Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Processor capabilities determination functions.
4 *
5 * Copyright (C) xxxx the Anonymous
6 * Copyright (C) 1994 - 2006 Ralf Baechle
7 * Copyright (C) 2003, 2004 Maciej W. Rozycki
8 * Copyright (C) 2001, 2004, 2011, 2012 MIPS Technologies, Inc.
9 */
10#include <linux/init.h>
11#include <linux/kernel.h>
12#include <linux/ptrace.h>
13#include <linux/smp.h>
14#include <linux/stddef.h>
15#include <linux/export.h>
16
17#include <asm/bugs.h>
18#include <asm/cpu.h>
19#include <asm/cpu-features.h>
20#include <asm/cpu-type.h>
21#include <asm/fpu.h>
22#include <asm/mipsregs.h>
23#include <asm/mipsmtregs.h>
24#include <asm/msa.h>
25#include <asm/watch.h>
26#include <asm/elf.h>
27#include <asm/pgtable-bits.h>
28#include <asm/spram.h>
29#include <linux/uaccess.h>
30
31/* Hardware capabilities */
32unsigned int elf_hwcap __read_mostly;
33EXPORT_SYMBOL_GPL(elf_hwcap);
34
35#ifdef CONFIG_MIPS_FP_SUPPORT
36
37/*
38 * Get the FPU Implementation/Revision.
39 */
40static inline unsigned long cpu_get_fpu_id(void)
41{
42 unsigned long tmp, fpu_id;
43
44 tmp = read_c0_status();
45 __enable_fpu(FPU_AS_IS);
46 fpu_id = read_32bit_cp1_register(CP1_REVISION);
47 write_c0_status(tmp);
48 return fpu_id;
49}
50
51/*
52 * Check if the CPU has an external FPU.
53 */
54static inline int __cpu_has_fpu(void)
55{
56 return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE;
57}
58
59/*
60 * Determine the FCSR mask for FPU hardware.
61 */
62static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c)
63{
64 unsigned long sr, mask, fcsr, fcsr0, fcsr1;
65
66 fcsr = c->fpu_csr31;
67 mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM;
68
69 sr = read_c0_status();
70 __enable_fpu(FPU_AS_IS);
71
72 fcsr0 = fcsr & mask;
73 write_32bit_cp1_register(CP1_STATUS, fcsr0);
74 fcsr0 = read_32bit_cp1_register(CP1_STATUS);
75
76 fcsr1 = fcsr | ~mask;
77 write_32bit_cp1_register(CP1_STATUS, fcsr1);
78 fcsr1 = read_32bit_cp1_register(CP1_STATUS);
79
80 write_32bit_cp1_register(CP1_STATUS, fcsr);
81
82 write_c0_status(sr);
83
84 c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask;
85}
86
87/*
88 * Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes
89 * supported by FPU hardware.
90 */
91static void cpu_set_fpu_2008(struct cpuinfo_mips *c)
92{
93 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
94 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
95 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
96 unsigned long sr, fir, fcsr, fcsr0, fcsr1;
97
98 sr = read_c0_status();
99 __enable_fpu(FPU_AS_IS);
100
101 fir = read_32bit_cp1_register(CP1_REVISION);
102 if (fir & MIPS_FPIR_HAS2008) {
103 fcsr = read_32bit_cp1_register(CP1_STATUS);
104
105 fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
106 write_32bit_cp1_register(CP1_STATUS, fcsr0);
107 fcsr0 = read_32bit_cp1_register(CP1_STATUS);
108
109 fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
110 write_32bit_cp1_register(CP1_STATUS, fcsr1);
111 fcsr1 = read_32bit_cp1_register(CP1_STATUS);
112
113 write_32bit_cp1_register(CP1_STATUS, fcsr);
114
115 if (!(fcsr0 & FPU_CSR_NAN2008))
116 c->options |= MIPS_CPU_NAN_LEGACY;
117 if (fcsr1 & FPU_CSR_NAN2008)
118 c->options |= MIPS_CPU_NAN_2008;
119
120 if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008)
121 c->fpu_msk31 &= ~FPU_CSR_ABS2008;
122 else
123 c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008;
124
125 if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008)
126 c->fpu_msk31 &= ~FPU_CSR_NAN2008;
127 else
128 c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008;
129 } else {
130 c->options |= MIPS_CPU_NAN_LEGACY;
131 }
132
133 write_c0_status(sr);
134 } else {
135 c->options |= MIPS_CPU_NAN_LEGACY;
136 }
137}
138
139/*
140 * IEEE 754 conformance mode to use. Affects the NaN encoding and the
141 * ABS.fmt/NEG.fmt execution mode.
142 */
143static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT;
144
145/*
146 * Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes
147 * to support by the FPU emulator according to the IEEE 754 conformance
148 * mode selected. Note that "relaxed" straps the emulator so that it
149 * allows 2008-NaN binaries even for legacy processors.
150 */
151static void cpu_set_nofpu_2008(struct cpuinfo_mips *c)
152{
153 c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY);
154 c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
155 c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
156
157 switch (ieee754) {
158 case STRICT:
159 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
160 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
161 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
162 c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
163 } else {
164 c->options |= MIPS_CPU_NAN_LEGACY;
165 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
166 }
167 break;
168 case LEGACY:
169 c->options |= MIPS_CPU_NAN_LEGACY;
170 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
171 break;
172 case STD2008:
173 c->options |= MIPS_CPU_NAN_2008;
174 c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
175 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
176 break;
177 case RELAXED:
178 c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
179 break;
180 }
181}
182
183/*
184 * Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
185 * according to the "ieee754=" parameter.
186 */
187static void cpu_set_nan_2008(struct cpuinfo_mips *c)
188{
189 switch (ieee754) {
190 case STRICT:
191 mips_use_nan_legacy = !!cpu_has_nan_legacy;
192 mips_use_nan_2008 = !!cpu_has_nan_2008;
193 break;
194 case LEGACY:
195 mips_use_nan_legacy = !!cpu_has_nan_legacy;
196 mips_use_nan_2008 = !cpu_has_nan_legacy;
197 break;
198 case STD2008:
199 mips_use_nan_legacy = !cpu_has_nan_2008;
200 mips_use_nan_2008 = !!cpu_has_nan_2008;
201 break;
202 case RELAXED:
203 mips_use_nan_legacy = true;
204 mips_use_nan_2008 = true;
205 break;
206 }
207}
208
209/*
210 * IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override
211 * settings:
212 *
213 * strict: accept binaries that request a NaN encoding supported by the FPU
214 * legacy: only accept legacy-NaN binaries
215 * 2008: only accept 2008-NaN binaries
216 * relaxed: accept any binaries regardless of whether supported by the FPU
217 */
218static int __init ieee754_setup(char *s)
219{
220 if (!s)
221 return -1;
222 else if (!strcmp(s, "strict"))
223 ieee754 = STRICT;
224 else if (!strcmp(s, "legacy"))
225 ieee754 = LEGACY;
226 else if (!strcmp(s, "2008"))
227 ieee754 = STD2008;
228 else if (!strcmp(s, "relaxed"))
229 ieee754 = RELAXED;
230 else
231 return -1;
232
233 if (!(boot_cpu_data.options & MIPS_CPU_FPU))
234 cpu_set_nofpu_2008(&boot_cpu_data);
235 cpu_set_nan_2008(&boot_cpu_data);
236
237 return 0;
238}
239
240early_param("ieee754", ieee754_setup);
241
242/*
243 * Set the FIR feature flags for the FPU emulator.
244 */
245static void cpu_set_nofpu_id(struct cpuinfo_mips *c)
246{
247 u32 value;
248
249 value = 0;
250 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
251 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
252 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
253 value |= MIPS_FPIR_D | MIPS_FPIR_S;
254 if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
255 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
256 value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W;
257 if (c->options & MIPS_CPU_NAN_2008)
258 value |= MIPS_FPIR_HAS2008;
259 c->fpu_id = value;
260}
261
262/* Determined FPU emulator mask to use for the boot CPU with "nofpu". */
263static unsigned int mips_nofpu_msk31;
264
265/*
266 * Set options for FPU hardware.
267 */
268static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
269{
270 c->fpu_id = cpu_get_fpu_id();
271 mips_nofpu_msk31 = c->fpu_msk31;
272
273 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
274 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
275 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
276 if (c->fpu_id & MIPS_FPIR_3D)
277 c->ases |= MIPS_ASE_MIPS3D;
278 if (c->fpu_id & MIPS_FPIR_UFRP)
279 c->options |= MIPS_CPU_UFR;
280 if (c->fpu_id & MIPS_FPIR_FREP)
281 c->options |= MIPS_CPU_FRE;
282 }
283
284 cpu_set_fpu_fcsr_mask(c);
285 cpu_set_fpu_2008(c);
286 cpu_set_nan_2008(c);
287}
288
289/*
290 * Set options for the FPU emulator.
291 */
292static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
293{
294 c->options &= ~MIPS_CPU_FPU;
295 c->fpu_msk31 = mips_nofpu_msk31;
296
297 cpu_set_nofpu_2008(c);
298 cpu_set_nan_2008(c);
299 cpu_set_nofpu_id(c);
300}
301
302static int mips_fpu_disabled;
303
304static int __init fpu_disable(char *s)
305{
306 cpu_set_nofpu_opts(&boot_cpu_data);
307 mips_fpu_disabled = 1;
308
309 return 1;
310}
311
312__setup("nofpu", fpu_disable);
313
314#else /* !CONFIG_MIPS_FP_SUPPORT */
315
316#define mips_fpu_disabled 1
317
318static inline unsigned long cpu_get_fpu_id(void)
319{
320 return FPIR_IMP_NONE;
321}
322
323static inline int __cpu_has_fpu(void)
324{
325 return 0;
326}
327
328static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
329{
330 /* no-op */
331}
332
333static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
334{
335 /* no-op */
336}
337
338#endif /* CONFIG_MIPS_FP_SUPPORT */
339
340static inline unsigned long cpu_get_msa_id(void)
341{
342 unsigned long status, msa_id;
343
344 status = read_c0_status();
345 __enable_fpu(FPU_64BIT);
346 enable_msa();
347 msa_id = read_msa_ir();
348 disable_msa();
349 write_c0_status(status);
350 return msa_id;
351}
352
353static int mips_dsp_disabled;
354
355static int __init dsp_disable(char *s)
356{
357 cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
358 mips_dsp_disabled = 1;
359
360 return 1;
361}
362
363__setup("nodsp", dsp_disable);
364
365static int mips_htw_disabled;
366
367static int __init htw_disable(char *s)
368{
369 mips_htw_disabled = 1;
370 cpu_data[0].options &= ~MIPS_CPU_HTW;
371 write_c0_pwctl(read_c0_pwctl() &
372 ~(1 << MIPS_PWCTL_PWEN_SHIFT));
373
374 return 1;
375}
376
377__setup("nohtw", htw_disable);
378
379static int mips_ftlb_disabled;
380static int mips_has_ftlb_configured;
381
382enum ftlb_flags {
383 FTLB_EN = 1 << 0,
384 FTLB_SET_PROB = 1 << 1,
385};
386
387static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags);
388
389static int __init ftlb_disable(char *s)
390{
391 unsigned int config4, mmuextdef;
392
393 /*
394 * If the core hasn't done any FTLB configuration, there is nothing
395 * for us to do here.
396 */
397 if (!mips_has_ftlb_configured)
398 return 1;
399
400 /* Disable it in the boot cpu */
401 if (set_ftlb_enable(&cpu_data[0], 0)) {
402 pr_warn("Can't turn FTLB off\n");
403 return 1;
404 }
405
406 config4 = read_c0_config4();
407
408 /* Check that FTLB has been disabled */
409 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
410 /* MMUSIZEEXT == VTLB ON, FTLB OFF */
411 if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
412 /* This should never happen */
413 pr_warn("FTLB could not be disabled!\n");
414 return 1;
415 }
416
417 mips_ftlb_disabled = 1;
418 mips_has_ftlb_configured = 0;
419
420 /*
421 * noftlb is mainly used for debug purposes so print
422 * an informative message instead of using pr_debug()
423 */
424 pr_info("FTLB has been disabled\n");
425
426 /*
427 * Some of these bits are duplicated in the decode_config4.
428 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
429 * once FTLB has been disabled so undo what decode_config4 did.
430 */
431 cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
432 cpu_data[0].tlbsizeftlbsets;
433 cpu_data[0].tlbsizeftlbsets = 0;
434 cpu_data[0].tlbsizeftlbways = 0;
435
436 return 1;
437}
438
439__setup("noftlb", ftlb_disable);
440
441/*
442 * Check if the CPU has per tc perf counters
443 */
444static inline void cpu_set_mt_per_tc_perf(struct cpuinfo_mips *c)
445{
446 if (read_c0_config7() & MTI_CONF7_PTC)
447 c->options |= MIPS_CPU_MT_PER_TC_PERF_COUNTERS;
448}
449
450static inline void check_errata(void)
451{
452 struct cpuinfo_mips *c = ¤t_cpu_data;
453
454 switch (current_cpu_type()) {
455 case CPU_34K:
456 /*
457 * Erratum "RPS May Cause Incorrect Instruction Execution"
458 * This code only handles VPE0, any SMP/RTOS code
459 * making use of VPE1 will be responsable for that VPE.
460 */
461 if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
462 write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
463 break;
464 default:
465 break;
466 }
467}
468
469void __init check_bugs32(void)
470{
471 check_errata();
472}
473
474/*
475 * Probe whether cpu has config register by trying to play with
476 * alternate cache bit and see whether it matters.
477 * It's used by cpu_probe to distinguish between R3000A and R3081.
478 */
479static inline int cpu_has_confreg(void)
480{
481#ifdef CONFIG_CPU_R3000
482 extern unsigned long r3k_cache_size(unsigned long);
483 unsigned long size1, size2;
484 unsigned long cfg = read_c0_conf();
485
486 size1 = r3k_cache_size(ST0_ISC);
487 write_c0_conf(cfg ^ R30XX_CONF_AC);
488 size2 = r3k_cache_size(ST0_ISC);
489 write_c0_conf(cfg);
490 return size1 != size2;
491#else
492 return 0;
493#endif
494}
495
496static inline void set_elf_platform(int cpu, const char *plat)
497{
498 if (cpu == 0)
499 __elf_platform = plat;
500}
501
502static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
503{
504#ifdef __NEED_VMBITS_PROBE
505 write_c0_entryhi(0x3fffffffffffe000ULL);
506 back_to_back_c0_hazard();
507 c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
508#endif
509}
510
511static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
512{
513 switch (isa) {
514 case MIPS_CPU_ISA_M64R2:
515 c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
516 /* fall through */
517 case MIPS_CPU_ISA_M64R1:
518 c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
519 /* fall through */
520 case MIPS_CPU_ISA_V:
521 c->isa_level |= MIPS_CPU_ISA_V;
522 /* fall through */
523 case MIPS_CPU_ISA_IV:
524 c->isa_level |= MIPS_CPU_ISA_IV;
525 /* fall through */
526 case MIPS_CPU_ISA_III:
527 c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
528 break;
529
530 /* R6 incompatible with everything else */
531 case MIPS_CPU_ISA_M64R6:
532 c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
533 /* fall through */
534 case MIPS_CPU_ISA_M32R6:
535 c->isa_level |= MIPS_CPU_ISA_M32R6;
536 /* Break here so we don't add incompatible ISAs */
537 break;
538 case MIPS_CPU_ISA_M32R2:
539 c->isa_level |= MIPS_CPU_ISA_M32R2;
540 /* fall through */
541 case MIPS_CPU_ISA_M32R1:
542 c->isa_level |= MIPS_CPU_ISA_M32R1;
543 /* fall through */
544 case MIPS_CPU_ISA_II:
545 c->isa_level |= MIPS_CPU_ISA_II;
546 break;
547 }
548}
549
550static char unknown_isa[] = KERN_ERR \
551 "Unsupported ISA type, c0.config0: %d.";
552
553static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
554{
555
556 unsigned int probability = c->tlbsize / c->tlbsizevtlb;
557
558 /*
559 * 0 = All TLBWR instructions go to FTLB
560 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
561 * FTLB and 1 goes to the VTLB.
562 * 2 = 7:1: As above with 7:1 ratio.
563 * 3 = 3:1: As above with 3:1 ratio.
564 *
565 * Use the linear midpoint as the probability threshold.
566 */
567 if (probability >= 12)
568 return 1;
569 else if (probability >= 6)
570 return 2;
571 else
572 /*
573 * So FTLB is less than 4 times bigger than VTLB.
574 * A 3:1 ratio can still be useful though.
575 */
576 return 3;
577}
578
579static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags)
580{
581 unsigned int config;
582
583 /* It's implementation dependent how the FTLB can be enabled */
584 switch (c->cputype) {
585 case CPU_PROAPTIV:
586 case CPU_P5600:
587 case CPU_P6600:
588 /* proAptiv & related cores use Config6 to enable the FTLB */
589 config = read_c0_config6();
590
591 if (flags & FTLB_EN)
592 config |= MIPS_CONF6_FTLBEN;
593 else
594 config &= ~MIPS_CONF6_FTLBEN;
595
596 if (flags & FTLB_SET_PROB) {
597 config &= ~(3 << MIPS_CONF6_FTLBP_SHIFT);
598 config |= calculate_ftlb_probability(c)
599 << MIPS_CONF6_FTLBP_SHIFT;
600 }
601
602 write_c0_config6(config);
603 back_to_back_c0_hazard();
604 break;
605 case CPU_I6400:
606 case CPU_I6500:
607 /* There's no way to disable the FTLB */
608 if (!(flags & FTLB_EN))
609 return 1;
610 return 0;
611 case CPU_LOONGSON3:
612 /* Flush ITLB, DTLB, VTLB and FTLB */
613 write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB |
614 LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB);
615 /* Loongson-3 cores use Config6 to enable the FTLB */
616 config = read_c0_config6();
617 if (flags & FTLB_EN)
618 /* Enable FTLB */
619 write_c0_config6(config & ~MIPS_CONF6_FTLBDIS);
620 else
621 /* Disable FTLB */
622 write_c0_config6(config | MIPS_CONF6_FTLBDIS);
623 break;
624 default:
625 return 1;
626 }
627
628 return 0;
629}
630
631static inline unsigned int decode_config0(struct cpuinfo_mips *c)
632{
633 unsigned int config0;
634 int isa, mt;
635
636 config0 = read_c0_config();
637
638 /*
639 * Look for Standard TLB or Dual VTLB and FTLB
640 */
641 mt = config0 & MIPS_CONF_MT;
642 if (mt == MIPS_CONF_MT_TLB)
643 c->options |= MIPS_CPU_TLB;
644 else if (mt == MIPS_CONF_MT_FTLB)
645 c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
646
647 isa = (config0 & MIPS_CONF_AT) >> 13;
648 switch (isa) {
649 case 0:
650 switch ((config0 & MIPS_CONF_AR) >> 10) {
651 case 0:
652 set_isa(c, MIPS_CPU_ISA_M32R1);
653 break;
654 case 1:
655 set_isa(c, MIPS_CPU_ISA_M32R2);
656 break;
657 case 2:
658 set_isa(c, MIPS_CPU_ISA_M32R6);
659 break;
660 default:
661 goto unknown;
662 }
663 break;
664 case 2:
665 switch ((config0 & MIPS_CONF_AR) >> 10) {
666 case 0:
667 set_isa(c, MIPS_CPU_ISA_M64R1);
668 break;
669 case 1:
670 set_isa(c, MIPS_CPU_ISA_M64R2);
671 break;
672 case 2:
673 set_isa(c, MIPS_CPU_ISA_M64R6);
674 break;
675 default:
676 goto unknown;
677 }
678 break;
679 default:
680 goto unknown;
681 }
682
683 return config0 & MIPS_CONF_M;
684
685unknown:
686 panic(unknown_isa, config0);
687}
688
689static inline unsigned int decode_config1(struct cpuinfo_mips *c)
690{
691 unsigned int config1;
692
693 config1 = read_c0_config1();
694
695 if (config1 & MIPS_CONF1_MD)
696 c->ases |= MIPS_ASE_MDMX;
697 if (config1 & MIPS_CONF1_PC)
698 c->options |= MIPS_CPU_PERF;
699 if (config1 & MIPS_CONF1_WR)
700 c->options |= MIPS_CPU_WATCH;
701 if (config1 & MIPS_CONF1_CA)
702 c->ases |= MIPS_ASE_MIPS16;
703 if (config1 & MIPS_CONF1_EP)
704 c->options |= MIPS_CPU_EJTAG;
705 if (config1 & MIPS_CONF1_FP) {
706 c->options |= MIPS_CPU_FPU;
707 c->options |= MIPS_CPU_32FPR;
708 }
709 if (cpu_has_tlb) {
710 c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
711 c->tlbsizevtlb = c->tlbsize;
712 c->tlbsizeftlbsets = 0;
713 }
714
715 return config1 & MIPS_CONF_M;
716}
717
718static inline unsigned int decode_config2(struct cpuinfo_mips *c)
719{
720 unsigned int config2;
721
722 config2 = read_c0_config2();
723
724 if (config2 & MIPS_CONF2_SL)
725 c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
726
727 return config2 & MIPS_CONF_M;
728}
729
730static inline unsigned int decode_config3(struct cpuinfo_mips *c)
731{
732 unsigned int config3;
733
734 config3 = read_c0_config3();
735
736 if (config3 & MIPS_CONF3_SM) {
737 c->ases |= MIPS_ASE_SMARTMIPS;
738 c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC;
739 }
740 if (config3 & MIPS_CONF3_RXI)
741 c->options |= MIPS_CPU_RIXI;
742 if (config3 & MIPS_CONF3_CTXTC)
743 c->options |= MIPS_CPU_CTXTC;
744 if (config3 & MIPS_CONF3_DSP)
745 c->ases |= MIPS_ASE_DSP;
746 if (config3 & MIPS_CONF3_DSP2P) {
747 c->ases |= MIPS_ASE_DSP2P;
748 if (cpu_has_mips_r6)
749 c->ases |= MIPS_ASE_DSP3;
750 }
751 if (config3 & MIPS_CONF3_VINT)
752 c->options |= MIPS_CPU_VINT;
753 if (config3 & MIPS_CONF3_VEIC)
754 c->options |= MIPS_CPU_VEIC;
755 if (config3 & MIPS_CONF3_LPA)
756 c->options |= MIPS_CPU_LPA;
757 if (config3 & MIPS_CONF3_MT)
758 c->ases |= MIPS_ASE_MIPSMT;
759 if (config3 & MIPS_CONF3_ULRI)
760 c->options |= MIPS_CPU_ULRI;
761 if (config3 & MIPS_CONF3_ISA)
762 c->options |= MIPS_CPU_MICROMIPS;
763 if (config3 & MIPS_CONF3_VZ)
764 c->ases |= MIPS_ASE_VZ;
765 if (config3 & MIPS_CONF3_SC)
766 c->options |= MIPS_CPU_SEGMENTS;
767 if (config3 & MIPS_CONF3_BI)
768 c->options |= MIPS_CPU_BADINSTR;
769 if (config3 & MIPS_CONF3_BP)
770 c->options |= MIPS_CPU_BADINSTRP;
771 if (config3 & MIPS_CONF3_MSA)
772 c->ases |= MIPS_ASE_MSA;
773 if (config3 & MIPS_CONF3_PW) {
774 c->htw_seq = 0;
775 c->options |= MIPS_CPU_HTW;
776 }
777 if (config3 & MIPS_CONF3_CDMM)
778 c->options |= MIPS_CPU_CDMM;
779 if (config3 & MIPS_CONF3_SP)
780 c->options |= MIPS_CPU_SP;
781
782 return config3 & MIPS_CONF_M;
783}
784
785static inline unsigned int decode_config4(struct cpuinfo_mips *c)
786{
787 unsigned int config4;
788 unsigned int newcf4;
789 unsigned int mmuextdef;
790 unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
791 unsigned long asid_mask;
792
793 config4 = read_c0_config4();
794
795 if (cpu_has_tlb) {
796 if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
797 c->options |= MIPS_CPU_TLBINV;
798
799 /*
800 * R6 has dropped the MMUExtDef field from config4.
801 * On R6 the fields always describe the FTLB, and only if it is
802 * present according to Config.MT.
803 */
804 if (!cpu_has_mips_r6)
805 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
806 else if (cpu_has_ftlb)
807 mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
808 else
809 mmuextdef = 0;
810
811 switch (mmuextdef) {
812 case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
813 c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
814 c->tlbsizevtlb = c->tlbsize;
815 break;
816 case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
817 c->tlbsizevtlb +=
818 ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
819 MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
820 c->tlbsize = c->tlbsizevtlb;
821 ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
822 /* fall through */
823 case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
824 if (mips_ftlb_disabled)
825 break;
826 newcf4 = (config4 & ~ftlb_page) |
827 (page_size_ftlb(mmuextdef) <<
828 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
829 write_c0_config4(newcf4);
830 back_to_back_c0_hazard();
831 config4 = read_c0_config4();
832 if (config4 != newcf4) {
833 pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
834 PAGE_SIZE, config4);
835 /* Switch FTLB off */
836 set_ftlb_enable(c, 0);
837 mips_ftlb_disabled = 1;
838 break;
839 }
840 c->tlbsizeftlbsets = 1 <<
841 ((config4 & MIPS_CONF4_FTLBSETS) >>
842 MIPS_CONF4_FTLBSETS_SHIFT);
843 c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
844 MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
845 c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
846 mips_has_ftlb_configured = 1;
847 break;
848 }
849 }
850
851 c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
852 >> MIPS_CONF4_KSCREXIST_SHIFT;
853
854 asid_mask = MIPS_ENTRYHI_ASID;
855 if (config4 & MIPS_CONF4_AE)
856 asid_mask |= MIPS_ENTRYHI_ASIDX;
857 set_cpu_asid_mask(c, asid_mask);
858
859 /*
860 * Warn if the computed ASID mask doesn't match the mask the kernel
861 * is built for. This may indicate either a serious problem or an
862 * easy optimisation opportunity, but either way should be addressed.
863 */
864 WARN_ON(asid_mask != cpu_asid_mask(c));
865
866 return config4 & MIPS_CONF_M;
867}
868
869static inline unsigned int decode_config5(struct cpuinfo_mips *c)
870{
871 unsigned int config5, max_mmid_width;
872 unsigned long asid_mask;
873
874 config5 = read_c0_config5();
875 config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
876
877 if (cpu_has_mips_r6) {
878 if (!__builtin_constant_p(cpu_has_mmid) || cpu_has_mmid)
879 config5 |= MIPS_CONF5_MI;
880 else
881 config5 &= ~MIPS_CONF5_MI;
882 }
883
884 write_c0_config5(config5);
885
886 if (config5 & MIPS_CONF5_EVA)
887 c->options |= MIPS_CPU_EVA;
888 if (config5 & MIPS_CONF5_MRP)
889 c->options |= MIPS_CPU_MAAR;
890 if (config5 & MIPS_CONF5_LLB)
891 c->options |= MIPS_CPU_RW_LLB;
892 if (config5 & MIPS_CONF5_MVH)
893 c->options |= MIPS_CPU_MVH;
894 if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP))
895 c->options |= MIPS_CPU_VP;
896 if (config5 & MIPS_CONF5_CA2)
897 c->ases |= MIPS_ASE_MIPS16E2;
898
899 if (config5 & MIPS_CONF5_CRCP)
900 elf_hwcap |= HWCAP_MIPS_CRC32;
901
902 if (cpu_has_mips_r6) {
903 /* Ensure the write to config5 above takes effect */
904 back_to_back_c0_hazard();
905
906 /* Check whether we successfully enabled MMID support */
907 config5 = read_c0_config5();
908 if (config5 & MIPS_CONF5_MI)
909 c->options |= MIPS_CPU_MMID;
910
911 /*
912 * Warn if we've hardcoded cpu_has_mmid to a value unsuitable
913 * for the CPU we're running on, or if CPUs in an SMP system
914 * have inconsistent MMID support.
915 */
916 WARN_ON(!!cpu_has_mmid != !!(config5 & MIPS_CONF5_MI));
917
918 if (cpu_has_mmid) {
919 write_c0_memorymapid(~0ul);
920 back_to_back_c0_hazard();
921 asid_mask = read_c0_memorymapid();
922
923 /*
924 * We maintain a bitmap to track MMID allocation, and
925 * need a sensible upper bound on the size of that
926 * bitmap. The initial CPU with MMID support (I6500)
927 * supports 16 bit MMIDs, which gives us an 8KiB
928 * bitmap. The architecture recommends that hardware
929 * support 32 bit MMIDs, which would give us a 512MiB
930 * bitmap - that's too big in most cases.
931 *
932 * Cap MMID width at 16 bits for now & we can revisit
933 * this if & when hardware supports anything wider.
934 */
935 max_mmid_width = 16;
936 if (asid_mask > GENMASK(max_mmid_width - 1, 0)) {
937 pr_info("Capping MMID width at %d bits",
938 max_mmid_width);
939 asid_mask = GENMASK(max_mmid_width - 1, 0);
940 }
941
942 set_cpu_asid_mask(c, asid_mask);
943 }
944 }
945
946 return config5 & MIPS_CONF_M;
947}
948
949static void decode_configs(struct cpuinfo_mips *c)
950{
951 int ok;
952
953 /* MIPS32 or MIPS64 compliant CPU. */
954 c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
955 MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
956
957 c->scache.flags = MIPS_CACHE_NOT_PRESENT;
958
959 /* Enable FTLB if present and not disabled */
960 set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN);
961
962 ok = decode_config0(c); /* Read Config registers. */
963 BUG_ON(!ok); /* Arch spec violation! */
964 if (ok)
965 ok = decode_config1(c);
966 if (ok)
967 ok = decode_config2(c);
968 if (ok)
969 ok = decode_config3(c);
970 if (ok)
971 ok = decode_config4(c);
972 if (ok)
973 ok = decode_config5(c);
974
975 /* Probe the EBase.WG bit */
976 if (cpu_has_mips_r2_r6) {
977 u64 ebase;
978 unsigned int status;
979
980 /* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */
981 ebase = cpu_has_mips64r6 ? read_c0_ebase_64()
982 : (s32)read_c0_ebase();
983 if (ebase & MIPS_EBASE_WG) {
984 /* WG bit already set, we can avoid the clumsy probe */
985 c->options |= MIPS_CPU_EBASE_WG;
986 } else {
987 /* Its UNDEFINED to change EBase while BEV=0 */
988 status = read_c0_status();
989 write_c0_status(status | ST0_BEV);
990 irq_enable_hazard();
991 /*
992 * On pre-r6 cores, this may well clobber the upper bits
993 * of EBase. This is hard to avoid without potentially
994 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit.
995 */
996 if (cpu_has_mips64r6)
997 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
998 else
999 write_c0_ebase(ebase | MIPS_EBASE_WG);
1000 back_to_back_c0_hazard();
1001 /* Restore BEV */
1002 write_c0_status(status);
1003 if (read_c0_ebase() & MIPS_EBASE_WG) {
1004 c->options |= MIPS_CPU_EBASE_WG;
1005 write_c0_ebase(ebase);
1006 }
1007 }
1008 }
1009
1010 /* configure the FTLB write probability */
1011 set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB);
1012
1013 mips_probe_watch_registers(c);
1014
1015#ifndef CONFIG_MIPS_CPS
1016 if (cpu_has_mips_r2_r6) {
1017 unsigned int core;
1018
1019 core = get_ebase_cpunum();
1020 if (cpu_has_mipsmt)
1021 core >>= fls(core_nvpes()) - 1;
1022 cpu_set_core(c, core);
1023 }
1024#endif
1025}
1026
1027/*
1028 * Probe for certain guest capabilities by writing config bits and reading back.
1029 * Finally write back the original value.
1030 */
1031#define probe_gc0_config(name, maxconf, bits) \
1032do { \
1033 unsigned int tmp; \
1034 tmp = read_gc0_##name(); \
1035 write_gc0_##name(tmp | (bits)); \
1036 back_to_back_c0_hazard(); \
1037 maxconf = read_gc0_##name(); \
1038 write_gc0_##name(tmp); \
1039} while (0)
1040
1041/*
1042 * Probe for dynamic guest capabilities by changing certain config bits and
1043 * reading back to see if they change. Finally write back the original value.
1044 */
1045#define probe_gc0_config_dyn(name, maxconf, dynconf, bits) \
1046do { \
1047 maxconf = read_gc0_##name(); \
1048 write_gc0_##name(maxconf ^ (bits)); \
1049 back_to_back_c0_hazard(); \
1050 dynconf = maxconf ^ read_gc0_##name(); \
1051 write_gc0_##name(maxconf); \
1052 maxconf |= dynconf; \
1053} while (0)
1054
1055static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c)
1056{
1057 unsigned int config0;
1058
1059 probe_gc0_config(config, config0, MIPS_CONF_M);
1060
1061 if (config0 & MIPS_CONF_M)
1062 c->guest.conf |= BIT(1);
1063 return config0 & MIPS_CONF_M;
1064}
1065
1066static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c)
1067{
1068 unsigned int config1, config1_dyn;
1069
1070 probe_gc0_config_dyn(config1, config1, config1_dyn,
1071 MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR |
1072 MIPS_CONF1_FP);
1073
1074 if (config1 & MIPS_CONF1_FP)
1075 c->guest.options |= MIPS_CPU_FPU;
1076 if (config1_dyn & MIPS_CONF1_FP)
1077 c->guest.options_dyn |= MIPS_CPU_FPU;
1078
1079 if (config1 & MIPS_CONF1_WR)
1080 c->guest.options |= MIPS_CPU_WATCH;
1081 if (config1_dyn & MIPS_CONF1_WR)
1082 c->guest.options_dyn |= MIPS_CPU_WATCH;
1083
1084 if (config1 & MIPS_CONF1_PC)
1085 c->guest.options |= MIPS_CPU_PERF;
1086 if (config1_dyn & MIPS_CONF1_PC)
1087 c->guest.options_dyn |= MIPS_CPU_PERF;
1088
1089 if (config1 & MIPS_CONF_M)
1090 c->guest.conf |= BIT(2);
1091 return config1 & MIPS_CONF_M;
1092}
1093
1094static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c)
1095{
1096 unsigned int config2;
1097
1098 probe_gc0_config(config2, config2, MIPS_CONF_M);
1099
1100 if (config2 & MIPS_CONF_M)
1101 c->guest.conf |= BIT(3);
1102 return config2 & MIPS_CONF_M;
1103}
1104
1105static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c)
1106{
1107 unsigned int config3, config3_dyn;
1108
1109 probe_gc0_config_dyn(config3, config3, config3_dyn,
1110 MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_ULRI |
1111 MIPS_CONF3_CTXTC);
1112
1113 if (config3 & MIPS_CONF3_CTXTC)
1114 c->guest.options |= MIPS_CPU_CTXTC;
1115 if (config3_dyn & MIPS_CONF3_CTXTC)
1116 c->guest.options_dyn |= MIPS_CPU_CTXTC;
1117
1118 if (config3 & MIPS_CONF3_PW)
1119 c->guest.options |= MIPS_CPU_HTW;
1120
1121 if (config3 & MIPS_CONF3_ULRI)
1122 c->guest.options |= MIPS_CPU_ULRI;
1123
1124 if (config3 & MIPS_CONF3_SC)
1125 c->guest.options |= MIPS_CPU_SEGMENTS;
1126
1127 if (config3 & MIPS_CONF3_BI)
1128 c->guest.options |= MIPS_CPU_BADINSTR;
1129 if (config3 & MIPS_CONF3_BP)
1130 c->guest.options |= MIPS_CPU_BADINSTRP;
1131
1132 if (config3 & MIPS_CONF3_MSA)
1133 c->guest.ases |= MIPS_ASE_MSA;
1134 if (config3_dyn & MIPS_CONF3_MSA)
1135 c->guest.ases_dyn |= MIPS_ASE_MSA;
1136
1137 if (config3 & MIPS_CONF_M)
1138 c->guest.conf |= BIT(4);
1139 return config3 & MIPS_CONF_M;
1140}
1141
1142static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c)
1143{
1144 unsigned int config4;
1145
1146 probe_gc0_config(config4, config4,
1147 MIPS_CONF_M | MIPS_CONF4_KSCREXIST);
1148
1149 c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
1150 >> MIPS_CONF4_KSCREXIST_SHIFT;
1151
1152 if (config4 & MIPS_CONF_M)
1153 c->guest.conf |= BIT(5);
1154 return config4 & MIPS_CONF_M;
1155}
1156
1157static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c)
1158{
1159 unsigned int config5, config5_dyn;
1160
1161 probe_gc0_config_dyn(config5, config5, config5_dyn,
1162 MIPS_CONF_M | MIPS_CONF5_MVH | MIPS_CONF5_MRP);
1163
1164 if (config5 & MIPS_CONF5_MRP)
1165 c->guest.options |= MIPS_CPU_MAAR;
1166 if (config5_dyn & MIPS_CONF5_MRP)
1167 c->guest.options_dyn |= MIPS_CPU_MAAR;
1168
1169 if (config5 & MIPS_CONF5_LLB)
1170 c->guest.options |= MIPS_CPU_RW_LLB;
1171
1172 if (config5 & MIPS_CONF5_MVH)
1173 c->guest.options |= MIPS_CPU_MVH;
1174
1175 if (config5 & MIPS_CONF_M)
1176 c->guest.conf |= BIT(6);
1177 return config5 & MIPS_CONF_M;
1178}
1179
1180static inline void decode_guest_configs(struct cpuinfo_mips *c)
1181{
1182 unsigned int ok;
1183
1184 ok = decode_guest_config0(c);
1185 if (ok)
1186 ok = decode_guest_config1(c);
1187 if (ok)
1188 ok = decode_guest_config2(c);
1189 if (ok)
1190 ok = decode_guest_config3(c);
1191 if (ok)
1192 ok = decode_guest_config4(c);
1193 if (ok)
1194 decode_guest_config5(c);
1195}
1196
1197static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c)
1198{
1199 unsigned int guestctl0, temp;
1200
1201 guestctl0 = read_c0_guestctl0();
1202
1203 if (guestctl0 & MIPS_GCTL0_G0E)
1204 c->options |= MIPS_CPU_GUESTCTL0EXT;
1205 if (guestctl0 & MIPS_GCTL0_G1)
1206 c->options |= MIPS_CPU_GUESTCTL1;
1207 if (guestctl0 & MIPS_GCTL0_G2)
1208 c->options |= MIPS_CPU_GUESTCTL2;
1209 if (!(guestctl0 & MIPS_GCTL0_RAD)) {
1210 c->options |= MIPS_CPU_GUESTID;
1211
1212 /*
1213 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0
1214 * first, otherwise all data accesses will be fully virtualised
1215 * as if they were performed by guest mode.
1216 */
1217 write_c0_guestctl1(0);
1218 tlbw_use_hazard();
1219
1220 write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG);
1221 back_to_back_c0_hazard();
1222 temp = read_c0_guestctl0();
1223
1224 if (temp & MIPS_GCTL0_DRG) {
1225 write_c0_guestctl0(guestctl0);
1226 c->options |= MIPS_CPU_DRG;
1227 }
1228 }
1229}
1230
1231static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c)
1232{
1233 if (cpu_has_guestid) {
1234 /* determine the number of bits of GuestID available */
1235 write_c0_guestctl1(MIPS_GCTL1_ID);
1236 back_to_back_c0_hazard();
1237 c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID)
1238 >> MIPS_GCTL1_ID_SHIFT;
1239 write_c0_guestctl1(0);
1240 }
1241}
1242
1243static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c)
1244{
1245 /* determine the number of bits of GTOffset available */
1246 write_c0_gtoffset(0xffffffff);
1247 back_to_back_c0_hazard();
1248 c->gtoffset_mask = read_c0_gtoffset();
1249 write_c0_gtoffset(0);
1250}
1251
1252static inline void cpu_probe_vz(struct cpuinfo_mips *c)
1253{
1254 cpu_probe_guestctl0(c);
1255 if (cpu_has_guestctl1)
1256 cpu_probe_guestctl1(c);
1257
1258 cpu_probe_gtoffset(c);
1259
1260 decode_guest_configs(c);
1261}
1262
1263#define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
1264 | MIPS_CPU_COUNTER)
1265
1266static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
1267{
1268 switch (c->processor_id & PRID_IMP_MASK) {
1269 case PRID_IMP_R2000:
1270 c->cputype = CPU_R2000;
1271 __cpu_name[cpu] = "R2000";
1272 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1273 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1274 MIPS_CPU_NOFPUEX;
1275 if (__cpu_has_fpu())
1276 c->options |= MIPS_CPU_FPU;
1277 c->tlbsize = 64;
1278 break;
1279 case PRID_IMP_R3000:
1280 if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
1281 if (cpu_has_confreg()) {
1282 c->cputype = CPU_R3081E;
1283 __cpu_name[cpu] = "R3081";
1284 } else {
1285 c->cputype = CPU_R3000A;
1286 __cpu_name[cpu] = "R3000A";
1287 }
1288 } else {
1289 c->cputype = CPU_R3000;
1290 __cpu_name[cpu] = "R3000";
1291 }
1292 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1293 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1294 MIPS_CPU_NOFPUEX;
1295 if (__cpu_has_fpu())
1296 c->options |= MIPS_CPU_FPU;
1297 c->tlbsize = 64;
1298 break;
1299 case PRID_IMP_R4000:
1300 if (read_c0_config() & CONF_SC) {
1301 if ((c->processor_id & PRID_REV_MASK) >=
1302 PRID_REV_R4400) {
1303 c->cputype = CPU_R4400PC;
1304 __cpu_name[cpu] = "R4400PC";
1305 } else {
1306 c->cputype = CPU_R4000PC;
1307 __cpu_name[cpu] = "R4000PC";
1308 }
1309 } else {
1310 int cca = read_c0_config() & CONF_CM_CMASK;
1311 int mc;
1312
1313 /*
1314 * SC and MC versions can't be reliably told apart,
1315 * but only the latter support coherent caching
1316 * modes so assume the firmware has set the KSEG0
1317 * coherency attribute reasonably (if uncached, we
1318 * assume SC).
1319 */
1320 switch (cca) {
1321 case CONF_CM_CACHABLE_CE:
1322 case CONF_CM_CACHABLE_COW:
1323 case CONF_CM_CACHABLE_CUW:
1324 mc = 1;
1325 break;
1326 default:
1327 mc = 0;
1328 break;
1329 }
1330 if ((c->processor_id & PRID_REV_MASK) >=
1331 PRID_REV_R4400) {
1332 c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
1333 __cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
1334 } else {
1335 c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
1336 __cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
1337 }
1338 }
1339
1340 set_isa(c, MIPS_CPU_ISA_III);
1341 c->fpu_msk31 |= FPU_CSR_CONDX;
1342 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1343 MIPS_CPU_WATCH | MIPS_CPU_VCE |
1344 MIPS_CPU_LLSC;
1345 c->tlbsize = 48;
1346 break;
1347 case PRID_IMP_VR41XX:
1348 set_isa(c, MIPS_CPU_ISA_III);
1349 c->fpu_msk31 |= FPU_CSR_CONDX;
1350 c->options = R4K_OPTS;
1351 c->tlbsize = 32;
1352 switch (c->processor_id & 0xf0) {
1353 case PRID_REV_VR4111:
1354 c->cputype = CPU_VR4111;
1355 __cpu_name[cpu] = "NEC VR4111";
1356 break;
1357 case PRID_REV_VR4121:
1358 c->cputype = CPU_VR4121;
1359 __cpu_name[cpu] = "NEC VR4121";
1360 break;
1361 case PRID_REV_VR4122:
1362 if ((c->processor_id & 0xf) < 0x3) {
1363 c->cputype = CPU_VR4122;
1364 __cpu_name[cpu] = "NEC VR4122";
1365 } else {
1366 c->cputype = CPU_VR4181A;
1367 __cpu_name[cpu] = "NEC VR4181A";
1368 }
1369 break;
1370 case PRID_REV_VR4130:
1371 if ((c->processor_id & 0xf) < 0x4) {
1372 c->cputype = CPU_VR4131;
1373 __cpu_name[cpu] = "NEC VR4131";
1374 } else {
1375 c->cputype = CPU_VR4133;
1376 c->options |= MIPS_CPU_LLSC;
1377 __cpu_name[cpu] = "NEC VR4133";
1378 }
1379 break;
1380 default:
1381 printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n");
1382 c->cputype = CPU_VR41XX;
1383 __cpu_name[cpu] = "NEC Vr41xx";
1384 break;
1385 }
1386 break;
1387 case PRID_IMP_R4600:
1388 c->cputype = CPU_R4600;
1389 __cpu_name[cpu] = "R4600";
1390 set_isa(c, MIPS_CPU_ISA_III);
1391 c->fpu_msk31 |= FPU_CSR_CONDX;
1392 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1393 MIPS_CPU_LLSC;
1394 c->tlbsize = 48;
1395 break;
1396 #if 0
1397 case PRID_IMP_R4650:
1398 /*
1399 * This processor doesn't have an MMU, so it's not
1400 * "real easy" to run Linux on it. It is left purely
1401 * for documentation. Commented out because it shares
1402 * it's c0_prid id number with the TX3900.
1403 */
1404 c->cputype = CPU_R4650;
1405 __cpu_name[cpu] = "R4650";
1406 set_isa(c, MIPS_CPU_ISA_III);
1407 c->fpu_msk31 |= FPU_CSR_CONDX;
1408 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1409 c->tlbsize = 48;
1410 break;
1411 #endif
1412 case PRID_IMP_TX39:
1413 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1414 c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE;
1415
1416 if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) {
1417 c->cputype = CPU_TX3927;
1418 __cpu_name[cpu] = "TX3927";
1419 c->tlbsize = 64;
1420 } else {
1421 switch (c->processor_id & PRID_REV_MASK) {
1422 case PRID_REV_TX3912:
1423 c->cputype = CPU_TX3912;
1424 __cpu_name[cpu] = "TX3912";
1425 c->tlbsize = 32;
1426 break;
1427 case PRID_REV_TX3922:
1428 c->cputype = CPU_TX3922;
1429 __cpu_name[cpu] = "TX3922";
1430 c->tlbsize = 64;
1431 break;
1432 }
1433 }
1434 break;
1435 case PRID_IMP_R4700:
1436 c->cputype = CPU_R4700;
1437 __cpu_name[cpu] = "R4700";
1438 set_isa(c, MIPS_CPU_ISA_III);
1439 c->fpu_msk31 |= FPU_CSR_CONDX;
1440 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1441 MIPS_CPU_LLSC;
1442 c->tlbsize = 48;
1443 break;
1444 case PRID_IMP_TX49:
1445 c->cputype = CPU_TX49XX;
1446 __cpu_name[cpu] = "R49XX";
1447 set_isa(c, MIPS_CPU_ISA_III);
1448 c->fpu_msk31 |= FPU_CSR_CONDX;
1449 c->options = R4K_OPTS | MIPS_CPU_LLSC;
1450 if (!(c->processor_id & 0x08))
1451 c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1452 c->tlbsize = 48;
1453 break;
1454 case PRID_IMP_R5000:
1455 c->cputype = CPU_R5000;
1456 __cpu_name[cpu] = "R5000";
1457 set_isa(c, MIPS_CPU_ISA_IV);
1458 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1459 MIPS_CPU_LLSC;
1460 c->tlbsize = 48;
1461 break;
1462 case PRID_IMP_R5500:
1463 c->cputype = CPU_R5500;
1464 __cpu_name[cpu] = "R5500";
1465 set_isa(c, MIPS_CPU_ISA_IV);
1466 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1467 MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1468 c->tlbsize = 48;
1469 break;
1470 case PRID_IMP_NEVADA:
1471 c->cputype = CPU_NEVADA;
1472 __cpu_name[cpu] = "Nevada";
1473 set_isa(c, MIPS_CPU_ISA_IV);
1474 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1475 MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1476 c->tlbsize = 48;
1477 break;
1478 case PRID_IMP_RM7000:
1479 c->cputype = CPU_RM7000;
1480 __cpu_name[cpu] = "RM7000";
1481 set_isa(c, MIPS_CPU_ISA_IV);
1482 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1483 MIPS_CPU_LLSC;
1484 /*
1485 * Undocumented RM7000: Bit 29 in the info register of
1486 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1487 * entries.
1488 *
1489 * 29 1 => 64 entry JTLB
1490 * 0 => 48 entry JTLB
1491 */
1492 c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1493 break;
1494 case PRID_IMP_R10000:
1495 c->cputype = CPU_R10000;
1496 __cpu_name[cpu] = "R10000";
1497 set_isa(c, MIPS_CPU_ISA_IV);
1498 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1499 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1500 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1501 MIPS_CPU_LLSC;
1502 c->tlbsize = 64;
1503 break;
1504 case PRID_IMP_R12000:
1505 c->cputype = CPU_R12000;
1506 __cpu_name[cpu] = "R12000";
1507 set_isa(c, MIPS_CPU_ISA_IV);
1508 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1509 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1510 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1511 MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1512 c->tlbsize = 64;
1513 break;
1514 case PRID_IMP_R14000:
1515 if (((c->processor_id >> 4) & 0x0f) > 2) {
1516 c->cputype = CPU_R16000;
1517 __cpu_name[cpu] = "R16000";
1518 } else {
1519 c->cputype = CPU_R14000;
1520 __cpu_name[cpu] = "R14000";
1521 }
1522 set_isa(c, MIPS_CPU_ISA_IV);
1523 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1524 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1525 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1526 MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1527 c->tlbsize = 64;
1528 break;
1529 case PRID_IMP_LOONGSON_64: /* Loongson-2/3 */
1530 switch (c->processor_id & PRID_REV_MASK) {
1531 case PRID_REV_LOONGSON2E:
1532 c->cputype = CPU_LOONGSON2;
1533 __cpu_name[cpu] = "ICT Loongson-2";
1534 set_elf_platform(cpu, "loongson2e");
1535 set_isa(c, MIPS_CPU_ISA_III);
1536 c->fpu_msk31 |= FPU_CSR_CONDX;
1537 break;
1538 case PRID_REV_LOONGSON2F:
1539 c->cputype = CPU_LOONGSON2;
1540 __cpu_name[cpu] = "ICT Loongson-2";
1541 set_elf_platform(cpu, "loongson2f");
1542 set_isa(c, MIPS_CPU_ISA_III);
1543 c->fpu_msk31 |= FPU_CSR_CONDX;
1544 break;
1545 case PRID_REV_LOONGSON3A_R1:
1546 c->cputype = CPU_LOONGSON3;
1547 __cpu_name[cpu] = "ICT Loongson-3";
1548 set_elf_platform(cpu, "loongson3a");
1549 set_isa(c, MIPS_CPU_ISA_M64R1);
1550 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1551 MIPS_ASE_LOONGSON_EXT);
1552 break;
1553 case PRID_REV_LOONGSON3B_R1:
1554 case PRID_REV_LOONGSON3B_R2:
1555 c->cputype = CPU_LOONGSON3;
1556 __cpu_name[cpu] = "ICT Loongson-3";
1557 set_elf_platform(cpu, "loongson3b");
1558 set_isa(c, MIPS_CPU_ISA_M64R1);
1559 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1560 MIPS_ASE_LOONGSON_EXT);
1561 break;
1562 }
1563
1564 c->options = R4K_OPTS |
1565 MIPS_CPU_FPU | MIPS_CPU_LLSC |
1566 MIPS_CPU_32FPR;
1567 c->tlbsize = 64;
1568 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1569 break;
1570 case PRID_IMP_LOONGSON_32: /* Loongson-1 */
1571 decode_configs(c);
1572
1573 c->cputype = CPU_LOONGSON1;
1574
1575 switch (c->processor_id & PRID_REV_MASK) {
1576 case PRID_REV_LOONGSON1B:
1577 __cpu_name[cpu] = "Loongson 1B";
1578 break;
1579 }
1580
1581 break;
1582 }
1583}
1584
1585static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1586{
1587 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1588 switch (c->processor_id & PRID_IMP_MASK) {
1589 case PRID_IMP_QEMU_GENERIC:
1590 c->writecombine = _CACHE_UNCACHED;
1591 c->cputype = CPU_QEMU_GENERIC;
1592 __cpu_name[cpu] = "MIPS GENERIC QEMU";
1593 break;
1594 case PRID_IMP_4KC:
1595 c->cputype = CPU_4KC;
1596 c->writecombine = _CACHE_UNCACHED;
1597 __cpu_name[cpu] = "MIPS 4Kc";
1598 break;
1599 case PRID_IMP_4KEC:
1600 case PRID_IMP_4KECR2:
1601 c->cputype = CPU_4KEC;
1602 c->writecombine = _CACHE_UNCACHED;
1603 __cpu_name[cpu] = "MIPS 4KEc";
1604 break;
1605 case PRID_IMP_4KSC:
1606 case PRID_IMP_4KSD:
1607 c->cputype = CPU_4KSC;
1608 c->writecombine = _CACHE_UNCACHED;
1609 __cpu_name[cpu] = "MIPS 4KSc";
1610 break;
1611 case PRID_IMP_5KC:
1612 c->cputype = CPU_5KC;
1613 c->writecombine = _CACHE_UNCACHED;
1614 __cpu_name[cpu] = "MIPS 5Kc";
1615 break;
1616 case PRID_IMP_5KE:
1617 c->cputype = CPU_5KE;
1618 c->writecombine = _CACHE_UNCACHED;
1619 __cpu_name[cpu] = "MIPS 5KE";
1620 break;
1621 case PRID_IMP_20KC:
1622 c->cputype = CPU_20KC;
1623 c->writecombine = _CACHE_UNCACHED;
1624 __cpu_name[cpu] = "MIPS 20Kc";
1625 break;
1626 case PRID_IMP_24K:
1627 c->cputype = CPU_24K;
1628 c->writecombine = _CACHE_UNCACHED;
1629 __cpu_name[cpu] = "MIPS 24Kc";
1630 break;
1631 case PRID_IMP_24KE:
1632 c->cputype = CPU_24K;
1633 c->writecombine = _CACHE_UNCACHED;
1634 __cpu_name[cpu] = "MIPS 24KEc";
1635 break;
1636 case PRID_IMP_25KF:
1637 c->cputype = CPU_25KF;
1638 c->writecombine = _CACHE_UNCACHED;
1639 __cpu_name[cpu] = "MIPS 25Kc";
1640 break;
1641 case PRID_IMP_34K:
1642 c->cputype = CPU_34K;
1643 c->writecombine = _CACHE_UNCACHED;
1644 __cpu_name[cpu] = "MIPS 34Kc";
1645 cpu_set_mt_per_tc_perf(c);
1646 break;
1647 case PRID_IMP_74K:
1648 c->cputype = CPU_74K;
1649 c->writecombine = _CACHE_UNCACHED;
1650 __cpu_name[cpu] = "MIPS 74Kc";
1651 break;
1652 case PRID_IMP_M14KC:
1653 c->cputype = CPU_M14KC;
1654 c->writecombine = _CACHE_UNCACHED;
1655 __cpu_name[cpu] = "MIPS M14Kc";
1656 break;
1657 case PRID_IMP_M14KEC:
1658 c->cputype = CPU_M14KEC;
1659 c->writecombine = _CACHE_UNCACHED;
1660 __cpu_name[cpu] = "MIPS M14KEc";
1661 break;
1662 case PRID_IMP_1004K:
1663 c->cputype = CPU_1004K;
1664 c->writecombine = _CACHE_UNCACHED;
1665 __cpu_name[cpu] = "MIPS 1004Kc";
1666 cpu_set_mt_per_tc_perf(c);
1667 break;
1668 case PRID_IMP_1074K:
1669 c->cputype = CPU_1074K;
1670 c->writecombine = _CACHE_UNCACHED;
1671 __cpu_name[cpu] = "MIPS 1074Kc";
1672 break;
1673 case PRID_IMP_INTERAPTIV_UP:
1674 c->cputype = CPU_INTERAPTIV;
1675 __cpu_name[cpu] = "MIPS interAptiv";
1676 cpu_set_mt_per_tc_perf(c);
1677 break;
1678 case PRID_IMP_INTERAPTIV_MP:
1679 c->cputype = CPU_INTERAPTIV;
1680 __cpu_name[cpu] = "MIPS interAptiv (multi)";
1681 cpu_set_mt_per_tc_perf(c);
1682 break;
1683 case PRID_IMP_PROAPTIV_UP:
1684 c->cputype = CPU_PROAPTIV;
1685 __cpu_name[cpu] = "MIPS proAptiv";
1686 break;
1687 case PRID_IMP_PROAPTIV_MP:
1688 c->cputype = CPU_PROAPTIV;
1689 __cpu_name[cpu] = "MIPS proAptiv (multi)";
1690 break;
1691 case PRID_IMP_P5600:
1692 c->cputype = CPU_P5600;
1693 __cpu_name[cpu] = "MIPS P5600";
1694 break;
1695 case PRID_IMP_P6600:
1696 c->cputype = CPU_P6600;
1697 __cpu_name[cpu] = "MIPS P6600";
1698 break;
1699 case PRID_IMP_I6400:
1700 c->cputype = CPU_I6400;
1701 __cpu_name[cpu] = "MIPS I6400";
1702 break;
1703 case PRID_IMP_I6500:
1704 c->cputype = CPU_I6500;
1705 __cpu_name[cpu] = "MIPS I6500";
1706 break;
1707 case PRID_IMP_M5150:
1708 c->cputype = CPU_M5150;
1709 __cpu_name[cpu] = "MIPS M5150";
1710 break;
1711 case PRID_IMP_M6250:
1712 c->cputype = CPU_M6250;
1713 __cpu_name[cpu] = "MIPS M6250";
1714 break;
1715 }
1716
1717 decode_configs(c);
1718
1719 spram_config();
1720
1721 switch (__get_cpu_type(c->cputype)) {
1722 case CPU_I6500:
1723 c->options |= MIPS_CPU_SHARED_FTLB_ENTRIES;
1724 /* fall-through */
1725 case CPU_I6400:
1726 c->options |= MIPS_CPU_SHARED_FTLB_RAM;
1727 /* fall-through */
1728 default:
1729 break;
1730 }
1731}
1732
1733static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1734{
1735 decode_configs(c);
1736 switch (c->processor_id & PRID_IMP_MASK) {
1737 case PRID_IMP_AU1_REV1:
1738 case PRID_IMP_AU1_REV2:
1739 c->cputype = CPU_ALCHEMY;
1740 switch ((c->processor_id >> 24) & 0xff) {
1741 case 0:
1742 __cpu_name[cpu] = "Au1000";
1743 break;
1744 case 1:
1745 __cpu_name[cpu] = "Au1500";
1746 break;
1747 case 2:
1748 __cpu_name[cpu] = "Au1100";
1749 break;
1750 case 3:
1751 __cpu_name[cpu] = "Au1550";
1752 break;
1753 case 4:
1754 __cpu_name[cpu] = "Au1200";
1755 if ((c->processor_id & PRID_REV_MASK) == 2)
1756 __cpu_name[cpu] = "Au1250";
1757 break;
1758 case 5:
1759 __cpu_name[cpu] = "Au1210";
1760 break;
1761 default:
1762 __cpu_name[cpu] = "Au1xxx";
1763 break;
1764 }
1765 break;
1766 }
1767}
1768
1769static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1770{
1771 decode_configs(c);
1772
1773 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1774 switch (c->processor_id & PRID_IMP_MASK) {
1775 case PRID_IMP_SB1:
1776 c->cputype = CPU_SB1;
1777 __cpu_name[cpu] = "SiByte SB1";
1778 /* FPU in pass1 is known to have issues. */
1779 if ((c->processor_id & PRID_REV_MASK) < 0x02)
1780 c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1781 break;
1782 case PRID_IMP_SB1A:
1783 c->cputype = CPU_SB1A;
1784 __cpu_name[cpu] = "SiByte SB1A";
1785 break;
1786 }
1787}
1788
1789static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1790{
1791 decode_configs(c);
1792 switch (c->processor_id & PRID_IMP_MASK) {
1793 case PRID_IMP_SR71000:
1794 c->cputype = CPU_SR71000;
1795 __cpu_name[cpu] = "Sandcraft SR71000";
1796 c->scache.ways = 8;
1797 c->tlbsize = 64;
1798 break;
1799 }
1800}
1801
1802static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1803{
1804 decode_configs(c);
1805 switch (c->processor_id & PRID_IMP_MASK) {
1806 case PRID_IMP_PR4450:
1807 c->cputype = CPU_PR4450;
1808 __cpu_name[cpu] = "Philips PR4450";
1809 set_isa(c, MIPS_CPU_ISA_M32R1);
1810 break;
1811 }
1812}
1813
1814static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1815{
1816 decode_configs(c);
1817 switch (c->processor_id & PRID_IMP_MASK) {
1818 case PRID_IMP_BMIPS32_REV4:
1819 case PRID_IMP_BMIPS32_REV8:
1820 c->cputype = CPU_BMIPS32;
1821 __cpu_name[cpu] = "Broadcom BMIPS32";
1822 set_elf_platform(cpu, "bmips32");
1823 break;
1824 case PRID_IMP_BMIPS3300:
1825 case PRID_IMP_BMIPS3300_ALT:
1826 case PRID_IMP_BMIPS3300_BUG:
1827 c->cputype = CPU_BMIPS3300;
1828 __cpu_name[cpu] = "Broadcom BMIPS3300";
1829 set_elf_platform(cpu, "bmips3300");
1830 break;
1831 case PRID_IMP_BMIPS43XX: {
1832 int rev = c->processor_id & PRID_REV_MASK;
1833
1834 if (rev >= PRID_REV_BMIPS4380_LO &&
1835 rev <= PRID_REV_BMIPS4380_HI) {
1836 c->cputype = CPU_BMIPS4380;
1837 __cpu_name[cpu] = "Broadcom BMIPS4380";
1838 set_elf_platform(cpu, "bmips4380");
1839 c->options |= MIPS_CPU_RIXI;
1840 } else {
1841 c->cputype = CPU_BMIPS4350;
1842 __cpu_name[cpu] = "Broadcom BMIPS4350";
1843 set_elf_platform(cpu, "bmips4350");
1844 }
1845 break;
1846 }
1847 case PRID_IMP_BMIPS5000:
1848 case PRID_IMP_BMIPS5200:
1849 c->cputype = CPU_BMIPS5000;
1850 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200)
1851 __cpu_name[cpu] = "Broadcom BMIPS5200";
1852 else
1853 __cpu_name[cpu] = "Broadcom BMIPS5000";
1854 set_elf_platform(cpu, "bmips5000");
1855 c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI;
1856 break;
1857 }
1858}
1859
1860static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1861{
1862 decode_configs(c);
1863 switch (c->processor_id & PRID_IMP_MASK) {
1864 case PRID_IMP_CAVIUM_CN38XX:
1865 case PRID_IMP_CAVIUM_CN31XX:
1866 case PRID_IMP_CAVIUM_CN30XX:
1867 c->cputype = CPU_CAVIUM_OCTEON;
1868 __cpu_name[cpu] = "Cavium Octeon";
1869 goto platform;
1870 case PRID_IMP_CAVIUM_CN58XX:
1871 case PRID_IMP_CAVIUM_CN56XX:
1872 case PRID_IMP_CAVIUM_CN50XX:
1873 case PRID_IMP_CAVIUM_CN52XX:
1874 c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1875 __cpu_name[cpu] = "Cavium Octeon+";
1876platform:
1877 set_elf_platform(cpu, "octeon");
1878 break;
1879 case PRID_IMP_CAVIUM_CN61XX:
1880 case PRID_IMP_CAVIUM_CN63XX:
1881 case PRID_IMP_CAVIUM_CN66XX:
1882 case PRID_IMP_CAVIUM_CN68XX:
1883 case PRID_IMP_CAVIUM_CNF71XX:
1884 c->cputype = CPU_CAVIUM_OCTEON2;
1885 __cpu_name[cpu] = "Cavium Octeon II";
1886 set_elf_platform(cpu, "octeon2");
1887 break;
1888 case PRID_IMP_CAVIUM_CN70XX:
1889 case PRID_IMP_CAVIUM_CN73XX:
1890 case PRID_IMP_CAVIUM_CNF75XX:
1891 case PRID_IMP_CAVIUM_CN78XX:
1892 c->cputype = CPU_CAVIUM_OCTEON3;
1893 __cpu_name[cpu] = "Cavium Octeon III";
1894 set_elf_platform(cpu, "octeon3");
1895 break;
1896 default:
1897 printk(KERN_INFO "Unknown Octeon chip!\n");
1898 c->cputype = CPU_UNKNOWN;
1899 break;
1900 }
1901}
1902
1903static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu)
1904{
1905 switch (c->processor_id & PRID_IMP_MASK) {
1906 case PRID_IMP_LOONGSON_64: /* Loongson-2/3 */
1907 switch (c->processor_id & PRID_REV_MASK) {
1908 case PRID_REV_LOONGSON3A_R2_0:
1909 case PRID_REV_LOONGSON3A_R2_1:
1910 c->cputype = CPU_LOONGSON3;
1911 __cpu_name[cpu] = "ICT Loongson-3";
1912 set_elf_platform(cpu, "loongson3a");
1913 set_isa(c, MIPS_CPU_ISA_M64R2);
1914 break;
1915 case PRID_REV_LOONGSON3A_R3_0:
1916 case PRID_REV_LOONGSON3A_R3_1:
1917 c->cputype = CPU_LOONGSON3;
1918 __cpu_name[cpu] = "ICT Loongson-3";
1919 set_elf_platform(cpu, "loongson3a");
1920 set_isa(c, MIPS_CPU_ISA_M64R2);
1921 break;
1922 }
1923
1924 decode_configs(c);
1925 c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
1926 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1927 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1928 MIPS_ASE_LOONGSON_EXT | MIPS_ASE_LOONGSON_EXT2);
1929 break;
1930 default:
1931 panic("Unknown Loongson Processor ID!");
1932 break;
1933 }
1934}
1935
1936static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
1937{
1938 decode_configs(c);
1939
1940 /*
1941 * XBurst misses a config2 register, so config3 decode was skipped in
1942 * decode_configs().
1943 */
1944 decode_config3(c);
1945
1946 /* XBurst does not implement the CP0 counter. */
1947 c->options &= ~MIPS_CPU_COUNTER;
1948 BUG_ON(!__builtin_constant_p(cpu_has_counter) || cpu_has_counter);
1949
1950 switch (c->processor_id & PRID_IMP_MASK) {
1951 case PRID_IMP_XBURST:
1952 c->cputype = CPU_XBURST;
1953 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1954 __cpu_name[cpu] = "Ingenic JZRISC";
1955 /*
1956 * The XBurst core by default attempts to avoid branch target
1957 * buffer lookups by detecting & special casing loops. This
1958 * feature will cause BogoMIPS and lpj calculate in error.
1959 * Set cp0 config7 bit 4 to disable this feature.
1960 */
1961 set_c0_config7(MIPS_CONF7_BTB_LOOP_EN);
1962 break;
1963 default:
1964 panic("Unknown Ingenic Processor ID!");
1965 break;
1966 }
1967
1968 /*
1969 * The config0 register in the Xburst CPUs with a processor ID of
1970 * PRID_COMP_INGENIC_D0 report themselves as MIPS32r2 compatible,
1971 * but they don't actually support this ISA.
1972 */
1973 if ((c->processor_id & PRID_COMP_MASK) == PRID_COMP_INGENIC_D0)
1974 c->isa_level &= ~MIPS_CPU_ISA_M32R2;
1975}
1976
1977static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu)
1978{
1979 decode_configs(c);
1980
1981 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) {
1982 c->cputype = CPU_ALCHEMY;
1983 __cpu_name[cpu] = "Au1300";
1984 /* following stuff is not for Alchemy */
1985 return;
1986 }
1987
1988 c->options = (MIPS_CPU_TLB |
1989 MIPS_CPU_4KEX |
1990 MIPS_CPU_COUNTER |
1991 MIPS_CPU_DIVEC |
1992 MIPS_CPU_WATCH |
1993 MIPS_CPU_EJTAG |
1994 MIPS_CPU_LLSC);
1995
1996 switch (c->processor_id & PRID_IMP_MASK) {
1997 case PRID_IMP_NETLOGIC_XLP2XX:
1998 case PRID_IMP_NETLOGIC_XLP9XX:
1999 case PRID_IMP_NETLOGIC_XLP5XX:
2000 c->cputype = CPU_XLP;
2001 __cpu_name[cpu] = "Broadcom XLPII";
2002 break;
2003
2004 case PRID_IMP_NETLOGIC_XLP8XX:
2005 case PRID_IMP_NETLOGIC_XLP3XX:
2006 c->cputype = CPU_XLP;
2007 __cpu_name[cpu] = "Netlogic XLP";
2008 break;
2009
2010 case PRID_IMP_NETLOGIC_XLR732:
2011 case PRID_IMP_NETLOGIC_XLR716:
2012 case PRID_IMP_NETLOGIC_XLR532:
2013 case PRID_IMP_NETLOGIC_XLR308:
2014 case PRID_IMP_NETLOGIC_XLR532C:
2015 case PRID_IMP_NETLOGIC_XLR516C:
2016 case PRID_IMP_NETLOGIC_XLR508C:
2017 case PRID_IMP_NETLOGIC_XLR308C:
2018 c->cputype = CPU_XLR;
2019 __cpu_name[cpu] = "Netlogic XLR";
2020 break;
2021
2022 case PRID_IMP_NETLOGIC_XLS608:
2023 case PRID_IMP_NETLOGIC_XLS408:
2024 case PRID_IMP_NETLOGIC_XLS404:
2025 case PRID_IMP_NETLOGIC_XLS208:
2026 case PRID_IMP_NETLOGIC_XLS204:
2027 case PRID_IMP_NETLOGIC_XLS108:
2028 case PRID_IMP_NETLOGIC_XLS104:
2029 case PRID_IMP_NETLOGIC_XLS616B:
2030 case PRID_IMP_NETLOGIC_XLS608B:
2031 case PRID_IMP_NETLOGIC_XLS416B:
2032 case PRID_IMP_NETLOGIC_XLS412B:
2033 case PRID_IMP_NETLOGIC_XLS408B:
2034 case PRID_IMP_NETLOGIC_XLS404B:
2035 c->cputype = CPU_XLR;
2036 __cpu_name[cpu] = "Netlogic XLS";
2037 break;
2038
2039 default:
2040 pr_info("Unknown Netlogic chip id [%02x]!\n",
2041 c->processor_id);
2042 c->cputype = CPU_XLR;
2043 break;
2044 }
2045
2046 if (c->cputype == CPU_XLP) {
2047 set_isa(c, MIPS_CPU_ISA_M64R2);
2048 c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK);
2049 /* This will be updated again after all threads are woken up */
2050 c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1;
2051 } else {
2052 set_isa(c, MIPS_CPU_ISA_M64R1);
2053 c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1;
2054 }
2055 c->kscratch_mask = 0xf;
2056}
2057
2058#ifdef CONFIG_64BIT
2059/* For use by uaccess.h */
2060u64 __ua_limit;
2061EXPORT_SYMBOL(__ua_limit);
2062#endif
2063
2064const char *__cpu_name[NR_CPUS];
2065const char *__elf_platform;
2066
2067void cpu_probe(void)
2068{
2069 struct cpuinfo_mips *c = ¤t_cpu_data;
2070 unsigned int cpu = smp_processor_id();
2071
2072 /*
2073 * Set a default elf platform, cpu probe may later
2074 * overwrite it with a more precise value
2075 */
2076 set_elf_platform(cpu, "mips");
2077
2078 c->processor_id = PRID_IMP_UNKNOWN;
2079 c->fpu_id = FPIR_IMP_NONE;
2080 c->cputype = CPU_UNKNOWN;
2081 c->writecombine = _CACHE_UNCACHED;
2082
2083 c->fpu_csr31 = FPU_CSR_RN;
2084 c->fpu_msk31 = FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
2085
2086 c->processor_id = read_c0_prid();
2087 switch (c->processor_id & PRID_COMP_MASK) {
2088 case PRID_COMP_LEGACY:
2089 cpu_probe_legacy(c, cpu);
2090 break;
2091 case PRID_COMP_MIPS:
2092 cpu_probe_mips(c, cpu);
2093 break;
2094 case PRID_COMP_ALCHEMY:
2095 cpu_probe_alchemy(c, cpu);
2096 break;
2097 case PRID_COMP_SIBYTE:
2098 cpu_probe_sibyte(c, cpu);
2099 break;
2100 case PRID_COMP_BROADCOM:
2101 cpu_probe_broadcom(c, cpu);
2102 break;
2103 case PRID_COMP_SANDCRAFT:
2104 cpu_probe_sandcraft(c, cpu);
2105 break;
2106 case PRID_COMP_NXP:
2107 cpu_probe_nxp(c, cpu);
2108 break;
2109 case PRID_COMP_CAVIUM:
2110 cpu_probe_cavium(c, cpu);
2111 break;
2112 case PRID_COMP_LOONGSON:
2113 cpu_probe_loongson(c, cpu);
2114 break;
2115 case PRID_COMP_INGENIC_D0:
2116 case PRID_COMP_INGENIC_D1:
2117 case PRID_COMP_INGENIC_E1:
2118 cpu_probe_ingenic(c, cpu);
2119 break;
2120 case PRID_COMP_NETLOGIC:
2121 cpu_probe_netlogic(c, cpu);
2122 break;
2123 }
2124
2125 BUG_ON(!__cpu_name[cpu]);
2126 BUG_ON(c->cputype == CPU_UNKNOWN);
2127
2128 /*
2129 * Platform code can force the cpu type to optimize code
2130 * generation. In that case be sure the cpu type is correctly
2131 * manually setup otherwise it could trigger some nasty bugs.
2132 */
2133 BUG_ON(current_cpu_type() != c->cputype);
2134
2135 if (cpu_has_rixi) {
2136 /* Enable the RIXI exceptions */
2137 set_c0_pagegrain(PG_IEC);
2138 back_to_back_c0_hazard();
2139 /* Verify the IEC bit is set */
2140 if (read_c0_pagegrain() & PG_IEC)
2141 c->options |= MIPS_CPU_RIXIEX;
2142 }
2143
2144 if (mips_fpu_disabled)
2145 c->options &= ~MIPS_CPU_FPU;
2146
2147 if (mips_dsp_disabled)
2148 c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
2149
2150 if (mips_htw_disabled) {
2151 c->options &= ~MIPS_CPU_HTW;
2152 write_c0_pwctl(read_c0_pwctl() &
2153 ~(1 << MIPS_PWCTL_PWEN_SHIFT));
2154 }
2155
2156 if (c->options & MIPS_CPU_FPU)
2157 cpu_set_fpu_opts(c);
2158 else
2159 cpu_set_nofpu_opts(c);
2160
2161 if (cpu_has_bp_ghist)
2162 write_c0_r10k_diag(read_c0_r10k_diag() |
2163 R10K_DIAG_E_GHIST);
2164
2165 if (cpu_has_mips_r2_r6) {
2166 c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
2167 /* R2 has Performance Counter Interrupt indicator */
2168 c->options |= MIPS_CPU_PCI;
2169 }
2170 else
2171 c->srsets = 1;
2172
2173 if (cpu_has_mips_r6)
2174 elf_hwcap |= HWCAP_MIPS_R6;
2175
2176 if (cpu_has_msa) {
2177 c->msa_id = cpu_get_msa_id();
2178 WARN(c->msa_id & MSA_IR_WRPF,
2179 "Vector register partitioning unimplemented!");
2180 elf_hwcap |= HWCAP_MIPS_MSA;
2181 }
2182
2183 if (cpu_has_mips16)
2184 elf_hwcap |= HWCAP_MIPS_MIPS16;
2185
2186 if (cpu_has_mdmx)
2187 elf_hwcap |= HWCAP_MIPS_MDMX;
2188
2189 if (cpu_has_mips3d)
2190 elf_hwcap |= HWCAP_MIPS_MIPS3D;
2191
2192 if (cpu_has_smartmips)
2193 elf_hwcap |= HWCAP_MIPS_SMARTMIPS;
2194
2195 if (cpu_has_dsp)
2196 elf_hwcap |= HWCAP_MIPS_DSP;
2197
2198 if (cpu_has_dsp2)
2199 elf_hwcap |= HWCAP_MIPS_DSP2;
2200
2201 if (cpu_has_dsp3)
2202 elf_hwcap |= HWCAP_MIPS_DSP3;
2203
2204 if (cpu_has_mips16e2)
2205 elf_hwcap |= HWCAP_MIPS_MIPS16E2;
2206
2207 if (cpu_has_loongson_mmi)
2208 elf_hwcap |= HWCAP_LOONGSON_MMI;
2209
2210 if (cpu_has_loongson_ext)
2211 elf_hwcap |= HWCAP_LOONGSON_EXT;
2212
2213 if (cpu_has_loongson_ext2)
2214 elf_hwcap |= HWCAP_LOONGSON_EXT2;
2215
2216 if (cpu_has_vz)
2217 cpu_probe_vz(c);
2218
2219 cpu_probe_vmbits(c);
2220
2221#ifdef CONFIG_64BIT
2222 if (cpu == 0)
2223 __ua_limit = ~((1ull << cpu_vmbits) - 1);
2224#endif
2225}
2226
2227void cpu_report(void)
2228{
2229 struct cpuinfo_mips *c = ¤t_cpu_data;
2230
2231 pr_info("CPU%d revision is: %08x (%s)\n",
2232 smp_processor_id(), c->processor_id, cpu_name_string());
2233 if (c->options & MIPS_CPU_FPU)
2234 printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
2235 if (cpu_has_msa)
2236 pr_info("MSA revision is: %08x\n", c->msa_id);
2237}
2238
2239void cpu_set_cluster(struct cpuinfo_mips *cpuinfo, unsigned int cluster)
2240{
2241 /* Ensure the core number fits in the field */
2242 WARN_ON(cluster > (MIPS_GLOBALNUMBER_CLUSTER >>
2243 MIPS_GLOBALNUMBER_CLUSTER_SHF));
2244
2245 cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CLUSTER;
2246 cpuinfo->globalnumber |= cluster << MIPS_GLOBALNUMBER_CLUSTER_SHF;
2247}
2248
2249void cpu_set_core(struct cpuinfo_mips *cpuinfo, unsigned int core)
2250{
2251 /* Ensure the core number fits in the field */
2252 WARN_ON(core > (MIPS_GLOBALNUMBER_CORE >> MIPS_GLOBALNUMBER_CORE_SHF));
2253
2254 cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CORE;
2255 cpuinfo->globalnumber |= core << MIPS_GLOBALNUMBER_CORE_SHF;
2256}
2257
2258void cpu_set_vpe_id(struct cpuinfo_mips *cpuinfo, unsigned int vpe)
2259{
2260 /* Ensure the VP(E) ID fits in the field */
2261 WARN_ON(vpe > (MIPS_GLOBALNUMBER_VP >> MIPS_GLOBALNUMBER_VP_SHF));
2262
2263 /* Ensure we're not using VP(E)s without support */
2264 WARN_ON(vpe && !IS_ENABLED(CONFIG_MIPS_MT_SMP) &&
2265 !IS_ENABLED(CONFIG_CPU_MIPSR6));
2266
2267 cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_VP;
2268 cpuinfo->globalnumber |= vpe << MIPS_GLOBALNUMBER_VP_SHF;
2269}
1/*
2 * Processor capabilities determination functions.
3 *
4 * Copyright (C) xxxx the Anonymous
5 * Copyright (C) 1994 - 2006 Ralf Baechle
6 * Copyright (C) 2003, 2004 Maciej W. Rozycki
7 * Copyright (C) 2001, 2004 MIPS Inc.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/ptrace.h>
17#include <linux/smp.h>
18#include <linux/stddef.h>
19#include <linux/module.h>
20
21#include <asm/bugs.h>
22#include <asm/cpu.h>
23#include <asm/fpu.h>
24#include <asm/mipsregs.h>
25#include <asm/system.h>
26#include <asm/watch.h>
27#include <asm/spram.h>
28#include <asm/uaccess.h>
29
30/*
31 * Not all of the MIPS CPUs have the "wait" instruction available. Moreover,
32 * the implementation of the "wait" feature differs between CPU families. This
33 * points to the function that implements CPU specific wait.
34 * The wait instruction stops the pipeline and reduces the power consumption of
35 * the CPU very much.
36 */
37void (*cpu_wait)(void);
38EXPORT_SYMBOL(cpu_wait);
39
40static void r3081_wait(void)
41{
42 unsigned long cfg = read_c0_conf();
43 write_c0_conf(cfg | R30XX_CONF_HALT);
44}
45
46static void r39xx_wait(void)
47{
48 local_irq_disable();
49 if (!need_resched())
50 write_c0_conf(read_c0_conf() | TX39_CONF_HALT);
51 local_irq_enable();
52}
53
54extern void r4k_wait(void);
55
56/*
57 * This variant is preferable as it allows testing need_resched and going to
58 * sleep depending on the outcome atomically. Unfortunately the "It is
59 * implementation-dependent whether the pipeline restarts when a non-enabled
60 * interrupt is requested" restriction in the MIPS32/MIPS64 architecture makes
61 * using this version a gamble.
62 */
63void r4k_wait_irqoff(void)
64{
65 local_irq_disable();
66 if (!need_resched())
67 __asm__(" .set push \n"
68 " .set mips3 \n"
69 " wait \n"
70 " .set pop \n");
71 local_irq_enable();
72 __asm__(" .globl __pastwait \n"
73 "__pastwait: \n");
74}
75
76/*
77 * The RM7000 variant has to handle erratum 38. The workaround is to not
78 * have any pending stores when the WAIT instruction is executed.
79 */
80static void rm7k_wait_irqoff(void)
81{
82 local_irq_disable();
83 if (!need_resched())
84 __asm__(
85 " .set push \n"
86 " .set mips3 \n"
87 " .set noat \n"
88 " mfc0 $1, $12 \n"
89 " sync \n"
90 " mtc0 $1, $12 # stalls until W stage \n"
91 " wait \n"
92 " mtc0 $1, $12 # stalls until W stage \n"
93 " .set pop \n");
94 local_irq_enable();
95}
96
97/*
98 * The Au1xxx wait is available only if using 32khz counter or
99 * external timer source, but specifically not CP0 Counter.
100 * alchemy/common/time.c may override cpu_wait!
101 */
102static void au1k_wait(void)
103{
104 __asm__(" .set mips3 \n"
105 " cache 0x14, 0(%0) \n"
106 " cache 0x14, 32(%0) \n"
107 " sync \n"
108 " nop \n"
109 " wait \n"
110 " nop \n"
111 " nop \n"
112 " nop \n"
113 " nop \n"
114 " .set mips0 \n"
115 : : "r" (au1k_wait));
116}
117
118static int __initdata nowait;
119
120static int __init wait_disable(char *s)
121{
122 nowait = 1;
123
124 return 1;
125}
126
127__setup("nowait", wait_disable);
128
129static int __cpuinitdata mips_fpu_disabled;
130
131static int __init fpu_disable(char *s)
132{
133 cpu_data[0].options &= ~MIPS_CPU_FPU;
134 mips_fpu_disabled = 1;
135
136 return 1;
137}
138
139__setup("nofpu", fpu_disable);
140
141int __cpuinitdata mips_dsp_disabled;
142
143static int __init dsp_disable(char *s)
144{
145 cpu_data[0].ases &= ~MIPS_ASE_DSP;
146 mips_dsp_disabled = 1;
147
148 return 1;
149}
150
151__setup("nodsp", dsp_disable);
152
153void __init check_wait(void)
154{
155 struct cpuinfo_mips *c = ¤t_cpu_data;
156
157 if (nowait) {
158 printk("Wait instruction disabled.\n");
159 return;
160 }
161
162 switch (c->cputype) {
163 case CPU_R3081:
164 case CPU_R3081E:
165 cpu_wait = r3081_wait;
166 break;
167 case CPU_TX3927:
168 cpu_wait = r39xx_wait;
169 break;
170 case CPU_R4200:
171/* case CPU_R4300: */
172 case CPU_R4600:
173 case CPU_R4640:
174 case CPU_R4650:
175 case CPU_R4700:
176 case CPU_R5000:
177 case CPU_R5500:
178 case CPU_NEVADA:
179 case CPU_4KC:
180 case CPU_4KEC:
181 case CPU_4KSC:
182 case CPU_5KC:
183 case CPU_25KF:
184 case CPU_PR4450:
185 case CPU_BMIPS3300:
186 case CPU_BMIPS4350:
187 case CPU_BMIPS4380:
188 case CPU_BMIPS5000:
189 case CPU_CAVIUM_OCTEON:
190 case CPU_CAVIUM_OCTEON_PLUS:
191 case CPU_CAVIUM_OCTEON2:
192 case CPU_JZRISC:
193 cpu_wait = r4k_wait;
194 break;
195
196 case CPU_RM7000:
197 cpu_wait = rm7k_wait_irqoff;
198 break;
199
200 case CPU_24K:
201 case CPU_34K:
202 case CPU_1004K:
203 cpu_wait = r4k_wait;
204 if (read_c0_config7() & MIPS_CONF7_WII)
205 cpu_wait = r4k_wait_irqoff;
206 break;
207
208 case CPU_74K:
209 cpu_wait = r4k_wait;
210 if ((c->processor_id & 0xff) >= PRID_REV_ENCODE_332(2, 1, 0))
211 cpu_wait = r4k_wait_irqoff;
212 break;
213
214 case CPU_TX49XX:
215 cpu_wait = r4k_wait_irqoff;
216 break;
217 case CPU_ALCHEMY:
218 cpu_wait = au1k_wait;
219 break;
220 case CPU_20KC:
221 /*
222 * WAIT on Rev1.0 has E1, E2, E3 and E16.
223 * WAIT on Rev2.0 and Rev3.0 has E16.
224 * Rev3.1 WAIT is nop, why bother
225 */
226 if ((c->processor_id & 0xff) <= 0x64)
227 break;
228
229 /*
230 * Another rev is incremeting c0_count at a reduced clock
231 * rate while in WAIT mode. So we basically have the choice
232 * between using the cp0 timer as clocksource or avoiding
233 * the WAIT instruction. Until more details are known,
234 * disable the use of WAIT for 20Kc entirely.
235 cpu_wait = r4k_wait;
236 */
237 break;
238 case CPU_RM9000:
239 if ((c->processor_id & 0x00ff) >= 0x40)
240 cpu_wait = r4k_wait;
241 break;
242 default:
243 break;
244 }
245}
246
247static inline void check_errata(void)
248{
249 struct cpuinfo_mips *c = ¤t_cpu_data;
250
251 switch (c->cputype) {
252 case CPU_34K:
253 /*
254 * Erratum "RPS May Cause Incorrect Instruction Execution"
255 * This code only handles VPE0, any SMP/SMTC/RTOS code
256 * making use of VPE1 will be responsable for that VPE.
257 */
258 if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
259 write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
260 break;
261 default:
262 break;
263 }
264}
265
266void __init check_bugs32(void)
267{
268 check_errata();
269}
270
271/*
272 * Probe whether cpu has config register by trying to play with
273 * alternate cache bit and see whether it matters.
274 * It's used by cpu_probe to distinguish between R3000A and R3081.
275 */
276static inline int cpu_has_confreg(void)
277{
278#ifdef CONFIG_CPU_R3000
279 extern unsigned long r3k_cache_size(unsigned long);
280 unsigned long size1, size2;
281 unsigned long cfg = read_c0_conf();
282
283 size1 = r3k_cache_size(ST0_ISC);
284 write_c0_conf(cfg ^ R30XX_CONF_AC);
285 size2 = r3k_cache_size(ST0_ISC);
286 write_c0_conf(cfg);
287 return size1 != size2;
288#else
289 return 0;
290#endif
291}
292
293static inline void set_elf_platform(int cpu, const char *plat)
294{
295 if (cpu == 0)
296 __elf_platform = plat;
297}
298
299/*
300 * Get the FPU Implementation/Revision.
301 */
302static inline unsigned long cpu_get_fpu_id(void)
303{
304 unsigned long tmp, fpu_id;
305
306 tmp = read_c0_status();
307 __enable_fpu();
308 fpu_id = read_32bit_cp1_register(CP1_REVISION);
309 write_c0_status(tmp);
310 return fpu_id;
311}
312
313/*
314 * Check the CPU has an FPU the official way.
315 */
316static inline int __cpu_has_fpu(void)
317{
318 return ((cpu_get_fpu_id() & 0xff00) != FPIR_IMP_NONE);
319}
320
321static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
322{
323#ifdef __NEED_VMBITS_PROBE
324 write_c0_entryhi(0x3fffffffffffe000ULL);
325 back_to_back_c0_hazard();
326 c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
327#endif
328}
329
330#define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
331 | MIPS_CPU_COUNTER)
332
333static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
334{
335 switch (c->processor_id & 0xff00) {
336 case PRID_IMP_R2000:
337 c->cputype = CPU_R2000;
338 __cpu_name[cpu] = "R2000";
339 c->isa_level = MIPS_CPU_ISA_I;
340 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
341 MIPS_CPU_NOFPUEX;
342 if (__cpu_has_fpu())
343 c->options |= MIPS_CPU_FPU;
344 c->tlbsize = 64;
345 break;
346 case PRID_IMP_R3000:
347 if ((c->processor_id & 0xff) == PRID_REV_R3000A) {
348 if (cpu_has_confreg()) {
349 c->cputype = CPU_R3081E;
350 __cpu_name[cpu] = "R3081";
351 } else {
352 c->cputype = CPU_R3000A;
353 __cpu_name[cpu] = "R3000A";
354 }
355 break;
356 } else {
357 c->cputype = CPU_R3000;
358 __cpu_name[cpu] = "R3000";
359 }
360 c->isa_level = MIPS_CPU_ISA_I;
361 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
362 MIPS_CPU_NOFPUEX;
363 if (__cpu_has_fpu())
364 c->options |= MIPS_CPU_FPU;
365 c->tlbsize = 64;
366 break;
367 case PRID_IMP_R4000:
368 if (read_c0_config() & CONF_SC) {
369 if ((c->processor_id & 0xff) >= PRID_REV_R4400) {
370 c->cputype = CPU_R4400PC;
371 __cpu_name[cpu] = "R4400PC";
372 } else {
373 c->cputype = CPU_R4000PC;
374 __cpu_name[cpu] = "R4000PC";
375 }
376 } else {
377 if ((c->processor_id & 0xff) >= PRID_REV_R4400) {
378 c->cputype = CPU_R4400SC;
379 __cpu_name[cpu] = "R4400SC";
380 } else {
381 c->cputype = CPU_R4000SC;
382 __cpu_name[cpu] = "R4000SC";
383 }
384 }
385
386 c->isa_level = MIPS_CPU_ISA_III;
387 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
388 MIPS_CPU_WATCH | MIPS_CPU_VCE |
389 MIPS_CPU_LLSC;
390 c->tlbsize = 48;
391 break;
392 case PRID_IMP_VR41XX:
393 switch (c->processor_id & 0xf0) {
394 case PRID_REV_VR4111:
395 c->cputype = CPU_VR4111;
396 __cpu_name[cpu] = "NEC VR4111";
397 break;
398 case PRID_REV_VR4121:
399 c->cputype = CPU_VR4121;
400 __cpu_name[cpu] = "NEC VR4121";
401 break;
402 case PRID_REV_VR4122:
403 if ((c->processor_id & 0xf) < 0x3) {
404 c->cputype = CPU_VR4122;
405 __cpu_name[cpu] = "NEC VR4122";
406 } else {
407 c->cputype = CPU_VR4181A;
408 __cpu_name[cpu] = "NEC VR4181A";
409 }
410 break;
411 case PRID_REV_VR4130:
412 if ((c->processor_id & 0xf) < 0x4) {
413 c->cputype = CPU_VR4131;
414 __cpu_name[cpu] = "NEC VR4131";
415 } else {
416 c->cputype = CPU_VR4133;
417 __cpu_name[cpu] = "NEC VR4133";
418 }
419 break;
420 default:
421 printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n");
422 c->cputype = CPU_VR41XX;
423 __cpu_name[cpu] = "NEC Vr41xx";
424 break;
425 }
426 c->isa_level = MIPS_CPU_ISA_III;
427 c->options = R4K_OPTS;
428 c->tlbsize = 32;
429 break;
430 case PRID_IMP_R4300:
431 c->cputype = CPU_R4300;
432 __cpu_name[cpu] = "R4300";
433 c->isa_level = MIPS_CPU_ISA_III;
434 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
435 MIPS_CPU_LLSC;
436 c->tlbsize = 32;
437 break;
438 case PRID_IMP_R4600:
439 c->cputype = CPU_R4600;
440 __cpu_name[cpu] = "R4600";
441 c->isa_level = MIPS_CPU_ISA_III;
442 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
443 MIPS_CPU_LLSC;
444 c->tlbsize = 48;
445 break;
446 #if 0
447 case PRID_IMP_R4650:
448 /*
449 * This processor doesn't have an MMU, so it's not
450 * "real easy" to run Linux on it. It is left purely
451 * for documentation. Commented out because it shares
452 * it's c0_prid id number with the TX3900.
453 */
454 c->cputype = CPU_R4650;
455 __cpu_name[cpu] = "R4650";
456 c->isa_level = MIPS_CPU_ISA_III;
457 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
458 c->tlbsize = 48;
459 break;
460 #endif
461 case PRID_IMP_TX39:
462 c->isa_level = MIPS_CPU_ISA_I;
463 c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE;
464
465 if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) {
466 c->cputype = CPU_TX3927;
467 __cpu_name[cpu] = "TX3927";
468 c->tlbsize = 64;
469 } else {
470 switch (c->processor_id & 0xff) {
471 case PRID_REV_TX3912:
472 c->cputype = CPU_TX3912;
473 __cpu_name[cpu] = "TX3912";
474 c->tlbsize = 32;
475 break;
476 case PRID_REV_TX3922:
477 c->cputype = CPU_TX3922;
478 __cpu_name[cpu] = "TX3922";
479 c->tlbsize = 64;
480 break;
481 }
482 }
483 break;
484 case PRID_IMP_R4700:
485 c->cputype = CPU_R4700;
486 __cpu_name[cpu] = "R4700";
487 c->isa_level = MIPS_CPU_ISA_III;
488 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
489 MIPS_CPU_LLSC;
490 c->tlbsize = 48;
491 break;
492 case PRID_IMP_TX49:
493 c->cputype = CPU_TX49XX;
494 __cpu_name[cpu] = "R49XX";
495 c->isa_level = MIPS_CPU_ISA_III;
496 c->options = R4K_OPTS | MIPS_CPU_LLSC;
497 if (!(c->processor_id & 0x08))
498 c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
499 c->tlbsize = 48;
500 break;
501 case PRID_IMP_R5000:
502 c->cputype = CPU_R5000;
503 __cpu_name[cpu] = "R5000";
504 c->isa_level = MIPS_CPU_ISA_IV;
505 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
506 MIPS_CPU_LLSC;
507 c->tlbsize = 48;
508 break;
509 case PRID_IMP_R5432:
510 c->cputype = CPU_R5432;
511 __cpu_name[cpu] = "R5432";
512 c->isa_level = MIPS_CPU_ISA_IV;
513 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
514 MIPS_CPU_WATCH | MIPS_CPU_LLSC;
515 c->tlbsize = 48;
516 break;
517 case PRID_IMP_R5500:
518 c->cputype = CPU_R5500;
519 __cpu_name[cpu] = "R5500";
520 c->isa_level = MIPS_CPU_ISA_IV;
521 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
522 MIPS_CPU_WATCH | MIPS_CPU_LLSC;
523 c->tlbsize = 48;
524 break;
525 case PRID_IMP_NEVADA:
526 c->cputype = CPU_NEVADA;
527 __cpu_name[cpu] = "Nevada";
528 c->isa_level = MIPS_CPU_ISA_IV;
529 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
530 MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
531 c->tlbsize = 48;
532 break;
533 case PRID_IMP_R6000:
534 c->cputype = CPU_R6000;
535 __cpu_name[cpu] = "R6000";
536 c->isa_level = MIPS_CPU_ISA_II;
537 c->options = MIPS_CPU_TLB | MIPS_CPU_FPU |
538 MIPS_CPU_LLSC;
539 c->tlbsize = 32;
540 break;
541 case PRID_IMP_R6000A:
542 c->cputype = CPU_R6000A;
543 __cpu_name[cpu] = "R6000A";
544 c->isa_level = MIPS_CPU_ISA_II;
545 c->options = MIPS_CPU_TLB | MIPS_CPU_FPU |
546 MIPS_CPU_LLSC;
547 c->tlbsize = 32;
548 break;
549 case PRID_IMP_RM7000:
550 c->cputype = CPU_RM7000;
551 __cpu_name[cpu] = "RM7000";
552 c->isa_level = MIPS_CPU_ISA_IV;
553 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
554 MIPS_CPU_LLSC;
555 /*
556 * Undocumented RM7000: Bit 29 in the info register of
557 * the RM7000 v2.0 indicates if the TLB has 48 or 64
558 * entries.
559 *
560 * 29 1 => 64 entry JTLB
561 * 0 => 48 entry JTLB
562 */
563 c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
564 break;
565 case PRID_IMP_RM9000:
566 c->cputype = CPU_RM9000;
567 __cpu_name[cpu] = "RM9000";
568 c->isa_level = MIPS_CPU_ISA_IV;
569 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
570 MIPS_CPU_LLSC;
571 /*
572 * Bit 29 in the info register of the RM9000
573 * indicates if the TLB has 48 or 64 entries.
574 *
575 * 29 1 => 64 entry JTLB
576 * 0 => 48 entry JTLB
577 */
578 c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
579 break;
580 case PRID_IMP_R8000:
581 c->cputype = CPU_R8000;
582 __cpu_name[cpu] = "RM8000";
583 c->isa_level = MIPS_CPU_ISA_IV;
584 c->options = MIPS_CPU_TLB | MIPS_CPU_4KEX |
585 MIPS_CPU_FPU | MIPS_CPU_32FPR |
586 MIPS_CPU_LLSC;
587 c->tlbsize = 384; /* has weird TLB: 3-way x 128 */
588 break;
589 case PRID_IMP_R10000:
590 c->cputype = CPU_R10000;
591 __cpu_name[cpu] = "R10000";
592 c->isa_level = MIPS_CPU_ISA_IV;
593 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
594 MIPS_CPU_FPU | MIPS_CPU_32FPR |
595 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
596 MIPS_CPU_LLSC;
597 c->tlbsize = 64;
598 break;
599 case PRID_IMP_R12000:
600 c->cputype = CPU_R12000;
601 __cpu_name[cpu] = "R12000";
602 c->isa_level = MIPS_CPU_ISA_IV;
603 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
604 MIPS_CPU_FPU | MIPS_CPU_32FPR |
605 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
606 MIPS_CPU_LLSC;
607 c->tlbsize = 64;
608 break;
609 case PRID_IMP_R14000:
610 c->cputype = CPU_R14000;
611 __cpu_name[cpu] = "R14000";
612 c->isa_level = MIPS_CPU_ISA_IV;
613 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
614 MIPS_CPU_FPU | MIPS_CPU_32FPR |
615 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
616 MIPS_CPU_LLSC;
617 c->tlbsize = 64;
618 break;
619 case PRID_IMP_LOONGSON2:
620 c->cputype = CPU_LOONGSON2;
621 __cpu_name[cpu] = "ICT Loongson-2";
622
623 switch (c->processor_id & PRID_REV_MASK) {
624 case PRID_REV_LOONGSON2E:
625 set_elf_platform(cpu, "loongson2e");
626 break;
627 case PRID_REV_LOONGSON2F:
628 set_elf_platform(cpu, "loongson2f");
629 break;
630 }
631
632 c->isa_level = MIPS_CPU_ISA_III;
633 c->options = R4K_OPTS |
634 MIPS_CPU_FPU | MIPS_CPU_LLSC |
635 MIPS_CPU_32FPR;
636 c->tlbsize = 64;
637 break;
638 }
639}
640
641static char unknown_isa[] __cpuinitdata = KERN_ERR \
642 "Unsupported ISA type, c0.config0: %d.";
643
644static inline unsigned int decode_config0(struct cpuinfo_mips *c)
645{
646 unsigned int config0;
647 int isa;
648
649 config0 = read_c0_config();
650
651 if (((config0 & MIPS_CONF_MT) >> 7) == 1)
652 c->options |= MIPS_CPU_TLB;
653 isa = (config0 & MIPS_CONF_AT) >> 13;
654 switch (isa) {
655 case 0:
656 switch ((config0 & MIPS_CONF_AR) >> 10) {
657 case 0:
658 c->isa_level = MIPS_CPU_ISA_M32R1;
659 break;
660 case 1:
661 c->isa_level = MIPS_CPU_ISA_M32R2;
662 break;
663 default:
664 goto unknown;
665 }
666 break;
667 case 2:
668 switch ((config0 & MIPS_CONF_AR) >> 10) {
669 case 0:
670 c->isa_level = MIPS_CPU_ISA_M64R1;
671 break;
672 case 1:
673 c->isa_level = MIPS_CPU_ISA_M64R2;
674 break;
675 default:
676 goto unknown;
677 }
678 break;
679 default:
680 goto unknown;
681 }
682
683 return config0 & MIPS_CONF_M;
684
685unknown:
686 panic(unknown_isa, config0);
687}
688
689static inline unsigned int decode_config1(struct cpuinfo_mips *c)
690{
691 unsigned int config1;
692
693 config1 = read_c0_config1();
694
695 if (config1 & MIPS_CONF1_MD)
696 c->ases |= MIPS_ASE_MDMX;
697 if (config1 & MIPS_CONF1_WR)
698 c->options |= MIPS_CPU_WATCH;
699 if (config1 & MIPS_CONF1_CA)
700 c->ases |= MIPS_ASE_MIPS16;
701 if (config1 & MIPS_CONF1_EP)
702 c->options |= MIPS_CPU_EJTAG;
703 if (config1 & MIPS_CONF1_FP) {
704 c->options |= MIPS_CPU_FPU;
705 c->options |= MIPS_CPU_32FPR;
706 }
707 if (cpu_has_tlb)
708 c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
709
710 return config1 & MIPS_CONF_M;
711}
712
713static inline unsigned int decode_config2(struct cpuinfo_mips *c)
714{
715 unsigned int config2;
716
717 config2 = read_c0_config2();
718
719 if (config2 & MIPS_CONF2_SL)
720 c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
721
722 return config2 & MIPS_CONF_M;
723}
724
725static inline unsigned int decode_config3(struct cpuinfo_mips *c)
726{
727 unsigned int config3;
728
729 config3 = read_c0_config3();
730
731 if (config3 & MIPS_CONF3_SM)
732 c->ases |= MIPS_ASE_SMARTMIPS;
733 if (config3 & MIPS_CONF3_DSP)
734 c->ases |= MIPS_ASE_DSP;
735 if (config3 & MIPS_CONF3_VINT)
736 c->options |= MIPS_CPU_VINT;
737 if (config3 & MIPS_CONF3_VEIC)
738 c->options |= MIPS_CPU_VEIC;
739 if (config3 & MIPS_CONF3_MT)
740 c->ases |= MIPS_ASE_MIPSMT;
741 if (config3 & MIPS_CONF3_ULRI)
742 c->options |= MIPS_CPU_ULRI;
743
744 return config3 & MIPS_CONF_M;
745}
746
747static inline unsigned int decode_config4(struct cpuinfo_mips *c)
748{
749 unsigned int config4;
750
751 config4 = read_c0_config4();
752
753 if ((config4 & MIPS_CONF4_MMUEXTDEF) == MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT
754 && cpu_has_tlb)
755 c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
756
757 c->kscratch_mask = (config4 >> 16) & 0xff;
758
759 return config4 & MIPS_CONF_M;
760}
761
762static void __cpuinit decode_configs(struct cpuinfo_mips *c)
763{
764 int ok;
765
766 /* MIPS32 or MIPS64 compliant CPU. */
767 c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
768 MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
769
770 c->scache.flags = MIPS_CACHE_NOT_PRESENT;
771
772 ok = decode_config0(c); /* Read Config registers. */
773 BUG_ON(!ok); /* Arch spec violation! */
774 if (ok)
775 ok = decode_config1(c);
776 if (ok)
777 ok = decode_config2(c);
778 if (ok)
779 ok = decode_config3(c);
780 if (ok)
781 ok = decode_config4(c);
782
783 mips_probe_watch_registers(c);
784
785 if (cpu_has_mips_r2)
786 c->core = read_c0_ebase() & 0x3ff;
787}
788
789static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
790{
791 decode_configs(c);
792 switch (c->processor_id & 0xff00) {
793 case PRID_IMP_4KC:
794 c->cputype = CPU_4KC;
795 __cpu_name[cpu] = "MIPS 4Kc";
796 break;
797 case PRID_IMP_4KEC:
798 case PRID_IMP_4KECR2:
799 c->cputype = CPU_4KEC;
800 __cpu_name[cpu] = "MIPS 4KEc";
801 break;
802 case PRID_IMP_4KSC:
803 case PRID_IMP_4KSD:
804 c->cputype = CPU_4KSC;
805 __cpu_name[cpu] = "MIPS 4KSc";
806 break;
807 case PRID_IMP_5KC:
808 c->cputype = CPU_5KC;
809 __cpu_name[cpu] = "MIPS 5Kc";
810 break;
811 case PRID_IMP_20KC:
812 c->cputype = CPU_20KC;
813 __cpu_name[cpu] = "MIPS 20Kc";
814 break;
815 case PRID_IMP_24K:
816 case PRID_IMP_24KE:
817 c->cputype = CPU_24K;
818 __cpu_name[cpu] = "MIPS 24Kc";
819 break;
820 case PRID_IMP_25KF:
821 c->cputype = CPU_25KF;
822 __cpu_name[cpu] = "MIPS 25Kc";
823 break;
824 case PRID_IMP_34K:
825 c->cputype = CPU_34K;
826 __cpu_name[cpu] = "MIPS 34Kc";
827 break;
828 case PRID_IMP_74K:
829 c->cputype = CPU_74K;
830 __cpu_name[cpu] = "MIPS 74Kc";
831 break;
832 case PRID_IMP_1004K:
833 c->cputype = CPU_1004K;
834 __cpu_name[cpu] = "MIPS 1004Kc";
835 break;
836 }
837
838 spram_config();
839}
840
841static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
842{
843 decode_configs(c);
844 switch (c->processor_id & 0xff00) {
845 case PRID_IMP_AU1_REV1:
846 case PRID_IMP_AU1_REV2:
847 c->cputype = CPU_ALCHEMY;
848 switch ((c->processor_id >> 24) & 0xff) {
849 case 0:
850 __cpu_name[cpu] = "Au1000";
851 break;
852 case 1:
853 __cpu_name[cpu] = "Au1500";
854 break;
855 case 2:
856 __cpu_name[cpu] = "Au1100";
857 break;
858 case 3:
859 __cpu_name[cpu] = "Au1550";
860 break;
861 case 4:
862 __cpu_name[cpu] = "Au1200";
863 if ((c->processor_id & 0xff) == 2)
864 __cpu_name[cpu] = "Au1250";
865 break;
866 case 5:
867 __cpu_name[cpu] = "Au1210";
868 break;
869 default:
870 __cpu_name[cpu] = "Au1xxx";
871 break;
872 }
873 break;
874 }
875}
876
877static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
878{
879 decode_configs(c);
880
881 switch (c->processor_id & 0xff00) {
882 case PRID_IMP_SB1:
883 c->cputype = CPU_SB1;
884 __cpu_name[cpu] = "SiByte SB1";
885 /* FPU in pass1 is known to have issues. */
886 if ((c->processor_id & 0xff) < 0x02)
887 c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
888 break;
889 case PRID_IMP_SB1A:
890 c->cputype = CPU_SB1A;
891 __cpu_name[cpu] = "SiByte SB1A";
892 break;
893 }
894}
895
896static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
897{
898 decode_configs(c);
899 switch (c->processor_id & 0xff00) {
900 case PRID_IMP_SR71000:
901 c->cputype = CPU_SR71000;
902 __cpu_name[cpu] = "Sandcraft SR71000";
903 c->scache.ways = 8;
904 c->tlbsize = 64;
905 break;
906 }
907}
908
909static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
910{
911 decode_configs(c);
912 switch (c->processor_id & 0xff00) {
913 case PRID_IMP_PR4450:
914 c->cputype = CPU_PR4450;
915 __cpu_name[cpu] = "Philips PR4450";
916 c->isa_level = MIPS_CPU_ISA_M32R1;
917 break;
918 }
919}
920
921static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
922{
923 decode_configs(c);
924 switch (c->processor_id & 0xff00) {
925 case PRID_IMP_BMIPS32_REV4:
926 case PRID_IMP_BMIPS32_REV8:
927 c->cputype = CPU_BMIPS32;
928 __cpu_name[cpu] = "Broadcom BMIPS32";
929 set_elf_platform(cpu, "bmips32");
930 break;
931 case PRID_IMP_BMIPS3300:
932 case PRID_IMP_BMIPS3300_ALT:
933 case PRID_IMP_BMIPS3300_BUG:
934 c->cputype = CPU_BMIPS3300;
935 __cpu_name[cpu] = "Broadcom BMIPS3300";
936 set_elf_platform(cpu, "bmips3300");
937 break;
938 case PRID_IMP_BMIPS43XX: {
939 int rev = c->processor_id & 0xff;
940
941 if (rev >= PRID_REV_BMIPS4380_LO &&
942 rev <= PRID_REV_BMIPS4380_HI) {
943 c->cputype = CPU_BMIPS4380;
944 __cpu_name[cpu] = "Broadcom BMIPS4380";
945 set_elf_platform(cpu, "bmips4380");
946 } else {
947 c->cputype = CPU_BMIPS4350;
948 __cpu_name[cpu] = "Broadcom BMIPS4350";
949 set_elf_platform(cpu, "bmips4350");
950 }
951 break;
952 }
953 case PRID_IMP_BMIPS5000:
954 c->cputype = CPU_BMIPS5000;
955 __cpu_name[cpu] = "Broadcom BMIPS5000";
956 set_elf_platform(cpu, "bmips5000");
957 c->options |= MIPS_CPU_ULRI;
958 break;
959 }
960}
961
962static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
963{
964 decode_configs(c);
965 switch (c->processor_id & 0xff00) {
966 case PRID_IMP_CAVIUM_CN38XX:
967 case PRID_IMP_CAVIUM_CN31XX:
968 case PRID_IMP_CAVIUM_CN30XX:
969 c->cputype = CPU_CAVIUM_OCTEON;
970 __cpu_name[cpu] = "Cavium Octeon";
971 goto platform;
972 case PRID_IMP_CAVIUM_CN58XX:
973 case PRID_IMP_CAVIUM_CN56XX:
974 case PRID_IMP_CAVIUM_CN50XX:
975 case PRID_IMP_CAVIUM_CN52XX:
976 c->cputype = CPU_CAVIUM_OCTEON_PLUS;
977 __cpu_name[cpu] = "Cavium Octeon+";
978platform:
979 set_elf_platform(cpu, "octeon");
980 break;
981 case PRID_IMP_CAVIUM_CN63XX:
982 c->cputype = CPU_CAVIUM_OCTEON2;
983 __cpu_name[cpu] = "Cavium Octeon II";
984 set_elf_platform(cpu, "octeon2");
985 break;
986 default:
987 printk(KERN_INFO "Unknown Octeon chip!\n");
988 c->cputype = CPU_UNKNOWN;
989 break;
990 }
991}
992
993static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
994{
995 decode_configs(c);
996 /* JZRISC does not implement the CP0 counter. */
997 c->options &= ~MIPS_CPU_COUNTER;
998 switch (c->processor_id & 0xff00) {
999 case PRID_IMP_JZRISC:
1000 c->cputype = CPU_JZRISC;
1001 __cpu_name[cpu] = "Ingenic JZRISC";
1002 break;
1003 default:
1004 panic("Unknown Ingenic Processor ID!");
1005 break;
1006 }
1007}
1008
1009static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu)
1010{
1011 decode_configs(c);
1012
1013 c->options = (MIPS_CPU_TLB |
1014 MIPS_CPU_4KEX |
1015 MIPS_CPU_COUNTER |
1016 MIPS_CPU_DIVEC |
1017 MIPS_CPU_WATCH |
1018 MIPS_CPU_EJTAG |
1019 MIPS_CPU_LLSC);
1020
1021 switch (c->processor_id & 0xff00) {
1022 case PRID_IMP_NETLOGIC_XLR732:
1023 case PRID_IMP_NETLOGIC_XLR716:
1024 case PRID_IMP_NETLOGIC_XLR532:
1025 case PRID_IMP_NETLOGIC_XLR308:
1026 case PRID_IMP_NETLOGIC_XLR532C:
1027 case PRID_IMP_NETLOGIC_XLR516C:
1028 case PRID_IMP_NETLOGIC_XLR508C:
1029 case PRID_IMP_NETLOGIC_XLR308C:
1030 c->cputype = CPU_XLR;
1031 __cpu_name[cpu] = "Netlogic XLR";
1032 break;
1033
1034 case PRID_IMP_NETLOGIC_XLS608:
1035 case PRID_IMP_NETLOGIC_XLS408:
1036 case PRID_IMP_NETLOGIC_XLS404:
1037 case PRID_IMP_NETLOGIC_XLS208:
1038 case PRID_IMP_NETLOGIC_XLS204:
1039 case PRID_IMP_NETLOGIC_XLS108:
1040 case PRID_IMP_NETLOGIC_XLS104:
1041 case PRID_IMP_NETLOGIC_XLS616B:
1042 case PRID_IMP_NETLOGIC_XLS608B:
1043 case PRID_IMP_NETLOGIC_XLS416B:
1044 case PRID_IMP_NETLOGIC_XLS412B:
1045 case PRID_IMP_NETLOGIC_XLS408B:
1046 case PRID_IMP_NETLOGIC_XLS404B:
1047 c->cputype = CPU_XLR;
1048 __cpu_name[cpu] = "Netlogic XLS";
1049 break;
1050
1051 default:
1052 printk(KERN_INFO "Unknown Netlogic chip id [%02x]!\n",
1053 c->processor_id);
1054 c->cputype = CPU_XLR;
1055 break;
1056 }
1057
1058 c->isa_level = MIPS_CPU_ISA_M64R1;
1059 c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1;
1060}
1061
1062#ifdef CONFIG_64BIT
1063/* For use by uaccess.h */
1064u64 __ua_limit;
1065EXPORT_SYMBOL(__ua_limit);
1066#endif
1067
1068const char *__cpu_name[NR_CPUS];
1069const char *__elf_platform;
1070
1071__cpuinit void cpu_probe(void)
1072{
1073 struct cpuinfo_mips *c = ¤t_cpu_data;
1074 unsigned int cpu = smp_processor_id();
1075
1076 c->processor_id = PRID_IMP_UNKNOWN;
1077 c->fpu_id = FPIR_IMP_NONE;
1078 c->cputype = CPU_UNKNOWN;
1079
1080 c->processor_id = read_c0_prid();
1081 switch (c->processor_id & 0xff0000) {
1082 case PRID_COMP_LEGACY:
1083 cpu_probe_legacy(c, cpu);
1084 break;
1085 case PRID_COMP_MIPS:
1086 cpu_probe_mips(c, cpu);
1087 break;
1088 case PRID_COMP_ALCHEMY:
1089 cpu_probe_alchemy(c, cpu);
1090 break;
1091 case PRID_COMP_SIBYTE:
1092 cpu_probe_sibyte(c, cpu);
1093 break;
1094 case PRID_COMP_BROADCOM:
1095 cpu_probe_broadcom(c, cpu);
1096 break;
1097 case PRID_COMP_SANDCRAFT:
1098 cpu_probe_sandcraft(c, cpu);
1099 break;
1100 case PRID_COMP_NXP:
1101 cpu_probe_nxp(c, cpu);
1102 break;
1103 case PRID_COMP_CAVIUM:
1104 cpu_probe_cavium(c, cpu);
1105 break;
1106 case PRID_COMP_INGENIC:
1107 cpu_probe_ingenic(c, cpu);
1108 break;
1109 case PRID_COMP_NETLOGIC:
1110 cpu_probe_netlogic(c, cpu);
1111 break;
1112 }
1113
1114 BUG_ON(!__cpu_name[cpu]);
1115 BUG_ON(c->cputype == CPU_UNKNOWN);
1116
1117 /*
1118 * Platform code can force the cpu type to optimize code
1119 * generation. In that case be sure the cpu type is correctly
1120 * manually setup otherwise it could trigger some nasty bugs.
1121 */
1122 BUG_ON(current_cpu_type() != c->cputype);
1123
1124 if (mips_fpu_disabled)
1125 c->options &= ~MIPS_CPU_FPU;
1126
1127 if (mips_dsp_disabled)
1128 c->ases &= ~MIPS_ASE_DSP;
1129
1130 if (c->options & MIPS_CPU_FPU) {
1131 c->fpu_id = cpu_get_fpu_id();
1132
1133 if (c->isa_level == MIPS_CPU_ISA_M32R1 ||
1134 c->isa_level == MIPS_CPU_ISA_M32R2 ||
1135 c->isa_level == MIPS_CPU_ISA_M64R1 ||
1136 c->isa_level == MIPS_CPU_ISA_M64R2) {
1137 if (c->fpu_id & MIPS_FPIR_3D)
1138 c->ases |= MIPS_ASE_MIPS3D;
1139 }
1140 }
1141
1142 if (cpu_has_mips_r2)
1143 c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
1144 else
1145 c->srsets = 1;
1146
1147 cpu_probe_vmbits(c);
1148
1149#ifdef CONFIG_64BIT
1150 if (cpu == 0)
1151 __ua_limit = ~((1ull << cpu_vmbits) - 1);
1152#endif
1153}
1154
1155__cpuinit void cpu_report(void)
1156{
1157 struct cpuinfo_mips *c = ¤t_cpu_data;
1158
1159 printk(KERN_INFO "CPU revision is: %08x (%s)\n",
1160 c->processor_id, cpu_name_string());
1161 if (c->options & MIPS_CPU_FPU)
1162 printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
1163}