has_transparent_hugepage() &&
3968			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3969		return -EINVAL;
3970
3971	shmem_huge = huge;
3972	if (shmem_huge > SHMEM_HUGE_DENY)
3973		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3974	return count;
3975}
3976
3977struct kobj_attribute shmem_enabled_attr =
3978	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3979#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3980
3981#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3982bool shmem_huge_enabled(struct vm_area_struct *vma)
3983{
3984	struct inode *inode = file_inode(vma->vm_file);
3985	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3986	loff_t i_size;
3987	pgoff_t off;
3988
3989	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3990	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3991		return false;
3992	if (shmem_huge == SHMEM_HUGE_FORCE)
3993		return true;
3994	if (shmem_huge == SHMEM_HUGE_DENY)
3995		return false;
3996	switch (sbinfo->huge) {
3997		case SHMEM_HUGE_NEVER:
3998			return false;
3999		case SHMEM_HUGE_ALWAYS:
4000			return true;
4001		case SHMEM_HUGE_WITHIN_SIZE:
4002			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4003			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4004			if (i_size >= HPAGE_PMD_SIZE &&
4005					i_size >> PAGE_SHIFT >= off)
4006				return true;
4007			/* fall through */
4008		case SHMEM_HUGE_ADVISE:
4009			/* TODO: implement fadvise() hints */
4010			return (vma->vm_flags & VM_HUGEPAGE);
4011		default:
4012			VM_BUG_ON(1);
4013			return false;
4014	}
4015}
4016#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4017
4018#else /* !CONFIG_SHMEM */
4019
4020/*
4021 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4022 *
4023 * This is intended for small system where the benefits of the full
4024 * shmem code (swap-backed and resource-limited) are outweighed by
4025 * their complexity. On systems without swap this code should be
4026 * effectively equivalent, but much lighter weight.
4027 */
4028
4029static struct file_system_type shmem_fs_type = {
4030	.name		= "tmpfs",
4031	.init_fs_context = ramfs_init_fs_context,
4032	.parameters	= &ramfs_fs_parameters,
4033	.kill_sb	= kill_litter_super,
4034	.fs_flags	= FS_USERNS_MOUNT,
4035};
4036
4037int __init shmem_init(void)
4038{
4039	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4040
4041	shm_mnt = kern_mount(&shmem_fs_type);
4042	BUG_ON(IS_ERR(shm_mnt));
4043
4044	return 0;
4045}
4046
4047int shmem_unuse(unsigned int type, bool frontswap,
4048		unsigned long *fs_pages_to_unuse)
4049{
4050	return 0;
4051}
4052
4053int shmem_lock(struct file *file, int lock, struct user_struct *user)
4054{
4055	return 0;
4056}
4057
4058void shmem_unlock_mapping(struct address_space *mapping)
4059{
4060}
4061
4062#ifdef CONFIG_MMU
4063unsigned long shmem_get_unmapped_area(struct file *file,
4064				      unsigned long addr, unsigned long len,
4065				      unsigned long pgoff, unsigned long flags)
4066{
4067	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4068}
4069#endif
4070
4071void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4072{
4073	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4074}
4075EXPORT_SYMBOL_GPL(shmem_truncate_range);
4076
4077#define shmem_vm_ops				generic_file_vm_ops
 
4078#define shmem_file_operations			ramfs_file_operations
4079#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4080#define shmem_acct_size(flags, size)		0
4081#define shmem_unacct_size(flags, size)		do {} while (0)
4082
4083#endif /* CONFIG_SHMEM */
4084
4085/* common code */
4086
4087static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4088				       unsigned long flags, unsigned int i_flags)
4089{
4090	struct inode *inode;
4091	struct file *res;
4092
4093	if (IS_ERR(mnt))
4094		return ERR_CAST(mnt);
4095
4096	if (size < 0 || size > MAX_LFS_FILESIZE)
4097		return ERR_PTR(-EINVAL);
4098
4099	if (shmem_acct_size(flags, size))
4100		return ERR_PTR(-ENOMEM);
4101
4102	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4103				flags);
4104	if (unlikely(!inode)) {
4105		shmem_unacct_size(flags, size);
4106		return ERR_PTR(-ENOSPC);
4107	}
4108	inode->i_flags |= i_flags;
4109	inode->i_size = size;
4110	clear_nlink(inode);	/* It is unlinked */
4111	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4112	if (!IS_ERR(res))
4113		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4114				&shmem_file_operations);
4115	if (IS_ERR(res))
4116		iput(inode);
4117	return res;
4118}
4119
4120/**
4121 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4122 * 	kernel internal.  There will be NO LSM permission checks against the
4123 * 	underlying inode.  So users of this interface must do LSM checks at a
4124 *	higher layer.  The users are the big_key and shm implementations.  LSM
4125 *	checks are provided at the key or shm level rather than the inode.
4126 * @name: name for dentry (to be seen in /proc/<pid>/maps
4127 * @size: size to be set for the file
4128 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4129 */
4130struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4131{
4132	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4133}
4134
4135/**
4136 * shmem_file_setup - get an unlinked file living in tmpfs
4137 * @name: name for dentry (to be seen in /proc/<pid>/maps
4138 * @size: size to be set for the file
4139 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4140 */
4141struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4142{
4143	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4144}
4145EXPORT_SYMBOL_GPL(shmem_file_setup);
4146
4147/**
4148 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4149 * @mnt: the tmpfs mount where the file will be created
4150 * @name: name for dentry (to be seen in /proc/<pid>/maps
4151 * @size: size to be set for the file
4152 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4153 */
4154struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4155				       loff_t size, unsigned long flags)
4156{
4157	return __shmem_file_setup(mnt, name, size, flags, 0);
4158}
4159EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4160
4161/**
4162 * shmem_zero_setup - setup a shared anonymous mapping
4163 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4164 */
4165int shmem_zero_setup(struct vm_area_struct *vma)
4166{
4167	struct file *file;
4168	loff_t size = vma->vm_end - vma->vm_start;
4169
4170	/*
4171	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4172	 * between XFS directory reading and selinux: since this file is only
4173	 * accessible to the user through its mapping, use S_PRIVATE flag to
4174	 * bypass file security, in the same way as shmem_kernel_file_setup().
4175	 */
4176	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4177	if (IS_ERR(file))
4178		return PTR_ERR(file);
4179
4180	if (vma->vm_file)
4181		fput(vma->vm_file);
4182	vma->vm_file = file;
4183	vma->vm_ops = &shmem_vm_ops;
4184
4185	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4186			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4187			(vma->vm_end & HPAGE_PMD_MASK)) {
4188		khugepaged_enter(vma, vma->vm_flags);
4189	}
4190
4191	return 0;
4192}
4193
4194/**
4195 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4196 * @mapping:	the page's address_space
4197 * @index:	the page index
4198 * @gfp:	the page allocator flags to use if allocating
4199 *
4200 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4201 * with any new page allocations done using the specified allocation flags.
4202 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4203 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4204 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4205 *
4206 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4207 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4208 */
4209struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4210					 pgoff_t index, gfp_t gfp)
4211{
4212#ifdef CONFIG_SHMEM
4213	struct inode *inode = mapping->host;
 
4214	struct page *page;
4215	int error;
4216
4217	BUG_ON(mapping->a_ops != &shmem_aops);
4218	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4219				  gfp, NULL, NULL, NULL);
4220	if (error)
4221		page = ERR_PTR(error);
4222	else
4223		unlock_page(page);
 
 
 
 
 
 
4224	return page;
4225#else
4226	/*
4227	 * The tiny !SHMEM case uses ramfs without swap
4228	 */
4229	return read_cache_page_gfp(mapping, index, gfp);
4230#endif
4231}
4232EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
v6.2
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/fileattr.h>
  32#include <linux/mm.h>
  33#include <linux/random.h>
  34#include <linux/sched/signal.h>
  35#include <linux/export.h>
  36#include <linux/swap.h>
  37#include <linux/uio.h>
 
  38#include <linux/hugetlb.h>
 
  39#include <linux/fs_parser.h>
  40#include <linux/swapfile.h>
  41#include <linux/iversion.h>
  42#include "swap.h"
  43
  44static struct vfsmount *shm_mnt;
  45
  46#ifdef CONFIG_SHMEM
  47/*
  48 * This virtual memory filesystem is heavily based on the ramfs. It
  49 * extends ramfs by the ability to use swap and honor resource limits
  50 * which makes it a completely usable filesystem.
  51 */
  52
  53#include <linux/xattr.h>
  54#include <linux/exportfs.h>
  55#include <linux/posix_acl.h>
  56#include <linux/posix_acl_xattr.h>
  57#include <linux/mman.h>
  58#include <linux/string.h>
  59#include <linux/slab.h>
  60#include <linux/backing-dev.h>
  61#include <linux/shmem_fs.h>
  62#include <linux/writeback.h>
 
  63#include <linux/pagevec.h>
  64#include <linux/percpu_counter.h>
  65#include <linux/falloc.h>
  66#include <linux/splice.h>
  67#include <linux/security.h>
  68#include <linux/swapops.h>
  69#include <linux/mempolicy.h>
  70#include <linux/namei.h>
  71#include <linux/ctype.h>
  72#include <linux/migrate.h>
  73#include <linux/highmem.h>
  74#include <linux/seq_file.h>
  75#include <linux/magic.h>
  76#include <linux/syscalls.h>
  77#include <linux/fcntl.h>
  78#include <uapi/linux/memfd.h>
  79#include <linux/userfaultfd_k.h>
  80#include <linux/rmap.h>
  81#include <linux/uuid.h>
  82
  83#include <linux/uaccess.h>
 
  84
  85#include "internal.h"
  86
  87#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  88#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  89
  90/* Pretend that each entry is of this size in directory's i_size */
  91#define BOGO_DIRENT_SIZE 20
  92
  93/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  94#define SHORT_SYMLINK_LEN 128
  95
  96/*
  97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  98 * inode->i_private (with i_rwsem making sure that it has only one user at
  99 * a time): we would prefer not to enlarge the shmem inode just for that.
 100 */
 101struct shmem_falloc {
 102	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
 103	pgoff_t start;		/* start of range currently being fallocated */
 104	pgoff_t next;		/* the next page offset to be fallocated */
 105	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
 106	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
 107};
 108
 109struct shmem_options {
 110	unsigned long long blocks;
 111	unsigned long long inodes;
 112	struct mempolicy *mpol;
 113	kuid_t uid;
 114	kgid_t gid;
 115	umode_t mode;
 116	bool full_inums;
 117	int huge;
 118	int seen;
 119#define SHMEM_SEEN_BLOCKS 1
 120#define SHMEM_SEEN_INODES 2
 121#define SHMEM_SEEN_HUGE 4
 122#define SHMEM_SEEN_INUMS 8
 123};
 124
 125#ifdef CONFIG_TMPFS
 126static unsigned long shmem_default_max_blocks(void)
 127{
 128	return totalram_pages() / 2;
 129}
 130
 131static unsigned long shmem_default_max_inodes(void)
 132{
 133	unsigned long nr_pages = totalram_pages();
 134
 135	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
 136}
 137#endif
 138
 139static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
 140			     struct folio **foliop, enum sgp_type sgp,
 
 
 
 141			     gfp_t gfp, struct vm_area_struct *vma,
 142			     vm_fault_t *fault_type);
 
 
 
 
 
 
 
 
 
 
 
 143
 144static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 145{
 146	return sb->s_fs_info;
 147}
 148
 149/*
 150 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 151 * for shared memory and for shared anonymous (/dev/zero) mappings
 152 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 153 * consistent with the pre-accounting of private mappings ...
 154 */
 155static inline int shmem_acct_size(unsigned long flags, loff_t size)
 156{
 157	return (flags & VM_NORESERVE) ?
 158		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 159}
 160
 161static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 162{
 163	if (!(flags & VM_NORESERVE))
 164		vm_unacct_memory(VM_ACCT(size));
 165}
 166
 167static inline int shmem_reacct_size(unsigned long flags,
 168		loff_t oldsize, loff_t newsize)
 169{
 170	if (!(flags & VM_NORESERVE)) {
 171		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 172			return security_vm_enough_memory_mm(current->mm,
 173					VM_ACCT(newsize) - VM_ACCT(oldsize));
 174		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 175			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 176	}
 177	return 0;
 178}
 179
 180/*
 181 * ... whereas tmpfs objects are accounted incrementally as
 182 * pages are allocated, in order to allow large sparse files.
 183 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 184 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 185 */
 186static inline int shmem_acct_block(unsigned long flags, long pages)
 187{
 188	if (!(flags & VM_NORESERVE))
 189		return 0;
 190
 191	return security_vm_enough_memory_mm(current->mm,
 192			pages * VM_ACCT(PAGE_SIZE));
 193}
 194
 195static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 196{
 197	if (flags & VM_NORESERVE)
 198		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 199}
 200
 201static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
 202{
 203	struct shmem_inode_info *info = SHMEM_I(inode);
 204	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 205
 206	if (shmem_acct_block(info->flags, pages))
 207		return false;
 208
 209	if (sbinfo->max_blocks) {
 210		if (percpu_counter_compare(&sbinfo->used_blocks,
 211					   sbinfo->max_blocks - pages) > 0)
 212			goto unacct;
 213		percpu_counter_add(&sbinfo->used_blocks, pages);
 214	}
 215
 216	return true;
 217
 218unacct:
 219	shmem_unacct_blocks(info->flags, pages);
 220	return false;
 221}
 222
 223static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
 224{
 225	struct shmem_inode_info *info = SHMEM_I(inode);
 226	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 227
 228	if (sbinfo->max_blocks)
 229		percpu_counter_sub(&sbinfo->used_blocks, pages);
 230	shmem_unacct_blocks(info->flags, pages);
 231}
 232
 233static const struct super_operations shmem_ops;
 234const struct address_space_operations shmem_aops;
 235static const struct file_operations shmem_file_operations;
 236static const struct inode_operations shmem_inode_operations;
 237static const struct inode_operations shmem_dir_inode_operations;
 238static const struct inode_operations shmem_special_inode_operations;
 239static const struct vm_operations_struct shmem_vm_ops;
 240static const struct vm_operations_struct shmem_anon_vm_ops;
 241static struct file_system_type shmem_fs_type;
 242
 243bool vma_is_anon_shmem(struct vm_area_struct *vma)
 244{
 245	return vma->vm_ops == &shmem_anon_vm_ops;
 246}
 247
 248bool vma_is_shmem(struct vm_area_struct *vma)
 249{
 250	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
 251}
 252
 253static LIST_HEAD(shmem_swaplist);
 254static DEFINE_MUTEX(shmem_swaplist_mutex);
 255
 256/*
 257 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
 258 * produces a novel ino for the newly allocated inode.
 259 *
 260 * It may also be called when making a hard link to permit the space needed by
 261 * each dentry. However, in that case, no new inode number is needed since that
 262 * internally draws from another pool of inode numbers (currently global
 263 * get_next_ino()). This case is indicated by passing NULL as inop.
 264 */
 265#define SHMEM_INO_BATCH 1024
 266static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
 267{
 268	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 269	ino_t ino;
 270
 271	if (!(sb->s_flags & SB_KERNMOUNT)) {
 272		raw_spin_lock(&sbinfo->stat_lock);
 273		if (sbinfo->max_inodes) {
 274			if (!sbinfo->free_inodes) {
 275				raw_spin_unlock(&sbinfo->stat_lock);
 276				return -ENOSPC;
 277			}
 278			sbinfo->free_inodes--;
 279		}
 280		if (inop) {
 281			ino = sbinfo->next_ino++;
 282			if (unlikely(is_zero_ino(ino)))
 283				ino = sbinfo->next_ino++;
 284			if (unlikely(!sbinfo->full_inums &&
 285				     ino > UINT_MAX)) {
 286				/*
 287				 * Emulate get_next_ino uint wraparound for
 288				 * compatibility
 289				 */
 290				if (IS_ENABLED(CONFIG_64BIT))
 291					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
 292						__func__, MINOR(sb->s_dev));
 293				sbinfo->next_ino = 1;
 294				ino = sbinfo->next_ino++;
 295			}
 296			*inop = ino;
 297		}
 298		raw_spin_unlock(&sbinfo->stat_lock);
 299	} else if (inop) {
 300		/*
 301		 * __shmem_file_setup, one of our callers, is lock-free: it
 302		 * doesn't hold stat_lock in shmem_reserve_inode since
 303		 * max_inodes is always 0, and is called from potentially
 304		 * unknown contexts. As such, use a per-cpu batched allocator
 305		 * which doesn't require the per-sb stat_lock unless we are at
 306		 * the batch boundary.
 307		 *
 308		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
 309		 * shmem mounts are not exposed to userspace, so we don't need
 310		 * to worry about things like glibc compatibility.
 311		 */
 312		ino_t *next_ino;
 313
 314		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
 315		ino = *next_ino;
 316		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
 317			raw_spin_lock(&sbinfo->stat_lock);
 318			ino = sbinfo->next_ino;
 319			sbinfo->next_ino += SHMEM_INO_BATCH;
 320			raw_spin_unlock(&sbinfo->stat_lock);
 321			if (unlikely(is_zero_ino(ino)))
 322				ino++;
 323		}
 324		*inop = ino;
 325		*next_ino = ++ino;
 326		put_cpu();
 327	}
 328
 329	return 0;
 330}
 331
 332static void shmem_free_inode(struct super_block *sb)
 333{
 334	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 335	if (sbinfo->max_inodes) {
 336		raw_spin_lock(&sbinfo->stat_lock);
 337		sbinfo->free_inodes++;
 338		raw_spin_unlock(&sbinfo->stat_lock);
 339	}
 340}
 341
 342/**
 343 * shmem_recalc_inode - recalculate the block usage of an inode
 344 * @inode: inode to recalc
 345 *
 346 * We have to calculate the free blocks since the mm can drop
 347 * undirtied hole pages behind our back.
 348 *
 349 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 350 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 351 *
 352 * It has to be called with the spinlock held.
 353 */
 354static void shmem_recalc_inode(struct inode *inode)
 355{
 356	struct shmem_inode_info *info = SHMEM_I(inode);
 357	long freed;
 358
 359	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 360	if (freed > 0) {
 361		info->alloced -= freed;
 362		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 363		shmem_inode_unacct_blocks(inode, freed);
 364	}
 365}
 366
 367bool shmem_charge(struct inode *inode, long pages)
 368{
 369	struct shmem_inode_info *info = SHMEM_I(inode);
 370	unsigned long flags;
 371
 372	if (!shmem_inode_acct_block(inode, pages))
 373		return false;
 374
 375	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
 376	inode->i_mapping->nrpages += pages;
 377
 378	spin_lock_irqsave(&info->lock, flags);
 379	info->alloced += pages;
 380	inode->i_blocks += pages * BLOCKS_PER_PAGE;
 381	shmem_recalc_inode(inode);
 382	spin_unlock_irqrestore(&info->lock, flags);
 383
 384	return true;
 385}
 386
 387void shmem_uncharge(struct inode *inode, long pages)
 388{
 389	struct shmem_inode_info *info = SHMEM_I(inode);
 390	unsigned long flags;
 391
 392	/* nrpages adjustment done by __filemap_remove_folio() or caller */
 393
 394	spin_lock_irqsave(&info->lock, flags);
 395	info->alloced -= pages;
 396	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
 397	shmem_recalc_inode(inode);
 398	spin_unlock_irqrestore(&info->lock, flags);
 399
 400	shmem_inode_unacct_blocks(inode, pages);
 401}
 402
 403/*
 404 * Replace item expected in xarray by a new item, while holding xa_lock.
 405 */
 406static int shmem_replace_entry(struct address_space *mapping,
 407			pgoff_t index, void *expected, void *replacement)
 408{
 409	XA_STATE(xas, &mapping->i_pages, index);
 410	void *item;
 411
 412	VM_BUG_ON(!expected);
 413	VM_BUG_ON(!replacement);
 414	item = xas_load(&xas);
 415	if (item != expected)
 416		return -ENOENT;
 417	xas_store(&xas, replacement);
 418	return 0;
 419}
 420
 421/*
 422 * Sometimes, before we decide whether to proceed or to fail, we must check
 423 * that an entry was not already brought back from swap by a racing thread.
 424 *
 425 * Checking page is not enough: by the time a SwapCache page is locked, it
 426 * might be reused, and again be SwapCache, using the same swap as before.
 427 */
 428static bool shmem_confirm_swap(struct address_space *mapping,
 429			       pgoff_t index, swp_entry_t swap)
 430{
 431	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
 432}
 433
 434/*
 435 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
 436 *
 437 * SHMEM_HUGE_NEVER:
 438 *	disables huge pages for the mount;
 439 * SHMEM_HUGE_ALWAYS:
 440 *	enables huge pages for the mount;
 441 * SHMEM_HUGE_WITHIN_SIZE:
 442 *	only allocate huge pages if the page will be fully within i_size,
 443 *	also respect fadvise()/madvise() hints;
 444 * SHMEM_HUGE_ADVISE:
 445 *	only allocate huge pages if requested with fadvise()/madvise();
 446 */
 447
 448#define SHMEM_HUGE_NEVER	0
 449#define SHMEM_HUGE_ALWAYS	1
 450#define SHMEM_HUGE_WITHIN_SIZE	2
 451#define SHMEM_HUGE_ADVISE	3
 452
 453/*
 454 * Special values.
 455 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
 456 *
 457 * SHMEM_HUGE_DENY:
 458 *	disables huge on shm_mnt and all mounts, for emergency use;
 459 * SHMEM_HUGE_FORCE:
 460 *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
 461 *
 462 */
 463#define SHMEM_HUGE_DENY		(-1)
 464#define SHMEM_HUGE_FORCE	(-2)
 465
 466#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 467/* ifdef here to avoid bloating shmem.o when not necessary */
 468
 469static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
 470
 471bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
 472		   pgoff_t index, bool shmem_huge_force)
 473{
 474	loff_t i_size;
 475
 476	if (!S_ISREG(inode->i_mode))
 477		return false;
 478	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
 479	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
 480		return false;
 481	if (shmem_huge == SHMEM_HUGE_DENY)
 482		return false;
 483	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
 484		return true;
 485
 486	switch (SHMEM_SB(inode->i_sb)->huge) {
 487	case SHMEM_HUGE_ALWAYS:
 488		return true;
 489	case SHMEM_HUGE_WITHIN_SIZE:
 490		index = round_up(index + 1, HPAGE_PMD_NR);
 491		i_size = round_up(i_size_read(inode), PAGE_SIZE);
 492		if (i_size >> PAGE_SHIFT >= index)
 493			return true;
 494		fallthrough;
 495	case SHMEM_HUGE_ADVISE:
 496		if (vma && (vma->vm_flags & VM_HUGEPAGE))
 497			return true;
 498		fallthrough;
 499	default:
 500		return false;
 501	}
 502}
 503
 504#if defined(CONFIG_SYSFS)
 505static int shmem_parse_huge(const char *str)
 506{
 507	if (!strcmp(str, "never"))
 508		return SHMEM_HUGE_NEVER;
 509	if (!strcmp(str, "always"))
 510		return SHMEM_HUGE_ALWAYS;
 511	if (!strcmp(str, "within_size"))
 512		return SHMEM_HUGE_WITHIN_SIZE;
 513	if (!strcmp(str, "advise"))
 514		return SHMEM_HUGE_ADVISE;
 515	if (!strcmp(str, "deny"))
 516		return SHMEM_HUGE_DENY;
 517	if (!strcmp(str, "force"))
 518		return SHMEM_HUGE_FORCE;
 519	return -EINVAL;
 520}
 521#endif
 522
 523#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
 524static const char *shmem_format_huge(int huge)
 525{
 526	switch (huge) {
 527	case SHMEM_HUGE_NEVER:
 528		return "never";
 529	case SHMEM_HUGE_ALWAYS:
 530		return "always";
 531	case SHMEM_HUGE_WITHIN_SIZE:
 532		return "within_size";
 533	case SHMEM_HUGE_ADVISE:
 534		return "advise";
 535	case SHMEM_HUGE_DENY:
 536		return "deny";
 537	case SHMEM_HUGE_FORCE:
 538		return "force";
 539	default:
 540		VM_BUG_ON(1);
 541		return "bad_val";
 542	}
 543}
 544#endif
 545
 546static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 547		struct shrink_control *sc, unsigned long nr_to_split)
 548{
 549	LIST_HEAD(list), *pos, *next;
 550	LIST_HEAD(to_remove);
 551	struct inode *inode;
 552	struct shmem_inode_info *info;
 553	struct folio *folio;
 554	unsigned long batch = sc ? sc->nr_to_scan : 128;
 555	int split = 0;
 556
 557	if (list_empty(&sbinfo->shrinklist))
 558		return SHRINK_STOP;
 559
 560	spin_lock(&sbinfo->shrinklist_lock);
 561	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
 562		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 563
 564		/* pin the inode */
 565		inode = igrab(&info->vfs_inode);
 566
 567		/* inode is about to be evicted */
 568		if (!inode) {
 569			list_del_init(&info->shrinklist);
 
 570			goto next;
 571		}
 572
 573		/* Check if there's anything to gain */
 574		if (round_up(inode->i_size, PAGE_SIZE) ==
 575				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
 576			list_move(&info->shrinklist, &to_remove);
 
 577			goto next;
 578		}
 579
 580		list_move(&info->shrinklist, &list);
 581next:
 582		sbinfo->shrinklist_len--;
 583		if (!--batch)
 584			break;
 585	}
 586	spin_unlock(&sbinfo->shrinklist_lock);
 587
 588	list_for_each_safe(pos, next, &to_remove) {
 589		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 590		inode = &info->vfs_inode;
 591		list_del_init(&info->shrinklist);
 592		iput(inode);
 593	}
 594
 595	list_for_each_safe(pos, next, &list) {
 596		int ret;
 597		pgoff_t index;
 598
 599		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 600		inode = &info->vfs_inode;
 601
 602		if (nr_to_split && split >= nr_to_split)
 603			goto move_back;
 604
 605		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
 606		folio = filemap_get_folio(inode->i_mapping, index);
 607		if (!folio)
 608			goto drop;
 609
 610		/* No huge page at the end of the file: nothing to split */
 611		if (!folio_test_large(folio)) {
 612			folio_put(folio);
 613			goto drop;
 614		}
 615
 616		/*
 617		 * Move the inode on the list back to shrinklist if we failed
 618		 * to lock the page at this time.
 619		 *
 620		 * Waiting for the lock may lead to deadlock in the
 621		 * reclaim path.
 622		 */
 623		if (!folio_trylock(folio)) {
 624			folio_put(folio);
 625			goto move_back;
 626		}
 627
 628		ret = split_folio(folio);
 629		folio_unlock(folio);
 630		folio_put(folio);
 631
 632		/* If split failed move the inode on the list back to shrinklist */
 633		if (ret)
 634			goto move_back;
 635
 636		split++;
 637drop:
 638		list_del_init(&info->shrinklist);
 639		goto put;
 640move_back:
 641		/*
 642		 * Make sure the inode is either on the global list or deleted
 643		 * from any local list before iput() since it could be deleted
 644		 * in another thread once we put the inode (then the local list
 645		 * is corrupted).
 646		 */
 647		spin_lock(&sbinfo->shrinklist_lock);
 648		list_move(&info->shrinklist, &sbinfo->shrinklist);
 649		sbinfo->shrinklist_len++;
 650		spin_unlock(&sbinfo->shrinklist_lock);
 651put:
 652		iput(inode);
 653	}
 654
 
 
 
 
 
 655	return split;
 656}
 657
 658static long shmem_unused_huge_scan(struct super_block *sb,
 659		struct shrink_control *sc)
 660{
 661	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 662
 663	if (!READ_ONCE(sbinfo->shrinklist_len))
 664		return SHRINK_STOP;
 665
 666	return shmem_unused_huge_shrink(sbinfo, sc, 0);
 667}
 668
 669static long shmem_unused_huge_count(struct super_block *sb,
 670		struct shrink_control *sc)
 671{
 672	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 673	return READ_ONCE(sbinfo->shrinklist_len);
 674}
 675#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
 676
 677#define shmem_huge SHMEM_HUGE_DENY
 678
 679bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
 680		   pgoff_t index, bool shmem_huge_force)
 681{
 682	return false;
 683}
 
 684
 685static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 686		struct shrink_control *sc, unsigned long nr_to_split)
 687{
 688	return 0;
 
 
 
 
 689}
 690#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 691
 692/*
 693 * Like filemap_add_folio, but error if expected item has gone.
 694 */
 695static int shmem_add_to_page_cache(struct folio *folio,
 696				   struct address_space *mapping,
 697				   pgoff_t index, void *expected, gfp_t gfp,
 698				   struct mm_struct *charge_mm)
 699{
 700	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
 701	long nr = folio_nr_pages(folio);
 702	int error;
 703
 704	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
 705	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 706	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
 707	VM_BUG_ON(expected && folio_test_large(folio));
 708
 709	folio_ref_add(folio, nr);
 710	folio->mapping = mapping;
 711	folio->index = index;
 712
 713	if (!folio_test_swapcache(folio)) {
 714		error = mem_cgroup_charge(folio, charge_mm, gfp);
 715		if (error) {
 716			if (folio_test_pmd_mappable(folio)) {
 717				count_vm_event(THP_FILE_FALLBACK);
 718				count_vm_event(THP_FILE_FALLBACK_CHARGE);
 719			}
 720			goto error;
 721		}
 722	}
 723	folio_throttle_swaprate(folio, gfp);
 724
 725	do {
 
 726		xas_lock_irq(&xas);
 727		if (expected != xas_find_conflict(&xas)) {
 728			xas_set_err(&xas, -EEXIST);
 729			goto unlock;
 730		}
 731		if (expected && xas_find_conflict(&xas)) {
 732			xas_set_err(&xas, -EEXIST);
 
 
 733			goto unlock;
 
 
 
 
 
 734		}
 735		xas_store(&xas, folio);
 736		if (xas_error(&xas))
 737			goto unlock;
 738		if (folio_test_pmd_mappable(folio)) {
 739			count_vm_event(THP_FILE_ALLOC);
 740			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
 741		}
 742		mapping->nrpages += nr;
 743		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
 744		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
 745unlock:
 746		xas_unlock_irq(&xas);
 747	} while (xas_nomem(&xas, gfp));
 748
 749	if (xas_error(&xas)) {
 750		error = xas_error(&xas);
 751		goto error;
 
 752	}
 753
 754	return 0;
 755error:
 756	folio->mapping = NULL;
 757	folio_ref_sub(folio, nr);
 758	return error;
 759}
 760
 761/*
 762 * Like delete_from_page_cache, but substitutes swap for @folio.
 763 */
 764static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
 765{
 766	struct address_space *mapping = folio->mapping;
 767	long nr = folio_nr_pages(folio);
 768	int error;
 769
 
 
 770	xa_lock_irq(&mapping->i_pages);
 771	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
 772	folio->mapping = NULL;
 773	mapping->nrpages -= nr;
 774	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
 775	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
 776	xa_unlock_irq(&mapping->i_pages);
 777	folio_put(folio);
 778	BUG_ON(error);
 779}
 780
 781/*
 782 * Remove swap entry from page cache, free the swap and its page cache.
 783 */
 784static int shmem_free_swap(struct address_space *mapping,
 785			   pgoff_t index, void *radswap)
 786{
 787	void *old;
 788
 789	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
 790	if (old != radswap)
 791		return -ENOENT;
 792	free_swap_and_cache(radix_to_swp_entry(radswap));
 793	return 0;
 794}
 795
 796/*
 797 * Determine (in bytes) how many of the shmem object's pages mapped by the
 798 * given offsets are swapped out.
 799 *
 800 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
 801 * as long as the inode doesn't go away and racy results are not a problem.
 802 */
 803unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 804						pgoff_t start, pgoff_t end)
 805{
 806	XA_STATE(xas, &mapping->i_pages, start);
 807	struct page *page;
 808	unsigned long swapped = 0;
 809
 810	rcu_read_lock();
 811	xas_for_each(&xas, page, end - 1) {
 812		if (xas_retry(&xas, page))
 813			continue;
 814		if (xa_is_value(page))
 815			swapped++;
 816
 817		if (need_resched()) {
 818			xas_pause(&xas);
 819			cond_resched_rcu();
 820		}
 821	}
 822
 823	rcu_read_unlock();
 824
 825	return swapped << PAGE_SHIFT;
 826}
 827
 828/*
 829 * Determine (in bytes) how many of the shmem object's pages mapped by the
 830 * given vma is swapped out.
 831 *
 832 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
 833 * as long as the inode doesn't go away and racy results are not a problem.
 834 */
 835unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 836{
 837	struct inode *inode = file_inode(vma->vm_file);
 838	struct shmem_inode_info *info = SHMEM_I(inode);
 839	struct address_space *mapping = inode->i_mapping;
 840	unsigned long swapped;
 841
 842	/* Be careful as we don't hold info->lock */
 843	swapped = READ_ONCE(info->swapped);
 844
 845	/*
 846	 * The easier cases are when the shmem object has nothing in swap, or
 847	 * the vma maps it whole. Then we can simply use the stats that we
 848	 * already track.
 849	 */
 850	if (!swapped)
 851		return 0;
 852
 853	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 854		return swapped << PAGE_SHIFT;
 855
 856	/* Here comes the more involved part */
 857	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
 858					vma->vm_pgoff + vma_pages(vma));
 
 859}
 860
 861/*
 862 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 863 */
 864void shmem_unlock_mapping(struct address_space *mapping)
 865{
 866	struct folio_batch fbatch;
 
 867	pgoff_t index = 0;
 868
 869	folio_batch_init(&fbatch);
 870	/*
 871	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 872	 */
 873	while (!mapping_unevictable(mapping) &&
 874	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
 875		check_move_unevictable_folios(&fbatch);
 876		folio_batch_release(&fbatch);
 
 
 
 
 
 
 
 
 
 877		cond_resched();
 878	}
 879}
 880
 881static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
 882{
 883	struct folio *folio;
 884
 885	/*
 886	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
 887	 * beyond i_size, and reports fallocated pages as holes.
 888	 */
 889	folio = __filemap_get_folio(inode->i_mapping, index,
 890					FGP_ENTRY | FGP_LOCK, 0);
 891	if (!xa_is_value(folio))
 892		return folio;
 893	/*
 894	 * But read a page back from swap if any of it is within i_size
 895	 * (although in some cases this is just a waste of time).
 896	 */
 897	folio = NULL;
 898	shmem_get_folio(inode, index, &folio, SGP_READ);
 899	return folio;
 900}
 901
 902/*
 903 * Remove range of pages and swap entries from page cache, and free them.
 904 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 905 */
 906static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 907								 bool unfalloc)
 908{
 909	struct address_space *mapping = inode->i_mapping;
 910	struct shmem_inode_info *info = SHMEM_I(inode);
 911	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 912	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 913	struct folio_batch fbatch;
 
 
 914	pgoff_t indices[PAGEVEC_SIZE];
 915	struct folio *folio;
 916	bool same_folio;
 917	long nr_swaps_freed = 0;
 918	pgoff_t index;
 919	int i;
 920
 921	if (lend == -1)
 922		end = -1;	/* unsigned, so actually very big */
 923
 924	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
 925		info->fallocend = start;
 
 
 
 
 
 
 
 
 926
 927	folio_batch_init(&fbatch);
 928	index = start;
 929	while (index < end && find_lock_entries(mapping, &index, end - 1,
 930			&fbatch, indices)) {
 931		for (i = 0; i < folio_batch_count(&fbatch); i++) {
 932			folio = fbatch.folios[i];
 933
 934			if (xa_is_value(folio)) {
 935				if (unfalloc)
 936					continue;
 937				nr_swaps_freed += !shmem_free_swap(mapping,
 938							indices[i], folio);
 
 
 
 
 
 
 
 
 
 
 
 
 939				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 940			}
 941
 942			if (!unfalloc || !folio_test_uptodate(folio))
 943				truncate_inode_folio(mapping, folio);
 944			folio_unlock(folio);
 
 
 
 
 
 945		}
 946		folio_batch_remove_exceptionals(&fbatch);
 947		folio_batch_release(&fbatch);
 948		cond_resched();
 
 949	}
 950
 951	/*
 952	 * When undoing a failed fallocate, we want none of the partial folio
 953	 * zeroing and splitting below, but shall want to truncate the whole
 954	 * folio when !uptodate indicates that it was added by this fallocate,
 955	 * even when [lstart, lend] covers only a part of the folio.
 956	 */
 957	if (unfalloc)
 958		goto whole_folios;
 959
 960	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
 961	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
 962	if (folio) {
 963		same_folio = lend < folio_pos(folio) + folio_size(folio);
 964		folio_mark_dirty(folio);
 965		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
 966			start = folio->index + folio_nr_pages(folio);
 967			if (same_folio)
 968				end = folio->index;
 969		}
 970		folio_unlock(folio);
 971		folio_put(folio);
 972		folio = NULL;
 973	}
 974
 975	if (!same_folio)
 976		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
 977	if (folio) {
 978		folio_mark_dirty(folio);
 979		if (!truncate_inode_partial_folio(folio, lstart, lend))
 980			end = folio->index;
 981		folio_unlock(folio);
 982		folio_put(folio);
 983	}
 984
 985whole_folios:
 986
 987	index = start;
 988	while (index < end) {
 989		cond_resched();
 990
 991		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
 992				indices)) {
 
 
 993			/* If all gone or hole-punch or unfalloc, we're done */
 994			if (index == start || end != -1)
 995				break;
 996			/* But if truncating, restart to make sure all gone */
 997			index = start;
 998			continue;
 999		}
1000		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1001			folio = fbatch.folios[i];
1002
1003			if (xa_is_value(folio)) {
 
 
 
 
1004				if (unfalloc)
1005					continue;
1006				if (shmem_free_swap(mapping, indices[i], folio)) {
1007					/* Swap was replaced by page: retry */
1008					index = indices[i];
1009					break;
1010				}
1011				nr_swaps_freed++;
1012				continue;
1013			}
1014
1015			folio_lock(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1016
1017			if (!unfalloc || !folio_test_uptodate(folio)) {
1018				if (folio_mapping(folio) != mapping) {
 
 
 
 
1019					/* Page was replaced by swap: retry */
1020					folio_unlock(folio);
1021					index = indices[i];
1022					break;
1023				}
1024				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1025						folio);
1026				truncate_inode_folio(mapping, folio);
1027			}
1028			folio_unlock(folio);
1029		}
1030		folio_batch_remove_exceptionals(&fbatch);
1031		folio_batch_release(&fbatch);
 
1032	}
1033
1034	spin_lock_irq(&info->lock);
1035	info->swapped -= nr_swaps_freed;
1036	shmem_recalc_inode(inode);
1037	spin_unlock_irq(&info->lock);
1038}
1039
1040void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1041{
1042	shmem_undo_range(inode, lstart, lend, false);
1043	inode->i_ctime = inode->i_mtime = current_time(inode);
1044	inode_inc_iversion(inode);
1045}
1046EXPORT_SYMBOL_GPL(shmem_truncate_range);
1047
1048static int shmem_getattr(struct user_namespace *mnt_userns,
1049			 const struct path *path, struct kstat *stat,
1050			 u32 request_mask, unsigned int query_flags)
1051{
1052	struct inode *inode = path->dentry->d_inode;
1053	struct shmem_inode_info *info = SHMEM_I(inode);
 
1054
1055	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1056		spin_lock_irq(&info->lock);
1057		shmem_recalc_inode(inode);
1058		spin_unlock_irq(&info->lock);
1059	}
1060	if (info->fsflags & FS_APPEND_FL)
1061		stat->attributes |= STATX_ATTR_APPEND;
1062	if (info->fsflags & FS_IMMUTABLE_FL)
1063		stat->attributes |= STATX_ATTR_IMMUTABLE;
1064	if (info->fsflags & FS_NODUMP_FL)
1065		stat->attributes |= STATX_ATTR_NODUMP;
1066	stat->attributes_mask |= (STATX_ATTR_APPEND |
1067			STATX_ATTR_IMMUTABLE |
1068			STATX_ATTR_NODUMP);
1069	generic_fillattr(&init_user_ns, inode, stat);
1070
1071	if (shmem_is_huge(NULL, inode, 0, false))
1072		stat->blksize = HPAGE_PMD_SIZE;
1073
1074	if (request_mask & STATX_BTIME) {
1075		stat->result_mask |= STATX_BTIME;
1076		stat->btime.tv_sec = info->i_crtime.tv_sec;
1077		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1078	}
1079
1080	return 0;
1081}
1082
1083static int shmem_setattr(struct user_namespace *mnt_userns,
1084			 struct dentry *dentry, struct iattr *attr)
1085{
1086	struct inode *inode = d_inode(dentry);
1087	struct shmem_inode_info *info = SHMEM_I(inode);
 
1088	int error;
1089	bool update_mtime = false;
1090	bool update_ctime = true;
1091
1092	error = setattr_prepare(&init_user_ns, dentry, attr);
1093	if (error)
1094		return error;
1095
1096	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1097		loff_t oldsize = inode->i_size;
1098		loff_t newsize = attr->ia_size;
1099
1100		/* protected by i_rwsem */
1101		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1102		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1103			return -EPERM;
1104
1105		if (newsize != oldsize) {
1106			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1107					oldsize, newsize);
1108			if (error)
1109				return error;
1110			i_size_write(inode, newsize);
1111			update_mtime = true;
1112		} else {
1113			update_ctime = false;
1114		}
1115		if (newsize <= oldsize) {
1116			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1117			if (oldsize > holebegin)
1118				unmap_mapping_range(inode->i_mapping,
1119							holebegin, 0, 1);
1120			if (info->alloced)
1121				shmem_truncate_range(inode,
1122							newsize, (loff_t)-1);
1123			/* unmap again to remove racily COWed private pages */
1124			if (oldsize > holebegin)
1125				unmap_mapping_range(inode->i_mapping,
1126							holebegin, 0, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127		}
1128	}
1129
1130	setattr_copy(&init_user_ns, inode, attr);
1131	if (attr->ia_valid & ATTR_MODE)
1132		error = posix_acl_chmod(&init_user_ns, dentry, inode->i_mode);
1133	if (!error && update_ctime) {
1134		inode->i_ctime = current_time(inode);
1135		if (update_mtime)
1136			inode->i_mtime = inode->i_ctime;
1137		inode_inc_iversion(inode);
1138	}
1139	return error;
1140}
1141
1142static void shmem_evict_inode(struct inode *inode)
1143{
1144	struct shmem_inode_info *info = SHMEM_I(inode);
1145	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1146
1147	if (shmem_mapping(inode->i_mapping)) {
1148		shmem_unacct_size(info->flags, inode->i_size);
1149		inode->i_size = 0;
1150		mapping_set_exiting(inode->i_mapping);
1151		shmem_truncate_range(inode, 0, (loff_t)-1);
1152		if (!list_empty(&info->shrinklist)) {
1153			spin_lock(&sbinfo->shrinklist_lock);
1154			if (!list_empty(&info->shrinklist)) {
1155				list_del_init(&info->shrinklist);
1156				sbinfo->shrinklist_len--;
1157			}
1158			spin_unlock(&sbinfo->shrinklist_lock);
1159		}
1160		while (!list_empty(&info->swaplist)) {
1161			/* Wait while shmem_unuse() is scanning this inode... */
1162			wait_var_event(&info->stop_eviction,
1163				       !atomic_read(&info->stop_eviction));
1164			mutex_lock(&shmem_swaplist_mutex);
1165			/* ...but beware of the race if we peeked too early */
1166			if (!atomic_read(&info->stop_eviction))
1167				list_del_init(&info->swaplist);
1168			mutex_unlock(&shmem_swaplist_mutex);
1169		}
1170	}
1171
1172	simple_xattrs_free(&info->xattrs);
1173	WARN_ON(inode->i_blocks);
1174	shmem_free_inode(inode->i_sb);
1175	clear_inode(inode);
1176}
1177
 
 
1178static int shmem_find_swap_entries(struct address_space *mapping,
1179				   pgoff_t start, struct folio_batch *fbatch,
1180				   pgoff_t *indices, unsigned int type)
 
1181{
1182	XA_STATE(xas, &mapping->i_pages, start);
1183	struct folio *folio;
1184	swp_entry_t entry;
 
 
 
 
1185
1186	rcu_read_lock();
1187	xas_for_each(&xas, folio, ULONG_MAX) {
1188		if (xas_retry(&xas, folio))
1189			continue;
1190
1191		if (!xa_is_value(folio))
1192			continue;
1193
1194		entry = radix_to_swp_entry(folio);
1195		/*
1196		 * swapin error entries can be found in the mapping. But they're
1197		 * deliberately ignored here as we've done everything we can do.
1198		 */
1199		if (swp_type(entry) != type)
1200			continue;
 
 
 
1201
1202		indices[folio_batch_count(fbatch)] = xas.xa_index;
1203		if (!folio_batch_add(fbatch, folio))
1204			break;
1205
1206		if (need_resched()) {
1207			xas_pause(&xas);
1208			cond_resched_rcu();
1209		}
 
 
1210	}
1211	rcu_read_unlock();
1212
1213	return xas.xa_index;
1214}
1215
1216/*
1217 * Move the swapped pages for an inode to page cache. Returns the count
1218 * of pages swapped in, or the error in case of failure.
1219 */
1220static int shmem_unuse_swap_entries(struct inode *inode,
1221		struct folio_batch *fbatch, pgoff_t *indices)
1222{
1223	int i = 0;
1224	int ret = 0;
1225	int error = 0;
1226	struct address_space *mapping = inode->i_mapping;
1227
1228	for (i = 0; i < folio_batch_count(fbatch); i++) {
1229		struct folio *folio = fbatch->folios[i];
1230
1231		if (!xa_is_value(folio))
1232			continue;
1233		error = shmem_swapin_folio(inode, indices[i],
1234					  &folio, SGP_CACHE,
1235					  mapping_gfp_mask(mapping),
1236					  NULL, NULL);
1237		if (error == 0) {
1238			folio_unlock(folio);
1239			folio_put(folio);
1240			ret++;
1241		}
1242		if (error == -ENOMEM)
1243			break;
1244		error = 0;
1245	}
1246	return error ? error : ret;
1247}
1248
1249/*
1250 * If swap found in inode, free it and move page from swapcache to filecache.
1251 */
1252static int shmem_unuse_inode(struct inode *inode, unsigned int type)
 
1253{
1254	struct address_space *mapping = inode->i_mapping;
1255	pgoff_t start = 0;
1256	struct folio_batch fbatch;
1257	pgoff_t indices[PAGEVEC_SIZE];
 
1258	int ret = 0;
1259
 
1260	do {
1261		folio_batch_init(&fbatch);
1262		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1263		if (folio_batch_count(&fbatch) == 0) {
 
 
 
 
 
 
1264			ret = 0;
1265			break;
1266		}
1267
1268		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1269		if (ret < 0)
1270			break;
1271
1272		start = indices[folio_batch_count(&fbatch) - 1];
 
 
 
 
 
 
 
 
1273	} while (true);
1274
1275	return ret;
1276}
1277
1278/*
1279 * Read all the shared memory data that resides in the swap
1280 * device 'type' back into memory, so the swap device can be
1281 * unused.
1282 */
1283int shmem_unuse(unsigned int type)
 
1284{
1285	struct shmem_inode_info *info, *next;
1286	int error = 0;
1287
1288	if (list_empty(&shmem_swaplist))
1289		return 0;
1290
1291	mutex_lock(&shmem_swaplist_mutex);
1292	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1293		if (!info->swapped) {
1294			list_del_init(&info->swaplist);
1295			continue;
1296		}
1297		/*
1298		 * Drop the swaplist mutex while searching the inode for swap;
1299		 * but before doing so, make sure shmem_evict_inode() will not
1300		 * remove placeholder inode from swaplist, nor let it be freed
1301		 * (igrab() would protect from unlink, but not from unmount).
1302		 */
1303		atomic_inc(&info->stop_eviction);
1304		mutex_unlock(&shmem_swaplist_mutex);
1305
1306		error = shmem_unuse_inode(&info->vfs_inode, type);
 
1307		cond_resched();
1308
1309		mutex_lock(&shmem_swaplist_mutex);
1310		next = list_next_entry(info, swaplist);
1311		if (!info->swapped)
1312			list_del_init(&info->swaplist);
1313		if (atomic_dec_and_test(&info->stop_eviction))
1314			wake_up_var(&info->stop_eviction);
1315		if (error)
1316			break;
1317	}
1318	mutex_unlock(&shmem_swaplist_mutex);
1319
1320	return error;
1321}
1322
1323/*
1324 * Move the page from the page cache to the swap cache.
1325 */
1326static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1327{
1328	struct folio *folio = page_folio(page);
1329	struct shmem_inode_info *info;
1330	struct address_space *mapping;
1331	struct inode *inode;
1332	swp_entry_t swap;
1333	pgoff_t index;
1334
1335	/*
1336	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1337	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1338	 * and its shmem_writeback() needs them to be split when swapping.
1339	 */
1340	if (folio_test_large(folio)) {
1341		/* Ensure the subpages are still dirty */
1342		folio_test_set_dirty(folio);
1343		if (split_huge_page(page) < 0)
1344			goto redirty;
1345		folio = page_folio(page);
1346		folio_clear_dirty(folio);
1347	}
1348
1349	BUG_ON(!folio_test_locked(folio));
1350	mapping = folio->mapping;
1351	index = folio->index;
1352	inode = mapping->host;
1353	info = SHMEM_I(inode);
1354	if (info->flags & VM_LOCKED)
1355		goto redirty;
1356	if (!total_swap_pages)
1357		goto redirty;
1358
1359	/*
1360	 * Our capabilities prevent regular writeback or sync from ever calling
1361	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1362	 * its underlying filesystem, in which case tmpfs should write out to
1363	 * swap only in response to memory pressure, and not for the writeback
1364	 * threads or sync.
1365	 */
1366	if (!wbc->for_reclaim) {
1367		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1368		goto redirty;
1369	}
1370
1371	/*
1372	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1373	 * value into swapfile.c, the only way we can correctly account for a
1374	 * fallocated folio arriving here is now to initialize it and write it.
1375	 *
1376	 * That's okay for a folio already fallocated earlier, but if we have
1377	 * not yet completed the fallocation, then (a) we want to keep track
1378	 * of this folio in case we have to undo it, and (b) it may not be a
1379	 * good idea to continue anyway, once we're pushing into swap.  So
1380	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1381	 */
1382	if (!folio_test_uptodate(folio)) {
1383		if (inode->i_private) {
1384			struct shmem_falloc *shmem_falloc;
1385			spin_lock(&inode->i_lock);
1386			shmem_falloc = inode->i_private;
1387			if (shmem_falloc &&
1388			    !shmem_falloc->waitq &&
1389			    index >= shmem_falloc->start &&
1390			    index < shmem_falloc->next)
1391				shmem_falloc->nr_unswapped++;
1392			else
1393				shmem_falloc = NULL;
1394			spin_unlock(&inode->i_lock);
1395			if (shmem_falloc)
1396				goto redirty;
1397		}
1398		folio_zero_range(folio, 0, folio_size(folio));
1399		flush_dcache_folio(folio);
1400		folio_mark_uptodate(folio);
1401	}
1402
1403	swap = folio_alloc_swap(folio);
1404	if (!swap.val)
1405		goto redirty;
1406
1407	/*
1408	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1409	 * if it's not already there.  Do it now before the folio is
1410	 * moved to swap cache, when its pagelock no longer protects
1411	 * the inode from eviction.  But don't unlock the mutex until
1412	 * we've incremented swapped, because shmem_unuse_inode() will
1413	 * prune a !swapped inode from the swaplist under this mutex.
1414	 */
1415	mutex_lock(&shmem_swaplist_mutex);
1416	if (list_empty(&info->swaplist))
1417		list_add(&info->swaplist, &shmem_swaplist);
1418
1419	if (add_to_swap_cache(folio, swap,
1420			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1421			NULL) == 0) {
1422		spin_lock_irq(&info->lock);
1423		shmem_recalc_inode(inode);
1424		info->swapped++;
1425		spin_unlock_irq(&info->lock);
1426
1427		swap_shmem_alloc(swap);
1428		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1429
1430		mutex_unlock(&shmem_swaplist_mutex);
1431		BUG_ON(folio_mapped(folio));
1432		swap_writepage(&folio->page, wbc);
1433		return 0;
1434	}
1435
1436	mutex_unlock(&shmem_swaplist_mutex);
1437	put_swap_folio(folio, swap);
1438redirty:
1439	folio_mark_dirty(folio);
1440	if (wbc->for_reclaim)
1441		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1442	folio_unlock(folio);
1443	return 0;
1444}
1445
1446#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1447static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1448{
1449	char buffer[64];
1450
1451	if (!mpol || mpol->mode == MPOL_DEFAULT)
1452		return;		/* show nothing */
1453
1454	mpol_to_str(buffer, sizeof(buffer), mpol);
1455
1456	seq_printf(seq, ",mpol=%s", buffer);
1457}
1458
1459static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1460{
1461	struct mempolicy *mpol = NULL;
1462	if (sbinfo->mpol) {
1463		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1464		mpol = sbinfo->mpol;
1465		mpol_get(mpol);
1466		raw_spin_unlock(&sbinfo->stat_lock);
1467	}
1468	return mpol;
1469}
1470#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1471static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1472{
1473}
1474static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1475{
1476	return NULL;
1477}
1478#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1479#ifndef CONFIG_NUMA
1480#define vm_policy vm_private_data
1481#endif
1482
1483static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1484		struct shmem_inode_info *info, pgoff_t index)
1485{
1486	/* Create a pseudo vma that just contains the policy */
1487	vma_init(vma, NULL);
1488	/* Bias interleave by inode number to distribute better across nodes */
1489	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1490	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1491}
1492
1493static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1494{
1495	/* Drop reference taken by mpol_shared_policy_lookup() */
1496	mpol_cond_put(vma->vm_policy);
1497}
1498
1499static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1500			struct shmem_inode_info *info, pgoff_t index)
1501{
1502	struct vm_area_struct pvma;
1503	struct page *page;
1504	struct vm_fault vmf = {
1505		.vma = &pvma,
1506	};
1507
1508	shmem_pseudo_vma_init(&pvma, info, index);
 
 
1509	page = swap_cluster_readahead(swap, gfp, &vmf);
1510	shmem_pseudo_vma_destroy(&pvma);
1511
1512	if (!page)
1513		return NULL;
1514	return page_folio(page);
1515}
1516
1517/*
1518 * Make sure huge_gfp is always more limited than limit_gfp.
1519 * Some of the flags set permissions, while others set limitations.
1520 */
1521static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1522{
1523	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1524	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1525	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1526	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1527
1528	/* Allow allocations only from the originally specified zones. */
1529	result |= zoneflags;
1530
1531	/*
1532	 * Minimize the result gfp by taking the union with the deny flags,
1533	 * and the intersection of the allow flags.
1534	 */
1535	result |= (limit_gfp & denyflags);
1536	result |= (huge_gfp & limit_gfp) & allowflags;
1537
1538	return result;
1539}
1540
1541static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1542		struct shmem_inode_info *info, pgoff_t index)
1543{
1544	struct vm_area_struct pvma;
1545	struct address_space *mapping = info->vfs_inode.i_mapping;
1546	pgoff_t hindex;
1547	struct folio *folio;
 
 
 
1548
1549	hindex = round_down(index, HPAGE_PMD_NR);
1550	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1551								XA_PRESENT))
1552		return NULL;
1553
1554	shmem_pseudo_vma_init(&pvma, info, hindex);
1555	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
 
1556	shmem_pseudo_vma_destroy(&pvma);
1557	if (!folio)
1558		count_vm_event(THP_FILE_FALLBACK);
1559	return folio;
1560}
1561
1562static struct folio *shmem_alloc_folio(gfp_t gfp,
1563			struct shmem_inode_info *info, pgoff_t index)
1564{
1565	struct vm_area_struct pvma;
1566	struct folio *folio;
1567
1568	shmem_pseudo_vma_init(&pvma, info, index);
1569	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1570	shmem_pseudo_vma_destroy(&pvma);
1571
1572	return folio;
1573}
1574
1575static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
 
1576		pgoff_t index, bool huge)
1577{
1578	struct shmem_inode_info *info = SHMEM_I(inode);
1579	struct folio *folio;
1580	int nr;
1581	int err = -ENOSPC;
1582
1583	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1584		huge = false;
1585	nr = huge ? HPAGE_PMD_NR : 1;
1586
1587	if (!shmem_inode_acct_block(inode, nr))
1588		goto failed;
1589
1590	if (huge)
1591		folio = shmem_alloc_hugefolio(gfp, info, index);
1592	else
1593		folio = shmem_alloc_folio(gfp, info, index);
1594	if (folio) {
1595		__folio_set_locked(folio);
1596		__folio_set_swapbacked(folio);
1597		return folio;
1598	}
1599
1600	err = -ENOMEM;
1601	shmem_inode_unacct_blocks(inode, nr);
1602failed:
1603	return ERR_PTR(err);
1604}
1605
1606/*
1607 * When a page is moved from swapcache to shmem filecache (either by the
1608 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1609 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1610 * ignorance of the mapping it belongs to.  If that mapping has special
1611 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1612 * we may need to copy to a suitable page before moving to filecache.
1613 *
1614 * In a future release, this may well be extended to respect cpuset and
1615 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1616 * but for now it is a simple matter of zone.
1617 */
1618static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1619{
1620	return folio_zonenum(folio) > gfp_zone(gfp);
1621}
1622
1623static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1624				struct shmem_inode_info *info, pgoff_t index)
1625{
1626	struct folio *old, *new;
1627	struct address_space *swap_mapping;
1628	swp_entry_t entry;
1629	pgoff_t swap_index;
1630	int error;
1631
1632	old = *foliop;
1633	entry = folio_swap_entry(old);
1634	swap_index = swp_offset(entry);
1635	swap_mapping = swap_address_space(entry);
1636
1637	/*
1638	 * We have arrived here because our zones are constrained, so don't
1639	 * limit chance of success by further cpuset and node constraints.
1640	 */
1641	gfp &= ~GFP_CONSTRAINT_MASK;
1642	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1643	new = shmem_alloc_folio(gfp, info, index);
1644	if (!new)
1645		return -ENOMEM;
1646
1647	folio_get(new);
1648	folio_copy(new, old);
1649	flush_dcache_folio(new);
1650
1651	__folio_set_locked(new);
1652	__folio_set_swapbacked(new);
1653	folio_mark_uptodate(new);
1654	folio_set_swap_entry(new, entry);
1655	folio_set_swapcache(new);
1656
1657	/*
1658	 * Our caller will very soon move newpage out of swapcache, but it's
1659	 * a nice clean interface for us to replace oldpage by newpage there.
1660	 */
1661	xa_lock_irq(&swap_mapping->i_pages);
1662	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1663	if (!error) {
1664		mem_cgroup_migrate(old, new);
1665		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1666		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1667		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1668		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1669	}
1670	xa_unlock_irq(&swap_mapping->i_pages);
1671
1672	if (unlikely(error)) {
1673		/*
1674		 * Is this possible?  I think not, now that our callers check
1675		 * both PageSwapCache and page_private after getting page lock;
1676		 * but be defensive.  Reverse old to newpage for clear and free.
1677		 */
1678		old = new;
1679	} else {
1680		folio_add_lru(new);
1681		*foliop = new;
 
1682	}
1683
1684	folio_clear_swapcache(old);
1685	old->private = NULL;
1686
1687	folio_unlock(old);
1688	folio_put_refs(old, 2);
 
1689	return error;
1690}
1691
1692static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1693					 struct folio *folio, swp_entry_t swap)
1694{
1695	struct address_space *mapping = inode->i_mapping;
1696	struct shmem_inode_info *info = SHMEM_I(inode);
1697	swp_entry_t swapin_error;
1698	void *old;
1699
1700	swapin_error = make_swapin_error_entry();
1701	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1702			     swp_to_radix_entry(swap),
1703			     swp_to_radix_entry(swapin_error), 0);
1704	if (old != swp_to_radix_entry(swap))
1705		return;
1706
1707	folio_wait_writeback(folio);
1708	delete_from_swap_cache(folio);
1709	spin_lock_irq(&info->lock);
1710	/*
1711	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1712	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1713	 * shmem_evict_inode.
1714	 */
1715	info->alloced--;
1716	info->swapped--;
1717	shmem_recalc_inode(inode);
1718	spin_unlock_irq(&info->lock);
1719	swap_free(swap);
1720}
1721
1722/*
1723 * Swap in the folio pointed to by *foliop.
1724 * Caller has to make sure that *foliop contains a valid swapped folio.
1725 * Returns 0 and the folio in foliop if success. On failure, returns the
1726 * error code and NULL in *foliop.
1727 */
1728static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1729			     struct folio **foliop, enum sgp_type sgp,
1730			     gfp_t gfp, struct vm_area_struct *vma,
1731			     vm_fault_t *fault_type)
1732{
1733	struct address_space *mapping = inode->i_mapping;
1734	struct shmem_inode_info *info = SHMEM_I(inode);
1735	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1736	struct folio *folio = NULL;
 
1737	swp_entry_t swap;
1738	int error;
1739
1740	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1741	swap = radix_to_swp_entry(*foliop);
1742	*foliop = NULL;
1743
1744	if (is_swapin_error_entry(swap))
1745		return -EIO;
1746
1747	/* Look it up and read it in.. */
1748	folio = swap_cache_get_folio(swap, NULL, 0);
1749	if (!folio) {
1750		/* Or update major stats only when swapin succeeds?? */
1751		if (fault_type) {
1752			*fault_type |= VM_FAULT_MAJOR;
1753			count_vm_event(PGMAJFAULT);
1754			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1755		}
1756		/* Here we actually start the io */
1757		folio = shmem_swapin(swap, gfp, info, index);
1758		if (!folio) {
1759			error = -ENOMEM;
1760			goto failed;
1761		}
1762	}
1763
1764	/* We have to do this with folio locked to prevent races */
1765	folio_lock(folio);
1766	if (!folio_test_swapcache(folio) ||
1767	    folio_swap_entry(folio).val != swap.val ||
1768	    !shmem_confirm_swap(mapping, index, swap)) {
1769		error = -EEXIST;
1770		goto unlock;
1771	}
1772	if (!folio_test_uptodate(folio)) {
1773		error = -EIO;
1774		goto failed;
1775	}
1776	folio_wait_writeback(folio);
1777
1778	/*
1779	 * Some architectures may have to restore extra metadata to the
1780	 * folio after reading from swap.
1781	 */
1782	arch_swap_restore(swap, folio);
1783
1784	if (shmem_should_replace_folio(folio, gfp)) {
1785		error = shmem_replace_folio(&folio, gfp, info, index);
1786		if (error)
1787			goto failed;
1788	}
1789
1790	error = shmem_add_to_page_cache(folio, mapping, index,
1791					swp_to_radix_entry(swap), gfp,
1792					charge_mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1793	if (error)
1794		goto failed;
1795
 
 
1796	spin_lock_irq(&info->lock);
1797	info->swapped--;
1798	shmem_recalc_inode(inode);
1799	spin_unlock_irq(&info->lock);
1800
1801	if (sgp == SGP_WRITE)
1802		folio_mark_accessed(folio);
1803
1804	delete_from_swap_cache(folio);
1805	folio_mark_dirty(folio);
1806	swap_free(swap);
1807
1808	*foliop = folio;
1809	return 0;
1810failed:
1811	if (!shmem_confirm_swap(mapping, index, swap))
1812		error = -EEXIST;
1813	if (error == -EIO)
1814		shmem_set_folio_swapin_error(inode, index, folio, swap);
1815unlock:
1816	if (folio) {
1817		folio_unlock(folio);
1818		folio_put(folio);
1819	}
1820
1821	return error;
1822}
1823
1824/*
1825 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1826 *
1827 * If we allocate a new one we do not mark it dirty. That's up to the
1828 * vm. If we swap it in we mark it dirty since we also free the swap
1829 * entry since a page cannot live in both the swap and page cache.
1830 *
1831 * vma, vmf, and fault_type are only supplied by shmem_fault:
1832 * otherwise they are NULL.
1833 */
1834static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1835		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1836		struct vm_area_struct *vma, struct vm_fault *vmf,
1837		vm_fault_t *fault_type)
1838{
1839	struct address_space *mapping = inode->i_mapping;
1840	struct shmem_inode_info *info = SHMEM_I(inode);
1841	struct shmem_sb_info *sbinfo;
1842	struct mm_struct *charge_mm;
1843	struct folio *folio;
1844	pgoff_t hindex;
1845	gfp_t huge_gfp;
 
1846	int error;
1847	int once = 0;
1848	int alloced = 0;
1849
1850	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1851		return -EFBIG;
 
 
1852repeat:
1853	if (sgp <= SGP_CACHE &&
1854	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1855		return -EINVAL;
1856	}
1857
1858	sbinfo = SHMEM_SB(inode->i_sb);
1859	charge_mm = vma ? vma->vm_mm : NULL;
1860
1861	folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1862	if (folio && vma && userfaultfd_minor(vma)) {
1863		if (!xa_is_value(folio)) {
1864			folio_unlock(folio);
1865			folio_put(folio);
1866		}
1867		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1868		return 0;
1869	}
1870
1871	if (xa_is_value(folio)) {
1872		error = shmem_swapin_folio(inode, index, &folio,
 
1873					  sgp, gfp, vma, fault_type);
1874		if (error == -EEXIST)
1875			goto repeat;
1876
1877		*foliop = folio;
1878		return error;
1879	}
1880
1881	if (folio) {
1882		if (sgp == SGP_WRITE)
1883			folio_mark_accessed(folio);
1884		if (folio_test_uptodate(folio))
1885			goto out;
1886		/* fallocated folio */
1887		if (sgp != SGP_READ)
1888			goto clear;
1889		folio_unlock(folio);
1890		folio_put(folio);
 
1891	}
1892
1893	/*
1894	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1895	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1896	 */
1897	*foliop = NULL;
1898	if (sgp == SGP_READ)
1899		return 0;
1900	if (sgp == SGP_NOALLOC)
1901		return -ENOENT;
1902
1903	/*
1904	 * Fast cache lookup and swap lookup did not find it: allocate.
 
1905	 */
1906
1907	if (vma && userfaultfd_missing(vma)) {
1908		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1909		return 0;
1910	}
1911
1912	if (!shmem_is_huge(vma, inode, index, false))
 
 
 
 
 
 
 
 
 
 
1913		goto alloc_nohuge;
 
 
 
 
 
 
 
 
 
 
 
 
 
1914
1915	huge_gfp = vma_thp_gfp_mask(vma);
1916	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1917	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1918	if (IS_ERR(folio)) {
1919alloc_nohuge:
1920		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
 
1921	}
1922	if (IS_ERR(folio)) {
1923		int retry = 5;
1924
1925		error = PTR_ERR(folio);
1926		folio = NULL;
1927		if (error != -ENOSPC)
1928			goto unlock;
1929		/*
1930		 * Try to reclaim some space by splitting a large folio
1931		 * beyond i_size on the filesystem.
1932		 */
1933		while (retry--) {
1934			int ret;
1935
1936			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1937			if (ret == SHRINK_STOP)
1938				break;
1939			if (ret)
1940				goto alloc_nohuge;
1941		}
1942		goto unlock;
1943	}
1944
1945	hindex = round_down(index, folio_nr_pages(folio));
 
 
 
1946
1947	if (sgp == SGP_WRITE)
1948		__folio_set_referenced(folio);
1949
1950	error = shmem_add_to_page_cache(folio, mapping, hindex,
1951					NULL, gfp & GFP_RECLAIM_MASK,
1952					charge_mm);
1953	if (error)
1954		goto unacct;
1955	folio_add_lru(folio);
 
 
 
 
 
 
 
 
 
1956
1957	spin_lock_irq(&info->lock);
1958	info->alloced += folio_nr_pages(folio);
1959	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1960	shmem_recalc_inode(inode);
1961	spin_unlock_irq(&info->lock);
1962	alloced = true;
1963
1964	if (folio_test_pmd_mappable(folio) &&
1965	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1966					folio_next_index(folio) - 1) {
1967		/*
1968		 * Part of the large folio is beyond i_size: subject
1969		 * to shrink under memory pressure.
1970		 */
1971		spin_lock(&sbinfo->shrinklist_lock);
1972		/*
1973		 * _careful to defend against unlocked access to
1974		 * ->shrink_list in shmem_unused_huge_shrink()
1975		 */
1976		if (list_empty_careful(&info->shrinklist)) {
1977			list_add_tail(&info->shrinklist,
1978				      &sbinfo->shrinklist);
1979			sbinfo->shrinklist_len++;
1980		}
1981		spin_unlock(&sbinfo->shrinklist_lock);
1982	}
1983
1984	/*
1985	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
1986	 */
1987	if (sgp == SGP_FALLOC)
1988		sgp = SGP_WRITE;
1989clear:
1990	/*
1991	 * Let SGP_WRITE caller clear ends if write does not fill folio;
1992	 * but SGP_FALLOC on a folio fallocated earlier must initialize
1993	 * it now, lest undo on failure cancel our earlier guarantee.
1994	 */
1995	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1996		long i, n = folio_nr_pages(folio);
 
1997
1998		for (i = 0; i < n; i++)
1999			clear_highpage(folio_page(folio, i));
2000		flush_dcache_folio(folio);
2001		folio_mark_uptodate(folio);
 
2002	}
2003
2004	/* Perhaps the file has been truncated since we checked */
2005	if (sgp <= SGP_CACHE &&
2006	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2007		if (alloced) {
2008			folio_clear_dirty(folio);
2009			filemap_remove_folio(folio);
2010			spin_lock_irq(&info->lock);
2011			shmem_recalc_inode(inode);
2012			spin_unlock_irq(&info->lock);
2013		}
2014		error = -EINVAL;
2015		goto unlock;
2016	}
2017out:
2018	*foliop = folio;
2019	return 0;
2020
2021	/*
2022	 * Error recovery.
2023	 */
2024unacct:
2025	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2026
2027	if (folio_test_large(folio)) {
2028		folio_unlock(folio);
2029		folio_put(folio);
2030		goto alloc_nohuge;
2031	}
2032unlock:
2033	if (folio) {
2034		folio_unlock(folio);
2035		folio_put(folio);
2036	}
2037	if (error == -ENOSPC && !once++) {
2038		spin_lock_irq(&info->lock);
2039		shmem_recalc_inode(inode);
2040		spin_unlock_irq(&info->lock);
2041		goto repeat;
2042	}
2043	if (error == -EEXIST)
2044		goto repeat;
2045	return error;
2046}
2047
2048int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2049		enum sgp_type sgp)
2050{
2051	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2052			mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2053}
2054
2055/*
2056 * This is like autoremove_wake_function, but it removes the wait queue
2057 * entry unconditionally - even if something else had already woken the
2058 * target.
2059 */
2060static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2061{
2062	int ret = default_wake_function(wait, mode, sync, key);
2063	list_del_init(&wait->entry);
2064	return ret;
2065}
2066
2067static vm_fault_t shmem_fault(struct vm_fault *vmf)
2068{
2069	struct vm_area_struct *vma = vmf->vma;
2070	struct inode *inode = file_inode(vma->vm_file);
2071	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2072	struct folio *folio = NULL;
2073	int err;
2074	vm_fault_t ret = VM_FAULT_LOCKED;
2075
2076	/*
2077	 * Trinity finds that probing a hole which tmpfs is punching can
2078	 * prevent the hole-punch from ever completing: which in turn
2079	 * locks writers out with its hold on i_rwsem.  So refrain from
2080	 * faulting pages into the hole while it's being punched.  Although
2081	 * shmem_undo_range() does remove the additions, it may be unable to
2082	 * keep up, as each new page needs its own unmap_mapping_range() call,
2083	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2084	 *
2085	 * It does not matter if we sometimes reach this check just before the
2086	 * hole-punch begins, so that one fault then races with the punch:
2087	 * we just need to make racing faults a rare case.
2088	 *
2089	 * The implementation below would be much simpler if we just used a
2090	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2091	 * and bloating every shmem inode for this unlikely case would be sad.
2092	 */
2093	if (unlikely(inode->i_private)) {
2094		struct shmem_falloc *shmem_falloc;
2095
2096		spin_lock(&inode->i_lock);
2097		shmem_falloc = inode->i_private;
2098		if (shmem_falloc &&
2099		    shmem_falloc->waitq &&
2100		    vmf->pgoff >= shmem_falloc->start &&
2101		    vmf->pgoff < shmem_falloc->next) {
2102			struct file *fpin;
2103			wait_queue_head_t *shmem_falloc_waitq;
2104			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2105
2106			ret = VM_FAULT_NOPAGE;
2107			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2108			if (fpin)
 
 
2109				ret = VM_FAULT_RETRY;
 
2110
2111			shmem_falloc_waitq = shmem_falloc->waitq;
2112			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2113					TASK_UNINTERRUPTIBLE);
2114			spin_unlock(&inode->i_lock);
2115			schedule();
2116
2117			/*
2118			 * shmem_falloc_waitq points into the shmem_fallocate()
2119			 * stack of the hole-punching task: shmem_falloc_waitq
2120			 * is usually invalid by the time we reach here, but
2121			 * finish_wait() does not dereference it in that case;
2122			 * though i_lock needed lest racing with wake_up_all().
2123			 */
2124			spin_lock(&inode->i_lock);
2125			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2126			spin_unlock(&inode->i_lock);
2127
2128			if (fpin)
2129				fput(fpin);
2130			return ret;
2131		}
2132		spin_unlock(&inode->i_lock);
2133	}
2134
2135	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
 
 
 
 
 
 
 
 
2136				  gfp, vma, vmf, &ret);
2137	if (err)
2138		return vmf_error(err);
2139	if (folio)
2140		vmf->page = folio_file_page(folio, vmf->pgoff);
2141	return ret;
2142}
2143
2144unsigned long shmem_get_unmapped_area(struct file *file,
2145				      unsigned long uaddr, unsigned long len,
2146				      unsigned long pgoff, unsigned long flags)
2147{
2148	unsigned long (*get_area)(struct file *,
2149		unsigned long, unsigned long, unsigned long, unsigned long);
2150	unsigned long addr;
2151	unsigned long offset;
2152	unsigned long inflated_len;
2153	unsigned long inflated_addr;
2154	unsigned long inflated_offset;
2155
2156	if (len > TASK_SIZE)
2157		return -ENOMEM;
2158
2159	get_area = current->mm->get_unmapped_area;
2160	addr = get_area(file, uaddr, len, pgoff, flags);
2161
2162	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2163		return addr;
2164	if (IS_ERR_VALUE(addr))
2165		return addr;
2166	if (addr & ~PAGE_MASK)
2167		return addr;
2168	if (addr > TASK_SIZE - len)
2169		return addr;
2170
2171	if (shmem_huge == SHMEM_HUGE_DENY)
2172		return addr;
2173	if (len < HPAGE_PMD_SIZE)
2174		return addr;
2175	if (flags & MAP_FIXED)
2176		return addr;
2177	/*
2178	 * Our priority is to support MAP_SHARED mapped hugely;
2179	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2180	 * But if caller specified an address hint and we allocated area there
2181	 * successfully, respect that as before.
2182	 */
2183	if (uaddr == addr)
2184		return addr;
2185
2186	if (shmem_huge != SHMEM_HUGE_FORCE) {
2187		struct super_block *sb;
2188
2189		if (file) {
2190			VM_BUG_ON(file->f_op != &shmem_file_operations);
2191			sb = file_inode(file)->i_sb;
2192		} else {
2193			/*
2194			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2195			 * for "/dev/zero", to create a shared anonymous object.
2196			 */
2197			if (IS_ERR(shm_mnt))
2198				return addr;
2199			sb = shm_mnt->mnt_sb;
2200		}
2201		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2202			return addr;
2203	}
2204
2205	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2206	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2207		return addr;
2208	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2209		return addr;
2210
2211	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2212	if (inflated_len > TASK_SIZE)
2213		return addr;
2214	if (inflated_len < len)
2215		return addr;
2216
2217	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2218	if (IS_ERR_VALUE(inflated_addr))
2219		return addr;
2220	if (inflated_addr & ~PAGE_MASK)
2221		return addr;
2222
2223	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2224	inflated_addr += offset - inflated_offset;
2225	if (inflated_offset > offset)
2226		inflated_addr += HPAGE_PMD_SIZE;
2227
2228	if (inflated_addr > TASK_SIZE - len)
2229		return addr;
2230	return inflated_addr;
2231}
2232
2233#ifdef CONFIG_NUMA
2234static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2235{
2236	struct inode *inode = file_inode(vma->vm_file);
2237	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2238}
2239
2240static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2241					  unsigned long addr)
2242{
2243	struct inode *inode = file_inode(vma->vm_file);
2244	pgoff_t index;
2245
2246	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2247	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2248}
2249#endif
2250
2251int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2252{
2253	struct inode *inode = file_inode(file);
2254	struct shmem_inode_info *info = SHMEM_I(inode);
2255	int retval = -ENOMEM;
2256
2257	/*
2258	 * What serializes the accesses to info->flags?
2259	 * ipc_lock_object() when called from shmctl_do_lock(),
2260	 * no serialization needed when called from shm_destroy().
2261	 */
2262	if (lock && !(info->flags & VM_LOCKED)) {
2263		if (!user_shm_lock(inode->i_size, ucounts))
2264			goto out_nomem;
2265		info->flags |= VM_LOCKED;
2266		mapping_set_unevictable(file->f_mapping);
2267	}
2268	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2269		user_shm_unlock(inode->i_size, ucounts);
2270		info->flags &= ~VM_LOCKED;
2271		mapping_clear_unevictable(file->f_mapping);
2272	}
2273	retval = 0;
2274
2275out_nomem:
 
2276	return retval;
2277}
2278
2279static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2280{
2281	struct inode *inode = file_inode(file);
2282	struct shmem_inode_info *info = SHMEM_I(inode);
2283	int ret;
2284
2285	ret = seal_check_future_write(info->seals, vma);
2286	if (ret)
2287		return ret;
 
 
 
 
2288
2289	/* arm64 - allow memory tagging on RAM-based files */
2290	vma->vm_flags |= VM_MTE_ALLOWED;
 
 
 
 
 
2291
2292	file_accessed(file);
2293	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2294	if (inode->i_nlink)
2295		vma->vm_ops = &shmem_vm_ops;
2296	else
2297		vma->vm_ops = &shmem_anon_vm_ops;
 
2298	return 0;
2299}
2300
2301#ifdef CONFIG_TMPFS_XATTR
2302static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2303
2304/*
2305 * chattr's fsflags are unrelated to extended attributes,
2306 * but tmpfs has chosen to enable them under the same config option.
2307 */
2308static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2309{
2310	unsigned int i_flags = 0;
2311
2312	if (fsflags & FS_NOATIME_FL)
2313		i_flags |= S_NOATIME;
2314	if (fsflags & FS_APPEND_FL)
2315		i_flags |= S_APPEND;
2316	if (fsflags & FS_IMMUTABLE_FL)
2317		i_flags |= S_IMMUTABLE;
2318	/*
2319	 * But FS_NODUMP_FL does not require any action in i_flags.
2320	 */
2321	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2322}
2323#else
2324static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2325{
2326}
2327#define shmem_initxattrs NULL
2328#endif
2329
2330static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir,
2331				     umode_t mode, dev_t dev, unsigned long flags)
2332{
2333	struct inode *inode;
2334	struct shmem_inode_info *info;
2335	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2336	ino_t ino;
2337
2338	if (shmem_reserve_inode(sb, &ino))
2339		return NULL;
2340
2341	inode = new_inode(sb);
2342	if (inode) {
2343		inode->i_ino = ino;
2344		inode_init_owner(&init_user_ns, inode, dir, mode);
2345		inode->i_blocks = 0;
2346		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2347		inode->i_generation = get_random_u32();
2348		info = SHMEM_I(inode);
2349		memset(info, 0, (char *)inode - (char *)info);
2350		spin_lock_init(&info->lock);
2351		atomic_set(&info->stop_eviction, 0);
2352		info->seals = F_SEAL_SEAL;
2353		info->flags = flags & VM_NORESERVE;
2354		info->i_crtime = inode->i_mtime;
2355		info->fsflags = (dir == NULL) ? 0 :
2356			SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2357		if (info->fsflags)
2358			shmem_set_inode_flags(inode, info->fsflags);
2359		INIT_LIST_HEAD(&info->shrinklist);
2360		INIT_LIST_HEAD(&info->swaplist);
2361		simple_xattrs_init(&info->xattrs);
2362		cache_no_acl(inode);
2363		mapping_set_large_folios(inode->i_mapping);
2364
2365		switch (mode & S_IFMT) {
2366		default:
2367			inode->i_op = &shmem_special_inode_operations;
2368			init_special_inode(inode, mode, dev);
2369			break;
2370		case S_IFREG:
2371			inode->i_mapping->a_ops = &shmem_aops;
2372			inode->i_op = &shmem_inode_operations;
2373			inode->i_fop = &shmem_file_operations;
2374			mpol_shared_policy_init(&info->policy,
2375						 shmem_get_sbmpol(sbinfo));
2376			break;
2377		case S_IFDIR:
2378			inc_nlink(inode);
2379			/* Some things misbehave if size == 0 on a directory */
2380			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2381			inode->i_op = &shmem_dir_inode_operations;
2382			inode->i_fop = &simple_dir_operations;
2383			break;
2384		case S_IFLNK:
2385			/*
2386			 * Must not load anything in the rbtree,
2387			 * mpol_free_shared_policy will not be called.
2388			 */
2389			mpol_shared_policy_init(&info->policy, NULL);
2390			break;
2391		}
2392
2393		lockdep_annotate_inode_mutex_key(inode);
2394	} else
2395		shmem_free_inode(sb);
2396	return inode;
2397}
2398
2399#ifdef CONFIG_USERFAULTFD
2400int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2401			   pmd_t *dst_pmd,
2402			   struct vm_area_struct *dst_vma,
2403			   unsigned long dst_addr,
2404			   unsigned long src_addr,
2405			   bool zeropage, bool wp_copy,
2406			   struct page **pagep)
 
 
 
 
2407{
2408	struct inode *inode = file_inode(dst_vma->vm_file);
2409	struct shmem_inode_info *info = SHMEM_I(inode);
2410	struct address_space *mapping = inode->i_mapping;
2411	gfp_t gfp = mapping_gfp_mask(mapping);
2412	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
 
 
2413	void *page_kaddr;
2414	struct folio *folio;
 
2415	int ret;
2416	pgoff_t max_off;
2417
2418	if (!shmem_inode_acct_block(inode, 1)) {
2419		/*
2420		 * We may have got a page, returned -ENOENT triggering a retry,
2421		 * and now we find ourselves with -ENOMEM. Release the page, to
2422		 * avoid a BUG_ON in our caller.
2423		 */
2424		if (unlikely(*pagep)) {
2425			put_page(*pagep);
2426			*pagep = NULL;
2427		}
2428		return -ENOMEM;
2429	}
2430
2431	if (!*pagep) {
2432		ret = -ENOMEM;
2433		folio = shmem_alloc_folio(gfp, info, pgoff);
2434		if (!folio)
2435			goto out_unacct_blocks;
2436
2437		if (!zeropage) {	/* COPY */
2438			page_kaddr = kmap_local_folio(folio, 0);
2439			/*
2440			 * The read mmap_lock is held here.  Despite the
2441			 * mmap_lock being read recursive a deadlock is still
2442			 * possible if a writer has taken a lock.  For example:
2443			 *
2444			 * process A thread 1 takes read lock on own mmap_lock
2445			 * process A thread 2 calls mmap, blocks taking write lock
2446			 * process B thread 1 takes page fault, read lock on own mmap lock
2447			 * process B thread 2 calls mmap, blocks taking write lock
2448			 * process A thread 1 blocks taking read lock on process B
2449			 * process B thread 1 blocks taking read lock on process A
2450			 *
2451			 * Disable page faults to prevent potential deadlock
2452			 * and retry the copy outside the mmap_lock.
2453			 */
2454			pagefault_disable();
2455			ret = copy_from_user(page_kaddr,
2456					     (const void __user *)src_addr,
2457					     PAGE_SIZE);
2458			pagefault_enable();
2459			kunmap_local(page_kaddr);
2460
2461			/* fallback to copy_from_user outside mmap_lock */
2462			if (unlikely(ret)) {
2463				*pagep = &folio->page;
2464				ret = -ENOENT;
2465				/* don't free the page */
2466				goto out_unacct_blocks;
2467			}
2468
2469			flush_dcache_folio(folio);
2470		} else {		/* ZEROPAGE */
2471			clear_user_highpage(&folio->page, dst_addr);
2472		}
2473	} else {
2474		folio = page_folio(*pagep);
2475		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2476		*pagep = NULL;
2477	}
2478
2479	VM_BUG_ON(folio_test_locked(folio));
2480	VM_BUG_ON(folio_test_swapbacked(folio));
2481	__folio_set_locked(folio);
2482	__folio_set_swapbacked(folio);
2483	__folio_mark_uptodate(folio);
2484
2485	ret = -EFAULT;
 
2486	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2487	if (unlikely(pgoff >= max_off))
2488		goto out_release;
2489
2490	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2491				      gfp & GFP_RECLAIM_MASK, dst_mm);
2492	if (ret)
2493		goto out_release;
2494
2495	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2496				       &folio->page, true, wp_copy);
2497	if (ret)
2498		goto out_delete_from_cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2499
2500	spin_lock_irq(&info->lock);
 
 
2501	info->alloced++;
2502	inode->i_blocks += BLOCKS_PER_PAGE;
2503	shmem_recalc_inode(inode);
2504	spin_unlock_irq(&info->lock);
2505
2506	folio_unlock(folio);
2507	return 0;
2508out_delete_from_cache:
2509	filemap_remove_folio(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
2510out_release:
2511	folio_unlock(folio);
2512	folio_put(folio);
2513out_unacct_blocks:
2514	shmem_inode_unacct_blocks(inode, 1);
2515	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2516}
2517#endif /* CONFIG_USERFAULTFD */
2518
2519#ifdef CONFIG_TMPFS
2520static const struct inode_operations shmem_symlink_inode_operations;
2521static const struct inode_operations shmem_short_symlink_operations;
2522
 
 
 
 
 
 
2523static int
2524shmem_write_begin(struct file *file, struct address_space *mapping,
2525			loff_t pos, unsigned len,
2526			struct page **pagep, void **fsdata)
2527{
2528	struct inode *inode = mapping->host;
2529	struct shmem_inode_info *info = SHMEM_I(inode);
2530	pgoff_t index = pos >> PAGE_SHIFT;
2531	struct folio *folio;
2532	int ret = 0;
2533
2534	/* i_rwsem is held by caller */
2535	if (unlikely(info->seals & (F_SEAL_GROW |
2536				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2537		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2538			return -EPERM;
2539		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2540			return -EPERM;
2541	}
2542
2543	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2544
2545	if (ret)
2546		return ret;
2547
2548	*pagep = folio_file_page(folio, index);
2549	if (PageHWPoison(*pagep)) {
2550		folio_unlock(folio);
2551		folio_put(folio);
2552		*pagep = NULL;
2553		return -EIO;
2554	}
2555
2556	return 0;
2557}
2558
2559static int
2560shmem_write_end(struct file *file, struct address_space *mapping,
2561			loff_t pos, unsigned len, unsigned copied,
2562			struct page *page, void *fsdata)
2563{
2564	struct inode *inode = mapping->host;
2565
2566	if (pos + copied > inode->i_size)
2567		i_size_write(inode, pos + copied);
2568
2569	if (!PageUptodate(page)) {
2570		struct page *head = compound_head(page);
2571		if (PageTransCompound(page)) {
2572			int i;
2573
2574			for (i = 0; i < HPAGE_PMD_NR; i++) {
2575				if (head + i == page)
2576					continue;
2577				clear_highpage(head + i);
2578				flush_dcache_page(head + i);
2579			}
2580		}
2581		if (copied < PAGE_SIZE) {
2582			unsigned from = pos & (PAGE_SIZE - 1);
2583			zero_user_segments(page, 0, from,
2584					from + copied, PAGE_SIZE);
2585		}
2586		SetPageUptodate(head);
2587	}
2588	set_page_dirty(page);
2589	unlock_page(page);
2590	put_page(page);
2591
2592	return copied;
2593}
2594
2595static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2596{
2597	struct file *file = iocb->ki_filp;
2598	struct inode *inode = file_inode(file);
2599	struct address_space *mapping = inode->i_mapping;
2600	pgoff_t index;
2601	unsigned long offset;
 
2602	int error = 0;
2603	ssize_t retval = 0;
2604	loff_t *ppos = &iocb->ki_pos;
2605
 
 
 
 
 
 
 
 
2606	index = *ppos >> PAGE_SHIFT;
2607	offset = *ppos & ~PAGE_MASK;
2608
2609	for (;;) {
2610		struct folio *folio = NULL;
2611		struct page *page = NULL;
2612		pgoff_t end_index;
2613		unsigned long nr, ret;
2614		loff_t i_size = i_size_read(inode);
2615
2616		end_index = i_size >> PAGE_SHIFT;
2617		if (index > end_index)
2618			break;
2619		if (index == end_index) {
2620			nr = i_size & ~PAGE_MASK;
2621			if (nr <= offset)
2622				break;
2623		}
2624
2625		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2626		if (error) {
2627			if (error == -EINVAL)
2628				error = 0;
2629			break;
2630		}
2631		if (folio) {
2632			folio_unlock(folio);
2633
2634			page = folio_file_page(folio, index);
2635			if (PageHWPoison(page)) {
2636				folio_put(folio);
2637				error = -EIO;
2638				break;
2639			}
2640		}
2641
2642		/*
2643		 * We must evaluate after, since reads (unlike writes)
2644		 * are called without i_rwsem protection against truncate
2645		 */
2646		nr = PAGE_SIZE;
2647		i_size = i_size_read(inode);
2648		end_index = i_size >> PAGE_SHIFT;
2649		if (index == end_index) {
2650			nr = i_size & ~PAGE_MASK;
2651			if (nr <= offset) {
2652				if (folio)
2653					folio_put(folio);
2654				break;
2655			}
2656		}
2657		nr -= offset;
2658
2659		if (folio) {
2660			/*
2661			 * If users can be writing to this page using arbitrary
2662			 * virtual addresses, take care about potential aliasing
2663			 * before reading the page on the kernel side.
2664			 */
2665			if (mapping_writably_mapped(mapping))
2666				flush_dcache_page(page);
2667			/*
2668			 * Mark the page accessed if we read the beginning.
2669			 */
2670			if (!offset)
2671				folio_mark_accessed(folio);
2672			/*
2673			 * Ok, we have the page, and it's up-to-date, so
2674			 * now we can copy it to user space...
2675			 */
2676			ret = copy_page_to_iter(page, offset, nr, to);
2677			folio_put(folio);
2678
2679		} else if (user_backed_iter(to)) {
2680			/*
2681			 * Copy to user tends to be so well optimized, but
2682			 * clear_user() not so much, that it is noticeably
2683			 * faster to copy the zero page instead of clearing.
2684			 */
2685			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2686		} else {
2687			/*
2688			 * But submitting the same page twice in a row to
2689			 * splice() - or others? - can result in confusion:
2690			 * so don't attempt that optimization on pipes etc.
2691			 */
2692			ret = iov_iter_zero(nr, to);
2693		}
2694
 
 
 
 
 
2695		retval += ret;
2696		offset += ret;
2697		index += offset >> PAGE_SHIFT;
2698		offset &= ~PAGE_MASK;
2699
 
2700		if (!iov_iter_count(to))
2701			break;
2702		if (ret < nr) {
2703			error = -EFAULT;
2704			break;
2705		}
2706		cond_resched();
2707	}
2708
2709	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2710	file_accessed(file);
2711	return retval ? retval : error;
2712}
2713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2714static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2715{
2716	struct address_space *mapping = file->f_mapping;
2717	struct inode *inode = mapping->host;
 
 
2718
2719	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2720		return generic_file_llseek_size(file, offset, whence,
2721					MAX_LFS_FILESIZE, i_size_read(inode));
2722	if (offset < 0)
2723		return -ENXIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2724
2725	inode_lock(inode);
2726	/* We're holding i_rwsem so we can access i_size directly */
2727	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2728	if (offset >= 0)
2729		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2730	inode_unlock(inode);
2731	return offset;
2732}
2733
2734static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2735							 loff_t len)
2736{
2737	struct inode *inode = file_inode(file);
2738	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2739	struct shmem_inode_info *info = SHMEM_I(inode);
2740	struct shmem_falloc shmem_falloc;
2741	pgoff_t start, index, end, undo_fallocend;
2742	int error;
2743
2744	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2745		return -EOPNOTSUPP;
2746
2747	inode_lock(inode);
2748
2749	if (mode & FALLOC_FL_PUNCH_HOLE) {
2750		struct address_space *mapping = file->f_mapping;
2751		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2752		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2753		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2754
2755		/* protected by i_rwsem */
2756		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2757			error = -EPERM;
2758			goto out;
2759		}
2760
2761		shmem_falloc.waitq = &shmem_falloc_waitq;
2762		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2763		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2764		spin_lock(&inode->i_lock);
2765		inode->i_private = &shmem_falloc;
2766		spin_unlock(&inode->i_lock);
2767
2768		if ((u64)unmap_end > (u64)unmap_start)
2769			unmap_mapping_range(mapping, unmap_start,
2770					    1 + unmap_end - unmap_start, 0);
2771		shmem_truncate_range(inode, offset, offset + len - 1);
2772		/* No need to unmap again: hole-punching leaves COWed pages */
2773
2774		spin_lock(&inode->i_lock);
2775		inode->i_private = NULL;
2776		wake_up_all(&shmem_falloc_waitq);
2777		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2778		spin_unlock(&inode->i_lock);
2779		error = 0;
2780		goto out;
2781	}
2782
2783	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2784	error = inode_newsize_ok(inode, offset + len);
2785	if (error)
2786		goto out;
2787
2788	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2789		error = -EPERM;
2790		goto out;
2791	}
2792
2793	start = offset >> PAGE_SHIFT;
2794	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2795	/* Try to avoid a swapstorm if len is impossible to satisfy */
2796	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2797		error = -ENOSPC;
2798		goto out;
2799	}
2800
2801	shmem_falloc.waitq = NULL;
2802	shmem_falloc.start = start;
2803	shmem_falloc.next  = start;
2804	shmem_falloc.nr_falloced = 0;
2805	shmem_falloc.nr_unswapped = 0;
2806	spin_lock(&inode->i_lock);
2807	inode->i_private = &shmem_falloc;
2808	spin_unlock(&inode->i_lock);
2809
2810	/*
2811	 * info->fallocend is only relevant when huge pages might be
2812	 * involved: to prevent split_huge_page() freeing fallocated
2813	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2814	 */
2815	undo_fallocend = info->fallocend;
2816	if (info->fallocend < end)
2817		info->fallocend = end;
2818
2819	for (index = start; index < end; ) {
2820		struct folio *folio;
2821
2822		/*
2823		 * Good, the fallocate(2) manpage permits EINTR: we may have
2824		 * been interrupted because we are using up too much memory.
2825		 */
2826		if (signal_pending(current))
2827			error = -EINTR;
2828		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2829			error = -ENOMEM;
2830		else
2831			error = shmem_get_folio(inode, index, &folio,
2832						SGP_FALLOC);
2833		if (error) {
2834			info->fallocend = undo_fallocend;
2835			/* Remove the !uptodate folios we added */
2836			if (index > start) {
2837				shmem_undo_range(inode,
2838				    (loff_t)start << PAGE_SHIFT,
2839				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2840			}
2841			goto undone;
2842		}
2843
2844		/*
2845		 * Here is a more important optimization than it appears:
2846		 * a second SGP_FALLOC on the same large folio will clear it,
2847		 * making it uptodate and un-undoable if we fail later.
2848		 */
2849		index = folio_next_index(folio);
2850		/* Beware 32-bit wraparound */
2851		if (!index)
2852			index--;
2853
2854		/*
2855		 * Inform shmem_writepage() how far we have reached.
2856		 * No need for lock or barrier: we have the page lock.
2857		 */
2858		if (!folio_test_uptodate(folio))
2859			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2860		shmem_falloc.next = index;
2861
2862		/*
2863		 * If !uptodate, leave it that way so that freeable folios
2864		 * can be recognized if we need to rollback on error later.
2865		 * But mark it dirty so that memory pressure will swap rather
2866		 * than free the folios we are allocating (and SGP_CACHE folios
2867		 * might still be clean: we now need to mark those dirty too).
2868		 */
2869		folio_mark_dirty(folio);
2870		folio_unlock(folio);
2871		folio_put(folio);
2872		cond_resched();
2873	}
2874
2875	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2876		i_size_write(inode, offset + len);
 
2877undone:
2878	spin_lock(&inode->i_lock);
2879	inode->i_private = NULL;
2880	spin_unlock(&inode->i_lock);
2881out:
2882	if (!error)
2883		file_modified(file);
2884	inode_unlock(inode);
2885	return error;
2886}
2887
2888static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2889{
2890	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2891
2892	buf->f_type = TMPFS_MAGIC;
2893	buf->f_bsize = PAGE_SIZE;
2894	buf->f_namelen = NAME_MAX;
2895	if (sbinfo->max_blocks) {
2896		buf->f_blocks = sbinfo->max_blocks;
2897		buf->f_bavail =
2898		buf->f_bfree  = sbinfo->max_blocks -
2899				percpu_counter_sum(&sbinfo->used_blocks);
2900	}
2901	if (sbinfo->max_inodes) {
2902		buf->f_files = sbinfo->max_inodes;
2903		buf->f_ffree = sbinfo->free_inodes;
2904	}
2905	/* else leave those fields 0 like simple_statfs */
2906
2907	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2908
2909	return 0;
2910}
2911
2912/*
2913 * File creation. Allocate an inode, and we're done..
2914 */
2915static int
2916shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2917	    struct dentry *dentry, umode_t mode, dev_t dev)
2918{
2919	struct inode *inode;
2920	int error = -ENOSPC;
2921
2922	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2923	if (inode) {
2924		error = simple_acl_create(dir, inode);
2925		if (error)
2926			goto out_iput;
2927		error = security_inode_init_security(inode, dir,
2928						     &dentry->d_name,
2929						     shmem_initxattrs, NULL);
2930		if (error && error != -EOPNOTSUPP)
2931			goto out_iput;
2932
2933		error = 0;
2934		dir->i_size += BOGO_DIRENT_SIZE;
2935		dir->i_ctime = dir->i_mtime = current_time(dir);
2936		inode_inc_iversion(dir);
2937		d_instantiate(dentry, inode);
2938		dget(dentry); /* Extra count - pin the dentry in core */
2939	}
2940	return error;
2941out_iput:
2942	iput(inode);
2943	return error;
2944}
2945
2946static int
2947shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2948	      struct file *file, umode_t mode)
2949{
2950	struct inode *inode;
2951	int error = -ENOSPC;
2952
2953	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2954	if (inode) {
2955		error = security_inode_init_security(inode, dir,
2956						     NULL,
2957						     shmem_initxattrs, NULL);
2958		if (error && error != -EOPNOTSUPP)
2959			goto out_iput;
2960		error = simple_acl_create(dir, inode);
2961		if (error)
2962			goto out_iput;
2963		d_tmpfile(file, inode);
2964	}
2965	return finish_open_simple(file, error);
2966out_iput:
2967	iput(inode);
2968	return error;
2969}
2970
2971static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2972		       struct dentry *dentry, umode_t mode)
2973{
2974	int error;
2975
2976	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2977				 mode | S_IFDIR, 0)))
2978		return error;
2979	inc_nlink(dir);
2980	return 0;
2981}
2982
2983static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2984			struct dentry *dentry, umode_t mode, bool excl)
2985{
2986	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2987}
2988
2989/*
2990 * Link a file..
2991 */
2992static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2993{
2994	struct inode *inode = d_inode(old_dentry);
2995	int ret = 0;
2996
2997	/*
2998	 * No ordinary (disk based) filesystem counts links as inodes;
2999	 * but each new link needs a new dentry, pinning lowmem, and
3000	 * tmpfs dentries cannot be pruned until they are unlinked.
3001	 * But if an O_TMPFILE file is linked into the tmpfs, the
3002	 * first link must skip that, to get the accounting right.
3003	 */
3004	if (inode->i_nlink) {
3005		ret = shmem_reserve_inode(inode->i_sb, NULL);
3006		if (ret)
3007			goto out;
3008	}
3009
3010	dir->i_size += BOGO_DIRENT_SIZE;
3011	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3012	inode_inc_iversion(dir);
3013	inc_nlink(inode);
3014	ihold(inode);	/* New dentry reference */
3015	dget(dentry);		/* Extra pinning count for the created dentry */
3016	d_instantiate(dentry, inode);
3017out:
3018	return ret;
3019}
3020
3021static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3022{
3023	struct inode *inode = d_inode(dentry);
3024
3025	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3026		shmem_free_inode(inode->i_sb);
3027
3028	dir->i_size -= BOGO_DIRENT_SIZE;
3029	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3030	inode_inc_iversion(dir);
3031	drop_nlink(inode);
3032	dput(dentry);	/* Undo the count from "create" - this does all the work */
3033	return 0;
3034}
3035
3036static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3037{
3038	if (!simple_empty(dentry))
3039		return -ENOTEMPTY;
3040
3041	drop_nlink(d_inode(dentry));
3042	drop_nlink(dir);
3043	return shmem_unlink(dir, dentry);
3044}
3045
3046static int shmem_whiteout(struct user_namespace *mnt_userns,
3047			  struct inode *old_dir, struct dentry *old_dentry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3048{
3049	struct dentry *whiteout;
3050	int error;
3051
3052	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3053	if (!whiteout)
3054		return -ENOMEM;
3055
3056	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3057			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3058	dput(whiteout);
3059	if (error)
3060		return error;
3061
3062	/*
3063	 * Cheat and hash the whiteout while the old dentry is still in
3064	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3065	 *
3066	 * d_lookup() will consistently find one of them at this point,
3067	 * not sure which one, but that isn't even important.
3068	 */
3069	d_rehash(whiteout);
3070	return 0;
3071}
3072
3073/*
3074 * The VFS layer already does all the dentry stuff for rename,
3075 * we just have to decrement the usage count for the target if
3076 * it exists so that the VFS layer correctly free's it when it
3077 * gets overwritten.
3078 */
3079static int shmem_rename2(struct user_namespace *mnt_userns,
3080			 struct inode *old_dir, struct dentry *old_dentry,
3081			 struct inode *new_dir, struct dentry *new_dentry,
3082			 unsigned int flags)
3083{
3084	struct inode *inode = d_inode(old_dentry);
3085	int they_are_dirs = S_ISDIR(inode->i_mode);
3086
3087	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3088		return -EINVAL;
3089
3090	if (flags & RENAME_EXCHANGE)
3091		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3092
3093	if (!simple_empty(new_dentry))
3094		return -ENOTEMPTY;
3095
3096	if (flags & RENAME_WHITEOUT) {
3097		int error;
3098
3099		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3100		if (error)
3101			return error;
3102	}
3103
3104	if (d_really_is_positive(new_dentry)) {
3105		(void) shmem_unlink(new_dir, new_dentry);
3106		if (they_are_dirs) {
3107			drop_nlink(d_inode(new_dentry));
3108			drop_nlink(old_dir);
3109		}
3110	} else if (they_are_dirs) {
3111		drop_nlink(old_dir);
3112		inc_nlink(new_dir);
3113	}
3114
3115	old_dir->i_size -= BOGO_DIRENT_SIZE;
3116	new_dir->i_size += BOGO_DIRENT_SIZE;
3117	old_dir->i_ctime = old_dir->i_mtime =
3118	new_dir->i_ctime = new_dir->i_mtime =
3119	inode->i_ctime = current_time(old_dir);
3120	inode_inc_iversion(old_dir);
3121	inode_inc_iversion(new_dir);
3122	return 0;
3123}
3124
3125static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3126			 struct dentry *dentry, const char *symname)
3127{
3128	int error;
3129	int len;
3130	struct inode *inode;
3131	struct folio *folio;
3132
3133	len = strlen(symname) + 1;
3134	if (len > PAGE_SIZE)
3135		return -ENAMETOOLONG;
3136
3137	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3138				VM_NORESERVE);
3139	if (!inode)
3140		return -ENOSPC;
3141
3142	error = security_inode_init_security(inode, dir, &dentry->d_name,
3143					     shmem_initxattrs, NULL);
3144	if (error && error != -EOPNOTSUPP) {
3145		iput(inode);
3146		return error;
 
 
 
3147	}
3148
3149	inode->i_size = len-1;
3150	if (len <= SHORT_SYMLINK_LEN) {
3151		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3152		if (!inode->i_link) {
3153			iput(inode);
3154			return -ENOMEM;
3155		}
3156		inode->i_op = &shmem_short_symlink_operations;
3157	} else {
3158		inode_nohighmem(inode);
3159		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3160		if (error) {
3161			iput(inode);
3162			return error;
3163		}
3164		inode->i_mapping->a_ops = &shmem_aops;
3165		inode->i_op = &shmem_symlink_inode_operations;
3166		memcpy(folio_address(folio), symname, len);
3167		folio_mark_uptodate(folio);
3168		folio_mark_dirty(folio);
3169		folio_unlock(folio);
3170		folio_put(folio);
3171	}
3172	dir->i_size += BOGO_DIRENT_SIZE;
3173	dir->i_ctime = dir->i_mtime = current_time(dir);
3174	inode_inc_iversion(dir);
3175	d_instantiate(dentry, inode);
3176	dget(dentry);
3177	return 0;
3178}
3179
3180static void shmem_put_link(void *arg)
3181{
3182	folio_mark_accessed(arg);
3183	folio_put(arg);
3184}
3185
3186static const char *shmem_get_link(struct dentry *dentry,
3187				  struct inode *inode,
3188				  struct delayed_call *done)
3189{
3190	struct folio *folio = NULL;
3191	int error;
3192
3193	if (!dentry) {
3194		folio = filemap_get_folio(inode->i_mapping, 0);
3195		if (!folio)
3196			return ERR_PTR(-ECHILD);
3197		if (PageHWPoison(folio_page(folio, 0)) ||
3198		    !folio_test_uptodate(folio)) {
3199			folio_put(folio);
3200			return ERR_PTR(-ECHILD);
3201		}
3202	} else {
3203		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3204		if (error)
3205			return ERR_PTR(error);
3206		if (!folio)
3207			return ERR_PTR(-ECHILD);
3208		if (PageHWPoison(folio_page(folio, 0))) {
3209			folio_unlock(folio);
3210			folio_put(folio);
3211			return ERR_PTR(-ECHILD);
3212		}
3213		folio_unlock(folio);
3214	}
3215	set_delayed_call(done, shmem_put_link, folio);
3216	return folio_address(folio);
3217}
3218
3219#ifdef CONFIG_TMPFS_XATTR
3220
3221static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3222{
3223	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3224
3225	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3226
3227	return 0;
3228}
3229
3230static int shmem_fileattr_set(struct user_namespace *mnt_userns,
3231			      struct dentry *dentry, struct fileattr *fa)
3232{
3233	struct inode *inode = d_inode(dentry);
3234	struct shmem_inode_info *info = SHMEM_I(inode);
3235
3236	if (fileattr_has_fsx(fa))
3237		return -EOPNOTSUPP;
3238	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3239		return -EOPNOTSUPP;
3240
3241	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3242		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3243
3244	shmem_set_inode_flags(inode, info->fsflags);
3245	inode->i_ctime = current_time(inode);
3246	inode_inc_iversion(inode);
3247	return 0;
3248}
3249
3250/*
3251 * Superblocks without xattr inode operations may get some security.* xattr
3252 * support from the LSM "for free". As soon as we have any other xattrs
3253 * like ACLs, we also need to implement the security.* handlers at
3254 * filesystem level, though.
3255 */
3256
3257/*
3258 * Callback for security_inode_init_security() for acquiring xattrs.
3259 */
3260static int shmem_initxattrs(struct inode *inode,
3261			    const struct xattr *xattr_array,
3262			    void *fs_info)
3263{
3264	struct shmem_inode_info *info = SHMEM_I(inode);
3265	const struct xattr *xattr;
3266	struct simple_xattr *new_xattr;
3267	size_t len;
3268
3269	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3270		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3271		if (!new_xattr)
3272			return -ENOMEM;
3273
3274		len = strlen(xattr->name) + 1;
3275		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3276					  GFP_KERNEL);
3277		if (!new_xattr->name) {
3278			kvfree(new_xattr);
3279			return -ENOMEM;
3280		}
3281
3282		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3283		       XATTR_SECURITY_PREFIX_LEN);
3284		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3285		       xattr->name, len);
3286
3287		simple_xattr_add(&info->xattrs, new_xattr);
3288	}
3289
3290	return 0;
3291}
3292
3293static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3294				   struct dentry *unused, struct inode *inode,
3295				   const char *name, void *buffer, size_t size)
3296{
3297	struct shmem_inode_info *info = SHMEM_I(inode);
3298
3299	name = xattr_full_name(handler, name);
3300	return simple_xattr_get(&info->xattrs, name, buffer, size);
3301}
3302
3303static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3304				   struct user_namespace *mnt_userns,
3305				   struct dentry *unused, struct inode *inode,
3306				   const char *name, const void *value,
3307				   size_t size, int flags)
3308{
3309	struct shmem_inode_info *info = SHMEM_I(inode);
3310	int err;
3311
3312	name = xattr_full_name(handler, name);
3313	err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3314	if (!err) {
3315		inode->i_ctime = current_time(inode);
3316		inode_inc_iversion(inode);
3317	}
3318	return err;
3319}
3320
3321static const struct xattr_handler shmem_security_xattr_handler = {
3322	.prefix = XATTR_SECURITY_PREFIX,
3323	.get = shmem_xattr_handler_get,
3324	.set = shmem_xattr_handler_set,
3325};
3326
3327static const struct xattr_handler shmem_trusted_xattr_handler = {
3328	.prefix = XATTR_TRUSTED_PREFIX,
3329	.get = shmem_xattr_handler_get,
3330	.set = shmem_xattr_handler_set,
3331};
3332
3333static const struct xattr_handler *shmem_xattr_handlers[] = {
3334#ifdef CONFIG_TMPFS_POSIX_ACL
3335	&posix_acl_access_xattr_handler,
3336	&posix_acl_default_xattr_handler,
3337#endif
3338	&shmem_security_xattr_handler,
3339	&shmem_trusted_xattr_handler,
3340	NULL
3341};
3342
3343static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3344{
3345	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3346	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3347}
3348#endif /* CONFIG_TMPFS_XATTR */
3349
3350static const struct inode_operations shmem_short_symlink_operations = {
3351	.getattr	= shmem_getattr,
3352	.get_link	= simple_get_link,
3353#ifdef CONFIG_TMPFS_XATTR
3354	.listxattr	= shmem_listxattr,
3355#endif
3356};
3357
3358static const struct inode_operations shmem_symlink_inode_operations = {
3359	.getattr	= shmem_getattr,
3360	.get_link	= shmem_get_link,
3361#ifdef CONFIG_TMPFS_XATTR
3362	.listxattr	= shmem_listxattr,
3363#endif
3364};
3365
3366static struct dentry *shmem_get_parent(struct dentry *child)
3367{
3368	return ERR_PTR(-ESTALE);
3369}
3370
3371static int shmem_match(struct inode *ino, void *vfh)
3372{
3373	__u32 *fh = vfh;
3374	__u64 inum = fh[2];
3375	inum = (inum << 32) | fh[1];
3376	return ino->i_ino == inum && fh[0] == ino->i_generation;
3377}
3378
3379/* Find any alias of inode, but prefer a hashed alias */
3380static struct dentry *shmem_find_alias(struct inode *inode)
3381{
3382	struct dentry *alias = d_find_alias(inode);
3383
3384	return alias ?: d_find_any_alias(inode);
3385}
3386
3387
3388static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3389		struct fid *fid, int fh_len, int fh_type)
3390{
3391	struct inode *inode;
3392	struct dentry *dentry = NULL;
3393	u64 inum;
3394
3395	if (fh_len < 3)
3396		return NULL;
3397
3398	inum = fid->raw[2];
3399	inum = (inum << 32) | fid->raw[1];
3400
3401	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3402			shmem_match, fid->raw);
3403	if (inode) {
3404		dentry = shmem_find_alias(inode);
3405		iput(inode);
3406	}
3407
3408	return dentry;
3409}
3410
3411static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3412				struct inode *parent)
3413{
3414	if (*len < 3) {
3415		*len = 3;
3416		return FILEID_INVALID;
3417	}
3418
3419	if (inode_unhashed(inode)) {
3420		/* Unfortunately insert_inode_hash is not idempotent,
3421		 * so as we hash inodes here rather than at creation
3422		 * time, we need a lock to ensure we only try
3423		 * to do it once
3424		 */
3425		static DEFINE_SPINLOCK(lock);
3426		spin_lock(&lock);
3427		if (inode_unhashed(inode))
3428			__insert_inode_hash(inode,
3429					    inode->i_ino + inode->i_generation);
3430		spin_unlock(&lock);
3431	}
3432
3433	fh[0] = inode->i_generation;
3434	fh[1] = inode->i_ino;
3435	fh[2] = ((__u64)inode->i_ino) >> 32;
3436
3437	*len = 3;
3438	return 1;
3439}
3440
3441static const struct export_operations shmem_export_ops = {
3442	.get_parent     = shmem_get_parent,
3443	.encode_fh      = shmem_encode_fh,
3444	.fh_to_dentry	= shmem_fh_to_dentry,
3445};
3446
3447enum shmem_param {
3448	Opt_gid,
3449	Opt_huge,
3450	Opt_mode,
3451	Opt_mpol,
3452	Opt_nr_blocks,
3453	Opt_nr_inodes,
3454	Opt_size,
3455	Opt_uid,
3456	Opt_inode32,
3457	Opt_inode64,
3458};
3459
3460static const struct constant_table shmem_param_enums_huge[] = {
3461	{"never",	SHMEM_HUGE_NEVER },
3462	{"always",	SHMEM_HUGE_ALWAYS },
3463	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3464	{"advise",	SHMEM_HUGE_ADVISE },
3465	{}
3466};
3467
3468const struct fs_parameter_spec shmem_fs_parameters[] = {
3469	fsparam_u32   ("gid",		Opt_gid),
3470	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3471	fsparam_u32oct("mode",		Opt_mode),
3472	fsparam_string("mpol",		Opt_mpol),
3473	fsparam_string("nr_blocks",	Opt_nr_blocks),
3474	fsparam_string("nr_inodes",	Opt_nr_inodes),
3475	fsparam_string("size",		Opt_size),
3476	fsparam_u32   ("uid",		Opt_uid),
3477	fsparam_flag  ("inode32",	Opt_inode32),
3478	fsparam_flag  ("inode64",	Opt_inode64),
3479	{}
3480};
3481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3482static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3483{
3484	struct shmem_options *ctx = fc->fs_private;
3485	struct fs_parse_result result;
3486	unsigned long long size;
3487	char *rest;
3488	int opt;
3489
3490	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3491	if (opt < 0)
3492		return opt;
3493
3494	switch (opt) {
3495	case Opt_size:
3496		size = memparse(param->string, &rest);
3497		if (*rest == '%') {
3498			size <<= PAGE_SHIFT;
3499			size *= totalram_pages();
3500			do_div(size, 100);
3501			rest++;
3502		}
3503		if (*rest)
3504			goto bad_value;
3505		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3506		ctx->seen |= SHMEM_SEEN_BLOCKS;
3507		break;
3508	case Opt_nr_blocks:
3509		ctx->blocks = memparse(param->string, &rest);
3510		if (*rest || ctx->blocks > S64_MAX)
3511			goto bad_value;
3512		ctx->seen |= SHMEM_SEEN_BLOCKS;
3513		break;
3514	case Opt_nr_inodes:
3515		ctx->inodes = memparse(param->string, &rest);
3516		if (*rest)
3517			goto bad_value;
3518		ctx->seen |= SHMEM_SEEN_INODES;
3519		break;
3520	case Opt_mode:
3521		ctx->mode = result.uint_32 & 07777;
3522		break;
3523	case Opt_uid:
3524		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3525		if (!uid_valid(ctx->uid))
3526			goto bad_value;
3527		break;
3528	case Opt_gid:
3529		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3530		if (!gid_valid(ctx->gid))
3531			goto bad_value;
3532		break;
3533	case Opt_huge:
3534		ctx->huge = result.uint_32;
3535		if (ctx->huge != SHMEM_HUGE_NEVER &&
3536		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3537		      has_transparent_hugepage()))
3538			goto unsupported_parameter;
3539		ctx->seen |= SHMEM_SEEN_HUGE;
3540		break;
3541	case Opt_mpol:
3542		if (IS_ENABLED(CONFIG_NUMA)) {
3543			mpol_put(ctx->mpol);
3544			ctx->mpol = NULL;
3545			if (mpol_parse_str(param->string, &ctx->mpol))
3546				goto bad_value;
3547			break;
3548		}
3549		goto unsupported_parameter;
3550	case Opt_inode32:
3551		ctx->full_inums = false;
3552		ctx->seen |= SHMEM_SEEN_INUMS;
3553		break;
3554	case Opt_inode64:
3555		if (sizeof(ino_t) < 8) {
3556			return invalfc(fc,
3557				       "Cannot use inode64 with <64bit inums in kernel\n");
3558		}
3559		ctx->full_inums = true;
3560		ctx->seen |= SHMEM_SEEN_INUMS;
3561		break;
3562	}
3563	return 0;
3564
3565unsupported_parameter:
3566	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3567bad_value:
3568	return invalfc(fc, "Bad value for '%s'", param->key);
3569}
3570
3571static int shmem_parse_options(struct fs_context *fc, void *data)
3572{
3573	char *options = data;
3574
3575	if (options) {
3576		int err = security_sb_eat_lsm_opts(options, &fc->security);
3577		if (err)
3578			return err;
3579	}
3580
3581	while (options != NULL) {
3582		char *this_char = options;
3583		for (;;) {
3584			/*
3585			 * NUL-terminate this option: unfortunately,
3586			 * mount options form a comma-separated list,
3587			 * but mpol's nodelist may also contain commas.
3588			 */
3589			options = strchr(options, ',');
3590			if (options == NULL)
3591				break;
3592			options++;
3593			if (!isdigit(*options)) {
3594				options[-1] = '\0';
3595				break;
3596			}
3597		}
3598		if (*this_char) {
3599			char *value = strchr(this_char, '=');
3600			size_t len = 0;
3601			int err;
3602
3603			if (value) {
3604				*value++ = '\0';
3605				len = strlen(value);
3606			}
3607			err = vfs_parse_fs_string(fc, this_char, value, len);
3608			if (err < 0)
3609				return err;
3610		}
3611	}
3612	return 0;
3613}
3614
3615/*
3616 * Reconfigure a shmem filesystem.
3617 *
3618 * Note that we disallow change from limited->unlimited blocks/inodes while any
3619 * are in use; but we must separately disallow unlimited->limited, because in
3620 * that case we have no record of how much is already in use.
3621 */
3622static int shmem_reconfigure(struct fs_context *fc)
3623{
3624	struct shmem_options *ctx = fc->fs_private;
3625	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3626	unsigned long inodes;
3627	struct mempolicy *mpol = NULL;
3628	const char *err;
3629
3630	raw_spin_lock(&sbinfo->stat_lock);
3631	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3632
3633	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3634		if (!sbinfo->max_blocks) {
3635			err = "Cannot retroactively limit size";
3636			goto out;
3637		}
3638		if (percpu_counter_compare(&sbinfo->used_blocks,
3639					   ctx->blocks) > 0) {
3640			err = "Too small a size for current use";
3641			goto out;
3642		}
3643	}
3644	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3645		if (!sbinfo->max_inodes) {
3646			err = "Cannot retroactively limit inodes";
3647			goto out;
3648		}
3649		if (ctx->inodes < inodes) {
3650			err = "Too few inodes for current use";
3651			goto out;
3652		}
3653	}
3654
3655	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3656	    sbinfo->next_ino > UINT_MAX) {
3657		err = "Current inum too high to switch to 32-bit inums";
3658		goto out;
3659	}
3660
3661	if (ctx->seen & SHMEM_SEEN_HUGE)
3662		sbinfo->huge = ctx->huge;
3663	if (ctx->seen & SHMEM_SEEN_INUMS)
3664		sbinfo->full_inums = ctx->full_inums;
3665	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3666		sbinfo->max_blocks  = ctx->blocks;
3667	if (ctx->seen & SHMEM_SEEN_INODES) {
3668		sbinfo->max_inodes  = ctx->inodes;
3669		sbinfo->free_inodes = ctx->inodes - inodes;
3670	}
3671
3672	/*
3673	 * Preserve previous mempolicy unless mpol remount option was specified.
3674	 */
3675	if (ctx->mpol) {
3676		mpol = sbinfo->mpol;
3677		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3678		ctx->mpol = NULL;
3679	}
3680	raw_spin_unlock(&sbinfo->stat_lock);
3681	mpol_put(mpol);
3682	return 0;
3683out:
3684	raw_spin_unlock(&sbinfo->stat_lock);
3685	return invalfc(fc, "%s", err);
3686}
3687
3688static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3689{
3690	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3691
3692	if (sbinfo->max_blocks != shmem_default_max_blocks())
3693		seq_printf(seq, ",size=%luk",
3694			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3695	if (sbinfo->max_inodes != shmem_default_max_inodes())
3696		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3697	if (sbinfo->mode != (0777 | S_ISVTX))
3698		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3699	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3700		seq_printf(seq, ",uid=%u",
3701				from_kuid_munged(&init_user_ns, sbinfo->uid));
3702	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3703		seq_printf(seq, ",gid=%u",
3704				from_kgid_munged(&init_user_ns, sbinfo->gid));
3705
3706	/*
3707	 * Showing inode{64,32} might be useful even if it's the system default,
3708	 * since then people don't have to resort to checking both here and
3709	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3710	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3711	 *
3712	 * We hide it when inode64 isn't the default and we are using 32-bit
3713	 * inodes, since that probably just means the feature isn't even under
3714	 * consideration.
3715	 *
3716	 * As such:
3717	 *
3718	 *                     +-----------------+-----------------+
3719	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3720	 *  +------------------+-----------------+-----------------+
3721	 *  | full_inums=true  | show            | show            |
3722	 *  | full_inums=false | show            | hide            |
3723	 *  +------------------+-----------------+-----------------+
3724	 *
3725	 */
3726	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3727		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3728#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3729	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3730	if (sbinfo->huge)
3731		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3732#endif
3733	shmem_show_mpol(seq, sbinfo->mpol);
3734	return 0;
3735}
3736
3737#endif /* CONFIG_TMPFS */
3738
3739static void shmem_put_super(struct super_block *sb)
3740{
3741	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3742
3743	free_percpu(sbinfo->ino_batch);
3744	percpu_counter_destroy(&sbinfo->used_blocks);
3745	mpol_put(sbinfo->mpol);
3746	kfree(sbinfo);
3747	sb->s_fs_info = NULL;
3748}
3749
3750static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3751{
3752	struct shmem_options *ctx = fc->fs_private;
3753	struct inode *inode;
3754	struct shmem_sb_info *sbinfo;
 
3755
3756	/* Round up to L1_CACHE_BYTES to resist false sharing */
3757	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3758				L1_CACHE_BYTES), GFP_KERNEL);
3759	if (!sbinfo)
3760		return -ENOMEM;
3761
3762	sb->s_fs_info = sbinfo;
3763
3764#ifdef CONFIG_TMPFS
3765	/*
3766	 * Per default we only allow half of the physical ram per
3767	 * tmpfs instance, limiting inodes to one per page of lowmem;
3768	 * but the internal instance is left unlimited.
3769	 */
3770	if (!(sb->s_flags & SB_KERNMOUNT)) {
3771		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3772			ctx->blocks = shmem_default_max_blocks();
3773		if (!(ctx->seen & SHMEM_SEEN_INODES))
3774			ctx->inodes = shmem_default_max_inodes();
3775		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3776			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3777	} else {
3778		sb->s_flags |= SB_NOUSER;
3779	}
3780	sb->s_export_op = &shmem_export_ops;
3781	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
3782#else
3783	sb->s_flags |= SB_NOUSER;
3784#endif
3785	sbinfo->max_blocks = ctx->blocks;
3786	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3787	if (sb->s_flags & SB_KERNMOUNT) {
3788		sbinfo->ino_batch = alloc_percpu(ino_t);
3789		if (!sbinfo->ino_batch)
3790			goto failed;
3791	}
3792	sbinfo->uid = ctx->uid;
3793	sbinfo->gid = ctx->gid;
3794	sbinfo->full_inums = ctx->full_inums;
3795	sbinfo->mode = ctx->mode;
3796	sbinfo->huge = ctx->huge;
3797	sbinfo->mpol = ctx->mpol;
3798	ctx->mpol = NULL;
3799
3800	raw_spin_lock_init(&sbinfo->stat_lock);
3801	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3802		goto failed;
3803	spin_lock_init(&sbinfo->shrinklist_lock);
3804	INIT_LIST_HEAD(&sbinfo->shrinklist);
3805
3806	sb->s_maxbytes = MAX_LFS_FILESIZE;
3807	sb->s_blocksize = PAGE_SIZE;
3808	sb->s_blocksize_bits = PAGE_SHIFT;
3809	sb->s_magic = TMPFS_MAGIC;
3810	sb->s_op = &shmem_ops;
3811	sb->s_time_gran = 1;
3812#ifdef CONFIG_TMPFS_XATTR
3813	sb->s_xattr = shmem_xattr_handlers;
3814#endif
3815#ifdef CONFIG_TMPFS_POSIX_ACL
3816	sb->s_flags |= SB_POSIXACL;
3817#endif
3818	uuid_gen(&sb->s_uuid);
3819
3820	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3821	if (!inode)
3822		goto failed;
3823	inode->i_uid = sbinfo->uid;
3824	inode->i_gid = sbinfo->gid;
3825	sb->s_root = d_make_root(inode);
3826	if (!sb->s_root)
3827		goto failed;
3828	return 0;
3829
3830failed:
3831	shmem_put_super(sb);
3832	return -ENOMEM;
3833}
3834
3835static int shmem_get_tree(struct fs_context *fc)
3836{
3837	return get_tree_nodev(fc, shmem_fill_super);
3838}
3839
3840static void shmem_free_fc(struct fs_context *fc)
3841{
3842	struct shmem_options *ctx = fc->fs_private;
3843
3844	if (ctx) {
3845		mpol_put(ctx->mpol);
3846		kfree(ctx);
3847	}
3848}
3849
3850static const struct fs_context_operations shmem_fs_context_ops = {
3851	.free			= shmem_free_fc,
3852	.get_tree		= shmem_get_tree,
3853#ifdef CONFIG_TMPFS
3854	.parse_monolithic	= shmem_parse_options,
3855	.parse_param		= shmem_parse_one,
3856	.reconfigure		= shmem_reconfigure,
3857#endif
3858};
3859
3860static struct kmem_cache *shmem_inode_cachep;
3861
3862static struct inode *shmem_alloc_inode(struct super_block *sb)
3863{
3864	struct shmem_inode_info *info;
3865	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3866	if (!info)
3867		return NULL;
3868	return &info->vfs_inode;
3869}
3870
3871static void shmem_free_in_core_inode(struct inode *inode)
3872{
3873	if (S_ISLNK(inode->i_mode))
3874		kfree(inode->i_link);
3875	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3876}
3877
3878static void shmem_destroy_inode(struct inode *inode)
3879{
3880	if (S_ISREG(inode->i_mode))
3881		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3882}
3883
3884static void shmem_init_inode(void *foo)
3885{
3886	struct shmem_inode_info *info = foo;
3887	inode_init_once(&info->vfs_inode);
3888}
3889
3890static void shmem_init_inodecache(void)
3891{
3892	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3893				sizeof(struct shmem_inode_info),
3894				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3895}
3896
3897static void shmem_destroy_inodecache(void)
3898{
3899	kmem_cache_destroy(shmem_inode_cachep);
3900}
3901
3902/* Keep the page in page cache instead of truncating it */
3903static int shmem_error_remove_page(struct address_space *mapping,
3904				   struct page *page)
3905{
3906	return 0;
3907}
3908
3909const struct address_space_operations shmem_aops = {
3910	.writepage	= shmem_writepage,
3911	.dirty_folio	= noop_dirty_folio,
3912#ifdef CONFIG_TMPFS
3913	.write_begin	= shmem_write_begin,
3914	.write_end	= shmem_write_end,
3915#endif
3916#ifdef CONFIG_MIGRATION
3917	.migrate_folio	= migrate_folio,
3918#endif
3919	.error_remove_page = shmem_error_remove_page,
3920};
3921EXPORT_SYMBOL(shmem_aops);
3922
3923static const struct file_operations shmem_file_operations = {
3924	.mmap		= shmem_mmap,
3925	.open		= generic_file_open,
3926	.get_unmapped_area = shmem_get_unmapped_area,
3927#ifdef CONFIG_TMPFS
3928	.llseek		= shmem_file_llseek,
3929	.read_iter	= shmem_file_read_iter,
3930	.write_iter	= generic_file_write_iter,
3931	.fsync		= noop_fsync,
3932	.splice_read	= generic_file_splice_read,
3933	.splice_write	= iter_file_splice_write,
3934	.fallocate	= shmem_fallocate,
3935#endif
3936};
3937
3938static const struct inode_operations shmem_inode_operations = {
3939	.getattr	= shmem_getattr,
3940	.setattr	= shmem_setattr,
3941#ifdef CONFIG_TMPFS_XATTR
3942	.listxattr	= shmem_listxattr,
3943	.set_acl	= simple_set_acl,
3944	.fileattr_get	= shmem_fileattr_get,
3945	.fileattr_set	= shmem_fileattr_set,
3946#endif
3947};
3948
3949static const struct inode_operations shmem_dir_inode_operations = {
3950#ifdef CONFIG_TMPFS
3951	.getattr	= shmem_getattr,
3952	.create		= shmem_create,
3953	.lookup		= simple_lookup,
3954	.link		= shmem_link,
3955	.unlink		= shmem_unlink,
3956	.symlink	= shmem_symlink,
3957	.mkdir		= shmem_mkdir,
3958	.rmdir		= shmem_rmdir,
3959	.mknod		= shmem_mknod,
3960	.rename		= shmem_rename2,
3961	.tmpfile	= shmem_tmpfile,
3962#endif
3963#ifdef CONFIG_TMPFS_XATTR
3964	.listxattr	= shmem_listxattr,
3965	.fileattr_get	= shmem_fileattr_get,
3966	.fileattr_set	= shmem_fileattr_set,
3967#endif
3968#ifdef CONFIG_TMPFS_POSIX_ACL
3969	.setattr	= shmem_setattr,
3970	.set_acl	= simple_set_acl,
3971#endif
3972};
3973
3974static const struct inode_operations shmem_special_inode_operations = {
3975	.getattr	= shmem_getattr,
3976#ifdef CONFIG_TMPFS_XATTR
3977	.listxattr	= shmem_listxattr,
3978#endif
3979#ifdef CONFIG_TMPFS_POSIX_ACL
3980	.setattr	= shmem_setattr,
3981	.set_acl	= simple_set_acl,
3982#endif
3983};
3984
3985static const struct super_operations shmem_ops = {
3986	.alloc_inode	= shmem_alloc_inode,
3987	.free_inode	= shmem_free_in_core_inode,
3988	.destroy_inode	= shmem_destroy_inode,
3989#ifdef CONFIG_TMPFS
3990	.statfs		= shmem_statfs,
3991	.show_options	= shmem_show_options,
3992#endif
3993	.evict_inode	= shmem_evict_inode,
3994	.drop_inode	= generic_delete_inode,
3995	.put_super	= shmem_put_super,
3996#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3997	.nr_cached_objects	= shmem_unused_huge_count,
3998	.free_cached_objects	= shmem_unused_huge_scan,
3999#endif
4000};
4001
4002static const struct vm_operations_struct shmem_vm_ops = {
4003	.fault		= shmem_fault,
4004	.map_pages	= filemap_map_pages,
4005#ifdef CONFIG_NUMA
4006	.set_policy     = shmem_set_policy,
4007	.get_policy     = shmem_get_policy,
4008#endif
4009};
4010
4011static const struct vm_operations_struct shmem_anon_vm_ops = {
4012	.fault		= shmem_fault,
4013	.map_pages	= filemap_map_pages,
4014#ifdef CONFIG_NUMA
4015	.set_policy     = shmem_set_policy,
4016	.get_policy     = shmem_get_policy,
4017#endif
4018};
4019
4020int shmem_init_fs_context(struct fs_context *fc)
4021{
4022	struct shmem_options *ctx;
4023
4024	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4025	if (!ctx)
4026		return -ENOMEM;
4027
4028	ctx->mode = 0777 | S_ISVTX;
4029	ctx->uid = current_fsuid();
4030	ctx->gid = current_fsgid();
4031
4032	fc->fs_private = ctx;
4033	fc->ops = &shmem_fs_context_ops;
4034	return 0;
4035}
4036
4037static struct file_system_type shmem_fs_type = {
4038	.owner		= THIS_MODULE,
4039	.name		= "tmpfs",
4040	.init_fs_context = shmem_init_fs_context,
4041#ifdef CONFIG_TMPFS
4042	.parameters	= shmem_fs_parameters,
4043#endif
4044	.kill_sb	= kill_litter_super,
4045	.fs_flags	= FS_USERNS_MOUNT,
4046};
4047
4048void __init shmem_init(void)
4049{
4050	int error;
4051
4052	shmem_init_inodecache();
4053
4054	error = register_filesystem(&shmem_fs_type);
4055	if (error) {
4056		pr_err("Could not register tmpfs\n");
4057		goto out2;
4058	}
4059
4060	shm_mnt = kern_mount(&shmem_fs_type);
4061	if (IS_ERR(shm_mnt)) {
4062		error = PTR_ERR(shm_mnt);
4063		pr_err("Could not kern_mount tmpfs\n");
4064		goto out1;
4065	}
4066
4067#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4068	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4069		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4070	else
4071		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4072#endif
4073	return;
4074
4075out1:
4076	unregister_filesystem(&shmem_fs_type);
4077out2:
4078	shmem_destroy_inodecache();
4079	shm_mnt = ERR_PTR(error);
 
4080}
4081
4082#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4083static ssize_t shmem_enabled_show(struct kobject *kobj,
4084				  struct kobj_attribute *attr, char *buf)
4085{
4086	static const int values[] = {
4087		SHMEM_HUGE_ALWAYS,
4088		SHMEM_HUGE_WITHIN_SIZE,
4089		SHMEM_HUGE_ADVISE,
4090		SHMEM_HUGE_NEVER,
4091		SHMEM_HUGE_DENY,
4092		SHMEM_HUGE_FORCE,
4093	};
4094	int len = 0;
4095	int i;
 
 
4096
4097	for (i = 0; i < ARRAY_SIZE(values); i++) {
4098		len += sysfs_emit_at(buf, len,
4099				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4100				     i ? " " : "",
4101				     shmem_format_huge(values[i]));
4102	}
4103
4104	len += sysfs_emit_at(buf, len, "\n");
4105
4106	return len;
4107}
4108
4109static ssize_t shmem_enabled_store(struct kobject *kobj,
4110		struct kobj_attribute *attr, const char *buf, size_t count)
4111{
4112	char tmp[16];
4113	int huge;
4114
4115	if (count + 1 > sizeof(tmp))
4116		return -EINVAL;
4117	memcpy(tmp, buf, count);
4118	tmp[count] = '\0';
4119	if (count && tmp[count - 1] == '\n')
4120		tmp[count - 1] = '\0';
4121
4122	huge = shmem_parse_huge(tmp);
4123	if (huge == -EINVAL)
4124		return -EINVAL;
4125	if (!has_transparent_hugepage() &&
4126			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4127		return -EINVAL;
4128
4129	shmem_huge = huge;
4130	if (shmem_huge > SHMEM_HUGE_DENY)
4131		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4132	return count;
4133}
4134
4135struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4136#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4137
4138#else /* !CONFIG_SHMEM */
4139
4140/*
4141 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4142 *
4143 * This is intended for small system where the benefits of the full
4144 * shmem code (swap-backed and resource-limited) are outweighed by
4145 * their complexity. On systems without swap this code should be
4146 * effectively equivalent, but much lighter weight.
4147 */
4148
4149static struct file_system_type shmem_fs_type = {
4150	.name		= "tmpfs",
4151	.init_fs_context = ramfs_init_fs_context,
4152	.parameters	= ramfs_fs_parameters,
4153	.kill_sb	= kill_litter_super,
4154	.fs_flags	= FS_USERNS_MOUNT,
4155};
4156
4157void __init shmem_init(void)
4158{
4159	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4160
4161	shm_mnt = kern_mount(&shmem_fs_type);
4162	BUG_ON(IS_ERR(shm_mnt));
 
 
4163}
4164
4165int shmem_unuse(unsigned int type)
 
4166{
4167	return 0;
4168}
4169
4170int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4171{
4172	return 0;
4173}
4174
4175void shmem_unlock_mapping(struct address_space *mapping)
4176{
4177}
4178
4179#ifdef CONFIG_MMU
4180unsigned long shmem_get_unmapped_area(struct file *file,
4181				      unsigned long addr, unsigned long len,
4182				      unsigned long pgoff, unsigned long flags)
4183{
4184	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4185}
4186#endif
4187
4188void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4189{
4190	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4191}
4192EXPORT_SYMBOL_GPL(shmem_truncate_range);
4193
4194#define shmem_vm_ops				generic_file_vm_ops
4195#define shmem_anon_vm_ops			generic_file_vm_ops
4196#define shmem_file_operations			ramfs_file_operations
4197#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4198#define shmem_acct_size(flags, size)		0
4199#define shmem_unacct_size(flags, size)		do {} while (0)
4200
4201#endif /* CONFIG_SHMEM */
4202
4203/* common code */
4204
4205static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4206				       unsigned long flags, unsigned int i_flags)
4207{
4208	struct inode *inode;
4209	struct file *res;
4210
4211	if (IS_ERR(mnt))
4212		return ERR_CAST(mnt);
4213
4214	if (size < 0 || size > MAX_LFS_FILESIZE)
4215		return ERR_PTR(-EINVAL);
4216
4217	if (shmem_acct_size(flags, size))
4218		return ERR_PTR(-ENOMEM);
4219
4220	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4221				flags);
4222	if (unlikely(!inode)) {
4223		shmem_unacct_size(flags, size);
4224		return ERR_PTR(-ENOSPC);
4225	}
4226	inode->i_flags |= i_flags;
4227	inode->i_size = size;
4228	clear_nlink(inode);	/* It is unlinked */
4229	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4230	if (!IS_ERR(res))
4231		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4232				&shmem_file_operations);
4233	if (IS_ERR(res))
4234		iput(inode);
4235	return res;
4236}
4237
4238/**
4239 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4240 * 	kernel internal.  There will be NO LSM permission checks against the
4241 * 	underlying inode.  So users of this interface must do LSM checks at a
4242 *	higher layer.  The users are the big_key and shm implementations.  LSM
4243 *	checks are provided at the key or shm level rather than the inode.
4244 * @name: name for dentry (to be seen in /proc/<pid>/maps
4245 * @size: size to be set for the file
4246 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4247 */
4248struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4249{
4250	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4251}
4252
4253/**
4254 * shmem_file_setup - get an unlinked file living in tmpfs
4255 * @name: name for dentry (to be seen in /proc/<pid>/maps
4256 * @size: size to be set for the file
4257 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4258 */
4259struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4260{
4261	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4262}
4263EXPORT_SYMBOL_GPL(shmem_file_setup);
4264
4265/**
4266 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4267 * @mnt: the tmpfs mount where the file will be created
4268 * @name: name for dentry (to be seen in /proc/<pid>/maps
4269 * @size: size to be set for the file
4270 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4271 */
4272struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4273				       loff_t size, unsigned long flags)
4274{
4275	return __shmem_file_setup(mnt, name, size, flags, 0);
4276}
4277EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4278
4279/**
4280 * shmem_zero_setup - setup a shared anonymous mapping
4281 * @vma: the vma to be mmapped is prepared by do_mmap
4282 */
4283int shmem_zero_setup(struct vm_area_struct *vma)
4284{
4285	struct file *file;
4286	loff_t size = vma->vm_end - vma->vm_start;
4287
4288	/*
4289	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4290	 * between XFS directory reading and selinux: since this file is only
4291	 * accessible to the user through its mapping, use S_PRIVATE flag to
4292	 * bypass file security, in the same way as shmem_kernel_file_setup().
4293	 */
4294	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4295	if (IS_ERR(file))
4296		return PTR_ERR(file);
4297
4298	if (vma->vm_file)
4299		fput(vma->vm_file);
4300	vma->vm_file = file;
4301	vma->vm_ops = &shmem_anon_vm_ops;
 
 
 
 
 
 
4302
4303	return 0;
4304}
4305
4306/**
4307 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4308 * @mapping:	the page's address_space
4309 * @index:	the page index
4310 * @gfp:	the page allocator flags to use if allocating
4311 *
4312 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4313 * with any new page allocations done using the specified allocation flags.
4314 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4315 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4316 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4317 *
4318 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4319 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4320 */
4321struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4322					 pgoff_t index, gfp_t gfp)
4323{
4324#ifdef CONFIG_SHMEM
4325	struct inode *inode = mapping->host;
4326	struct folio *folio;
4327	struct page *page;
4328	int error;
4329
4330	BUG_ON(!shmem_mapping(mapping));
4331	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4332				  gfp, NULL, NULL, NULL);
4333	if (error)
4334		return ERR_PTR(error);
4335
4336	folio_unlock(folio);
4337	page = folio_file_page(folio, index);
4338	if (PageHWPoison(page)) {
4339		folio_put(folio);
4340		return ERR_PTR(-EIO);
4341	}
4342
4343	return page;
4344#else
4345	/*
4346	 * The tiny !SHMEM case uses ramfs without swap
4347	 */
4348	return read_cache_page_gfp(mapping, index, gfp);
4349#endif
4350}
4351EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);