Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/mm/mmu_notifier.c
  4 *
  5 *  Copyright (C) 2008  Qumranet, Inc.
  6 *  Copyright (C) 2008  SGI
  7 *             Christoph Lameter <cl@linux.com>
 
 
 
  8 */
  9
 10#include <linux/rculist.h>
 11#include <linux/mmu_notifier.h>
 12#include <linux/export.h>
 13#include <linux/mm.h>
 14#include <linux/err.h>
 15#include <linux/srcu.h>
 16#include <linux/rcupdate.h>
 17#include <linux/sched.h>
 18#include <linux/sched/mm.h>
 19#include <linux/slab.h>
 20
 21/* global SRCU for all MMs */
 22DEFINE_STATIC_SRCU(srcu);
 23
 24#ifdef CONFIG_LOCKDEP
 25struct lockdep_map __mmu_notifier_invalidate_range_start_map = {
 26	.name = "mmu_notifier_invalidate_range_start"
 27};
 28#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 29
 30/*
 31 * This function can't run concurrently against mmu_notifier_register
 32 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
 33 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
 34 * in parallel despite there being no task using this mm any more,
 35 * through the vmas outside of the exit_mmap context, such as with
 36 * vmtruncate. This serializes against mmu_notifier_unregister with
 37 * the mmu_notifier_mm->lock in addition to SRCU and it serializes
 38 * against the other mmu notifiers with SRCU. struct mmu_notifier_mm
 39 * can't go away from under us as exit_mmap holds an mm_count pin
 40 * itself.
 41 */
 42void __mmu_notifier_release(struct mm_struct *mm)
 43{
 44	struct mmu_notifier *mn;
 45	int id;
 46
 47	/*
 48	 * SRCU here will block mmu_notifier_unregister until
 49	 * ->release returns.
 50	 */
 51	id = srcu_read_lock(&srcu);
 52	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist)
 53		/*
 54		 * If ->release runs before mmu_notifier_unregister it must be
 55		 * handled, as it's the only way for the driver to flush all
 56		 * existing sptes and stop the driver from establishing any more
 57		 * sptes before all the pages in the mm are freed.
 58		 */
 59		if (mn->ops->release)
 60			mn->ops->release(mn, mm);
 61
 62	spin_lock(&mm->mmu_notifier_mm->lock);
 63	while (unlikely(!hlist_empty(&mm->mmu_notifier_mm->list))) {
 64		mn = hlist_entry(mm->mmu_notifier_mm->list.first,
 65				 struct mmu_notifier,
 66				 hlist);
 67		/*
 68		 * We arrived before mmu_notifier_unregister so
 69		 * mmu_notifier_unregister will do nothing other than to wait
 70		 * for ->release to finish and for mmu_notifier_unregister to
 71		 * return.
 72		 */
 73		hlist_del_init_rcu(&mn->hlist);
 74	}
 75	spin_unlock(&mm->mmu_notifier_mm->lock);
 76	srcu_read_unlock(&srcu, id);
 77
 78	/*
 79	 * synchronize_srcu here prevents mmu_notifier_release from returning to
 80	 * exit_mmap (which would proceed with freeing all pages in the mm)
 81	 * until the ->release method returns, if it was invoked by
 82	 * mmu_notifier_unregister.
 83	 *
 84	 * The mmu_notifier_mm can't go away from under us because one mm_count
 85	 * is held by exit_mmap.
 86	 */
 87	synchronize_srcu(&srcu);
 88}
 89
 90/*
 91 * If no young bitflag is supported by the hardware, ->clear_flush_young can
 92 * unmap the address and return 1 or 0 depending if the mapping previously
 93 * existed or not.
 94 */
 95int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
 96					unsigned long start,
 97					unsigned long end)
 98{
 99	struct mmu_notifier *mn;
100	int young = 0, id;
101
102	id = srcu_read_lock(&srcu);
103	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
104		if (mn->ops->clear_flush_young)
105			young |= mn->ops->clear_flush_young(mn, mm, start, end);
106	}
107	srcu_read_unlock(&srcu, id);
108
109	return young;
110}
111
112int __mmu_notifier_clear_young(struct mm_struct *mm,
113			       unsigned long start,
114			       unsigned long end)
115{
116	struct mmu_notifier *mn;
117	int young = 0, id;
118
119	id = srcu_read_lock(&srcu);
120	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
121		if (mn->ops->clear_young)
122			young |= mn->ops->clear_young(mn, mm, start, end);
123	}
124	srcu_read_unlock(&srcu, id);
125
126	return young;
127}
128
129int __mmu_notifier_test_young(struct mm_struct *mm,
130			      unsigned long address)
131{
132	struct mmu_notifier *mn;
133	int young = 0, id;
134
135	id = srcu_read_lock(&srcu);
136	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
137		if (mn->ops->test_young) {
138			young = mn->ops->test_young(mn, mm, address);
139			if (young)
140				break;
141		}
142	}
143	srcu_read_unlock(&srcu, id);
144
145	return young;
146}
147
148void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
149			       pte_t pte)
150{
151	struct mmu_notifier *mn;
152	int id;
153
154	id = srcu_read_lock(&srcu);
155	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
156		if (mn->ops->change_pte)
157			mn->ops->change_pte(mn, mm, address, pte);
158	}
159	srcu_read_unlock(&srcu, id);
160}
161
162int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
 
163{
164	struct mmu_notifier *mn;
165	int ret = 0;
166	int id;
167
168	id = srcu_read_lock(&srcu);
169	hlist_for_each_entry_rcu(mn, &range->mm->mmu_notifier_mm->list, hlist) {
170		if (mn->ops->invalidate_range_start) {
171			int _ret;
172
173			if (!mmu_notifier_range_blockable(range))
174				non_block_start();
175			_ret = mn->ops->invalidate_range_start(mn, range);
176			if (!mmu_notifier_range_blockable(range))
177				non_block_end();
178			if (_ret) {
179				pr_info("%pS callback failed with %d in %sblockable context.\n",
180					mn->ops->invalidate_range_start, _ret,
181					!mmu_notifier_range_blockable(range) ? "non-" : "");
182				WARN_ON(mmu_notifier_range_blockable(range) ||
183					_ret != -EAGAIN);
184				ret = _ret;
185			}
186		}
187	}
188	srcu_read_unlock(&srcu, id);
189
190	return ret;
191}
 
192
193void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range,
 
 
194					 bool only_end)
195{
196	struct mmu_notifier *mn;
197	int id;
198
199	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
200	id = srcu_read_lock(&srcu);
201	hlist_for_each_entry_rcu(mn, &range->mm->mmu_notifier_mm->list, hlist) {
202		/*
203		 * Call invalidate_range here too to avoid the need for the
204		 * subsystem of having to register an invalidate_range_end
205		 * call-back when there is invalidate_range already. Usually a
206		 * subsystem registers either invalidate_range_start()/end() or
207		 * invalidate_range(), so this will be no additional overhead
208		 * (besides the pointer check).
209		 *
210		 * We skip call to invalidate_range() if we know it is safe ie
211		 * call site use mmu_notifier_invalidate_range_only_end() which
212		 * is safe to do when we know that a call to invalidate_range()
213		 * already happen under page table lock.
214		 */
215		if (!only_end && mn->ops->invalidate_range)
216			mn->ops->invalidate_range(mn, range->mm,
217						  range->start,
218						  range->end);
219		if (mn->ops->invalidate_range_end) {
220			if (!mmu_notifier_range_blockable(range))
221				non_block_start();
222			mn->ops->invalidate_range_end(mn, range);
223			if (!mmu_notifier_range_blockable(range))
224				non_block_end();
225		}
226	}
227	srcu_read_unlock(&srcu, id);
228	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
229}
 
230
231void __mmu_notifier_invalidate_range(struct mm_struct *mm,
232				  unsigned long start, unsigned long end)
233{
234	struct mmu_notifier *mn;
235	int id;
236
237	id = srcu_read_lock(&srcu);
238	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
239		if (mn->ops->invalidate_range)
240			mn->ops->invalidate_range(mn, mm, start, end);
241	}
242	srcu_read_unlock(&srcu, id);
243}
 
244
245/*
246 * Same as mmu_notifier_register but here the caller must hold the
247 * mmap_sem in write mode.
248 */
249int __mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
250{
251	struct mmu_notifier_mm *mmu_notifier_mm = NULL;
252	int ret;
 
253
254	lockdep_assert_held_write(&mm->mmap_sem);
255	BUG_ON(atomic_read(&mm->mm_users) <= 0);
256
257	if (IS_ENABLED(CONFIG_LOCKDEP)) {
258		fs_reclaim_acquire(GFP_KERNEL);
259		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
260		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
261		fs_reclaim_release(GFP_KERNEL);
 
 
 
 
 
 
 
 
 
262	}
 
 
 
263
264	mn->mm = mm;
265	mn->users = 1;
 
 
 
 
266
267	if (!mm->mmu_notifier_mm) {
268		/*
269		 * kmalloc cannot be called under mm_take_all_locks(), but we
270		 * know that mm->mmu_notifier_mm can't change while we hold
271		 * the write side of the mmap_sem.
272		 */
273		mmu_notifier_mm =
274			kmalloc(sizeof(struct mmu_notifier_mm), GFP_KERNEL);
275		if (!mmu_notifier_mm)
276			return -ENOMEM;
277
278		INIT_HLIST_HEAD(&mmu_notifier_mm->list);
279		spin_lock_init(&mmu_notifier_mm->lock);
280	}
 
281
 
 
282	ret = mm_take_all_locks(mm);
283	if (unlikely(ret))
284		goto out_clean;
285
286	/* Pairs with the mmdrop in mmu_notifier_unregister_* */
 
 
 
 
 
 
287	mmgrab(mm);
288
289	/*
290	 * Serialize the update against mmu_notifier_unregister. A
291	 * side note: mmu_notifier_release can't run concurrently with
292	 * us because we hold the mm_users pin (either implicitly as
293	 * current->mm or explicitly with get_task_mm() or similar).
294	 * We can't race against any other mmu notifier method either
295	 * thanks to mm_take_all_locks().
296	 */
297	if (mmu_notifier_mm)
298		mm->mmu_notifier_mm = mmu_notifier_mm;
299
300	spin_lock(&mm->mmu_notifier_mm->lock);
301	hlist_add_head_rcu(&mn->hlist, &mm->mmu_notifier_mm->list);
302	spin_unlock(&mm->mmu_notifier_mm->lock);
303
304	mm_drop_all_locks(mm);
305	BUG_ON(atomic_read(&mm->mm_users) <= 0);
306	return 0;
307
308out_clean:
 
 
309	kfree(mmu_notifier_mm);
 
 
310	return ret;
311}
312EXPORT_SYMBOL_GPL(__mmu_notifier_register);
313
314/**
315 * mmu_notifier_register - Register a notifier on a mm
316 * @mn: The notifier to attach
317 * @mm: The mm to attach the notifier to
318 *
319 * Must not hold mmap_sem nor any other VM related lock when calling
320 * this registration function. Must also ensure mm_users can't go down
321 * to zero while this runs to avoid races with mmu_notifier_release,
322 * so mm has to be current->mm or the mm should be pinned safely such
323 * as with get_task_mm(). If the mm is not current->mm, the mm_users
324 * pin should be released by calling mmput after mmu_notifier_register
325 * returns.
326 *
327 * mmu_notifier_unregister() or mmu_notifier_put() must be always called to
328 * unregister the notifier.
329 *
330 * While the caller has a mmu_notifier get the mn->mm pointer will remain
331 * valid, and can be converted to an active mm pointer via mmget_not_zero().
332 */
333int mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
334{
335	int ret;
336
337	down_write(&mm->mmap_sem);
338	ret = __mmu_notifier_register(mn, mm);
339	up_write(&mm->mmap_sem);
340	return ret;
341}
342EXPORT_SYMBOL_GPL(mmu_notifier_register);
343
344static struct mmu_notifier *
345find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops)
346{
347	struct mmu_notifier *mn;
348
349	spin_lock(&mm->mmu_notifier_mm->lock);
350	hlist_for_each_entry_rcu (mn, &mm->mmu_notifier_mm->list, hlist) {
351		if (mn->ops != ops)
352			continue;
353
354		if (likely(mn->users != UINT_MAX))
355			mn->users++;
356		else
357			mn = ERR_PTR(-EOVERFLOW);
358		spin_unlock(&mm->mmu_notifier_mm->lock);
359		return mn;
360	}
361	spin_unlock(&mm->mmu_notifier_mm->lock);
362	return NULL;
363}
364
365/**
366 * mmu_notifier_get_locked - Return the single struct mmu_notifier for
367 *                           the mm & ops
368 * @ops: The operations struct being subscribe with
369 * @mm : The mm to attach notifiers too
370 *
371 * This function either allocates a new mmu_notifier via
372 * ops->alloc_notifier(), or returns an already existing notifier on the
373 * list. The value of the ops pointer is used to determine when two notifiers
374 * are the same.
375 *
376 * Each call to mmu_notifier_get() must be paired with a call to
377 * mmu_notifier_put(). The caller must hold the write side of mm->mmap_sem.
378 *
379 * While the caller has a mmu_notifier get the mm pointer will remain valid,
380 * and can be converted to an active mm pointer via mmget_not_zero().
381 */
382struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
383					     struct mm_struct *mm)
384{
385	struct mmu_notifier *mn;
386	int ret;
387
388	lockdep_assert_held_write(&mm->mmap_sem);
389
390	if (mm->mmu_notifier_mm) {
391		mn = find_get_mmu_notifier(mm, ops);
392		if (mn)
393			return mn;
394	}
395
396	mn = ops->alloc_notifier(mm);
397	if (IS_ERR(mn))
398		return mn;
399	mn->ops = ops;
400	ret = __mmu_notifier_register(mn, mm);
401	if (ret)
402		goto out_free;
403	return mn;
404out_free:
405	mn->ops->free_notifier(mn);
406	return ERR_PTR(ret);
407}
408EXPORT_SYMBOL_GPL(mmu_notifier_get_locked);
409
410/* this is called after the last mmu_notifier_unregister() returned */
411void __mmu_notifier_mm_destroy(struct mm_struct *mm)
412{
413	BUG_ON(!hlist_empty(&mm->mmu_notifier_mm->list));
414	kfree(mm->mmu_notifier_mm);
415	mm->mmu_notifier_mm = LIST_POISON1; /* debug */
416}
417
418/*
419 * This releases the mm_count pin automatically and frees the mm
420 * structure if it was the last user of it. It serializes against
421 * running mmu notifiers with SRCU and against mmu_notifier_unregister
422 * with the unregister lock + SRCU. All sptes must be dropped before
423 * calling mmu_notifier_unregister. ->release or any other notifier
424 * method may be invoked concurrently with mmu_notifier_unregister,
425 * and only after mmu_notifier_unregister returned we're guaranteed
426 * that ->release or any other method can't run anymore.
427 */
428void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm)
429{
430	BUG_ON(atomic_read(&mm->mm_count) <= 0);
431
432	if (!hlist_unhashed(&mn->hlist)) {
433		/*
434		 * SRCU here will force exit_mmap to wait for ->release to
435		 * finish before freeing the pages.
436		 */
437		int id;
438
439		id = srcu_read_lock(&srcu);
440		/*
441		 * exit_mmap will block in mmu_notifier_release to guarantee
442		 * that ->release is called before freeing the pages.
443		 */
444		if (mn->ops->release)
445			mn->ops->release(mn, mm);
446		srcu_read_unlock(&srcu, id);
447
448		spin_lock(&mm->mmu_notifier_mm->lock);
449		/*
450		 * Can not use list_del_rcu() since __mmu_notifier_release
451		 * can delete it before we hold the lock.
452		 */
453		hlist_del_init_rcu(&mn->hlist);
454		spin_unlock(&mm->mmu_notifier_mm->lock);
455	}
456
457	/*
458	 * Wait for any running method to finish, of course including
459	 * ->release if it was run by mmu_notifier_release instead of us.
460	 */
461	synchronize_srcu(&srcu);
462
463	BUG_ON(atomic_read(&mm->mm_count) <= 0);
464
465	mmdrop(mm);
466}
467EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
468
469static void mmu_notifier_free_rcu(struct rcu_head *rcu)
470{
471	struct mmu_notifier *mn = container_of(rcu, struct mmu_notifier, rcu);
472	struct mm_struct *mm = mn->mm;
473
474	mn->ops->free_notifier(mn);
475	/* Pairs with the get in __mmu_notifier_register() */
476	mmdrop(mm);
477}
478
479/**
480 * mmu_notifier_put - Release the reference on the notifier
481 * @mn: The notifier to act on
482 *
483 * This function must be paired with each mmu_notifier_get(), it releases the
484 * reference obtained by the get. If this is the last reference then process
485 * to free the notifier will be run asynchronously.
486 *
487 * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release
488 * when the mm_struct is destroyed. Instead free_notifier is always called to
489 * release any resources held by the user.
490 *
491 * As ops->release is not guaranteed to be called, the user must ensure that
492 * all sptes are dropped, and no new sptes can be established before
493 * mmu_notifier_put() is called.
494 *
495 * This function can be called from the ops->release callback, however the
496 * caller must still ensure it is called pairwise with mmu_notifier_get().
497 *
498 * Modules calling this function must call mmu_notifier_synchronize() in
499 * their __exit functions to ensure the async work is completed.
500 */
501void mmu_notifier_put(struct mmu_notifier *mn)
 
502{
503	struct mm_struct *mm = mn->mm;
504
505	spin_lock(&mm->mmu_notifier_mm->lock);
506	if (WARN_ON(!mn->users) || --mn->users)
507		goto out_unlock;
 
 
508	hlist_del_init_rcu(&mn->hlist);
509	spin_unlock(&mm->mmu_notifier_mm->lock);
510
511	call_srcu(&srcu, &mn->rcu, mmu_notifier_free_rcu);
512	return;
513
514out_unlock:
515	spin_unlock(&mm->mmu_notifier_mm->lock);
516}
517EXPORT_SYMBOL_GPL(mmu_notifier_put);
518
519/**
520 * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed
521 *
522 * This function ensures that all outstanding async SRU work from
523 * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops
524 * associated with an unused mmu_notifier will no longer be called.
525 *
526 * Before using the caller must ensure that all of its mmu_notifiers have been
527 * fully released via mmu_notifier_put().
528 *
529 * Modules using the mmu_notifier_put() API should call this in their __exit
530 * function to avoid module unloading races.
531 */
532void mmu_notifier_synchronize(void)
533{
534	synchronize_srcu(&srcu);
535}
536EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
537
538bool
539mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range)
540{
541	if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA)
542		return false;
543	/* Return true if the vma still have the read flag set. */
544	return range->vma->vm_flags & VM_READ;
545}
546EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only);
v4.17
 
  1/*
  2 *  linux/mm/mmu_notifier.c
  3 *
  4 *  Copyright (C) 2008  Qumranet, Inc.
  5 *  Copyright (C) 2008  SGI
  6 *             Christoph Lameter <cl@linux.com>
  7 *
  8 *  This work is licensed under the terms of the GNU GPL, version 2. See
  9 *  the COPYING file in the top-level directory.
 10 */
 11
 12#include <linux/rculist.h>
 13#include <linux/mmu_notifier.h>
 14#include <linux/export.h>
 15#include <linux/mm.h>
 16#include <linux/err.h>
 17#include <linux/srcu.h>
 18#include <linux/rcupdate.h>
 19#include <linux/sched.h>
 20#include <linux/sched/mm.h>
 21#include <linux/slab.h>
 22
 23/* global SRCU for all MMs */
 24DEFINE_STATIC_SRCU(srcu);
 25
 26/*
 27 * This function allows mmu_notifier::release callback to delay a call to
 28 * a function that will free appropriate resources. The function must be
 29 * quick and must not block.
 30 */
 31void mmu_notifier_call_srcu(struct rcu_head *rcu,
 32			    void (*func)(struct rcu_head *rcu))
 33{
 34	call_srcu(&srcu, rcu, func);
 35}
 36EXPORT_SYMBOL_GPL(mmu_notifier_call_srcu);
 37
 38void mmu_notifier_synchronize(void)
 39{
 40	/* Wait for any running method to finish. */
 41	srcu_barrier(&srcu);
 42}
 43EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
 44
 45/*
 46 * This function can't run concurrently against mmu_notifier_register
 47 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
 48 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
 49 * in parallel despite there being no task using this mm any more,
 50 * through the vmas outside of the exit_mmap context, such as with
 51 * vmtruncate. This serializes against mmu_notifier_unregister with
 52 * the mmu_notifier_mm->lock in addition to SRCU and it serializes
 53 * against the other mmu notifiers with SRCU. struct mmu_notifier_mm
 54 * can't go away from under us as exit_mmap holds an mm_count pin
 55 * itself.
 56 */
 57void __mmu_notifier_release(struct mm_struct *mm)
 58{
 59	struct mmu_notifier *mn;
 60	int id;
 61
 62	/*
 63	 * SRCU here will block mmu_notifier_unregister until
 64	 * ->release returns.
 65	 */
 66	id = srcu_read_lock(&srcu);
 67	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist)
 68		/*
 69		 * If ->release runs before mmu_notifier_unregister it must be
 70		 * handled, as it's the only way for the driver to flush all
 71		 * existing sptes and stop the driver from establishing any more
 72		 * sptes before all the pages in the mm are freed.
 73		 */
 74		if (mn->ops->release)
 75			mn->ops->release(mn, mm);
 76
 77	spin_lock(&mm->mmu_notifier_mm->lock);
 78	while (unlikely(!hlist_empty(&mm->mmu_notifier_mm->list))) {
 79		mn = hlist_entry(mm->mmu_notifier_mm->list.first,
 80				 struct mmu_notifier,
 81				 hlist);
 82		/*
 83		 * We arrived before mmu_notifier_unregister so
 84		 * mmu_notifier_unregister will do nothing other than to wait
 85		 * for ->release to finish and for mmu_notifier_unregister to
 86		 * return.
 87		 */
 88		hlist_del_init_rcu(&mn->hlist);
 89	}
 90	spin_unlock(&mm->mmu_notifier_mm->lock);
 91	srcu_read_unlock(&srcu, id);
 92
 93	/*
 94	 * synchronize_srcu here prevents mmu_notifier_release from returning to
 95	 * exit_mmap (which would proceed with freeing all pages in the mm)
 96	 * until the ->release method returns, if it was invoked by
 97	 * mmu_notifier_unregister.
 98	 *
 99	 * The mmu_notifier_mm can't go away from under us because one mm_count
100	 * is held by exit_mmap.
101	 */
102	synchronize_srcu(&srcu);
103}
104
105/*
106 * If no young bitflag is supported by the hardware, ->clear_flush_young can
107 * unmap the address and return 1 or 0 depending if the mapping previously
108 * existed or not.
109 */
110int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
111					unsigned long start,
112					unsigned long end)
113{
114	struct mmu_notifier *mn;
115	int young = 0, id;
116
117	id = srcu_read_lock(&srcu);
118	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
119		if (mn->ops->clear_flush_young)
120			young |= mn->ops->clear_flush_young(mn, mm, start, end);
121	}
122	srcu_read_unlock(&srcu, id);
123
124	return young;
125}
126
127int __mmu_notifier_clear_young(struct mm_struct *mm,
128			       unsigned long start,
129			       unsigned long end)
130{
131	struct mmu_notifier *mn;
132	int young = 0, id;
133
134	id = srcu_read_lock(&srcu);
135	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
136		if (mn->ops->clear_young)
137			young |= mn->ops->clear_young(mn, mm, start, end);
138	}
139	srcu_read_unlock(&srcu, id);
140
141	return young;
142}
143
144int __mmu_notifier_test_young(struct mm_struct *mm,
145			      unsigned long address)
146{
147	struct mmu_notifier *mn;
148	int young = 0, id;
149
150	id = srcu_read_lock(&srcu);
151	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
152		if (mn->ops->test_young) {
153			young = mn->ops->test_young(mn, mm, address);
154			if (young)
155				break;
156		}
157	}
158	srcu_read_unlock(&srcu, id);
159
160	return young;
161}
162
163void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
164			       pte_t pte)
165{
166	struct mmu_notifier *mn;
167	int id;
168
169	id = srcu_read_lock(&srcu);
170	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
171		if (mn->ops->change_pte)
172			mn->ops->change_pte(mn, mm, address, pte);
173	}
174	srcu_read_unlock(&srcu, id);
175}
176
177void __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
178				  unsigned long start, unsigned long end)
179{
180	struct mmu_notifier *mn;
 
181	int id;
182
183	id = srcu_read_lock(&srcu);
184	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
185		if (mn->ops->invalidate_range_start)
186			mn->ops->invalidate_range_start(mn, mm, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187	}
188	srcu_read_unlock(&srcu, id);
 
 
189}
190EXPORT_SYMBOL_GPL(__mmu_notifier_invalidate_range_start);
191
192void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
193					 unsigned long start,
194					 unsigned long end,
195					 bool only_end)
196{
197	struct mmu_notifier *mn;
198	int id;
199
 
200	id = srcu_read_lock(&srcu);
201	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
202		/*
203		 * Call invalidate_range here too to avoid the need for the
204		 * subsystem of having to register an invalidate_range_end
205		 * call-back when there is invalidate_range already. Usually a
206		 * subsystem registers either invalidate_range_start()/end() or
207		 * invalidate_range(), so this will be no additional overhead
208		 * (besides the pointer check).
209		 *
210		 * We skip call to invalidate_range() if we know it is safe ie
211		 * call site use mmu_notifier_invalidate_range_only_end() which
212		 * is safe to do when we know that a call to invalidate_range()
213		 * already happen under page table lock.
214		 */
215		if (!only_end && mn->ops->invalidate_range)
216			mn->ops->invalidate_range(mn, mm, start, end);
217		if (mn->ops->invalidate_range_end)
218			mn->ops->invalidate_range_end(mn, mm, start, end);
 
 
 
 
 
 
 
219	}
220	srcu_read_unlock(&srcu, id);
 
221}
222EXPORT_SYMBOL_GPL(__mmu_notifier_invalidate_range_end);
223
224void __mmu_notifier_invalidate_range(struct mm_struct *mm,
225				  unsigned long start, unsigned long end)
226{
227	struct mmu_notifier *mn;
228	int id;
229
230	id = srcu_read_lock(&srcu);
231	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
232		if (mn->ops->invalidate_range)
233			mn->ops->invalidate_range(mn, mm, start, end);
234	}
235	srcu_read_unlock(&srcu, id);
236}
237EXPORT_SYMBOL_GPL(__mmu_notifier_invalidate_range);
238
239/*
240 * Must be called while holding mm->mmap_sem for either read or write.
241 * The result is guaranteed to be valid until mm->mmap_sem is dropped.
242 */
243bool mm_has_blockable_invalidate_notifiers(struct mm_struct *mm)
244{
245	struct mmu_notifier *mn;
246	int id;
247	bool ret = false;
248
249	WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
 
250
251	if (!mm_has_notifiers(mm))
252		return ret;
253
254	id = srcu_read_lock(&srcu);
255	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
256		if (!mn->ops->invalidate_range &&
257		    !mn->ops->invalidate_range_start &&
258		    !mn->ops->invalidate_range_end)
259				continue;
260
261		if (!(mn->ops->flags & MMU_INVALIDATE_DOES_NOT_BLOCK)) {
262			ret = true;
263			break;
264		}
265	}
266	srcu_read_unlock(&srcu, id);
267	return ret;
268}
269
270static int do_mmu_notifier_register(struct mmu_notifier *mn,
271				    struct mm_struct *mm,
272				    int take_mmap_sem)
273{
274	struct mmu_notifier_mm *mmu_notifier_mm;
275	int ret;
276
277	BUG_ON(atomic_read(&mm->mm_users) <= 0);
 
 
 
 
 
 
 
 
 
278
279	ret = -ENOMEM;
280	mmu_notifier_mm = kmalloc(sizeof(struct mmu_notifier_mm), GFP_KERNEL);
281	if (unlikely(!mmu_notifier_mm))
282		goto out;
283
284	if (take_mmap_sem)
285		down_write(&mm->mmap_sem);
286	ret = mm_take_all_locks(mm);
287	if (unlikely(ret))
288		goto out_clean;
289
290	if (!mm_has_notifiers(mm)) {
291		INIT_HLIST_HEAD(&mmu_notifier_mm->list);
292		spin_lock_init(&mmu_notifier_mm->lock);
293
294		mm->mmu_notifier_mm = mmu_notifier_mm;
295		mmu_notifier_mm = NULL;
296	}
297	mmgrab(mm);
298
299	/*
300	 * Serialize the update against mmu_notifier_unregister. A
301	 * side note: mmu_notifier_release can't run concurrently with
302	 * us because we hold the mm_users pin (either implicitly as
303	 * current->mm or explicitly with get_task_mm() or similar).
304	 * We can't race against any other mmu notifier method either
305	 * thanks to mm_take_all_locks().
306	 */
 
 
 
307	spin_lock(&mm->mmu_notifier_mm->lock);
308	hlist_add_head(&mn->hlist, &mm->mmu_notifier_mm->list);
309	spin_unlock(&mm->mmu_notifier_mm->lock);
310
311	mm_drop_all_locks(mm);
 
 
 
312out_clean:
313	if (take_mmap_sem)
314		up_write(&mm->mmap_sem);
315	kfree(mmu_notifier_mm);
316out:
317	BUG_ON(atomic_read(&mm->mm_users) <= 0);
318	return ret;
319}
 
320
321/*
 
 
 
 
322 * Must not hold mmap_sem nor any other VM related lock when calling
323 * this registration function. Must also ensure mm_users can't go down
324 * to zero while this runs to avoid races with mmu_notifier_release,
325 * so mm has to be current->mm or the mm should be pinned safely such
326 * as with get_task_mm(). If the mm is not current->mm, the mm_users
327 * pin should be released by calling mmput after mmu_notifier_register
328 * returns. mmu_notifier_unregister must be always called to
329 * unregister the notifier. mm_count is automatically pinned to allow
330 * mmu_notifier_unregister to safely run at any time later, before or
331 * after exit_mmap. ->release will always be called before exit_mmap
332 * frees the pages.
 
 
333 */
334int mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
335{
336	return do_mmu_notifier_register(mn, mm, 1);
 
 
 
 
 
337}
338EXPORT_SYMBOL_GPL(mmu_notifier_register);
339
340/*
341 * Same as mmu_notifier_register but here the caller must hold the
342 * mmap_sem in write mode.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
343 */
344int __mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
 
345{
346	return do_mmu_notifier_register(mn, mm, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
347}
348EXPORT_SYMBOL_GPL(__mmu_notifier_register);
349
350/* this is called after the last mmu_notifier_unregister() returned */
351void __mmu_notifier_mm_destroy(struct mm_struct *mm)
352{
353	BUG_ON(!hlist_empty(&mm->mmu_notifier_mm->list));
354	kfree(mm->mmu_notifier_mm);
355	mm->mmu_notifier_mm = LIST_POISON1; /* debug */
356}
357
358/*
359 * This releases the mm_count pin automatically and frees the mm
360 * structure if it was the last user of it. It serializes against
361 * running mmu notifiers with SRCU and against mmu_notifier_unregister
362 * with the unregister lock + SRCU. All sptes must be dropped before
363 * calling mmu_notifier_unregister. ->release or any other notifier
364 * method may be invoked concurrently with mmu_notifier_unregister,
365 * and only after mmu_notifier_unregister returned we're guaranteed
366 * that ->release or any other method can't run anymore.
367 */
368void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm)
369{
370	BUG_ON(atomic_read(&mm->mm_count) <= 0);
371
372	if (!hlist_unhashed(&mn->hlist)) {
373		/*
374		 * SRCU here will force exit_mmap to wait for ->release to
375		 * finish before freeing the pages.
376		 */
377		int id;
378
379		id = srcu_read_lock(&srcu);
380		/*
381		 * exit_mmap will block in mmu_notifier_release to guarantee
382		 * that ->release is called before freeing the pages.
383		 */
384		if (mn->ops->release)
385			mn->ops->release(mn, mm);
386		srcu_read_unlock(&srcu, id);
387
388		spin_lock(&mm->mmu_notifier_mm->lock);
389		/*
390		 * Can not use list_del_rcu() since __mmu_notifier_release
391		 * can delete it before we hold the lock.
392		 */
393		hlist_del_init_rcu(&mn->hlist);
394		spin_unlock(&mm->mmu_notifier_mm->lock);
395	}
396
397	/*
398	 * Wait for any running method to finish, of course including
399	 * ->release if it was run by mmu_notifier_release instead of us.
400	 */
401	synchronize_srcu(&srcu);
402
403	BUG_ON(atomic_read(&mm->mm_count) <= 0);
404
405	mmdrop(mm);
406}
407EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
408
409/*
410 * Same as mmu_notifier_unregister but no callback and no srcu synchronization.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
411 */
412void mmu_notifier_unregister_no_release(struct mmu_notifier *mn,
413					struct mm_struct *mm)
414{
 
 
415	spin_lock(&mm->mmu_notifier_mm->lock);
416	/*
417	 * Can not use list_del_rcu() since __mmu_notifier_release
418	 * can delete it before we hold the lock.
419	 */
420	hlist_del_init_rcu(&mn->hlist);
421	spin_unlock(&mm->mmu_notifier_mm->lock);
422
423	BUG_ON(atomic_read(&mm->mm_count) <= 0);
424	mmdrop(mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
425}
426EXPORT_SYMBOL_GPL(mmu_notifier_unregister_no_release);