Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/mmu_notifier.c
4 *
5 * Copyright (C) 2008 Qumranet, Inc.
6 * Copyright (C) 2008 SGI
7 * Christoph Lameter <cl@linux.com>
8 */
9
10#include <linux/rculist.h>
11#include <linux/mmu_notifier.h>
12#include <linux/export.h>
13#include <linux/mm.h>
14#include <linux/err.h>
15#include <linux/srcu.h>
16#include <linux/rcupdate.h>
17#include <linux/sched.h>
18#include <linux/sched/mm.h>
19#include <linux/slab.h>
20
21/* global SRCU for all MMs */
22DEFINE_STATIC_SRCU(srcu);
23
24#ifdef CONFIG_LOCKDEP
25struct lockdep_map __mmu_notifier_invalidate_range_start_map = {
26 .name = "mmu_notifier_invalidate_range_start"
27};
28#endif
29
30/*
31 * This function can't run concurrently against mmu_notifier_register
32 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
33 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
34 * in parallel despite there being no task using this mm any more,
35 * through the vmas outside of the exit_mmap context, such as with
36 * vmtruncate. This serializes against mmu_notifier_unregister with
37 * the mmu_notifier_mm->lock in addition to SRCU and it serializes
38 * against the other mmu notifiers with SRCU. struct mmu_notifier_mm
39 * can't go away from under us as exit_mmap holds an mm_count pin
40 * itself.
41 */
42void __mmu_notifier_release(struct mm_struct *mm)
43{
44 struct mmu_notifier *mn;
45 int id;
46
47 /*
48 * SRCU here will block mmu_notifier_unregister until
49 * ->release returns.
50 */
51 id = srcu_read_lock(&srcu);
52 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist)
53 /*
54 * If ->release runs before mmu_notifier_unregister it must be
55 * handled, as it's the only way for the driver to flush all
56 * existing sptes and stop the driver from establishing any more
57 * sptes before all the pages in the mm are freed.
58 */
59 if (mn->ops->release)
60 mn->ops->release(mn, mm);
61
62 spin_lock(&mm->mmu_notifier_mm->lock);
63 while (unlikely(!hlist_empty(&mm->mmu_notifier_mm->list))) {
64 mn = hlist_entry(mm->mmu_notifier_mm->list.first,
65 struct mmu_notifier,
66 hlist);
67 /*
68 * We arrived before mmu_notifier_unregister so
69 * mmu_notifier_unregister will do nothing other than to wait
70 * for ->release to finish and for mmu_notifier_unregister to
71 * return.
72 */
73 hlist_del_init_rcu(&mn->hlist);
74 }
75 spin_unlock(&mm->mmu_notifier_mm->lock);
76 srcu_read_unlock(&srcu, id);
77
78 /*
79 * synchronize_srcu here prevents mmu_notifier_release from returning to
80 * exit_mmap (which would proceed with freeing all pages in the mm)
81 * until the ->release method returns, if it was invoked by
82 * mmu_notifier_unregister.
83 *
84 * The mmu_notifier_mm can't go away from under us because one mm_count
85 * is held by exit_mmap.
86 */
87 synchronize_srcu(&srcu);
88}
89
90/*
91 * If no young bitflag is supported by the hardware, ->clear_flush_young can
92 * unmap the address and return 1 or 0 depending if the mapping previously
93 * existed or not.
94 */
95int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
96 unsigned long start,
97 unsigned long end)
98{
99 struct mmu_notifier *mn;
100 int young = 0, id;
101
102 id = srcu_read_lock(&srcu);
103 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
104 if (mn->ops->clear_flush_young)
105 young |= mn->ops->clear_flush_young(mn, mm, start, end);
106 }
107 srcu_read_unlock(&srcu, id);
108
109 return young;
110}
111
112int __mmu_notifier_clear_young(struct mm_struct *mm,
113 unsigned long start,
114 unsigned long end)
115{
116 struct mmu_notifier *mn;
117 int young = 0, id;
118
119 id = srcu_read_lock(&srcu);
120 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
121 if (mn->ops->clear_young)
122 young |= mn->ops->clear_young(mn, mm, start, end);
123 }
124 srcu_read_unlock(&srcu, id);
125
126 return young;
127}
128
129int __mmu_notifier_test_young(struct mm_struct *mm,
130 unsigned long address)
131{
132 struct mmu_notifier *mn;
133 int young = 0, id;
134
135 id = srcu_read_lock(&srcu);
136 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
137 if (mn->ops->test_young) {
138 young = mn->ops->test_young(mn, mm, address);
139 if (young)
140 break;
141 }
142 }
143 srcu_read_unlock(&srcu, id);
144
145 return young;
146}
147
148void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
149 pte_t pte)
150{
151 struct mmu_notifier *mn;
152 int id;
153
154 id = srcu_read_lock(&srcu);
155 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
156 if (mn->ops->change_pte)
157 mn->ops->change_pte(mn, mm, address, pte);
158 }
159 srcu_read_unlock(&srcu, id);
160}
161
162int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
163{
164 struct mmu_notifier *mn;
165 int ret = 0;
166 int id;
167
168 id = srcu_read_lock(&srcu);
169 hlist_for_each_entry_rcu(mn, &range->mm->mmu_notifier_mm->list, hlist) {
170 if (mn->ops->invalidate_range_start) {
171 int _ret;
172
173 if (!mmu_notifier_range_blockable(range))
174 non_block_start();
175 _ret = mn->ops->invalidate_range_start(mn, range);
176 if (!mmu_notifier_range_blockable(range))
177 non_block_end();
178 if (_ret) {
179 pr_info("%pS callback failed with %d in %sblockable context.\n",
180 mn->ops->invalidate_range_start, _ret,
181 !mmu_notifier_range_blockable(range) ? "non-" : "");
182 WARN_ON(mmu_notifier_range_blockable(range) ||
183 _ret != -EAGAIN);
184 ret = _ret;
185 }
186 }
187 }
188 srcu_read_unlock(&srcu, id);
189
190 return ret;
191}
192
193void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range,
194 bool only_end)
195{
196 struct mmu_notifier *mn;
197 int id;
198
199 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
200 id = srcu_read_lock(&srcu);
201 hlist_for_each_entry_rcu(mn, &range->mm->mmu_notifier_mm->list, hlist) {
202 /*
203 * Call invalidate_range here too to avoid the need for the
204 * subsystem of having to register an invalidate_range_end
205 * call-back when there is invalidate_range already. Usually a
206 * subsystem registers either invalidate_range_start()/end() or
207 * invalidate_range(), so this will be no additional overhead
208 * (besides the pointer check).
209 *
210 * We skip call to invalidate_range() if we know it is safe ie
211 * call site use mmu_notifier_invalidate_range_only_end() which
212 * is safe to do when we know that a call to invalidate_range()
213 * already happen under page table lock.
214 */
215 if (!only_end && mn->ops->invalidate_range)
216 mn->ops->invalidate_range(mn, range->mm,
217 range->start,
218 range->end);
219 if (mn->ops->invalidate_range_end) {
220 if (!mmu_notifier_range_blockable(range))
221 non_block_start();
222 mn->ops->invalidate_range_end(mn, range);
223 if (!mmu_notifier_range_blockable(range))
224 non_block_end();
225 }
226 }
227 srcu_read_unlock(&srcu, id);
228 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
229}
230
231void __mmu_notifier_invalidate_range(struct mm_struct *mm,
232 unsigned long start, unsigned long end)
233{
234 struct mmu_notifier *mn;
235 int id;
236
237 id = srcu_read_lock(&srcu);
238 hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
239 if (mn->ops->invalidate_range)
240 mn->ops->invalidate_range(mn, mm, start, end);
241 }
242 srcu_read_unlock(&srcu, id);
243}
244
245/*
246 * Same as mmu_notifier_register but here the caller must hold the
247 * mmap_sem in write mode.
248 */
249int __mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
250{
251 struct mmu_notifier_mm *mmu_notifier_mm = NULL;
252 int ret;
253
254 lockdep_assert_held_write(&mm->mmap_sem);
255 BUG_ON(atomic_read(&mm->mm_users) <= 0);
256
257 if (IS_ENABLED(CONFIG_LOCKDEP)) {
258 fs_reclaim_acquire(GFP_KERNEL);
259 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
260 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
261 fs_reclaim_release(GFP_KERNEL);
262 }
263
264 mn->mm = mm;
265 mn->users = 1;
266
267 if (!mm->mmu_notifier_mm) {
268 /*
269 * kmalloc cannot be called under mm_take_all_locks(), but we
270 * know that mm->mmu_notifier_mm can't change while we hold
271 * the write side of the mmap_sem.
272 */
273 mmu_notifier_mm =
274 kmalloc(sizeof(struct mmu_notifier_mm), GFP_KERNEL);
275 if (!mmu_notifier_mm)
276 return -ENOMEM;
277
278 INIT_HLIST_HEAD(&mmu_notifier_mm->list);
279 spin_lock_init(&mmu_notifier_mm->lock);
280 }
281
282 ret = mm_take_all_locks(mm);
283 if (unlikely(ret))
284 goto out_clean;
285
286 /* Pairs with the mmdrop in mmu_notifier_unregister_* */
287 mmgrab(mm);
288
289 /*
290 * Serialize the update against mmu_notifier_unregister. A
291 * side note: mmu_notifier_release can't run concurrently with
292 * us because we hold the mm_users pin (either implicitly as
293 * current->mm or explicitly with get_task_mm() or similar).
294 * We can't race against any other mmu notifier method either
295 * thanks to mm_take_all_locks().
296 */
297 if (mmu_notifier_mm)
298 mm->mmu_notifier_mm = mmu_notifier_mm;
299
300 spin_lock(&mm->mmu_notifier_mm->lock);
301 hlist_add_head_rcu(&mn->hlist, &mm->mmu_notifier_mm->list);
302 spin_unlock(&mm->mmu_notifier_mm->lock);
303
304 mm_drop_all_locks(mm);
305 BUG_ON(atomic_read(&mm->mm_users) <= 0);
306 return 0;
307
308out_clean:
309 kfree(mmu_notifier_mm);
310 return ret;
311}
312EXPORT_SYMBOL_GPL(__mmu_notifier_register);
313
314/**
315 * mmu_notifier_register - Register a notifier on a mm
316 * @mn: The notifier to attach
317 * @mm: The mm to attach the notifier to
318 *
319 * Must not hold mmap_sem nor any other VM related lock when calling
320 * this registration function. Must also ensure mm_users can't go down
321 * to zero while this runs to avoid races with mmu_notifier_release,
322 * so mm has to be current->mm or the mm should be pinned safely such
323 * as with get_task_mm(). If the mm is not current->mm, the mm_users
324 * pin should be released by calling mmput after mmu_notifier_register
325 * returns.
326 *
327 * mmu_notifier_unregister() or mmu_notifier_put() must be always called to
328 * unregister the notifier.
329 *
330 * While the caller has a mmu_notifier get the mn->mm pointer will remain
331 * valid, and can be converted to an active mm pointer via mmget_not_zero().
332 */
333int mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
334{
335 int ret;
336
337 down_write(&mm->mmap_sem);
338 ret = __mmu_notifier_register(mn, mm);
339 up_write(&mm->mmap_sem);
340 return ret;
341}
342EXPORT_SYMBOL_GPL(mmu_notifier_register);
343
344static struct mmu_notifier *
345find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops)
346{
347 struct mmu_notifier *mn;
348
349 spin_lock(&mm->mmu_notifier_mm->lock);
350 hlist_for_each_entry_rcu (mn, &mm->mmu_notifier_mm->list, hlist) {
351 if (mn->ops != ops)
352 continue;
353
354 if (likely(mn->users != UINT_MAX))
355 mn->users++;
356 else
357 mn = ERR_PTR(-EOVERFLOW);
358 spin_unlock(&mm->mmu_notifier_mm->lock);
359 return mn;
360 }
361 spin_unlock(&mm->mmu_notifier_mm->lock);
362 return NULL;
363}
364
365/**
366 * mmu_notifier_get_locked - Return the single struct mmu_notifier for
367 * the mm & ops
368 * @ops: The operations struct being subscribe with
369 * @mm : The mm to attach notifiers too
370 *
371 * This function either allocates a new mmu_notifier via
372 * ops->alloc_notifier(), or returns an already existing notifier on the
373 * list. The value of the ops pointer is used to determine when two notifiers
374 * are the same.
375 *
376 * Each call to mmu_notifier_get() must be paired with a call to
377 * mmu_notifier_put(). The caller must hold the write side of mm->mmap_sem.
378 *
379 * While the caller has a mmu_notifier get the mm pointer will remain valid,
380 * and can be converted to an active mm pointer via mmget_not_zero().
381 */
382struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
383 struct mm_struct *mm)
384{
385 struct mmu_notifier *mn;
386 int ret;
387
388 lockdep_assert_held_write(&mm->mmap_sem);
389
390 if (mm->mmu_notifier_mm) {
391 mn = find_get_mmu_notifier(mm, ops);
392 if (mn)
393 return mn;
394 }
395
396 mn = ops->alloc_notifier(mm);
397 if (IS_ERR(mn))
398 return mn;
399 mn->ops = ops;
400 ret = __mmu_notifier_register(mn, mm);
401 if (ret)
402 goto out_free;
403 return mn;
404out_free:
405 mn->ops->free_notifier(mn);
406 return ERR_PTR(ret);
407}
408EXPORT_SYMBOL_GPL(mmu_notifier_get_locked);
409
410/* this is called after the last mmu_notifier_unregister() returned */
411void __mmu_notifier_mm_destroy(struct mm_struct *mm)
412{
413 BUG_ON(!hlist_empty(&mm->mmu_notifier_mm->list));
414 kfree(mm->mmu_notifier_mm);
415 mm->mmu_notifier_mm = LIST_POISON1; /* debug */
416}
417
418/*
419 * This releases the mm_count pin automatically and frees the mm
420 * structure if it was the last user of it. It serializes against
421 * running mmu notifiers with SRCU and against mmu_notifier_unregister
422 * with the unregister lock + SRCU. All sptes must be dropped before
423 * calling mmu_notifier_unregister. ->release or any other notifier
424 * method may be invoked concurrently with mmu_notifier_unregister,
425 * and only after mmu_notifier_unregister returned we're guaranteed
426 * that ->release or any other method can't run anymore.
427 */
428void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm)
429{
430 BUG_ON(atomic_read(&mm->mm_count) <= 0);
431
432 if (!hlist_unhashed(&mn->hlist)) {
433 /*
434 * SRCU here will force exit_mmap to wait for ->release to
435 * finish before freeing the pages.
436 */
437 int id;
438
439 id = srcu_read_lock(&srcu);
440 /*
441 * exit_mmap will block in mmu_notifier_release to guarantee
442 * that ->release is called before freeing the pages.
443 */
444 if (mn->ops->release)
445 mn->ops->release(mn, mm);
446 srcu_read_unlock(&srcu, id);
447
448 spin_lock(&mm->mmu_notifier_mm->lock);
449 /*
450 * Can not use list_del_rcu() since __mmu_notifier_release
451 * can delete it before we hold the lock.
452 */
453 hlist_del_init_rcu(&mn->hlist);
454 spin_unlock(&mm->mmu_notifier_mm->lock);
455 }
456
457 /*
458 * Wait for any running method to finish, of course including
459 * ->release if it was run by mmu_notifier_release instead of us.
460 */
461 synchronize_srcu(&srcu);
462
463 BUG_ON(atomic_read(&mm->mm_count) <= 0);
464
465 mmdrop(mm);
466}
467EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
468
469static void mmu_notifier_free_rcu(struct rcu_head *rcu)
470{
471 struct mmu_notifier *mn = container_of(rcu, struct mmu_notifier, rcu);
472 struct mm_struct *mm = mn->mm;
473
474 mn->ops->free_notifier(mn);
475 /* Pairs with the get in __mmu_notifier_register() */
476 mmdrop(mm);
477}
478
479/**
480 * mmu_notifier_put - Release the reference on the notifier
481 * @mn: The notifier to act on
482 *
483 * This function must be paired with each mmu_notifier_get(), it releases the
484 * reference obtained by the get. If this is the last reference then process
485 * to free the notifier will be run asynchronously.
486 *
487 * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release
488 * when the mm_struct is destroyed. Instead free_notifier is always called to
489 * release any resources held by the user.
490 *
491 * As ops->release is not guaranteed to be called, the user must ensure that
492 * all sptes are dropped, and no new sptes can be established before
493 * mmu_notifier_put() is called.
494 *
495 * This function can be called from the ops->release callback, however the
496 * caller must still ensure it is called pairwise with mmu_notifier_get().
497 *
498 * Modules calling this function must call mmu_notifier_synchronize() in
499 * their __exit functions to ensure the async work is completed.
500 */
501void mmu_notifier_put(struct mmu_notifier *mn)
502{
503 struct mm_struct *mm = mn->mm;
504
505 spin_lock(&mm->mmu_notifier_mm->lock);
506 if (WARN_ON(!mn->users) || --mn->users)
507 goto out_unlock;
508 hlist_del_init_rcu(&mn->hlist);
509 spin_unlock(&mm->mmu_notifier_mm->lock);
510
511 call_srcu(&srcu, &mn->rcu, mmu_notifier_free_rcu);
512 return;
513
514out_unlock:
515 spin_unlock(&mm->mmu_notifier_mm->lock);
516}
517EXPORT_SYMBOL_GPL(mmu_notifier_put);
518
519/**
520 * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed
521 *
522 * This function ensures that all outstanding async SRU work from
523 * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops
524 * associated with an unused mmu_notifier will no longer be called.
525 *
526 * Before using the caller must ensure that all of its mmu_notifiers have been
527 * fully released via mmu_notifier_put().
528 *
529 * Modules using the mmu_notifier_put() API should call this in their __exit
530 * function to avoid module unloading races.
531 */
532void mmu_notifier_synchronize(void)
533{
534 synchronize_srcu(&srcu);
535}
536EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
537
538bool
539mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range)
540{
541 if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA)
542 return false;
543 /* Return true if the vma still have the read flag set. */
544 return range->vma->vm_flags & VM_READ;
545}
546EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only);
1/*
2 * linux/mm/mmu_notifier.c
3 *
4 * Copyright (C) 2008 Qumranet, Inc.
5 * Copyright (C) 2008 SGI
6 * Christoph Lameter <clameter@sgi.com>
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 */
11
12#include <linux/rculist.h>
13#include <linux/mmu_notifier.h>
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/err.h>
17#include <linux/rcupdate.h>
18#include <linux/sched.h>
19#include <linux/slab.h>
20
21/*
22 * This function can't run concurrently against mmu_notifier_register
23 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
24 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
25 * in parallel despite there being no task using this mm any more,
26 * through the vmas outside of the exit_mmap context, such as with
27 * vmtruncate. This serializes against mmu_notifier_unregister with
28 * the mmu_notifier_mm->lock in addition to RCU and it serializes
29 * against the other mmu notifiers with RCU. struct mmu_notifier_mm
30 * can't go away from under us as exit_mmap holds an mm_count pin
31 * itself.
32 */
33void __mmu_notifier_release(struct mm_struct *mm)
34{
35 struct mmu_notifier *mn;
36
37 spin_lock(&mm->mmu_notifier_mm->lock);
38 while (unlikely(!hlist_empty(&mm->mmu_notifier_mm->list))) {
39 mn = hlist_entry(mm->mmu_notifier_mm->list.first,
40 struct mmu_notifier,
41 hlist);
42 /*
43 * We arrived before mmu_notifier_unregister so
44 * mmu_notifier_unregister will do nothing other than
45 * to wait ->release to finish and
46 * mmu_notifier_unregister to return.
47 */
48 hlist_del_init_rcu(&mn->hlist);
49 /*
50 * RCU here will block mmu_notifier_unregister until
51 * ->release returns.
52 */
53 rcu_read_lock();
54 spin_unlock(&mm->mmu_notifier_mm->lock);
55 /*
56 * if ->release runs before mmu_notifier_unregister it
57 * must be handled as it's the only way for the driver
58 * to flush all existing sptes and stop the driver
59 * from establishing any more sptes before all the
60 * pages in the mm are freed.
61 */
62 if (mn->ops->release)
63 mn->ops->release(mn, mm);
64 rcu_read_unlock();
65 spin_lock(&mm->mmu_notifier_mm->lock);
66 }
67 spin_unlock(&mm->mmu_notifier_mm->lock);
68
69 /*
70 * synchronize_rcu here prevents mmu_notifier_release to
71 * return to exit_mmap (which would proceed freeing all pages
72 * in the mm) until the ->release method returns, if it was
73 * invoked by mmu_notifier_unregister.
74 *
75 * The mmu_notifier_mm can't go away from under us because one
76 * mm_count is hold by exit_mmap.
77 */
78 synchronize_rcu();
79}
80
81/*
82 * If no young bitflag is supported by the hardware, ->clear_flush_young can
83 * unmap the address and return 1 or 0 depending if the mapping previously
84 * existed or not.
85 */
86int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
87 unsigned long address)
88{
89 struct mmu_notifier *mn;
90 struct hlist_node *n;
91 int young = 0;
92
93 rcu_read_lock();
94 hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
95 if (mn->ops->clear_flush_young)
96 young |= mn->ops->clear_flush_young(mn, mm, address);
97 }
98 rcu_read_unlock();
99
100 return young;
101}
102
103int __mmu_notifier_test_young(struct mm_struct *mm,
104 unsigned long address)
105{
106 struct mmu_notifier *mn;
107 struct hlist_node *n;
108 int young = 0;
109
110 rcu_read_lock();
111 hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
112 if (mn->ops->test_young) {
113 young = mn->ops->test_young(mn, mm, address);
114 if (young)
115 break;
116 }
117 }
118 rcu_read_unlock();
119
120 return young;
121}
122
123void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
124 pte_t pte)
125{
126 struct mmu_notifier *mn;
127 struct hlist_node *n;
128
129 rcu_read_lock();
130 hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
131 if (mn->ops->change_pte)
132 mn->ops->change_pte(mn, mm, address, pte);
133 /*
134 * Some drivers don't have change_pte,
135 * so we must call invalidate_page in that case.
136 */
137 else if (mn->ops->invalidate_page)
138 mn->ops->invalidate_page(mn, mm, address);
139 }
140 rcu_read_unlock();
141}
142
143void __mmu_notifier_invalidate_page(struct mm_struct *mm,
144 unsigned long address)
145{
146 struct mmu_notifier *mn;
147 struct hlist_node *n;
148
149 rcu_read_lock();
150 hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
151 if (mn->ops->invalidate_page)
152 mn->ops->invalidate_page(mn, mm, address);
153 }
154 rcu_read_unlock();
155}
156
157void __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
158 unsigned long start, unsigned long end)
159{
160 struct mmu_notifier *mn;
161 struct hlist_node *n;
162
163 rcu_read_lock();
164 hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
165 if (mn->ops->invalidate_range_start)
166 mn->ops->invalidate_range_start(mn, mm, start, end);
167 }
168 rcu_read_unlock();
169}
170
171void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
172 unsigned long start, unsigned long end)
173{
174 struct mmu_notifier *mn;
175 struct hlist_node *n;
176
177 rcu_read_lock();
178 hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
179 if (mn->ops->invalidate_range_end)
180 mn->ops->invalidate_range_end(mn, mm, start, end);
181 }
182 rcu_read_unlock();
183}
184
185static int do_mmu_notifier_register(struct mmu_notifier *mn,
186 struct mm_struct *mm,
187 int take_mmap_sem)
188{
189 struct mmu_notifier_mm *mmu_notifier_mm;
190 int ret;
191
192 BUG_ON(atomic_read(&mm->mm_users) <= 0);
193
194 ret = -ENOMEM;
195 mmu_notifier_mm = kmalloc(sizeof(struct mmu_notifier_mm), GFP_KERNEL);
196 if (unlikely(!mmu_notifier_mm))
197 goto out;
198
199 if (take_mmap_sem)
200 down_write(&mm->mmap_sem);
201 ret = mm_take_all_locks(mm);
202 if (unlikely(ret))
203 goto out_cleanup;
204
205 if (!mm_has_notifiers(mm)) {
206 INIT_HLIST_HEAD(&mmu_notifier_mm->list);
207 spin_lock_init(&mmu_notifier_mm->lock);
208 mm->mmu_notifier_mm = mmu_notifier_mm;
209 mmu_notifier_mm = NULL;
210 }
211 atomic_inc(&mm->mm_count);
212
213 /*
214 * Serialize the update against mmu_notifier_unregister. A
215 * side note: mmu_notifier_release can't run concurrently with
216 * us because we hold the mm_users pin (either implicitly as
217 * current->mm or explicitly with get_task_mm() or similar).
218 * We can't race against any other mmu notifier method either
219 * thanks to mm_take_all_locks().
220 */
221 spin_lock(&mm->mmu_notifier_mm->lock);
222 hlist_add_head(&mn->hlist, &mm->mmu_notifier_mm->list);
223 spin_unlock(&mm->mmu_notifier_mm->lock);
224
225 mm_drop_all_locks(mm);
226out_cleanup:
227 if (take_mmap_sem)
228 up_write(&mm->mmap_sem);
229 /* kfree() does nothing if mmu_notifier_mm is NULL */
230 kfree(mmu_notifier_mm);
231out:
232 BUG_ON(atomic_read(&mm->mm_users) <= 0);
233 return ret;
234}
235
236/*
237 * Must not hold mmap_sem nor any other VM related lock when calling
238 * this registration function. Must also ensure mm_users can't go down
239 * to zero while this runs to avoid races with mmu_notifier_release,
240 * so mm has to be current->mm or the mm should be pinned safely such
241 * as with get_task_mm(). If the mm is not current->mm, the mm_users
242 * pin should be released by calling mmput after mmu_notifier_register
243 * returns. mmu_notifier_unregister must be always called to
244 * unregister the notifier. mm_count is automatically pinned to allow
245 * mmu_notifier_unregister to safely run at any time later, before or
246 * after exit_mmap. ->release will always be called before exit_mmap
247 * frees the pages.
248 */
249int mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
250{
251 return do_mmu_notifier_register(mn, mm, 1);
252}
253EXPORT_SYMBOL_GPL(mmu_notifier_register);
254
255/*
256 * Same as mmu_notifier_register but here the caller must hold the
257 * mmap_sem in write mode.
258 */
259int __mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
260{
261 return do_mmu_notifier_register(mn, mm, 0);
262}
263EXPORT_SYMBOL_GPL(__mmu_notifier_register);
264
265/* this is called after the last mmu_notifier_unregister() returned */
266void __mmu_notifier_mm_destroy(struct mm_struct *mm)
267{
268 BUG_ON(!hlist_empty(&mm->mmu_notifier_mm->list));
269 kfree(mm->mmu_notifier_mm);
270 mm->mmu_notifier_mm = LIST_POISON1; /* debug */
271}
272
273/*
274 * This releases the mm_count pin automatically and frees the mm
275 * structure if it was the last user of it. It serializes against
276 * running mmu notifiers with RCU and against mmu_notifier_unregister
277 * with the unregister lock + RCU. All sptes must be dropped before
278 * calling mmu_notifier_unregister. ->release or any other notifier
279 * method may be invoked concurrently with mmu_notifier_unregister,
280 * and only after mmu_notifier_unregister returned we're guaranteed
281 * that ->release or any other method can't run anymore.
282 */
283void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm)
284{
285 BUG_ON(atomic_read(&mm->mm_count) <= 0);
286
287 spin_lock(&mm->mmu_notifier_mm->lock);
288 if (!hlist_unhashed(&mn->hlist)) {
289 hlist_del_rcu(&mn->hlist);
290
291 /*
292 * RCU here will force exit_mmap to wait ->release to finish
293 * before freeing the pages.
294 */
295 rcu_read_lock();
296 spin_unlock(&mm->mmu_notifier_mm->lock);
297 /*
298 * exit_mmap will block in mmu_notifier_release to
299 * guarantee ->release is called before freeing the
300 * pages.
301 */
302 if (mn->ops->release)
303 mn->ops->release(mn, mm);
304 rcu_read_unlock();
305 } else
306 spin_unlock(&mm->mmu_notifier_mm->lock);
307
308 /*
309 * Wait any running method to finish, of course including
310 * ->release if it was run by mmu_notifier_relase instead of us.
311 */
312 synchronize_rcu();
313
314 BUG_ON(atomic_read(&mm->mm_count) <= 0);
315
316 mmdrop(mm);
317}
318EXPORT_SYMBOL_GPL(mmu_notifier_unregister);