Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/mm/mmu_notifier.c
  4 *
  5 *  Copyright (C) 2008  Qumranet, Inc.
  6 *  Copyright (C) 2008  SGI
  7 *             Christoph Lameter <cl@linux.com>
  8 */
  9
 10#include <linux/rculist.h>
 11#include <linux/mmu_notifier.h>
 12#include <linux/export.h>
 13#include <linux/mm.h>
 14#include <linux/err.h>
 
 15#include <linux/srcu.h>
 16#include <linux/rcupdate.h>
 17#include <linux/sched.h>
 18#include <linux/sched/mm.h>
 19#include <linux/slab.h>
 20
 
 
 21/* global SRCU for all MMs */
 22DEFINE_STATIC_SRCU(srcu);
 23
 24#ifdef CONFIG_LOCKDEP
 25struct lockdep_map __mmu_notifier_invalidate_range_start_map = {
 26	.name = "mmu_notifier_invalidate_range_start"
 27};
 28#endif
 29
 30/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 31 * This function can't run concurrently against mmu_notifier_register
 32 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
 33 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
 34 * in parallel despite there being no task using this mm any more,
 35 * through the vmas outside of the exit_mmap context, such as with
 36 * vmtruncate. This serializes against mmu_notifier_unregister with
 37 * the mmu_notifier_mm->lock in addition to SRCU and it serializes
 38 * against the other mmu notifiers with SRCU. struct mmu_notifier_mm
 39 * can't go away from under us as exit_mmap holds an mm_count pin
 40 * itself.
 41 */
 42void __mmu_notifier_release(struct mm_struct *mm)
 
 43{
 44	struct mmu_notifier *mn;
 45	int id;
 46
 47	/*
 48	 * SRCU here will block mmu_notifier_unregister until
 49	 * ->release returns.
 50	 */
 51	id = srcu_read_lock(&srcu);
 52	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist)
 
 53		/*
 54		 * If ->release runs before mmu_notifier_unregister it must be
 55		 * handled, as it's the only way for the driver to flush all
 56		 * existing sptes and stop the driver from establishing any more
 57		 * sptes before all the pages in the mm are freed.
 58		 */
 59		if (mn->ops->release)
 60			mn->ops->release(mn, mm);
 61
 62	spin_lock(&mm->mmu_notifier_mm->lock);
 63	while (unlikely(!hlist_empty(&mm->mmu_notifier_mm->list))) {
 64		mn = hlist_entry(mm->mmu_notifier_mm->list.first,
 65				 struct mmu_notifier,
 66				 hlist);
 67		/*
 68		 * We arrived before mmu_notifier_unregister so
 69		 * mmu_notifier_unregister will do nothing other than to wait
 70		 * for ->release to finish and for mmu_notifier_unregister to
 71		 * return.
 72		 */
 73		hlist_del_init_rcu(&mn->hlist);
 74	}
 75	spin_unlock(&mm->mmu_notifier_mm->lock);
 76	srcu_read_unlock(&srcu, id);
 77
 78	/*
 79	 * synchronize_srcu here prevents mmu_notifier_release from returning to
 80	 * exit_mmap (which would proceed with freeing all pages in the mm)
 81	 * until the ->release method returns, if it was invoked by
 82	 * mmu_notifier_unregister.
 83	 *
 84	 * The mmu_notifier_mm can't go away from under us because one mm_count
 85	 * is held by exit_mmap.
 86	 */
 87	synchronize_srcu(&srcu);
 88}
 89
 
 
 
 
 
 
 
 
 
 
 
 
 90/*
 91 * If no young bitflag is supported by the hardware, ->clear_flush_young can
 92 * unmap the address and return 1 or 0 depending if the mapping previously
 93 * existed or not.
 94 */
 95int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
 96					unsigned long start,
 97					unsigned long end)
 98{
 99	struct mmu_notifier *mn;
100	int young = 0, id;
101
102	id = srcu_read_lock(&srcu);
103	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
104		if (mn->ops->clear_flush_young)
105			young |= mn->ops->clear_flush_young(mn, mm, start, end);
 
 
 
106	}
107	srcu_read_unlock(&srcu, id);
108
109	return young;
110}
111
112int __mmu_notifier_clear_young(struct mm_struct *mm,
113			       unsigned long start,
114			       unsigned long end)
115{
116	struct mmu_notifier *mn;
117	int young = 0, id;
118
119	id = srcu_read_lock(&srcu);
120	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
121		if (mn->ops->clear_young)
122			young |= mn->ops->clear_young(mn, mm, start, end);
 
 
 
123	}
124	srcu_read_unlock(&srcu, id);
125
126	return young;
127}
128
129int __mmu_notifier_test_young(struct mm_struct *mm,
130			      unsigned long address)
131{
132	struct mmu_notifier *mn;
133	int young = 0, id;
134
135	id = srcu_read_lock(&srcu);
136	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
137		if (mn->ops->test_young) {
138			young = mn->ops->test_young(mn, mm, address);
 
 
 
139			if (young)
140				break;
141		}
142	}
143	srcu_read_unlock(&srcu, id);
144
145	return young;
146}
147
148void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
149			       pte_t pte)
150{
151	struct mmu_notifier *mn;
152	int id;
153
154	id = srcu_read_lock(&srcu);
155	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
156		if (mn->ops->change_pte)
157			mn->ops->change_pte(mn, mm, address, pte);
 
 
 
 
 
 
 
 
 
158	}
159	srcu_read_unlock(&srcu, id);
 
 
 
 
 
 
 
 
160}
161
162int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
 
 
163{
164	struct mmu_notifier *mn;
165	int ret = 0;
166	int id;
167
168	id = srcu_read_lock(&srcu);
169	hlist_for_each_entry_rcu(mn, &range->mm->mmu_notifier_mm->list, hlist) {
170		if (mn->ops->invalidate_range_start) {
 
 
 
171			int _ret;
172
173			if (!mmu_notifier_range_blockable(range))
174				non_block_start();
175			_ret = mn->ops->invalidate_range_start(mn, range);
176			if (!mmu_notifier_range_blockable(range))
177				non_block_end();
178			if (_ret) {
179				pr_info("%pS callback failed with %d in %sblockable context.\n",
180					mn->ops->invalidate_range_start, _ret,
181					!mmu_notifier_range_blockable(range) ? "non-" : "");
 
 
182				WARN_ON(mmu_notifier_range_blockable(range) ||
183					_ret != -EAGAIN);
 
 
 
 
 
 
 
184				ret = _ret;
185			}
186		}
187	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
188	srcu_read_unlock(&srcu, id);
189
190	return ret;
191}
192
193void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range,
194					 bool only_end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195{
196	struct mmu_notifier *mn;
197	int id;
198
199	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
200	id = srcu_read_lock(&srcu);
201	hlist_for_each_entry_rcu(mn, &range->mm->mmu_notifier_mm->list, hlist) {
202		/*
203		 * Call invalidate_range here too to avoid the need for the
204		 * subsystem of having to register an invalidate_range_end
205		 * call-back when there is invalidate_range already. Usually a
206		 * subsystem registers either invalidate_range_start()/end() or
207		 * invalidate_range(), so this will be no additional overhead
208		 * (besides the pointer check).
209		 *
210		 * We skip call to invalidate_range() if we know it is safe ie
211		 * call site use mmu_notifier_invalidate_range_only_end() which
212		 * is safe to do when we know that a call to invalidate_range()
213		 * already happen under page table lock.
214		 */
215		if (!only_end && mn->ops->invalidate_range)
216			mn->ops->invalidate_range(mn, range->mm,
217						  range->start,
218						  range->end);
219		if (mn->ops->invalidate_range_end) {
220			if (!mmu_notifier_range_blockable(range))
221				non_block_start();
222			mn->ops->invalidate_range_end(mn, range);
 
223			if (!mmu_notifier_range_blockable(range))
224				non_block_end();
225		}
226	}
227	srcu_read_unlock(&srcu, id);
 
 
 
 
 
 
 
 
 
 
 
 
 
228	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
229}
230
231void __mmu_notifier_invalidate_range(struct mm_struct *mm,
232				  unsigned long start, unsigned long end)
233{
234	struct mmu_notifier *mn;
235	int id;
236
237	id = srcu_read_lock(&srcu);
238	hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
239		if (mn->ops->invalidate_range)
240			mn->ops->invalidate_range(mn, mm, start, end);
 
 
 
 
241	}
242	srcu_read_unlock(&srcu, id);
243}
244
245/*
246 * Same as mmu_notifier_register but here the caller must hold the
247 * mmap_sem in write mode.
 
248 */
249int __mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
 
250{
251	struct mmu_notifier_mm *mmu_notifier_mm = NULL;
252	int ret;
253
254	lockdep_assert_held_write(&mm->mmap_sem);
255	BUG_ON(atomic_read(&mm->mm_users) <= 0);
256
257	if (IS_ENABLED(CONFIG_LOCKDEP)) {
258		fs_reclaim_acquire(GFP_KERNEL);
259		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
260		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
261		fs_reclaim_release(GFP_KERNEL);
262	}
263
264	mn->mm = mm;
265	mn->users = 1;
266
267	if (!mm->mmu_notifier_mm) {
268		/*
269		 * kmalloc cannot be called under mm_take_all_locks(), but we
270		 * know that mm->mmu_notifier_mm can't change while we hold
271		 * the write side of the mmap_sem.
272		 */
273		mmu_notifier_mm =
274			kmalloc(sizeof(struct mmu_notifier_mm), GFP_KERNEL);
275		if (!mmu_notifier_mm)
276			return -ENOMEM;
277
278		INIT_HLIST_HEAD(&mmu_notifier_mm->list);
279		spin_lock_init(&mmu_notifier_mm->lock);
 
 
 
 
280	}
281
282	ret = mm_take_all_locks(mm);
283	if (unlikely(ret))
284		goto out_clean;
285
286	/* Pairs with the mmdrop in mmu_notifier_unregister_* */
287	mmgrab(mm);
288
289	/*
290	 * Serialize the update against mmu_notifier_unregister. A
291	 * side note: mmu_notifier_release can't run concurrently with
292	 * us because we hold the mm_users pin (either implicitly as
293	 * current->mm or explicitly with get_task_mm() or similar).
294	 * We can't race against any other mmu notifier method either
295	 * thanks to mm_take_all_locks().
 
 
 
 
 
 
 
 
296	 */
297	if (mmu_notifier_mm)
298		mm->mmu_notifier_mm = mmu_notifier_mm;
299
300	spin_lock(&mm->mmu_notifier_mm->lock);
301	hlist_add_head_rcu(&mn->hlist, &mm->mmu_notifier_mm->list);
302	spin_unlock(&mm->mmu_notifier_mm->lock);
 
 
 
 
 
 
 
 
 
303
304	mm_drop_all_locks(mm);
305	BUG_ON(atomic_read(&mm->mm_users) <= 0);
306	return 0;
307
308out_clean:
309	kfree(mmu_notifier_mm);
310	return ret;
311}
312EXPORT_SYMBOL_GPL(__mmu_notifier_register);
313
314/**
315 * mmu_notifier_register - Register a notifier on a mm
316 * @mn: The notifier to attach
317 * @mm: The mm to attach the notifier to
318 *
319 * Must not hold mmap_sem nor any other VM related lock when calling
320 * this registration function. Must also ensure mm_users can't go down
321 * to zero while this runs to avoid races with mmu_notifier_release,
322 * so mm has to be current->mm or the mm should be pinned safely such
323 * as with get_task_mm(). If the mm is not current->mm, the mm_users
324 * pin should be released by calling mmput after mmu_notifier_register
325 * returns.
326 *
327 * mmu_notifier_unregister() or mmu_notifier_put() must be always called to
328 * unregister the notifier.
329 *
330 * While the caller has a mmu_notifier get the mn->mm pointer will remain
331 * valid, and can be converted to an active mm pointer via mmget_not_zero().
332 */
333int mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
 
334{
335	int ret;
336
337	down_write(&mm->mmap_sem);
338	ret = __mmu_notifier_register(mn, mm);
339	up_write(&mm->mmap_sem);
340	return ret;
341}
342EXPORT_SYMBOL_GPL(mmu_notifier_register);
343
344static struct mmu_notifier *
345find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops)
346{
347	struct mmu_notifier *mn;
348
349	spin_lock(&mm->mmu_notifier_mm->lock);
350	hlist_for_each_entry_rcu (mn, &mm->mmu_notifier_mm->list, hlist) {
351		if (mn->ops != ops)
 
 
352			continue;
353
354		if (likely(mn->users != UINT_MAX))
355			mn->users++;
356		else
357			mn = ERR_PTR(-EOVERFLOW);
358		spin_unlock(&mm->mmu_notifier_mm->lock);
359		return mn;
360	}
361	spin_unlock(&mm->mmu_notifier_mm->lock);
362	return NULL;
363}
364
365/**
366 * mmu_notifier_get_locked - Return the single struct mmu_notifier for
367 *                           the mm & ops
368 * @ops: The operations struct being subscribe with
369 * @mm : The mm to attach notifiers too
370 *
371 * This function either allocates a new mmu_notifier via
372 * ops->alloc_notifier(), or returns an already existing notifier on the
373 * list. The value of the ops pointer is used to determine when two notifiers
374 * are the same.
375 *
376 * Each call to mmu_notifier_get() must be paired with a call to
377 * mmu_notifier_put(). The caller must hold the write side of mm->mmap_sem.
378 *
379 * While the caller has a mmu_notifier get the mm pointer will remain valid,
380 * and can be converted to an active mm pointer via mmget_not_zero().
381 */
382struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
383					     struct mm_struct *mm)
384{
385	struct mmu_notifier *mn;
386	int ret;
387
388	lockdep_assert_held_write(&mm->mmap_sem);
389
390	if (mm->mmu_notifier_mm) {
391		mn = find_get_mmu_notifier(mm, ops);
392		if (mn)
393			return mn;
394	}
395
396	mn = ops->alloc_notifier(mm);
397	if (IS_ERR(mn))
398		return mn;
399	mn->ops = ops;
400	ret = __mmu_notifier_register(mn, mm);
401	if (ret)
402		goto out_free;
403	return mn;
404out_free:
405	mn->ops->free_notifier(mn);
406	return ERR_PTR(ret);
407}
408EXPORT_SYMBOL_GPL(mmu_notifier_get_locked);
409
410/* this is called after the last mmu_notifier_unregister() returned */
411void __mmu_notifier_mm_destroy(struct mm_struct *mm)
412{
413	BUG_ON(!hlist_empty(&mm->mmu_notifier_mm->list));
414	kfree(mm->mmu_notifier_mm);
415	mm->mmu_notifier_mm = LIST_POISON1; /* debug */
416}
417
418/*
419 * This releases the mm_count pin automatically and frees the mm
420 * structure if it was the last user of it. It serializes against
421 * running mmu notifiers with SRCU and against mmu_notifier_unregister
422 * with the unregister lock + SRCU. All sptes must be dropped before
423 * calling mmu_notifier_unregister. ->release or any other notifier
424 * method may be invoked concurrently with mmu_notifier_unregister,
425 * and only after mmu_notifier_unregister returned we're guaranteed
426 * that ->release or any other method can't run anymore.
427 */
428void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm)
 
429{
430	BUG_ON(atomic_read(&mm->mm_count) <= 0);
431
432	if (!hlist_unhashed(&mn->hlist)) {
433		/*
434		 * SRCU here will force exit_mmap to wait for ->release to
435		 * finish before freeing the pages.
436		 */
437		int id;
438
439		id = srcu_read_lock(&srcu);
440		/*
441		 * exit_mmap will block in mmu_notifier_release to guarantee
442		 * that ->release is called before freeing the pages.
443		 */
444		if (mn->ops->release)
445			mn->ops->release(mn, mm);
446		srcu_read_unlock(&srcu, id);
447
448		spin_lock(&mm->mmu_notifier_mm->lock);
449		/*
450		 * Can not use list_del_rcu() since __mmu_notifier_release
451		 * can delete it before we hold the lock.
452		 */
453		hlist_del_init_rcu(&mn->hlist);
454		spin_unlock(&mm->mmu_notifier_mm->lock);
455	}
456
457	/*
458	 * Wait for any running method to finish, of course including
459	 * ->release if it was run by mmu_notifier_release instead of us.
460	 */
461	synchronize_srcu(&srcu);
462
463	BUG_ON(atomic_read(&mm->mm_count) <= 0);
464
465	mmdrop(mm);
466}
467EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
468
469static void mmu_notifier_free_rcu(struct rcu_head *rcu)
470{
471	struct mmu_notifier *mn = container_of(rcu, struct mmu_notifier, rcu);
472	struct mm_struct *mm = mn->mm;
 
473
474	mn->ops->free_notifier(mn);
475	/* Pairs with the get in __mmu_notifier_register() */
476	mmdrop(mm);
477}
478
479/**
480 * mmu_notifier_put - Release the reference on the notifier
481 * @mn: The notifier to act on
482 *
483 * This function must be paired with each mmu_notifier_get(), it releases the
484 * reference obtained by the get. If this is the last reference then process
485 * to free the notifier will be run asynchronously.
486 *
487 * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release
488 * when the mm_struct is destroyed. Instead free_notifier is always called to
489 * release any resources held by the user.
490 *
491 * As ops->release is not guaranteed to be called, the user must ensure that
492 * all sptes are dropped, and no new sptes can be established before
493 * mmu_notifier_put() is called.
494 *
495 * This function can be called from the ops->release callback, however the
496 * caller must still ensure it is called pairwise with mmu_notifier_get().
497 *
498 * Modules calling this function must call mmu_notifier_synchronize() in
499 * their __exit functions to ensure the async work is completed.
500 */
501void mmu_notifier_put(struct mmu_notifier *mn)
502{
503	struct mm_struct *mm = mn->mm;
504
505	spin_lock(&mm->mmu_notifier_mm->lock);
506	if (WARN_ON(!mn->users) || --mn->users)
507		goto out_unlock;
508	hlist_del_init_rcu(&mn->hlist);
509	spin_unlock(&mm->mmu_notifier_mm->lock);
510
511	call_srcu(&srcu, &mn->rcu, mmu_notifier_free_rcu);
512	return;
513
514out_unlock:
515	spin_unlock(&mm->mmu_notifier_mm->lock);
516}
517EXPORT_SYMBOL_GPL(mmu_notifier_put);
518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
519/**
520 * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed
521 *
522 * This function ensures that all outstanding async SRU work from
523 * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops
524 * associated with an unused mmu_notifier will no longer be called.
525 *
526 * Before using the caller must ensure that all of its mmu_notifiers have been
527 * fully released via mmu_notifier_put().
528 *
529 * Modules using the mmu_notifier_put() API should call this in their __exit
530 * function to avoid module unloading races.
531 */
532void mmu_notifier_synchronize(void)
533{
534	synchronize_srcu(&srcu);
535}
536EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
537
538bool
539mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range)
540{
541	if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA)
542		return false;
543	/* Return true if the vma still have the read flag set. */
544	return range->vma->vm_flags & VM_READ;
545}
546EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/mmu_notifier.c
   4 *
   5 *  Copyright (C) 2008  Qumranet, Inc.
   6 *  Copyright (C) 2008  SGI
   7 *             Christoph Lameter <cl@linux.com>
   8 */
   9
  10#include <linux/rculist.h>
  11#include <linux/mmu_notifier.h>
  12#include <linux/export.h>
  13#include <linux/mm.h>
  14#include <linux/err.h>
  15#include <linux/interval_tree.h>
  16#include <linux/srcu.h>
  17#include <linux/rcupdate.h>
  18#include <linux/sched.h>
  19#include <linux/sched/mm.h>
  20#include <linux/slab.h>
  21
  22#include "vma.h"
  23
  24/* global SRCU for all MMs */
  25DEFINE_STATIC_SRCU(srcu);
  26
  27#ifdef CONFIG_LOCKDEP
  28struct lockdep_map __mmu_notifier_invalidate_range_start_map = {
  29	.name = "mmu_notifier_invalidate_range_start"
  30};
  31#endif
  32
  33/*
  34 * The mmu_notifier_subscriptions structure is allocated and installed in
  35 * mm->notifier_subscriptions inside the mm_take_all_locks() protected
  36 * critical section and it's released only when mm_count reaches zero
  37 * in mmdrop().
  38 */
  39struct mmu_notifier_subscriptions {
  40	/* all mmu notifiers registered in this mm are queued in this list */
  41	struct hlist_head list;
  42	bool has_itree;
  43	/* to serialize the list modifications and hlist_unhashed */
  44	spinlock_t lock;
  45	unsigned long invalidate_seq;
  46	unsigned long active_invalidate_ranges;
  47	struct rb_root_cached itree;
  48	wait_queue_head_t wq;
  49	struct hlist_head deferred_list;
  50};
  51
  52/*
  53 * This is a collision-retry read-side/write-side 'lock', a lot like a
  54 * seqcount, however this allows multiple write-sides to hold it at
  55 * once. Conceptually the write side is protecting the values of the PTEs in
  56 * this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any
  57 * writer exists.
  58 *
  59 * Note that the core mm creates nested invalidate_range_start()/end() regions
  60 * within the same thread, and runs invalidate_range_start()/end() in parallel
  61 * on multiple CPUs. This is designed to not reduce concurrency or block
  62 * progress on the mm side.
  63 *
  64 * As a secondary function, holding the full write side also serves to prevent
  65 * writers for the itree, this is an optimization to avoid extra locking
  66 * during invalidate_range_start/end notifiers.
  67 *
  68 * The write side has two states, fully excluded:
  69 *  - mm->active_invalidate_ranges != 0
  70 *  - subscriptions->invalidate_seq & 1 == True (odd)
  71 *  - some range on the mm_struct is being invalidated
  72 *  - the itree is not allowed to change
  73 *
  74 * And partially excluded:
  75 *  - mm->active_invalidate_ranges != 0
  76 *  - subscriptions->invalidate_seq & 1 == False (even)
  77 *  - some range on the mm_struct is being invalidated
  78 *  - the itree is allowed to change
  79 *
  80 * Operations on notifier_subscriptions->invalidate_seq (under spinlock):
  81 *    seq |= 1  # Begin writing
  82 *    seq++     # Release the writing state
  83 *    seq & 1   # True if a writer exists
  84 *
  85 * The later state avoids some expensive work on inv_end in the common case of
  86 * no mmu_interval_notifier monitoring the VA.
  87 */
  88static bool
  89mn_itree_is_invalidating(struct mmu_notifier_subscriptions *subscriptions)
  90{
  91	lockdep_assert_held(&subscriptions->lock);
  92	return subscriptions->invalidate_seq & 1;
  93}
  94
  95static struct mmu_interval_notifier *
  96mn_itree_inv_start_range(struct mmu_notifier_subscriptions *subscriptions,
  97			 const struct mmu_notifier_range *range,
  98			 unsigned long *seq)
  99{
 100	struct interval_tree_node *node;
 101	struct mmu_interval_notifier *res = NULL;
 102
 103	spin_lock(&subscriptions->lock);
 104	subscriptions->active_invalidate_ranges++;
 105	node = interval_tree_iter_first(&subscriptions->itree, range->start,
 106					range->end - 1);
 107	if (node) {
 108		subscriptions->invalidate_seq |= 1;
 109		res = container_of(node, struct mmu_interval_notifier,
 110				   interval_tree);
 111	}
 112
 113	*seq = subscriptions->invalidate_seq;
 114	spin_unlock(&subscriptions->lock);
 115	return res;
 116}
 117
 118static struct mmu_interval_notifier *
 119mn_itree_inv_next(struct mmu_interval_notifier *interval_sub,
 120		  const struct mmu_notifier_range *range)
 121{
 122	struct interval_tree_node *node;
 123
 124	node = interval_tree_iter_next(&interval_sub->interval_tree,
 125				       range->start, range->end - 1);
 126	if (!node)
 127		return NULL;
 128	return container_of(node, struct mmu_interval_notifier, interval_tree);
 129}
 130
 131static void mn_itree_inv_end(struct mmu_notifier_subscriptions *subscriptions)
 132{
 133	struct mmu_interval_notifier *interval_sub;
 134	struct hlist_node *next;
 135
 136	spin_lock(&subscriptions->lock);
 137	if (--subscriptions->active_invalidate_ranges ||
 138	    !mn_itree_is_invalidating(subscriptions)) {
 139		spin_unlock(&subscriptions->lock);
 140		return;
 141	}
 142
 143	/* Make invalidate_seq even */
 144	subscriptions->invalidate_seq++;
 145
 146	/*
 147	 * The inv_end incorporates a deferred mechanism like rtnl_unlock().
 148	 * Adds and removes are queued until the final inv_end happens then
 149	 * they are progressed. This arrangement for tree updates is used to
 150	 * avoid using a blocking lock during invalidate_range_start.
 151	 */
 152	hlist_for_each_entry_safe(interval_sub, next,
 153				  &subscriptions->deferred_list,
 154				  deferred_item) {
 155		if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb))
 156			interval_tree_insert(&interval_sub->interval_tree,
 157					     &subscriptions->itree);
 158		else
 159			interval_tree_remove(&interval_sub->interval_tree,
 160					     &subscriptions->itree);
 161		hlist_del(&interval_sub->deferred_item);
 162	}
 163	spin_unlock(&subscriptions->lock);
 164
 165	wake_up_all(&subscriptions->wq);
 166}
 167
 168/**
 169 * mmu_interval_read_begin - Begin a read side critical section against a VA
 170 *                           range
 171 * @interval_sub: The interval subscription
 172 *
 173 * mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a
 174 * collision-retry scheme similar to seqcount for the VA range under
 175 * subscription. If the mm invokes invalidation during the critical section
 176 * then mmu_interval_read_retry() will return true.
 177 *
 178 * This is useful to obtain shadow PTEs where teardown or setup of the SPTEs
 179 * require a blocking context.  The critical region formed by this can sleep,
 180 * and the required 'user_lock' can also be a sleeping lock.
 181 *
 182 * The caller is required to provide a 'user_lock' to serialize both teardown
 183 * and setup.
 184 *
 185 * The return value should be passed to mmu_interval_read_retry().
 186 */
 187unsigned long
 188mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub)
 189{
 190	struct mmu_notifier_subscriptions *subscriptions =
 191		interval_sub->mm->notifier_subscriptions;
 192	unsigned long seq;
 193	bool is_invalidating;
 194
 195	/*
 196	 * If the subscription has a different seq value under the user_lock
 197	 * than we started with then it has collided.
 198	 *
 199	 * If the subscription currently has the same seq value as the
 200	 * subscriptions seq, then it is currently between
 201	 * invalidate_start/end and is colliding.
 202	 *
 203	 * The locking looks broadly like this:
 204	 *   mn_itree_inv_start():                 mmu_interval_read_begin():
 205	 *                                         spin_lock
 206	 *                                          seq = READ_ONCE(interval_sub->invalidate_seq);
 207	 *                                          seq == subs->invalidate_seq
 208	 *                                         spin_unlock
 209	 *    spin_lock
 210	 *     seq = ++subscriptions->invalidate_seq
 211	 *    spin_unlock
 212	 *     op->invalidate():
 213	 *       user_lock
 214	 *        mmu_interval_set_seq()
 215	 *         interval_sub->invalidate_seq = seq
 216	 *       user_unlock
 217	 *
 218	 *                          [Required: mmu_interval_read_retry() == true]
 219	 *
 220	 *   mn_itree_inv_end():
 221	 *    spin_lock
 222	 *     seq = ++subscriptions->invalidate_seq
 223	 *    spin_unlock
 224	 *
 225	 *                                        user_lock
 226	 *                                         mmu_interval_read_retry():
 227	 *                                          interval_sub->invalidate_seq != seq
 228	 *                                        user_unlock
 229	 *
 230	 * Barriers are not needed here as any races here are closed by an
 231	 * eventual mmu_interval_read_retry(), which provides a barrier via the
 232	 * user_lock.
 233	 */
 234	spin_lock(&subscriptions->lock);
 235	/* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
 236	seq = READ_ONCE(interval_sub->invalidate_seq);
 237	is_invalidating = seq == subscriptions->invalidate_seq;
 238	spin_unlock(&subscriptions->lock);
 239
 240	/*
 241	 * interval_sub->invalidate_seq must always be set to an odd value via
 242	 * mmu_interval_set_seq() using the provided cur_seq from
 243	 * mn_itree_inv_start_range(). This ensures that if seq does wrap we
 244	 * will always clear the below sleep in some reasonable time as
 245	 * subscriptions->invalidate_seq is even in the idle state.
 246	 */
 247	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
 248	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
 249	if (is_invalidating)
 250		wait_event(subscriptions->wq,
 251			   READ_ONCE(subscriptions->invalidate_seq) != seq);
 252
 253	/*
 254	 * Notice that mmu_interval_read_retry() can already be true at this
 255	 * point, avoiding loops here allows the caller to provide a global
 256	 * time bound.
 257	 */
 258
 259	return seq;
 260}
 261EXPORT_SYMBOL_GPL(mmu_interval_read_begin);
 262
 263static void mn_itree_release(struct mmu_notifier_subscriptions *subscriptions,
 264			     struct mm_struct *mm)
 265{
 266	struct mmu_notifier_range range = {
 267		.flags = MMU_NOTIFIER_RANGE_BLOCKABLE,
 268		.event = MMU_NOTIFY_RELEASE,
 269		.mm = mm,
 270		.start = 0,
 271		.end = ULONG_MAX,
 272	};
 273	struct mmu_interval_notifier *interval_sub;
 274	unsigned long cur_seq;
 275	bool ret;
 276
 277	for (interval_sub =
 278		     mn_itree_inv_start_range(subscriptions, &range, &cur_seq);
 279	     interval_sub;
 280	     interval_sub = mn_itree_inv_next(interval_sub, &range)) {
 281		ret = interval_sub->ops->invalidate(interval_sub, &range,
 282						    cur_seq);
 283		WARN_ON(!ret);
 284	}
 285
 286	mn_itree_inv_end(subscriptions);
 287}
 288
 289/*
 290 * This function can't run concurrently against mmu_notifier_register
 291 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
 292 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
 293 * in parallel despite there being no task using this mm any more,
 294 * through the vmas outside of the exit_mmap context, such as with
 295 * vmtruncate. This serializes against mmu_notifier_unregister with
 296 * the notifier_subscriptions->lock in addition to SRCU and it serializes
 297 * against the other mmu notifiers with SRCU. struct mmu_notifier_subscriptions
 298 * can't go away from under us as exit_mmap holds an mm_count pin
 299 * itself.
 300 */
 301static void mn_hlist_release(struct mmu_notifier_subscriptions *subscriptions,
 302			     struct mm_struct *mm)
 303{
 304	struct mmu_notifier *subscription;
 305	int id;
 306
 307	/*
 308	 * SRCU here will block mmu_notifier_unregister until
 309	 * ->release returns.
 310	 */
 311	id = srcu_read_lock(&srcu);
 312	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
 313				 srcu_read_lock_held(&srcu))
 314		/*
 315		 * If ->release runs before mmu_notifier_unregister it must be
 316		 * handled, as it's the only way for the driver to flush all
 317		 * existing sptes and stop the driver from establishing any more
 318		 * sptes before all the pages in the mm are freed.
 319		 */
 320		if (subscription->ops->release)
 321			subscription->ops->release(subscription, mm);
 322
 323	spin_lock(&subscriptions->lock);
 324	while (unlikely(!hlist_empty(&subscriptions->list))) {
 325		subscription = hlist_entry(subscriptions->list.first,
 326					   struct mmu_notifier, hlist);
 
 327		/*
 328		 * We arrived before mmu_notifier_unregister so
 329		 * mmu_notifier_unregister will do nothing other than to wait
 330		 * for ->release to finish and for mmu_notifier_unregister to
 331		 * return.
 332		 */
 333		hlist_del_init_rcu(&subscription->hlist);
 334	}
 335	spin_unlock(&subscriptions->lock);
 336	srcu_read_unlock(&srcu, id);
 337
 338	/*
 339	 * synchronize_srcu here prevents mmu_notifier_release from returning to
 340	 * exit_mmap (which would proceed with freeing all pages in the mm)
 341	 * until the ->release method returns, if it was invoked by
 342	 * mmu_notifier_unregister.
 343	 *
 344	 * The notifier_subscriptions can't go away from under us because
 345	 * one mm_count is held by exit_mmap.
 346	 */
 347	synchronize_srcu(&srcu);
 348}
 349
 350void __mmu_notifier_release(struct mm_struct *mm)
 351{
 352	struct mmu_notifier_subscriptions *subscriptions =
 353		mm->notifier_subscriptions;
 354
 355	if (subscriptions->has_itree)
 356		mn_itree_release(subscriptions, mm);
 357
 358	if (!hlist_empty(&subscriptions->list))
 359		mn_hlist_release(subscriptions, mm);
 360}
 361
 362/*
 363 * If no young bitflag is supported by the hardware, ->clear_flush_young can
 364 * unmap the address and return 1 or 0 depending if the mapping previously
 365 * existed or not.
 366 */
 367int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
 368					unsigned long start,
 369					unsigned long end)
 370{
 371	struct mmu_notifier *subscription;
 372	int young = 0, id;
 373
 374	id = srcu_read_lock(&srcu);
 375	hlist_for_each_entry_rcu(subscription,
 376				 &mm->notifier_subscriptions->list, hlist,
 377				 srcu_read_lock_held(&srcu)) {
 378		if (subscription->ops->clear_flush_young)
 379			young |= subscription->ops->clear_flush_young(
 380				subscription, mm, start, end);
 381	}
 382	srcu_read_unlock(&srcu, id);
 383
 384	return young;
 385}
 386
 387int __mmu_notifier_clear_young(struct mm_struct *mm,
 388			       unsigned long start,
 389			       unsigned long end)
 390{
 391	struct mmu_notifier *subscription;
 392	int young = 0, id;
 393
 394	id = srcu_read_lock(&srcu);
 395	hlist_for_each_entry_rcu(subscription,
 396				 &mm->notifier_subscriptions->list, hlist,
 397				 srcu_read_lock_held(&srcu)) {
 398		if (subscription->ops->clear_young)
 399			young |= subscription->ops->clear_young(subscription,
 400								mm, start, end);
 401	}
 402	srcu_read_unlock(&srcu, id);
 403
 404	return young;
 405}
 406
 407int __mmu_notifier_test_young(struct mm_struct *mm,
 408			      unsigned long address)
 409{
 410	struct mmu_notifier *subscription;
 411	int young = 0, id;
 412
 413	id = srcu_read_lock(&srcu);
 414	hlist_for_each_entry_rcu(subscription,
 415				 &mm->notifier_subscriptions->list, hlist,
 416				 srcu_read_lock_held(&srcu)) {
 417		if (subscription->ops->test_young) {
 418			young = subscription->ops->test_young(subscription, mm,
 419							      address);
 420			if (young)
 421				break;
 422		}
 423	}
 424	srcu_read_unlock(&srcu, id);
 425
 426	return young;
 427}
 428
 429static int mn_itree_invalidate(struct mmu_notifier_subscriptions *subscriptions,
 430			       const struct mmu_notifier_range *range)
 431{
 432	struct mmu_interval_notifier *interval_sub;
 433	unsigned long cur_seq;
 434
 435	for (interval_sub =
 436		     mn_itree_inv_start_range(subscriptions, range, &cur_seq);
 437	     interval_sub;
 438	     interval_sub = mn_itree_inv_next(interval_sub, range)) {
 439		bool ret;
 440
 441		ret = interval_sub->ops->invalidate(interval_sub, range,
 442						    cur_seq);
 443		if (!ret) {
 444			if (WARN_ON(mmu_notifier_range_blockable(range)))
 445				continue;
 446			goto out_would_block;
 447		}
 448	}
 449	return 0;
 450
 451out_would_block:
 452	/*
 453	 * On -EAGAIN the non-blocking caller is not allowed to call
 454	 * invalidate_range_end()
 455	 */
 456	mn_itree_inv_end(subscriptions);
 457	return -EAGAIN;
 458}
 459
 460static int mn_hlist_invalidate_range_start(
 461	struct mmu_notifier_subscriptions *subscriptions,
 462	struct mmu_notifier_range *range)
 463{
 464	struct mmu_notifier *subscription;
 465	int ret = 0;
 466	int id;
 467
 468	id = srcu_read_lock(&srcu);
 469	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
 470				 srcu_read_lock_held(&srcu)) {
 471		const struct mmu_notifier_ops *ops = subscription->ops;
 472
 473		if (ops->invalidate_range_start) {
 474			int _ret;
 475
 476			if (!mmu_notifier_range_blockable(range))
 477				non_block_start();
 478			_ret = ops->invalidate_range_start(subscription, range);
 479			if (!mmu_notifier_range_blockable(range))
 480				non_block_end();
 481			if (_ret) {
 482				pr_info("%pS callback failed with %d in %sblockable context.\n",
 483					ops->invalidate_range_start, _ret,
 484					!mmu_notifier_range_blockable(range) ?
 485						"non-" :
 486						"");
 487				WARN_ON(mmu_notifier_range_blockable(range) ||
 488					_ret != -EAGAIN);
 489				/*
 490				 * We call all the notifiers on any EAGAIN,
 491				 * there is no way for a notifier to know if
 492				 * its start method failed, thus a start that
 493				 * does EAGAIN can't also do end.
 494				 */
 495				WARN_ON(ops->invalidate_range_end);
 496				ret = _ret;
 497			}
 498		}
 499	}
 500
 501	if (ret) {
 502		/*
 503		 * Must be non-blocking to get here.  If there are multiple
 504		 * notifiers and one or more failed start, any that succeeded
 505		 * start are expecting their end to be called.  Do so now.
 506		 */
 507		hlist_for_each_entry_rcu(subscription, &subscriptions->list,
 508					 hlist, srcu_read_lock_held(&srcu)) {
 509			if (!subscription->ops->invalidate_range_end)
 510				continue;
 511
 512			subscription->ops->invalidate_range_end(subscription,
 513								range);
 514		}
 515	}
 516	srcu_read_unlock(&srcu, id);
 517
 518	return ret;
 519}
 520
 521int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
 522{
 523	struct mmu_notifier_subscriptions *subscriptions =
 524		range->mm->notifier_subscriptions;
 525	int ret;
 526
 527	if (subscriptions->has_itree) {
 528		ret = mn_itree_invalidate(subscriptions, range);
 529		if (ret)
 530			return ret;
 531	}
 532	if (!hlist_empty(&subscriptions->list))
 533		return mn_hlist_invalidate_range_start(subscriptions, range);
 534	return 0;
 535}
 536
 537static void
 538mn_hlist_invalidate_end(struct mmu_notifier_subscriptions *subscriptions,
 539			struct mmu_notifier_range *range)
 540{
 541	struct mmu_notifier *subscription;
 542	int id;
 543
 
 544	id = srcu_read_lock(&srcu);
 545	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
 546				 srcu_read_lock_held(&srcu)) {
 547		if (subscription->ops->invalidate_range_end) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548			if (!mmu_notifier_range_blockable(range))
 549				non_block_start();
 550			subscription->ops->invalidate_range_end(subscription,
 551								range);
 552			if (!mmu_notifier_range_blockable(range))
 553				non_block_end();
 554		}
 555	}
 556	srcu_read_unlock(&srcu, id);
 557}
 558
 559void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
 560{
 561	struct mmu_notifier_subscriptions *subscriptions =
 562		range->mm->notifier_subscriptions;
 563
 564	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
 565	if (subscriptions->has_itree)
 566		mn_itree_inv_end(subscriptions);
 567
 568	if (!hlist_empty(&subscriptions->list))
 569		mn_hlist_invalidate_end(subscriptions, range);
 570	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
 571}
 572
 573void __mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct *mm,
 574					unsigned long start, unsigned long end)
 575{
 576	struct mmu_notifier *subscription;
 577	int id;
 578
 579	id = srcu_read_lock(&srcu);
 580	hlist_for_each_entry_rcu(subscription,
 581				 &mm->notifier_subscriptions->list, hlist,
 582				 srcu_read_lock_held(&srcu)) {
 583		if (subscription->ops->arch_invalidate_secondary_tlbs)
 584			subscription->ops->arch_invalidate_secondary_tlbs(
 585				subscription, mm,
 586				start, end);
 587	}
 588	srcu_read_unlock(&srcu, id);
 589}
 590
 591/*
 592 * Same as mmu_notifier_register but here the caller must hold the mmap_lock in
 593 * write mode. A NULL mn signals the notifier is being registered for itree
 594 * mode.
 595 */
 596int __mmu_notifier_register(struct mmu_notifier *subscription,
 597			    struct mm_struct *mm)
 598{
 599	struct mmu_notifier_subscriptions *subscriptions = NULL;
 600	int ret;
 601
 602	mmap_assert_write_locked(mm);
 603	BUG_ON(atomic_read(&mm->mm_users) <= 0);
 604
 605	/*
 606	 * Subsystems should only register for invalidate_secondary_tlbs() or
 607	 * invalidate_range_start()/end() callbacks, not both.
 608	 */
 609	if (WARN_ON_ONCE(subscription &&
 610			 (subscription->ops->arch_invalidate_secondary_tlbs &&
 611			 (subscription->ops->invalidate_range_start ||
 612			  subscription->ops->invalidate_range_end))))
 613		return -EINVAL;
 614
 615	if (!mm->notifier_subscriptions) {
 616		/*
 617		 * kmalloc cannot be called under mm_take_all_locks(), but we
 618		 * know that mm->notifier_subscriptions can't change while we
 619		 * hold the write side of the mmap_lock.
 620		 */
 621		subscriptions = kzalloc(
 622			sizeof(struct mmu_notifier_subscriptions), GFP_KERNEL);
 623		if (!subscriptions)
 624			return -ENOMEM;
 625
 626		INIT_HLIST_HEAD(&subscriptions->list);
 627		spin_lock_init(&subscriptions->lock);
 628		subscriptions->invalidate_seq = 2;
 629		subscriptions->itree = RB_ROOT_CACHED;
 630		init_waitqueue_head(&subscriptions->wq);
 631		INIT_HLIST_HEAD(&subscriptions->deferred_list);
 632	}
 633
 634	ret = mm_take_all_locks(mm);
 635	if (unlikely(ret))
 636		goto out_clean;
 637
 
 
 
 638	/*
 639	 * Serialize the update against mmu_notifier_unregister. A
 640	 * side note: mmu_notifier_release can't run concurrently with
 641	 * us because we hold the mm_users pin (either implicitly as
 642	 * current->mm or explicitly with get_task_mm() or similar).
 643	 * We can't race against any other mmu notifier method either
 644	 * thanks to mm_take_all_locks().
 645	 *
 646	 * release semantics on the initialization of the
 647	 * mmu_notifier_subscriptions's contents are provided for unlocked
 648	 * readers.  acquire can only be used while holding the mmgrab or
 649	 * mmget, and is safe because once created the
 650	 * mmu_notifier_subscriptions is not freed until the mm is destroyed.
 651	 * As above, users holding the mmap_lock or one of the
 652	 * mm_take_all_locks() do not need to use acquire semantics.
 653	 */
 654	if (subscriptions)
 655		smp_store_release(&mm->notifier_subscriptions, subscriptions);
 656
 657	if (subscription) {
 658		/* Pairs with the mmdrop in mmu_notifier_unregister_* */
 659		mmgrab(mm);
 660		subscription->mm = mm;
 661		subscription->users = 1;
 662
 663		spin_lock(&mm->notifier_subscriptions->lock);
 664		hlist_add_head_rcu(&subscription->hlist,
 665				   &mm->notifier_subscriptions->list);
 666		spin_unlock(&mm->notifier_subscriptions->lock);
 667	} else
 668		mm->notifier_subscriptions->has_itree = true;
 669
 670	mm_drop_all_locks(mm);
 671	BUG_ON(atomic_read(&mm->mm_users) <= 0);
 672	return 0;
 673
 674out_clean:
 675	kfree(subscriptions);
 676	return ret;
 677}
 678EXPORT_SYMBOL_GPL(__mmu_notifier_register);
 679
 680/**
 681 * mmu_notifier_register - Register a notifier on a mm
 682 * @subscription: The notifier to attach
 683 * @mm: The mm to attach the notifier to
 684 *
 685 * Must not hold mmap_lock nor any other VM related lock when calling
 686 * this registration function. Must also ensure mm_users can't go down
 687 * to zero while this runs to avoid races with mmu_notifier_release,
 688 * so mm has to be current->mm or the mm should be pinned safely such
 689 * as with get_task_mm(). If the mm is not current->mm, the mm_users
 690 * pin should be released by calling mmput after mmu_notifier_register
 691 * returns.
 692 *
 693 * mmu_notifier_unregister() or mmu_notifier_put() must be always called to
 694 * unregister the notifier.
 695 *
 696 * While the caller has a mmu_notifier get the subscription->mm pointer will remain
 697 * valid, and can be converted to an active mm pointer via mmget_not_zero().
 698 */
 699int mmu_notifier_register(struct mmu_notifier *subscription,
 700			  struct mm_struct *mm)
 701{
 702	int ret;
 703
 704	mmap_write_lock(mm);
 705	ret = __mmu_notifier_register(subscription, mm);
 706	mmap_write_unlock(mm);
 707	return ret;
 708}
 709EXPORT_SYMBOL_GPL(mmu_notifier_register);
 710
 711static struct mmu_notifier *
 712find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops)
 713{
 714	struct mmu_notifier *subscription;
 715
 716	spin_lock(&mm->notifier_subscriptions->lock);
 717	hlist_for_each_entry_rcu(subscription,
 718				 &mm->notifier_subscriptions->list, hlist,
 719				 lockdep_is_held(&mm->notifier_subscriptions->lock)) {
 720		if (subscription->ops != ops)
 721			continue;
 722
 723		if (likely(subscription->users != UINT_MAX))
 724			subscription->users++;
 725		else
 726			subscription = ERR_PTR(-EOVERFLOW);
 727		spin_unlock(&mm->notifier_subscriptions->lock);
 728		return subscription;
 729	}
 730	spin_unlock(&mm->notifier_subscriptions->lock);
 731	return NULL;
 732}
 733
 734/**
 735 * mmu_notifier_get_locked - Return the single struct mmu_notifier for
 736 *                           the mm & ops
 737 * @ops: The operations struct being subscribe with
 738 * @mm : The mm to attach notifiers too
 739 *
 740 * This function either allocates a new mmu_notifier via
 741 * ops->alloc_notifier(), or returns an already existing notifier on the
 742 * list. The value of the ops pointer is used to determine when two notifiers
 743 * are the same.
 744 *
 745 * Each call to mmu_notifier_get() must be paired with a call to
 746 * mmu_notifier_put(). The caller must hold the write side of mm->mmap_lock.
 747 *
 748 * While the caller has a mmu_notifier get the mm pointer will remain valid,
 749 * and can be converted to an active mm pointer via mmget_not_zero().
 750 */
 751struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
 752					     struct mm_struct *mm)
 753{
 754	struct mmu_notifier *subscription;
 755	int ret;
 756
 757	mmap_assert_write_locked(mm);
 758
 759	if (mm->notifier_subscriptions) {
 760		subscription = find_get_mmu_notifier(mm, ops);
 761		if (subscription)
 762			return subscription;
 763	}
 764
 765	subscription = ops->alloc_notifier(mm);
 766	if (IS_ERR(subscription))
 767		return subscription;
 768	subscription->ops = ops;
 769	ret = __mmu_notifier_register(subscription, mm);
 770	if (ret)
 771		goto out_free;
 772	return subscription;
 773out_free:
 774	subscription->ops->free_notifier(subscription);
 775	return ERR_PTR(ret);
 776}
 777EXPORT_SYMBOL_GPL(mmu_notifier_get_locked);
 778
 779/* this is called after the last mmu_notifier_unregister() returned */
 780void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
 781{
 782	BUG_ON(!hlist_empty(&mm->notifier_subscriptions->list));
 783	kfree(mm->notifier_subscriptions);
 784	mm->notifier_subscriptions = LIST_POISON1; /* debug */
 785}
 786
 787/*
 788 * This releases the mm_count pin automatically and frees the mm
 789 * structure if it was the last user of it. It serializes against
 790 * running mmu notifiers with SRCU and against mmu_notifier_unregister
 791 * with the unregister lock + SRCU. All sptes must be dropped before
 792 * calling mmu_notifier_unregister. ->release or any other notifier
 793 * method may be invoked concurrently with mmu_notifier_unregister,
 794 * and only after mmu_notifier_unregister returned we're guaranteed
 795 * that ->release or any other method can't run anymore.
 796 */
 797void mmu_notifier_unregister(struct mmu_notifier *subscription,
 798			     struct mm_struct *mm)
 799{
 800	BUG_ON(atomic_read(&mm->mm_count) <= 0);
 801
 802	if (!hlist_unhashed(&subscription->hlist)) {
 803		/*
 804		 * SRCU here will force exit_mmap to wait for ->release to
 805		 * finish before freeing the pages.
 806		 */
 807		int id;
 808
 809		id = srcu_read_lock(&srcu);
 810		/*
 811		 * exit_mmap will block in mmu_notifier_release to guarantee
 812		 * that ->release is called before freeing the pages.
 813		 */
 814		if (subscription->ops->release)
 815			subscription->ops->release(subscription, mm);
 816		srcu_read_unlock(&srcu, id);
 817
 818		spin_lock(&mm->notifier_subscriptions->lock);
 819		/*
 820		 * Can not use list_del_rcu() since __mmu_notifier_release
 821		 * can delete it before we hold the lock.
 822		 */
 823		hlist_del_init_rcu(&subscription->hlist);
 824		spin_unlock(&mm->notifier_subscriptions->lock);
 825	}
 826
 827	/*
 828	 * Wait for any running method to finish, of course including
 829	 * ->release if it was run by mmu_notifier_release instead of us.
 830	 */
 831	synchronize_srcu(&srcu);
 832
 833	BUG_ON(atomic_read(&mm->mm_count) <= 0);
 834
 835	mmdrop(mm);
 836}
 837EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
 838
 839static void mmu_notifier_free_rcu(struct rcu_head *rcu)
 840{
 841	struct mmu_notifier *subscription =
 842		container_of(rcu, struct mmu_notifier, rcu);
 843	struct mm_struct *mm = subscription->mm;
 844
 845	subscription->ops->free_notifier(subscription);
 846	/* Pairs with the get in __mmu_notifier_register() */
 847	mmdrop(mm);
 848}
 849
 850/**
 851 * mmu_notifier_put - Release the reference on the notifier
 852 * @subscription: The notifier to act on
 853 *
 854 * This function must be paired with each mmu_notifier_get(), it releases the
 855 * reference obtained by the get. If this is the last reference then process
 856 * to free the notifier will be run asynchronously.
 857 *
 858 * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release
 859 * when the mm_struct is destroyed. Instead free_notifier is always called to
 860 * release any resources held by the user.
 861 *
 862 * As ops->release is not guaranteed to be called, the user must ensure that
 863 * all sptes are dropped, and no new sptes can be established before
 864 * mmu_notifier_put() is called.
 865 *
 866 * This function can be called from the ops->release callback, however the
 867 * caller must still ensure it is called pairwise with mmu_notifier_get().
 868 *
 869 * Modules calling this function must call mmu_notifier_synchronize() in
 870 * their __exit functions to ensure the async work is completed.
 871 */
 872void mmu_notifier_put(struct mmu_notifier *subscription)
 873{
 874	struct mm_struct *mm = subscription->mm;
 875
 876	spin_lock(&mm->notifier_subscriptions->lock);
 877	if (WARN_ON(!subscription->users) || --subscription->users)
 878		goto out_unlock;
 879	hlist_del_init_rcu(&subscription->hlist);
 880	spin_unlock(&mm->notifier_subscriptions->lock);
 881
 882	call_srcu(&srcu, &subscription->rcu, mmu_notifier_free_rcu);
 883	return;
 884
 885out_unlock:
 886	spin_unlock(&mm->notifier_subscriptions->lock);
 887}
 888EXPORT_SYMBOL_GPL(mmu_notifier_put);
 889
 890static int __mmu_interval_notifier_insert(
 891	struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
 892	struct mmu_notifier_subscriptions *subscriptions, unsigned long start,
 893	unsigned long length, const struct mmu_interval_notifier_ops *ops)
 894{
 895	interval_sub->mm = mm;
 896	interval_sub->ops = ops;
 897	RB_CLEAR_NODE(&interval_sub->interval_tree.rb);
 898	interval_sub->interval_tree.start = start;
 899	/*
 900	 * Note that the representation of the intervals in the interval tree
 901	 * considers the ending point as contained in the interval.
 902	 */
 903	if (length == 0 ||
 904	    check_add_overflow(start, length - 1,
 905			       &interval_sub->interval_tree.last))
 906		return -EOVERFLOW;
 907
 908	/* Must call with a mmget() held */
 909	if (WARN_ON(atomic_read(&mm->mm_users) <= 0))
 910		return -EINVAL;
 911
 912	/* pairs with mmdrop in mmu_interval_notifier_remove() */
 913	mmgrab(mm);
 914
 915	/*
 916	 * If some invalidate_range_start/end region is going on in parallel
 917	 * we don't know what VA ranges are affected, so we must assume this
 918	 * new range is included.
 919	 *
 920	 * If the itree is invalidating then we are not allowed to change
 921	 * it. Retrying until invalidation is done is tricky due to the
 922	 * possibility for live lock, instead defer the add to
 923	 * mn_itree_inv_end() so this algorithm is deterministic.
 924	 *
 925	 * In all cases the value for the interval_sub->invalidate_seq should be
 926	 * odd, see mmu_interval_read_begin()
 927	 */
 928	spin_lock(&subscriptions->lock);
 929	if (subscriptions->active_invalidate_ranges) {
 930		if (mn_itree_is_invalidating(subscriptions))
 931			hlist_add_head(&interval_sub->deferred_item,
 932				       &subscriptions->deferred_list);
 933		else {
 934			subscriptions->invalidate_seq |= 1;
 935			interval_tree_insert(&interval_sub->interval_tree,
 936					     &subscriptions->itree);
 937		}
 938		interval_sub->invalidate_seq = subscriptions->invalidate_seq;
 939	} else {
 940		WARN_ON(mn_itree_is_invalidating(subscriptions));
 941		/*
 942		 * The starting seq for a subscription not under invalidation
 943		 * should be odd, not equal to the current invalidate_seq and
 944		 * invalidate_seq should not 'wrap' to the new seq any time
 945		 * soon.
 946		 */
 947		interval_sub->invalidate_seq =
 948			subscriptions->invalidate_seq - 1;
 949		interval_tree_insert(&interval_sub->interval_tree,
 950				     &subscriptions->itree);
 951	}
 952	spin_unlock(&subscriptions->lock);
 953	return 0;
 954}
 955
 956/**
 957 * mmu_interval_notifier_insert - Insert an interval notifier
 958 * @interval_sub: Interval subscription to register
 959 * @start: Starting virtual address to monitor
 960 * @length: Length of the range to monitor
 961 * @mm: mm_struct to attach to
 962 * @ops: Interval notifier operations to be called on matching events
 963 *
 964 * This function subscribes the interval notifier for notifications from the
 965 * mm.  Upon return the ops related to mmu_interval_notifier will be called
 966 * whenever an event that intersects with the given range occurs.
 967 *
 968 * Upon return the range_notifier may not be present in the interval tree yet.
 969 * The caller must use the normal interval notifier read flow via
 970 * mmu_interval_read_begin() to establish SPTEs for this range.
 971 */
 972int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
 973				 struct mm_struct *mm, unsigned long start,
 974				 unsigned long length,
 975				 const struct mmu_interval_notifier_ops *ops)
 976{
 977	struct mmu_notifier_subscriptions *subscriptions;
 978	int ret;
 979
 980	might_lock(&mm->mmap_lock);
 981
 982	subscriptions = smp_load_acquire(&mm->notifier_subscriptions);
 983	if (!subscriptions || !subscriptions->has_itree) {
 984		ret = mmu_notifier_register(NULL, mm);
 985		if (ret)
 986			return ret;
 987		subscriptions = mm->notifier_subscriptions;
 988	}
 989	return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
 990					      start, length, ops);
 991}
 992EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert);
 993
 994int mmu_interval_notifier_insert_locked(
 995	struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
 996	unsigned long start, unsigned long length,
 997	const struct mmu_interval_notifier_ops *ops)
 998{
 999	struct mmu_notifier_subscriptions *subscriptions =
1000		mm->notifier_subscriptions;
1001	int ret;
1002
1003	mmap_assert_write_locked(mm);
1004
1005	if (!subscriptions || !subscriptions->has_itree) {
1006		ret = __mmu_notifier_register(NULL, mm);
1007		if (ret)
1008			return ret;
1009		subscriptions = mm->notifier_subscriptions;
1010	}
1011	return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
1012					      start, length, ops);
1013}
1014EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked);
1015
1016static bool
1017mmu_interval_seq_released(struct mmu_notifier_subscriptions *subscriptions,
1018			  unsigned long seq)
1019{
1020	bool ret;
1021
1022	spin_lock(&subscriptions->lock);
1023	ret = subscriptions->invalidate_seq != seq;
1024	spin_unlock(&subscriptions->lock);
1025	return ret;
1026}
1027
1028/**
1029 * mmu_interval_notifier_remove - Remove a interval notifier
1030 * @interval_sub: Interval subscription to unregister
1031 *
1032 * This function must be paired with mmu_interval_notifier_insert(). It cannot
1033 * be called from any ops callback.
1034 *
1035 * Once this returns ops callbacks are no longer running on other CPUs and
1036 * will not be called in future.
1037 */
1038void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub)
1039{
1040	struct mm_struct *mm = interval_sub->mm;
1041	struct mmu_notifier_subscriptions *subscriptions =
1042		mm->notifier_subscriptions;
1043	unsigned long seq = 0;
1044
1045	might_sleep();
1046
1047	spin_lock(&subscriptions->lock);
1048	if (mn_itree_is_invalidating(subscriptions)) {
1049		/*
1050		 * remove is being called after insert put this on the
1051		 * deferred list, but before the deferred list was processed.
1052		 */
1053		if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb)) {
1054			hlist_del(&interval_sub->deferred_item);
1055		} else {
1056			hlist_add_head(&interval_sub->deferred_item,
1057				       &subscriptions->deferred_list);
1058			seq = subscriptions->invalidate_seq;
1059		}
1060	} else {
1061		WARN_ON(RB_EMPTY_NODE(&interval_sub->interval_tree.rb));
1062		interval_tree_remove(&interval_sub->interval_tree,
1063				     &subscriptions->itree);
1064	}
1065	spin_unlock(&subscriptions->lock);
1066
1067	/*
1068	 * The possible sleep on progress in the invalidation requires the
1069	 * caller not hold any locks held by invalidation callbacks.
1070	 */
1071	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
1072	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
1073	if (seq)
1074		wait_event(subscriptions->wq,
1075			   mmu_interval_seq_released(subscriptions, seq));
1076
1077	/* pairs with mmgrab in mmu_interval_notifier_insert() */
1078	mmdrop(mm);
1079}
1080EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove);
1081
1082/**
1083 * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed
1084 *
1085 * This function ensures that all outstanding async SRU work from
1086 * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops
1087 * associated with an unused mmu_notifier will no longer be called.
1088 *
1089 * Before using the caller must ensure that all of its mmu_notifiers have been
1090 * fully released via mmu_notifier_put().
1091 *
1092 * Modules using the mmu_notifier_put() API should call this in their __exit
1093 * function to avoid module unloading races.
1094 */
1095void mmu_notifier_synchronize(void)
1096{
1097	synchronize_srcu(&srcu);
1098}
1099EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);