Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 */
  5#include <linux/kallsyms.h>
  6#include <linux/kprobes.h>
  7#include <linux/uaccess.h>
  8#include <linux/utsname.h>
  9#include <linux/hardirq.h>
 10#include <linux/kdebug.h>
 11#include <linux/module.h>
 12#include <linux/ptrace.h>
 13#include <linux/sched/debug.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/ftrace.h>
 16#include <linux/kexec.h>
 17#include <linux/bug.h>
 18#include <linux/nmi.h>
 19#include <linux/sysfs.h>
 20#include <linux/kasan.h>
 21
 22#include <asm/cpu_entry_area.h>
 23#include <asm/stacktrace.h>
 24#include <asm/unwind.h>
 25
 26int panic_on_unrecovered_nmi;
 27int panic_on_io_nmi;
 
 28static int die_counter;
 29
 30static struct pt_regs exec_summary_regs;
 31
 32bool in_task_stack(unsigned long *stack, struct task_struct *task,
 33		   struct stack_info *info)
 34{
 35	unsigned long *begin = task_stack_page(task);
 36	unsigned long *end   = task_stack_page(task) + THREAD_SIZE;
 37
 38	if (stack < begin || stack >= end)
 39		return false;
 40
 41	info->type	= STACK_TYPE_TASK;
 42	info->begin	= begin;
 43	info->end	= end;
 44	info->next_sp	= NULL;
 45
 46	return true;
 47}
 48
 49bool in_entry_stack(unsigned long *stack, struct stack_info *info)
 50{
 51	struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
 52
 53	void *begin = ss;
 54	void *end = ss + 1;
 55
 56	if ((void *)stack < begin || (void *)stack >= end)
 57		return false;
 58
 59	info->type	= STACK_TYPE_ENTRY;
 60	info->begin	= begin;
 61	info->end	= end;
 62	info->next_sp	= NULL;
 63
 64	return true;
 65}
 66
 67static void printk_stack_address(unsigned long address, int reliable,
 68				 char *log_lvl)
 69{
 70	touch_nmi_watchdog();
 71	printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
 72}
 73
 74/*
 75 * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
 76 *
 77 * In case where we don't have the exact kernel image (which, if we did, we can
 78 * simply disassemble and navigate to the RIP), the purpose of the bigger
 79 * prologue is to have more context and to be able to correlate the code from
 80 * the different toolchains better.
 81 *
 82 * In addition, it helps in recreating the register allocation of the failing
 83 * kernel and thus make sense of the register dump.
 84 *
 85 * What is more, the additional complication of a variable length insn arch like
 86 * x86 warrants having longer byte sequence before rIP so that the disassembler
 87 * can "sync" up properly and find instruction boundaries when decoding the
 88 * opcode bytes.
 89 *
 90 * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
 91 * guesstimate in attempt to achieve all of the above.
 92 */
 93void show_opcodes(struct pt_regs *regs, const char *loglvl)
 94{
 95#define PROLOGUE_SIZE 42
 96#define EPILOGUE_SIZE 21
 97#define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE)
 98	u8 opcodes[OPCODE_BUFSIZE];
 99	unsigned long prologue = regs->ip - PROLOGUE_SIZE;
100	bool bad_ip;
101
102	/*
103	 * Make sure userspace isn't trying to trick us into dumping kernel
104	 * memory by pointing the userspace instruction pointer at it.
105	 */
106	bad_ip = user_mode(regs) &&
107		__chk_range_not_ok(prologue, OPCODE_BUFSIZE, TASK_SIZE_MAX);
108
109	if (bad_ip || probe_kernel_read(opcodes, (u8 *)prologue,
110					OPCODE_BUFSIZE)) {
111		printk("%sCode: Bad RIP value.\n", loglvl);
112	} else {
113		printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %"
114		       __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes,
115		       opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1);
116	}
117}
118
119void show_ip(struct pt_regs *regs, const char *loglvl)
120{
121#ifdef CONFIG_X86_32
122	printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
123#else
124	printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
125#endif
126	show_opcodes(regs, loglvl);
127}
128
129void show_iret_regs(struct pt_regs *regs)
130{
131	show_ip(regs, KERN_DEFAULT);
132	printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss,
133		regs->sp, regs->flags);
134}
135
136static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
137				  bool partial)
138{
139	/*
140	 * These on_stack() checks aren't strictly necessary: the unwind code
141	 * has already validated the 'regs' pointer.  The checks are done for
142	 * ordering reasons: if the registers are on the next stack, we don't
143	 * want to print them out yet.  Otherwise they'll be shown as part of
144	 * the wrong stack.  Later, when show_trace_log_lvl() switches to the
145	 * next stack, this function will be called again with the same regs so
146	 * they can be printed in the right context.
147	 */
148	if (!partial && on_stack(info, regs, sizeof(*regs))) {
149		__show_regs(regs, SHOW_REGS_SHORT);
150
151	} else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
152				       IRET_FRAME_SIZE)) {
153		/*
154		 * When an interrupt or exception occurs in entry code, the
155		 * full pt_regs might not have been saved yet.  In that case
156		 * just print the iret frame.
157		 */
158		show_iret_regs(regs);
159	}
160}
161
162void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
163			unsigned long *stack, char *log_lvl)
164{
165	struct unwind_state state;
166	struct stack_info stack_info = {0};
167	unsigned long visit_mask = 0;
168	int graph_idx = 0;
169	bool partial = false;
170
171	printk("%sCall Trace:\n", log_lvl);
172
173	unwind_start(&state, task, regs, stack);
174	stack = stack ? : get_stack_pointer(task, regs);
175	regs = unwind_get_entry_regs(&state, &partial);
176
177	/*
178	 * Iterate through the stacks, starting with the current stack pointer.
179	 * Each stack has a pointer to the next one.
180	 *
181	 * x86-64 can have several stacks:
182	 * - task stack
183	 * - interrupt stack
184	 * - HW exception stacks (double fault, nmi, debug, mce)
185	 * - entry stack
186	 *
187	 * x86-32 can have up to four stacks:
188	 * - task stack
189	 * - softirq stack
190	 * - hardirq stack
191	 * - entry stack
192	 */
193	for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
194		const char *stack_name;
195
196		if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
197			/*
198			 * We weren't on a valid stack.  It's possible that
199			 * we overflowed a valid stack into a guard page.
200			 * See if the next page up is valid so that we can
201			 * generate some kind of backtrace if this happens.
202			 */
203			stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
204			if (get_stack_info(stack, task, &stack_info, &visit_mask))
205				break;
206		}
207
208		stack_name = stack_type_name(stack_info.type);
209		if (stack_name)
210			printk("%s <%s>\n", log_lvl, stack_name);
211
212		if (regs)
213			show_regs_if_on_stack(&stack_info, regs, partial);
214
215		/*
216		 * Scan the stack, printing any text addresses we find.  At the
217		 * same time, follow proper stack frames with the unwinder.
218		 *
219		 * Addresses found during the scan which are not reported by
220		 * the unwinder are considered to be additional clues which are
221		 * sometimes useful for debugging and are prefixed with '?'.
222		 * This also serves as a failsafe option in case the unwinder
223		 * goes off in the weeds.
224		 */
225		for (; stack < stack_info.end; stack++) {
226			unsigned long real_addr;
227			int reliable = 0;
228			unsigned long addr = READ_ONCE_NOCHECK(*stack);
229			unsigned long *ret_addr_p =
230				unwind_get_return_address_ptr(&state);
231
232			if (!__kernel_text_address(addr))
233				continue;
234
235			/*
236			 * Don't print regs->ip again if it was already printed
237			 * by show_regs_if_on_stack().
238			 */
239			if (regs && stack == &regs->ip)
240				goto next;
241
242			if (stack == ret_addr_p)
243				reliable = 1;
244
245			/*
246			 * When function graph tracing is enabled for a
247			 * function, its return address on the stack is
248			 * replaced with the address of an ftrace handler
249			 * (return_to_handler).  In that case, before printing
250			 * the "real" address, we want to print the handler
251			 * address as an "unreliable" hint that function graph
252			 * tracing was involved.
253			 */
254			real_addr = ftrace_graph_ret_addr(task, &graph_idx,
255							  addr, stack);
256			if (real_addr != addr)
257				printk_stack_address(addr, 0, log_lvl);
258			printk_stack_address(real_addr, reliable, log_lvl);
259
260			if (!reliable)
261				continue;
262
263next:
264			/*
265			 * Get the next frame from the unwinder.  No need to
266			 * check for an error: if anything goes wrong, the rest
267			 * of the addresses will just be printed as unreliable.
268			 */
269			unwind_next_frame(&state);
270
271			/* if the frame has entry regs, print them */
272			regs = unwind_get_entry_regs(&state, &partial);
273			if (regs)
274				show_regs_if_on_stack(&stack_info, regs, partial);
275		}
276
277		if (stack_name)
278			printk("%s </%s>\n", log_lvl, stack_name);
279	}
280}
281
282void show_stack(struct task_struct *task, unsigned long *sp)
283{
284	task = task ? : current;
285
286	/*
287	 * Stack frames below this one aren't interesting.  Don't show them
288	 * if we're printing for %current.
289	 */
290	if (!sp && task == current)
291		sp = get_stack_pointer(current, NULL);
292
293	show_trace_log_lvl(task, NULL, sp, KERN_DEFAULT);
294}
295
296void show_stack_regs(struct pt_regs *regs)
297{
298	show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
299}
300
301static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
302static int die_owner = -1;
303static unsigned int die_nest_count;
304
305unsigned long oops_begin(void)
306{
307	int cpu;
308	unsigned long flags;
309
310	oops_enter();
311
312	/* racy, but better than risking deadlock. */
313	raw_local_irq_save(flags);
314	cpu = smp_processor_id();
315	if (!arch_spin_trylock(&die_lock)) {
316		if (cpu == die_owner)
317			/* nested oops. should stop eventually */;
318		else
319			arch_spin_lock(&die_lock);
320	}
321	die_nest_count++;
322	die_owner = cpu;
323	console_verbose();
324	bust_spinlocks(1);
325	return flags;
326}
 
327NOKPROBE_SYMBOL(oops_begin);
328
329void __noreturn rewind_stack_do_exit(int signr);
330
331void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
332{
333	if (regs && kexec_should_crash(current))
334		crash_kexec(regs);
335
336	bust_spinlocks(0);
337	die_owner = -1;
338	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
339	die_nest_count--;
340	if (!die_nest_count)
341		/* Nest count reaches zero, release the lock. */
342		arch_spin_unlock(&die_lock);
343	raw_local_irq_restore(flags);
344	oops_exit();
345
346	/* Executive summary in case the oops scrolled away */
347	__show_regs(&exec_summary_regs, SHOW_REGS_ALL);
348
349	if (!signr)
350		return;
351	if (in_interrupt())
352		panic("Fatal exception in interrupt");
353	if (panic_on_oops)
354		panic("Fatal exception");
355
356	/*
357	 * We're not going to return, but we might be on an IST stack or
358	 * have very little stack space left.  Rewind the stack and kill
359	 * the task.
360	 * Before we rewind the stack, we have to tell KASAN that we're going to
361	 * reuse the task stack and that existing poisons are invalid.
362	 */
363	kasan_unpoison_task_stack(current);
364	rewind_stack_do_exit(signr);
365}
366NOKPROBE_SYMBOL(oops_end);
367
368int __die(const char *str, struct pt_regs *regs, long err)
369{
370	const char *pr = "";
371
372	/* Save the regs of the first oops for the executive summary later. */
373	if (!die_counter)
374		exec_summary_regs = *regs;
375
376	if (IS_ENABLED(CONFIG_PREEMPTION))
377		pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT";
378
379	printk(KERN_DEFAULT
380	       "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
381	       pr,
382	       IS_ENABLED(CONFIG_SMP)     ? " SMP"             : "",
383	       debug_pagealloc_enabled()  ? " DEBUG_PAGEALLOC" : "",
384	       IS_ENABLED(CONFIG_KASAN)   ? " KASAN"           : "",
385	       IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
386	       (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
387
388	show_regs(regs);
389	print_modules();
390
391	if (notify_die(DIE_OOPS, str, regs, err,
392			current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
393		return 1;
394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
395	return 0;
396}
397NOKPROBE_SYMBOL(__die);
398
399/*
400 * This is gone through when something in the kernel has done something bad
401 * and is about to be terminated:
402 */
403void die(const char *str, struct pt_regs *regs, long err)
404{
405	unsigned long flags = oops_begin();
406	int sig = SIGSEGV;
407
408	if (__die(str, regs, err))
409		sig = 0;
410	oops_end(flags, regs, sig);
411}
412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
413void show_regs(struct pt_regs *regs)
414{
 
 
 
415	show_regs_print_info(KERN_DEFAULT);
416
417	__show_regs(regs, user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL);
 
 
 
418
419	/*
420	 * When in-kernel, we also print out the stack at the time of the fault..
 
421	 */
422	if (!user_mode(regs))
 
 
 
 
 
423		show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
424}
v4.17
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 */
  5#include <linux/kallsyms.h>
  6#include <linux/kprobes.h>
  7#include <linux/uaccess.h>
  8#include <linux/utsname.h>
  9#include <linux/hardirq.h>
 10#include <linux/kdebug.h>
 11#include <linux/module.h>
 12#include <linux/ptrace.h>
 13#include <linux/sched/debug.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/ftrace.h>
 16#include <linux/kexec.h>
 17#include <linux/bug.h>
 18#include <linux/nmi.h>
 19#include <linux/sysfs.h>
 
 20
 21#include <asm/cpu_entry_area.h>
 22#include <asm/stacktrace.h>
 23#include <asm/unwind.h>
 24
 25int panic_on_unrecovered_nmi;
 26int panic_on_io_nmi;
 27static unsigned int code_bytes = 64;
 28static int die_counter;
 29
 
 
 30bool in_task_stack(unsigned long *stack, struct task_struct *task,
 31		   struct stack_info *info)
 32{
 33	unsigned long *begin = task_stack_page(task);
 34	unsigned long *end   = task_stack_page(task) + THREAD_SIZE;
 35
 36	if (stack < begin || stack >= end)
 37		return false;
 38
 39	info->type	= STACK_TYPE_TASK;
 40	info->begin	= begin;
 41	info->end	= end;
 42	info->next_sp	= NULL;
 43
 44	return true;
 45}
 46
 47bool in_entry_stack(unsigned long *stack, struct stack_info *info)
 48{
 49	struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
 50
 51	void *begin = ss;
 52	void *end = ss + 1;
 53
 54	if ((void *)stack < begin || (void *)stack >= end)
 55		return false;
 56
 57	info->type	= STACK_TYPE_ENTRY;
 58	info->begin	= begin;
 59	info->end	= end;
 60	info->next_sp	= NULL;
 61
 62	return true;
 63}
 64
 65static void printk_stack_address(unsigned long address, int reliable,
 66				 char *log_lvl)
 67{
 68	touch_nmi_watchdog();
 69	printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
 70}
 71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 72void show_iret_regs(struct pt_regs *regs)
 73{
 74	printk(KERN_DEFAULT "RIP: %04x:%pS\n", (int)regs->cs, (void *)regs->ip);
 75	printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss,
 76		regs->sp, regs->flags);
 77}
 78
 79static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
 80				  bool partial)
 81{
 82	/*
 83	 * These on_stack() checks aren't strictly necessary: the unwind code
 84	 * has already validated the 'regs' pointer.  The checks are done for
 85	 * ordering reasons: if the registers are on the next stack, we don't
 86	 * want to print them out yet.  Otherwise they'll be shown as part of
 87	 * the wrong stack.  Later, when show_trace_log_lvl() switches to the
 88	 * next stack, this function will be called again with the same regs so
 89	 * they can be printed in the right context.
 90	 */
 91	if (!partial && on_stack(info, regs, sizeof(*regs))) {
 92		__show_regs(regs, 0);
 93
 94	} else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
 95				       IRET_FRAME_SIZE)) {
 96		/*
 97		 * When an interrupt or exception occurs in entry code, the
 98		 * full pt_regs might not have been saved yet.  In that case
 99		 * just print the iret frame.
100		 */
101		show_iret_regs(regs);
102	}
103}
104
105void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
106			unsigned long *stack, char *log_lvl)
107{
108	struct unwind_state state;
109	struct stack_info stack_info = {0};
110	unsigned long visit_mask = 0;
111	int graph_idx = 0;
112	bool partial = false;
113
114	printk("%sCall Trace:\n", log_lvl);
115
116	unwind_start(&state, task, regs, stack);
117	stack = stack ? : get_stack_pointer(task, regs);
118	regs = unwind_get_entry_regs(&state, &partial);
119
120	/*
121	 * Iterate through the stacks, starting with the current stack pointer.
122	 * Each stack has a pointer to the next one.
123	 *
124	 * x86-64 can have several stacks:
125	 * - task stack
126	 * - interrupt stack
127	 * - HW exception stacks (double fault, nmi, debug, mce)
128	 * - entry stack
129	 *
130	 * x86-32 can have up to four stacks:
131	 * - task stack
132	 * - softirq stack
133	 * - hardirq stack
134	 * - entry stack
135	 */
136	for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
137		const char *stack_name;
138
139		if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
140			/*
141			 * We weren't on a valid stack.  It's possible that
142			 * we overflowed a valid stack into a guard page.
143			 * See if the next page up is valid so that we can
144			 * generate some kind of backtrace if this happens.
145			 */
146			stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
147			if (get_stack_info(stack, task, &stack_info, &visit_mask))
148				break;
149		}
150
151		stack_name = stack_type_name(stack_info.type);
152		if (stack_name)
153			printk("%s <%s>\n", log_lvl, stack_name);
154
155		if (regs)
156			show_regs_if_on_stack(&stack_info, regs, partial);
157
158		/*
159		 * Scan the stack, printing any text addresses we find.  At the
160		 * same time, follow proper stack frames with the unwinder.
161		 *
162		 * Addresses found during the scan which are not reported by
163		 * the unwinder are considered to be additional clues which are
164		 * sometimes useful for debugging and are prefixed with '?'.
165		 * This also serves as a failsafe option in case the unwinder
166		 * goes off in the weeds.
167		 */
168		for (; stack < stack_info.end; stack++) {
169			unsigned long real_addr;
170			int reliable = 0;
171			unsigned long addr = READ_ONCE_NOCHECK(*stack);
172			unsigned long *ret_addr_p =
173				unwind_get_return_address_ptr(&state);
174
175			if (!__kernel_text_address(addr))
176				continue;
177
178			/*
179			 * Don't print regs->ip again if it was already printed
180			 * by show_regs_if_on_stack().
181			 */
182			if (regs && stack == &regs->ip)
183				goto next;
184
185			if (stack == ret_addr_p)
186				reliable = 1;
187
188			/*
189			 * When function graph tracing is enabled for a
190			 * function, its return address on the stack is
191			 * replaced with the address of an ftrace handler
192			 * (return_to_handler).  In that case, before printing
193			 * the "real" address, we want to print the handler
194			 * address as an "unreliable" hint that function graph
195			 * tracing was involved.
196			 */
197			real_addr = ftrace_graph_ret_addr(task, &graph_idx,
198							  addr, stack);
199			if (real_addr != addr)
200				printk_stack_address(addr, 0, log_lvl);
201			printk_stack_address(real_addr, reliable, log_lvl);
202
203			if (!reliable)
204				continue;
205
206next:
207			/*
208			 * Get the next frame from the unwinder.  No need to
209			 * check for an error: if anything goes wrong, the rest
210			 * of the addresses will just be printed as unreliable.
211			 */
212			unwind_next_frame(&state);
213
214			/* if the frame has entry regs, print them */
215			regs = unwind_get_entry_regs(&state, &partial);
216			if (regs)
217				show_regs_if_on_stack(&stack_info, regs, partial);
218		}
219
220		if (stack_name)
221			printk("%s </%s>\n", log_lvl, stack_name);
222	}
223}
224
225void show_stack(struct task_struct *task, unsigned long *sp)
226{
227	task = task ? : current;
228
229	/*
230	 * Stack frames below this one aren't interesting.  Don't show them
231	 * if we're printing for %current.
232	 */
233	if (!sp && task == current)
234		sp = get_stack_pointer(current, NULL);
235
236	show_trace_log_lvl(task, NULL, sp, KERN_DEFAULT);
237}
238
239void show_stack_regs(struct pt_regs *regs)
240{
241	show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
242}
243
244static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
245static int die_owner = -1;
246static unsigned int die_nest_count;
247
248unsigned long oops_begin(void)
249{
250	int cpu;
251	unsigned long flags;
252
253	oops_enter();
254
255	/* racy, but better than risking deadlock. */
256	raw_local_irq_save(flags);
257	cpu = smp_processor_id();
258	if (!arch_spin_trylock(&die_lock)) {
259		if (cpu == die_owner)
260			/* nested oops. should stop eventually */;
261		else
262			arch_spin_lock(&die_lock);
263	}
264	die_nest_count++;
265	die_owner = cpu;
266	console_verbose();
267	bust_spinlocks(1);
268	return flags;
269}
270EXPORT_SYMBOL_GPL(oops_begin);
271NOKPROBE_SYMBOL(oops_begin);
272
273void __noreturn rewind_stack_do_exit(int signr);
274
275void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
276{
277	if (regs && kexec_should_crash(current))
278		crash_kexec(regs);
279
280	bust_spinlocks(0);
281	die_owner = -1;
282	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
283	die_nest_count--;
284	if (!die_nest_count)
285		/* Nest count reaches zero, release the lock. */
286		arch_spin_unlock(&die_lock);
287	raw_local_irq_restore(flags);
288	oops_exit();
289
 
 
 
290	if (!signr)
291		return;
292	if (in_interrupt())
293		panic("Fatal exception in interrupt");
294	if (panic_on_oops)
295		panic("Fatal exception");
296
297	/*
298	 * We're not going to return, but we might be on an IST stack or
299	 * have very little stack space left.  Rewind the stack and kill
300	 * the task.
 
 
301	 */
 
302	rewind_stack_do_exit(signr);
303}
304NOKPROBE_SYMBOL(oops_end);
305
306int __die(const char *str, struct pt_regs *regs, long err)
307{
308#ifdef CONFIG_X86_32
309	unsigned short ss;
310	unsigned long sp;
311#endif
 
 
 
 
 
312	printk(KERN_DEFAULT
313	       "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
314	       IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT"         : "",
315	       IS_ENABLED(CONFIG_SMP)     ? " SMP"             : "",
316	       debug_pagealloc_enabled()  ? " DEBUG_PAGEALLOC" : "",
317	       IS_ENABLED(CONFIG_KASAN)   ? " KASAN"           : "",
318	       IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
319	       (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
320
 
 
 
321	if (notify_die(DIE_OOPS, str, regs, err,
322			current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
323		return 1;
324
325	print_modules();
326	show_regs(regs);
327#ifdef CONFIG_X86_32
328	if (user_mode(regs)) {
329		sp = regs->sp;
330		ss = regs->ss;
331	} else {
332		sp = kernel_stack_pointer(regs);
333		savesegment(ss, ss);
334	}
335	printk(KERN_EMERG "EIP: %pS SS:ESP: %04x:%08lx\n",
336	       (void *)regs->ip, ss, sp);
337#else
338	/* Executive summary in case the oops scrolled away */
339	printk(KERN_ALERT "RIP: %pS RSP: %016lx\n", (void *)regs->ip, regs->sp);
340#endif
341	return 0;
342}
343NOKPROBE_SYMBOL(__die);
344
345/*
346 * This is gone through when something in the kernel has done something bad
347 * and is about to be terminated:
348 */
349void die(const char *str, struct pt_regs *regs, long err)
350{
351	unsigned long flags = oops_begin();
352	int sig = SIGSEGV;
353
354	if (__die(str, regs, err))
355		sig = 0;
356	oops_end(flags, regs, sig);
357}
358
359static int __init code_bytes_setup(char *s)
360{
361	ssize_t ret;
362	unsigned long val;
363
364	if (!s)
365		return -EINVAL;
366
367	ret = kstrtoul(s, 0, &val);
368	if (ret)
369		return ret;
370
371	code_bytes = val;
372	if (code_bytes > 8192)
373		code_bytes = 8192;
374
375	return 1;
376}
377__setup("code_bytes=", code_bytes_setup);
378
379void show_regs(struct pt_regs *regs)
380{
381	bool all = true;
382	int i;
383
384	show_regs_print_info(KERN_DEFAULT);
385
386	if (IS_ENABLED(CONFIG_X86_32))
387		all = !user_mode(regs);
388
389	__show_regs(regs, all);
390
391	/*
392	 * When in-kernel, we also print out the stack and code at the
393	 * time of the fault..
394	 */
395	if (!user_mode(regs)) {
396		unsigned int code_prologue = code_bytes * 43 / 64;
397		unsigned int code_len = code_bytes;
398		unsigned char c;
399		u8 *ip;
400
401		show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
402
403		printk(KERN_DEFAULT "Code: ");
404
405		ip = (u8 *)regs->ip - code_prologue;
406		if (ip < (u8 *)PAGE_OFFSET || probe_kernel_address(ip, c)) {
407			/* try starting at IP */
408			ip = (u8 *)regs->ip;
409			code_len = code_len - code_prologue + 1;
410		}
411		for (i = 0; i < code_len; i++, ip++) {
412			if (ip < (u8 *)PAGE_OFFSET ||
413					probe_kernel_address(ip, c)) {
414				pr_cont(" Bad RIP value.");
415				break;
416			}
417			if (ip == (u8 *)regs->ip)
418				pr_cont("<%02x> ", c);
419			else
420				pr_cont("%02x ", c);
421		}
422	}
423	pr_cont("\n");
424}