Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Processor capabilities determination functions.
   4 *
   5 * Copyright (C) xxxx  the Anonymous
   6 * Copyright (C) 1994 - 2006 Ralf Baechle
   7 * Copyright (C) 2003, 2004  Maciej W. Rozycki
   8 * Copyright (C) 2001, 2004, 2011, 2012	 MIPS Technologies, Inc.
   9 */
  10#include <linux/init.h>
  11#include <linux/kernel.h>
  12#include <linux/ptrace.h>
  13#include <linux/smp.h>
  14#include <linux/stddef.h>
  15#include <linux/export.h>
  16
  17#include <asm/bugs.h>
  18#include <asm/cpu.h>
  19#include <asm/cpu-features.h>
  20#include <asm/cpu-type.h>
  21#include <asm/fpu.h>
  22#include <asm/mipsregs.h>
  23#include <asm/mipsmtregs.h>
  24#include <asm/msa.h>
  25#include <asm/watch.h>
  26#include <asm/elf.h>
  27#include <asm/pgtable-bits.h>
  28#include <asm/spram.h>
  29#include <linux/uaccess.h>
  30
 
 
  31/* Hardware capabilities */
  32unsigned int elf_hwcap __read_mostly;
  33EXPORT_SYMBOL_GPL(elf_hwcap);
  34
  35#ifdef CONFIG_MIPS_FP_SUPPORT
  36
  37/*
  38 * Get the FPU Implementation/Revision.
  39 */
  40static inline unsigned long cpu_get_fpu_id(void)
  41{
  42	unsigned long tmp, fpu_id;
  43
  44	tmp = read_c0_status();
  45	__enable_fpu(FPU_AS_IS);
  46	fpu_id = read_32bit_cp1_register(CP1_REVISION);
  47	write_c0_status(tmp);
  48	return fpu_id;
  49}
  50
  51/*
  52 * Check if the CPU has an external FPU.
  53 */
  54static inline int __cpu_has_fpu(void)
  55{
  56	return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE;
  57}
  58
  59/*
  60 * Determine the FCSR mask for FPU hardware.
  61 */
  62static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c)
  63{
  64	unsigned long sr, mask, fcsr, fcsr0, fcsr1;
  65
  66	fcsr = c->fpu_csr31;
  67	mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM;
  68
  69	sr = read_c0_status();
  70	__enable_fpu(FPU_AS_IS);
  71
  72	fcsr0 = fcsr & mask;
  73	write_32bit_cp1_register(CP1_STATUS, fcsr0);
  74	fcsr0 = read_32bit_cp1_register(CP1_STATUS);
  75
  76	fcsr1 = fcsr | ~mask;
  77	write_32bit_cp1_register(CP1_STATUS, fcsr1);
  78	fcsr1 = read_32bit_cp1_register(CP1_STATUS);
  79
  80	write_32bit_cp1_register(CP1_STATUS, fcsr);
  81
  82	write_c0_status(sr);
  83
  84	c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask;
  85}
  86
  87/*
  88 * Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes
  89 * supported by FPU hardware.
  90 */
  91static void cpu_set_fpu_2008(struct cpuinfo_mips *c)
  92{
  93	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
  94			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 
  95			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
  96		unsigned long sr, fir, fcsr, fcsr0, fcsr1;
  97
  98		sr = read_c0_status();
  99		__enable_fpu(FPU_AS_IS);
 100
 101		fir = read_32bit_cp1_register(CP1_REVISION);
 102		if (fir & MIPS_FPIR_HAS2008) {
 103			fcsr = read_32bit_cp1_register(CP1_STATUS);
 104
 105			fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 
 
 
 
 
 106			write_32bit_cp1_register(CP1_STATUS, fcsr0);
 107			fcsr0 = read_32bit_cp1_register(CP1_STATUS);
 108
 109			fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 110			write_32bit_cp1_register(CP1_STATUS, fcsr1);
 111			fcsr1 = read_32bit_cp1_register(CP1_STATUS);
 112
 113			write_32bit_cp1_register(CP1_STATUS, fcsr);
 114
 
 
 
 
 
 
 
 
 
 115			if (!(fcsr0 & FPU_CSR_NAN2008))
 116				c->options |= MIPS_CPU_NAN_LEGACY;
 117			if (fcsr1 & FPU_CSR_NAN2008)
 118				c->options |= MIPS_CPU_NAN_2008;
 119
 120			if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008)
 121				c->fpu_msk31 &= ~FPU_CSR_ABS2008;
 122			else
 123				c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008;
 124
 125			if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008)
 126				c->fpu_msk31 &= ~FPU_CSR_NAN2008;
 127			else
 128				c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008;
 129		} else {
 130			c->options |= MIPS_CPU_NAN_LEGACY;
 131		}
 132
 133		write_c0_status(sr);
 134	} else {
 135		c->options |= MIPS_CPU_NAN_LEGACY;
 136	}
 137}
 138
 139/*
 140 * IEEE 754 conformance mode to use.  Affects the NaN encoding and the
 141 * ABS.fmt/NEG.fmt execution mode.
 142 */
 143static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT;
 144
 145/*
 146 * Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes
 147 * to support by the FPU emulator according to the IEEE 754 conformance
 148 * mode selected.  Note that "relaxed" straps the emulator so that it
 149 * allows 2008-NaN binaries even for legacy processors.
 150 */
 151static void cpu_set_nofpu_2008(struct cpuinfo_mips *c)
 152{
 153	c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY);
 154	c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 155	c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 156
 157	switch (ieee754) {
 158	case STRICT:
 159		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 160				    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 
 161				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 162			c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
 163		} else {
 164			c->options |= MIPS_CPU_NAN_LEGACY;
 165			c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 166		}
 167		break;
 168	case LEGACY:
 169		c->options |= MIPS_CPU_NAN_LEGACY;
 170		c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 171		break;
 172	case STD2008:
 173		c->options |= MIPS_CPU_NAN_2008;
 174		c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 175		c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 176		break;
 177	case RELAXED:
 178		c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
 179		break;
 180	}
 181}
 182
 183/*
 184 * Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
 185 * according to the "ieee754=" parameter.
 186 */
 187static void cpu_set_nan_2008(struct cpuinfo_mips *c)
 188{
 189	switch (ieee754) {
 190	case STRICT:
 191		mips_use_nan_legacy = !!cpu_has_nan_legacy;
 192		mips_use_nan_2008 = !!cpu_has_nan_2008;
 193		break;
 194	case LEGACY:
 195		mips_use_nan_legacy = !!cpu_has_nan_legacy;
 196		mips_use_nan_2008 = !cpu_has_nan_legacy;
 197		break;
 198	case STD2008:
 199		mips_use_nan_legacy = !cpu_has_nan_2008;
 200		mips_use_nan_2008 = !!cpu_has_nan_2008;
 201		break;
 202	case RELAXED:
 203		mips_use_nan_legacy = true;
 204		mips_use_nan_2008 = true;
 205		break;
 206	}
 207}
 208
 209/*
 210 * IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override
 211 * settings:
 212 *
 213 * strict:  accept binaries that request a NaN encoding supported by the FPU
 214 * legacy:  only accept legacy-NaN binaries
 215 * 2008:    only accept 2008-NaN binaries
 216 * relaxed: accept any binaries regardless of whether supported by the FPU
 217 */
 218static int __init ieee754_setup(char *s)
 219{
 220	if (!s)
 221		return -1;
 222	else if (!strcmp(s, "strict"))
 223		ieee754 = STRICT;
 224	else if (!strcmp(s, "legacy"))
 225		ieee754 = LEGACY;
 226	else if (!strcmp(s, "2008"))
 227		ieee754 = STD2008;
 228	else if (!strcmp(s, "relaxed"))
 229		ieee754 = RELAXED;
 230	else
 231		return -1;
 232
 233	if (!(boot_cpu_data.options & MIPS_CPU_FPU))
 234		cpu_set_nofpu_2008(&boot_cpu_data);
 235	cpu_set_nan_2008(&boot_cpu_data);
 236
 237	return 0;
 238}
 239
 240early_param("ieee754", ieee754_setup);
 241
 242/*
 243 * Set the FIR feature flags for the FPU emulator.
 244 */
 245static void cpu_set_nofpu_id(struct cpuinfo_mips *c)
 246{
 247	u32 value;
 248
 249	value = 0;
 250	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 251			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 
 252			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
 253		value |= MIPS_FPIR_D | MIPS_FPIR_S;
 254	if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 
 255			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
 256		value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W;
 257	if (c->options & MIPS_CPU_NAN_2008)
 258		value |= MIPS_FPIR_HAS2008;
 259	c->fpu_id = value;
 260}
 261
 262/* Determined FPU emulator mask to use for the boot CPU with "nofpu".  */
 263static unsigned int mips_nofpu_msk31;
 264
 265/*
 266 * Set options for FPU hardware.
 267 */
 268static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
 269{
 270	c->fpu_id = cpu_get_fpu_id();
 271	mips_nofpu_msk31 = c->fpu_msk31;
 272
 273	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 274			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 
 275			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 276		if (c->fpu_id & MIPS_FPIR_3D)
 277			c->ases |= MIPS_ASE_MIPS3D;
 278		if (c->fpu_id & MIPS_FPIR_UFRP)
 279			c->options |= MIPS_CPU_UFR;
 280		if (c->fpu_id & MIPS_FPIR_FREP)
 281			c->options |= MIPS_CPU_FRE;
 282	}
 283
 284	cpu_set_fpu_fcsr_mask(c);
 285	cpu_set_fpu_2008(c);
 286	cpu_set_nan_2008(c);
 287}
 288
 289/*
 290 * Set options for the FPU emulator.
 291 */
 292static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
 293{
 294	c->options &= ~MIPS_CPU_FPU;
 295	c->fpu_msk31 = mips_nofpu_msk31;
 296
 297	cpu_set_nofpu_2008(c);
 298	cpu_set_nan_2008(c);
 299	cpu_set_nofpu_id(c);
 300}
 301
 302static int mips_fpu_disabled;
 303
 304static int __init fpu_disable(char *s)
 305{
 306	cpu_set_nofpu_opts(&boot_cpu_data);
 307	mips_fpu_disabled = 1;
 308
 309	return 1;
 310}
 311
 312__setup("nofpu", fpu_disable);
 313
 314#else /* !CONFIG_MIPS_FP_SUPPORT */
 315
 316#define mips_fpu_disabled 1
 317
 318static inline unsigned long cpu_get_fpu_id(void)
 319{
 320	return FPIR_IMP_NONE;
 321}
 322
 323static inline int __cpu_has_fpu(void)
 324{
 325	return 0;
 326}
 327
 328static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
 329{
 330	/* no-op */
 331}
 332
 333static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
 334{
 335	/* no-op */
 336}
 337
 338#endif /* CONFIG_MIPS_FP_SUPPORT */
 339
 340static inline unsigned long cpu_get_msa_id(void)
 341{
 342	unsigned long status, msa_id;
 343
 344	status = read_c0_status();
 345	__enable_fpu(FPU_64BIT);
 346	enable_msa();
 347	msa_id = read_msa_ir();
 348	disable_msa();
 349	write_c0_status(status);
 350	return msa_id;
 351}
 352
 353static int mips_dsp_disabled;
 354
 355static int __init dsp_disable(char *s)
 356{
 357	cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
 358	mips_dsp_disabled = 1;
 359
 360	return 1;
 361}
 362
 363__setup("nodsp", dsp_disable);
 364
 365static int mips_htw_disabled;
 366
 367static int __init htw_disable(char *s)
 368{
 369	mips_htw_disabled = 1;
 370	cpu_data[0].options &= ~MIPS_CPU_HTW;
 371	write_c0_pwctl(read_c0_pwctl() &
 372		       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
 373
 374	return 1;
 375}
 376
 377__setup("nohtw", htw_disable);
 378
 379static int mips_ftlb_disabled;
 380static int mips_has_ftlb_configured;
 381
 382enum ftlb_flags {
 383	FTLB_EN		= 1 << 0,
 384	FTLB_SET_PROB	= 1 << 1,
 385};
 386
 387static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags);
 388
 389static int __init ftlb_disable(char *s)
 390{
 391	unsigned int config4, mmuextdef;
 392
 393	/*
 394	 * If the core hasn't done any FTLB configuration, there is nothing
 395	 * for us to do here.
 396	 */
 397	if (!mips_has_ftlb_configured)
 398		return 1;
 399
 400	/* Disable it in the boot cpu */
 401	if (set_ftlb_enable(&cpu_data[0], 0)) {
 402		pr_warn("Can't turn FTLB off\n");
 403		return 1;
 404	}
 405
 406	config4 = read_c0_config4();
 407
 408	/* Check that FTLB has been disabled */
 409	mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 410	/* MMUSIZEEXT == VTLB ON, FTLB OFF */
 411	if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
 412		/* This should never happen */
 413		pr_warn("FTLB could not be disabled!\n");
 414		return 1;
 415	}
 416
 417	mips_ftlb_disabled = 1;
 418	mips_has_ftlb_configured = 0;
 419
 420	/*
 421	 * noftlb is mainly used for debug purposes so print
 422	 * an informative message instead of using pr_debug()
 423	 */
 424	pr_info("FTLB has been disabled\n");
 425
 426	/*
 427	 * Some of these bits are duplicated in the decode_config4.
 428	 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
 429	 * once FTLB has been disabled so undo what decode_config4 did.
 430	 */
 431	cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
 432			       cpu_data[0].tlbsizeftlbsets;
 433	cpu_data[0].tlbsizeftlbsets = 0;
 434	cpu_data[0].tlbsizeftlbways = 0;
 435
 436	return 1;
 437}
 438
 439__setup("noftlb", ftlb_disable);
 440
 441/*
 442 * Check if the CPU has per tc perf counters
 443 */
 444static inline void cpu_set_mt_per_tc_perf(struct cpuinfo_mips *c)
 445{
 446	if (read_c0_config7() & MTI_CONF7_PTC)
 447		c->options |= MIPS_CPU_MT_PER_TC_PERF_COUNTERS;
 448}
 449
 450static inline void check_errata(void)
 451{
 452	struct cpuinfo_mips *c = &current_cpu_data;
 453
 454	switch (current_cpu_type()) {
 455	case CPU_34K:
 456		/*
 457		 * Erratum "RPS May Cause Incorrect Instruction Execution"
 458		 * This code only handles VPE0, any SMP/RTOS code
 459		 * making use of VPE1 will be responsable for that VPE.
 460		 */
 461		if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
 462			write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
 463		break;
 464	default:
 465		break;
 466	}
 467}
 468
 469void __init check_bugs32(void)
 470{
 471	check_errata();
 472}
 473
 474/*
 475 * Probe whether cpu has config register by trying to play with
 476 * alternate cache bit and see whether it matters.
 477 * It's used by cpu_probe to distinguish between R3000A and R3081.
 478 */
 479static inline int cpu_has_confreg(void)
 480{
 481#ifdef CONFIG_CPU_R3000
 482	extern unsigned long r3k_cache_size(unsigned long);
 483	unsigned long size1, size2;
 484	unsigned long cfg = read_c0_conf();
 485
 486	size1 = r3k_cache_size(ST0_ISC);
 487	write_c0_conf(cfg ^ R30XX_CONF_AC);
 488	size2 = r3k_cache_size(ST0_ISC);
 489	write_c0_conf(cfg);
 490	return size1 != size2;
 491#else
 492	return 0;
 493#endif
 494}
 495
 496static inline void set_elf_platform(int cpu, const char *plat)
 497{
 498	if (cpu == 0)
 499		__elf_platform = plat;
 500}
 501
 
 
 
 
 
 
 
 502static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
 503{
 504#ifdef __NEED_VMBITS_PROBE
 505	write_c0_entryhi(0x3fffffffffffe000ULL);
 506	back_to_back_c0_hazard();
 507	c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
 508#endif
 509}
 510
 511static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
 512{
 513	switch (isa) {
 
 
 
 
 514	case MIPS_CPU_ISA_M64R2:
 515		c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
 516		/* fall through */
 
 517	case MIPS_CPU_ISA_M64R1:
 518		c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
 519		/* fall through */
 
 520	case MIPS_CPU_ISA_V:
 521		c->isa_level |= MIPS_CPU_ISA_V;
 522		/* fall through */
 
 523	case MIPS_CPU_ISA_IV:
 524		c->isa_level |= MIPS_CPU_ISA_IV;
 525		/* fall through */
 
 526	case MIPS_CPU_ISA_III:
 527		c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
 
 528		break;
 529
 530	/* R6 incompatible with everything else */
 531	case MIPS_CPU_ISA_M64R6:
 532		c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
 533		/* fall through */
 
 534	case MIPS_CPU_ISA_M32R6:
 535		c->isa_level |= MIPS_CPU_ISA_M32R6;
 
 536		/* Break here so we don't add incompatible ISAs */
 537		break;
 
 
 
 
 538	case MIPS_CPU_ISA_M32R2:
 539		c->isa_level |= MIPS_CPU_ISA_M32R2;
 540		/* fall through */
 
 541	case MIPS_CPU_ISA_M32R1:
 542		c->isa_level |= MIPS_CPU_ISA_M32R1;
 543		/* fall through */
 
 544	case MIPS_CPU_ISA_II:
 545		c->isa_level |= MIPS_CPU_ISA_II;
 
 546		break;
 547	}
 548}
 549
 550static char unknown_isa[] = KERN_ERR \
 551	"Unsupported ISA type, c0.config0: %d.";
 552
 553static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
 554{
 555
 556	unsigned int probability = c->tlbsize / c->tlbsizevtlb;
 557
 558	/*
 559	 * 0 = All TLBWR instructions go to FTLB
 560	 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
 561	 * FTLB and 1 goes to the VTLB.
 562	 * 2 = 7:1: As above with 7:1 ratio.
 563	 * 3 = 3:1: As above with 3:1 ratio.
 564	 *
 565	 * Use the linear midpoint as the probability threshold.
 566	 */
 567	if (probability >= 12)
 568		return 1;
 569	else if (probability >= 6)
 570		return 2;
 571	else
 572		/*
 573		 * So FTLB is less than 4 times bigger than VTLB.
 574		 * A 3:1 ratio can still be useful though.
 575		 */
 576		return 3;
 577}
 578
 579static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags)
 580{
 581	unsigned int config;
 582
 583	/* It's implementation dependent how the FTLB can be enabled */
 584	switch (c->cputype) {
 585	case CPU_PROAPTIV:
 586	case CPU_P5600:
 587	case CPU_P6600:
 588		/* proAptiv & related cores use Config6 to enable the FTLB */
 589		config = read_c0_config6();
 590
 591		if (flags & FTLB_EN)
 592			config |= MIPS_CONF6_FTLBEN;
 593		else
 594			config &= ~MIPS_CONF6_FTLBEN;
 595
 596		if (flags & FTLB_SET_PROB) {
 597			config &= ~(3 << MIPS_CONF6_FTLBP_SHIFT);
 598			config |= calculate_ftlb_probability(c)
 599				  << MIPS_CONF6_FTLBP_SHIFT;
 600		}
 601
 602		write_c0_config6(config);
 603		back_to_back_c0_hazard();
 604		break;
 605	case CPU_I6400:
 606	case CPU_I6500:
 607		/* There's no way to disable the FTLB */
 608		if (!(flags & FTLB_EN))
 609			return 1;
 610		return 0;
 611	case CPU_LOONGSON3:
 612		/* Flush ITLB, DTLB, VTLB and FTLB */
 613		write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB |
 614			      LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB);
 615		/* Loongson-3 cores use Config6 to enable the FTLB */
 616		config = read_c0_config6();
 617		if (flags & FTLB_EN)
 618			/* Enable FTLB */
 619			write_c0_config6(config & ~MIPS_CONF6_FTLBDIS);
 620		else
 621			/* Disable FTLB */
 622			write_c0_config6(config | MIPS_CONF6_FTLBDIS);
 623		break;
 624	default:
 625		return 1;
 626	}
 627
 628	return 0;
 629}
 630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 631static inline unsigned int decode_config0(struct cpuinfo_mips *c)
 632{
 633	unsigned int config0;
 634	int isa, mt;
 635
 636	config0 = read_c0_config();
 637
 638	/*
 639	 * Look for Standard TLB or Dual VTLB and FTLB
 640	 */
 641	mt = config0 & MIPS_CONF_MT;
 642	if (mt == MIPS_CONF_MT_TLB)
 643		c->options |= MIPS_CPU_TLB;
 644	else if (mt == MIPS_CONF_MT_FTLB)
 645		c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
 646
 647	isa = (config0 & MIPS_CONF_AT) >> 13;
 648	switch (isa) {
 649	case 0:
 650		switch ((config0 & MIPS_CONF_AR) >> 10) {
 651		case 0:
 652			set_isa(c, MIPS_CPU_ISA_M32R1);
 653			break;
 654		case 1:
 655			set_isa(c, MIPS_CPU_ISA_M32R2);
 656			break;
 657		case 2:
 658			set_isa(c, MIPS_CPU_ISA_M32R6);
 659			break;
 660		default:
 661			goto unknown;
 662		}
 663		break;
 664	case 2:
 665		switch ((config0 & MIPS_CONF_AR) >> 10) {
 666		case 0:
 667			set_isa(c, MIPS_CPU_ISA_M64R1);
 668			break;
 669		case 1:
 670			set_isa(c, MIPS_CPU_ISA_M64R2);
 671			break;
 672		case 2:
 673			set_isa(c, MIPS_CPU_ISA_M64R6);
 674			break;
 675		default:
 676			goto unknown;
 677		}
 678		break;
 679	default:
 680		goto unknown;
 681	}
 682
 683	return config0 & MIPS_CONF_M;
 684
 685unknown:
 686	panic(unknown_isa, config0);
 687}
 688
 689static inline unsigned int decode_config1(struct cpuinfo_mips *c)
 690{
 691	unsigned int config1;
 692
 693	config1 = read_c0_config1();
 694
 695	if (config1 & MIPS_CONF1_MD)
 696		c->ases |= MIPS_ASE_MDMX;
 697	if (config1 & MIPS_CONF1_PC)
 698		c->options |= MIPS_CPU_PERF;
 699	if (config1 & MIPS_CONF1_WR)
 700		c->options |= MIPS_CPU_WATCH;
 701	if (config1 & MIPS_CONF1_CA)
 702		c->ases |= MIPS_ASE_MIPS16;
 703	if (config1 & MIPS_CONF1_EP)
 704		c->options |= MIPS_CPU_EJTAG;
 705	if (config1 & MIPS_CONF1_FP) {
 706		c->options |= MIPS_CPU_FPU;
 707		c->options |= MIPS_CPU_32FPR;
 708	}
 709	if (cpu_has_tlb) {
 710		c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
 711		c->tlbsizevtlb = c->tlbsize;
 712		c->tlbsizeftlbsets = 0;
 713	}
 714
 715	return config1 & MIPS_CONF_M;
 716}
 717
 718static inline unsigned int decode_config2(struct cpuinfo_mips *c)
 719{
 720	unsigned int config2;
 721
 722	config2 = read_c0_config2();
 723
 724	if (config2 & MIPS_CONF2_SL)
 725		c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
 726
 727	return config2 & MIPS_CONF_M;
 728}
 729
 730static inline unsigned int decode_config3(struct cpuinfo_mips *c)
 731{
 732	unsigned int config3;
 733
 734	config3 = read_c0_config3();
 735
 736	if (config3 & MIPS_CONF3_SM) {
 737		c->ases |= MIPS_ASE_SMARTMIPS;
 738		c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC;
 739	}
 740	if (config3 & MIPS_CONF3_RXI)
 741		c->options |= MIPS_CPU_RIXI;
 742	if (config3 & MIPS_CONF3_CTXTC)
 743		c->options |= MIPS_CPU_CTXTC;
 744	if (config3 & MIPS_CONF3_DSP)
 745		c->ases |= MIPS_ASE_DSP;
 746	if (config3 & MIPS_CONF3_DSP2P) {
 747		c->ases |= MIPS_ASE_DSP2P;
 748		if (cpu_has_mips_r6)
 749			c->ases |= MIPS_ASE_DSP3;
 750	}
 751	if (config3 & MIPS_CONF3_VINT)
 752		c->options |= MIPS_CPU_VINT;
 753	if (config3 & MIPS_CONF3_VEIC)
 754		c->options |= MIPS_CPU_VEIC;
 755	if (config3 & MIPS_CONF3_LPA)
 756		c->options |= MIPS_CPU_LPA;
 757	if (config3 & MIPS_CONF3_MT)
 758		c->ases |= MIPS_ASE_MIPSMT;
 759	if (config3 & MIPS_CONF3_ULRI)
 760		c->options |= MIPS_CPU_ULRI;
 761	if (config3 & MIPS_CONF3_ISA)
 762		c->options |= MIPS_CPU_MICROMIPS;
 763	if (config3 & MIPS_CONF3_VZ)
 764		c->ases |= MIPS_ASE_VZ;
 765	if (config3 & MIPS_CONF3_SC)
 766		c->options |= MIPS_CPU_SEGMENTS;
 767	if (config3 & MIPS_CONF3_BI)
 768		c->options |= MIPS_CPU_BADINSTR;
 769	if (config3 & MIPS_CONF3_BP)
 770		c->options |= MIPS_CPU_BADINSTRP;
 771	if (config3 & MIPS_CONF3_MSA)
 772		c->ases |= MIPS_ASE_MSA;
 773	if (config3 & MIPS_CONF3_PW) {
 774		c->htw_seq = 0;
 775		c->options |= MIPS_CPU_HTW;
 776	}
 777	if (config3 & MIPS_CONF3_CDMM)
 778		c->options |= MIPS_CPU_CDMM;
 779	if (config3 & MIPS_CONF3_SP)
 780		c->options |= MIPS_CPU_SP;
 781
 782	return config3 & MIPS_CONF_M;
 783}
 784
 785static inline unsigned int decode_config4(struct cpuinfo_mips *c)
 786{
 787	unsigned int config4;
 788	unsigned int newcf4;
 789	unsigned int mmuextdef;
 790	unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
 791	unsigned long asid_mask;
 792
 793	config4 = read_c0_config4();
 794
 795	if (cpu_has_tlb) {
 796		if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
 797			c->options |= MIPS_CPU_TLBINV;
 798
 799		/*
 800		 * R6 has dropped the MMUExtDef field from config4.
 801		 * On R6 the fields always describe the FTLB, and only if it is
 802		 * present according to Config.MT.
 803		 */
 804		if (!cpu_has_mips_r6)
 805			mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 806		else if (cpu_has_ftlb)
 807			mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
 808		else
 809			mmuextdef = 0;
 810
 811		switch (mmuextdef) {
 812		case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
 813			c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
 814			c->tlbsizevtlb = c->tlbsize;
 815			break;
 816		case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
 817			c->tlbsizevtlb +=
 818				((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
 819				  MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
 820			c->tlbsize = c->tlbsizevtlb;
 821			ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
 822			/* fall through */
 823		case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
 824			if (mips_ftlb_disabled)
 825				break;
 826			newcf4 = (config4 & ~ftlb_page) |
 827				(page_size_ftlb(mmuextdef) <<
 828				 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
 829			write_c0_config4(newcf4);
 830			back_to_back_c0_hazard();
 831			config4 = read_c0_config4();
 832			if (config4 != newcf4) {
 833				pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
 834				       PAGE_SIZE, config4);
 835				/* Switch FTLB off */
 836				set_ftlb_enable(c, 0);
 837				mips_ftlb_disabled = 1;
 838				break;
 839			}
 840			c->tlbsizeftlbsets = 1 <<
 841				((config4 & MIPS_CONF4_FTLBSETS) >>
 842				 MIPS_CONF4_FTLBSETS_SHIFT);
 843			c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
 844					      MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
 845			c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
 846			mips_has_ftlb_configured = 1;
 847			break;
 848		}
 849	}
 850
 851	c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
 852				>> MIPS_CONF4_KSCREXIST_SHIFT;
 853
 854	asid_mask = MIPS_ENTRYHI_ASID;
 855	if (config4 & MIPS_CONF4_AE)
 856		asid_mask |= MIPS_ENTRYHI_ASIDX;
 857	set_cpu_asid_mask(c, asid_mask);
 858
 859	/*
 860	 * Warn if the computed ASID mask doesn't match the mask the kernel
 861	 * is built for. This may indicate either a serious problem or an
 862	 * easy optimisation opportunity, but either way should be addressed.
 863	 */
 864	WARN_ON(asid_mask != cpu_asid_mask(c));
 865
 866	return config4 & MIPS_CONF_M;
 867}
 868
 869static inline unsigned int decode_config5(struct cpuinfo_mips *c)
 870{
 871	unsigned int config5, max_mmid_width;
 872	unsigned long asid_mask;
 873
 874	config5 = read_c0_config5();
 875	config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
 876
 877	if (cpu_has_mips_r6) {
 878		if (!__builtin_constant_p(cpu_has_mmid) || cpu_has_mmid)
 879			config5 |= MIPS_CONF5_MI;
 880		else
 881			config5 &= ~MIPS_CONF5_MI;
 882	}
 883
 884	write_c0_config5(config5);
 885
 886	if (config5 & MIPS_CONF5_EVA)
 887		c->options |= MIPS_CPU_EVA;
 888	if (config5 & MIPS_CONF5_MRP)
 889		c->options |= MIPS_CPU_MAAR;
 890	if (config5 & MIPS_CONF5_LLB)
 891		c->options |= MIPS_CPU_RW_LLB;
 892	if (config5 & MIPS_CONF5_MVH)
 893		c->options |= MIPS_CPU_MVH;
 894	if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP))
 895		c->options |= MIPS_CPU_VP;
 896	if (config5 & MIPS_CONF5_CA2)
 897		c->ases |= MIPS_ASE_MIPS16E2;
 898
 899	if (config5 & MIPS_CONF5_CRCP)
 900		elf_hwcap |= HWCAP_MIPS_CRC32;
 901
 902	if (cpu_has_mips_r6) {
 903		/* Ensure the write to config5 above takes effect */
 904		back_to_back_c0_hazard();
 905
 906		/* Check whether we successfully enabled MMID support */
 907		config5 = read_c0_config5();
 908		if (config5 & MIPS_CONF5_MI)
 909			c->options |= MIPS_CPU_MMID;
 910
 911		/*
 912		 * Warn if we've hardcoded cpu_has_mmid to a value unsuitable
 913		 * for the CPU we're running on, or if CPUs in an SMP system
 914		 * have inconsistent MMID support.
 915		 */
 916		WARN_ON(!!cpu_has_mmid != !!(config5 & MIPS_CONF5_MI));
 917
 918		if (cpu_has_mmid) {
 919			write_c0_memorymapid(~0ul);
 920			back_to_back_c0_hazard();
 921			asid_mask = read_c0_memorymapid();
 922
 923			/*
 924			 * We maintain a bitmap to track MMID allocation, and
 925			 * need a sensible upper bound on the size of that
 926			 * bitmap. The initial CPU with MMID support (I6500)
 927			 * supports 16 bit MMIDs, which gives us an 8KiB
 928			 * bitmap. The architecture recommends that hardware
 929			 * support 32 bit MMIDs, which would give us a 512MiB
 930			 * bitmap - that's too big in most cases.
 931			 *
 932			 * Cap MMID width at 16 bits for now & we can revisit
 933			 * this if & when hardware supports anything wider.
 934			 */
 935			max_mmid_width = 16;
 936			if (asid_mask > GENMASK(max_mmid_width - 1, 0)) {
 937				pr_info("Capping MMID width at %d bits",
 938					max_mmid_width);
 939				asid_mask = GENMASK(max_mmid_width - 1, 0);
 940			}
 941
 942			set_cpu_asid_mask(c, asid_mask);
 943		}
 944	}
 945
 946	return config5 & MIPS_CONF_M;
 947}
 948
 949static void decode_configs(struct cpuinfo_mips *c)
 950{
 951	int ok;
 952
 953	/* MIPS32 or MIPS64 compliant CPU.  */
 954	c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
 955		     MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
 956
 957	c->scache.flags = MIPS_CACHE_NOT_PRESENT;
 958
 959	/* Enable FTLB if present and not disabled */
 960	set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN);
 961
 962	ok = decode_config0(c);			/* Read Config registers.  */
 963	BUG_ON(!ok);				/* Arch spec violation!	 */
 964	if (ok)
 965		ok = decode_config1(c);
 966	if (ok)
 967		ok = decode_config2(c);
 968	if (ok)
 969		ok = decode_config3(c);
 970	if (ok)
 971		ok = decode_config4(c);
 972	if (ok)
 973		ok = decode_config5(c);
 974
 975	/* Probe the EBase.WG bit */
 976	if (cpu_has_mips_r2_r6) {
 977		u64 ebase;
 978		unsigned int status;
 979
 980		/* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */
 981		ebase = cpu_has_mips64r6 ? read_c0_ebase_64()
 982					 : (s32)read_c0_ebase();
 983		if (ebase & MIPS_EBASE_WG) {
 984			/* WG bit already set, we can avoid the clumsy probe */
 985			c->options |= MIPS_CPU_EBASE_WG;
 986		} else {
 987			/* Its UNDEFINED to change EBase while BEV=0 */
 988			status = read_c0_status();
 989			write_c0_status(status | ST0_BEV);
 990			irq_enable_hazard();
 991			/*
 992			 * On pre-r6 cores, this may well clobber the upper bits
 993			 * of EBase. This is hard to avoid without potentially
 994			 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit.
 995			 */
 996			if (cpu_has_mips64r6)
 997				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
 998			else
 999				write_c0_ebase(ebase | MIPS_EBASE_WG);
1000			back_to_back_c0_hazard();
1001			/* Restore BEV */
1002			write_c0_status(status);
1003			if (read_c0_ebase() & MIPS_EBASE_WG) {
1004				c->options |= MIPS_CPU_EBASE_WG;
1005				write_c0_ebase(ebase);
1006			}
1007		}
1008	}
1009
1010	/* configure the FTLB write probability */
1011	set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB);
1012
1013	mips_probe_watch_registers(c);
1014
1015#ifndef CONFIG_MIPS_CPS
1016	if (cpu_has_mips_r2_r6) {
1017		unsigned int core;
1018
1019		core = get_ebase_cpunum();
1020		if (cpu_has_mipsmt)
1021			core >>= fls(core_nvpes()) - 1;
1022		cpu_set_core(c, core);
1023	}
1024#endif
1025}
1026
1027/*
1028 * Probe for certain guest capabilities by writing config bits and reading back.
1029 * Finally write back the original value.
1030 */
1031#define probe_gc0_config(name, maxconf, bits)				\
1032do {									\
1033	unsigned int tmp;						\
1034	tmp = read_gc0_##name();					\
1035	write_gc0_##name(tmp | (bits));					\
1036	back_to_back_c0_hazard();					\
1037	maxconf = read_gc0_##name();					\
1038	write_gc0_##name(tmp);						\
1039} while (0)
1040
1041/*
1042 * Probe for dynamic guest capabilities by changing certain config bits and
1043 * reading back to see if they change. Finally write back the original value.
1044 */
1045#define probe_gc0_config_dyn(name, maxconf, dynconf, bits)		\
1046do {									\
1047	maxconf = read_gc0_##name();					\
1048	write_gc0_##name(maxconf ^ (bits));				\
1049	back_to_back_c0_hazard();					\
1050	dynconf = maxconf ^ read_gc0_##name();				\
1051	write_gc0_##name(maxconf);					\
1052	maxconf |= dynconf;						\
1053} while (0)
1054
1055static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c)
1056{
1057	unsigned int config0;
1058
1059	probe_gc0_config(config, config0, MIPS_CONF_M);
1060
1061	if (config0 & MIPS_CONF_M)
1062		c->guest.conf |= BIT(1);
1063	return config0 & MIPS_CONF_M;
1064}
1065
1066static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c)
1067{
1068	unsigned int config1, config1_dyn;
1069
1070	probe_gc0_config_dyn(config1, config1, config1_dyn,
1071			     MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR |
1072			     MIPS_CONF1_FP);
1073
1074	if (config1 & MIPS_CONF1_FP)
1075		c->guest.options |= MIPS_CPU_FPU;
1076	if (config1_dyn & MIPS_CONF1_FP)
1077		c->guest.options_dyn |= MIPS_CPU_FPU;
1078
1079	if (config1 & MIPS_CONF1_WR)
1080		c->guest.options |= MIPS_CPU_WATCH;
1081	if (config1_dyn & MIPS_CONF1_WR)
1082		c->guest.options_dyn |= MIPS_CPU_WATCH;
1083
1084	if (config1 & MIPS_CONF1_PC)
1085		c->guest.options |= MIPS_CPU_PERF;
1086	if (config1_dyn & MIPS_CONF1_PC)
1087		c->guest.options_dyn |= MIPS_CPU_PERF;
1088
1089	if (config1 & MIPS_CONF_M)
1090		c->guest.conf |= BIT(2);
1091	return config1 & MIPS_CONF_M;
1092}
1093
1094static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c)
1095{
1096	unsigned int config2;
1097
1098	probe_gc0_config(config2, config2, MIPS_CONF_M);
1099
1100	if (config2 & MIPS_CONF_M)
1101		c->guest.conf |= BIT(3);
1102	return config2 & MIPS_CONF_M;
1103}
1104
1105static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c)
1106{
1107	unsigned int config3, config3_dyn;
1108
1109	probe_gc0_config_dyn(config3, config3, config3_dyn,
1110			     MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_ULRI |
1111			     MIPS_CONF3_CTXTC);
1112
1113	if (config3 & MIPS_CONF3_CTXTC)
1114		c->guest.options |= MIPS_CPU_CTXTC;
1115	if (config3_dyn & MIPS_CONF3_CTXTC)
1116		c->guest.options_dyn |= MIPS_CPU_CTXTC;
1117
1118	if (config3 & MIPS_CONF3_PW)
1119		c->guest.options |= MIPS_CPU_HTW;
1120
1121	if (config3 & MIPS_CONF3_ULRI)
1122		c->guest.options |= MIPS_CPU_ULRI;
1123
1124	if (config3 & MIPS_CONF3_SC)
1125		c->guest.options |= MIPS_CPU_SEGMENTS;
1126
1127	if (config3 & MIPS_CONF3_BI)
1128		c->guest.options |= MIPS_CPU_BADINSTR;
1129	if (config3 & MIPS_CONF3_BP)
1130		c->guest.options |= MIPS_CPU_BADINSTRP;
1131
1132	if (config3 & MIPS_CONF3_MSA)
1133		c->guest.ases |= MIPS_ASE_MSA;
1134	if (config3_dyn & MIPS_CONF3_MSA)
1135		c->guest.ases_dyn |= MIPS_ASE_MSA;
1136
1137	if (config3 & MIPS_CONF_M)
1138		c->guest.conf |= BIT(4);
1139	return config3 & MIPS_CONF_M;
1140}
1141
1142static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c)
1143{
1144	unsigned int config4;
1145
1146	probe_gc0_config(config4, config4,
1147			 MIPS_CONF_M | MIPS_CONF4_KSCREXIST);
1148
1149	c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
1150				>> MIPS_CONF4_KSCREXIST_SHIFT;
1151
1152	if (config4 & MIPS_CONF_M)
1153		c->guest.conf |= BIT(5);
1154	return config4 & MIPS_CONF_M;
1155}
1156
1157static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c)
1158{
1159	unsigned int config5, config5_dyn;
1160
1161	probe_gc0_config_dyn(config5, config5, config5_dyn,
1162			 MIPS_CONF_M | MIPS_CONF5_MVH | MIPS_CONF5_MRP);
1163
1164	if (config5 & MIPS_CONF5_MRP)
1165		c->guest.options |= MIPS_CPU_MAAR;
1166	if (config5_dyn & MIPS_CONF5_MRP)
1167		c->guest.options_dyn |= MIPS_CPU_MAAR;
1168
1169	if (config5 & MIPS_CONF5_LLB)
1170		c->guest.options |= MIPS_CPU_RW_LLB;
1171
1172	if (config5 & MIPS_CONF5_MVH)
1173		c->guest.options |= MIPS_CPU_MVH;
1174
1175	if (config5 & MIPS_CONF_M)
1176		c->guest.conf |= BIT(6);
1177	return config5 & MIPS_CONF_M;
1178}
1179
1180static inline void decode_guest_configs(struct cpuinfo_mips *c)
1181{
1182	unsigned int ok;
1183
1184	ok = decode_guest_config0(c);
1185	if (ok)
1186		ok = decode_guest_config1(c);
1187	if (ok)
1188		ok = decode_guest_config2(c);
1189	if (ok)
1190		ok = decode_guest_config3(c);
1191	if (ok)
1192		ok = decode_guest_config4(c);
1193	if (ok)
1194		decode_guest_config5(c);
1195}
1196
1197static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c)
1198{
1199	unsigned int guestctl0, temp;
1200
1201	guestctl0 = read_c0_guestctl0();
1202
1203	if (guestctl0 & MIPS_GCTL0_G0E)
1204		c->options |= MIPS_CPU_GUESTCTL0EXT;
1205	if (guestctl0 & MIPS_GCTL0_G1)
1206		c->options |= MIPS_CPU_GUESTCTL1;
1207	if (guestctl0 & MIPS_GCTL0_G2)
1208		c->options |= MIPS_CPU_GUESTCTL2;
1209	if (!(guestctl0 & MIPS_GCTL0_RAD)) {
1210		c->options |= MIPS_CPU_GUESTID;
1211
1212		/*
1213		 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0
1214		 * first, otherwise all data accesses will be fully virtualised
1215		 * as if they were performed by guest mode.
1216		 */
1217		write_c0_guestctl1(0);
1218		tlbw_use_hazard();
1219
1220		write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG);
1221		back_to_back_c0_hazard();
1222		temp = read_c0_guestctl0();
1223
1224		if (temp & MIPS_GCTL0_DRG) {
1225			write_c0_guestctl0(guestctl0);
1226			c->options |= MIPS_CPU_DRG;
1227		}
1228	}
1229}
1230
1231static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c)
1232{
1233	if (cpu_has_guestid) {
1234		/* determine the number of bits of GuestID available */
1235		write_c0_guestctl1(MIPS_GCTL1_ID);
1236		back_to_back_c0_hazard();
1237		c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID)
1238						>> MIPS_GCTL1_ID_SHIFT;
1239		write_c0_guestctl1(0);
1240	}
1241}
1242
1243static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c)
1244{
1245	/* determine the number of bits of GTOffset available */
1246	write_c0_gtoffset(0xffffffff);
1247	back_to_back_c0_hazard();
1248	c->gtoffset_mask = read_c0_gtoffset();
1249	write_c0_gtoffset(0);
1250}
1251
1252static inline void cpu_probe_vz(struct cpuinfo_mips *c)
1253{
1254	cpu_probe_guestctl0(c);
1255	if (cpu_has_guestctl1)
1256		cpu_probe_guestctl1(c);
1257
1258	cpu_probe_gtoffset(c);
1259
1260	decode_guest_configs(c);
1261}
1262
1263#define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
1264		| MIPS_CPU_COUNTER)
1265
1266static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
1267{
1268	switch (c->processor_id & PRID_IMP_MASK) {
1269	case PRID_IMP_R2000:
1270		c->cputype = CPU_R2000;
1271		__cpu_name[cpu] = "R2000";
1272		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1273		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1274			     MIPS_CPU_NOFPUEX;
1275		if (__cpu_has_fpu())
1276			c->options |= MIPS_CPU_FPU;
1277		c->tlbsize = 64;
1278		break;
1279	case PRID_IMP_R3000:
1280		if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
1281			if (cpu_has_confreg()) {
1282				c->cputype = CPU_R3081E;
1283				__cpu_name[cpu] = "R3081";
1284			} else {
1285				c->cputype = CPU_R3000A;
1286				__cpu_name[cpu] = "R3000A";
1287			}
1288		} else {
1289			c->cputype = CPU_R3000;
1290			__cpu_name[cpu] = "R3000";
1291		}
1292		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1293		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1294			     MIPS_CPU_NOFPUEX;
1295		if (__cpu_has_fpu())
1296			c->options |= MIPS_CPU_FPU;
1297		c->tlbsize = 64;
1298		break;
1299	case PRID_IMP_R4000:
1300		if (read_c0_config() & CONF_SC) {
1301			if ((c->processor_id & PRID_REV_MASK) >=
1302			    PRID_REV_R4400) {
1303				c->cputype = CPU_R4400PC;
1304				__cpu_name[cpu] = "R4400PC";
1305			} else {
1306				c->cputype = CPU_R4000PC;
1307				__cpu_name[cpu] = "R4000PC";
1308			}
1309		} else {
1310			int cca = read_c0_config() & CONF_CM_CMASK;
1311			int mc;
1312
1313			/*
1314			 * SC and MC versions can't be reliably told apart,
1315			 * but only the latter support coherent caching
1316			 * modes so assume the firmware has set the KSEG0
1317			 * coherency attribute reasonably (if uncached, we
1318			 * assume SC).
1319			 */
1320			switch (cca) {
1321			case CONF_CM_CACHABLE_CE:
1322			case CONF_CM_CACHABLE_COW:
1323			case CONF_CM_CACHABLE_CUW:
1324				mc = 1;
1325				break;
1326			default:
1327				mc = 0;
1328				break;
1329			}
1330			if ((c->processor_id & PRID_REV_MASK) >=
1331			    PRID_REV_R4400) {
1332				c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
1333				__cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
1334			} else {
1335				c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
1336				__cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
1337			}
1338		}
1339
1340		set_isa(c, MIPS_CPU_ISA_III);
1341		c->fpu_msk31 |= FPU_CSR_CONDX;
1342		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1343			     MIPS_CPU_WATCH | MIPS_CPU_VCE |
1344			     MIPS_CPU_LLSC;
1345		c->tlbsize = 48;
1346		break;
1347	case PRID_IMP_VR41XX:
1348		set_isa(c, MIPS_CPU_ISA_III);
1349		c->fpu_msk31 |= FPU_CSR_CONDX;
1350		c->options = R4K_OPTS;
1351		c->tlbsize = 32;
1352		switch (c->processor_id & 0xf0) {
1353		case PRID_REV_VR4111:
1354			c->cputype = CPU_VR4111;
1355			__cpu_name[cpu] = "NEC VR4111";
1356			break;
1357		case PRID_REV_VR4121:
1358			c->cputype = CPU_VR4121;
1359			__cpu_name[cpu] = "NEC VR4121";
1360			break;
1361		case PRID_REV_VR4122:
1362			if ((c->processor_id & 0xf) < 0x3) {
1363				c->cputype = CPU_VR4122;
1364				__cpu_name[cpu] = "NEC VR4122";
1365			} else {
1366				c->cputype = CPU_VR4181A;
1367				__cpu_name[cpu] = "NEC VR4181A";
1368			}
1369			break;
1370		case PRID_REV_VR4130:
1371			if ((c->processor_id & 0xf) < 0x4) {
1372				c->cputype = CPU_VR4131;
1373				__cpu_name[cpu] = "NEC VR4131";
1374			} else {
1375				c->cputype = CPU_VR4133;
1376				c->options |= MIPS_CPU_LLSC;
1377				__cpu_name[cpu] = "NEC VR4133";
1378			}
1379			break;
1380		default:
1381			printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n");
1382			c->cputype = CPU_VR41XX;
1383			__cpu_name[cpu] = "NEC Vr41xx";
1384			break;
1385		}
1386		break;
1387	case PRID_IMP_R4600:
1388		c->cputype = CPU_R4600;
1389		__cpu_name[cpu] = "R4600";
1390		set_isa(c, MIPS_CPU_ISA_III);
1391		c->fpu_msk31 |= FPU_CSR_CONDX;
1392		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1393			     MIPS_CPU_LLSC;
1394		c->tlbsize = 48;
1395		break;
1396	#if 0
1397	case PRID_IMP_R4650:
1398		/*
1399		 * This processor doesn't have an MMU, so it's not
1400		 * "real easy" to run Linux on it. It is left purely
1401		 * for documentation.  Commented out because it shares
1402		 * it's c0_prid id number with the TX3900.
1403		 */
1404		c->cputype = CPU_R4650;
1405		__cpu_name[cpu] = "R4650";
1406		set_isa(c, MIPS_CPU_ISA_III);
1407		c->fpu_msk31 |= FPU_CSR_CONDX;
1408		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1409		c->tlbsize = 48;
1410		break;
1411	#endif
1412	case PRID_IMP_TX39:
1413		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1414		c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE;
1415
1416		if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) {
1417			c->cputype = CPU_TX3927;
1418			__cpu_name[cpu] = "TX3927";
1419			c->tlbsize = 64;
1420		} else {
1421			switch (c->processor_id & PRID_REV_MASK) {
1422			case PRID_REV_TX3912:
1423				c->cputype = CPU_TX3912;
1424				__cpu_name[cpu] = "TX3912";
1425				c->tlbsize = 32;
1426				break;
1427			case PRID_REV_TX3922:
1428				c->cputype = CPU_TX3922;
1429				__cpu_name[cpu] = "TX3922";
1430				c->tlbsize = 64;
1431				break;
1432			}
1433		}
1434		break;
1435	case PRID_IMP_R4700:
1436		c->cputype = CPU_R4700;
1437		__cpu_name[cpu] = "R4700";
1438		set_isa(c, MIPS_CPU_ISA_III);
1439		c->fpu_msk31 |= FPU_CSR_CONDX;
1440		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1441			     MIPS_CPU_LLSC;
1442		c->tlbsize = 48;
1443		break;
1444	case PRID_IMP_TX49:
1445		c->cputype = CPU_TX49XX;
1446		__cpu_name[cpu] = "R49XX";
1447		set_isa(c, MIPS_CPU_ISA_III);
1448		c->fpu_msk31 |= FPU_CSR_CONDX;
1449		c->options = R4K_OPTS | MIPS_CPU_LLSC;
1450		if (!(c->processor_id & 0x08))
1451			c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1452		c->tlbsize = 48;
1453		break;
1454	case PRID_IMP_R5000:
1455		c->cputype = CPU_R5000;
1456		__cpu_name[cpu] = "R5000";
1457		set_isa(c, MIPS_CPU_ISA_IV);
1458		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1459			     MIPS_CPU_LLSC;
1460		c->tlbsize = 48;
1461		break;
1462	case PRID_IMP_R5500:
1463		c->cputype = CPU_R5500;
1464		__cpu_name[cpu] = "R5500";
1465		set_isa(c, MIPS_CPU_ISA_IV);
1466		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1467			     MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1468		c->tlbsize = 48;
1469		break;
1470	case PRID_IMP_NEVADA:
1471		c->cputype = CPU_NEVADA;
1472		__cpu_name[cpu] = "Nevada";
1473		set_isa(c, MIPS_CPU_ISA_IV);
1474		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1475			     MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1476		c->tlbsize = 48;
1477		break;
1478	case PRID_IMP_RM7000:
1479		c->cputype = CPU_RM7000;
1480		__cpu_name[cpu] = "RM7000";
1481		set_isa(c, MIPS_CPU_ISA_IV);
1482		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1483			     MIPS_CPU_LLSC;
1484		/*
1485		 * Undocumented RM7000:	 Bit 29 in the info register of
1486		 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1487		 * entries.
1488		 *
1489		 * 29	   1 =>	   64 entry JTLB
1490		 *	   0 =>	   48 entry JTLB
1491		 */
1492		c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1493		break;
1494	case PRID_IMP_R10000:
1495		c->cputype = CPU_R10000;
1496		__cpu_name[cpu] = "R10000";
1497		set_isa(c, MIPS_CPU_ISA_IV);
1498		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1499			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1500			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1501			     MIPS_CPU_LLSC;
1502		c->tlbsize = 64;
1503		break;
1504	case PRID_IMP_R12000:
1505		c->cputype = CPU_R12000;
1506		__cpu_name[cpu] = "R12000";
1507		set_isa(c, MIPS_CPU_ISA_IV);
1508		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1509			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1510			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1511			     MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1512		c->tlbsize = 64;
1513		break;
1514	case PRID_IMP_R14000:
1515		if (((c->processor_id >> 4) & 0x0f) > 2) {
1516			c->cputype = CPU_R16000;
1517			__cpu_name[cpu] = "R16000";
1518		} else {
1519			c->cputype = CPU_R14000;
1520			__cpu_name[cpu] = "R14000";
1521		}
1522		set_isa(c, MIPS_CPU_ISA_IV);
1523		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1524			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1525			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1526			     MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1527		c->tlbsize = 64;
1528		break;
1529	case PRID_IMP_LOONGSON_64:  /* Loongson-2/3 */
1530		switch (c->processor_id & PRID_REV_MASK) {
1531		case PRID_REV_LOONGSON2E:
1532			c->cputype = CPU_LOONGSON2;
1533			__cpu_name[cpu] = "ICT Loongson-2";
1534			set_elf_platform(cpu, "loongson2e");
1535			set_isa(c, MIPS_CPU_ISA_III);
1536			c->fpu_msk31 |= FPU_CSR_CONDX;
1537			break;
1538		case PRID_REV_LOONGSON2F:
1539			c->cputype = CPU_LOONGSON2;
1540			__cpu_name[cpu] = "ICT Loongson-2";
1541			set_elf_platform(cpu, "loongson2f");
1542			set_isa(c, MIPS_CPU_ISA_III);
1543			c->fpu_msk31 |= FPU_CSR_CONDX;
1544			break;
1545		case PRID_REV_LOONGSON3A_R1:
1546			c->cputype = CPU_LOONGSON3;
1547			__cpu_name[cpu] = "ICT Loongson-3";
1548			set_elf_platform(cpu, "loongson3a");
1549			set_isa(c, MIPS_CPU_ISA_M64R1);
1550			c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1551				MIPS_ASE_LOONGSON_EXT);
1552			break;
1553		case PRID_REV_LOONGSON3B_R1:
1554		case PRID_REV_LOONGSON3B_R2:
1555			c->cputype = CPU_LOONGSON3;
1556			__cpu_name[cpu] = "ICT Loongson-3";
1557			set_elf_platform(cpu, "loongson3b");
1558			set_isa(c, MIPS_CPU_ISA_M64R1);
1559			c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1560				MIPS_ASE_LOONGSON_EXT);
1561			break;
1562		}
1563
1564		c->options = R4K_OPTS |
1565			     MIPS_CPU_FPU | MIPS_CPU_LLSC |
1566			     MIPS_CPU_32FPR;
1567		c->tlbsize = 64;
 
1568		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1569		break;
1570	case PRID_IMP_LOONGSON_32:  /* Loongson-1 */
1571		decode_configs(c);
1572
1573		c->cputype = CPU_LOONGSON1;
1574
1575		switch (c->processor_id & PRID_REV_MASK) {
1576		case PRID_REV_LOONGSON1B:
1577			__cpu_name[cpu] = "Loongson 1B";
1578			break;
1579		}
1580
1581		break;
1582	}
1583}
1584
1585static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1586{
1587	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1588	switch (c->processor_id & PRID_IMP_MASK) {
1589	case PRID_IMP_QEMU_GENERIC:
1590		c->writecombine = _CACHE_UNCACHED;
1591		c->cputype = CPU_QEMU_GENERIC;
1592		__cpu_name[cpu] = "MIPS GENERIC QEMU";
1593		break;
1594	case PRID_IMP_4KC:
1595		c->cputype = CPU_4KC;
1596		c->writecombine = _CACHE_UNCACHED;
1597		__cpu_name[cpu] = "MIPS 4Kc";
1598		break;
1599	case PRID_IMP_4KEC:
1600	case PRID_IMP_4KECR2:
1601		c->cputype = CPU_4KEC;
1602		c->writecombine = _CACHE_UNCACHED;
1603		__cpu_name[cpu] = "MIPS 4KEc";
1604		break;
1605	case PRID_IMP_4KSC:
1606	case PRID_IMP_4KSD:
1607		c->cputype = CPU_4KSC;
1608		c->writecombine = _CACHE_UNCACHED;
1609		__cpu_name[cpu] = "MIPS 4KSc";
1610		break;
1611	case PRID_IMP_5KC:
1612		c->cputype = CPU_5KC;
1613		c->writecombine = _CACHE_UNCACHED;
1614		__cpu_name[cpu] = "MIPS 5Kc";
1615		break;
1616	case PRID_IMP_5KE:
1617		c->cputype = CPU_5KE;
1618		c->writecombine = _CACHE_UNCACHED;
1619		__cpu_name[cpu] = "MIPS 5KE";
1620		break;
1621	case PRID_IMP_20KC:
1622		c->cputype = CPU_20KC;
1623		c->writecombine = _CACHE_UNCACHED;
1624		__cpu_name[cpu] = "MIPS 20Kc";
1625		break;
1626	case PRID_IMP_24K:
1627		c->cputype = CPU_24K;
1628		c->writecombine = _CACHE_UNCACHED;
1629		__cpu_name[cpu] = "MIPS 24Kc";
1630		break;
1631	case PRID_IMP_24KE:
1632		c->cputype = CPU_24K;
1633		c->writecombine = _CACHE_UNCACHED;
1634		__cpu_name[cpu] = "MIPS 24KEc";
1635		break;
1636	case PRID_IMP_25KF:
1637		c->cputype = CPU_25KF;
1638		c->writecombine = _CACHE_UNCACHED;
1639		__cpu_name[cpu] = "MIPS 25Kc";
1640		break;
1641	case PRID_IMP_34K:
1642		c->cputype = CPU_34K;
1643		c->writecombine = _CACHE_UNCACHED;
1644		__cpu_name[cpu] = "MIPS 34Kc";
1645		cpu_set_mt_per_tc_perf(c);
1646		break;
1647	case PRID_IMP_74K:
1648		c->cputype = CPU_74K;
1649		c->writecombine = _CACHE_UNCACHED;
1650		__cpu_name[cpu] = "MIPS 74Kc";
1651		break;
1652	case PRID_IMP_M14KC:
1653		c->cputype = CPU_M14KC;
1654		c->writecombine = _CACHE_UNCACHED;
1655		__cpu_name[cpu] = "MIPS M14Kc";
1656		break;
1657	case PRID_IMP_M14KEC:
1658		c->cputype = CPU_M14KEC;
1659		c->writecombine = _CACHE_UNCACHED;
1660		__cpu_name[cpu] = "MIPS M14KEc";
1661		break;
1662	case PRID_IMP_1004K:
1663		c->cputype = CPU_1004K;
1664		c->writecombine = _CACHE_UNCACHED;
1665		__cpu_name[cpu] = "MIPS 1004Kc";
1666		cpu_set_mt_per_tc_perf(c);
1667		break;
1668	case PRID_IMP_1074K:
1669		c->cputype = CPU_1074K;
1670		c->writecombine = _CACHE_UNCACHED;
1671		__cpu_name[cpu] = "MIPS 1074Kc";
1672		break;
1673	case PRID_IMP_INTERAPTIV_UP:
1674		c->cputype = CPU_INTERAPTIV;
1675		__cpu_name[cpu] = "MIPS interAptiv";
1676		cpu_set_mt_per_tc_perf(c);
1677		break;
1678	case PRID_IMP_INTERAPTIV_MP:
1679		c->cputype = CPU_INTERAPTIV;
1680		__cpu_name[cpu] = "MIPS interAptiv (multi)";
1681		cpu_set_mt_per_tc_perf(c);
1682		break;
1683	case PRID_IMP_PROAPTIV_UP:
1684		c->cputype = CPU_PROAPTIV;
1685		__cpu_name[cpu] = "MIPS proAptiv";
1686		break;
1687	case PRID_IMP_PROAPTIV_MP:
1688		c->cputype = CPU_PROAPTIV;
1689		__cpu_name[cpu] = "MIPS proAptiv (multi)";
1690		break;
1691	case PRID_IMP_P5600:
1692		c->cputype = CPU_P5600;
1693		__cpu_name[cpu] = "MIPS P5600";
1694		break;
1695	case PRID_IMP_P6600:
1696		c->cputype = CPU_P6600;
1697		__cpu_name[cpu] = "MIPS P6600";
1698		break;
1699	case PRID_IMP_I6400:
1700		c->cputype = CPU_I6400;
1701		__cpu_name[cpu] = "MIPS I6400";
1702		break;
1703	case PRID_IMP_I6500:
1704		c->cputype = CPU_I6500;
1705		__cpu_name[cpu] = "MIPS I6500";
1706		break;
1707	case PRID_IMP_M5150:
1708		c->cputype = CPU_M5150;
1709		__cpu_name[cpu] = "MIPS M5150";
1710		break;
1711	case PRID_IMP_M6250:
1712		c->cputype = CPU_M6250;
1713		__cpu_name[cpu] = "MIPS M6250";
1714		break;
1715	}
1716
1717	decode_configs(c);
1718
1719	spram_config();
1720
 
 
1721	switch (__get_cpu_type(c->cputype)) {
 
 
 
 
1722	case CPU_I6500:
1723		c->options |= MIPS_CPU_SHARED_FTLB_ENTRIES;
1724		/* fall-through */
1725	case CPU_I6400:
1726		c->options |= MIPS_CPU_SHARED_FTLB_RAM;
1727		/* fall-through */
1728	default:
1729		break;
1730	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1731}
1732
1733static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1734{
1735	decode_configs(c);
1736	switch (c->processor_id & PRID_IMP_MASK) {
1737	case PRID_IMP_AU1_REV1:
1738	case PRID_IMP_AU1_REV2:
1739		c->cputype = CPU_ALCHEMY;
1740		switch ((c->processor_id >> 24) & 0xff) {
1741		case 0:
1742			__cpu_name[cpu] = "Au1000";
1743			break;
1744		case 1:
1745			__cpu_name[cpu] = "Au1500";
1746			break;
1747		case 2:
1748			__cpu_name[cpu] = "Au1100";
1749			break;
1750		case 3:
1751			__cpu_name[cpu] = "Au1550";
1752			break;
1753		case 4:
1754			__cpu_name[cpu] = "Au1200";
1755			if ((c->processor_id & PRID_REV_MASK) == 2)
1756				__cpu_name[cpu] = "Au1250";
1757			break;
1758		case 5:
1759			__cpu_name[cpu] = "Au1210";
1760			break;
1761		default:
1762			__cpu_name[cpu] = "Au1xxx";
1763			break;
1764		}
1765		break;
1766	}
1767}
1768
1769static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1770{
1771	decode_configs(c);
1772
1773	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1774	switch (c->processor_id & PRID_IMP_MASK) {
1775	case PRID_IMP_SB1:
1776		c->cputype = CPU_SB1;
1777		__cpu_name[cpu] = "SiByte SB1";
1778		/* FPU in pass1 is known to have issues. */
1779		if ((c->processor_id & PRID_REV_MASK) < 0x02)
1780			c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1781		break;
1782	case PRID_IMP_SB1A:
1783		c->cputype = CPU_SB1A;
1784		__cpu_name[cpu] = "SiByte SB1A";
1785		break;
1786	}
1787}
1788
1789static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1790{
1791	decode_configs(c);
1792	switch (c->processor_id & PRID_IMP_MASK) {
1793	case PRID_IMP_SR71000:
1794		c->cputype = CPU_SR71000;
1795		__cpu_name[cpu] = "Sandcraft SR71000";
1796		c->scache.ways = 8;
1797		c->tlbsize = 64;
1798		break;
1799	}
1800}
1801
1802static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1803{
1804	decode_configs(c);
1805	switch (c->processor_id & PRID_IMP_MASK) {
1806	case PRID_IMP_PR4450:
1807		c->cputype = CPU_PR4450;
1808		__cpu_name[cpu] = "Philips PR4450";
1809		set_isa(c, MIPS_CPU_ISA_M32R1);
1810		break;
1811	}
1812}
1813
1814static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1815{
1816	decode_configs(c);
1817	switch (c->processor_id & PRID_IMP_MASK) {
1818	case PRID_IMP_BMIPS32_REV4:
1819	case PRID_IMP_BMIPS32_REV8:
1820		c->cputype = CPU_BMIPS32;
1821		__cpu_name[cpu] = "Broadcom BMIPS32";
1822		set_elf_platform(cpu, "bmips32");
1823		break;
1824	case PRID_IMP_BMIPS3300:
1825	case PRID_IMP_BMIPS3300_ALT:
1826	case PRID_IMP_BMIPS3300_BUG:
1827		c->cputype = CPU_BMIPS3300;
1828		__cpu_name[cpu] = "Broadcom BMIPS3300";
1829		set_elf_platform(cpu, "bmips3300");
1830		break;
1831	case PRID_IMP_BMIPS43XX: {
1832		int rev = c->processor_id & PRID_REV_MASK;
1833
1834		if (rev >= PRID_REV_BMIPS4380_LO &&
1835				rev <= PRID_REV_BMIPS4380_HI) {
1836			c->cputype = CPU_BMIPS4380;
1837			__cpu_name[cpu] = "Broadcom BMIPS4380";
1838			set_elf_platform(cpu, "bmips4380");
1839			c->options |= MIPS_CPU_RIXI;
1840		} else {
1841			c->cputype = CPU_BMIPS4350;
1842			__cpu_name[cpu] = "Broadcom BMIPS4350";
1843			set_elf_platform(cpu, "bmips4350");
1844		}
1845		break;
1846	}
1847	case PRID_IMP_BMIPS5000:
1848	case PRID_IMP_BMIPS5200:
1849		c->cputype = CPU_BMIPS5000;
1850		if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200)
1851			__cpu_name[cpu] = "Broadcom BMIPS5200";
1852		else
1853			__cpu_name[cpu] = "Broadcom BMIPS5000";
1854		set_elf_platform(cpu, "bmips5000");
1855		c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI;
1856		break;
1857	}
1858}
1859
1860static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1861{
1862	decode_configs(c);
1863	switch (c->processor_id & PRID_IMP_MASK) {
1864	case PRID_IMP_CAVIUM_CN38XX:
1865	case PRID_IMP_CAVIUM_CN31XX:
1866	case PRID_IMP_CAVIUM_CN30XX:
1867		c->cputype = CPU_CAVIUM_OCTEON;
1868		__cpu_name[cpu] = "Cavium Octeon";
1869		goto platform;
1870	case PRID_IMP_CAVIUM_CN58XX:
1871	case PRID_IMP_CAVIUM_CN56XX:
1872	case PRID_IMP_CAVIUM_CN50XX:
1873	case PRID_IMP_CAVIUM_CN52XX:
1874		c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1875		__cpu_name[cpu] = "Cavium Octeon+";
1876platform:
1877		set_elf_platform(cpu, "octeon");
1878		break;
1879	case PRID_IMP_CAVIUM_CN61XX:
1880	case PRID_IMP_CAVIUM_CN63XX:
1881	case PRID_IMP_CAVIUM_CN66XX:
1882	case PRID_IMP_CAVIUM_CN68XX:
1883	case PRID_IMP_CAVIUM_CNF71XX:
1884		c->cputype = CPU_CAVIUM_OCTEON2;
1885		__cpu_name[cpu] = "Cavium Octeon II";
1886		set_elf_platform(cpu, "octeon2");
1887		break;
1888	case PRID_IMP_CAVIUM_CN70XX:
1889	case PRID_IMP_CAVIUM_CN73XX:
1890	case PRID_IMP_CAVIUM_CNF75XX:
1891	case PRID_IMP_CAVIUM_CN78XX:
1892		c->cputype = CPU_CAVIUM_OCTEON3;
1893		__cpu_name[cpu] = "Cavium Octeon III";
1894		set_elf_platform(cpu, "octeon3");
1895		break;
1896	default:
1897		printk(KERN_INFO "Unknown Octeon chip!\n");
1898		c->cputype = CPU_UNKNOWN;
1899		break;
1900	}
1901}
1902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1903static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu)
1904{
 
 
 
 
 
1905	switch (c->processor_id & PRID_IMP_MASK) {
1906	case PRID_IMP_LOONGSON_64:  /* Loongson-2/3 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1907		switch (c->processor_id & PRID_REV_MASK) {
1908		case PRID_REV_LOONGSON3A_R2_0:
1909		case PRID_REV_LOONGSON3A_R2_1:
1910			c->cputype = CPU_LOONGSON3;
1911			__cpu_name[cpu] = "ICT Loongson-3";
1912			set_elf_platform(cpu, "loongson3a");
1913			set_isa(c, MIPS_CPU_ISA_M64R2);
1914			break;
1915		case PRID_REV_LOONGSON3A_R3_0:
1916		case PRID_REV_LOONGSON3A_R3_1:
1917			c->cputype = CPU_LOONGSON3;
1918			__cpu_name[cpu] = "ICT Loongson-3";
1919			set_elf_platform(cpu, "loongson3a");
1920			set_isa(c, MIPS_CPU_ISA_M64R2);
1921			break;
1922		}
1923
1924		decode_configs(c);
 
 
 
 
 
 
1925		c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
1926		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1927		c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1928			MIPS_ASE_LOONGSON_EXT | MIPS_ASE_LOONGSON_EXT2);
 
 
 
 
 
 
 
 
 
1929		break;
1930	default:
1931		panic("Unknown Loongson Processor ID!");
1932		break;
1933	}
1934}
 
 
 
1935
1936static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
1937{
1938	decode_configs(c);
1939
1940	/*
1941	 * XBurst misses a config2 register, so config3 decode was skipped in
1942	 * decode_configs().
1943	 */
1944	decode_config3(c);
1945
1946	/* XBurst does not implement the CP0 counter. */
1947	c->options &= ~MIPS_CPU_COUNTER;
1948	BUG_ON(!__builtin_constant_p(cpu_has_counter) || cpu_has_counter);
1949
1950	switch (c->processor_id & PRID_IMP_MASK) {
1951	case PRID_IMP_XBURST:
1952		c->cputype = CPU_XBURST;
1953		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1954		__cpu_name[cpu] = "Ingenic JZRISC";
1955		/*
1956		 * The XBurst core by default attempts to avoid branch target
1957		 * buffer lookups by detecting & special casing loops. This
1958		 * feature will cause BogoMIPS and lpj calculate in error.
1959		 * Set cp0 config7 bit 4 to disable this feature.
1960		 */
1961		set_c0_config7(MIPS_CONF7_BTB_LOOP_EN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1962		break;
 
1963	default:
1964		panic("Unknown Ingenic Processor ID!");
1965		break;
1966	}
1967
1968	/*
1969	 * The config0 register in the Xburst CPUs with a processor ID of
1970	 * PRID_COMP_INGENIC_D0 report themselves as MIPS32r2 compatible,
1971	 * but they don't actually support this ISA.
1972	 */
1973	if ((c->processor_id & PRID_COMP_MASK) == PRID_COMP_INGENIC_D0)
1974		c->isa_level &= ~MIPS_CPU_ISA_M32R2;
1975}
1976
1977static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu)
1978{
1979	decode_configs(c);
1980
1981	if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) {
1982		c->cputype = CPU_ALCHEMY;
1983		__cpu_name[cpu] = "Au1300";
1984		/* following stuff is not for Alchemy */
1985		return;
1986	}
1987
1988	c->options = (MIPS_CPU_TLB	 |
1989			MIPS_CPU_4KEX	 |
1990			MIPS_CPU_COUNTER |
1991			MIPS_CPU_DIVEC	 |
1992			MIPS_CPU_WATCH	 |
1993			MIPS_CPU_EJTAG	 |
1994			MIPS_CPU_LLSC);
1995
1996	switch (c->processor_id & PRID_IMP_MASK) {
1997	case PRID_IMP_NETLOGIC_XLP2XX:
1998	case PRID_IMP_NETLOGIC_XLP9XX:
1999	case PRID_IMP_NETLOGIC_XLP5XX:
2000		c->cputype = CPU_XLP;
2001		__cpu_name[cpu] = "Broadcom XLPII";
2002		break;
2003
2004	case PRID_IMP_NETLOGIC_XLP8XX:
2005	case PRID_IMP_NETLOGIC_XLP3XX:
2006		c->cputype = CPU_XLP;
2007		__cpu_name[cpu] = "Netlogic XLP";
2008		break;
2009
2010	case PRID_IMP_NETLOGIC_XLR732:
2011	case PRID_IMP_NETLOGIC_XLR716:
2012	case PRID_IMP_NETLOGIC_XLR532:
2013	case PRID_IMP_NETLOGIC_XLR308:
2014	case PRID_IMP_NETLOGIC_XLR532C:
2015	case PRID_IMP_NETLOGIC_XLR516C:
2016	case PRID_IMP_NETLOGIC_XLR508C:
2017	case PRID_IMP_NETLOGIC_XLR308C:
2018		c->cputype = CPU_XLR;
2019		__cpu_name[cpu] = "Netlogic XLR";
2020		break;
2021
2022	case PRID_IMP_NETLOGIC_XLS608:
2023	case PRID_IMP_NETLOGIC_XLS408:
2024	case PRID_IMP_NETLOGIC_XLS404:
2025	case PRID_IMP_NETLOGIC_XLS208:
2026	case PRID_IMP_NETLOGIC_XLS204:
2027	case PRID_IMP_NETLOGIC_XLS108:
2028	case PRID_IMP_NETLOGIC_XLS104:
2029	case PRID_IMP_NETLOGIC_XLS616B:
2030	case PRID_IMP_NETLOGIC_XLS608B:
2031	case PRID_IMP_NETLOGIC_XLS416B:
2032	case PRID_IMP_NETLOGIC_XLS412B:
2033	case PRID_IMP_NETLOGIC_XLS408B:
2034	case PRID_IMP_NETLOGIC_XLS404B:
2035		c->cputype = CPU_XLR;
2036		__cpu_name[cpu] = "Netlogic XLS";
2037		break;
2038
2039	default:
2040		pr_info("Unknown Netlogic chip id [%02x]!\n",
2041		       c->processor_id);
2042		c->cputype = CPU_XLR;
2043		break;
2044	}
2045
2046	if (c->cputype == CPU_XLP) {
2047		set_isa(c, MIPS_CPU_ISA_M64R2);
2048		c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK);
2049		/* This will be updated again after all threads are woken up */
2050		c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1;
2051	} else {
2052		set_isa(c, MIPS_CPU_ISA_M64R1);
2053		c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1;
2054	}
2055	c->kscratch_mask = 0xf;
2056}
2057
2058#ifdef CONFIG_64BIT
2059/* For use by uaccess.h */
2060u64 __ua_limit;
2061EXPORT_SYMBOL(__ua_limit);
2062#endif
2063
2064const char *__cpu_name[NR_CPUS];
2065const char *__elf_platform;
 
2066
2067void cpu_probe(void)
2068{
2069	struct cpuinfo_mips *c = &current_cpu_data;
2070	unsigned int cpu = smp_processor_id();
2071
2072	/*
2073	 * Set a default elf platform, cpu probe may later
2074	 * overwrite it with a more precise value
2075	 */
2076	set_elf_platform(cpu, "mips");
2077
2078	c->processor_id = PRID_IMP_UNKNOWN;
2079	c->fpu_id	= FPIR_IMP_NONE;
2080	c->cputype	= CPU_UNKNOWN;
2081	c->writecombine = _CACHE_UNCACHED;
2082
2083	c->fpu_csr31	= FPU_CSR_RN;
2084	c->fpu_msk31	= FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
2085
2086	c->processor_id = read_c0_prid();
2087	switch (c->processor_id & PRID_COMP_MASK) {
2088	case PRID_COMP_LEGACY:
2089		cpu_probe_legacy(c, cpu);
2090		break;
2091	case PRID_COMP_MIPS:
2092		cpu_probe_mips(c, cpu);
2093		break;
2094	case PRID_COMP_ALCHEMY:
2095		cpu_probe_alchemy(c, cpu);
2096		break;
2097	case PRID_COMP_SIBYTE:
2098		cpu_probe_sibyte(c, cpu);
2099		break;
2100	case PRID_COMP_BROADCOM:
2101		cpu_probe_broadcom(c, cpu);
2102		break;
2103	case PRID_COMP_SANDCRAFT:
2104		cpu_probe_sandcraft(c, cpu);
2105		break;
2106	case PRID_COMP_NXP:
2107		cpu_probe_nxp(c, cpu);
2108		break;
2109	case PRID_COMP_CAVIUM:
2110		cpu_probe_cavium(c, cpu);
2111		break;
2112	case PRID_COMP_LOONGSON:
2113		cpu_probe_loongson(c, cpu);
2114		break;
 
2115	case PRID_COMP_INGENIC_D0:
2116	case PRID_COMP_INGENIC_D1:
2117	case PRID_COMP_INGENIC_E1:
2118		cpu_probe_ingenic(c, cpu);
2119		break;
2120	case PRID_COMP_NETLOGIC:
2121		cpu_probe_netlogic(c, cpu);
2122		break;
2123	}
2124
2125	BUG_ON(!__cpu_name[cpu]);
2126	BUG_ON(c->cputype == CPU_UNKNOWN);
2127
2128	/*
2129	 * Platform code can force the cpu type to optimize code
2130	 * generation. In that case be sure the cpu type is correctly
2131	 * manually setup otherwise it could trigger some nasty bugs.
2132	 */
2133	BUG_ON(current_cpu_type() != c->cputype);
2134
2135	if (cpu_has_rixi) {
2136		/* Enable the RIXI exceptions */
2137		set_c0_pagegrain(PG_IEC);
2138		back_to_back_c0_hazard();
2139		/* Verify the IEC bit is set */
2140		if (read_c0_pagegrain() & PG_IEC)
2141			c->options |= MIPS_CPU_RIXIEX;
2142	}
2143
2144	if (mips_fpu_disabled)
2145		c->options &= ~MIPS_CPU_FPU;
2146
2147	if (mips_dsp_disabled)
2148		c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
2149
2150	if (mips_htw_disabled) {
2151		c->options &= ~MIPS_CPU_HTW;
2152		write_c0_pwctl(read_c0_pwctl() &
2153			       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
2154	}
2155
2156	if (c->options & MIPS_CPU_FPU)
2157		cpu_set_fpu_opts(c);
2158	else
2159		cpu_set_nofpu_opts(c);
2160
2161	if (cpu_has_bp_ghist)
2162		write_c0_r10k_diag(read_c0_r10k_diag() |
2163				   R10K_DIAG_E_GHIST);
2164
2165	if (cpu_has_mips_r2_r6) {
2166		c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
2167		/* R2 has Performance Counter Interrupt indicator */
2168		c->options |= MIPS_CPU_PCI;
2169	}
2170	else
2171		c->srsets = 1;
2172
2173	if (cpu_has_mips_r6)
2174		elf_hwcap |= HWCAP_MIPS_R6;
2175
2176	if (cpu_has_msa) {
2177		c->msa_id = cpu_get_msa_id();
2178		WARN(c->msa_id & MSA_IR_WRPF,
2179		     "Vector register partitioning unimplemented!");
2180		elf_hwcap |= HWCAP_MIPS_MSA;
2181	}
2182
2183	if (cpu_has_mips16)
2184		elf_hwcap |= HWCAP_MIPS_MIPS16;
2185
2186	if (cpu_has_mdmx)
2187		elf_hwcap |= HWCAP_MIPS_MDMX;
2188
2189	if (cpu_has_mips3d)
2190		elf_hwcap |= HWCAP_MIPS_MIPS3D;
2191
2192	if (cpu_has_smartmips)
2193		elf_hwcap |= HWCAP_MIPS_SMARTMIPS;
2194
2195	if (cpu_has_dsp)
2196		elf_hwcap |= HWCAP_MIPS_DSP;
2197
2198	if (cpu_has_dsp2)
2199		elf_hwcap |= HWCAP_MIPS_DSP2;
2200
2201	if (cpu_has_dsp3)
2202		elf_hwcap |= HWCAP_MIPS_DSP3;
2203
2204	if (cpu_has_mips16e2)
2205		elf_hwcap |= HWCAP_MIPS_MIPS16E2;
2206
2207	if (cpu_has_loongson_mmi)
2208		elf_hwcap |= HWCAP_LOONGSON_MMI;
2209
2210	if (cpu_has_loongson_ext)
2211		elf_hwcap |= HWCAP_LOONGSON_EXT;
2212
2213	if (cpu_has_loongson_ext2)
2214		elf_hwcap |= HWCAP_LOONGSON_EXT2;
2215
2216	if (cpu_has_vz)
2217		cpu_probe_vz(c);
2218
2219	cpu_probe_vmbits(c);
 
 
 
 
 
 
 
2220
2221#ifdef CONFIG_64BIT
2222	if (cpu == 0)
2223		__ua_limit = ~((1ull << cpu_vmbits) - 1);
2224#endif
2225}
2226
2227void cpu_report(void)
2228{
2229	struct cpuinfo_mips *c = &current_cpu_data;
2230
2231	pr_info("CPU%d revision is: %08x (%s)\n",
2232		smp_processor_id(), c->processor_id, cpu_name_string());
2233	if (c->options & MIPS_CPU_FPU)
2234		printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
2235	if (cpu_has_msa)
2236		pr_info("MSA revision is: %08x\n", c->msa_id);
2237}
2238
2239void cpu_set_cluster(struct cpuinfo_mips *cpuinfo, unsigned int cluster)
2240{
2241	/* Ensure the core number fits in the field */
2242	WARN_ON(cluster > (MIPS_GLOBALNUMBER_CLUSTER >>
2243			   MIPS_GLOBALNUMBER_CLUSTER_SHF));
2244
2245	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CLUSTER;
2246	cpuinfo->globalnumber |= cluster << MIPS_GLOBALNUMBER_CLUSTER_SHF;
2247}
2248
2249void cpu_set_core(struct cpuinfo_mips *cpuinfo, unsigned int core)
2250{
2251	/* Ensure the core number fits in the field */
2252	WARN_ON(core > (MIPS_GLOBALNUMBER_CORE >> MIPS_GLOBALNUMBER_CORE_SHF));
2253
2254	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CORE;
2255	cpuinfo->globalnumber |= core << MIPS_GLOBALNUMBER_CORE_SHF;
2256}
2257
2258void cpu_set_vpe_id(struct cpuinfo_mips *cpuinfo, unsigned int vpe)
2259{
2260	/* Ensure the VP(E) ID fits in the field */
2261	WARN_ON(vpe > (MIPS_GLOBALNUMBER_VP >> MIPS_GLOBALNUMBER_VP_SHF));
2262
2263	/* Ensure we're not using VP(E)s without support */
2264	WARN_ON(vpe && !IS_ENABLED(CONFIG_MIPS_MT_SMP) &&
2265		!IS_ENABLED(CONFIG_CPU_MIPSR6));
2266
2267	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_VP;
2268	cpuinfo->globalnumber |= vpe << MIPS_GLOBALNUMBER_VP_SHF;
2269}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Processor capabilities determination functions.
   4 *
   5 * Copyright (C) xxxx  the Anonymous
   6 * Copyright (C) 1994 - 2006 Ralf Baechle
   7 * Copyright (C) 2003, 2004  Maciej W. Rozycki
   8 * Copyright (C) 2001, 2004, 2011, 2012	 MIPS Technologies, Inc.
   9 */
  10#include <linux/init.h>
  11#include <linux/kernel.h>
  12#include <linux/ptrace.h>
  13#include <linux/smp.h>
  14#include <linux/stddef.h>
  15#include <linux/export.h>
  16
  17#include <asm/bugs.h>
  18#include <asm/cpu.h>
  19#include <asm/cpu-features.h>
  20#include <asm/cpu-type.h>
  21#include <asm/fpu.h>
  22#include <asm/mipsregs.h>
  23#include <asm/mipsmtregs.h>
  24#include <asm/msa.h>
  25#include <asm/watch.h>
  26#include <asm/elf.h>
  27#include <asm/pgtable-bits.h>
  28#include <asm/spram.h>
  29#include <linux/uaccess.h>
  30
  31#include <asm/mach-loongson64/cpucfg-emul.h>
  32
  33/* Hardware capabilities */
  34unsigned int elf_hwcap __read_mostly;
  35EXPORT_SYMBOL_GPL(elf_hwcap);
  36
  37#ifdef CONFIG_MIPS_FP_SUPPORT
  38
  39/*
  40 * Get the FPU Implementation/Revision.
  41 */
  42static inline unsigned long cpu_get_fpu_id(void)
  43{
  44	unsigned long tmp, fpu_id;
  45
  46	tmp = read_c0_status();
  47	__enable_fpu(FPU_AS_IS);
  48	fpu_id = read_32bit_cp1_register(CP1_REVISION);
  49	write_c0_status(tmp);
  50	return fpu_id;
  51}
  52
  53/*
  54 * Check if the CPU has an external FPU.
  55 */
  56static inline int __cpu_has_fpu(void)
  57{
  58	return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE;
  59}
  60
  61/*
  62 * Determine the FCSR mask for FPU hardware.
  63 */
  64static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c)
  65{
  66	unsigned long sr, mask, fcsr, fcsr0, fcsr1;
  67
  68	fcsr = c->fpu_csr31;
  69	mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM;
  70
  71	sr = read_c0_status();
  72	__enable_fpu(FPU_AS_IS);
  73
  74	fcsr0 = fcsr & mask;
  75	write_32bit_cp1_register(CP1_STATUS, fcsr0);
  76	fcsr0 = read_32bit_cp1_register(CP1_STATUS);
  77
  78	fcsr1 = fcsr | ~mask;
  79	write_32bit_cp1_register(CP1_STATUS, fcsr1);
  80	fcsr1 = read_32bit_cp1_register(CP1_STATUS);
  81
  82	write_32bit_cp1_register(CP1_STATUS, fcsr);
  83
  84	write_c0_status(sr);
  85
  86	c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask;
  87}
  88
  89/*
  90 * Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes
  91 * supported by FPU hardware.
  92 */
  93static void cpu_set_fpu_2008(struct cpuinfo_mips *c)
  94{
  95	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
  96			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
  97			    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
  98			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
  99		unsigned long sr, fir, fcsr, fcsr0, fcsr1;
 100
 101		sr = read_c0_status();
 102		__enable_fpu(FPU_AS_IS);
 103
 104		fir = read_32bit_cp1_register(CP1_REVISION);
 105		if (fir & MIPS_FPIR_HAS2008) {
 106			fcsr = read_32bit_cp1_register(CP1_STATUS);
 107
 108			/*
 109			 * MAC2008 toolchain never landed in real world, so we're only
 110			 * testing wether it can be disabled and don't try to enabled
 111			 * it.
 112			 */
 113			fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008 | FPU_CSR_MAC2008);
 114			write_32bit_cp1_register(CP1_STATUS, fcsr0);
 115			fcsr0 = read_32bit_cp1_register(CP1_STATUS);
 116
 117			fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 118			write_32bit_cp1_register(CP1_STATUS, fcsr1);
 119			fcsr1 = read_32bit_cp1_register(CP1_STATUS);
 120
 121			write_32bit_cp1_register(CP1_STATUS, fcsr);
 122
 123			if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2)) {
 124				/*
 125				 * The bit for MAC2008 might be reused by R6 in future,
 126				 * so we only test for R2-R5.
 127				 */
 128				if (fcsr0 & FPU_CSR_MAC2008)
 129					c->options |= MIPS_CPU_MAC_2008_ONLY;
 130			}
 131
 132			if (!(fcsr0 & FPU_CSR_NAN2008))
 133				c->options |= MIPS_CPU_NAN_LEGACY;
 134			if (fcsr1 & FPU_CSR_NAN2008)
 135				c->options |= MIPS_CPU_NAN_2008;
 136
 137			if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008)
 138				c->fpu_msk31 &= ~FPU_CSR_ABS2008;
 139			else
 140				c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008;
 141
 142			if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008)
 143				c->fpu_msk31 &= ~FPU_CSR_NAN2008;
 144			else
 145				c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008;
 146		} else {
 147			c->options |= MIPS_CPU_NAN_LEGACY;
 148		}
 149
 150		write_c0_status(sr);
 151	} else {
 152		c->options |= MIPS_CPU_NAN_LEGACY;
 153	}
 154}
 155
 156/*
 157 * IEEE 754 conformance mode to use.  Affects the NaN encoding and the
 158 * ABS.fmt/NEG.fmt execution mode.
 159 */
 160static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT;
 161
 162/*
 163 * Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes
 164 * to support by the FPU emulator according to the IEEE 754 conformance
 165 * mode selected.  Note that "relaxed" straps the emulator so that it
 166 * allows 2008-NaN binaries even for legacy processors.
 167 */
 168static void cpu_set_nofpu_2008(struct cpuinfo_mips *c)
 169{
 170	c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY);
 171	c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 172	c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 173
 174	switch (ieee754) {
 175	case STRICT:
 176		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 177				    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 178				    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
 179				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 180			c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
 181		} else {
 182			c->options |= MIPS_CPU_NAN_LEGACY;
 183			c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 184		}
 185		break;
 186	case LEGACY:
 187		c->options |= MIPS_CPU_NAN_LEGACY;
 188		c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 189		break;
 190	case STD2008:
 191		c->options |= MIPS_CPU_NAN_2008;
 192		c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 193		c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 194		break;
 195	case RELAXED:
 196		c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
 197		break;
 198	}
 199}
 200
 201/*
 202 * Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
 203 * according to the "ieee754=" parameter.
 204 */
 205static void cpu_set_nan_2008(struct cpuinfo_mips *c)
 206{
 207	switch (ieee754) {
 208	case STRICT:
 209		mips_use_nan_legacy = !!cpu_has_nan_legacy;
 210		mips_use_nan_2008 = !!cpu_has_nan_2008;
 211		break;
 212	case LEGACY:
 213		mips_use_nan_legacy = !!cpu_has_nan_legacy;
 214		mips_use_nan_2008 = !cpu_has_nan_legacy;
 215		break;
 216	case STD2008:
 217		mips_use_nan_legacy = !cpu_has_nan_2008;
 218		mips_use_nan_2008 = !!cpu_has_nan_2008;
 219		break;
 220	case RELAXED:
 221		mips_use_nan_legacy = true;
 222		mips_use_nan_2008 = true;
 223		break;
 224	}
 225}
 226
 227/*
 228 * IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override
 229 * settings:
 230 *
 231 * strict:  accept binaries that request a NaN encoding supported by the FPU
 232 * legacy:  only accept legacy-NaN binaries
 233 * 2008:    only accept 2008-NaN binaries
 234 * relaxed: accept any binaries regardless of whether supported by the FPU
 235 */
 236static int __init ieee754_setup(char *s)
 237{
 238	if (!s)
 239		return -1;
 240	else if (!strcmp(s, "strict"))
 241		ieee754 = STRICT;
 242	else if (!strcmp(s, "legacy"))
 243		ieee754 = LEGACY;
 244	else if (!strcmp(s, "2008"))
 245		ieee754 = STD2008;
 246	else if (!strcmp(s, "relaxed"))
 247		ieee754 = RELAXED;
 248	else
 249		return -1;
 250
 251	if (!(boot_cpu_data.options & MIPS_CPU_FPU))
 252		cpu_set_nofpu_2008(&boot_cpu_data);
 253	cpu_set_nan_2008(&boot_cpu_data);
 254
 255	return 0;
 256}
 257
 258early_param("ieee754", ieee754_setup);
 259
 260/*
 261 * Set the FIR feature flags for the FPU emulator.
 262 */
 263static void cpu_set_nofpu_id(struct cpuinfo_mips *c)
 264{
 265	u32 value;
 266
 267	value = 0;
 268	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 269			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 270			    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
 271			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
 272		value |= MIPS_FPIR_D | MIPS_FPIR_S;
 273	if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 274			    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
 275			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
 276		value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W;
 277	if (c->options & MIPS_CPU_NAN_2008)
 278		value |= MIPS_FPIR_HAS2008;
 279	c->fpu_id = value;
 280}
 281
 282/* Determined FPU emulator mask to use for the boot CPU with "nofpu".  */
 283static unsigned int mips_nofpu_msk31;
 284
 285/*
 286 * Set options for FPU hardware.
 287 */
 288static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
 289{
 290	c->fpu_id = cpu_get_fpu_id();
 291	mips_nofpu_msk31 = c->fpu_msk31;
 292
 293	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 294			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 295			    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
 296			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 297		if (c->fpu_id & MIPS_FPIR_3D)
 298			c->ases |= MIPS_ASE_MIPS3D;
 299		if (c->fpu_id & MIPS_FPIR_UFRP)
 300			c->options |= MIPS_CPU_UFR;
 301		if (c->fpu_id & MIPS_FPIR_FREP)
 302			c->options |= MIPS_CPU_FRE;
 303	}
 304
 305	cpu_set_fpu_fcsr_mask(c);
 306	cpu_set_fpu_2008(c);
 307	cpu_set_nan_2008(c);
 308}
 309
 310/*
 311 * Set options for the FPU emulator.
 312 */
 313static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
 314{
 315	c->options &= ~MIPS_CPU_FPU;
 316	c->fpu_msk31 = mips_nofpu_msk31;
 317
 318	cpu_set_nofpu_2008(c);
 319	cpu_set_nan_2008(c);
 320	cpu_set_nofpu_id(c);
 321}
 322
 323static int mips_fpu_disabled;
 324
 325static int __init fpu_disable(char *s)
 326{
 327	cpu_set_nofpu_opts(&boot_cpu_data);
 328	mips_fpu_disabled = 1;
 329
 330	return 1;
 331}
 332
 333__setup("nofpu", fpu_disable);
 334
 335#else /* !CONFIG_MIPS_FP_SUPPORT */
 336
 337#define mips_fpu_disabled 1
 338
 339static inline unsigned long cpu_get_fpu_id(void)
 340{
 341	return FPIR_IMP_NONE;
 342}
 343
 344static inline int __cpu_has_fpu(void)
 345{
 346	return 0;
 347}
 348
 349static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
 350{
 351	/* no-op */
 352}
 353
 354static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
 355{
 356	/* no-op */
 357}
 358
 359#endif /* CONFIG_MIPS_FP_SUPPORT */
 360
 361static inline unsigned long cpu_get_msa_id(void)
 362{
 363	unsigned long status, msa_id;
 364
 365	status = read_c0_status();
 366	__enable_fpu(FPU_64BIT);
 367	enable_msa();
 368	msa_id = read_msa_ir();
 369	disable_msa();
 370	write_c0_status(status);
 371	return msa_id;
 372}
 373
 374static int mips_dsp_disabled;
 375
 376static int __init dsp_disable(char *s)
 377{
 378	cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
 379	mips_dsp_disabled = 1;
 380
 381	return 1;
 382}
 383
 384__setup("nodsp", dsp_disable);
 385
 386static int mips_htw_disabled;
 387
 388static int __init htw_disable(char *s)
 389{
 390	mips_htw_disabled = 1;
 391	cpu_data[0].options &= ~MIPS_CPU_HTW;
 392	write_c0_pwctl(read_c0_pwctl() &
 393		       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
 394
 395	return 1;
 396}
 397
 398__setup("nohtw", htw_disable);
 399
 400static int mips_ftlb_disabled;
 401static int mips_has_ftlb_configured;
 402
 403enum ftlb_flags {
 404	FTLB_EN		= 1 << 0,
 405	FTLB_SET_PROB	= 1 << 1,
 406};
 407
 408static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags);
 409
 410static int __init ftlb_disable(char *s)
 411{
 412	unsigned int config4, mmuextdef;
 413
 414	/*
 415	 * If the core hasn't done any FTLB configuration, there is nothing
 416	 * for us to do here.
 417	 */
 418	if (!mips_has_ftlb_configured)
 419		return 1;
 420
 421	/* Disable it in the boot cpu */
 422	if (set_ftlb_enable(&cpu_data[0], 0)) {
 423		pr_warn("Can't turn FTLB off\n");
 424		return 1;
 425	}
 426
 427	config4 = read_c0_config4();
 428
 429	/* Check that FTLB has been disabled */
 430	mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 431	/* MMUSIZEEXT == VTLB ON, FTLB OFF */
 432	if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
 433		/* This should never happen */
 434		pr_warn("FTLB could not be disabled!\n");
 435		return 1;
 436	}
 437
 438	mips_ftlb_disabled = 1;
 439	mips_has_ftlb_configured = 0;
 440
 441	/*
 442	 * noftlb is mainly used for debug purposes so print
 443	 * an informative message instead of using pr_debug()
 444	 */
 445	pr_info("FTLB has been disabled\n");
 446
 447	/*
 448	 * Some of these bits are duplicated in the decode_config4.
 449	 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
 450	 * once FTLB has been disabled so undo what decode_config4 did.
 451	 */
 452	cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
 453			       cpu_data[0].tlbsizeftlbsets;
 454	cpu_data[0].tlbsizeftlbsets = 0;
 455	cpu_data[0].tlbsizeftlbways = 0;
 456
 457	return 1;
 458}
 459
 460__setup("noftlb", ftlb_disable);
 461
 462/*
 463 * Check if the CPU has per tc perf counters
 464 */
 465static inline void cpu_set_mt_per_tc_perf(struct cpuinfo_mips *c)
 466{
 467	if (read_c0_config7() & MTI_CONF7_PTC)
 468		c->options |= MIPS_CPU_MT_PER_TC_PERF_COUNTERS;
 469}
 470
 471static inline void check_errata(void)
 472{
 473	struct cpuinfo_mips *c = &current_cpu_data;
 474
 475	switch (current_cpu_type()) {
 476	case CPU_34K:
 477		/*
 478		 * Erratum "RPS May Cause Incorrect Instruction Execution"
 479		 * This code only handles VPE0, any SMP/RTOS code
 480		 * making use of VPE1 will be responsable for that VPE.
 481		 */
 482		if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
 483			write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
 484		break;
 485	default:
 486		break;
 487	}
 488}
 489
 490void __init check_bugs32(void)
 491{
 492	check_errata();
 493}
 494
 495/*
 496 * Probe whether cpu has config register by trying to play with
 497 * alternate cache bit and see whether it matters.
 498 * It's used by cpu_probe to distinguish between R3000A and R3081.
 499 */
 500static inline int cpu_has_confreg(void)
 501{
 502#ifdef CONFIG_CPU_R3000
 503	extern unsigned long r3k_cache_size(unsigned long);
 504	unsigned long size1, size2;
 505	unsigned long cfg = read_c0_conf();
 506
 507	size1 = r3k_cache_size(ST0_ISC);
 508	write_c0_conf(cfg ^ R30XX_CONF_AC);
 509	size2 = r3k_cache_size(ST0_ISC);
 510	write_c0_conf(cfg);
 511	return size1 != size2;
 512#else
 513	return 0;
 514#endif
 515}
 516
 517static inline void set_elf_platform(int cpu, const char *plat)
 518{
 519	if (cpu == 0)
 520		__elf_platform = plat;
 521}
 522
 523static inline void set_elf_base_platform(const char *plat)
 524{
 525	if (__elf_base_platform == NULL) {
 526		__elf_base_platform = plat;
 527	}
 528}
 529
 530static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
 531{
 532#ifdef __NEED_VMBITS_PROBE
 533	write_c0_entryhi(0x3fffffffffffe000ULL);
 534	back_to_back_c0_hazard();
 535	c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
 536#endif
 537}
 538
 539static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
 540{
 541	switch (isa) {
 542	case MIPS_CPU_ISA_M64R5:
 543		c->isa_level |= MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5;
 544		set_elf_base_platform("mips64r5");
 545		fallthrough;
 546	case MIPS_CPU_ISA_M64R2:
 547		c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
 548		set_elf_base_platform("mips64r2");
 549		fallthrough;
 550	case MIPS_CPU_ISA_M64R1:
 551		c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
 552		set_elf_base_platform("mips64");
 553		fallthrough;
 554	case MIPS_CPU_ISA_V:
 555		c->isa_level |= MIPS_CPU_ISA_V;
 556		set_elf_base_platform("mips5");
 557		fallthrough;
 558	case MIPS_CPU_ISA_IV:
 559		c->isa_level |= MIPS_CPU_ISA_IV;
 560		set_elf_base_platform("mips4");
 561		fallthrough;
 562	case MIPS_CPU_ISA_III:
 563		c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
 564		set_elf_base_platform("mips3");
 565		break;
 566
 567	/* R6 incompatible with everything else */
 568	case MIPS_CPU_ISA_M64R6:
 569		c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
 570		set_elf_base_platform("mips64r6");
 571		fallthrough;
 572	case MIPS_CPU_ISA_M32R6:
 573		c->isa_level |= MIPS_CPU_ISA_M32R6;
 574		set_elf_base_platform("mips32r6");
 575		/* Break here so we don't add incompatible ISAs */
 576		break;
 577	case MIPS_CPU_ISA_M32R5:
 578		c->isa_level |= MIPS_CPU_ISA_M32R5;
 579		set_elf_base_platform("mips32r5");
 580		fallthrough;
 581	case MIPS_CPU_ISA_M32R2:
 582		c->isa_level |= MIPS_CPU_ISA_M32R2;
 583		set_elf_base_platform("mips32r2");
 584		fallthrough;
 585	case MIPS_CPU_ISA_M32R1:
 586		c->isa_level |= MIPS_CPU_ISA_M32R1;
 587		set_elf_base_platform("mips32");
 588		fallthrough;
 589	case MIPS_CPU_ISA_II:
 590		c->isa_level |= MIPS_CPU_ISA_II;
 591		set_elf_base_platform("mips2");
 592		break;
 593	}
 594}
 595
 596static char unknown_isa[] = KERN_ERR \
 597	"Unsupported ISA type, c0.config0: %d.";
 598
 599static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
 600{
 601
 602	unsigned int probability = c->tlbsize / c->tlbsizevtlb;
 603
 604	/*
 605	 * 0 = All TLBWR instructions go to FTLB
 606	 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
 607	 * FTLB and 1 goes to the VTLB.
 608	 * 2 = 7:1: As above with 7:1 ratio.
 609	 * 3 = 3:1: As above with 3:1 ratio.
 610	 *
 611	 * Use the linear midpoint as the probability threshold.
 612	 */
 613	if (probability >= 12)
 614		return 1;
 615	else if (probability >= 6)
 616		return 2;
 617	else
 618		/*
 619		 * So FTLB is less than 4 times bigger than VTLB.
 620		 * A 3:1 ratio can still be useful though.
 621		 */
 622		return 3;
 623}
 624
 625static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags)
 626{
 627	unsigned int config;
 628
 629	/* It's implementation dependent how the FTLB can be enabled */
 630	switch (c->cputype) {
 631	case CPU_PROAPTIV:
 632	case CPU_P5600:
 633	case CPU_P6600:
 634		/* proAptiv & related cores use Config6 to enable the FTLB */
 635		config = read_c0_config6();
 636
 637		if (flags & FTLB_EN)
 638			config |= MTI_CONF6_FTLBEN;
 639		else
 640			config &= ~MTI_CONF6_FTLBEN;
 641
 642		if (flags & FTLB_SET_PROB) {
 643			config &= ~(3 << MTI_CONF6_FTLBP_SHIFT);
 644			config |= calculate_ftlb_probability(c)
 645				  << MTI_CONF6_FTLBP_SHIFT;
 646		}
 647
 648		write_c0_config6(config);
 649		back_to_back_c0_hazard();
 650		break;
 651	case CPU_I6400:
 652	case CPU_I6500:
 653		/* There's no way to disable the FTLB */
 654		if (!(flags & FTLB_EN))
 655			return 1;
 656		return 0;
 657	case CPU_LOONGSON64:
 658		/* Flush ITLB, DTLB, VTLB and FTLB */
 659		write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB |
 660			      LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB);
 661		/* Loongson-3 cores use Config6 to enable the FTLB */
 662		config = read_c0_config6();
 663		if (flags & FTLB_EN)
 664			/* Enable FTLB */
 665			write_c0_config6(config & ~LOONGSON_CONF6_FTLBDIS);
 666		else
 667			/* Disable FTLB */
 668			write_c0_config6(config | LOONGSON_CONF6_FTLBDIS);
 669		break;
 670	default:
 671		return 1;
 672	}
 673
 674	return 0;
 675}
 676
 677static int mm_config(struct cpuinfo_mips *c)
 678{
 679	unsigned int config0, update, mm;
 680
 681	config0 = read_c0_config();
 682	mm = config0 & MIPS_CONF_MM;
 683
 684	/*
 685	 * It's implementation dependent what type of write-merge is supported
 686	 * and whether it can be enabled/disabled. If it is settable lets make
 687	 * the merging allowed by default. Some platforms might have
 688	 * write-through caching unsupported. In this case just ignore the
 689	 * CP0.Config.MM bit field value.
 690	 */
 691	switch (c->cputype) {
 692	case CPU_24K:
 693	case CPU_34K:
 694	case CPU_74K:
 695	case CPU_P5600:
 696	case CPU_P6600:
 697		c->options |= MIPS_CPU_MM_FULL;
 698		update = MIPS_CONF_MM_FULL;
 699		break;
 700	case CPU_1004K:
 701	case CPU_1074K:
 702	case CPU_INTERAPTIV:
 703	case CPU_PROAPTIV:
 704		mm = 0;
 705		fallthrough;
 706	default:
 707		update = 0;
 708		break;
 709	}
 710
 711	if (update) {
 712		config0 = (config0 & ~MIPS_CONF_MM) | update;
 713		write_c0_config(config0);
 714	} else if (mm == MIPS_CONF_MM_SYSAD) {
 715		c->options |= MIPS_CPU_MM_SYSAD;
 716	} else if (mm == MIPS_CONF_MM_FULL) {
 717		c->options |= MIPS_CPU_MM_FULL;
 718	}
 719
 720	return 0;
 721}
 722
 723static inline unsigned int decode_config0(struct cpuinfo_mips *c)
 724{
 725	unsigned int config0;
 726	int isa, mt;
 727
 728	config0 = read_c0_config();
 729
 730	/*
 731	 * Look for Standard TLB or Dual VTLB and FTLB
 732	 */
 733	mt = config0 & MIPS_CONF_MT;
 734	if (mt == MIPS_CONF_MT_TLB)
 735		c->options |= MIPS_CPU_TLB;
 736	else if (mt == MIPS_CONF_MT_FTLB)
 737		c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
 738
 739	isa = (config0 & MIPS_CONF_AT) >> 13;
 740	switch (isa) {
 741	case 0:
 742		switch ((config0 & MIPS_CONF_AR) >> 10) {
 743		case 0:
 744			set_isa(c, MIPS_CPU_ISA_M32R1);
 745			break;
 746		case 1:
 747			set_isa(c, MIPS_CPU_ISA_M32R2);
 748			break;
 749		case 2:
 750			set_isa(c, MIPS_CPU_ISA_M32R6);
 751			break;
 752		default:
 753			goto unknown;
 754		}
 755		break;
 756	case 2:
 757		switch ((config0 & MIPS_CONF_AR) >> 10) {
 758		case 0:
 759			set_isa(c, MIPS_CPU_ISA_M64R1);
 760			break;
 761		case 1:
 762			set_isa(c, MIPS_CPU_ISA_M64R2);
 763			break;
 764		case 2:
 765			set_isa(c, MIPS_CPU_ISA_M64R6);
 766			break;
 767		default:
 768			goto unknown;
 769		}
 770		break;
 771	default:
 772		goto unknown;
 773	}
 774
 775	return config0 & MIPS_CONF_M;
 776
 777unknown:
 778	panic(unknown_isa, config0);
 779}
 780
 781static inline unsigned int decode_config1(struct cpuinfo_mips *c)
 782{
 783	unsigned int config1;
 784
 785	config1 = read_c0_config1();
 786
 787	if (config1 & MIPS_CONF1_MD)
 788		c->ases |= MIPS_ASE_MDMX;
 789	if (config1 & MIPS_CONF1_PC)
 790		c->options |= MIPS_CPU_PERF;
 791	if (config1 & MIPS_CONF1_WR)
 792		c->options |= MIPS_CPU_WATCH;
 793	if (config1 & MIPS_CONF1_CA)
 794		c->ases |= MIPS_ASE_MIPS16;
 795	if (config1 & MIPS_CONF1_EP)
 796		c->options |= MIPS_CPU_EJTAG;
 797	if (config1 & MIPS_CONF1_FP) {
 798		c->options |= MIPS_CPU_FPU;
 799		c->options |= MIPS_CPU_32FPR;
 800	}
 801	if (cpu_has_tlb) {
 802		c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
 803		c->tlbsizevtlb = c->tlbsize;
 804		c->tlbsizeftlbsets = 0;
 805	}
 806
 807	return config1 & MIPS_CONF_M;
 808}
 809
 810static inline unsigned int decode_config2(struct cpuinfo_mips *c)
 811{
 812	unsigned int config2;
 813
 814	config2 = read_c0_config2();
 815
 816	if (config2 & MIPS_CONF2_SL)
 817		c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
 818
 819	return config2 & MIPS_CONF_M;
 820}
 821
 822static inline unsigned int decode_config3(struct cpuinfo_mips *c)
 823{
 824	unsigned int config3;
 825
 826	config3 = read_c0_config3();
 827
 828	if (config3 & MIPS_CONF3_SM) {
 829		c->ases |= MIPS_ASE_SMARTMIPS;
 830		c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC;
 831	}
 832	if (config3 & MIPS_CONF3_RXI)
 833		c->options |= MIPS_CPU_RIXI;
 834	if (config3 & MIPS_CONF3_CTXTC)
 835		c->options |= MIPS_CPU_CTXTC;
 836	if (config3 & MIPS_CONF3_DSP)
 837		c->ases |= MIPS_ASE_DSP;
 838	if (config3 & MIPS_CONF3_DSP2P) {
 839		c->ases |= MIPS_ASE_DSP2P;
 840		if (cpu_has_mips_r6)
 841			c->ases |= MIPS_ASE_DSP3;
 842	}
 843	if (config3 & MIPS_CONF3_VINT)
 844		c->options |= MIPS_CPU_VINT;
 845	if (config3 & MIPS_CONF3_VEIC)
 846		c->options |= MIPS_CPU_VEIC;
 847	if (config3 & MIPS_CONF3_LPA)
 848		c->options |= MIPS_CPU_LPA;
 849	if (config3 & MIPS_CONF3_MT)
 850		c->ases |= MIPS_ASE_MIPSMT;
 851	if (config3 & MIPS_CONF3_ULRI)
 852		c->options |= MIPS_CPU_ULRI;
 853	if (config3 & MIPS_CONF3_ISA)
 854		c->options |= MIPS_CPU_MICROMIPS;
 855	if (config3 & MIPS_CONF3_VZ)
 856		c->ases |= MIPS_ASE_VZ;
 857	if (config3 & MIPS_CONF3_SC)
 858		c->options |= MIPS_CPU_SEGMENTS;
 859	if (config3 & MIPS_CONF3_BI)
 860		c->options |= MIPS_CPU_BADINSTR;
 861	if (config3 & MIPS_CONF3_BP)
 862		c->options |= MIPS_CPU_BADINSTRP;
 863	if (config3 & MIPS_CONF3_MSA)
 864		c->ases |= MIPS_ASE_MSA;
 865	if (config3 & MIPS_CONF3_PW) {
 866		c->htw_seq = 0;
 867		c->options |= MIPS_CPU_HTW;
 868	}
 869	if (config3 & MIPS_CONF3_CDMM)
 870		c->options |= MIPS_CPU_CDMM;
 871	if (config3 & MIPS_CONF3_SP)
 872		c->options |= MIPS_CPU_SP;
 873
 874	return config3 & MIPS_CONF_M;
 875}
 876
 877static inline unsigned int decode_config4(struct cpuinfo_mips *c)
 878{
 879	unsigned int config4;
 880	unsigned int newcf4;
 881	unsigned int mmuextdef;
 882	unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
 883	unsigned long asid_mask;
 884
 885	config4 = read_c0_config4();
 886
 887	if (cpu_has_tlb) {
 888		if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
 889			c->options |= MIPS_CPU_TLBINV;
 890
 891		/*
 892		 * R6 has dropped the MMUExtDef field from config4.
 893		 * On R6 the fields always describe the FTLB, and only if it is
 894		 * present according to Config.MT.
 895		 */
 896		if (!cpu_has_mips_r6)
 897			mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 898		else if (cpu_has_ftlb)
 899			mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
 900		else
 901			mmuextdef = 0;
 902
 903		switch (mmuextdef) {
 904		case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
 905			c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
 906			c->tlbsizevtlb = c->tlbsize;
 907			break;
 908		case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
 909			c->tlbsizevtlb +=
 910				((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
 911				  MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
 912			c->tlbsize = c->tlbsizevtlb;
 913			ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
 914			fallthrough;
 915		case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
 916			if (mips_ftlb_disabled)
 917				break;
 918			newcf4 = (config4 & ~ftlb_page) |
 919				(page_size_ftlb(mmuextdef) <<
 920				 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
 921			write_c0_config4(newcf4);
 922			back_to_back_c0_hazard();
 923			config4 = read_c0_config4();
 924			if (config4 != newcf4) {
 925				pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
 926				       PAGE_SIZE, config4);
 927				/* Switch FTLB off */
 928				set_ftlb_enable(c, 0);
 929				mips_ftlb_disabled = 1;
 930				break;
 931			}
 932			c->tlbsizeftlbsets = 1 <<
 933				((config4 & MIPS_CONF4_FTLBSETS) >>
 934				 MIPS_CONF4_FTLBSETS_SHIFT);
 935			c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
 936					      MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
 937			c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
 938			mips_has_ftlb_configured = 1;
 939			break;
 940		}
 941	}
 942
 943	c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
 944				>> MIPS_CONF4_KSCREXIST_SHIFT;
 945
 946	asid_mask = MIPS_ENTRYHI_ASID;
 947	if (config4 & MIPS_CONF4_AE)
 948		asid_mask |= MIPS_ENTRYHI_ASIDX;
 949	set_cpu_asid_mask(c, asid_mask);
 950
 951	/*
 952	 * Warn if the computed ASID mask doesn't match the mask the kernel
 953	 * is built for. This may indicate either a serious problem or an
 954	 * easy optimisation opportunity, but either way should be addressed.
 955	 */
 956	WARN_ON(asid_mask != cpu_asid_mask(c));
 957
 958	return config4 & MIPS_CONF_M;
 959}
 960
 961static inline unsigned int decode_config5(struct cpuinfo_mips *c)
 962{
 963	unsigned int config5, max_mmid_width;
 964	unsigned long asid_mask;
 965
 966	config5 = read_c0_config5();
 967	config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
 968
 969	if (cpu_has_mips_r6) {
 970		if (!__builtin_constant_p(cpu_has_mmid) || cpu_has_mmid)
 971			config5 |= MIPS_CONF5_MI;
 972		else
 973			config5 &= ~MIPS_CONF5_MI;
 974	}
 975
 976	write_c0_config5(config5);
 977
 978	if (config5 & MIPS_CONF5_EVA)
 979		c->options |= MIPS_CPU_EVA;
 980	if (config5 & MIPS_CONF5_MRP)
 981		c->options |= MIPS_CPU_MAAR;
 982	if (config5 & MIPS_CONF5_LLB)
 983		c->options |= MIPS_CPU_RW_LLB;
 984	if (config5 & MIPS_CONF5_MVH)
 985		c->options |= MIPS_CPU_MVH;
 986	if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP))
 987		c->options |= MIPS_CPU_VP;
 988	if (config5 & MIPS_CONF5_CA2)
 989		c->ases |= MIPS_ASE_MIPS16E2;
 990
 991	if (config5 & MIPS_CONF5_CRCP)
 992		elf_hwcap |= HWCAP_MIPS_CRC32;
 993
 994	if (cpu_has_mips_r6) {
 995		/* Ensure the write to config5 above takes effect */
 996		back_to_back_c0_hazard();
 997
 998		/* Check whether we successfully enabled MMID support */
 999		config5 = read_c0_config5();
1000		if (config5 & MIPS_CONF5_MI)
1001			c->options |= MIPS_CPU_MMID;
1002
1003		/*
1004		 * Warn if we've hardcoded cpu_has_mmid to a value unsuitable
1005		 * for the CPU we're running on, or if CPUs in an SMP system
1006		 * have inconsistent MMID support.
1007		 */
1008		WARN_ON(!!cpu_has_mmid != !!(config5 & MIPS_CONF5_MI));
1009
1010		if (cpu_has_mmid) {
1011			write_c0_memorymapid(~0ul);
1012			back_to_back_c0_hazard();
1013			asid_mask = read_c0_memorymapid();
1014
1015			/*
1016			 * We maintain a bitmap to track MMID allocation, and
1017			 * need a sensible upper bound on the size of that
1018			 * bitmap. The initial CPU with MMID support (I6500)
1019			 * supports 16 bit MMIDs, which gives us an 8KiB
1020			 * bitmap. The architecture recommends that hardware
1021			 * support 32 bit MMIDs, which would give us a 512MiB
1022			 * bitmap - that's too big in most cases.
1023			 *
1024			 * Cap MMID width at 16 bits for now & we can revisit
1025			 * this if & when hardware supports anything wider.
1026			 */
1027			max_mmid_width = 16;
1028			if (asid_mask > GENMASK(max_mmid_width - 1, 0)) {
1029				pr_info("Capping MMID width at %d bits",
1030					max_mmid_width);
1031				asid_mask = GENMASK(max_mmid_width - 1, 0);
1032			}
1033
1034			set_cpu_asid_mask(c, asid_mask);
1035		}
1036	}
1037
1038	return config5 & MIPS_CONF_M;
1039}
1040
1041static void decode_configs(struct cpuinfo_mips *c)
1042{
1043	int ok;
1044
1045	/* MIPS32 or MIPS64 compliant CPU.  */
1046	c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
1047		     MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
1048
1049	c->scache.flags = MIPS_CACHE_NOT_PRESENT;
1050
1051	/* Enable FTLB if present and not disabled */
1052	set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN);
1053
1054	ok = decode_config0(c);			/* Read Config registers.  */
1055	BUG_ON(!ok);				/* Arch spec violation!	 */
1056	if (ok)
1057		ok = decode_config1(c);
1058	if (ok)
1059		ok = decode_config2(c);
1060	if (ok)
1061		ok = decode_config3(c);
1062	if (ok)
1063		ok = decode_config4(c);
1064	if (ok)
1065		ok = decode_config5(c);
1066
1067	/* Probe the EBase.WG bit */
1068	if (cpu_has_mips_r2_r6) {
1069		u64 ebase;
1070		unsigned int status;
1071
1072		/* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */
1073		ebase = cpu_has_mips64r6 ? read_c0_ebase_64()
1074					 : (s32)read_c0_ebase();
1075		if (ebase & MIPS_EBASE_WG) {
1076			/* WG bit already set, we can avoid the clumsy probe */
1077			c->options |= MIPS_CPU_EBASE_WG;
1078		} else {
1079			/* Its UNDEFINED to change EBase while BEV=0 */
1080			status = read_c0_status();
1081			write_c0_status(status | ST0_BEV);
1082			irq_enable_hazard();
1083			/*
1084			 * On pre-r6 cores, this may well clobber the upper bits
1085			 * of EBase. This is hard to avoid without potentially
1086			 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit.
1087			 */
1088			if (cpu_has_mips64r6)
1089				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
1090			else
1091				write_c0_ebase(ebase | MIPS_EBASE_WG);
1092			back_to_back_c0_hazard();
1093			/* Restore BEV */
1094			write_c0_status(status);
1095			if (read_c0_ebase() & MIPS_EBASE_WG) {
1096				c->options |= MIPS_CPU_EBASE_WG;
1097				write_c0_ebase(ebase);
1098			}
1099		}
1100	}
1101
1102	/* configure the FTLB write probability */
1103	set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB);
1104
1105	mips_probe_watch_registers(c);
1106
1107#ifndef CONFIG_MIPS_CPS
1108	if (cpu_has_mips_r2_r6) {
1109		unsigned int core;
1110
1111		core = get_ebase_cpunum();
1112		if (cpu_has_mipsmt)
1113			core >>= fls(core_nvpes()) - 1;
1114		cpu_set_core(c, core);
1115	}
1116#endif
1117}
1118
1119/*
1120 * Probe for certain guest capabilities by writing config bits and reading back.
1121 * Finally write back the original value.
1122 */
1123#define probe_gc0_config(name, maxconf, bits)				\
1124do {									\
1125	unsigned int tmp;						\
1126	tmp = read_gc0_##name();					\
1127	write_gc0_##name(tmp | (bits));					\
1128	back_to_back_c0_hazard();					\
1129	maxconf = read_gc0_##name();					\
1130	write_gc0_##name(tmp);						\
1131} while (0)
1132
1133/*
1134 * Probe for dynamic guest capabilities by changing certain config bits and
1135 * reading back to see if they change. Finally write back the original value.
1136 */
1137#define probe_gc0_config_dyn(name, maxconf, dynconf, bits)		\
1138do {									\
1139	maxconf = read_gc0_##name();					\
1140	write_gc0_##name(maxconf ^ (bits));				\
1141	back_to_back_c0_hazard();					\
1142	dynconf = maxconf ^ read_gc0_##name();				\
1143	write_gc0_##name(maxconf);					\
1144	maxconf |= dynconf;						\
1145} while (0)
1146
1147static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c)
1148{
1149	unsigned int config0;
1150
1151	probe_gc0_config(config, config0, MIPS_CONF_M);
1152
1153	if (config0 & MIPS_CONF_M)
1154		c->guest.conf |= BIT(1);
1155	return config0 & MIPS_CONF_M;
1156}
1157
1158static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c)
1159{
1160	unsigned int config1, config1_dyn;
1161
1162	probe_gc0_config_dyn(config1, config1, config1_dyn,
1163			     MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR |
1164			     MIPS_CONF1_FP);
1165
1166	if (config1 & MIPS_CONF1_FP)
1167		c->guest.options |= MIPS_CPU_FPU;
1168	if (config1_dyn & MIPS_CONF1_FP)
1169		c->guest.options_dyn |= MIPS_CPU_FPU;
1170
1171	if (config1 & MIPS_CONF1_WR)
1172		c->guest.options |= MIPS_CPU_WATCH;
1173	if (config1_dyn & MIPS_CONF1_WR)
1174		c->guest.options_dyn |= MIPS_CPU_WATCH;
1175
1176	if (config1 & MIPS_CONF1_PC)
1177		c->guest.options |= MIPS_CPU_PERF;
1178	if (config1_dyn & MIPS_CONF1_PC)
1179		c->guest.options_dyn |= MIPS_CPU_PERF;
1180
1181	if (config1 & MIPS_CONF_M)
1182		c->guest.conf |= BIT(2);
1183	return config1 & MIPS_CONF_M;
1184}
1185
1186static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c)
1187{
1188	unsigned int config2;
1189
1190	probe_gc0_config(config2, config2, MIPS_CONF_M);
1191
1192	if (config2 & MIPS_CONF_M)
1193		c->guest.conf |= BIT(3);
1194	return config2 & MIPS_CONF_M;
1195}
1196
1197static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c)
1198{
1199	unsigned int config3, config3_dyn;
1200
1201	probe_gc0_config_dyn(config3, config3, config3_dyn,
1202			     MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_ULRI |
1203			     MIPS_CONF3_CTXTC);
1204
1205	if (config3 & MIPS_CONF3_CTXTC)
1206		c->guest.options |= MIPS_CPU_CTXTC;
1207	if (config3_dyn & MIPS_CONF3_CTXTC)
1208		c->guest.options_dyn |= MIPS_CPU_CTXTC;
1209
1210	if (config3 & MIPS_CONF3_PW)
1211		c->guest.options |= MIPS_CPU_HTW;
1212
1213	if (config3 & MIPS_CONF3_ULRI)
1214		c->guest.options |= MIPS_CPU_ULRI;
1215
1216	if (config3 & MIPS_CONF3_SC)
1217		c->guest.options |= MIPS_CPU_SEGMENTS;
1218
1219	if (config3 & MIPS_CONF3_BI)
1220		c->guest.options |= MIPS_CPU_BADINSTR;
1221	if (config3 & MIPS_CONF3_BP)
1222		c->guest.options |= MIPS_CPU_BADINSTRP;
1223
1224	if (config3 & MIPS_CONF3_MSA)
1225		c->guest.ases |= MIPS_ASE_MSA;
1226	if (config3_dyn & MIPS_CONF3_MSA)
1227		c->guest.ases_dyn |= MIPS_ASE_MSA;
1228
1229	if (config3 & MIPS_CONF_M)
1230		c->guest.conf |= BIT(4);
1231	return config3 & MIPS_CONF_M;
1232}
1233
1234static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c)
1235{
1236	unsigned int config4;
1237
1238	probe_gc0_config(config4, config4,
1239			 MIPS_CONF_M | MIPS_CONF4_KSCREXIST);
1240
1241	c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
1242				>> MIPS_CONF4_KSCREXIST_SHIFT;
1243
1244	if (config4 & MIPS_CONF_M)
1245		c->guest.conf |= BIT(5);
1246	return config4 & MIPS_CONF_M;
1247}
1248
1249static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c)
1250{
1251	unsigned int config5, config5_dyn;
1252
1253	probe_gc0_config_dyn(config5, config5, config5_dyn,
1254			 MIPS_CONF_M | MIPS_CONF5_MVH | MIPS_CONF5_MRP);
1255
1256	if (config5 & MIPS_CONF5_MRP)
1257		c->guest.options |= MIPS_CPU_MAAR;
1258	if (config5_dyn & MIPS_CONF5_MRP)
1259		c->guest.options_dyn |= MIPS_CPU_MAAR;
1260
1261	if (config5 & MIPS_CONF5_LLB)
1262		c->guest.options |= MIPS_CPU_RW_LLB;
1263
1264	if (config5 & MIPS_CONF5_MVH)
1265		c->guest.options |= MIPS_CPU_MVH;
1266
1267	if (config5 & MIPS_CONF_M)
1268		c->guest.conf |= BIT(6);
1269	return config5 & MIPS_CONF_M;
1270}
1271
1272static inline void decode_guest_configs(struct cpuinfo_mips *c)
1273{
1274	unsigned int ok;
1275
1276	ok = decode_guest_config0(c);
1277	if (ok)
1278		ok = decode_guest_config1(c);
1279	if (ok)
1280		ok = decode_guest_config2(c);
1281	if (ok)
1282		ok = decode_guest_config3(c);
1283	if (ok)
1284		ok = decode_guest_config4(c);
1285	if (ok)
1286		decode_guest_config5(c);
1287}
1288
1289static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c)
1290{
1291	unsigned int guestctl0, temp;
1292
1293	guestctl0 = read_c0_guestctl0();
1294
1295	if (guestctl0 & MIPS_GCTL0_G0E)
1296		c->options |= MIPS_CPU_GUESTCTL0EXT;
1297	if (guestctl0 & MIPS_GCTL0_G1)
1298		c->options |= MIPS_CPU_GUESTCTL1;
1299	if (guestctl0 & MIPS_GCTL0_G2)
1300		c->options |= MIPS_CPU_GUESTCTL2;
1301	if (!(guestctl0 & MIPS_GCTL0_RAD)) {
1302		c->options |= MIPS_CPU_GUESTID;
1303
1304		/*
1305		 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0
1306		 * first, otherwise all data accesses will be fully virtualised
1307		 * as if they were performed by guest mode.
1308		 */
1309		write_c0_guestctl1(0);
1310		tlbw_use_hazard();
1311
1312		write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG);
1313		back_to_back_c0_hazard();
1314		temp = read_c0_guestctl0();
1315
1316		if (temp & MIPS_GCTL0_DRG) {
1317			write_c0_guestctl0(guestctl0);
1318			c->options |= MIPS_CPU_DRG;
1319		}
1320	}
1321}
1322
1323static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c)
1324{
1325	if (cpu_has_guestid) {
1326		/* determine the number of bits of GuestID available */
1327		write_c0_guestctl1(MIPS_GCTL1_ID);
1328		back_to_back_c0_hazard();
1329		c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID)
1330						>> MIPS_GCTL1_ID_SHIFT;
1331		write_c0_guestctl1(0);
1332	}
1333}
1334
1335static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c)
1336{
1337	/* determine the number of bits of GTOffset available */
1338	write_c0_gtoffset(0xffffffff);
1339	back_to_back_c0_hazard();
1340	c->gtoffset_mask = read_c0_gtoffset();
1341	write_c0_gtoffset(0);
1342}
1343
1344static inline void cpu_probe_vz(struct cpuinfo_mips *c)
1345{
1346	cpu_probe_guestctl0(c);
1347	if (cpu_has_guestctl1)
1348		cpu_probe_guestctl1(c);
1349
1350	cpu_probe_gtoffset(c);
1351
1352	decode_guest_configs(c);
1353}
1354
1355#define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
1356		| MIPS_CPU_COUNTER)
1357
1358static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
1359{
1360	switch (c->processor_id & PRID_IMP_MASK) {
1361	case PRID_IMP_R2000:
1362		c->cputype = CPU_R2000;
1363		__cpu_name[cpu] = "R2000";
1364		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1365		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1366			     MIPS_CPU_NOFPUEX;
1367		if (__cpu_has_fpu())
1368			c->options |= MIPS_CPU_FPU;
1369		c->tlbsize = 64;
1370		break;
1371	case PRID_IMP_R3000:
1372		if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
1373			if (cpu_has_confreg()) {
1374				c->cputype = CPU_R3081E;
1375				__cpu_name[cpu] = "R3081";
1376			} else {
1377				c->cputype = CPU_R3000A;
1378				__cpu_name[cpu] = "R3000A";
1379			}
1380		} else {
1381			c->cputype = CPU_R3000;
1382			__cpu_name[cpu] = "R3000";
1383		}
1384		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1385		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1386			     MIPS_CPU_NOFPUEX;
1387		if (__cpu_has_fpu())
1388			c->options |= MIPS_CPU_FPU;
1389		c->tlbsize = 64;
1390		break;
1391	case PRID_IMP_R4000:
1392		if (read_c0_config() & CONF_SC) {
1393			if ((c->processor_id & PRID_REV_MASK) >=
1394			    PRID_REV_R4400) {
1395				c->cputype = CPU_R4400PC;
1396				__cpu_name[cpu] = "R4400PC";
1397			} else {
1398				c->cputype = CPU_R4000PC;
1399				__cpu_name[cpu] = "R4000PC";
1400			}
1401		} else {
1402			int cca = read_c0_config() & CONF_CM_CMASK;
1403			int mc;
1404
1405			/*
1406			 * SC and MC versions can't be reliably told apart,
1407			 * but only the latter support coherent caching
1408			 * modes so assume the firmware has set the KSEG0
1409			 * coherency attribute reasonably (if uncached, we
1410			 * assume SC).
1411			 */
1412			switch (cca) {
1413			case CONF_CM_CACHABLE_CE:
1414			case CONF_CM_CACHABLE_COW:
1415			case CONF_CM_CACHABLE_CUW:
1416				mc = 1;
1417				break;
1418			default:
1419				mc = 0;
1420				break;
1421			}
1422			if ((c->processor_id & PRID_REV_MASK) >=
1423			    PRID_REV_R4400) {
1424				c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
1425				__cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
1426			} else {
1427				c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
1428				__cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
1429			}
1430		}
1431
1432		set_isa(c, MIPS_CPU_ISA_III);
1433		c->fpu_msk31 |= FPU_CSR_CONDX;
1434		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1435			     MIPS_CPU_WATCH | MIPS_CPU_VCE |
1436			     MIPS_CPU_LLSC;
1437		c->tlbsize = 48;
1438		break;
1439	case PRID_IMP_VR41XX:
1440		set_isa(c, MIPS_CPU_ISA_III);
1441		c->fpu_msk31 |= FPU_CSR_CONDX;
1442		c->options = R4K_OPTS;
1443		c->tlbsize = 32;
1444		switch (c->processor_id & 0xf0) {
1445		case PRID_REV_VR4111:
1446			c->cputype = CPU_VR4111;
1447			__cpu_name[cpu] = "NEC VR4111";
1448			break;
1449		case PRID_REV_VR4121:
1450			c->cputype = CPU_VR4121;
1451			__cpu_name[cpu] = "NEC VR4121";
1452			break;
1453		case PRID_REV_VR4122:
1454			if ((c->processor_id & 0xf) < 0x3) {
1455				c->cputype = CPU_VR4122;
1456				__cpu_name[cpu] = "NEC VR4122";
1457			} else {
1458				c->cputype = CPU_VR4181A;
1459				__cpu_name[cpu] = "NEC VR4181A";
1460			}
1461			break;
1462		case PRID_REV_VR4130:
1463			if ((c->processor_id & 0xf) < 0x4) {
1464				c->cputype = CPU_VR4131;
1465				__cpu_name[cpu] = "NEC VR4131";
1466			} else {
1467				c->cputype = CPU_VR4133;
1468				c->options |= MIPS_CPU_LLSC;
1469				__cpu_name[cpu] = "NEC VR4133";
1470			}
1471			break;
1472		default:
1473			printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n");
1474			c->cputype = CPU_VR41XX;
1475			__cpu_name[cpu] = "NEC Vr41xx";
1476			break;
1477		}
1478		break;
1479	case PRID_IMP_R4600:
1480		c->cputype = CPU_R4600;
1481		__cpu_name[cpu] = "R4600";
1482		set_isa(c, MIPS_CPU_ISA_III);
1483		c->fpu_msk31 |= FPU_CSR_CONDX;
1484		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1485			     MIPS_CPU_LLSC;
1486		c->tlbsize = 48;
1487		break;
1488	#if 0
1489	case PRID_IMP_R4650:
1490		/*
1491		 * This processor doesn't have an MMU, so it's not
1492		 * "real easy" to run Linux on it. It is left purely
1493		 * for documentation.  Commented out because it shares
1494		 * it's c0_prid id number with the TX3900.
1495		 */
1496		c->cputype = CPU_R4650;
1497		__cpu_name[cpu] = "R4650";
1498		set_isa(c, MIPS_CPU_ISA_III);
1499		c->fpu_msk31 |= FPU_CSR_CONDX;
1500		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1501		c->tlbsize = 48;
1502		break;
1503	#endif
1504	case PRID_IMP_TX39:
1505		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1506		c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE;
1507
1508		if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) {
1509			c->cputype = CPU_TX3927;
1510			__cpu_name[cpu] = "TX3927";
1511			c->tlbsize = 64;
1512		} else {
1513			switch (c->processor_id & PRID_REV_MASK) {
1514			case PRID_REV_TX3912:
1515				c->cputype = CPU_TX3912;
1516				__cpu_name[cpu] = "TX3912";
1517				c->tlbsize = 32;
1518				break;
1519			case PRID_REV_TX3922:
1520				c->cputype = CPU_TX3922;
1521				__cpu_name[cpu] = "TX3922";
1522				c->tlbsize = 64;
1523				break;
1524			}
1525		}
1526		break;
1527	case PRID_IMP_R4700:
1528		c->cputype = CPU_R4700;
1529		__cpu_name[cpu] = "R4700";
1530		set_isa(c, MIPS_CPU_ISA_III);
1531		c->fpu_msk31 |= FPU_CSR_CONDX;
1532		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1533			     MIPS_CPU_LLSC;
1534		c->tlbsize = 48;
1535		break;
1536	case PRID_IMP_TX49:
1537		c->cputype = CPU_TX49XX;
1538		__cpu_name[cpu] = "R49XX";
1539		set_isa(c, MIPS_CPU_ISA_III);
1540		c->fpu_msk31 |= FPU_CSR_CONDX;
1541		c->options = R4K_OPTS | MIPS_CPU_LLSC;
1542		if (!(c->processor_id & 0x08))
1543			c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1544		c->tlbsize = 48;
1545		break;
1546	case PRID_IMP_R5000:
1547		c->cputype = CPU_R5000;
1548		__cpu_name[cpu] = "R5000";
1549		set_isa(c, MIPS_CPU_ISA_IV);
1550		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1551			     MIPS_CPU_LLSC;
1552		c->tlbsize = 48;
1553		break;
1554	case PRID_IMP_R5500:
1555		c->cputype = CPU_R5500;
1556		__cpu_name[cpu] = "R5500";
1557		set_isa(c, MIPS_CPU_ISA_IV);
1558		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1559			     MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1560		c->tlbsize = 48;
1561		break;
1562	case PRID_IMP_NEVADA:
1563		c->cputype = CPU_NEVADA;
1564		__cpu_name[cpu] = "Nevada";
1565		set_isa(c, MIPS_CPU_ISA_IV);
1566		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1567			     MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1568		c->tlbsize = 48;
1569		break;
1570	case PRID_IMP_RM7000:
1571		c->cputype = CPU_RM7000;
1572		__cpu_name[cpu] = "RM7000";
1573		set_isa(c, MIPS_CPU_ISA_IV);
1574		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1575			     MIPS_CPU_LLSC;
1576		/*
1577		 * Undocumented RM7000:	 Bit 29 in the info register of
1578		 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1579		 * entries.
1580		 *
1581		 * 29	   1 =>	   64 entry JTLB
1582		 *	   0 =>	   48 entry JTLB
1583		 */
1584		c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1585		break;
1586	case PRID_IMP_R10000:
1587		c->cputype = CPU_R10000;
1588		__cpu_name[cpu] = "R10000";
1589		set_isa(c, MIPS_CPU_ISA_IV);
1590		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1591			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1592			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1593			     MIPS_CPU_LLSC;
1594		c->tlbsize = 64;
1595		break;
1596	case PRID_IMP_R12000:
1597		c->cputype = CPU_R12000;
1598		__cpu_name[cpu] = "R12000";
1599		set_isa(c, MIPS_CPU_ISA_IV);
1600		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1601			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1602			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1603			     MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1604		c->tlbsize = 64;
1605		break;
1606	case PRID_IMP_R14000:
1607		if (((c->processor_id >> 4) & 0x0f) > 2) {
1608			c->cputype = CPU_R16000;
1609			__cpu_name[cpu] = "R16000";
1610		} else {
1611			c->cputype = CPU_R14000;
1612			__cpu_name[cpu] = "R14000";
1613		}
1614		set_isa(c, MIPS_CPU_ISA_IV);
1615		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1616			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1617			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1618			     MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1619		c->tlbsize = 64;
1620		break;
1621	case PRID_IMP_LOONGSON_64C:  /* Loongson-2/3 */
1622		switch (c->processor_id & PRID_REV_MASK) {
1623		case PRID_REV_LOONGSON2E:
1624			c->cputype = CPU_LOONGSON2EF;
1625			__cpu_name[cpu] = "ICT Loongson-2";
1626			set_elf_platform(cpu, "loongson2e");
1627			set_isa(c, MIPS_CPU_ISA_III);
1628			c->fpu_msk31 |= FPU_CSR_CONDX;
1629			break;
1630		case PRID_REV_LOONGSON2F:
1631			c->cputype = CPU_LOONGSON2EF;
1632			__cpu_name[cpu] = "ICT Loongson-2";
1633			set_elf_platform(cpu, "loongson2f");
1634			set_isa(c, MIPS_CPU_ISA_III);
1635			c->fpu_msk31 |= FPU_CSR_CONDX;
1636			break;
1637		case PRID_REV_LOONGSON3A_R1:
1638			c->cputype = CPU_LOONGSON64;
1639			__cpu_name[cpu] = "ICT Loongson-3";
1640			set_elf_platform(cpu, "loongson3a");
1641			set_isa(c, MIPS_CPU_ISA_M64R1);
1642			c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1643				MIPS_ASE_LOONGSON_EXT);
1644			break;
1645		case PRID_REV_LOONGSON3B_R1:
1646		case PRID_REV_LOONGSON3B_R2:
1647			c->cputype = CPU_LOONGSON64;
1648			__cpu_name[cpu] = "ICT Loongson-3";
1649			set_elf_platform(cpu, "loongson3b");
1650			set_isa(c, MIPS_CPU_ISA_M64R1);
1651			c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1652				MIPS_ASE_LOONGSON_EXT);
1653			break;
1654		}
1655
1656		c->options = R4K_OPTS |
1657			     MIPS_CPU_FPU | MIPS_CPU_LLSC |
1658			     MIPS_CPU_32FPR;
1659		c->tlbsize = 64;
1660		set_cpu_asid_mask(c, MIPS_ENTRYHI_ASID);
1661		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1662		break;
1663	case PRID_IMP_LOONGSON_32:  /* Loongson-1 */
1664		decode_configs(c);
1665
1666		c->cputype = CPU_LOONGSON32;
1667
1668		switch (c->processor_id & PRID_REV_MASK) {
1669		case PRID_REV_LOONGSON1B:
1670			__cpu_name[cpu] = "Loongson 1B";
1671			break;
1672		}
1673
1674		break;
1675	}
1676}
1677
1678static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1679{
1680	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1681	switch (c->processor_id & PRID_IMP_MASK) {
1682	case PRID_IMP_QEMU_GENERIC:
1683		c->writecombine = _CACHE_UNCACHED;
1684		c->cputype = CPU_QEMU_GENERIC;
1685		__cpu_name[cpu] = "MIPS GENERIC QEMU";
1686		break;
1687	case PRID_IMP_4KC:
1688		c->cputype = CPU_4KC;
1689		c->writecombine = _CACHE_UNCACHED;
1690		__cpu_name[cpu] = "MIPS 4Kc";
1691		break;
1692	case PRID_IMP_4KEC:
1693	case PRID_IMP_4KECR2:
1694		c->cputype = CPU_4KEC;
1695		c->writecombine = _CACHE_UNCACHED;
1696		__cpu_name[cpu] = "MIPS 4KEc";
1697		break;
1698	case PRID_IMP_4KSC:
1699	case PRID_IMP_4KSD:
1700		c->cputype = CPU_4KSC;
1701		c->writecombine = _CACHE_UNCACHED;
1702		__cpu_name[cpu] = "MIPS 4KSc";
1703		break;
1704	case PRID_IMP_5KC:
1705		c->cputype = CPU_5KC;
1706		c->writecombine = _CACHE_UNCACHED;
1707		__cpu_name[cpu] = "MIPS 5Kc";
1708		break;
1709	case PRID_IMP_5KE:
1710		c->cputype = CPU_5KE;
1711		c->writecombine = _CACHE_UNCACHED;
1712		__cpu_name[cpu] = "MIPS 5KE";
1713		break;
1714	case PRID_IMP_20KC:
1715		c->cputype = CPU_20KC;
1716		c->writecombine = _CACHE_UNCACHED;
1717		__cpu_name[cpu] = "MIPS 20Kc";
1718		break;
1719	case PRID_IMP_24K:
1720		c->cputype = CPU_24K;
1721		c->writecombine = _CACHE_UNCACHED;
1722		__cpu_name[cpu] = "MIPS 24Kc";
1723		break;
1724	case PRID_IMP_24KE:
1725		c->cputype = CPU_24K;
1726		c->writecombine = _CACHE_UNCACHED;
1727		__cpu_name[cpu] = "MIPS 24KEc";
1728		break;
1729	case PRID_IMP_25KF:
1730		c->cputype = CPU_25KF;
1731		c->writecombine = _CACHE_UNCACHED;
1732		__cpu_name[cpu] = "MIPS 25Kc";
1733		break;
1734	case PRID_IMP_34K:
1735		c->cputype = CPU_34K;
1736		c->writecombine = _CACHE_UNCACHED;
1737		__cpu_name[cpu] = "MIPS 34Kc";
1738		cpu_set_mt_per_tc_perf(c);
1739		break;
1740	case PRID_IMP_74K:
1741		c->cputype = CPU_74K;
1742		c->writecombine = _CACHE_UNCACHED;
1743		__cpu_name[cpu] = "MIPS 74Kc";
1744		break;
1745	case PRID_IMP_M14KC:
1746		c->cputype = CPU_M14KC;
1747		c->writecombine = _CACHE_UNCACHED;
1748		__cpu_name[cpu] = "MIPS M14Kc";
1749		break;
1750	case PRID_IMP_M14KEC:
1751		c->cputype = CPU_M14KEC;
1752		c->writecombine = _CACHE_UNCACHED;
1753		__cpu_name[cpu] = "MIPS M14KEc";
1754		break;
1755	case PRID_IMP_1004K:
1756		c->cputype = CPU_1004K;
1757		c->writecombine = _CACHE_UNCACHED;
1758		__cpu_name[cpu] = "MIPS 1004Kc";
1759		cpu_set_mt_per_tc_perf(c);
1760		break;
1761	case PRID_IMP_1074K:
1762		c->cputype = CPU_1074K;
1763		c->writecombine = _CACHE_UNCACHED;
1764		__cpu_name[cpu] = "MIPS 1074Kc";
1765		break;
1766	case PRID_IMP_INTERAPTIV_UP:
1767		c->cputype = CPU_INTERAPTIV;
1768		__cpu_name[cpu] = "MIPS interAptiv";
1769		cpu_set_mt_per_tc_perf(c);
1770		break;
1771	case PRID_IMP_INTERAPTIV_MP:
1772		c->cputype = CPU_INTERAPTIV;
1773		__cpu_name[cpu] = "MIPS interAptiv (multi)";
1774		cpu_set_mt_per_tc_perf(c);
1775		break;
1776	case PRID_IMP_PROAPTIV_UP:
1777		c->cputype = CPU_PROAPTIV;
1778		__cpu_name[cpu] = "MIPS proAptiv";
1779		break;
1780	case PRID_IMP_PROAPTIV_MP:
1781		c->cputype = CPU_PROAPTIV;
1782		__cpu_name[cpu] = "MIPS proAptiv (multi)";
1783		break;
1784	case PRID_IMP_P5600:
1785		c->cputype = CPU_P5600;
1786		__cpu_name[cpu] = "MIPS P5600";
1787		break;
1788	case PRID_IMP_P6600:
1789		c->cputype = CPU_P6600;
1790		__cpu_name[cpu] = "MIPS P6600";
1791		break;
1792	case PRID_IMP_I6400:
1793		c->cputype = CPU_I6400;
1794		__cpu_name[cpu] = "MIPS I6400";
1795		break;
1796	case PRID_IMP_I6500:
1797		c->cputype = CPU_I6500;
1798		__cpu_name[cpu] = "MIPS I6500";
1799		break;
1800	case PRID_IMP_M5150:
1801		c->cputype = CPU_M5150;
1802		__cpu_name[cpu] = "MIPS M5150";
1803		break;
1804	case PRID_IMP_M6250:
1805		c->cputype = CPU_M6250;
1806		__cpu_name[cpu] = "MIPS M6250";
1807		break;
1808	}
1809
1810	decode_configs(c);
1811
1812	spram_config();
1813
1814	mm_config(c);
1815
1816	switch (__get_cpu_type(c->cputype)) {
1817	case CPU_M5150:
1818	case CPU_P5600:
1819		set_isa(c, MIPS_CPU_ISA_M32R5);
1820		break;
1821	case CPU_I6500:
1822		c->options |= MIPS_CPU_SHARED_FTLB_ENTRIES;
1823		fallthrough;
1824	case CPU_I6400:
1825		c->options |= MIPS_CPU_SHARED_FTLB_RAM;
1826		fallthrough;
1827	default:
1828		break;
1829	}
1830
1831	/* Recent MIPS cores use the implementation-dependent ExcCode 16 for
1832	 * cache/FTLB parity exceptions.
1833	 */
1834	switch (__get_cpu_type(c->cputype)) {
1835	case CPU_PROAPTIV:
1836	case CPU_P5600:
1837	case CPU_P6600:
1838	case CPU_I6400:
1839	case CPU_I6500:
1840		c->options |= MIPS_CPU_FTLBPAREX;
1841		break;
1842	}
1843}
1844
1845static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1846{
1847	decode_configs(c);
1848	switch (c->processor_id & PRID_IMP_MASK) {
1849	case PRID_IMP_AU1_REV1:
1850	case PRID_IMP_AU1_REV2:
1851		c->cputype = CPU_ALCHEMY;
1852		switch ((c->processor_id >> 24) & 0xff) {
1853		case 0:
1854			__cpu_name[cpu] = "Au1000";
1855			break;
1856		case 1:
1857			__cpu_name[cpu] = "Au1500";
1858			break;
1859		case 2:
1860			__cpu_name[cpu] = "Au1100";
1861			break;
1862		case 3:
1863			__cpu_name[cpu] = "Au1550";
1864			break;
1865		case 4:
1866			__cpu_name[cpu] = "Au1200";
1867			if ((c->processor_id & PRID_REV_MASK) == 2)
1868				__cpu_name[cpu] = "Au1250";
1869			break;
1870		case 5:
1871			__cpu_name[cpu] = "Au1210";
1872			break;
1873		default:
1874			__cpu_name[cpu] = "Au1xxx";
1875			break;
1876		}
1877		break;
1878	}
1879}
1880
1881static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1882{
1883	decode_configs(c);
1884
1885	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1886	switch (c->processor_id & PRID_IMP_MASK) {
1887	case PRID_IMP_SB1:
1888		c->cputype = CPU_SB1;
1889		__cpu_name[cpu] = "SiByte SB1";
1890		/* FPU in pass1 is known to have issues. */
1891		if ((c->processor_id & PRID_REV_MASK) < 0x02)
1892			c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1893		break;
1894	case PRID_IMP_SB1A:
1895		c->cputype = CPU_SB1A;
1896		__cpu_name[cpu] = "SiByte SB1A";
1897		break;
1898	}
1899}
1900
1901static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1902{
1903	decode_configs(c);
1904	switch (c->processor_id & PRID_IMP_MASK) {
1905	case PRID_IMP_SR71000:
1906		c->cputype = CPU_SR71000;
1907		__cpu_name[cpu] = "Sandcraft SR71000";
1908		c->scache.ways = 8;
1909		c->tlbsize = 64;
1910		break;
1911	}
1912}
1913
1914static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1915{
1916	decode_configs(c);
1917	switch (c->processor_id & PRID_IMP_MASK) {
1918	case PRID_IMP_PR4450:
1919		c->cputype = CPU_PR4450;
1920		__cpu_name[cpu] = "Philips PR4450";
1921		set_isa(c, MIPS_CPU_ISA_M32R1);
1922		break;
1923	}
1924}
1925
1926static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1927{
1928	decode_configs(c);
1929	switch (c->processor_id & PRID_IMP_MASK) {
1930	case PRID_IMP_BMIPS32_REV4:
1931	case PRID_IMP_BMIPS32_REV8:
1932		c->cputype = CPU_BMIPS32;
1933		__cpu_name[cpu] = "Broadcom BMIPS32";
1934		set_elf_platform(cpu, "bmips32");
1935		break;
1936	case PRID_IMP_BMIPS3300:
1937	case PRID_IMP_BMIPS3300_ALT:
1938	case PRID_IMP_BMIPS3300_BUG:
1939		c->cputype = CPU_BMIPS3300;
1940		__cpu_name[cpu] = "Broadcom BMIPS3300";
1941		set_elf_platform(cpu, "bmips3300");
1942		break;
1943	case PRID_IMP_BMIPS43XX: {
1944		int rev = c->processor_id & PRID_REV_MASK;
1945
1946		if (rev >= PRID_REV_BMIPS4380_LO &&
1947				rev <= PRID_REV_BMIPS4380_HI) {
1948			c->cputype = CPU_BMIPS4380;
1949			__cpu_name[cpu] = "Broadcom BMIPS4380";
1950			set_elf_platform(cpu, "bmips4380");
1951			c->options |= MIPS_CPU_RIXI;
1952		} else {
1953			c->cputype = CPU_BMIPS4350;
1954			__cpu_name[cpu] = "Broadcom BMIPS4350";
1955			set_elf_platform(cpu, "bmips4350");
1956		}
1957		break;
1958	}
1959	case PRID_IMP_BMIPS5000:
1960	case PRID_IMP_BMIPS5200:
1961		c->cputype = CPU_BMIPS5000;
1962		if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200)
1963			__cpu_name[cpu] = "Broadcom BMIPS5200";
1964		else
1965			__cpu_name[cpu] = "Broadcom BMIPS5000";
1966		set_elf_platform(cpu, "bmips5000");
1967		c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI;
1968		break;
1969	}
1970}
1971
1972static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1973{
1974	decode_configs(c);
1975	switch (c->processor_id & PRID_IMP_MASK) {
1976	case PRID_IMP_CAVIUM_CN38XX:
1977	case PRID_IMP_CAVIUM_CN31XX:
1978	case PRID_IMP_CAVIUM_CN30XX:
1979		c->cputype = CPU_CAVIUM_OCTEON;
1980		__cpu_name[cpu] = "Cavium Octeon";
1981		goto platform;
1982	case PRID_IMP_CAVIUM_CN58XX:
1983	case PRID_IMP_CAVIUM_CN56XX:
1984	case PRID_IMP_CAVIUM_CN50XX:
1985	case PRID_IMP_CAVIUM_CN52XX:
1986		c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1987		__cpu_name[cpu] = "Cavium Octeon+";
1988platform:
1989		set_elf_platform(cpu, "octeon");
1990		break;
1991	case PRID_IMP_CAVIUM_CN61XX:
1992	case PRID_IMP_CAVIUM_CN63XX:
1993	case PRID_IMP_CAVIUM_CN66XX:
1994	case PRID_IMP_CAVIUM_CN68XX:
1995	case PRID_IMP_CAVIUM_CNF71XX:
1996		c->cputype = CPU_CAVIUM_OCTEON2;
1997		__cpu_name[cpu] = "Cavium Octeon II";
1998		set_elf_platform(cpu, "octeon2");
1999		break;
2000	case PRID_IMP_CAVIUM_CN70XX:
2001	case PRID_IMP_CAVIUM_CN73XX:
2002	case PRID_IMP_CAVIUM_CNF75XX:
2003	case PRID_IMP_CAVIUM_CN78XX:
2004		c->cputype = CPU_CAVIUM_OCTEON3;
2005		__cpu_name[cpu] = "Cavium Octeon III";
2006		set_elf_platform(cpu, "octeon3");
2007		break;
2008	default:
2009		printk(KERN_INFO "Unknown Octeon chip!\n");
2010		c->cputype = CPU_UNKNOWN;
2011		break;
2012	}
2013}
2014
2015#ifdef CONFIG_CPU_LOONGSON64
2016#include <loongson_regs.h>
2017
2018static inline void decode_cpucfg(struct cpuinfo_mips *c)
2019{
2020	u32 cfg1 = read_cpucfg(LOONGSON_CFG1);
2021	u32 cfg2 = read_cpucfg(LOONGSON_CFG2);
2022	u32 cfg3 = read_cpucfg(LOONGSON_CFG3);
2023
2024	if (cfg1 & LOONGSON_CFG1_MMI)
2025		c->ases |= MIPS_ASE_LOONGSON_MMI;
2026
2027	if (cfg2 & LOONGSON_CFG2_LEXT1)
2028		c->ases |= MIPS_ASE_LOONGSON_EXT;
2029
2030	if (cfg2 & LOONGSON_CFG2_LEXT2)
2031		c->ases |= MIPS_ASE_LOONGSON_EXT2;
2032
2033	if (cfg2 & LOONGSON_CFG2_LSPW) {
2034		c->options |= MIPS_CPU_LDPTE;
2035		c->guest.options |= MIPS_CPU_LDPTE;
2036	}
2037
2038	if (cfg3 & LOONGSON_CFG3_LCAMP)
2039		c->ases |= MIPS_ASE_LOONGSON_CAM;
2040}
2041
2042static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu)
2043{
2044	decode_configs(c);
2045
2046	/* All Loongson processors covered here define ExcCode 16 as GSExc. */
2047	c->options |= MIPS_CPU_GSEXCEX;
2048
2049	switch (c->processor_id & PRID_IMP_MASK) {
2050	case PRID_IMP_LOONGSON_64R: /* Loongson-64 Reduced */
2051		switch (c->processor_id & PRID_REV_MASK) {
2052		case PRID_REV_LOONGSON2K_R1_0:
2053		case PRID_REV_LOONGSON2K_R1_1:
2054		case PRID_REV_LOONGSON2K_R1_2:
2055		case PRID_REV_LOONGSON2K_R1_3:
2056			c->cputype = CPU_LOONGSON64;
2057			__cpu_name[cpu] = "Loongson-2K";
2058			set_elf_platform(cpu, "gs264e");
2059			set_isa(c, MIPS_CPU_ISA_M64R2);
2060			break;
2061		}
2062		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
2063		c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_EXT |
2064				MIPS_ASE_LOONGSON_EXT2);
2065		break;
2066	case PRID_IMP_LOONGSON_64C:  /* Loongson-3 Classic */
2067		switch (c->processor_id & PRID_REV_MASK) {
2068		case PRID_REV_LOONGSON3A_R2_0:
2069		case PRID_REV_LOONGSON3A_R2_1:
2070			c->cputype = CPU_LOONGSON64;
2071			__cpu_name[cpu] = "ICT Loongson-3";
2072			set_elf_platform(cpu, "loongson3a");
2073			set_isa(c, MIPS_CPU_ISA_M64R2);
2074			break;
2075		case PRID_REV_LOONGSON3A_R3_0:
2076		case PRID_REV_LOONGSON3A_R3_1:
2077			c->cputype = CPU_LOONGSON64;
2078			__cpu_name[cpu] = "ICT Loongson-3";
2079			set_elf_platform(cpu, "loongson3a");
2080			set_isa(c, MIPS_CPU_ISA_M64R2);
2081			break;
2082		}
2083		/*
2084		 * Loongson-3 Classic did not implement MIPS standard TLBINV
2085		 * but implemented TLBINVF and EHINV. As currently we're only
2086		 * using these two features, enable MIPS_CPU_TLBINV as well.
2087		 *
2088		 * Also some early Loongson-3A2000 had wrong TLB type in Config
2089		 * register, we correct it here.
2090		 */
2091		c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
2092		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
2093		c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
2094			MIPS_ASE_LOONGSON_EXT | MIPS_ASE_LOONGSON_EXT2);
2095		c->ases &= ~MIPS_ASE_VZ; /* VZ of Loongson-3A2000/3000 is incomplete */
2096		break;
2097	case PRID_IMP_LOONGSON_64G:
2098		c->cputype = CPU_LOONGSON64;
2099		__cpu_name[cpu] = "ICT Loongson-3";
2100		set_elf_platform(cpu, "loongson3a");
2101		set_isa(c, MIPS_CPU_ISA_M64R2);
2102		decode_cpucfg(c);
2103		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
2104		break;
2105	default:
2106		panic("Unknown Loongson Processor ID!");
2107		break;
2108	}
2109}
2110#else
2111static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu) { }
2112#endif
2113
2114static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
2115{
2116	decode_configs(c);
2117
2118	/*
2119	 * XBurst misses a config2 register, so config3 decode was skipped in
2120	 * decode_configs().
2121	 */
2122	decode_config3(c);
2123
2124	/* XBurst does not implement the CP0 counter. */
2125	c->options &= ~MIPS_CPU_COUNTER;
2126	BUG_ON(!__builtin_constant_p(cpu_has_counter) || cpu_has_counter);
2127
2128	switch (c->processor_id & PRID_IMP_MASK) {
2129
2130	/* XBurst®1 with MXU1.0/MXU1.1 SIMD ISA */
2131	case PRID_IMP_XBURST_REV1:
2132
2133		/*
2134		 * The XBurst core by default attempts to avoid branch target
2135		 * buffer lookups by detecting & special casing loops. This
2136		 * feature will cause BogoMIPS and lpj calculate in error.
2137		 * Set cp0 config7 bit 4 to disable this feature.
2138		 */
2139		set_c0_config7(MIPS_CONF7_BTB_LOOP_EN);
2140
2141		switch (c->processor_id & PRID_COMP_MASK) {
2142
2143		/*
2144		 * The config0 register in the XBurst CPUs with a processor ID of
2145		 * PRID_COMP_INGENIC_D0 report themselves as MIPS32r2 compatible,
2146		 * but they don't actually support this ISA.
2147		 */
2148		case PRID_COMP_INGENIC_D0:
2149			c->isa_level &= ~MIPS_CPU_ISA_M32R2;
2150			break;
2151
2152		/*
2153		 * The config0 register in the XBurst CPUs with a processor ID of
2154		 * PRID_COMP_INGENIC_D1 has an abandoned huge page tlb mode, this
2155		 * mode is not compatible with the MIPS standard, it will cause
2156		 * tlbmiss and into an infinite loop (line 21 in the tlb-funcs.S)
2157		 * when starting the init process. After chip reset, the default
2158		 * is HPTLB mode, Write 0xa9000000 to cp0 register 5 sel 4 to
2159		 * switch back to VTLB mode to prevent getting stuck.
2160		 */
2161		case PRID_COMP_INGENIC_D1:
2162			write_c0_page_ctrl(XBURST_PAGECTRL_HPTLB_DIS);
2163			break;
2164
2165		default:
2166			break;
2167		}
2168		fallthrough;
2169
2170	/* XBurst®1 with MXU2.0 SIMD ISA */
2171	case PRID_IMP_XBURST_REV2:
2172		c->cputype = CPU_XBURST;
2173		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
2174		__cpu_name[cpu] = "Ingenic XBurst";
2175		break;
2176
2177	/* XBurst®2 with MXU2.1 SIMD ISA */
2178	case PRID_IMP_XBURST2:
2179		c->cputype = CPU_XBURST;
2180		__cpu_name[cpu] = "Ingenic XBurst II";
2181		break;
2182
2183	default:
2184		panic("Unknown Ingenic Processor ID!");
2185		break;
2186	}
 
 
 
 
 
 
 
 
2187}
2188
2189static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu)
2190{
2191	decode_configs(c);
2192
2193	if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) {
2194		c->cputype = CPU_ALCHEMY;
2195		__cpu_name[cpu] = "Au1300";
2196		/* following stuff is not for Alchemy */
2197		return;
2198	}
2199
2200	c->options = (MIPS_CPU_TLB	 |
2201			MIPS_CPU_4KEX	 |
2202			MIPS_CPU_COUNTER |
2203			MIPS_CPU_DIVEC	 |
2204			MIPS_CPU_WATCH	 |
2205			MIPS_CPU_EJTAG	 |
2206			MIPS_CPU_LLSC);
2207
2208	switch (c->processor_id & PRID_IMP_MASK) {
2209	case PRID_IMP_NETLOGIC_XLP2XX:
2210	case PRID_IMP_NETLOGIC_XLP9XX:
2211	case PRID_IMP_NETLOGIC_XLP5XX:
2212		c->cputype = CPU_XLP;
2213		__cpu_name[cpu] = "Broadcom XLPII";
2214		break;
2215
2216	case PRID_IMP_NETLOGIC_XLP8XX:
2217	case PRID_IMP_NETLOGIC_XLP3XX:
2218		c->cputype = CPU_XLP;
2219		__cpu_name[cpu] = "Netlogic XLP";
2220		break;
2221
2222	case PRID_IMP_NETLOGIC_XLR732:
2223	case PRID_IMP_NETLOGIC_XLR716:
2224	case PRID_IMP_NETLOGIC_XLR532:
2225	case PRID_IMP_NETLOGIC_XLR308:
2226	case PRID_IMP_NETLOGIC_XLR532C:
2227	case PRID_IMP_NETLOGIC_XLR516C:
2228	case PRID_IMP_NETLOGIC_XLR508C:
2229	case PRID_IMP_NETLOGIC_XLR308C:
2230		c->cputype = CPU_XLR;
2231		__cpu_name[cpu] = "Netlogic XLR";
2232		break;
2233
2234	case PRID_IMP_NETLOGIC_XLS608:
2235	case PRID_IMP_NETLOGIC_XLS408:
2236	case PRID_IMP_NETLOGIC_XLS404:
2237	case PRID_IMP_NETLOGIC_XLS208:
2238	case PRID_IMP_NETLOGIC_XLS204:
2239	case PRID_IMP_NETLOGIC_XLS108:
2240	case PRID_IMP_NETLOGIC_XLS104:
2241	case PRID_IMP_NETLOGIC_XLS616B:
2242	case PRID_IMP_NETLOGIC_XLS608B:
2243	case PRID_IMP_NETLOGIC_XLS416B:
2244	case PRID_IMP_NETLOGIC_XLS412B:
2245	case PRID_IMP_NETLOGIC_XLS408B:
2246	case PRID_IMP_NETLOGIC_XLS404B:
2247		c->cputype = CPU_XLR;
2248		__cpu_name[cpu] = "Netlogic XLS";
2249		break;
2250
2251	default:
2252		pr_info("Unknown Netlogic chip id [%02x]!\n",
2253		       c->processor_id);
2254		c->cputype = CPU_XLR;
2255		break;
2256	}
2257
2258	if (c->cputype == CPU_XLP) {
2259		set_isa(c, MIPS_CPU_ISA_M64R2);
2260		c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK);
2261		/* This will be updated again after all threads are woken up */
2262		c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1;
2263	} else {
2264		set_isa(c, MIPS_CPU_ISA_M64R1);
2265		c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1;
2266	}
2267	c->kscratch_mask = 0xf;
2268}
2269
2270#ifdef CONFIG_64BIT
2271/* For use by uaccess.h */
2272u64 __ua_limit;
2273EXPORT_SYMBOL(__ua_limit);
2274#endif
2275
2276const char *__cpu_name[NR_CPUS];
2277const char *__elf_platform;
2278const char *__elf_base_platform;
2279
2280void cpu_probe(void)
2281{
2282	struct cpuinfo_mips *c = &current_cpu_data;
2283	unsigned int cpu = smp_processor_id();
2284
2285	/*
2286	 * Set a default elf platform, cpu probe may later
2287	 * overwrite it with a more precise value
2288	 */
2289	set_elf_platform(cpu, "mips");
2290
2291	c->processor_id = PRID_IMP_UNKNOWN;
2292	c->fpu_id	= FPIR_IMP_NONE;
2293	c->cputype	= CPU_UNKNOWN;
2294	c->writecombine = _CACHE_UNCACHED;
2295
2296	c->fpu_csr31	= FPU_CSR_RN;
2297	c->fpu_msk31	= FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
2298
2299	c->processor_id = read_c0_prid();
2300	switch (c->processor_id & PRID_COMP_MASK) {
2301	case PRID_COMP_LEGACY:
2302		cpu_probe_legacy(c, cpu);
2303		break;
2304	case PRID_COMP_MIPS:
2305		cpu_probe_mips(c, cpu);
2306		break;
2307	case PRID_COMP_ALCHEMY:
2308		cpu_probe_alchemy(c, cpu);
2309		break;
2310	case PRID_COMP_SIBYTE:
2311		cpu_probe_sibyte(c, cpu);
2312		break;
2313	case PRID_COMP_BROADCOM:
2314		cpu_probe_broadcom(c, cpu);
2315		break;
2316	case PRID_COMP_SANDCRAFT:
2317		cpu_probe_sandcraft(c, cpu);
2318		break;
2319	case PRID_COMP_NXP:
2320		cpu_probe_nxp(c, cpu);
2321		break;
2322	case PRID_COMP_CAVIUM:
2323		cpu_probe_cavium(c, cpu);
2324		break;
2325	case PRID_COMP_LOONGSON:
2326		cpu_probe_loongson(c, cpu);
2327		break;
2328	case PRID_COMP_INGENIC_13:
2329	case PRID_COMP_INGENIC_D0:
2330	case PRID_COMP_INGENIC_D1:
2331	case PRID_COMP_INGENIC_E1:
2332		cpu_probe_ingenic(c, cpu);
2333		break;
2334	case PRID_COMP_NETLOGIC:
2335		cpu_probe_netlogic(c, cpu);
2336		break;
2337	}
2338
2339	BUG_ON(!__cpu_name[cpu]);
2340	BUG_ON(c->cputype == CPU_UNKNOWN);
2341
2342	/*
2343	 * Platform code can force the cpu type to optimize code
2344	 * generation. In that case be sure the cpu type is correctly
2345	 * manually setup otherwise it could trigger some nasty bugs.
2346	 */
2347	BUG_ON(current_cpu_type() != c->cputype);
2348
2349	if (cpu_has_rixi) {
2350		/* Enable the RIXI exceptions */
2351		set_c0_pagegrain(PG_IEC);
2352		back_to_back_c0_hazard();
2353		/* Verify the IEC bit is set */
2354		if (read_c0_pagegrain() & PG_IEC)
2355			c->options |= MIPS_CPU_RIXIEX;
2356	}
2357
2358	if (mips_fpu_disabled)
2359		c->options &= ~MIPS_CPU_FPU;
2360
2361	if (mips_dsp_disabled)
2362		c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
2363
2364	if (mips_htw_disabled) {
2365		c->options &= ~MIPS_CPU_HTW;
2366		write_c0_pwctl(read_c0_pwctl() &
2367			       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
2368	}
2369
2370	if (c->options & MIPS_CPU_FPU)
2371		cpu_set_fpu_opts(c);
2372	else
2373		cpu_set_nofpu_opts(c);
2374
2375	if (cpu_has_bp_ghist)
2376		write_c0_r10k_diag(read_c0_r10k_diag() |
2377				   R10K_DIAG_E_GHIST);
2378
2379	if (cpu_has_mips_r2_r6) {
2380		c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
2381		/* R2 has Performance Counter Interrupt indicator */
2382		c->options |= MIPS_CPU_PCI;
2383	}
2384	else
2385		c->srsets = 1;
2386
2387	if (cpu_has_mips_r6)
2388		elf_hwcap |= HWCAP_MIPS_R6;
2389
2390	if (cpu_has_msa) {
2391		c->msa_id = cpu_get_msa_id();
2392		WARN(c->msa_id & MSA_IR_WRPF,
2393		     "Vector register partitioning unimplemented!");
2394		elf_hwcap |= HWCAP_MIPS_MSA;
2395	}
2396
2397	if (cpu_has_mips16)
2398		elf_hwcap |= HWCAP_MIPS_MIPS16;
2399
2400	if (cpu_has_mdmx)
2401		elf_hwcap |= HWCAP_MIPS_MDMX;
2402
2403	if (cpu_has_mips3d)
2404		elf_hwcap |= HWCAP_MIPS_MIPS3D;
2405
2406	if (cpu_has_smartmips)
2407		elf_hwcap |= HWCAP_MIPS_SMARTMIPS;
2408
2409	if (cpu_has_dsp)
2410		elf_hwcap |= HWCAP_MIPS_DSP;
2411
2412	if (cpu_has_dsp2)
2413		elf_hwcap |= HWCAP_MIPS_DSP2;
2414
2415	if (cpu_has_dsp3)
2416		elf_hwcap |= HWCAP_MIPS_DSP3;
2417
2418	if (cpu_has_mips16e2)
2419		elf_hwcap |= HWCAP_MIPS_MIPS16E2;
2420
2421	if (cpu_has_loongson_mmi)
2422		elf_hwcap |= HWCAP_LOONGSON_MMI;
2423
2424	if (cpu_has_loongson_ext)
2425		elf_hwcap |= HWCAP_LOONGSON_EXT;
2426
2427	if (cpu_has_loongson_ext2)
2428		elf_hwcap |= HWCAP_LOONGSON_EXT2;
2429
2430	if (cpu_has_vz)
2431		cpu_probe_vz(c);
2432
2433	cpu_probe_vmbits(c);
2434
2435	/* Synthesize CPUCFG data if running on Loongson processors;
2436	 * no-op otherwise.
2437	 *
2438	 * This looks at previously probed features, so keep this at bottom.
2439	 */
2440	loongson3_cpucfg_synthesize_data(c);
2441
2442#ifdef CONFIG_64BIT
2443	if (cpu == 0)
2444		__ua_limit = ~((1ull << cpu_vmbits) - 1);
2445#endif
2446}
2447
2448void cpu_report(void)
2449{
2450	struct cpuinfo_mips *c = &current_cpu_data;
2451
2452	pr_info("CPU%d revision is: %08x (%s)\n",
2453		smp_processor_id(), c->processor_id, cpu_name_string());
2454	if (c->options & MIPS_CPU_FPU)
2455		printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
2456	if (cpu_has_msa)
2457		pr_info("MSA revision is: %08x\n", c->msa_id);
2458}
2459
2460void cpu_set_cluster(struct cpuinfo_mips *cpuinfo, unsigned int cluster)
2461{
2462	/* Ensure the core number fits in the field */
2463	WARN_ON(cluster > (MIPS_GLOBALNUMBER_CLUSTER >>
2464			   MIPS_GLOBALNUMBER_CLUSTER_SHF));
2465
2466	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CLUSTER;
2467	cpuinfo->globalnumber |= cluster << MIPS_GLOBALNUMBER_CLUSTER_SHF;
2468}
2469
2470void cpu_set_core(struct cpuinfo_mips *cpuinfo, unsigned int core)
2471{
2472	/* Ensure the core number fits in the field */
2473	WARN_ON(core > (MIPS_GLOBALNUMBER_CORE >> MIPS_GLOBALNUMBER_CORE_SHF));
2474
2475	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CORE;
2476	cpuinfo->globalnumber |= core << MIPS_GLOBALNUMBER_CORE_SHF;
2477}
2478
2479void cpu_set_vpe_id(struct cpuinfo_mips *cpuinfo, unsigned int vpe)
2480{
2481	/* Ensure the VP(E) ID fits in the field */
2482	WARN_ON(vpe > (MIPS_GLOBALNUMBER_VP >> MIPS_GLOBALNUMBER_VP_SHF));
2483
2484	/* Ensure we're not using VP(E)s without support */
2485	WARN_ON(vpe && !IS_ENABLED(CONFIG_MIPS_MT_SMP) &&
2486		!IS_ENABLED(CONFIG_CPU_MIPSR6));
2487
2488	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_VP;
2489	cpuinfo->globalnumber |= vpe << MIPS_GLOBALNUMBER_VP_SHF;
2490}