Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 */
  5#include <linux/kallsyms.h>
  6#include <linux/kprobes.h>
  7#include <linux/uaccess.h>
  8#include <linux/utsname.h>
  9#include <linux/hardirq.h>
 10#include <linux/kdebug.h>
 11#include <linux/module.h>
 12#include <linux/ptrace.h>
 13#include <linux/sched/debug.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/ftrace.h>
 16#include <linux/kexec.h>
 17#include <linux/bug.h>
 18#include <linux/nmi.h>
 19#include <linux/sysfs.h>
 20#include <linux/kasan.h>
 21
 22#include <asm/cpu_entry_area.h>
 23#include <asm/stacktrace.h>
 24#include <asm/unwind.h>
 25
 26int panic_on_unrecovered_nmi;
 27int panic_on_io_nmi;
 
 
 28static int die_counter;
 29
 30static struct pt_regs exec_summary_regs;
 31
 32bool in_task_stack(unsigned long *stack, struct task_struct *task,
 33		   struct stack_info *info)
 34{
 35	unsigned long *begin = task_stack_page(task);
 36	unsigned long *end   = task_stack_page(task) + THREAD_SIZE;
 37
 38	if (stack < begin || stack >= end)
 39		return false;
 40
 41	info->type	= STACK_TYPE_TASK;
 42	info->begin	= begin;
 43	info->end	= end;
 44	info->next_sp	= NULL;
 45
 46	return true;
 47}
 48
 49bool in_entry_stack(unsigned long *stack, struct stack_info *info)
 
 
 
 
 50{
 51	struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
 
 
 52
 53	void *begin = ss;
 54	void *end = ss + 1;
 55
 56	if ((void *)stack < begin || (void *)stack >= end)
 57		return false;
 58
 59	info->type	= STACK_TYPE_ENTRY;
 60	info->begin	= begin;
 61	info->end	= end;
 62	info->next_sp	= NULL;
 63
 64	return true;
 65}
 66
 67static void printk_stack_address(unsigned long address, int reliable,
 68				 char *log_lvl)
 69{
 70	touch_nmi_watchdog();
 71	printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
 72}
 
 
 
 
 
 
 
 73
 74/*
 75 * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
 76 *
 77 * In case where we don't have the exact kernel image (which, if we did, we can
 78 * simply disassemble and navigate to the RIP), the purpose of the bigger
 79 * prologue is to have more context and to be able to correlate the code from
 80 * the different toolchains better.
 81 *
 82 * In addition, it helps in recreating the register allocation of the failing
 83 * kernel and thus make sense of the register dump.
 84 *
 85 * What is more, the additional complication of a variable length insn arch like
 86 * x86 warrants having longer byte sequence before rIP so that the disassembler
 87 * can "sync" up properly and find instruction boundaries when decoding the
 88 * opcode bytes.
 89 *
 90 * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
 91 * guesstimate in attempt to achieve all of the above.
 92 */
 93void show_opcodes(struct pt_regs *regs, const char *loglvl)
 
 
 94{
 95#define PROLOGUE_SIZE 42
 96#define EPILOGUE_SIZE 21
 97#define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE)
 98	u8 opcodes[OPCODE_BUFSIZE];
 99	unsigned long prologue = regs->ip - PROLOGUE_SIZE;
100	bool bad_ip;
101
102	/*
103	 * Make sure userspace isn't trying to trick us into dumping kernel
104	 * memory by pointing the userspace instruction pointer at it.
105	 */
106	bad_ip = user_mode(regs) &&
107		__chk_range_not_ok(prologue, OPCODE_BUFSIZE, TASK_SIZE_MAX);
108
109	if (bad_ip || probe_kernel_read(opcodes, (u8 *)prologue,
110					OPCODE_BUFSIZE)) {
111		printk("%sCode: Bad RIP value.\n", loglvl);
112	} else {
113		printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %"
114		       __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes,
115		       opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1);
116	}
 
117}
118
119void show_ip(struct pt_regs *regs, const char *loglvl)
120{
121#ifdef CONFIG_X86_32
122	printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
123#else
124	printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
125#endif
126	show_opcodes(regs, loglvl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127}
 
128
129void show_iret_regs(struct pt_regs *regs)
 
 
 
 
130{
131	show_ip(regs, KERN_DEFAULT);
132	printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss,
133		regs->sp, regs->flags);
134}
135
136static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
137				  bool partial)
138{
139	/*
140	 * These on_stack() checks aren't strictly necessary: the unwind code
141	 * has already validated the 'regs' pointer.  The checks are done for
142	 * ordering reasons: if the registers are on the next stack, we don't
143	 * want to print them out yet.  Otherwise they'll be shown as part of
144	 * the wrong stack.  Later, when show_trace_log_lvl() switches to the
145	 * next stack, this function will be called again with the same regs so
146	 * they can be printed in the right context.
147	 */
148	if (!partial && on_stack(info, regs, sizeof(*regs))) {
149		__show_regs(regs, SHOW_REGS_SHORT);
150
151	} else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
152				       IRET_FRAME_SIZE)) {
153		/*
154		 * When an interrupt or exception occurs in entry code, the
155		 * full pt_regs might not have been saved yet.  In that case
156		 * just print the iret frame.
157		 */
158		show_iret_regs(regs);
159	}
 
 
160}
 
161
162void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
163			unsigned long *stack, char *log_lvl)
164{
165	struct unwind_state state;
166	struct stack_info stack_info = {0};
167	unsigned long visit_mask = 0;
168	int graph_idx = 0;
169	bool partial = false;
170
171	printk("%sCall Trace:\n", log_lvl);
172
173	unwind_start(&state, task, regs, stack);
174	stack = stack ? : get_stack_pointer(task, regs);
175	regs = unwind_get_entry_regs(&state, &partial);
176
177	/*
178	 * Iterate through the stacks, starting with the current stack pointer.
179	 * Each stack has a pointer to the next one.
180	 *
181	 * x86-64 can have several stacks:
182	 * - task stack
183	 * - interrupt stack
184	 * - HW exception stacks (double fault, nmi, debug, mce)
185	 * - entry stack
186	 *
187	 * x86-32 can have up to four stacks:
188	 * - task stack
189	 * - softirq stack
190	 * - hardirq stack
191	 * - entry stack
192	 */
193	for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
194		const char *stack_name;
195
196		if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
197			/*
198			 * We weren't on a valid stack.  It's possible that
199			 * we overflowed a valid stack into a guard page.
200			 * See if the next page up is valid so that we can
201			 * generate some kind of backtrace if this happens.
202			 */
203			stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
204			if (get_stack_info(stack, task, &stack_info, &visit_mask))
205				break;
206		}
207
208		stack_name = stack_type_name(stack_info.type);
209		if (stack_name)
210			printk("%s <%s>\n", log_lvl, stack_name);
211
212		if (regs)
213			show_regs_if_on_stack(&stack_info, regs, partial);
214
215		/*
216		 * Scan the stack, printing any text addresses we find.  At the
217		 * same time, follow proper stack frames with the unwinder.
218		 *
219		 * Addresses found during the scan which are not reported by
220		 * the unwinder are considered to be additional clues which are
221		 * sometimes useful for debugging and are prefixed with '?'.
222		 * This also serves as a failsafe option in case the unwinder
223		 * goes off in the weeds.
224		 */
225		for (; stack < stack_info.end; stack++) {
226			unsigned long real_addr;
227			int reliable = 0;
228			unsigned long addr = READ_ONCE_NOCHECK(*stack);
229			unsigned long *ret_addr_p =
230				unwind_get_return_address_ptr(&state);
231
232			if (!__kernel_text_address(addr))
233				continue;
234
235			/*
236			 * Don't print regs->ip again if it was already printed
237			 * by show_regs_if_on_stack().
238			 */
239			if (regs && stack == &regs->ip)
240				goto next;
241
242			if (stack == ret_addr_p)
243				reliable = 1;
244
245			/*
246			 * When function graph tracing is enabled for a
247			 * function, its return address on the stack is
248			 * replaced with the address of an ftrace handler
249			 * (return_to_handler).  In that case, before printing
250			 * the "real" address, we want to print the handler
251			 * address as an "unreliable" hint that function graph
252			 * tracing was involved.
253			 */
254			real_addr = ftrace_graph_ret_addr(task, &graph_idx,
255							  addr, stack);
256			if (real_addr != addr)
257				printk_stack_address(addr, 0, log_lvl);
258			printk_stack_address(real_addr, reliable, log_lvl);
259
260			if (!reliable)
261				continue;
262
263next:
264			/*
265			 * Get the next frame from the unwinder.  No need to
266			 * check for an error: if anything goes wrong, the rest
267			 * of the addresses will just be printed as unreliable.
268			 */
269			unwind_next_frame(&state);
270
271			/* if the frame has entry regs, print them */
272			regs = unwind_get_entry_regs(&state, &partial);
273			if (regs)
274				show_regs_if_on_stack(&stack_info, regs, partial);
275		}
276
277		if (stack_name)
278			printk("%s </%s>\n", log_lvl, stack_name);
279	}
 
280}
281
282void show_stack(struct task_struct *task, unsigned long *sp)
283{
284	task = task ? : current;
285
286	/*
287	 * Stack frames below this one aren't interesting.  Don't show them
288	 * if we're printing for %current.
289	 */
290	if (!sp && task == current)
291		sp = get_stack_pointer(current, NULL);
292
293	show_trace_log_lvl(task, NULL, sp, KERN_DEFAULT);
294}
295
296void show_stack_regs(struct pt_regs *regs)
 
 
 
297{
298	show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
 
 
 
 
 
 
 
 
 
299}
 
300
301static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
302static int die_owner = -1;
303static unsigned int die_nest_count;
304
305unsigned long oops_begin(void)
306{
307	int cpu;
308	unsigned long flags;
309
310	oops_enter();
311
312	/* racy, but better than risking deadlock. */
313	raw_local_irq_save(flags);
314	cpu = smp_processor_id();
315	if (!arch_spin_trylock(&die_lock)) {
316		if (cpu == die_owner)
317			/* nested oops. should stop eventually */;
318		else
319			arch_spin_lock(&die_lock);
320	}
321	die_nest_count++;
322	die_owner = cpu;
323	console_verbose();
324	bust_spinlocks(1);
325	return flags;
326}
327NOKPROBE_SYMBOL(oops_begin);
328
329void __noreturn rewind_stack_do_exit(int signr);
330
331void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
332{
333	if (regs && kexec_should_crash(current))
334		crash_kexec(regs);
335
336	bust_spinlocks(0);
337	die_owner = -1;
338	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
339	die_nest_count--;
340	if (!die_nest_count)
341		/* Nest count reaches zero, release the lock. */
342		arch_spin_unlock(&die_lock);
343	raw_local_irq_restore(flags);
344	oops_exit();
345
346	/* Executive summary in case the oops scrolled away */
347	__show_regs(&exec_summary_regs, SHOW_REGS_ALL);
348
349	if (!signr)
350		return;
351	if (in_interrupt())
352		panic("Fatal exception in interrupt");
353	if (panic_on_oops)
354		panic("Fatal exception");
 
 
355
356	/*
357	 * We're not going to return, but we might be on an IST stack or
358	 * have very little stack space left.  Rewind the stack and kill
359	 * the task.
360	 * Before we rewind the stack, we have to tell KASAN that we're going to
361	 * reuse the task stack and that existing poisons are invalid.
362	 */
363	kasan_unpoison_task_stack(current);
364	rewind_stack_do_exit(signr);
365}
366NOKPROBE_SYMBOL(oops_end);
367
368int __die(const char *str, struct pt_regs *regs, long err)
369{
370	const char *pr = "";
371
372	/* Save the regs of the first oops for the executive summary later. */
373	if (!die_counter)
374		exec_summary_regs = *regs;
375
376	if (IS_ENABLED(CONFIG_PREEMPTION))
377		pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT";
378
379	printk(KERN_DEFAULT
380	       "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
381	       pr,
382	       IS_ENABLED(CONFIG_SMP)     ? " SMP"             : "",
383	       debug_pagealloc_enabled()  ? " DEBUG_PAGEALLOC" : "",
384	       IS_ENABLED(CONFIG_KASAN)   ? " KASAN"           : "",
385	       IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
386	       (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
387
388	show_regs(regs);
389	print_modules();
390
391	if (notify_die(DIE_OOPS, str, regs, err,
392			current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
393		return 1;
394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
395	return 0;
396}
397NOKPROBE_SYMBOL(__die);
398
399/*
400 * This is gone through when something in the kernel has done something bad
401 * and is about to be terminated:
402 */
403void die(const char *str, struct pt_regs *regs, long err)
404{
405	unsigned long flags = oops_begin();
406	int sig = SIGSEGV;
407
 
 
 
408	if (__die(str, regs, err))
409		sig = 0;
410	oops_end(flags, regs, sig);
411}
412
413void show_regs(struct pt_regs *regs)
414{
415	show_regs_print_info(KERN_DEFAULT);
 
 
 
 
 
416
417	__show_regs(regs, user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL);
 
 
 
 
418
419	/*
420	 * When in-kernel, we also print out the stack at the time of the fault..
421	 */
422	if (!user_mode(regs))
423		show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
424}
v3.1
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 */
  5#include <linux/kallsyms.h>
  6#include <linux/kprobes.h>
  7#include <linux/uaccess.h>
  8#include <linux/utsname.h>
  9#include <linux/hardirq.h>
 10#include <linux/kdebug.h>
 11#include <linux/module.h>
 12#include <linux/ptrace.h>
 
 
 13#include <linux/ftrace.h>
 14#include <linux/kexec.h>
 15#include <linux/bug.h>
 16#include <linux/nmi.h>
 17#include <linux/sysfs.h>
 
 18
 
 19#include <asm/stacktrace.h>
 20
 21
 22int panic_on_unrecovered_nmi;
 23int panic_on_io_nmi;
 24unsigned int code_bytes = 64;
 25int kstack_depth_to_print = 3 * STACKSLOTS_PER_LINE;
 26static int die_counter;
 27
 28void printk_address(unsigned long address, int reliable)
 
 
 
 29{
 30	printk(" [<%p>] %s%pB\n", (void *) address,
 31			reliable ? "" : "? ", (void *) address);
 
 
 
 
 
 
 
 
 
 
 32}
 33
 34#ifdef CONFIG_FUNCTION_GRAPH_TRACER
 35static void
 36print_ftrace_graph_addr(unsigned long addr, void *data,
 37			const struct stacktrace_ops *ops,
 38			struct thread_info *tinfo, int *graph)
 39{
 40	struct task_struct *task = tinfo->task;
 41	unsigned long ret_addr;
 42	int index = task->curr_ret_stack;
 43
 44	if (addr != (unsigned long)return_to_handler)
 45		return;
 46
 47	if (!task->ret_stack || index < *graph)
 48		return;
 49
 50	index -= *graph;
 51	ret_addr = task->ret_stack[index].ret;
 
 
 52
 53	ops->address(data, ret_addr, 1);
 
 54
 55	(*graph)++;
 
 
 
 
 56}
 57#else
 58static inline void
 59print_ftrace_graph_addr(unsigned long addr, void *data,
 60			const struct stacktrace_ops *ops,
 61			struct thread_info *tinfo, int *graph)
 62{ }
 63#endif
 64
 65/*
 66 * x86-64 can have up to three kernel stacks:
 67 * process stack
 68 * interrupt stack
 69 * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
 
 
 
 
 
 
 
 
 
 
 
 
 
 70 */
 71
 72static inline int valid_stack_ptr(struct thread_info *tinfo,
 73			void *p, unsigned int size, void *end)
 74{
 75	void *t = tinfo;
 76	if (end) {
 77		if (p < end && p >= (end-THREAD_SIZE))
 78			return 1;
 79		else
 80			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 81	}
 82	return p > t && p < t + THREAD_SIZE - size;
 83}
 84
 85unsigned long
 86print_context_stack(struct thread_info *tinfo,
 87		unsigned long *stack, unsigned long bp,
 88		const struct stacktrace_ops *ops, void *data,
 89		unsigned long *end, int *graph)
 90{
 91	struct stack_frame *frame = (struct stack_frame *)bp;
 92
 93	while (valid_stack_ptr(tinfo, stack, sizeof(*stack), end)) {
 94		unsigned long addr;
 95
 96		addr = *stack;
 97		if (__kernel_text_address(addr)) {
 98			if ((unsigned long) stack == bp + sizeof(long)) {
 99				ops->address(data, addr, 1);
100				frame = frame->next_frame;
101				bp = (unsigned long) frame;
102			} else {
103				ops->address(data, addr, 0);
104			}
105			print_ftrace_graph_addr(addr, data, ops, tinfo, graph);
106		}
107		stack++;
108	}
109	return bp;
110}
111EXPORT_SYMBOL_GPL(print_context_stack);
112
113unsigned long
114print_context_stack_bp(struct thread_info *tinfo,
115		       unsigned long *stack, unsigned long bp,
116		       const struct stacktrace_ops *ops, void *data,
117		       unsigned long *end, int *graph)
118{
119	struct stack_frame *frame = (struct stack_frame *)bp;
120	unsigned long *ret_addr = &frame->return_address;
121
122	while (valid_stack_ptr(tinfo, ret_addr, sizeof(*ret_addr), end)) {
123		unsigned long addr = *ret_addr;
124
125		if (!__kernel_text_address(addr))
126			break;
127
128		ops->address(data, addr, 1);
129		frame = frame->next_frame;
130		ret_addr = &frame->return_address;
131		print_ftrace_graph_addr(addr, data, ops, tinfo, graph);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132	}
133
134	return (unsigned long)frame;
135}
136EXPORT_SYMBOL_GPL(print_context_stack_bp);
137
138static int print_trace_stack(void *data, char *name)
 
139{
140	printk("%s <%s> ", (char *)data, name);
141	return 0;
142}
 
 
 
 
143
144/*
145 * Print one address/symbol entries per line.
146 */
147static void print_trace_address(void *data, unsigned long addr, int reliable)
148{
149	touch_nmi_watchdog();
150	printk(data);
151	printk_address(addr, reliable);
152}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
154static const struct stacktrace_ops print_trace_ops = {
155	.stack			= print_trace_stack,
156	.address		= print_trace_address,
157	.walk_stack		= print_context_stack,
158};
159
160void
161show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
162		unsigned long *stack, unsigned long bp, char *log_lvl)
163{
164	printk("%sCall Trace:\n", log_lvl);
165	dump_trace(task, regs, stack, bp, &print_trace_ops, log_lvl);
166}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
168void show_trace(struct task_struct *task, struct pt_regs *regs,
169		unsigned long *stack, unsigned long bp)
170{
171	show_trace_log_lvl(task, regs, stack, bp, "");
172}
173
174void show_stack(struct task_struct *task, unsigned long *sp)
175{
176	show_stack_log_lvl(task, NULL, sp, 0, "");
 
 
 
 
 
 
 
 
 
177}
178
179/*
180 * The architecture-independent dump_stack generator
181 */
182void dump_stack(void)
183{
184	unsigned long bp;
185	unsigned long stack;
186
187	bp = stack_frame(current, NULL);
188	printk("Pid: %d, comm: %.20s %s %s %.*s\n",
189		current->pid, current->comm, print_tainted(),
190		init_utsname()->release,
191		(int)strcspn(init_utsname()->version, " "),
192		init_utsname()->version);
193	show_trace(NULL, NULL, &stack, bp);
194}
195EXPORT_SYMBOL(dump_stack);
196
197static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
198static int die_owner = -1;
199static unsigned int die_nest_count;
200
201unsigned __kprobes long oops_begin(void)
202{
203	int cpu;
204	unsigned long flags;
205
206	oops_enter();
207
208	/* racy, but better than risking deadlock. */
209	raw_local_irq_save(flags);
210	cpu = smp_processor_id();
211	if (!arch_spin_trylock(&die_lock)) {
212		if (cpu == die_owner)
213			/* nested oops. should stop eventually */;
214		else
215			arch_spin_lock(&die_lock);
216	}
217	die_nest_count++;
218	die_owner = cpu;
219	console_verbose();
220	bust_spinlocks(1);
221	return flags;
222}
223EXPORT_SYMBOL_GPL(oops_begin);
 
 
224
225void __kprobes oops_end(unsigned long flags, struct pt_regs *regs, int signr)
226{
227	if (regs && kexec_should_crash(current))
228		crash_kexec(regs);
229
230	bust_spinlocks(0);
231	die_owner = -1;
232	add_taint(TAINT_DIE);
233	die_nest_count--;
234	if (!die_nest_count)
235		/* Nest count reaches zero, release the lock. */
236		arch_spin_unlock(&die_lock);
237	raw_local_irq_restore(flags);
238	oops_exit();
239
 
 
 
240	if (!signr)
241		return;
242	if (in_interrupt())
243		panic("Fatal exception in interrupt");
244	if (panic_on_oops)
245		panic("Fatal exception");
246	do_exit(signr);
247}
248
249int __kprobes __die(const char *str, struct pt_regs *regs, long err)
250{
251#ifdef CONFIG_X86_32
252	unsigned short ss;
253	unsigned long sp;
254#endif
255	printk(KERN_EMERG "%s: %04lx [#%d] ", str, err & 0xffff, ++die_counter);
256#ifdef CONFIG_PREEMPT
257	printk("PREEMPT ");
258#endif
259#ifdef CONFIG_SMP
260	printk("SMP ");
261#endif
262#ifdef CONFIG_DEBUG_PAGEALLOC
263	printk("DEBUG_PAGEALLOC");
264#endif
265	printk("\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266	if (notify_die(DIE_OOPS, str, regs, err,
267			current->thread.trap_no, SIGSEGV) == NOTIFY_STOP)
268		return 1;
269
270	show_registers(regs);
271#ifdef CONFIG_X86_32
272	if (user_mode_vm(regs)) {
273		sp = regs->sp;
274		ss = regs->ss & 0xffff;
275	} else {
276		sp = kernel_stack_pointer(regs);
277		savesegment(ss, ss);
278	}
279	printk(KERN_EMERG "EIP: [<%08lx>] ", regs->ip);
280	print_symbol("%s", regs->ip);
281	printk(" SS:ESP %04x:%08lx\n", ss, sp);
282#else
283	/* Executive summary in case the oops scrolled away */
284	printk(KERN_ALERT "RIP ");
285	printk_address(regs->ip, 1);
286	printk(" RSP <%016lx>\n", regs->sp);
287#endif
288	return 0;
289}
 
290
291/*
292 * This is gone through when something in the kernel has done something bad
293 * and is about to be terminated:
294 */
295void die(const char *str, struct pt_regs *regs, long err)
296{
297	unsigned long flags = oops_begin();
298	int sig = SIGSEGV;
299
300	if (!user_mode_vm(regs))
301		report_bug(regs->ip, regs);
302
303	if (__die(str, regs, err))
304		sig = 0;
305	oops_end(flags, regs, sig);
306}
307
308static int __init kstack_setup(char *s)
309{
310	if (!s)
311		return -EINVAL;
312	kstack_depth_to_print = simple_strtoul(s, NULL, 0);
313	return 0;
314}
315early_param("kstack", kstack_setup);
316
317static int __init code_bytes_setup(char *s)
318{
319	code_bytes = simple_strtoul(s, NULL, 0);
320	if (code_bytes > 8192)
321		code_bytes = 8192;
322
323	return 1;
 
 
 
 
324}
325__setup("code_bytes=", code_bytes_setup);