Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 */
  5#include <linux/kallsyms.h>
  6#include <linux/kprobes.h>
  7#include <linux/uaccess.h>
  8#include <linux/utsname.h>
  9#include <linux/hardirq.h>
 10#include <linux/kdebug.h>
 11#include <linux/module.h>
 12#include <linux/ptrace.h>
 13#include <linux/sched/debug.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/ftrace.h>
 16#include <linux/kexec.h>
 17#include <linux/bug.h>
 18#include <linux/nmi.h>
 19#include <linux/sysfs.h>
 20#include <linux/kasan.h>
 21
 22#include <asm/cpu_entry_area.h>
 23#include <asm/stacktrace.h>
 24#include <asm/unwind.h>
 25
 26int panic_on_unrecovered_nmi;
 27int panic_on_io_nmi;
 
 
 28static int die_counter;
 29
 30static struct pt_regs exec_summary_regs;
 31
 32bool in_task_stack(unsigned long *stack, struct task_struct *task,
 33		   struct stack_info *info)
 34{
 35	unsigned long *begin = task_stack_page(task);
 36	unsigned long *end   = task_stack_page(task) + THREAD_SIZE;
 37
 38	if (stack < begin || stack >= end)
 39		return false;
 40
 41	info->type	= STACK_TYPE_TASK;
 42	info->begin	= begin;
 43	info->end	= end;
 44	info->next_sp	= NULL;
 45
 46	return true;
 
 
 47}
 48
 49bool in_entry_stack(unsigned long *stack, struct stack_info *info)
 
 
 
 
 50{
 51	struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
 
 
 52
 53	void *begin = ss;
 54	void *end = ss + 1;
 55
 56	if ((void *)stack < begin || (void *)stack >= end)
 57		return false;
 58
 59	info->type	= STACK_TYPE_ENTRY;
 60	info->begin	= begin;
 61	info->end	= end;
 62	info->next_sp	= NULL;
 63
 64	return true;
 65}
 66
 67static void printk_stack_address(unsigned long address, int reliable,
 68				 char *log_lvl)
 69{
 70	touch_nmi_watchdog();
 71	printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
 72}
 
 
 
 
 
 
 
 73
 74/*
 75 * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
 76 *
 77 * In case where we don't have the exact kernel image (which, if we did, we can
 78 * simply disassemble and navigate to the RIP), the purpose of the bigger
 79 * prologue is to have more context and to be able to correlate the code from
 80 * the different toolchains better.
 81 *
 82 * In addition, it helps in recreating the register allocation of the failing
 83 * kernel and thus make sense of the register dump.
 84 *
 85 * What is more, the additional complication of a variable length insn arch like
 86 * x86 warrants having longer byte sequence before rIP so that the disassembler
 87 * can "sync" up properly and find instruction boundaries when decoding the
 88 * opcode bytes.
 89 *
 90 * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
 91 * guesstimate in attempt to achieve all of the above.
 92 */
 93void show_opcodes(struct pt_regs *regs, const char *loglvl)
 94{
 95#define PROLOGUE_SIZE 42
 96#define EPILOGUE_SIZE 21
 97#define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE)
 98	u8 opcodes[OPCODE_BUFSIZE];
 99	unsigned long prologue = regs->ip - PROLOGUE_SIZE;
100	bool bad_ip;
101
102	/*
103	 * Make sure userspace isn't trying to trick us into dumping kernel
104	 * memory by pointing the userspace instruction pointer at it.
105	 */
106	bad_ip = user_mode(regs) &&
107		__chk_range_not_ok(prologue, OPCODE_BUFSIZE, TASK_SIZE_MAX);
 
 
 
 
 
 
108
109	if (bad_ip || probe_kernel_read(opcodes, (u8 *)prologue,
110					OPCODE_BUFSIZE)) {
111		printk("%sCode: Bad RIP value.\n", loglvl);
112	} else {
113		printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %"
114		       __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes,
115		       opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116	}
 
117}
 
118
119void show_ip(struct pt_regs *regs, const char *loglvl)
120{
121#ifdef CONFIG_X86_32
122	printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
123#else
124	printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
125#endif
126	show_opcodes(regs, loglvl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127}
 
128
129void show_iret_regs(struct pt_regs *regs)
130{
131	show_ip(regs, KERN_DEFAULT);
132	printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss,
133		regs->sp, regs->flags);
134}
135
136static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
137				  bool partial)
 
 
138{
139	/*
140	 * These on_stack() checks aren't strictly necessary: the unwind code
141	 * has already validated the 'regs' pointer.  The checks are done for
142	 * ordering reasons: if the registers are on the next stack, we don't
143	 * want to print them out yet.  Otherwise they'll be shown as part of
144	 * the wrong stack.  Later, when show_trace_log_lvl() switches to the
145	 * next stack, this function will be called again with the same regs so
146	 * they can be printed in the right context.
147	 */
148	if (!partial && on_stack(info, regs, sizeof(*regs))) {
149		__show_regs(regs, SHOW_REGS_SHORT);
150
151	} else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
152				       IRET_FRAME_SIZE)) {
153		/*
154		 * When an interrupt or exception occurs in entry code, the
155		 * full pt_regs might not have been saved yet.  In that case
156		 * just print the iret frame.
157		 */
158		show_iret_regs(regs);
159	}
160}
161
162void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
163			unsigned long *stack, char *log_lvl)
 
 
 
 
 
 
 
164{
165	struct unwind_state state;
166	struct stack_info stack_info = {0};
167	unsigned long visit_mask = 0;
168	int graph_idx = 0;
169	bool partial = false;
170
171	printk("%sCall Trace:\n", log_lvl);
 
 
172
173	unwind_start(&state, task, regs, stack);
174	stack = stack ? : get_stack_pointer(task, regs);
175	regs = unwind_get_entry_regs(&state, &partial);
176
177	/*
178	 * Iterate through the stacks, starting with the current stack pointer.
179	 * Each stack has a pointer to the next one.
180	 *
181	 * x86-64 can have several stacks:
182	 * - task stack
183	 * - interrupt stack
184	 * - HW exception stacks (double fault, nmi, debug, mce)
185	 * - entry stack
186	 *
187	 * x86-32 can have up to four stacks:
188	 * - task stack
189	 * - softirq stack
190	 * - hardirq stack
191	 * - entry stack
192	 */
193	for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
194		const char *stack_name;
195
196		if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
197			/*
198			 * We weren't on a valid stack.  It's possible that
199			 * we overflowed a valid stack into a guard page.
200			 * See if the next page up is valid so that we can
201			 * generate some kind of backtrace if this happens.
202			 */
203			stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
204			if (get_stack_info(stack, task, &stack_info, &visit_mask))
205				break;
206		}
207
208		stack_name = stack_type_name(stack_info.type);
209		if (stack_name)
210			printk("%s <%s>\n", log_lvl, stack_name);
211
212		if (regs)
213			show_regs_if_on_stack(&stack_info, regs, partial);
214
215		/*
216		 * Scan the stack, printing any text addresses we find.  At the
217		 * same time, follow proper stack frames with the unwinder.
218		 *
219		 * Addresses found during the scan which are not reported by
220		 * the unwinder are considered to be additional clues which are
221		 * sometimes useful for debugging and are prefixed with '?'.
222		 * This also serves as a failsafe option in case the unwinder
223		 * goes off in the weeds.
224		 */
225		for (; stack < stack_info.end; stack++) {
226			unsigned long real_addr;
227			int reliable = 0;
228			unsigned long addr = READ_ONCE_NOCHECK(*stack);
229			unsigned long *ret_addr_p =
230				unwind_get_return_address_ptr(&state);
231
232			if (!__kernel_text_address(addr))
233				continue;
234
235			/*
236			 * Don't print regs->ip again if it was already printed
237			 * by show_regs_if_on_stack().
238			 */
239			if (regs && stack == &regs->ip)
240				goto next;
241
242			if (stack == ret_addr_p)
243				reliable = 1;
244
245			/*
246			 * When function graph tracing is enabled for a
247			 * function, its return address on the stack is
248			 * replaced with the address of an ftrace handler
249			 * (return_to_handler).  In that case, before printing
250			 * the "real" address, we want to print the handler
251			 * address as an "unreliable" hint that function graph
252			 * tracing was involved.
253			 */
254			real_addr = ftrace_graph_ret_addr(task, &graph_idx,
255							  addr, stack);
256			if (real_addr != addr)
257				printk_stack_address(addr, 0, log_lvl);
258			printk_stack_address(real_addr, reliable, log_lvl);
259
260			if (!reliable)
261				continue;
262
263next:
264			/*
265			 * Get the next frame from the unwinder.  No need to
266			 * check for an error: if anything goes wrong, the rest
267			 * of the addresses will just be printed as unreliable.
268			 */
269			unwind_next_frame(&state);
270
271			/* if the frame has entry regs, print them */
272			regs = unwind_get_entry_regs(&state, &partial);
273			if (regs)
274				show_regs_if_on_stack(&stack_info, regs, partial);
275		}
276
277		if (stack_name)
278			printk("%s </%s>\n", log_lvl, stack_name);
279	}
280}
281
282void show_stack(struct task_struct *task, unsigned long *sp)
283{
284	task = task ? : current;
 
285
286	/*
287	 * Stack frames below this one aren't interesting.  Don't show them
288	 * if we're printing for %current.
289	 */
290	if (!sp && task == current)
291		sp = get_stack_pointer(current, NULL);
292
293	show_trace_log_lvl(task, NULL, sp, KERN_DEFAULT);
294}
295
296void show_stack_regs(struct pt_regs *regs)
297{
298	show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
299}
300
301static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
302static int die_owner = -1;
303static unsigned int die_nest_count;
304
305unsigned long oops_begin(void)
306{
307	int cpu;
308	unsigned long flags;
309
310	oops_enter();
311
312	/* racy, but better than risking deadlock. */
313	raw_local_irq_save(flags);
314	cpu = smp_processor_id();
315	if (!arch_spin_trylock(&die_lock)) {
316		if (cpu == die_owner)
317			/* nested oops. should stop eventually */;
318		else
319			arch_spin_lock(&die_lock);
320	}
321	die_nest_count++;
322	die_owner = cpu;
323	console_verbose();
324	bust_spinlocks(1);
325	return flags;
326}
 
327NOKPROBE_SYMBOL(oops_begin);
328
329void __noreturn rewind_stack_do_exit(int signr);
330
331void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
332{
333	if (regs && kexec_should_crash(current))
334		crash_kexec(regs);
335
336	bust_spinlocks(0);
337	die_owner = -1;
338	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
339	die_nest_count--;
340	if (!die_nest_count)
341		/* Nest count reaches zero, release the lock. */
342		arch_spin_unlock(&die_lock);
343	raw_local_irq_restore(flags);
344	oops_exit();
345
346	/* Executive summary in case the oops scrolled away */
347	__show_regs(&exec_summary_regs, SHOW_REGS_ALL);
348
349	if (!signr)
350		return;
351	if (in_interrupt())
352		panic("Fatal exception in interrupt");
353	if (panic_on_oops)
354		panic("Fatal exception");
355
356	/*
357	 * We're not going to return, but we might be on an IST stack or
358	 * have very little stack space left.  Rewind the stack and kill
359	 * the task.
360	 * Before we rewind the stack, we have to tell KASAN that we're going to
361	 * reuse the task stack and that existing poisons are invalid.
362	 */
363	kasan_unpoison_task_stack(current);
364	rewind_stack_do_exit(signr);
365}
366NOKPROBE_SYMBOL(oops_end);
367
368int __die(const char *str, struct pt_regs *regs, long err)
369{
370	const char *pr = "";
371
372	/* Save the regs of the first oops for the executive summary later. */
373	if (!die_counter)
374		exec_summary_regs = *regs;
375
376	if (IS_ENABLED(CONFIG_PREEMPTION))
377		pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT";
378
379	printk(KERN_DEFAULT
380	       "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
381	       pr,
382	       IS_ENABLED(CONFIG_SMP)     ? " SMP"             : "",
383	       debug_pagealloc_enabled()  ? " DEBUG_PAGEALLOC" : "",
384	       IS_ENABLED(CONFIG_KASAN)   ? " KASAN"           : "",
385	       IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
386	       (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
387
388	show_regs(regs);
389	print_modules();
390
 
 
391	if (notify_die(DIE_OOPS, str, regs, err,
392			current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
393		return 1;
394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
395	return 0;
396}
397NOKPROBE_SYMBOL(__die);
398
399/*
400 * This is gone through when something in the kernel has done something bad
401 * and is about to be terminated:
402 */
403void die(const char *str, struct pt_regs *regs, long err)
404{
405	unsigned long flags = oops_begin();
406	int sig = SIGSEGV;
407
 
 
 
408	if (__die(str, regs, err))
409		sig = 0;
410	oops_end(flags, regs, sig);
411}
412
413void show_regs(struct pt_regs *regs)
414{
415	show_regs_print_info(KERN_DEFAULT);
 
416
417	__show_regs(regs, user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL);
 
418
419	/*
420	 * When in-kernel, we also print out the stack at the time of the fault..
421	 */
422	if (!user_mode(regs))
423		show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
424}
v4.6
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 */
  5#include <linux/kallsyms.h>
  6#include <linux/kprobes.h>
  7#include <linux/uaccess.h>
  8#include <linux/utsname.h>
  9#include <linux/hardirq.h>
 10#include <linux/kdebug.h>
 11#include <linux/module.h>
 12#include <linux/ptrace.h>
 
 
 13#include <linux/ftrace.h>
 14#include <linux/kexec.h>
 15#include <linux/bug.h>
 16#include <linux/nmi.h>
 17#include <linux/sysfs.h>
 
 18
 
 19#include <asm/stacktrace.h>
 20
 21
 22int panic_on_unrecovered_nmi;
 23int panic_on_io_nmi;
 24unsigned int code_bytes = 64;
 25int kstack_depth_to_print = 3 * STACKSLOTS_PER_LINE;
 26static int die_counter;
 27
 28static void printk_stack_address(unsigned long address, int reliable,
 29		void *data)
 
 
 30{
 31	printk("%s [<%p>] %s%pB\n",
 32		(char *)data, (void *)address, reliable ? "" : "? ",
 33		(void *)address);
 34}
 
 
 
 
 
 
 35
 36void printk_address(unsigned long address)
 37{
 38	pr_cont(" [<%p>] %pS\n", (void *)address, (void *)address);
 39}
 40
 41#ifdef CONFIG_FUNCTION_GRAPH_TRACER
 42static void
 43print_ftrace_graph_addr(unsigned long addr, void *data,
 44			const struct stacktrace_ops *ops,
 45			struct thread_info *tinfo, int *graph)
 46{
 47	struct task_struct *task;
 48	unsigned long ret_addr;
 49	int index;
 50
 51	if (addr != (unsigned long)return_to_handler)
 52		return;
 53
 54	task = tinfo->task;
 55	index = task->curr_ret_stack;
 56
 57	if (!task->ret_stack || index < *graph)
 58		return;
 
 
 59
 60	index -= *graph;
 61	ret_addr = task->ret_stack[index].ret;
 62
 63	ops->address(data, ret_addr, 1);
 64
 65	(*graph)++;
 
 
 66}
 67#else
 68static inline void
 69print_ftrace_graph_addr(unsigned long addr, void *data,
 70			const struct stacktrace_ops *ops,
 71			struct thread_info *tinfo, int *graph)
 72{ }
 73#endif
 74
 75/*
 76 * x86-64 can have up to three kernel stacks:
 77 * process stack
 78 * interrupt stack
 79 * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
 
 
 
 
 
 
 
 
 
 
 
 
 
 80 */
 
 
 
 
 
 
 
 
 81
 82static inline int valid_stack_ptr(struct thread_info *tinfo,
 83			void *p, unsigned int size, void *end)
 84{
 85	void *t = tinfo;
 86	if (end) {
 87		if (p < end && p >= (end-THREAD_SIZE))
 88			return 1;
 89		else
 90			return 0;
 91	}
 92	return p > t && p < t + THREAD_SIZE - size;
 93}
 94
 95unsigned long
 96print_context_stack(struct thread_info *tinfo,
 97		unsigned long *stack, unsigned long bp,
 98		const struct stacktrace_ops *ops, void *data,
 99		unsigned long *end, int *graph)
100{
101	struct stack_frame *frame = (struct stack_frame *)bp;
102
103	while (valid_stack_ptr(tinfo, stack, sizeof(*stack), end)) {
104		unsigned long addr;
105
106		addr = *stack;
107		if (__kernel_text_address(addr)) {
108			if ((unsigned long) stack == bp + sizeof(long)) {
109				ops->address(data, addr, 1);
110				frame = frame->next_frame;
111				bp = (unsigned long) frame;
112			} else {
113				ops->address(data, addr, 0);
114			}
115			print_ftrace_graph_addr(addr, data, ops, tinfo, graph);
116		}
117		stack++;
118	}
119	return bp;
120}
121EXPORT_SYMBOL_GPL(print_context_stack);
122
123unsigned long
124print_context_stack_bp(struct thread_info *tinfo,
125		       unsigned long *stack, unsigned long bp,
126		       const struct stacktrace_ops *ops, void *data,
127		       unsigned long *end, int *graph)
128{
129	struct stack_frame *frame = (struct stack_frame *)bp;
130	unsigned long *ret_addr = &frame->return_address;
131
132	while (valid_stack_ptr(tinfo, ret_addr, sizeof(*ret_addr), end)) {
133		unsigned long addr = *ret_addr;
134
135		if (!__kernel_text_address(addr))
136			break;
137
138		if (ops->address(data, addr, 1))
139			break;
140		frame = frame->next_frame;
141		ret_addr = &frame->return_address;
142		print_ftrace_graph_addr(addr, data, ops, tinfo, graph);
143	}
144
145	return (unsigned long)frame;
146}
147EXPORT_SYMBOL_GPL(print_context_stack_bp);
148
149static int print_trace_stack(void *data, char *name)
150{
151	printk("%s <%s> ", (char *)data, name);
152	return 0;
 
153}
154
155/*
156 * Print one address/symbol entries per line.
157 */
158static int print_trace_address(void *data, unsigned long addr, int reliable)
159{
160	touch_nmi_watchdog();
161	printk_stack_address(addr, reliable, data);
162	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163}
164
165static const struct stacktrace_ops print_trace_ops = {
166	.stack			= print_trace_stack,
167	.address		= print_trace_address,
168	.walk_stack		= print_context_stack,
169};
170
171void
172show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
173		unsigned long *stack, unsigned long bp, char *log_lvl)
174{
 
 
 
 
 
 
175	printk("%sCall Trace:\n", log_lvl);
176	dump_trace(task, regs, stack, bp, &print_trace_ops, log_lvl);
177}
178
179void show_trace(struct task_struct *task, struct pt_regs *regs,
180		unsigned long *stack, unsigned long bp)
181{
182	show_trace_log_lvl(task, regs, stack, bp, "");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183}
184
185void show_stack(struct task_struct *task, unsigned long *sp)
186{
187	unsigned long bp = 0;
188	unsigned long stack;
189
190	/*
191	 * Stack frames below this one aren't interesting.  Don't show them
192	 * if we're printing for %current.
193	 */
194	if (!sp && (!task || task == current)) {
195		sp = &stack;
196		bp = stack_frame(current, NULL);
197	}
 
198
199	show_stack_log_lvl(task, NULL, sp, bp, "");
 
 
200}
201
202static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
203static int die_owner = -1;
204static unsigned int die_nest_count;
205
206unsigned long oops_begin(void)
207{
208	int cpu;
209	unsigned long flags;
210
211	oops_enter();
212
213	/* racy, but better than risking deadlock. */
214	raw_local_irq_save(flags);
215	cpu = smp_processor_id();
216	if (!arch_spin_trylock(&die_lock)) {
217		if (cpu == die_owner)
218			/* nested oops. should stop eventually */;
219		else
220			arch_spin_lock(&die_lock);
221	}
222	die_nest_count++;
223	die_owner = cpu;
224	console_verbose();
225	bust_spinlocks(1);
226	return flags;
227}
228EXPORT_SYMBOL_GPL(oops_begin);
229NOKPROBE_SYMBOL(oops_begin);
230
 
 
231void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
232{
233	if (regs && kexec_should_crash(current))
234		crash_kexec(regs);
235
236	bust_spinlocks(0);
237	die_owner = -1;
238	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
239	die_nest_count--;
240	if (!die_nest_count)
241		/* Nest count reaches zero, release the lock. */
242		arch_spin_unlock(&die_lock);
243	raw_local_irq_restore(flags);
244	oops_exit();
245
 
 
 
246	if (!signr)
247		return;
248	if (in_interrupt())
249		panic("Fatal exception in interrupt");
250	if (panic_on_oops)
251		panic("Fatal exception");
252	do_exit(signr);
 
 
 
 
 
 
 
 
 
253}
254NOKPROBE_SYMBOL(oops_end);
255
256int __die(const char *str, struct pt_regs *regs, long err)
257{
258#ifdef CONFIG_X86_32
259	unsigned short ss;
260	unsigned long sp;
261#endif
 
 
 
 
 
262	printk(KERN_DEFAULT
263	       "%s: %04lx [#%d] ", str, err & 0xffff, ++die_counter);
264#ifdef CONFIG_PREEMPT
265	printk("PREEMPT ");
266#endif
267#ifdef CONFIG_SMP
268	printk("SMP ");
269#endif
270	if (debug_pagealloc_enabled())
271		printk("DEBUG_PAGEALLOC ");
272#ifdef CONFIG_KASAN
273	printk("KASAN");
274#endif
275	printk("\n");
276	if (notify_die(DIE_OOPS, str, regs, err,
277			current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
278		return 1;
279
280	print_modules();
281	show_regs(regs);
282#ifdef CONFIG_X86_32
283	if (user_mode(regs)) {
284		sp = regs->sp;
285		ss = regs->ss & 0xffff;
286	} else {
287		sp = kernel_stack_pointer(regs);
288		savesegment(ss, ss);
289	}
290	printk(KERN_EMERG "EIP: [<%08lx>] ", regs->ip);
291	print_symbol("%s", regs->ip);
292	printk(" SS:ESP %04x:%08lx\n", ss, sp);
293#else
294	/* Executive summary in case the oops scrolled away */
295	printk(KERN_ALERT "RIP ");
296	printk_address(regs->ip);
297	printk(" RSP <%016lx>\n", regs->sp);
298#endif
299	return 0;
300}
301NOKPROBE_SYMBOL(__die);
302
303/*
304 * This is gone through when something in the kernel has done something bad
305 * and is about to be terminated:
306 */
307void die(const char *str, struct pt_regs *regs, long err)
308{
309	unsigned long flags = oops_begin();
310	int sig = SIGSEGV;
311
312	if (!user_mode(regs))
313		report_bug(regs->ip, regs);
314
315	if (__die(str, regs, err))
316		sig = 0;
317	oops_end(flags, regs, sig);
318}
319
320static int __init kstack_setup(char *s)
321{
322	ssize_t ret;
323	unsigned long val;
324
325	if (!s)
326		return -EINVAL;
327
328	ret = kstrtoul(s, 0, &val);
329	if (ret)
330		return ret;
331	kstack_depth_to_print = val;
332	return 0;
333}
334early_param("kstack", kstack_setup);
335
336static int __init code_bytes_setup(char *s)
337{
338	ssize_t ret;
339	unsigned long val;
340
341	if (!s)
342		return -EINVAL;
343
344	ret = kstrtoul(s, 0, &val);
345	if (ret)
346		return ret;
347
348	code_bytes = val;
349	if (code_bytes > 8192)
350		code_bytes = 8192;
351
352	return 1;
353}
354__setup("code_bytes=", code_bytes_setup);