Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Processor capabilities determination functions.
4 *
5 * Copyright (C) xxxx the Anonymous
6 * Copyright (C) 1994 - 2006 Ralf Baechle
7 * Copyright (C) 2003, 2004 Maciej W. Rozycki
8 * Copyright (C) 2001, 2004, 2011, 2012 MIPS Technologies, Inc.
9 */
10#include <linux/init.h>
11#include <linux/kernel.h>
12#include <linux/ptrace.h>
13#include <linux/smp.h>
14#include <linux/stddef.h>
15#include <linux/export.h>
16
17#include <asm/bugs.h>
18#include <asm/cpu.h>
19#include <asm/cpu-features.h>
20#include <asm/cpu-type.h>
21#include <asm/fpu.h>
22#include <asm/mipsregs.h>
23#include <asm/mipsmtregs.h>
24#include <asm/msa.h>
25#include <asm/watch.h>
26#include <asm/elf.h>
27#include <asm/pgtable-bits.h>
28#include <asm/spram.h>
29#include <linux/uaccess.h>
30
31/* Hardware capabilities */
32unsigned int elf_hwcap __read_mostly;
33EXPORT_SYMBOL_GPL(elf_hwcap);
34
35#ifdef CONFIG_MIPS_FP_SUPPORT
36
37/*
38 * Get the FPU Implementation/Revision.
39 */
40static inline unsigned long cpu_get_fpu_id(void)
41{
42 unsigned long tmp, fpu_id;
43
44 tmp = read_c0_status();
45 __enable_fpu(FPU_AS_IS);
46 fpu_id = read_32bit_cp1_register(CP1_REVISION);
47 write_c0_status(tmp);
48 return fpu_id;
49}
50
51/*
52 * Check if the CPU has an external FPU.
53 */
54static inline int __cpu_has_fpu(void)
55{
56 return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE;
57}
58
59/*
60 * Determine the FCSR mask for FPU hardware.
61 */
62static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c)
63{
64 unsigned long sr, mask, fcsr, fcsr0, fcsr1;
65
66 fcsr = c->fpu_csr31;
67 mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM;
68
69 sr = read_c0_status();
70 __enable_fpu(FPU_AS_IS);
71
72 fcsr0 = fcsr & mask;
73 write_32bit_cp1_register(CP1_STATUS, fcsr0);
74 fcsr0 = read_32bit_cp1_register(CP1_STATUS);
75
76 fcsr1 = fcsr | ~mask;
77 write_32bit_cp1_register(CP1_STATUS, fcsr1);
78 fcsr1 = read_32bit_cp1_register(CP1_STATUS);
79
80 write_32bit_cp1_register(CP1_STATUS, fcsr);
81
82 write_c0_status(sr);
83
84 c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask;
85}
86
87/*
88 * Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes
89 * supported by FPU hardware.
90 */
91static void cpu_set_fpu_2008(struct cpuinfo_mips *c)
92{
93 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
94 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
95 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
96 unsigned long sr, fir, fcsr, fcsr0, fcsr1;
97
98 sr = read_c0_status();
99 __enable_fpu(FPU_AS_IS);
100
101 fir = read_32bit_cp1_register(CP1_REVISION);
102 if (fir & MIPS_FPIR_HAS2008) {
103 fcsr = read_32bit_cp1_register(CP1_STATUS);
104
105 fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
106 write_32bit_cp1_register(CP1_STATUS, fcsr0);
107 fcsr0 = read_32bit_cp1_register(CP1_STATUS);
108
109 fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
110 write_32bit_cp1_register(CP1_STATUS, fcsr1);
111 fcsr1 = read_32bit_cp1_register(CP1_STATUS);
112
113 write_32bit_cp1_register(CP1_STATUS, fcsr);
114
115 if (!(fcsr0 & FPU_CSR_NAN2008))
116 c->options |= MIPS_CPU_NAN_LEGACY;
117 if (fcsr1 & FPU_CSR_NAN2008)
118 c->options |= MIPS_CPU_NAN_2008;
119
120 if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008)
121 c->fpu_msk31 &= ~FPU_CSR_ABS2008;
122 else
123 c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008;
124
125 if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008)
126 c->fpu_msk31 &= ~FPU_CSR_NAN2008;
127 else
128 c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008;
129 } else {
130 c->options |= MIPS_CPU_NAN_LEGACY;
131 }
132
133 write_c0_status(sr);
134 } else {
135 c->options |= MIPS_CPU_NAN_LEGACY;
136 }
137}
138
139/*
140 * IEEE 754 conformance mode to use. Affects the NaN encoding and the
141 * ABS.fmt/NEG.fmt execution mode.
142 */
143static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT;
144
145/*
146 * Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes
147 * to support by the FPU emulator according to the IEEE 754 conformance
148 * mode selected. Note that "relaxed" straps the emulator so that it
149 * allows 2008-NaN binaries even for legacy processors.
150 */
151static void cpu_set_nofpu_2008(struct cpuinfo_mips *c)
152{
153 c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY);
154 c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
155 c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
156
157 switch (ieee754) {
158 case STRICT:
159 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
160 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
161 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
162 c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
163 } else {
164 c->options |= MIPS_CPU_NAN_LEGACY;
165 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
166 }
167 break;
168 case LEGACY:
169 c->options |= MIPS_CPU_NAN_LEGACY;
170 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
171 break;
172 case STD2008:
173 c->options |= MIPS_CPU_NAN_2008;
174 c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
175 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
176 break;
177 case RELAXED:
178 c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
179 break;
180 }
181}
182
183/*
184 * Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
185 * according to the "ieee754=" parameter.
186 */
187static void cpu_set_nan_2008(struct cpuinfo_mips *c)
188{
189 switch (ieee754) {
190 case STRICT:
191 mips_use_nan_legacy = !!cpu_has_nan_legacy;
192 mips_use_nan_2008 = !!cpu_has_nan_2008;
193 break;
194 case LEGACY:
195 mips_use_nan_legacy = !!cpu_has_nan_legacy;
196 mips_use_nan_2008 = !cpu_has_nan_legacy;
197 break;
198 case STD2008:
199 mips_use_nan_legacy = !cpu_has_nan_2008;
200 mips_use_nan_2008 = !!cpu_has_nan_2008;
201 break;
202 case RELAXED:
203 mips_use_nan_legacy = true;
204 mips_use_nan_2008 = true;
205 break;
206 }
207}
208
209/*
210 * IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override
211 * settings:
212 *
213 * strict: accept binaries that request a NaN encoding supported by the FPU
214 * legacy: only accept legacy-NaN binaries
215 * 2008: only accept 2008-NaN binaries
216 * relaxed: accept any binaries regardless of whether supported by the FPU
217 */
218static int __init ieee754_setup(char *s)
219{
220 if (!s)
221 return -1;
222 else if (!strcmp(s, "strict"))
223 ieee754 = STRICT;
224 else if (!strcmp(s, "legacy"))
225 ieee754 = LEGACY;
226 else if (!strcmp(s, "2008"))
227 ieee754 = STD2008;
228 else if (!strcmp(s, "relaxed"))
229 ieee754 = RELAXED;
230 else
231 return -1;
232
233 if (!(boot_cpu_data.options & MIPS_CPU_FPU))
234 cpu_set_nofpu_2008(&boot_cpu_data);
235 cpu_set_nan_2008(&boot_cpu_data);
236
237 return 0;
238}
239
240early_param("ieee754", ieee754_setup);
241
242/*
243 * Set the FIR feature flags for the FPU emulator.
244 */
245static void cpu_set_nofpu_id(struct cpuinfo_mips *c)
246{
247 u32 value;
248
249 value = 0;
250 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
251 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
252 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
253 value |= MIPS_FPIR_D | MIPS_FPIR_S;
254 if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
255 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
256 value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W;
257 if (c->options & MIPS_CPU_NAN_2008)
258 value |= MIPS_FPIR_HAS2008;
259 c->fpu_id = value;
260}
261
262/* Determined FPU emulator mask to use for the boot CPU with "nofpu". */
263static unsigned int mips_nofpu_msk31;
264
265/*
266 * Set options for FPU hardware.
267 */
268static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
269{
270 c->fpu_id = cpu_get_fpu_id();
271 mips_nofpu_msk31 = c->fpu_msk31;
272
273 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
274 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
275 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
276 if (c->fpu_id & MIPS_FPIR_3D)
277 c->ases |= MIPS_ASE_MIPS3D;
278 if (c->fpu_id & MIPS_FPIR_UFRP)
279 c->options |= MIPS_CPU_UFR;
280 if (c->fpu_id & MIPS_FPIR_FREP)
281 c->options |= MIPS_CPU_FRE;
282 }
283
284 cpu_set_fpu_fcsr_mask(c);
285 cpu_set_fpu_2008(c);
286 cpu_set_nan_2008(c);
287}
288
289/*
290 * Set options for the FPU emulator.
291 */
292static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
293{
294 c->options &= ~MIPS_CPU_FPU;
295 c->fpu_msk31 = mips_nofpu_msk31;
296
297 cpu_set_nofpu_2008(c);
298 cpu_set_nan_2008(c);
299 cpu_set_nofpu_id(c);
300}
301
302static int mips_fpu_disabled;
303
304static int __init fpu_disable(char *s)
305{
306 cpu_set_nofpu_opts(&boot_cpu_data);
307 mips_fpu_disabled = 1;
308
309 return 1;
310}
311
312__setup("nofpu", fpu_disable);
313
314#else /* !CONFIG_MIPS_FP_SUPPORT */
315
316#define mips_fpu_disabled 1
317
318static inline unsigned long cpu_get_fpu_id(void)
319{
320 return FPIR_IMP_NONE;
321}
322
323static inline int __cpu_has_fpu(void)
324{
325 return 0;
326}
327
328static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
329{
330 /* no-op */
331}
332
333static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
334{
335 /* no-op */
336}
337
338#endif /* CONFIG_MIPS_FP_SUPPORT */
339
340static inline unsigned long cpu_get_msa_id(void)
341{
342 unsigned long status, msa_id;
343
344 status = read_c0_status();
345 __enable_fpu(FPU_64BIT);
346 enable_msa();
347 msa_id = read_msa_ir();
348 disable_msa();
349 write_c0_status(status);
350 return msa_id;
351}
352
353static int mips_dsp_disabled;
354
355static int __init dsp_disable(char *s)
356{
357 cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
358 mips_dsp_disabled = 1;
359
360 return 1;
361}
362
363__setup("nodsp", dsp_disable);
364
365static int mips_htw_disabled;
366
367static int __init htw_disable(char *s)
368{
369 mips_htw_disabled = 1;
370 cpu_data[0].options &= ~MIPS_CPU_HTW;
371 write_c0_pwctl(read_c0_pwctl() &
372 ~(1 << MIPS_PWCTL_PWEN_SHIFT));
373
374 return 1;
375}
376
377__setup("nohtw", htw_disable);
378
379static int mips_ftlb_disabled;
380static int mips_has_ftlb_configured;
381
382enum ftlb_flags {
383 FTLB_EN = 1 << 0,
384 FTLB_SET_PROB = 1 << 1,
385};
386
387static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags);
388
389static int __init ftlb_disable(char *s)
390{
391 unsigned int config4, mmuextdef;
392
393 /*
394 * If the core hasn't done any FTLB configuration, there is nothing
395 * for us to do here.
396 */
397 if (!mips_has_ftlb_configured)
398 return 1;
399
400 /* Disable it in the boot cpu */
401 if (set_ftlb_enable(&cpu_data[0], 0)) {
402 pr_warn("Can't turn FTLB off\n");
403 return 1;
404 }
405
406 config4 = read_c0_config4();
407
408 /* Check that FTLB has been disabled */
409 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
410 /* MMUSIZEEXT == VTLB ON, FTLB OFF */
411 if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
412 /* This should never happen */
413 pr_warn("FTLB could not be disabled!\n");
414 return 1;
415 }
416
417 mips_ftlb_disabled = 1;
418 mips_has_ftlb_configured = 0;
419
420 /*
421 * noftlb is mainly used for debug purposes so print
422 * an informative message instead of using pr_debug()
423 */
424 pr_info("FTLB has been disabled\n");
425
426 /*
427 * Some of these bits are duplicated in the decode_config4.
428 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
429 * once FTLB has been disabled so undo what decode_config4 did.
430 */
431 cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
432 cpu_data[0].tlbsizeftlbsets;
433 cpu_data[0].tlbsizeftlbsets = 0;
434 cpu_data[0].tlbsizeftlbways = 0;
435
436 return 1;
437}
438
439__setup("noftlb", ftlb_disable);
440
441/*
442 * Check if the CPU has per tc perf counters
443 */
444static inline void cpu_set_mt_per_tc_perf(struct cpuinfo_mips *c)
445{
446 if (read_c0_config7() & MTI_CONF7_PTC)
447 c->options |= MIPS_CPU_MT_PER_TC_PERF_COUNTERS;
448}
449
450static inline void check_errata(void)
451{
452 struct cpuinfo_mips *c = ¤t_cpu_data;
453
454 switch (current_cpu_type()) {
455 case CPU_34K:
456 /*
457 * Erratum "RPS May Cause Incorrect Instruction Execution"
458 * This code only handles VPE0, any SMP/RTOS code
459 * making use of VPE1 will be responsable for that VPE.
460 */
461 if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
462 write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
463 break;
464 default:
465 break;
466 }
467}
468
469void __init check_bugs32(void)
470{
471 check_errata();
472}
473
474/*
475 * Probe whether cpu has config register by trying to play with
476 * alternate cache bit and see whether it matters.
477 * It's used by cpu_probe to distinguish between R3000A and R3081.
478 */
479static inline int cpu_has_confreg(void)
480{
481#ifdef CONFIG_CPU_R3000
482 extern unsigned long r3k_cache_size(unsigned long);
483 unsigned long size1, size2;
484 unsigned long cfg = read_c0_conf();
485
486 size1 = r3k_cache_size(ST0_ISC);
487 write_c0_conf(cfg ^ R30XX_CONF_AC);
488 size2 = r3k_cache_size(ST0_ISC);
489 write_c0_conf(cfg);
490 return size1 != size2;
491#else
492 return 0;
493#endif
494}
495
496static inline void set_elf_platform(int cpu, const char *plat)
497{
498 if (cpu == 0)
499 __elf_platform = plat;
500}
501
502static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
503{
504#ifdef __NEED_VMBITS_PROBE
505 write_c0_entryhi(0x3fffffffffffe000ULL);
506 back_to_back_c0_hazard();
507 c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
508#endif
509}
510
511static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
512{
513 switch (isa) {
514 case MIPS_CPU_ISA_M64R2:
515 c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
516 /* fall through */
517 case MIPS_CPU_ISA_M64R1:
518 c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
519 /* fall through */
520 case MIPS_CPU_ISA_V:
521 c->isa_level |= MIPS_CPU_ISA_V;
522 /* fall through */
523 case MIPS_CPU_ISA_IV:
524 c->isa_level |= MIPS_CPU_ISA_IV;
525 /* fall through */
526 case MIPS_CPU_ISA_III:
527 c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
528 break;
529
530 /* R6 incompatible with everything else */
531 case MIPS_CPU_ISA_M64R6:
532 c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
533 /* fall through */
534 case MIPS_CPU_ISA_M32R6:
535 c->isa_level |= MIPS_CPU_ISA_M32R6;
536 /* Break here so we don't add incompatible ISAs */
537 break;
538 case MIPS_CPU_ISA_M32R2:
539 c->isa_level |= MIPS_CPU_ISA_M32R2;
540 /* fall through */
541 case MIPS_CPU_ISA_M32R1:
542 c->isa_level |= MIPS_CPU_ISA_M32R1;
543 /* fall through */
544 case MIPS_CPU_ISA_II:
545 c->isa_level |= MIPS_CPU_ISA_II;
546 break;
547 }
548}
549
550static char unknown_isa[] = KERN_ERR \
551 "Unsupported ISA type, c0.config0: %d.";
552
553static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
554{
555
556 unsigned int probability = c->tlbsize / c->tlbsizevtlb;
557
558 /*
559 * 0 = All TLBWR instructions go to FTLB
560 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
561 * FTLB and 1 goes to the VTLB.
562 * 2 = 7:1: As above with 7:1 ratio.
563 * 3 = 3:1: As above with 3:1 ratio.
564 *
565 * Use the linear midpoint as the probability threshold.
566 */
567 if (probability >= 12)
568 return 1;
569 else if (probability >= 6)
570 return 2;
571 else
572 /*
573 * So FTLB is less than 4 times bigger than VTLB.
574 * A 3:1 ratio can still be useful though.
575 */
576 return 3;
577}
578
579static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags)
580{
581 unsigned int config;
582
583 /* It's implementation dependent how the FTLB can be enabled */
584 switch (c->cputype) {
585 case CPU_PROAPTIV:
586 case CPU_P5600:
587 case CPU_P6600:
588 /* proAptiv & related cores use Config6 to enable the FTLB */
589 config = read_c0_config6();
590
591 if (flags & FTLB_EN)
592 config |= MIPS_CONF6_FTLBEN;
593 else
594 config &= ~MIPS_CONF6_FTLBEN;
595
596 if (flags & FTLB_SET_PROB) {
597 config &= ~(3 << MIPS_CONF6_FTLBP_SHIFT);
598 config |= calculate_ftlb_probability(c)
599 << MIPS_CONF6_FTLBP_SHIFT;
600 }
601
602 write_c0_config6(config);
603 back_to_back_c0_hazard();
604 break;
605 case CPU_I6400:
606 case CPU_I6500:
607 /* There's no way to disable the FTLB */
608 if (!(flags & FTLB_EN))
609 return 1;
610 return 0;
611 case CPU_LOONGSON3:
612 /* Flush ITLB, DTLB, VTLB and FTLB */
613 write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB |
614 LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB);
615 /* Loongson-3 cores use Config6 to enable the FTLB */
616 config = read_c0_config6();
617 if (flags & FTLB_EN)
618 /* Enable FTLB */
619 write_c0_config6(config & ~MIPS_CONF6_FTLBDIS);
620 else
621 /* Disable FTLB */
622 write_c0_config6(config | MIPS_CONF6_FTLBDIS);
623 break;
624 default:
625 return 1;
626 }
627
628 return 0;
629}
630
631static inline unsigned int decode_config0(struct cpuinfo_mips *c)
632{
633 unsigned int config0;
634 int isa, mt;
635
636 config0 = read_c0_config();
637
638 /*
639 * Look for Standard TLB or Dual VTLB and FTLB
640 */
641 mt = config0 & MIPS_CONF_MT;
642 if (mt == MIPS_CONF_MT_TLB)
643 c->options |= MIPS_CPU_TLB;
644 else if (mt == MIPS_CONF_MT_FTLB)
645 c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
646
647 isa = (config0 & MIPS_CONF_AT) >> 13;
648 switch (isa) {
649 case 0:
650 switch ((config0 & MIPS_CONF_AR) >> 10) {
651 case 0:
652 set_isa(c, MIPS_CPU_ISA_M32R1);
653 break;
654 case 1:
655 set_isa(c, MIPS_CPU_ISA_M32R2);
656 break;
657 case 2:
658 set_isa(c, MIPS_CPU_ISA_M32R6);
659 break;
660 default:
661 goto unknown;
662 }
663 break;
664 case 2:
665 switch ((config0 & MIPS_CONF_AR) >> 10) {
666 case 0:
667 set_isa(c, MIPS_CPU_ISA_M64R1);
668 break;
669 case 1:
670 set_isa(c, MIPS_CPU_ISA_M64R2);
671 break;
672 case 2:
673 set_isa(c, MIPS_CPU_ISA_M64R6);
674 break;
675 default:
676 goto unknown;
677 }
678 break;
679 default:
680 goto unknown;
681 }
682
683 return config0 & MIPS_CONF_M;
684
685unknown:
686 panic(unknown_isa, config0);
687}
688
689static inline unsigned int decode_config1(struct cpuinfo_mips *c)
690{
691 unsigned int config1;
692
693 config1 = read_c0_config1();
694
695 if (config1 & MIPS_CONF1_MD)
696 c->ases |= MIPS_ASE_MDMX;
697 if (config1 & MIPS_CONF1_PC)
698 c->options |= MIPS_CPU_PERF;
699 if (config1 & MIPS_CONF1_WR)
700 c->options |= MIPS_CPU_WATCH;
701 if (config1 & MIPS_CONF1_CA)
702 c->ases |= MIPS_ASE_MIPS16;
703 if (config1 & MIPS_CONF1_EP)
704 c->options |= MIPS_CPU_EJTAG;
705 if (config1 & MIPS_CONF1_FP) {
706 c->options |= MIPS_CPU_FPU;
707 c->options |= MIPS_CPU_32FPR;
708 }
709 if (cpu_has_tlb) {
710 c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
711 c->tlbsizevtlb = c->tlbsize;
712 c->tlbsizeftlbsets = 0;
713 }
714
715 return config1 & MIPS_CONF_M;
716}
717
718static inline unsigned int decode_config2(struct cpuinfo_mips *c)
719{
720 unsigned int config2;
721
722 config2 = read_c0_config2();
723
724 if (config2 & MIPS_CONF2_SL)
725 c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
726
727 return config2 & MIPS_CONF_M;
728}
729
730static inline unsigned int decode_config3(struct cpuinfo_mips *c)
731{
732 unsigned int config3;
733
734 config3 = read_c0_config3();
735
736 if (config3 & MIPS_CONF3_SM) {
737 c->ases |= MIPS_ASE_SMARTMIPS;
738 c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC;
739 }
740 if (config3 & MIPS_CONF3_RXI)
741 c->options |= MIPS_CPU_RIXI;
742 if (config3 & MIPS_CONF3_CTXTC)
743 c->options |= MIPS_CPU_CTXTC;
744 if (config3 & MIPS_CONF3_DSP)
745 c->ases |= MIPS_ASE_DSP;
746 if (config3 & MIPS_CONF3_DSP2P) {
747 c->ases |= MIPS_ASE_DSP2P;
748 if (cpu_has_mips_r6)
749 c->ases |= MIPS_ASE_DSP3;
750 }
751 if (config3 & MIPS_CONF3_VINT)
752 c->options |= MIPS_CPU_VINT;
753 if (config3 & MIPS_CONF3_VEIC)
754 c->options |= MIPS_CPU_VEIC;
755 if (config3 & MIPS_CONF3_LPA)
756 c->options |= MIPS_CPU_LPA;
757 if (config3 & MIPS_CONF3_MT)
758 c->ases |= MIPS_ASE_MIPSMT;
759 if (config3 & MIPS_CONF3_ULRI)
760 c->options |= MIPS_CPU_ULRI;
761 if (config3 & MIPS_CONF3_ISA)
762 c->options |= MIPS_CPU_MICROMIPS;
763 if (config3 & MIPS_CONF3_VZ)
764 c->ases |= MIPS_ASE_VZ;
765 if (config3 & MIPS_CONF3_SC)
766 c->options |= MIPS_CPU_SEGMENTS;
767 if (config3 & MIPS_CONF3_BI)
768 c->options |= MIPS_CPU_BADINSTR;
769 if (config3 & MIPS_CONF3_BP)
770 c->options |= MIPS_CPU_BADINSTRP;
771 if (config3 & MIPS_CONF3_MSA)
772 c->ases |= MIPS_ASE_MSA;
773 if (config3 & MIPS_CONF3_PW) {
774 c->htw_seq = 0;
775 c->options |= MIPS_CPU_HTW;
776 }
777 if (config3 & MIPS_CONF3_CDMM)
778 c->options |= MIPS_CPU_CDMM;
779 if (config3 & MIPS_CONF3_SP)
780 c->options |= MIPS_CPU_SP;
781
782 return config3 & MIPS_CONF_M;
783}
784
785static inline unsigned int decode_config4(struct cpuinfo_mips *c)
786{
787 unsigned int config4;
788 unsigned int newcf4;
789 unsigned int mmuextdef;
790 unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
791 unsigned long asid_mask;
792
793 config4 = read_c0_config4();
794
795 if (cpu_has_tlb) {
796 if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
797 c->options |= MIPS_CPU_TLBINV;
798
799 /*
800 * R6 has dropped the MMUExtDef field from config4.
801 * On R6 the fields always describe the FTLB, and only if it is
802 * present according to Config.MT.
803 */
804 if (!cpu_has_mips_r6)
805 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
806 else if (cpu_has_ftlb)
807 mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
808 else
809 mmuextdef = 0;
810
811 switch (mmuextdef) {
812 case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
813 c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
814 c->tlbsizevtlb = c->tlbsize;
815 break;
816 case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
817 c->tlbsizevtlb +=
818 ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
819 MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
820 c->tlbsize = c->tlbsizevtlb;
821 ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
822 /* fall through */
823 case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
824 if (mips_ftlb_disabled)
825 break;
826 newcf4 = (config4 & ~ftlb_page) |
827 (page_size_ftlb(mmuextdef) <<
828 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
829 write_c0_config4(newcf4);
830 back_to_back_c0_hazard();
831 config4 = read_c0_config4();
832 if (config4 != newcf4) {
833 pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
834 PAGE_SIZE, config4);
835 /* Switch FTLB off */
836 set_ftlb_enable(c, 0);
837 mips_ftlb_disabled = 1;
838 break;
839 }
840 c->tlbsizeftlbsets = 1 <<
841 ((config4 & MIPS_CONF4_FTLBSETS) >>
842 MIPS_CONF4_FTLBSETS_SHIFT);
843 c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
844 MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
845 c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
846 mips_has_ftlb_configured = 1;
847 break;
848 }
849 }
850
851 c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
852 >> MIPS_CONF4_KSCREXIST_SHIFT;
853
854 asid_mask = MIPS_ENTRYHI_ASID;
855 if (config4 & MIPS_CONF4_AE)
856 asid_mask |= MIPS_ENTRYHI_ASIDX;
857 set_cpu_asid_mask(c, asid_mask);
858
859 /*
860 * Warn if the computed ASID mask doesn't match the mask the kernel
861 * is built for. This may indicate either a serious problem or an
862 * easy optimisation opportunity, but either way should be addressed.
863 */
864 WARN_ON(asid_mask != cpu_asid_mask(c));
865
866 return config4 & MIPS_CONF_M;
867}
868
869static inline unsigned int decode_config5(struct cpuinfo_mips *c)
870{
871 unsigned int config5, max_mmid_width;
872 unsigned long asid_mask;
873
874 config5 = read_c0_config5();
875 config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
876
877 if (cpu_has_mips_r6) {
878 if (!__builtin_constant_p(cpu_has_mmid) || cpu_has_mmid)
879 config5 |= MIPS_CONF5_MI;
880 else
881 config5 &= ~MIPS_CONF5_MI;
882 }
883
884 write_c0_config5(config5);
885
886 if (config5 & MIPS_CONF5_EVA)
887 c->options |= MIPS_CPU_EVA;
888 if (config5 & MIPS_CONF5_MRP)
889 c->options |= MIPS_CPU_MAAR;
890 if (config5 & MIPS_CONF5_LLB)
891 c->options |= MIPS_CPU_RW_LLB;
892 if (config5 & MIPS_CONF5_MVH)
893 c->options |= MIPS_CPU_MVH;
894 if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP))
895 c->options |= MIPS_CPU_VP;
896 if (config5 & MIPS_CONF5_CA2)
897 c->ases |= MIPS_ASE_MIPS16E2;
898
899 if (config5 & MIPS_CONF5_CRCP)
900 elf_hwcap |= HWCAP_MIPS_CRC32;
901
902 if (cpu_has_mips_r6) {
903 /* Ensure the write to config5 above takes effect */
904 back_to_back_c0_hazard();
905
906 /* Check whether we successfully enabled MMID support */
907 config5 = read_c0_config5();
908 if (config5 & MIPS_CONF5_MI)
909 c->options |= MIPS_CPU_MMID;
910
911 /*
912 * Warn if we've hardcoded cpu_has_mmid to a value unsuitable
913 * for the CPU we're running on, or if CPUs in an SMP system
914 * have inconsistent MMID support.
915 */
916 WARN_ON(!!cpu_has_mmid != !!(config5 & MIPS_CONF5_MI));
917
918 if (cpu_has_mmid) {
919 write_c0_memorymapid(~0ul);
920 back_to_back_c0_hazard();
921 asid_mask = read_c0_memorymapid();
922
923 /*
924 * We maintain a bitmap to track MMID allocation, and
925 * need a sensible upper bound on the size of that
926 * bitmap. The initial CPU with MMID support (I6500)
927 * supports 16 bit MMIDs, which gives us an 8KiB
928 * bitmap. The architecture recommends that hardware
929 * support 32 bit MMIDs, which would give us a 512MiB
930 * bitmap - that's too big in most cases.
931 *
932 * Cap MMID width at 16 bits for now & we can revisit
933 * this if & when hardware supports anything wider.
934 */
935 max_mmid_width = 16;
936 if (asid_mask > GENMASK(max_mmid_width - 1, 0)) {
937 pr_info("Capping MMID width at %d bits",
938 max_mmid_width);
939 asid_mask = GENMASK(max_mmid_width - 1, 0);
940 }
941
942 set_cpu_asid_mask(c, asid_mask);
943 }
944 }
945
946 return config5 & MIPS_CONF_M;
947}
948
949static void decode_configs(struct cpuinfo_mips *c)
950{
951 int ok;
952
953 /* MIPS32 or MIPS64 compliant CPU. */
954 c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
955 MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
956
957 c->scache.flags = MIPS_CACHE_NOT_PRESENT;
958
959 /* Enable FTLB if present and not disabled */
960 set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN);
961
962 ok = decode_config0(c); /* Read Config registers. */
963 BUG_ON(!ok); /* Arch spec violation! */
964 if (ok)
965 ok = decode_config1(c);
966 if (ok)
967 ok = decode_config2(c);
968 if (ok)
969 ok = decode_config3(c);
970 if (ok)
971 ok = decode_config4(c);
972 if (ok)
973 ok = decode_config5(c);
974
975 /* Probe the EBase.WG bit */
976 if (cpu_has_mips_r2_r6) {
977 u64 ebase;
978 unsigned int status;
979
980 /* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */
981 ebase = cpu_has_mips64r6 ? read_c0_ebase_64()
982 : (s32)read_c0_ebase();
983 if (ebase & MIPS_EBASE_WG) {
984 /* WG bit already set, we can avoid the clumsy probe */
985 c->options |= MIPS_CPU_EBASE_WG;
986 } else {
987 /* Its UNDEFINED to change EBase while BEV=0 */
988 status = read_c0_status();
989 write_c0_status(status | ST0_BEV);
990 irq_enable_hazard();
991 /*
992 * On pre-r6 cores, this may well clobber the upper bits
993 * of EBase. This is hard to avoid without potentially
994 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit.
995 */
996 if (cpu_has_mips64r6)
997 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
998 else
999 write_c0_ebase(ebase | MIPS_EBASE_WG);
1000 back_to_back_c0_hazard();
1001 /* Restore BEV */
1002 write_c0_status(status);
1003 if (read_c0_ebase() & MIPS_EBASE_WG) {
1004 c->options |= MIPS_CPU_EBASE_WG;
1005 write_c0_ebase(ebase);
1006 }
1007 }
1008 }
1009
1010 /* configure the FTLB write probability */
1011 set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB);
1012
1013 mips_probe_watch_registers(c);
1014
1015#ifndef CONFIG_MIPS_CPS
1016 if (cpu_has_mips_r2_r6) {
1017 unsigned int core;
1018
1019 core = get_ebase_cpunum();
1020 if (cpu_has_mipsmt)
1021 core >>= fls(core_nvpes()) - 1;
1022 cpu_set_core(c, core);
1023 }
1024#endif
1025}
1026
1027/*
1028 * Probe for certain guest capabilities by writing config bits and reading back.
1029 * Finally write back the original value.
1030 */
1031#define probe_gc0_config(name, maxconf, bits) \
1032do { \
1033 unsigned int tmp; \
1034 tmp = read_gc0_##name(); \
1035 write_gc0_##name(tmp | (bits)); \
1036 back_to_back_c0_hazard(); \
1037 maxconf = read_gc0_##name(); \
1038 write_gc0_##name(tmp); \
1039} while (0)
1040
1041/*
1042 * Probe for dynamic guest capabilities by changing certain config bits and
1043 * reading back to see if they change. Finally write back the original value.
1044 */
1045#define probe_gc0_config_dyn(name, maxconf, dynconf, bits) \
1046do { \
1047 maxconf = read_gc0_##name(); \
1048 write_gc0_##name(maxconf ^ (bits)); \
1049 back_to_back_c0_hazard(); \
1050 dynconf = maxconf ^ read_gc0_##name(); \
1051 write_gc0_##name(maxconf); \
1052 maxconf |= dynconf; \
1053} while (0)
1054
1055static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c)
1056{
1057 unsigned int config0;
1058
1059 probe_gc0_config(config, config0, MIPS_CONF_M);
1060
1061 if (config0 & MIPS_CONF_M)
1062 c->guest.conf |= BIT(1);
1063 return config0 & MIPS_CONF_M;
1064}
1065
1066static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c)
1067{
1068 unsigned int config1, config1_dyn;
1069
1070 probe_gc0_config_dyn(config1, config1, config1_dyn,
1071 MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR |
1072 MIPS_CONF1_FP);
1073
1074 if (config1 & MIPS_CONF1_FP)
1075 c->guest.options |= MIPS_CPU_FPU;
1076 if (config1_dyn & MIPS_CONF1_FP)
1077 c->guest.options_dyn |= MIPS_CPU_FPU;
1078
1079 if (config1 & MIPS_CONF1_WR)
1080 c->guest.options |= MIPS_CPU_WATCH;
1081 if (config1_dyn & MIPS_CONF1_WR)
1082 c->guest.options_dyn |= MIPS_CPU_WATCH;
1083
1084 if (config1 & MIPS_CONF1_PC)
1085 c->guest.options |= MIPS_CPU_PERF;
1086 if (config1_dyn & MIPS_CONF1_PC)
1087 c->guest.options_dyn |= MIPS_CPU_PERF;
1088
1089 if (config1 & MIPS_CONF_M)
1090 c->guest.conf |= BIT(2);
1091 return config1 & MIPS_CONF_M;
1092}
1093
1094static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c)
1095{
1096 unsigned int config2;
1097
1098 probe_gc0_config(config2, config2, MIPS_CONF_M);
1099
1100 if (config2 & MIPS_CONF_M)
1101 c->guest.conf |= BIT(3);
1102 return config2 & MIPS_CONF_M;
1103}
1104
1105static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c)
1106{
1107 unsigned int config3, config3_dyn;
1108
1109 probe_gc0_config_dyn(config3, config3, config3_dyn,
1110 MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_ULRI |
1111 MIPS_CONF3_CTXTC);
1112
1113 if (config3 & MIPS_CONF3_CTXTC)
1114 c->guest.options |= MIPS_CPU_CTXTC;
1115 if (config3_dyn & MIPS_CONF3_CTXTC)
1116 c->guest.options_dyn |= MIPS_CPU_CTXTC;
1117
1118 if (config3 & MIPS_CONF3_PW)
1119 c->guest.options |= MIPS_CPU_HTW;
1120
1121 if (config3 & MIPS_CONF3_ULRI)
1122 c->guest.options |= MIPS_CPU_ULRI;
1123
1124 if (config3 & MIPS_CONF3_SC)
1125 c->guest.options |= MIPS_CPU_SEGMENTS;
1126
1127 if (config3 & MIPS_CONF3_BI)
1128 c->guest.options |= MIPS_CPU_BADINSTR;
1129 if (config3 & MIPS_CONF3_BP)
1130 c->guest.options |= MIPS_CPU_BADINSTRP;
1131
1132 if (config3 & MIPS_CONF3_MSA)
1133 c->guest.ases |= MIPS_ASE_MSA;
1134 if (config3_dyn & MIPS_CONF3_MSA)
1135 c->guest.ases_dyn |= MIPS_ASE_MSA;
1136
1137 if (config3 & MIPS_CONF_M)
1138 c->guest.conf |= BIT(4);
1139 return config3 & MIPS_CONF_M;
1140}
1141
1142static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c)
1143{
1144 unsigned int config4;
1145
1146 probe_gc0_config(config4, config4,
1147 MIPS_CONF_M | MIPS_CONF4_KSCREXIST);
1148
1149 c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
1150 >> MIPS_CONF4_KSCREXIST_SHIFT;
1151
1152 if (config4 & MIPS_CONF_M)
1153 c->guest.conf |= BIT(5);
1154 return config4 & MIPS_CONF_M;
1155}
1156
1157static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c)
1158{
1159 unsigned int config5, config5_dyn;
1160
1161 probe_gc0_config_dyn(config5, config5, config5_dyn,
1162 MIPS_CONF_M | MIPS_CONF5_MVH | MIPS_CONF5_MRP);
1163
1164 if (config5 & MIPS_CONF5_MRP)
1165 c->guest.options |= MIPS_CPU_MAAR;
1166 if (config5_dyn & MIPS_CONF5_MRP)
1167 c->guest.options_dyn |= MIPS_CPU_MAAR;
1168
1169 if (config5 & MIPS_CONF5_LLB)
1170 c->guest.options |= MIPS_CPU_RW_LLB;
1171
1172 if (config5 & MIPS_CONF5_MVH)
1173 c->guest.options |= MIPS_CPU_MVH;
1174
1175 if (config5 & MIPS_CONF_M)
1176 c->guest.conf |= BIT(6);
1177 return config5 & MIPS_CONF_M;
1178}
1179
1180static inline void decode_guest_configs(struct cpuinfo_mips *c)
1181{
1182 unsigned int ok;
1183
1184 ok = decode_guest_config0(c);
1185 if (ok)
1186 ok = decode_guest_config1(c);
1187 if (ok)
1188 ok = decode_guest_config2(c);
1189 if (ok)
1190 ok = decode_guest_config3(c);
1191 if (ok)
1192 ok = decode_guest_config4(c);
1193 if (ok)
1194 decode_guest_config5(c);
1195}
1196
1197static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c)
1198{
1199 unsigned int guestctl0, temp;
1200
1201 guestctl0 = read_c0_guestctl0();
1202
1203 if (guestctl0 & MIPS_GCTL0_G0E)
1204 c->options |= MIPS_CPU_GUESTCTL0EXT;
1205 if (guestctl0 & MIPS_GCTL0_G1)
1206 c->options |= MIPS_CPU_GUESTCTL1;
1207 if (guestctl0 & MIPS_GCTL0_G2)
1208 c->options |= MIPS_CPU_GUESTCTL2;
1209 if (!(guestctl0 & MIPS_GCTL0_RAD)) {
1210 c->options |= MIPS_CPU_GUESTID;
1211
1212 /*
1213 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0
1214 * first, otherwise all data accesses will be fully virtualised
1215 * as if they were performed by guest mode.
1216 */
1217 write_c0_guestctl1(0);
1218 tlbw_use_hazard();
1219
1220 write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG);
1221 back_to_back_c0_hazard();
1222 temp = read_c0_guestctl0();
1223
1224 if (temp & MIPS_GCTL0_DRG) {
1225 write_c0_guestctl0(guestctl0);
1226 c->options |= MIPS_CPU_DRG;
1227 }
1228 }
1229}
1230
1231static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c)
1232{
1233 if (cpu_has_guestid) {
1234 /* determine the number of bits of GuestID available */
1235 write_c0_guestctl1(MIPS_GCTL1_ID);
1236 back_to_back_c0_hazard();
1237 c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID)
1238 >> MIPS_GCTL1_ID_SHIFT;
1239 write_c0_guestctl1(0);
1240 }
1241}
1242
1243static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c)
1244{
1245 /* determine the number of bits of GTOffset available */
1246 write_c0_gtoffset(0xffffffff);
1247 back_to_back_c0_hazard();
1248 c->gtoffset_mask = read_c0_gtoffset();
1249 write_c0_gtoffset(0);
1250}
1251
1252static inline void cpu_probe_vz(struct cpuinfo_mips *c)
1253{
1254 cpu_probe_guestctl0(c);
1255 if (cpu_has_guestctl1)
1256 cpu_probe_guestctl1(c);
1257
1258 cpu_probe_gtoffset(c);
1259
1260 decode_guest_configs(c);
1261}
1262
1263#define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
1264 | MIPS_CPU_COUNTER)
1265
1266static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
1267{
1268 switch (c->processor_id & PRID_IMP_MASK) {
1269 case PRID_IMP_R2000:
1270 c->cputype = CPU_R2000;
1271 __cpu_name[cpu] = "R2000";
1272 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1273 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1274 MIPS_CPU_NOFPUEX;
1275 if (__cpu_has_fpu())
1276 c->options |= MIPS_CPU_FPU;
1277 c->tlbsize = 64;
1278 break;
1279 case PRID_IMP_R3000:
1280 if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
1281 if (cpu_has_confreg()) {
1282 c->cputype = CPU_R3081E;
1283 __cpu_name[cpu] = "R3081";
1284 } else {
1285 c->cputype = CPU_R3000A;
1286 __cpu_name[cpu] = "R3000A";
1287 }
1288 } else {
1289 c->cputype = CPU_R3000;
1290 __cpu_name[cpu] = "R3000";
1291 }
1292 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1293 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1294 MIPS_CPU_NOFPUEX;
1295 if (__cpu_has_fpu())
1296 c->options |= MIPS_CPU_FPU;
1297 c->tlbsize = 64;
1298 break;
1299 case PRID_IMP_R4000:
1300 if (read_c0_config() & CONF_SC) {
1301 if ((c->processor_id & PRID_REV_MASK) >=
1302 PRID_REV_R4400) {
1303 c->cputype = CPU_R4400PC;
1304 __cpu_name[cpu] = "R4400PC";
1305 } else {
1306 c->cputype = CPU_R4000PC;
1307 __cpu_name[cpu] = "R4000PC";
1308 }
1309 } else {
1310 int cca = read_c0_config() & CONF_CM_CMASK;
1311 int mc;
1312
1313 /*
1314 * SC and MC versions can't be reliably told apart,
1315 * but only the latter support coherent caching
1316 * modes so assume the firmware has set the KSEG0
1317 * coherency attribute reasonably (if uncached, we
1318 * assume SC).
1319 */
1320 switch (cca) {
1321 case CONF_CM_CACHABLE_CE:
1322 case CONF_CM_CACHABLE_COW:
1323 case CONF_CM_CACHABLE_CUW:
1324 mc = 1;
1325 break;
1326 default:
1327 mc = 0;
1328 break;
1329 }
1330 if ((c->processor_id & PRID_REV_MASK) >=
1331 PRID_REV_R4400) {
1332 c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
1333 __cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
1334 } else {
1335 c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
1336 __cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
1337 }
1338 }
1339
1340 set_isa(c, MIPS_CPU_ISA_III);
1341 c->fpu_msk31 |= FPU_CSR_CONDX;
1342 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1343 MIPS_CPU_WATCH | MIPS_CPU_VCE |
1344 MIPS_CPU_LLSC;
1345 c->tlbsize = 48;
1346 break;
1347 case PRID_IMP_VR41XX:
1348 set_isa(c, MIPS_CPU_ISA_III);
1349 c->fpu_msk31 |= FPU_CSR_CONDX;
1350 c->options = R4K_OPTS;
1351 c->tlbsize = 32;
1352 switch (c->processor_id & 0xf0) {
1353 case PRID_REV_VR4111:
1354 c->cputype = CPU_VR4111;
1355 __cpu_name[cpu] = "NEC VR4111";
1356 break;
1357 case PRID_REV_VR4121:
1358 c->cputype = CPU_VR4121;
1359 __cpu_name[cpu] = "NEC VR4121";
1360 break;
1361 case PRID_REV_VR4122:
1362 if ((c->processor_id & 0xf) < 0x3) {
1363 c->cputype = CPU_VR4122;
1364 __cpu_name[cpu] = "NEC VR4122";
1365 } else {
1366 c->cputype = CPU_VR4181A;
1367 __cpu_name[cpu] = "NEC VR4181A";
1368 }
1369 break;
1370 case PRID_REV_VR4130:
1371 if ((c->processor_id & 0xf) < 0x4) {
1372 c->cputype = CPU_VR4131;
1373 __cpu_name[cpu] = "NEC VR4131";
1374 } else {
1375 c->cputype = CPU_VR4133;
1376 c->options |= MIPS_CPU_LLSC;
1377 __cpu_name[cpu] = "NEC VR4133";
1378 }
1379 break;
1380 default:
1381 printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n");
1382 c->cputype = CPU_VR41XX;
1383 __cpu_name[cpu] = "NEC Vr41xx";
1384 break;
1385 }
1386 break;
1387 case PRID_IMP_R4600:
1388 c->cputype = CPU_R4600;
1389 __cpu_name[cpu] = "R4600";
1390 set_isa(c, MIPS_CPU_ISA_III);
1391 c->fpu_msk31 |= FPU_CSR_CONDX;
1392 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1393 MIPS_CPU_LLSC;
1394 c->tlbsize = 48;
1395 break;
1396 #if 0
1397 case PRID_IMP_R4650:
1398 /*
1399 * This processor doesn't have an MMU, so it's not
1400 * "real easy" to run Linux on it. It is left purely
1401 * for documentation. Commented out because it shares
1402 * it's c0_prid id number with the TX3900.
1403 */
1404 c->cputype = CPU_R4650;
1405 __cpu_name[cpu] = "R4650";
1406 set_isa(c, MIPS_CPU_ISA_III);
1407 c->fpu_msk31 |= FPU_CSR_CONDX;
1408 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1409 c->tlbsize = 48;
1410 break;
1411 #endif
1412 case PRID_IMP_TX39:
1413 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1414 c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE;
1415
1416 if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) {
1417 c->cputype = CPU_TX3927;
1418 __cpu_name[cpu] = "TX3927";
1419 c->tlbsize = 64;
1420 } else {
1421 switch (c->processor_id & PRID_REV_MASK) {
1422 case PRID_REV_TX3912:
1423 c->cputype = CPU_TX3912;
1424 __cpu_name[cpu] = "TX3912";
1425 c->tlbsize = 32;
1426 break;
1427 case PRID_REV_TX3922:
1428 c->cputype = CPU_TX3922;
1429 __cpu_name[cpu] = "TX3922";
1430 c->tlbsize = 64;
1431 break;
1432 }
1433 }
1434 break;
1435 case PRID_IMP_R4700:
1436 c->cputype = CPU_R4700;
1437 __cpu_name[cpu] = "R4700";
1438 set_isa(c, MIPS_CPU_ISA_III);
1439 c->fpu_msk31 |= FPU_CSR_CONDX;
1440 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1441 MIPS_CPU_LLSC;
1442 c->tlbsize = 48;
1443 break;
1444 case PRID_IMP_TX49:
1445 c->cputype = CPU_TX49XX;
1446 __cpu_name[cpu] = "R49XX";
1447 set_isa(c, MIPS_CPU_ISA_III);
1448 c->fpu_msk31 |= FPU_CSR_CONDX;
1449 c->options = R4K_OPTS | MIPS_CPU_LLSC;
1450 if (!(c->processor_id & 0x08))
1451 c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1452 c->tlbsize = 48;
1453 break;
1454 case PRID_IMP_R5000:
1455 c->cputype = CPU_R5000;
1456 __cpu_name[cpu] = "R5000";
1457 set_isa(c, MIPS_CPU_ISA_IV);
1458 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1459 MIPS_CPU_LLSC;
1460 c->tlbsize = 48;
1461 break;
1462 case PRID_IMP_R5500:
1463 c->cputype = CPU_R5500;
1464 __cpu_name[cpu] = "R5500";
1465 set_isa(c, MIPS_CPU_ISA_IV);
1466 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1467 MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1468 c->tlbsize = 48;
1469 break;
1470 case PRID_IMP_NEVADA:
1471 c->cputype = CPU_NEVADA;
1472 __cpu_name[cpu] = "Nevada";
1473 set_isa(c, MIPS_CPU_ISA_IV);
1474 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1475 MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1476 c->tlbsize = 48;
1477 break;
1478 case PRID_IMP_RM7000:
1479 c->cputype = CPU_RM7000;
1480 __cpu_name[cpu] = "RM7000";
1481 set_isa(c, MIPS_CPU_ISA_IV);
1482 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1483 MIPS_CPU_LLSC;
1484 /*
1485 * Undocumented RM7000: Bit 29 in the info register of
1486 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1487 * entries.
1488 *
1489 * 29 1 => 64 entry JTLB
1490 * 0 => 48 entry JTLB
1491 */
1492 c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1493 break;
1494 case PRID_IMP_R10000:
1495 c->cputype = CPU_R10000;
1496 __cpu_name[cpu] = "R10000";
1497 set_isa(c, MIPS_CPU_ISA_IV);
1498 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1499 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1500 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1501 MIPS_CPU_LLSC;
1502 c->tlbsize = 64;
1503 break;
1504 case PRID_IMP_R12000:
1505 c->cputype = CPU_R12000;
1506 __cpu_name[cpu] = "R12000";
1507 set_isa(c, MIPS_CPU_ISA_IV);
1508 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1509 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1510 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1511 MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1512 c->tlbsize = 64;
1513 break;
1514 case PRID_IMP_R14000:
1515 if (((c->processor_id >> 4) & 0x0f) > 2) {
1516 c->cputype = CPU_R16000;
1517 __cpu_name[cpu] = "R16000";
1518 } else {
1519 c->cputype = CPU_R14000;
1520 __cpu_name[cpu] = "R14000";
1521 }
1522 set_isa(c, MIPS_CPU_ISA_IV);
1523 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1524 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1525 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1526 MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1527 c->tlbsize = 64;
1528 break;
1529 case PRID_IMP_LOONGSON_64: /* Loongson-2/3 */
1530 switch (c->processor_id & PRID_REV_MASK) {
1531 case PRID_REV_LOONGSON2E:
1532 c->cputype = CPU_LOONGSON2;
1533 __cpu_name[cpu] = "ICT Loongson-2";
1534 set_elf_platform(cpu, "loongson2e");
1535 set_isa(c, MIPS_CPU_ISA_III);
1536 c->fpu_msk31 |= FPU_CSR_CONDX;
1537 break;
1538 case PRID_REV_LOONGSON2F:
1539 c->cputype = CPU_LOONGSON2;
1540 __cpu_name[cpu] = "ICT Loongson-2";
1541 set_elf_platform(cpu, "loongson2f");
1542 set_isa(c, MIPS_CPU_ISA_III);
1543 c->fpu_msk31 |= FPU_CSR_CONDX;
1544 break;
1545 case PRID_REV_LOONGSON3A_R1:
1546 c->cputype = CPU_LOONGSON3;
1547 __cpu_name[cpu] = "ICT Loongson-3";
1548 set_elf_platform(cpu, "loongson3a");
1549 set_isa(c, MIPS_CPU_ISA_M64R1);
1550 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1551 MIPS_ASE_LOONGSON_EXT);
1552 break;
1553 case PRID_REV_LOONGSON3B_R1:
1554 case PRID_REV_LOONGSON3B_R2:
1555 c->cputype = CPU_LOONGSON3;
1556 __cpu_name[cpu] = "ICT Loongson-3";
1557 set_elf_platform(cpu, "loongson3b");
1558 set_isa(c, MIPS_CPU_ISA_M64R1);
1559 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1560 MIPS_ASE_LOONGSON_EXT);
1561 break;
1562 }
1563
1564 c->options = R4K_OPTS |
1565 MIPS_CPU_FPU | MIPS_CPU_LLSC |
1566 MIPS_CPU_32FPR;
1567 c->tlbsize = 64;
1568 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1569 break;
1570 case PRID_IMP_LOONGSON_32: /* Loongson-1 */
1571 decode_configs(c);
1572
1573 c->cputype = CPU_LOONGSON1;
1574
1575 switch (c->processor_id & PRID_REV_MASK) {
1576 case PRID_REV_LOONGSON1B:
1577 __cpu_name[cpu] = "Loongson 1B";
1578 break;
1579 }
1580
1581 break;
1582 }
1583}
1584
1585static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1586{
1587 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1588 switch (c->processor_id & PRID_IMP_MASK) {
1589 case PRID_IMP_QEMU_GENERIC:
1590 c->writecombine = _CACHE_UNCACHED;
1591 c->cputype = CPU_QEMU_GENERIC;
1592 __cpu_name[cpu] = "MIPS GENERIC QEMU";
1593 break;
1594 case PRID_IMP_4KC:
1595 c->cputype = CPU_4KC;
1596 c->writecombine = _CACHE_UNCACHED;
1597 __cpu_name[cpu] = "MIPS 4Kc";
1598 break;
1599 case PRID_IMP_4KEC:
1600 case PRID_IMP_4KECR2:
1601 c->cputype = CPU_4KEC;
1602 c->writecombine = _CACHE_UNCACHED;
1603 __cpu_name[cpu] = "MIPS 4KEc";
1604 break;
1605 case PRID_IMP_4KSC:
1606 case PRID_IMP_4KSD:
1607 c->cputype = CPU_4KSC;
1608 c->writecombine = _CACHE_UNCACHED;
1609 __cpu_name[cpu] = "MIPS 4KSc";
1610 break;
1611 case PRID_IMP_5KC:
1612 c->cputype = CPU_5KC;
1613 c->writecombine = _CACHE_UNCACHED;
1614 __cpu_name[cpu] = "MIPS 5Kc";
1615 break;
1616 case PRID_IMP_5KE:
1617 c->cputype = CPU_5KE;
1618 c->writecombine = _CACHE_UNCACHED;
1619 __cpu_name[cpu] = "MIPS 5KE";
1620 break;
1621 case PRID_IMP_20KC:
1622 c->cputype = CPU_20KC;
1623 c->writecombine = _CACHE_UNCACHED;
1624 __cpu_name[cpu] = "MIPS 20Kc";
1625 break;
1626 case PRID_IMP_24K:
1627 c->cputype = CPU_24K;
1628 c->writecombine = _CACHE_UNCACHED;
1629 __cpu_name[cpu] = "MIPS 24Kc";
1630 break;
1631 case PRID_IMP_24KE:
1632 c->cputype = CPU_24K;
1633 c->writecombine = _CACHE_UNCACHED;
1634 __cpu_name[cpu] = "MIPS 24KEc";
1635 break;
1636 case PRID_IMP_25KF:
1637 c->cputype = CPU_25KF;
1638 c->writecombine = _CACHE_UNCACHED;
1639 __cpu_name[cpu] = "MIPS 25Kc";
1640 break;
1641 case PRID_IMP_34K:
1642 c->cputype = CPU_34K;
1643 c->writecombine = _CACHE_UNCACHED;
1644 __cpu_name[cpu] = "MIPS 34Kc";
1645 cpu_set_mt_per_tc_perf(c);
1646 break;
1647 case PRID_IMP_74K:
1648 c->cputype = CPU_74K;
1649 c->writecombine = _CACHE_UNCACHED;
1650 __cpu_name[cpu] = "MIPS 74Kc";
1651 break;
1652 case PRID_IMP_M14KC:
1653 c->cputype = CPU_M14KC;
1654 c->writecombine = _CACHE_UNCACHED;
1655 __cpu_name[cpu] = "MIPS M14Kc";
1656 break;
1657 case PRID_IMP_M14KEC:
1658 c->cputype = CPU_M14KEC;
1659 c->writecombine = _CACHE_UNCACHED;
1660 __cpu_name[cpu] = "MIPS M14KEc";
1661 break;
1662 case PRID_IMP_1004K:
1663 c->cputype = CPU_1004K;
1664 c->writecombine = _CACHE_UNCACHED;
1665 __cpu_name[cpu] = "MIPS 1004Kc";
1666 cpu_set_mt_per_tc_perf(c);
1667 break;
1668 case PRID_IMP_1074K:
1669 c->cputype = CPU_1074K;
1670 c->writecombine = _CACHE_UNCACHED;
1671 __cpu_name[cpu] = "MIPS 1074Kc";
1672 break;
1673 case PRID_IMP_INTERAPTIV_UP:
1674 c->cputype = CPU_INTERAPTIV;
1675 __cpu_name[cpu] = "MIPS interAptiv";
1676 cpu_set_mt_per_tc_perf(c);
1677 break;
1678 case PRID_IMP_INTERAPTIV_MP:
1679 c->cputype = CPU_INTERAPTIV;
1680 __cpu_name[cpu] = "MIPS interAptiv (multi)";
1681 cpu_set_mt_per_tc_perf(c);
1682 break;
1683 case PRID_IMP_PROAPTIV_UP:
1684 c->cputype = CPU_PROAPTIV;
1685 __cpu_name[cpu] = "MIPS proAptiv";
1686 break;
1687 case PRID_IMP_PROAPTIV_MP:
1688 c->cputype = CPU_PROAPTIV;
1689 __cpu_name[cpu] = "MIPS proAptiv (multi)";
1690 break;
1691 case PRID_IMP_P5600:
1692 c->cputype = CPU_P5600;
1693 __cpu_name[cpu] = "MIPS P5600";
1694 break;
1695 case PRID_IMP_P6600:
1696 c->cputype = CPU_P6600;
1697 __cpu_name[cpu] = "MIPS P6600";
1698 break;
1699 case PRID_IMP_I6400:
1700 c->cputype = CPU_I6400;
1701 __cpu_name[cpu] = "MIPS I6400";
1702 break;
1703 case PRID_IMP_I6500:
1704 c->cputype = CPU_I6500;
1705 __cpu_name[cpu] = "MIPS I6500";
1706 break;
1707 case PRID_IMP_M5150:
1708 c->cputype = CPU_M5150;
1709 __cpu_name[cpu] = "MIPS M5150";
1710 break;
1711 case PRID_IMP_M6250:
1712 c->cputype = CPU_M6250;
1713 __cpu_name[cpu] = "MIPS M6250";
1714 break;
1715 }
1716
1717 decode_configs(c);
1718
1719 spram_config();
1720
1721 switch (__get_cpu_type(c->cputype)) {
1722 case CPU_I6500:
1723 c->options |= MIPS_CPU_SHARED_FTLB_ENTRIES;
1724 /* fall-through */
1725 case CPU_I6400:
1726 c->options |= MIPS_CPU_SHARED_FTLB_RAM;
1727 /* fall-through */
1728 default:
1729 break;
1730 }
1731}
1732
1733static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1734{
1735 decode_configs(c);
1736 switch (c->processor_id & PRID_IMP_MASK) {
1737 case PRID_IMP_AU1_REV1:
1738 case PRID_IMP_AU1_REV2:
1739 c->cputype = CPU_ALCHEMY;
1740 switch ((c->processor_id >> 24) & 0xff) {
1741 case 0:
1742 __cpu_name[cpu] = "Au1000";
1743 break;
1744 case 1:
1745 __cpu_name[cpu] = "Au1500";
1746 break;
1747 case 2:
1748 __cpu_name[cpu] = "Au1100";
1749 break;
1750 case 3:
1751 __cpu_name[cpu] = "Au1550";
1752 break;
1753 case 4:
1754 __cpu_name[cpu] = "Au1200";
1755 if ((c->processor_id & PRID_REV_MASK) == 2)
1756 __cpu_name[cpu] = "Au1250";
1757 break;
1758 case 5:
1759 __cpu_name[cpu] = "Au1210";
1760 break;
1761 default:
1762 __cpu_name[cpu] = "Au1xxx";
1763 break;
1764 }
1765 break;
1766 }
1767}
1768
1769static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1770{
1771 decode_configs(c);
1772
1773 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1774 switch (c->processor_id & PRID_IMP_MASK) {
1775 case PRID_IMP_SB1:
1776 c->cputype = CPU_SB1;
1777 __cpu_name[cpu] = "SiByte SB1";
1778 /* FPU in pass1 is known to have issues. */
1779 if ((c->processor_id & PRID_REV_MASK) < 0x02)
1780 c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1781 break;
1782 case PRID_IMP_SB1A:
1783 c->cputype = CPU_SB1A;
1784 __cpu_name[cpu] = "SiByte SB1A";
1785 break;
1786 }
1787}
1788
1789static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1790{
1791 decode_configs(c);
1792 switch (c->processor_id & PRID_IMP_MASK) {
1793 case PRID_IMP_SR71000:
1794 c->cputype = CPU_SR71000;
1795 __cpu_name[cpu] = "Sandcraft SR71000";
1796 c->scache.ways = 8;
1797 c->tlbsize = 64;
1798 break;
1799 }
1800}
1801
1802static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1803{
1804 decode_configs(c);
1805 switch (c->processor_id & PRID_IMP_MASK) {
1806 case PRID_IMP_PR4450:
1807 c->cputype = CPU_PR4450;
1808 __cpu_name[cpu] = "Philips PR4450";
1809 set_isa(c, MIPS_CPU_ISA_M32R1);
1810 break;
1811 }
1812}
1813
1814static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1815{
1816 decode_configs(c);
1817 switch (c->processor_id & PRID_IMP_MASK) {
1818 case PRID_IMP_BMIPS32_REV4:
1819 case PRID_IMP_BMIPS32_REV8:
1820 c->cputype = CPU_BMIPS32;
1821 __cpu_name[cpu] = "Broadcom BMIPS32";
1822 set_elf_platform(cpu, "bmips32");
1823 break;
1824 case PRID_IMP_BMIPS3300:
1825 case PRID_IMP_BMIPS3300_ALT:
1826 case PRID_IMP_BMIPS3300_BUG:
1827 c->cputype = CPU_BMIPS3300;
1828 __cpu_name[cpu] = "Broadcom BMIPS3300";
1829 set_elf_platform(cpu, "bmips3300");
1830 break;
1831 case PRID_IMP_BMIPS43XX: {
1832 int rev = c->processor_id & PRID_REV_MASK;
1833
1834 if (rev >= PRID_REV_BMIPS4380_LO &&
1835 rev <= PRID_REV_BMIPS4380_HI) {
1836 c->cputype = CPU_BMIPS4380;
1837 __cpu_name[cpu] = "Broadcom BMIPS4380";
1838 set_elf_platform(cpu, "bmips4380");
1839 c->options |= MIPS_CPU_RIXI;
1840 } else {
1841 c->cputype = CPU_BMIPS4350;
1842 __cpu_name[cpu] = "Broadcom BMIPS4350";
1843 set_elf_platform(cpu, "bmips4350");
1844 }
1845 break;
1846 }
1847 case PRID_IMP_BMIPS5000:
1848 case PRID_IMP_BMIPS5200:
1849 c->cputype = CPU_BMIPS5000;
1850 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200)
1851 __cpu_name[cpu] = "Broadcom BMIPS5200";
1852 else
1853 __cpu_name[cpu] = "Broadcom BMIPS5000";
1854 set_elf_platform(cpu, "bmips5000");
1855 c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI;
1856 break;
1857 }
1858}
1859
1860static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1861{
1862 decode_configs(c);
1863 switch (c->processor_id & PRID_IMP_MASK) {
1864 case PRID_IMP_CAVIUM_CN38XX:
1865 case PRID_IMP_CAVIUM_CN31XX:
1866 case PRID_IMP_CAVIUM_CN30XX:
1867 c->cputype = CPU_CAVIUM_OCTEON;
1868 __cpu_name[cpu] = "Cavium Octeon";
1869 goto platform;
1870 case PRID_IMP_CAVIUM_CN58XX:
1871 case PRID_IMP_CAVIUM_CN56XX:
1872 case PRID_IMP_CAVIUM_CN50XX:
1873 case PRID_IMP_CAVIUM_CN52XX:
1874 c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1875 __cpu_name[cpu] = "Cavium Octeon+";
1876platform:
1877 set_elf_platform(cpu, "octeon");
1878 break;
1879 case PRID_IMP_CAVIUM_CN61XX:
1880 case PRID_IMP_CAVIUM_CN63XX:
1881 case PRID_IMP_CAVIUM_CN66XX:
1882 case PRID_IMP_CAVIUM_CN68XX:
1883 case PRID_IMP_CAVIUM_CNF71XX:
1884 c->cputype = CPU_CAVIUM_OCTEON2;
1885 __cpu_name[cpu] = "Cavium Octeon II";
1886 set_elf_platform(cpu, "octeon2");
1887 break;
1888 case PRID_IMP_CAVIUM_CN70XX:
1889 case PRID_IMP_CAVIUM_CN73XX:
1890 case PRID_IMP_CAVIUM_CNF75XX:
1891 case PRID_IMP_CAVIUM_CN78XX:
1892 c->cputype = CPU_CAVIUM_OCTEON3;
1893 __cpu_name[cpu] = "Cavium Octeon III";
1894 set_elf_platform(cpu, "octeon3");
1895 break;
1896 default:
1897 printk(KERN_INFO "Unknown Octeon chip!\n");
1898 c->cputype = CPU_UNKNOWN;
1899 break;
1900 }
1901}
1902
1903static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu)
1904{
1905 switch (c->processor_id & PRID_IMP_MASK) {
1906 case PRID_IMP_LOONGSON_64: /* Loongson-2/3 */
1907 switch (c->processor_id & PRID_REV_MASK) {
1908 case PRID_REV_LOONGSON3A_R2_0:
1909 case PRID_REV_LOONGSON3A_R2_1:
1910 c->cputype = CPU_LOONGSON3;
1911 __cpu_name[cpu] = "ICT Loongson-3";
1912 set_elf_platform(cpu, "loongson3a");
1913 set_isa(c, MIPS_CPU_ISA_M64R2);
1914 break;
1915 case PRID_REV_LOONGSON3A_R3_0:
1916 case PRID_REV_LOONGSON3A_R3_1:
1917 c->cputype = CPU_LOONGSON3;
1918 __cpu_name[cpu] = "ICT Loongson-3";
1919 set_elf_platform(cpu, "loongson3a");
1920 set_isa(c, MIPS_CPU_ISA_M64R2);
1921 break;
1922 }
1923
1924 decode_configs(c);
1925 c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
1926 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1927 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1928 MIPS_ASE_LOONGSON_EXT | MIPS_ASE_LOONGSON_EXT2);
1929 break;
1930 default:
1931 panic("Unknown Loongson Processor ID!");
1932 break;
1933 }
1934}
1935
1936static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
1937{
1938 decode_configs(c);
1939
1940 /*
1941 * XBurst misses a config2 register, so config3 decode was skipped in
1942 * decode_configs().
1943 */
1944 decode_config3(c);
1945
1946 /* XBurst does not implement the CP0 counter. */
1947 c->options &= ~MIPS_CPU_COUNTER;
1948 BUG_ON(!__builtin_constant_p(cpu_has_counter) || cpu_has_counter);
1949
1950 switch (c->processor_id & PRID_IMP_MASK) {
1951 case PRID_IMP_XBURST:
1952 c->cputype = CPU_XBURST;
1953 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1954 __cpu_name[cpu] = "Ingenic JZRISC";
1955 /*
1956 * The XBurst core by default attempts to avoid branch target
1957 * buffer lookups by detecting & special casing loops. This
1958 * feature will cause BogoMIPS and lpj calculate in error.
1959 * Set cp0 config7 bit 4 to disable this feature.
1960 */
1961 set_c0_config7(MIPS_CONF7_BTB_LOOP_EN);
1962 break;
1963 default:
1964 panic("Unknown Ingenic Processor ID!");
1965 break;
1966 }
1967
1968 /*
1969 * The config0 register in the Xburst CPUs with a processor ID of
1970 * PRID_COMP_INGENIC_D0 report themselves as MIPS32r2 compatible,
1971 * but they don't actually support this ISA.
1972 */
1973 if ((c->processor_id & PRID_COMP_MASK) == PRID_COMP_INGENIC_D0)
1974 c->isa_level &= ~MIPS_CPU_ISA_M32R2;
1975}
1976
1977static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu)
1978{
1979 decode_configs(c);
1980
1981 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) {
1982 c->cputype = CPU_ALCHEMY;
1983 __cpu_name[cpu] = "Au1300";
1984 /* following stuff is not for Alchemy */
1985 return;
1986 }
1987
1988 c->options = (MIPS_CPU_TLB |
1989 MIPS_CPU_4KEX |
1990 MIPS_CPU_COUNTER |
1991 MIPS_CPU_DIVEC |
1992 MIPS_CPU_WATCH |
1993 MIPS_CPU_EJTAG |
1994 MIPS_CPU_LLSC);
1995
1996 switch (c->processor_id & PRID_IMP_MASK) {
1997 case PRID_IMP_NETLOGIC_XLP2XX:
1998 case PRID_IMP_NETLOGIC_XLP9XX:
1999 case PRID_IMP_NETLOGIC_XLP5XX:
2000 c->cputype = CPU_XLP;
2001 __cpu_name[cpu] = "Broadcom XLPII";
2002 break;
2003
2004 case PRID_IMP_NETLOGIC_XLP8XX:
2005 case PRID_IMP_NETLOGIC_XLP3XX:
2006 c->cputype = CPU_XLP;
2007 __cpu_name[cpu] = "Netlogic XLP";
2008 break;
2009
2010 case PRID_IMP_NETLOGIC_XLR732:
2011 case PRID_IMP_NETLOGIC_XLR716:
2012 case PRID_IMP_NETLOGIC_XLR532:
2013 case PRID_IMP_NETLOGIC_XLR308:
2014 case PRID_IMP_NETLOGIC_XLR532C:
2015 case PRID_IMP_NETLOGIC_XLR516C:
2016 case PRID_IMP_NETLOGIC_XLR508C:
2017 case PRID_IMP_NETLOGIC_XLR308C:
2018 c->cputype = CPU_XLR;
2019 __cpu_name[cpu] = "Netlogic XLR";
2020 break;
2021
2022 case PRID_IMP_NETLOGIC_XLS608:
2023 case PRID_IMP_NETLOGIC_XLS408:
2024 case PRID_IMP_NETLOGIC_XLS404:
2025 case PRID_IMP_NETLOGIC_XLS208:
2026 case PRID_IMP_NETLOGIC_XLS204:
2027 case PRID_IMP_NETLOGIC_XLS108:
2028 case PRID_IMP_NETLOGIC_XLS104:
2029 case PRID_IMP_NETLOGIC_XLS616B:
2030 case PRID_IMP_NETLOGIC_XLS608B:
2031 case PRID_IMP_NETLOGIC_XLS416B:
2032 case PRID_IMP_NETLOGIC_XLS412B:
2033 case PRID_IMP_NETLOGIC_XLS408B:
2034 case PRID_IMP_NETLOGIC_XLS404B:
2035 c->cputype = CPU_XLR;
2036 __cpu_name[cpu] = "Netlogic XLS";
2037 break;
2038
2039 default:
2040 pr_info("Unknown Netlogic chip id [%02x]!\n",
2041 c->processor_id);
2042 c->cputype = CPU_XLR;
2043 break;
2044 }
2045
2046 if (c->cputype == CPU_XLP) {
2047 set_isa(c, MIPS_CPU_ISA_M64R2);
2048 c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK);
2049 /* This will be updated again after all threads are woken up */
2050 c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1;
2051 } else {
2052 set_isa(c, MIPS_CPU_ISA_M64R1);
2053 c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1;
2054 }
2055 c->kscratch_mask = 0xf;
2056}
2057
2058#ifdef CONFIG_64BIT
2059/* For use by uaccess.h */
2060u64 __ua_limit;
2061EXPORT_SYMBOL(__ua_limit);
2062#endif
2063
2064const char *__cpu_name[NR_CPUS];
2065const char *__elf_platform;
2066
2067void cpu_probe(void)
2068{
2069 struct cpuinfo_mips *c = ¤t_cpu_data;
2070 unsigned int cpu = smp_processor_id();
2071
2072 /*
2073 * Set a default elf platform, cpu probe may later
2074 * overwrite it with a more precise value
2075 */
2076 set_elf_platform(cpu, "mips");
2077
2078 c->processor_id = PRID_IMP_UNKNOWN;
2079 c->fpu_id = FPIR_IMP_NONE;
2080 c->cputype = CPU_UNKNOWN;
2081 c->writecombine = _CACHE_UNCACHED;
2082
2083 c->fpu_csr31 = FPU_CSR_RN;
2084 c->fpu_msk31 = FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
2085
2086 c->processor_id = read_c0_prid();
2087 switch (c->processor_id & PRID_COMP_MASK) {
2088 case PRID_COMP_LEGACY:
2089 cpu_probe_legacy(c, cpu);
2090 break;
2091 case PRID_COMP_MIPS:
2092 cpu_probe_mips(c, cpu);
2093 break;
2094 case PRID_COMP_ALCHEMY:
2095 cpu_probe_alchemy(c, cpu);
2096 break;
2097 case PRID_COMP_SIBYTE:
2098 cpu_probe_sibyte(c, cpu);
2099 break;
2100 case PRID_COMP_BROADCOM:
2101 cpu_probe_broadcom(c, cpu);
2102 break;
2103 case PRID_COMP_SANDCRAFT:
2104 cpu_probe_sandcraft(c, cpu);
2105 break;
2106 case PRID_COMP_NXP:
2107 cpu_probe_nxp(c, cpu);
2108 break;
2109 case PRID_COMP_CAVIUM:
2110 cpu_probe_cavium(c, cpu);
2111 break;
2112 case PRID_COMP_LOONGSON:
2113 cpu_probe_loongson(c, cpu);
2114 break;
2115 case PRID_COMP_INGENIC_D0:
2116 case PRID_COMP_INGENIC_D1:
2117 case PRID_COMP_INGENIC_E1:
2118 cpu_probe_ingenic(c, cpu);
2119 break;
2120 case PRID_COMP_NETLOGIC:
2121 cpu_probe_netlogic(c, cpu);
2122 break;
2123 }
2124
2125 BUG_ON(!__cpu_name[cpu]);
2126 BUG_ON(c->cputype == CPU_UNKNOWN);
2127
2128 /*
2129 * Platform code can force the cpu type to optimize code
2130 * generation. In that case be sure the cpu type is correctly
2131 * manually setup otherwise it could trigger some nasty bugs.
2132 */
2133 BUG_ON(current_cpu_type() != c->cputype);
2134
2135 if (cpu_has_rixi) {
2136 /* Enable the RIXI exceptions */
2137 set_c0_pagegrain(PG_IEC);
2138 back_to_back_c0_hazard();
2139 /* Verify the IEC bit is set */
2140 if (read_c0_pagegrain() & PG_IEC)
2141 c->options |= MIPS_CPU_RIXIEX;
2142 }
2143
2144 if (mips_fpu_disabled)
2145 c->options &= ~MIPS_CPU_FPU;
2146
2147 if (mips_dsp_disabled)
2148 c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
2149
2150 if (mips_htw_disabled) {
2151 c->options &= ~MIPS_CPU_HTW;
2152 write_c0_pwctl(read_c0_pwctl() &
2153 ~(1 << MIPS_PWCTL_PWEN_SHIFT));
2154 }
2155
2156 if (c->options & MIPS_CPU_FPU)
2157 cpu_set_fpu_opts(c);
2158 else
2159 cpu_set_nofpu_opts(c);
2160
2161 if (cpu_has_bp_ghist)
2162 write_c0_r10k_diag(read_c0_r10k_diag() |
2163 R10K_DIAG_E_GHIST);
2164
2165 if (cpu_has_mips_r2_r6) {
2166 c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
2167 /* R2 has Performance Counter Interrupt indicator */
2168 c->options |= MIPS_CPU_PCI;
2169 }
2170 else
2171 c->srsets = 1;
2172
2173 if (cpu_has_mips_r6)
2174 elf_hwcap |= HWCAP_MIPS_R6;
2175
2176 if (cpu_has_msa) {
2177 c->msa_id = cpu_get_msa_id();
2178 WARN(c->msa_id & MSA_IR_WRPF,
2179 "Vector register partitioning unimplemented!");
2180 elf_hwcap |= HWCAP_MIPS_MSA;
2181 }
2182
2183 if (cpu_has_mips16)
2184 elf_hwcap |= HWCAP_MIPS_MIPS16;
2185
2186 if (cpu_has_mdmx)
2187 elf_hwcap |= HWCAP_MIPS_MDMX;
2188
2189 if (cpu_has_mips3d)
2190 elf_hwcap |= HWCAP_MIPS_MIPS3D;
2191
2192 if (cpu_has_smartmips)
2193 elf_hwcap |= HWCAP_MIPS_SMARTMIPS;
2194
2195 if (cpu_has_dsp)
2196 elf_hwcap |= HWCAP_MIPS_DSP;
2197
2198 if (cpu_has_dsp2)
2199 elf_hwcap |= HWCAP_MIPS_DSP2;
2200
2201 if (cpu_has_dsp3)
2202 elf_hwcap |= HWCAP_MIPS_DSP3;
2203
2204 if (cpu_has_mips16e2)
2205 elf_hwcap |= HWCAP_MIPS_MIPS16E2;
2206
2207 if (cpu_has_loongson_mmi)
2208 elf_hwcap |= HWCAP_LOONGSON_MMI;
2209
2210 if (cpu_has_loongson_ext)
2211 elf_hwcap |= HWCAP_LOONGSON_EXT;
2212
2213 if (cpu_has_loongson_ext2)
2214 elf_hwcap |= HWCAP_LOONGSON_EXT2;
2215
2216 if (cpu_has_vz)
2217 cpu_probe_vz(c);
2218
2219 cpu_probe_vmbits(c);
2220
2221#ifdef CONFIG_64BIT
2222 if (cpu == 0)
2223 __ua_limit = ~((1ull << cpu_vmbits) - 1);
2224#endif
2225}
2226
2227void cpu_report(void)
2228{
2229 struct cpuinfo_mips *c = ¤t_cpu_data;
2230
2231 pr_info("CPU%d revision is: %08x (%s)\n",
2232 smp_processor_id(), c->processor_id, cpu_name_string());
2233 if (c->options & MIPS_CPU_FPU)
2234 printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
2235 if (cpu_has_msa)
2236 pr_info("MSA revision is: %08x\n", c->msa_id);
2237}
2238
2239void cpu_set_cluster(struct cpuinfo_mips *cpuinfo, unsigned int cluster)
2240{
2241 /* Ensure the core number fits in the field */
2242 WARN_ON(cluster > (MIPS_GLOBALNUMBER_CLUSTER >>
2243 MIPS_GLOBALNUMBER_CLUSTER_SHF));
2244
2245 cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CLUSTER;
2246 cpuinfo->globalnumber |= cluster << MIPS_GLOBALNUMBER_CLUSTER_SHF;
2247}
2248
2249void cpu_set_core(struct cpuinfo_mips *cpuinfo, unsigned int core)
2250{
2251 /* Ensure the core number fits in the field */
2252 WARN_ON(core > (MIPS_GLOBALNUMBER_CORE >> MIPS_GLOBALNUMBER_CORE_SHF));
2253
2254 cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CORE;
2255 cpuinfo->globalnumber |= core << MIPS_GLOBALNUMBER_CORE_SHF;
2256}
2257
2258void cpu_set_vpe_id(struct cpuinfo_mips *cpuinfo, unsigned int vpe)
2259{
2260 /* Ensure the VP(E) ID fits in the field */
2261 WARN_ON(vpe > (MIPS_GLOBALNUMBER_VP >> MIPS_GLOBALNUMBER_VP_SHF));
2262
2263 /* Ensure we're not using VP(E)s without support */
2264 WARN_ON(vpe && !IS_ENABLED(CONFIG_MIPS_MT_SMP) &&
2265 !IS_ENABLED(CONFIG_CPU_MIPSR6));
2266
2267 cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_VP;
2268 cpuinfo->globalnumber |= vpe << MIPS_GLOBALNUMBER_VP_SHF;
2269}
1/*
2 * Processor capabilities determination functions.
3 *
4 * Copyright (C) xxxx the Anonymous
5 * Copyright (C) 1994 - 2006 Ralf Baechle
6 * Copyright (C) 2003, 2004 Maciej W. Rozycki
7 * Copyright (C) 2001, 2004, 2011, 2012 MIPS Technologies, Inc.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/ptrace.h>
17#include <linux/smp.h>
18#include <linux/stddef.h>
19#include <linux/export.h>
20
21#include <asm/bugs.h>
22#include <asm/cpu.h>
23#include <asm/cpu-features.h>
24#include <asm/cpu-type.h>
25#include <asm/fpu.h>
26#include <asm/mipsregs.h>
27#include <asm/mipsmtregs.h>
28#include <asm/msa.h>
29#include <asm/watch.h>
30#include <asm/elf.h>
31#include <asm/pgtable-bits.h>
32#include <asm/spram.h>
33#include <linux/uaccess.h>
34
35/* Hardware capabilities */
36unsigned int elf_hwcap __read_mostly;
37EXPORT_SYMBOL_GPL(elf_hwcap);
38
39/*
40 * Get the FPU Implementation/Revision.
41 */
42static inline unsigned long cpu_get_fpu_id(void)
43{
44 unsigned long tmp, fpu_id;
45
46 tmp = read_c0_status();
47 __enable_fpu(FPU_AS_IS);
48 fpu_id = read_32bit_cp1_register(CP1_REVISION);
49 write_c0_status(tmp);
50 return fpu_id;
51}
52
53/*
54 * Check if the CPU has an external FPU.
55 */
56static inline int __cpu_has_fpu(void)
57{
58 return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE;
59}
60
61static inline unsigned long cpu_get_msa_id(void)
62{
63 unsigned long status, msa_id;
64
65 status = read_c0_status();
66 __enable_fpu(FPU_64BIT);
67 enable_msa();
68 msa_id = read_msa_ir();
69 disable_msa();
70 write_c0_status(status);
71 return msa_id;
72}
73
74/*
75 * Determine the FCSR mask for FPU hardware.
76 */
77static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c)
78{
79 unsigned long sr, mask, fcsr, fcsr0, fcsr1;
80
81 fcsr = c->fpu_csr31;
82 mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM;
83
84 sr = read_c0_status();
85 __enable_fpu(FPU_AS_IS);
86
87 fcsr0 = fcsr & mask;
88 write_32bit_cp1_register(CP1_STATUS, fcsr0);
89 fcsr0 = read_32bit_cp1_register(CP1_STATUS);
90
91 fcsr1 = fcsr | ~mask;
92 write_32bit_cp1_register(CP1_STATUS, fcsr1);
93 fcsr1 = read_32bit_cp1_register(CP1_STATUS);
94
95 write_32bit_cp1_register(CP1_STATUS, fcsr);
96
97 write_c0_status(sr);
98
99 c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask;
100}
101
102/*
103 * Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes
104 * supported by FPU hardware.
105 */
106static void cpu_set_fpu_2008(struct cpuinfo_mips *c)
107{
108 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
109 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
110 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
111 unsigned long sr, fir, fcsr, fcsr0, fcsr1;
112
113 sr = read_c0_status();
114 __enable_fpu(FPU_AS_IS);
115
116 fir = read_32bit_cp1_register(CP1_REVISION);
117 if (fir & MIPS_FPIR_HAS2008) {
118 fcsr = read_32bit_cp1_register(CP1_STATUS);
119
120 fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
121 write_32bit_cp1_register(CP1_STATUS, fcsr0);
122 fcsr0 = read_32bit_cp1_register(CP1_STATUS);
123
124 fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
125 write_32bit_cp1_register(CP1_STATUS, fcsr1);
126 fcsr1 = read_32bit_cp1_register(CP1_STATUS);
127
128 write_32bit_cp1_register(CP1_STATUS, fcsr);
129
130 if (!(fcsr0 & FPU_CSR_NAN2008))
131 c->options |= MIPS_CPU_NAN_LEGACY;
132 if (fcsr1 & FPU_CSR_NAN2008)
133 c->options |= MIPS_CPU_NAN_2008;
134
135 if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008)
136 c->fpu_msk31 &= ~FPU_CSR_ABS2008;
137 else
138 c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008;
139
140 if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008)
141 c->fpu_msk31 &= ~FPU_CSR_NAN2008;
142 else
143 c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008;
144 } else {
145 c->options |= MIPS_CPU_NAN_LEGACY;
146 }
147
148 write_c0_status(sr);
149 } else {
150 c->options |= MIPS_CPU_NAN_LEGACY;
151 }
152}
153
154/*
155 * IEEE 754 conformance mode to use. Affects the NaN encoding and the
156 * ABS.fmt/NEG.fmt execution mode.
157 */
158static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT;
159
160/*
161 * Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes
162 * to support by the FPU emulator according to the IEEE 754 conformance
163 * mode selected. Note that "relaxed" straps the emulator so that it
164 * allows 2008-NaN binaries even for legacy processors.
165 */
166static void cpu_set_nofpu_2008(struct cpuinfo_mips *c)
167{
168 c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY);
169 c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
170 c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
171
172 switch (ieee754) {
173 case STRICT:
174 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
175 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
176 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
177 c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
178 } else {
179 c->options |= MIPS_CPU_NAN_LEGACY;
180 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
181 }
182 break;
183 case LEGACY:
184 c->options |= MIPS_CPU_NAN_LEGACY;
185 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
186 break;
187 case STD2008:
188 c->options |= MIPS_CPU_NAN_2008;
189 c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
190 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
191 break;
192 case RELAXED:
193 c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
194 break;
195 }
196}
197
198/*
199 * Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
200 * according to the "ieee754=" parameter.
201 */
202static void cpu_set_nan_2008(struct cpuinfo_mips *c)
203{
204 switch (ieee754) {
205 case STRICT:
206 mips_use_nan_legacy = !!cpu_has_nan_legacy;
207 mips_use_nan_2008 = !!cpu_has_nan_2008;
208 break;
209 case LEGACY:
210 mips_use_nan_legacy = !!cpu_has_nan_legacy;
211 mips_use_nan_2008 = !cpu_has_nan_legacy;
212 break;
213 case STD2008:
214 mips_use_nan_legacy = !cpu_has_nan_2008;
215 mips_use_nan_2008 = !!cpu_has_nan_2008;
216 break;
217 case RELAXED:
218 mips_use_nan_legacy = true;
219 mips_use_nan_2008 = true;
220 break;
221 }
222}
223
224/*
225 * IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override
226 * settings:
227 *
228 * strict: accept binaries that request a NaN encoding supported by the FPU
229 * legacy: only accept legacy-NaN binaries
230 * 2008: only accept 2008-NaN binaries
231 * relaxed: accept any binaries regardless of whether supported by the FPU
232 */
233static int __init ieee754_setup(char *s)
234{
235 if (!s)
236 return -1;
237 else if (!strcmp(s, "strict"))
238 ieee754 = STRICT;
239 else if (!strcmp(s, "legacy"))
240 ieee754 = LEGACY;
241 else if (!strcmp(s, "2008"))
242 ieee754 = STD2008;
243 else if (!strcmp(s, "relaxed"))
244 ieee754 = RELAXED;
245 else
246 return -1;
247
248 if (!(boot_cpu_data.options & MIPS_CPU_FPU))
249 cpu_set_nofpu_2008(&boot_cpu_data);
250 cpu_set_nan_2008(&boot_cpu_data);
251
252 return 0;
253}
254
255early_param("ieee754", ieee754_setup);
256
257/*
258 * Set the FIR feature flags for the FPU emulator.
259 */
260static void cpu_set_nofpu_id(struct cpuinfo_mips *c)
261{
262 u32 value;
263
264 value = 0;
265 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
266 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
267 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
268 value |= MIPS_FPIR_D | MIPS_FPIR_S;
269 if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
270 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
271 value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W;
272 if (c->options & MIPS_CPU_NAN_2008)
273 value |= MIPS_FPIR_HAS2008;
274 c->fpu_id = value;
275}
276
277/* Determined FPU emulator mask to use for the boot CPU with "nofpu". */
278static unsigned int mips_nofpu_msk31;
279
280/*
281 * Set options for FPU hardware.
282 */
283static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
284{
285 c->fpu_id = cpu_get_fpu_id();
286 mips_nofpu_msk31 = c->fpu_msk31;
287
288 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
289 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
290 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
291 if (c->fpu_id & MIPS_FPIR_3D)
292 c->ases |= MIPS_ASE_MIPS3D;
293 if (c->fpu_id & MIPS_FPIR_UFRP)
294 c->options |= MIPS_CPU_UFR;
295 if (c->fpu_id & MIPS_FPIR_FREP)
296 c->options |= MIPS_CPU_FRE;
297 }
298
299 cpu_set_fpu_fcsr_mask(c);
300 cpu_set_fpu_2008(c);
301 cpu_set_nan_2008(c);
302}
303
304/*
305 * Set options for the FPU emulator.
306 */
307static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
308{
309 c->options &= ~MIPS_CPU_FPU;
310 c->fpu_msk31 = mips_nofpu_msk31;
311
312 cpu_set_nofpu_2008(c);
313 cpu_set_nan_2008(c);
314 cpu_set_nofpu_id(c);
315}
316
317static int mips_fpu_disabled;
318
319static int __init fpu_disable(char *s)
320{
321 cpu_set_nofpu_opts(&boot_cpu_data);
322 mips_fpu_disabled = 1;
323
324 return 1;
325}
326
327__setup("nofpu", fpu_disable);
328
329static int mips_dsp_disabled;
330
331static int __init dsp_disable(char *s)
332{
333 cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
334 mips_dsp_disabled = 1;
335
336 return 1;
337}
338
339__setup("nodsp", dsp_disable);
340
341static int mips_htw_disabled;
342
343static int __init htw_disable(char *s)
344{
345 mips_htw_disabled = 1;
346 cpu_data[0].options &= ~MIPS_CPU_HTW;
347 write_c0_pwctl(read_c0_pwctl() &
348 ~(1 << MIPS_PWCTL_PWEN_SHIFT));
349
350 return 1;
351}
352
353__setup("nohtw", htw_disable);
354
355static int mips_ftlb_disabled;
356static int mips_has_ftlb_configured;
357
358enum ftlb_flags {
359 FTLB_EN = 1 << 0,
360 FTLB_SET_PROB = 1 << 1,
361};
362
363static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags);
364
365static int __init ftlb_disable(char *s)
366{
367 unsigned int config4, mmuextdef;
368
369 /*
370 * If the core hasn't done any FTLB configuration, there is nothing
371 * for us to do here.
372 */
373 if (!mips_has_ftlb_configured)
374 return 1;
375
376 /* Disable it in the boot cpu */
377 if (set_ftlb_enable(&cpu_data[0], 0)) {
378 pr_warn("Can't turn FTLB off\n");
379 return 1;
380 }
381
382 config4 = read_c0_config4();
383
384 /* Check that FTLB has been disabled */
385 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
386 /* MMUSIZEEXT == VTLB ON, FTLB OFF */
387 if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
388 /* This should never happen */
389 pr_warn("FTLB could not be disabled!\n");
390 return 1;
391 }
392
393 mips_ftlb_disabled = 1;
394 mips_has_ftlb_configured = 0;
395
396 /*
397 * noftlb is mainly used for debug purposes so print
398 * an informative message instead of using pr_debug()
399 */
400 pr_info("FTLB has been disabled\n");
401
402 /*
403 * Some of these bits are duplicated in the decode_config4.
404 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
405 * once FTLB has been disabled so undo what decode_config4 did.
406 */
407 cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
408 cpu_data[0].tlbsizeftlbsets;
409 cpu_data[0].tlbsizeftlbsets = 0;
410 cpu_data[0].tlbsizeftlbways = 0;
411
412 return 1;
413}
414
415__setup("noftlb", ftlb_disable);
416
417
418static inline void check_errata(void)
419{
420 struct cpuinfo_mips *c = ¤t_cpu_data;
421
422 switch (current_cpu_type()) {
423 case CPU_34K:
424 /*
425 * Erratum "RPS May Cause Incorrect Instruction Execution"
426 * This code only handles VPE0, any SMP/RTOS code
427 * making use of VPE1 will be responsable for that VPE.
428 */
429 if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
430 write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
431 break;
432 default:
433 break;
434 }
435}
436
437void __init check_bugs32(void)
438{
439 check_errata();
440}
441
442/*
443 * Probe whether cpu has config register by trying to play with
444 * alternate cache bit and see whether it matters.
445 * It's used by cpu_probe to distinguish between R3000A and R3081.
446 */
447static inline int cpu_has_confreg(void)
448{
449#ifdef CONFIG_CPU_R3000
450 extern unsigned long r3k_cache_size(unsigned long);
451 unsigned long size1, size2;
452 unsigned long cfg = read_c0_conf();
453
454 size1 = r3k_cache_size(ST0_ISC);
455 write_c0_conf(cfg ^ R30XX_CONF_AC);
456 size2 = r3k_cache_size(ST0_ISC);
457 write_c0_conf(cfg);
458 return size1 != size2;
459#else
460 return 0;
461#endif
462}
463
464static inline void set_elf_platform(int cpu, const char *plat)
465{
466 if (cpu == 0)
467 __elf_platform = plat;
468}
469
470static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
471{
472#ifdef __NEED_VMBITS_PROBE
473 write_c0_entryhi(0x3fffffffffffe000ULL);
474 back_to_back_c0_hazard();
475 c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
476#endif
477}
478
479static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
480{
481 switch (isa) {
482 case MIPS_CPU_ISA_M64R2:
483 c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
484 case MIPS_CPU_ISA_M64R1:
485 c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
486 case MIPS_CPU_ISA_V:
487 c->isa_level |= MIPS_CPU_ISA_V;
488 case MIPS_CPU_ISA_IV:
489 c->isa_level |= MIPS_CPU_ISA_IV;
490 case MIPS_CPU_ISA_III:
491 c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
492 break;
493
494 /* R6 incompatible with everything else */
495 case MIPS_CPU_ISA_M64R6:
496 c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
497 case MIPS_CPU_ISA_M32R6:
498 c->isa_level |= MIPS_CPU_ISA_M32R6;
499 /* Break here so we don't add incompatible ISAs */
500 break;
501 case MIPS_CPU_ISA_M32R2:
502 c->isa_level |= MIPS_CPU_ISA_M32R2;
503 case MIPS_CPU_ISA_M32R1:
504 c->isa_level |= MIPS_CPU_ISA_M32R1;
505 case MIPS_CPU_ISA_II:
506 c->isa_level |= MIPS_CPU_ISA_II;
507 break;
508 }
509}
510
511static char unknown_isa[] = KERN_ERR \
512 "Unsupported ISA type, c0.config0: %d.";
513
514static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
515{
516
517 unsigned int probability = c->tlbsize / c->tlbsizevtlb;
518
519 /*
520 * 0 = All TLBWR instructions go to FTLB
521 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
522 * FTLB and 1 goes to the VTLB.
523 * 2 = 7:1: As above with 7:1 ratio.
524 * 3 = 3:1: As above with 3:1 ratio.
525 *
526 * Use the linear midpoint as the probability threshold.
527 */
528 if (probability >= 12)
529 return 1;
530 else if (probability >= 6)
531 return 2;
532 else
533 /*
534 * So FTLB is less than 4 times bigger than VTLB.
535 * A 3:1 ratio can still be useful though.
536 */
537 return 3;
538}
539
540static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags)
541{
542 unsigned int config;
543
544 /* It's implementation dependent how the FTLB can be enabled */
545 switch (c->cputype) {
546 case CPU_PROAPTIV:
547 case CPU_P5600:
548 case CPU_P6600:
549 /* proAptiv & related cores use Config6 to enable the FTLB */
550 config = read_c0_config6();
551
552 if (flags & FTLB_EN)
553 config |= MIPS_CONF6_FTLBEN;
554 else
555 config &= ~MIPS_CONF6_FTLBEN;
556
557 if (flags & FTLB_SET_PROB) {
558 config &= ~(3 << MIPS_CONF6_FTLBP_SHIFT);
559 config |= calculate_ftlb_probability(c)
560 << MIPS_CONF6_FTLBP_SHIFT;
561 }
562
563 write_c0_config6(config);
564 back_to_back_c0_hazard();
565 break;
566 case CPU_I6400:
567 case CPU_I6500:
568 /* There's no way to disable the FTLB */
569 if (!(flags & FTLB_EN))
570 return 1;
571 return 0;
572 case CPU_LOONGSON3:
573 /* Flush ITLB, DTLB, VTLB and FTLB */
574 write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB |
575 LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB);
576 /* Loongson-3 cores use Config6 to enable the FTLB */
577 config = read_c0_config6();
578 if (flags & FTLB_EN)
579 /* Enable FTLB */
580 write_c0_config6(config & ~MIPS_CONF6_FTLBDIS);
581 else
582 /* Disable FTLB */
583 write_c0_config6(config | MIPS_CONF6_FTLBDIS);
584 break;
585 default:
586 return 1;
587 }
588
589 return 0;
590}
591
592static inline unsigned int decode_config0(struct cpuinfo_mips *c)
593{
594 unsigned int config0;
595 int isa, mt;
596
597 config0 = read_c0_config();
598
599 /*
600 * Look for Standard TLB or Dual VTLB and FTLB
601 */
602 mt = config0 & MIPS_CONF_MT;
603 if (mt == MIPS_CONF_MT_TLB)
604 c->options |= MIPS_CPU_TLB;
605 else if (mt == MIPS_CONF_MT_FTLB)
606 c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
607
608 isa = (config0 & MIPS_CONF_AT) >> 13;
609 switch (isa) {
610 case 0:
611 switch ((config0 & MIPS_CONF_AR) >> 10) {
612 case 0:
613 set_isa(c, MIPS_CPU_ISA_M32R1);
614 break;
615 case 1:
616 set_isa(c, MIPS_CPU_ISA_M32R2);
617 break;
618 case 2:
619 set_isa(c, MIPS_CPU_ISA_M32R6);
620 break;
621 default:
622 goto unknown;
623 }
624 break;
625 case 2:
626 switch ((config0 & MIPS_CONF_AR) >> 10) {
627 case 0:
628 set_isa(c, MIPS_CPU_ISA_M64R1);
629 break;
630 case 1:
631 set_isa(c, MIPS_CPU_ISA_M64R2);
632 break;
633 case 2:
634 set_isa(c, MIPS_CPU_ISA_M64R6);
635 break;
636 default:
637 goto unknown;
638 }
639 break;
640 default:
641 goto unknown;
642 }
643
644 return config0 & MIPS_CONF_M;
645
646unknown:
647 panic(unknown_isa, config0);
648}
649
650static inline unsigned int decode_config1(struct cpuinfo_mips *c)
651{
652 unsigned int config1;
653
654 config1 = read_c0_config1();
655
656 if (config1 & MIPS_CONF1_MD)
657 c->ases |= MIPS_ASE_MDMX;
658 if (config1 & MIPS_CONF1_PC)
659 c->options |= MIPS_CPU_PERF;
660 if (config1 & MIPS_CONF1_WR)
661 c->options |= MIPS_CPU_WATCH;
662 if (config1 & MIPS_CONF1_CA)
663 c->ases |= MIPS_ASE_MIPS16;
664 if (config1 & MIPS_CONF1_EP)
665 c->options |= MIPS_CPU_EJTAG;
666 if (config1 & MIPS_CONF1_FP) {
667 c->options |= MIPS_CPU_FPU;
668 c->options |= MIPS_CPU_32FPR;
669 }
670 if (cpu_has_tlb) {
671 c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
672 c->tlbsizevtlb = c->tlbsize;
673 c->tlbsizeftlbsets = 0;
674 }
675
676 return config1 & MIPS_CONF_M;
677}
678
679static inline unsigned int decode_config2(struct cpuinfo_mips *c)
680{
681 unsigned int config2;
682
683 config2 = read_c0_config2();
684
685 if (config2 & MIPS_CONF2_SL)
686 c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
687
688 return config2 & MIPS_CONF_M;
689}
690
691static inline unsigned int decode_config3(struct cpuinfo_mips *c)
692{
693 unsigned int config3;
694
695 config3 = read_c0_config3();
696
697 if (config3 & MIPS_CONF3_SM) {
698 c->ases |= MIPS_ASE_SMARTMIPS;
699 c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC;
700 }
701 if (config3 & MIPS_CONF3_RXI)
702 c->options |= MIPS_CPU_RIXI;
703 if (config3 & MIPS_CONF3_CTXTC)
704 c->options |= MIPS_CPU_CTXTC;
705 if (config3 & MIPS_CONF3_DSP)
706 c->ases |= MIPS_ASE_DSP;
707 if (config3 & MIPS_CONF3_DSP2P) {
708 c->ases |= MIPS_ASE_DSP2P;
709 if (cpu_has_mips_r6)
710 c->ases |= MIPS_ASE_DSP3;
711 }
712 if (config3 & MIPS_CONF3_VINT)
713 c->options |= MIPS_CPU_VINT;
714 if (config3 & MIPS_CONF3_VEIC)
715 c->options |= MIPS_CPU_VEIC;
716 if (config3 & MIPS_CONF3_LPA)
717 c->options |= MIPS_CPU_LPA;
718 if (config3 & MIPS_CONF3_MT)
719 c->ases |= MIPS_ASE_MIPSMT;
720 if (config3 & MIPS_CONF3_ULRI)
721 c->options |= MIPS_CPU_ULRI;
722 if (config3 & MIPS_CONF3_ISA)
723 c->options |= MIPS_CPU_MICROMIPS;
724 if (config3 & MIPS_CONF3_VZ)
725 c->ases |= MIPS_ASE_VZ;
726 if (config3 & MIPS_CONF3_SC)
727 c->options |= MIPS_CPU_SEGMENTS;
728 if (config3 & MIPS_CONF3_BI)
729 c->options |= MIPS_CPU_BADINSTR;
730 if (config3 & MIPS_CONF3_BP)
731 c->options |= MIPS_CPU_BADINSTRP;
732 if (config3 & MIPS_CONF3_MSA)
733 c->ases |= MIPS_ASE_MSA;
734 if (config3 & MIPS_CONF3_PW) {
735 c->htw_seq = 0;
736 c->options |= MIPS_CPU_HTW;
737 }
738 if (config3 & MIPS_CONF3_CDMM)
739 c->options |= MIPS_CPU_CDMM;
740 if (config3 & MIPS_CONF3_SP)
741 c->options |= MIPS_CPU_SP;
742
743 return config3 & MIPS_CONF_M;
744}
745
746static inline unsigned int decode_config4(struct cpuinfo_mips *c)
747{
748 unsigned int config4;
749 unsigned int newcf4;
750 unsigned int mmuextdef;
751 unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
752 unsigned long asid_mask;
753
754 config4 = read_c0_config4();
755
756 if (cpu_has_tlb) {
757 if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
758 c->options |= MIPS_CPU_TLBINV;
759
760 /*
761 * R6 has dropped the MMUExtDef field from config4.
762 * On R6 the fields always describe the FTLB, and only if it is
763 * present according to Config.MT.
764 */
765 if (!cpu_has_mips_r6)
766 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
767 else if (cpu_has_ftlb)
768 mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
769 else
770 mmuextdef = 0;
771
772 switch (mmuextdef) {
773 case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
774 c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
775 c->tlbsizevtlb = c->tlbsize;
776 break;
777 case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
778 c->tlbsizevtlb +=
779 ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
780 MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
781 c->tlbsize = c->tlbsizevtlb;
782 ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
783 /* fall through */
784 case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
785 if (mips_ftlb_disabled)
786 break;
787 newcf4 = (config4 & ~ftlb_page) |
788 (page_size_ftlb(mmuextdef) <<
789 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
790 write_c0_config4(newcf4);
791 back_to_back_c0_hazard();
792 config4 = read_c0_config4();
793 if (config4 != newcf4) {
794 pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
795 PAGE_SIZE, config4);
796 /* Switch FTLB off */
797 set_ftlb_enable(c, 0);
798 mips_ftlb_disabled = 1;
799 break;
800 }
801 c->tlbsizeftlbsets = 1 <<
802 ((config4 & MIPS_CONF4_FTLBSETS) >>
803 MIPS_CONF4_FTLBSETS_SHIFT);
804 c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
805 MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
806 c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
807 mips_has_ftlb_configured = 1;
808 break;
809 }
810 }
811
812 c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
813 >> MIPS_CONF4_KSCREXIST_SHIFT;
814
815 asid_mask = MIPS_ENTRYHI_ASID;
816 if (config4 & MIPS_CONF4_AE)
817 asid_mask |= MIPS_ENTRYHI_ASIDX;
818 set_cpu_asid_mask(c, asid_mask);
819
820 /*
821 * Warn if the computed ASID mask doesn't match the mask the kernel
822 * is built for. This may indicate either a serious problem or an
823 * easy optimisation opportunity, but either way should be addressed.
824 */
825 WARN_ON(asid_mask != cpu_asid_mask(c));
826
827 return config4 & MIPS_CONF_M;
828}
829
830static inline unsigned int decode_config5(struct cpuinfo_mips *c)
831{
832 unsigned int config5;
833
834 config5 = read_c0_config5();
835 config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
836 write_c0_config5(config5);
837
838 if (config5 & MIPS_CONF5_EVA)
839 c->options |= MIPS_CPU_EVA;
840 if (config5 & MIPS_CONF5_MRP)
841 c->options |= MIPS_CPU_MAAR;
842 if (config5 & MIPS_CONF5_LLB)
843 c->options |= MIPS_CPU_RW_LLB;
844 if (config5 & MIPS_CONF5_MVH)
845 c->options |= MIPS_CPU_MVH;
846 if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP))
847 c->options |= MIPS_CPU_VP;
848 if (config5 & MIPS_CONF5_CA2)
849 c->ases |= MIPS_ASE_MIPS16E2;
850
851 if (config5 & MIPS_CONF5_CRCP)
852 elf_hwcap |= HWCAP_MIPS_CRC32;
853
854 return config5 & MIPS_CONF_M;
855}
856
857static void decode_configs(struct cpuinfo_mips *c)
858{
859 int ok;
860
861 /* MIPS32 or MIPS64 compliant CPU. */
862 c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
863 MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
864
865 c->scache.flags = MIPS_CACHE_NOT_PRESENT;
866
867 /* Enable FTLB if present and not disabled */
868 set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN);
869
870 ok = decode_config0(c); /* Read Config registers. */
871 BUG_ON(!ok); /* Arch spec violation! */
872 if (ok)
873 ok = decode_config1(c);
874 if (ok)
875 ok = decode_config2(c);
876 if (ok)
877 ok = decode_config3(c);
878 if (ok)
879 ok = decode_config4(c);
880 if (ok)
881 ok = decode_config5(c);
882
883 /* Probe the EBase.WG bit */
884 if (cpu_has_mips_r2_r6) {
885 u64 ebase;
886 unsigned int status;
887
888 /* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */
889 ebase = cpu_has_mips64r6 ? read_c0_ebase_64()
890 : (s32)read_c0_ebase();
891 if (ebase & MIPS_EBASE_WG) {
892 /* WG bit already set, we can avoid the clumsy probe */
893 c->options |= MIPS_CPU_EBASE_WG;
894 } else {
895 /* Its UNDEFINED to change EBase while BEV=0 */
896 status = read_c0_status();
897 write_c0_status(status | ST0_BEV);
898 irq_enable_hazard();
899 /*
900 * On pre-r6 cores, this may well clobber the upper bits
901 * of EBase. This is hard to avoid without potentially
902 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit.
903 */
904 if (cpu_has_mips64r6)
905 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
906 else
907 write_c0_ebase(ebase | MIPS_EBASE_WG);
908 back_to_back_c0_hazard();
909 /* Restore BEV */
910 write_c0_status(status);
911 if (read_c0_ebase() & MIPS_EBASE_WG) {
912 c->options |= MIPS_CPU_EBASE_WG;
913 write_c0_ebase(ebase);
914 }
915 }
916 }
917
918 /* configure the FTLB write probability */
919 set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB);
920
921 mips_probe_watch_registers(c);
922
923#ifndef CONFIG_MIPS_CPS
924 if (cpu_has_mips_r2_r6) {
925 unsigned int core;
926
927 core = get_ebase_cpunum();
928 if (cpu_has_mipsmt)
929 core >>= fls(core_nvpes()) - 1;
930 cpu_set_core(c, core);
931 }
932#endif
933}
934
935/*
936 * Probe for certain guest capabilities by writing config bits and reading back.
937 * Finally write back the original value.
938 */
939#define probe_gc0_config(name, maxconf, bits) \
940do { \
941 unsigned int tmp; \
942 tmp = read_gc0_##name(); \
943 write_gc0_##name(tmp | (bits)); \
944 back_to_back_c0_hazard(); \
945 maxconf = read_gc0_##name(); \
946 write_gc0_##name(tmp); \
947} while (0)
948
949/*
950 * Probe for dynamic guest capabilities by changing certain config bits and
951 * reading back to see if they change. Finally write back the original value.
952 */
953#define probe_gc0_config_dyn(name, maxconf, dynconf, bits) \
954do { \
955 maxconf = read_gc0_##name(); \
956 write_gc0_##name(maxconf ^ (bits)); \
957 back_to_back_c0_hazard(); \
958 dynconf = maxconf ^ read_gc0_##name(); \
959 write_gc0_##name(maxconf); \
960 maxconf |= dynconf; \
961} while (0)
962
963static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c)
964{
965 unsigned int config0;
966
967 probe_gc0_config(config, config0, MIPS_CONF_M);
968
969 if (config0 & MIPS_CONF_M)
970 c->guest.conf |= BIT(1);
971 return config0 & MIPS_CONF_M;
972}
973
974static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c)
975{
976 unsigned int config1, config1_dyn;
977
978 probe_gc0_config_dyn(config1, config1, config1_dyn,
979 MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR |
980 MIPS_CONF1_FP);
981
982 if (config1 & MIPS_CONF1_FP)
983 c->guest.options |= MIPS_CPU_FPU;
984 if (config1_dyn & MIPS_CONF1_FP)
985 c->guest.options_dyn |= MIPS_CPU_FPU;
986
987 if (config1 & MIPS_CONF1_WR)
988 c->guest.options |= MIPS_CPU_WATCH;
989 if (config1_dyn & MIPS_CONF1_WR)
990 c->guest.options_dyn |= MIPS_CPU_WATCH;
991
992 if (config1 & MIPS_CONF1_PC)
993 c->guest.options |= MIPS_CPU_PERF;
994 if (config1_dyn & MIPS_CONF1_PC)
995 c->guest.options_dyn |= MIPS_CPU_PERF;
996
997 if (config1 & MIPS_CONF_M)
998 c->guest.conf |= BIT(2);
999 return config1 & MIPS_CONF_M;
1000}
1001
1002static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c)
1003{
1004 unsigned int config2;
1005
1006 probe_gc0_config(config2, config2, MIPS_CONF_M);
1007
1008 if (config2 & MIPS_CONF_M)
1009 c->guest.conf |= BIT(3);
1010 return config2 & MIPS_CONF_M;
1011}
1012
1013static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c)
1014{
1015 unsigned int config3, config3_dyn;
1016
1017 probe_gc0_config_dyn(config3, config3, config3_dyn,
1018 MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_ULRI |
1019 MIPS_CONF3_CTXTC);
1020
1021 if (config3 & MIPS_CONF3_CTXTC)
1022 c->guest.options |= MIPS_CPU_CTXTC;
1023 if (config3_dyn & MIPS_CONF3_CTXTC)
1024 c->guest.options_dyn |= MIPS_CPU_CTXTC;
1025
1026 if (config3 & MIPS_CONF3_PW)
1027 c->guest.options |= MIPS_CPU_HTW;
1028
1029 if (config3 & MIPS_CONF3_ULRI)
1030 c->guest.options |= MIPS_CPU_ULRI;
1031
1032 if (config3 & MIPS_CONF3_SC)
1033 c->guest.options |= MIPS_CPU_SEGMENTS;
1034
1035 if (config3 & MIPS_CONF3_BI)
1036 c->guest.options |= MIPS_CPU_BADINSTR;
1037 if (config3 & MIPS_CONF3_BP)
1038 c->guest.options |= MIPS_CPU_BADINSTRP;
1039
1040 if (config3 & MIPS_CONF3_MSA)
1041 c->guest.ases |= MIPS_ASE_MSA;
1042 if (config3_dyn & MIPS_CONF3_MSA)
1043 c->guest.ases_dyn |= MIPS_ASE_MSA;
1044
1045 if (config3 & MIPS_CONF_M)
1046 c->guest.conf |= BIT(4);
1047 return config3 & MIPS_CONF_M;
1048}
1049
1050static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c)
1051{
1052 unsigned int config4;
1053
1054 probe_gc0_config(config4, config4,
1055 MIPS_CONF_M | MIPS_CONF4_KSCREXIST);
1056
1057 c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
1058 >> MIPS_CONF4_KSCREXIST_SHIFT;
1059
1060 if (config4 & MIPS_CONF_M)
1061 c->guest.conf |= BIT(5);
1062 return config4 & MIPS_CONF_M;
1063}
1064
1065static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c)
1066{
1067 unsigned int config5, config5_dyn;
1068
1069 probe_gc0_config_dyn(config5, config5, config5_dyn,
1070 MIPS_CONF_M | MIPS_CONF5_MVH | MIPS_CONF5_MRP);
1071
1072 if (config5 & MIPS_CONF5_MRP)
1073 c->guest.options |= MIPS_CPU_MAAR;
1074 if (config5_dyn & MIPS_CONF5_MRP)
1075 c->guest.options_dyn |= MIPS_CPU_MAAR;
1076
1077 if (config5 & MIPS_CONF5_LLB)
1078 c->guest.options |= MIPS_CPU_RW_LLB;
1079
1080 if (config5 & MIPS_CONF5_MVH)
1081 c->guest.options |= MIPS_CPU_MVH;
1082
1083 if (config5 & MIPS_CONF_M)
1084 c->guest.conf |= BIT(6);
1085 return config5 & MIPS_CONF_M;
1086}
1087
1088static inline void decode_guest_configs(struct cpuinfo_mips *c)
1089{
1090 unsigned int ok;
1091
1092 ok = decode_guest_config0(c);
1093 if (ok)
1094 ok = decode_guest_config1(c);
1095 if (ok)
1096 ok = decode_guest_config2(c);
1097 if (ok)
1098 ok = decode_guest_config3(c);
1099 if (ok)
1100 ok = decode_guest_config4(c);
1101 if (ok)
1102 decode_guest_config5(c);
1103}
1104
1105static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c)
1106{
1107 unsigned int guestctl0, temp;
1108
1109 guestctl0 = read_c0_guestctl0();
1110
1111 if (guestctl0 & MIPS_GCTL0_G0E)
1112 c->options |= MIPS_CPU_GUESTCTL0EXT;
1113 if (guestctl0 & MIPS_GCTL0_G1)
1114 c->options |= MIPS_CPU_GUESTCTL1;
1115 if (guestctl0 & MIPS_GCTL0_G2)
1116 c->options |= MIPS_CPU_GUESTCTL2;
1117 if (!(guestctl0 & MIPS_GCTL0_RAD)) {
1118 c->options |= MIPS_CPU_GUESTID;
1119
1120 /*
1121 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0
1122 * first, otherwise all data accesses will be fully virtualised
1123 * as if they were performed by guest mode.
1124 */
1125 write_c0_guestctl1(0);
1126 tlbw_use_hazard();
1127
1128 write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG);
1129 back_to_back_c0_hazard();
1130 temp = read_c0_guestctl0();
1131
1132 if (temp & MIPS_GCTL0_DRG) {
1133 write_c0_guestctl0(guestctl0);
1134 c->options |= MIPS_CPU_DRG;
1135 }
1136 }
1137}
1138
1139static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c)
1140{
1141 if (cpu_has_guestid) {
1142 /* determine the number of bits of GuestID available */
1143 write_c0_guestctl1(MIPS_GCTL1_ID);
1144 back_to_back_c0_hazard();
1145 c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID)
1146 >> MIPS_GCTL1_ID_SHIFT;
1147 write_c0_guestctl1(0);
1148 }
1149}
1150
1151static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c)
1152{
1153 /* determine the number of bits of GTOffset available */
1154 write_c0_gtoffset(0xffffffff);
1155 back_to_back_c0_hazard();
1156 c->gtoffset_mask = read_c0_gtoffset();
1157 write_c0_gtoffset(0);
1158}
1159
1160static inline void cpu_probe_vz(struct cpuinfo_mips *c)
1161{
1162 cpu_probe_guestctl0(c);
1163 if (cpu_has_guestctl1)
1164 cpu_probe_guestctl1(c);
1165
1166 cpu_probe_gtoffset(c);
1167
1168 decode_guest_configs(c);
1169}
1170
1171#define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
1172 | MIPS_CPU_COUNTER)
1173
1174static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
1175{
1176 switch (c->processor_id & PRID_IMP_MASK) {
1177 case PRID_IMP_R2000:
1178 c->cputype = CPU_R2000;
1179 __cpu_name[cpu] = "R2000";
1180 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1181 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1182 MIPS_CPU_NOFPUEX;
1183 if (__cpu_has_fpu())
1184 c->options |= MIPS_CPU_FPU;
1185 c->tlbsize = 64;
1186 break;
1187 case PRID_IMP_R3000:
1188 if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
1189 if (cpu_has_confreg()) {
1190 c->cputype = CPU_R3081E;
1191 __cpu_name[cpu] = "R3081";
1192 } else {
1193 c->cputype = CPU_R3000A;
1194 __cpu_name[cpu] = "R3000A";
1195 }
1196 } else {
1197 c->cputype = CPU_R3000;
1198 __cpu_name[cpu] = "R3000";
1199 }
1200 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1201 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1202 MIPS_CPU_NOFPUEX;
1203 if (__cpu_has_fpu())
1204 c->options |= MIPS_CPU_FPU;
1205 c->tlbsize = 64;
1206 break;
1207 case PRID_IMP_R4000:
1208 if (read_c0_config() & CONF_SC) {
1209 if ((c->processor_id & PRID_REV_MASK) >=
1210 PRID_REV_R4400) {
1211 c->cputype = CPU_R4400PC;
1212 __cpu_name[cpu] = "R4400PC";
1213 } else {
1214 c->cputype = CPU_R4000PC;
1215 __cpu_name[cpu] = "R4000PC";
1216 }
1217 } else {
1218 int cca = read_c0_config() & CONF_CM_CMASK;
1219 int mc;
1220
1221 /*
1222 * SC and MC versions can't be reliably told apart,
1223 * but only the latter support coherent caching
1224 * modes so assume the firmware has set the KSEG0
1225 * coherency attribute reasonably (if uncached, we
1226 * assume SC).
1227 */
1228 switch (cca) {
1229 case CONF_CM_CACHABLE_CE:
1230 case CONF_CM_CACHABLE_COW:
1231 case CONF_CM_CACHABLE_CUW:
1232 mc = 1;
1233 break;
1234 default:
1235 mc = 0;
1236 break;
1237 }
1238 if ((c->processor_id & PRID_REV_MASK) >=
1239 PRID_REV_R4400) {
1240 c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
1241 __cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
1242 } else {
1243 c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
1244 __cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
1245 }
1246 }
1247
1248 set_isa(c, MIPS_CPU_ISA_III);
1249 c->fpu_msk31 |= FPU_CSR_CONDX;
1250 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1251 MIPS_CPU_WATCH | MIPS_CPU_VCE |
1252 MIPS_CPU_LLSC;
1253 c->tlbsize = 48;
1254 break;
1255 case PRID_IMP_VR41XX:
1256 set_isa(c, MIPS_CPU_ISA_III);
1257 c->fpu_msk31 |= FPU_CSR_CONDX;
1258 c->options = R4K_OPTS;
1259 c->tlbsize = 32;
1260 switch (c->processor_id & 0xf0) {
1261 case PRID_REV_VR4111:
1262 c->cputype = CPU_VR4111;
1263 __cpu_name[cpu] = "NEC VR4111";
1264 break;
1265 case PRID_REV_VR4121:
1266 c->cputype = CPU_VR4121;
1267 __cpu_name[cpu] = "NEC VR4121";
1268 break;
1269 case PRID_REV_VR4122:
1270 if ((c->processor_id & 0xf) < 0x3) {
1271 c->cputype = CPU_VR4122;
1272 __cpu_name[cpu] = "NEC VR4122";
1273 } else {
1274 c->cputype = CPU_VR4181A;
1275 __cpu_name[cpu] = "NEC VR4181A";
1276 }
1277 break;
1278 case PRID_REV_VR4130:
1279 if ((c->processor_id & 0xf) < 0x4) {
1280 c->cputype = CPU_VR4131;
1281 __cpu_name[cpu] = "NEC VR4131";
1282 } else {
1283 c->cputype = CPU_VR4133;
1284 c->options |= MIPS_CPU_LLSC;
1285 __cpu_name[cpu] = "NEC VR4133";
1286 }
1287 break;
1288 default:
1289 printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n");
1290 c->cputype = CPU_VR41XX;
1291 __cpu_name[cpu] = "NEC Vr41xx";
1292 break;
1293 }
1294 break;
1295 case PRID_IMP_R4300:
1296 c->cputype = CPU_R4300;
1297 __cpu_name[cpu] = "R4300";
1298 set_isa(c, MIPS_CPU_ISA_III);
1299 c->fpu_msk31 |= FPU_CSR_CONDX;
1300 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1301 MIPS_CPU_LLSC;
1302 c->tlbsize = 32;
1303 break;
1304 case PRID_IMP_R4600:
1305 c->cputype = CPU_R4600;
1306 __cpu_name[cpu] = "R4600";
1307 set_isa(c, MIPS_CPU_ISA_III);
1308 c->fpu_msk31 |= FPU_CSR_CONDX;
1309 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1310 MIPS_CPU_LLSC;
1311 c->tlbsize = 48;
1312 break;
1313 #if 0
1314 case PRID_IMP_R4650:
1315 /*
1316 * This processor doesn't have an MMU, so it's not
1317 * "real easy" to run Linux on it. It is left purely
1318 * for documentation. Commented out because it shares
1319 * it's c0_prid id number with the TX3900.
1320 */
1321 c->cputype = CPU_R4650;
1322 __cpu_name[cpu] = "R4650";
1323 set_isa(c, MIPS_CPU_ISA_III);
1324 c->fpu_msk31 |= FPU_CSR_CONDX;
1325 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1326 c->tlbsize = 48;
1327 break;
1328 #endif
1329 case PRID_IMP_TX39:
1330 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1331 c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE;
1332
1333 if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) {
1334 c->cputype = CPU_TX3927;
1335 __cpu_name[cpu] = "TX3927";
1336 c->tlbsize = 64;
1337 } else {
1338 switch (c->processor_id & PRID_REV_MASK) {
1339 case PRID_REV_TX3912:
1340 c->cputype = CPU_TX3912;
1341 __cpu_name[cpu] = "TX3912";
1342 c->tlbsize = 32;
1343 break;
1344 case PRID_REV_TX3922:
1345 c->cputype = CPU_TX3922;
1346 __cpu_name[cpu] = "TX3922";
1347 c->tlbsize = 64;
1348 break;
1349 }
1350 }
1351 break;
1352 case PRID_IMP_R4700:
1353 c->cputype = CPU_R4700;
1354 __cpu_name[cpu] = "R4700";
1355 set_isa(c, MIPS_CPU_ISA_III);
1356 c->fpu_msk31 |= FPU_CSR_CONDX;
1357 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1358 MIPS_CPU_LLSC;
1359 c->tlbsize = 48;
1360 break;
1361 case PRID_IMP_TX49:
1362 c->cputype = CPU_TX49XX;
1363 __cpu_name[cpu] = "R49XX";
1364 set_isa(c, MIPS_CPU_ISA_III);
1365 c->fpu_msk31 |= FPU_CSR_CONDX;
1366 c->options = R4K_OPTS | MIPS_CPU_LLSC;
1367 if (!(c->processor_id & 0x08))
1368 c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1369 c->tlbsize = 48;
1370 break;
1371 case PRID_IMP_R5000:
1372 c->cputype = CPU_R5000;
1373 __cpu_name[cpu] = "R5000";
1374 set_isa(c, MIPS_CPU_ISA_IV);
1375 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1376 MIPS_CPU_LLSC;
1377 c->tlbsize = 48;
1378 break;
1379 case PRID_IMP_R5432:
1380 c->cputype = CPU_R5432;
1381 __cpu_name[cpu] = "R5432";
1382 set_isa(c, MIPS_CPU_ISA_IV);
1383 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1384 MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1385 c->tlbsize = 48;
1386 break;
1387 case PRID_IMP_R5500:
1388 c->cputype = CPU_R5500;
1389 __cpu_name[cpu] = "R5500";
1390 set_isa(c, MIPS_CPU_ISA_IV);
1391 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1392 MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1393 c->tlbsize = 48;
1394 break;
1395 case PRID_IMP_NEVADA:
1396 c->cputype = CPU_NEVADA;
1397 __cpu_name[cpu] = "Nevada";
1398 set_isa(c, MIPS_CPU_ISA_IV);
1399 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1400 MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1401 c->tlbsize = 48;
1402 break;
1403 case PRID_IMP_RM7000:
1404 c->cputype = CPU_RM7000;
1405 __cpu_name[cpu] = "RM7000";
1406 set_isa(c, MIPS_CPU_ISA_IV);
1407 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1408 MIPS_CPU_LLSC;
1409 /*
1410 * Undocumented RM7000: Bit 29 in the info register of
1411 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1412 * entries.
1413 *
1414 * 29 1 => 64 entry JTLB
1415 * 0 => 48 entry JTLB
1416 */
1417 c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1418 break;
1419 case PRID_IMP_R8000:
1420 c->cputype = CPU_R8000;
1421 __cpu_name[cpu] = "RM8000";
1422 set_isa(c, MIPS_CPU_ISA_IV);
1423 c->options = MIPS_CPU_TLB | MIPS_CPU_4KEX |
1424 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1425 MIPS_CPU_LLSC;
1426 c->tlbsize = 384; /* has weird TLB: 3-way x 128 */
1427 break;
1428 case PRID_IMP_R10000:
1429 c->cputype = CPU_R10000;
1430 __cpu_name[cpu] = "R10000";
1431 set_isa(c, MIPS_CPU_ISA_IV);
1432 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1433 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1434 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1435 MIPS_CPU_LLSC;
1436 c->tlbsize = 64;
1437 break;
1438 case PRID_IMP_R12000:
1439 c->cputype = CPU_R12000;
1440 __cpu_name[cpu] = "R12000";
1441 set_isa(c, MIPS_CPU_ISA_IV);
1442 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1443 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1444 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1445 MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1446 c->tlbsize = 64;
1447 break;
1448 case PRID_IMP_R14000:
1449 if (((c->processor_id >> 4) & 0x0f) > 2) {
1450 c->cputype = CPU_R16000;
1451 __cpu_name[cpu] = "R16000";
1452 } else {
1453 c->cputype = CPU_R14000;
1454 __cpu_name[cpu] = "R14000";
1455 }
1456 set_isa(c, MIPS_CPU_ISA_IV);
1457 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1458 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1459 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1460 MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1461 c->tlbsize = 64;
1462 break;
1463 case PRID_IMP_LOONGSON_64: /* Loongson-2/3 */
1464 switch (c->processor_id & PRID_REV_MASK) {
1465 case PRID_REV_LOONGSON2E:
1466 c->cputype = CPU_LOONGSON2;
1467 __cpu_name[cpu] = "ICT Loongson-2";
1468 set_elf_platform(cpu, "loongson2e");
1469 set_isa(c, MIPS_CPU_ISA_III);
1470 c->fpu_msk31 |= FPU_CSR_CONDX;
1471 break;
1472 case PRID_REV_LOONGSON2F:
1473 c->cputype = CPU_LOONGSON2;
1474 __cpu_name[cpu] = "ICT Loongson-2";
1475 set_elf_platform(cpu, "loongson2f");
1476 set_isa(c, MIPS_CPU_ISA_III);
1477 c->fpu_msk31 |= FPU_CSR_CONDX;
1478 break;
1479 case PRID_REV_LOONGSON3A_R1:
1480 c->cputype = CPU_LOONGSON3;
1481 __cpu_name[cpu] = "ICT Loongson-3";
1482 set_elf_platform(cpu, "loongson3a");
1483 set_isa(c, MIPS_CPU_ISA_M64R1);
1484 break;
1485 case PRID_REV_LOONGSON3B_R1:
1486 case PRID_REV_LOONGSON3B_R2:
1487 c->cputype = CPU_LOONGSON3;
1488 __cpu_name[cpu] = "ICT Loongson-3";
1489 set_elf_platform(cpu, "loongson3b");
1490 set_isa(c, MIPS_CPU_ISA_M64R1);
1491 break;
1492 }
1493
1494 c->options = R4K_OPTS |
1495 MIPS_CPU_FPU | MIPS_CPU_LLSC |
1496 MIPS_CPU_32FPR;
1497 c->tlbsize = 64;
1498 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1499 break;
1500 case PRID_IMP_LOONGSON_32: /* Loongson-1 */
1501 decode_configs(c);
1502
1503 c->cputype = CPU_LOONGSON1;
1504
1505 switch (c->processor_id & PRID_REV_MASK) {
1506 case PRID_REV_LOONGSON1B:
1507 __cpu_name[cpu] = "Loongson 1B";
1508 break;
1509 }
1510
1511 break;
1512 }
1513}
1514
1515static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1516{
1517 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1518 switch (c->processor_id & PRID_IMP_MASK) {
1519 case PRID_IMP_QEMU_GENERIC:
1520 c->writecombine = _CACHE_UNCACHED;
1521 c->cputype = CPU_QEMU_GENERIC;
1522 __cpu_name[cpu] = "MIPS GENERIC QEMU";
1523 break;
1524 case PRID_IMP_4KC:
1525 c->cputype = CPU_4KC;
1526 c->writecombine = _CACHE_UNCACHED;
1527 __cpu_name[cpu] = "MIPS 4Kc";
1528 break;
1529 case PRID_IMP_4KEC:
1530 case PRID_IMP_4KECR2:
1531 c->cputype = CPU_4KEC;
1532 c->writecombine = _CACHE_UNCACHED;
1533 __cpu_name[cpu] = "MIPS 4KEc";
1534 break;
1535 case PRID_IMP_4KSC:
1536 case PRID_IMP_4KSD:
1537 c->cputype = CPU_4KSC;
1538 c->writecombine = _CACHE_UNCACHED;
1539 __cpu_name[cpu] = "MIPS 4KSc";
1540 break;
1541 case PRID_IMP_5KC:
1542 c->cputype = CPU_5KC;
1543 c->writecombine = _CACHE_UNCACHED;
1544 __cpu_name[cpu] = "MIPS 5Kc";
1545 break;
1546 case PRID_IMP_5KE:
1547 c->cputype = CPU_5KE;
1548 c->writecombine = _CACHE_UNCACHED;
1549 __cpu_name[cpu] = "MIPS 5KE";
1550 break;
1551 case PRID_IMP_20KC:
1552 c->cputype = CPU_20KC;
1553 c->writecombine = _CACHE_UNCACHED;
1554 __cpu_name[cpu] = "MIPS 20Kc";
1555 break;
1556 case PRID_IMP_24K:
1557 c->cputype = CPU_24K;
1558 c->writecombine = _CACHE_UNCACHED;
1559 __cpu_name[cpu] = "MIPS 24Kc";
1560 break;
1561 case PRID_IMP_24KE:
1562 c->cputype = CPU_24K;
1563 c->writecombine = _CACHE_UNCACHED;
1564 __cpu_name[cpu] = "MIPS 24KEc";
1565 break;
1566 case PRID_IMP_25KF:
1567 c->cputype = CPU_25KF;
1568 c->writecombine = _CACHE_UNCACHED;
1569 __cpu_name[cpu] = "MIPS 25Kc";
1570 break;
1571 case PRID_IMP_34K:
1572 c->cputype = CPU_34K;
1573 c->writecombine = _CACHE_UNCACHED;
1574 __cpu_name[cpu] = "MIPS 34Kc";
1575 break;
1576 case PRID_IMP_74K:
1577 c->cputype = CPU_74K;
1578 c->writecombine = _CACHE_UNCACHED;
1579 __cpu_name[cpu] = "MIPS 74Kc";
1580 break;
1581 case PRID_IMP_M14KC:
1582 c->cputype = CPU_M14KC;
1583 c->writecombine = _CACHE_UNCACHED;
1584 __cpu_name[cpu] = "MIPS M14Kc";
1585 break;
1586 case PRID_IMP_M14KEC:
1587 c->cputype = CPU_M14KEC;
1588 c->writecombine = _CACHE_UNCACHED;
1589 __cpu_name[cpu] = "MIPS M14KEc";
1590 break;
1591 case PRID_IMP_1004K:
1592 c->cputype = CPU_1004K;
1593 c->writecombine = _CACHE_UNCACHED;
1594 __cpu_name[cpu] = "MIPS 1004Kc";
1595 break;
1596 case PRID_IMP_1074K:
1597 c->cputype = CPU_1074K;
1598 c->writecombine = _CACHE_UNCACHED;
1599 __cpu_name[cpu] = "MIPS 1074Kc";
1600 break;
1601 case PRID_IMP_INTERAPTIV_UP:
1602 c->cputype = CPU_INTERAPTIV;
1603 __cpu_name[cpu] = "MIPS interAptiv";
1604 break;
1605 case PRID_IMP_INTERAPTIV_MP:
1606 c->cputype = CPU_INTERAPTIV;
1607 __cpu_name[cpu] = "MIPS interAptiv (multi)";
1608 break;
1609 case PRID_IMP_PROAPTIV_UP:
1610 c->cputype = CPU_PROAPTIV;
1611 __cpu_name[cpu] = "MIPS proAptiv";
1612 break;
1613 case PRID_IMP_PROAPTIV_MP:
1614 c->cputype = CPU_PROAPTIV;
1615 __cpu_name[cpu] = "MIPS proAptiv (multi)";
1616 break;
1617 case PRID_IMP_P5600:
1618 c->cputype = CPU_P5600;
1619 __cpu_name[cpu] = "MIPS P5600";
1620 break;
1621 case PRID_IMP_P6600:
1622 c->cputype = CPU_P6600;
1623 __cpu_name[cpu] = "MIPS P6600";
1624 break;
1625 case PRID_IMP_I6400:
1626 c->cputype = CPU_I6400;
1627 __cpu_name[cpu] = "MIPS I6400";
1628 break;
1629 case PRID_IMP_I6500:
1630 c->cputype = CPU_I6500;
1631 __cpu_name[cpu] = "MIPS I6500";
1632 break;
1633 case PRID_IMP_M5150:
1634 c->cputype = CPU_M5150;
1635 __cpu_name[cpu] = "MIPS M5150";
1636 break;
1637 case PRID_IMP_M6250:
1638 c->cputype = CPU_M6250;
1639 __cpu_name[cpu] = "MIPS M6250";
1640 break;
1641 }
1642
1643 decode_configs(c);
1644
1645 spram_config();
1646
1647 switch (__get_cpu_type(c->cputype)) {
1648 case CPU_I6500:
1649 c->options |= MIPS_CPU_SHARED_FTLB_ENTRIES;
1650 /* fall-through */
1651 case CPU_I6400:
1652 c->options |= MIPS_CPU_SHARED_FTLB_RAM;
1653 /* fall-through */
1654 default:
1655 break;
1656 }
1657}
1658
1659static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1660{
1661 decode_configs(c);
1662 switch (c->processor_id & PRID_IMP_MASK) {
1663 case PRID_IMP_AU1_REV1:
1664 case PRID_IMP_AU1_REV2:
1665 c->cputype = CPU_ALCHEMY;
1666 switch ((c->processor_id >> 24) & 0xff) {
1667 case 0:
1668 __cpu_name[cpu] = "Au1000";
1669 break;
1670 case 1:
1671 __cpu_name[cpu] = "Au1500";
1672 break;
1673 case 2:
1674 __cpu_name[cpu] = "Au1100";
1675 break;
1676 case 3:
1677 __cpu_name[cpu] = "Au1550";
1678 break;
1679 case 4:
1680 __cpu_name[cpu] = "Au1200";
1681 if ((c->processor_id & PRID_REV_MASK) == 2)
1682 __cpu_name[cpu] = "Au1250";
1683 break;
1684 case 5:
1685 __cpu_name[cpu] = "Au1210";
1686 break;
1687 default:
1688 __cpu_name[cpu] = "Au1xxx";
1689 break;
1690 }
1691 break;
1692 }
1693}
1694
1695static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1696{
1697 decode_configs(c);
1698
1699 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1700 switch (c->processor_id & PRID_IMP_MASK) {
1701 case PRID_IMP_SB1:
1702 c->cputype = CPU_SB1;
1703 __cpu_name[cpu] = "SiByte SB1";
1704 /* FPU in pass1 is known to have issues. */
1705 if ((c->processor_id & PRID_REV_MASK) < 0x02)
1706 c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1707 break;
1708 case PRID_IMP_SB1A:
1709 c->cputype = CPU_SB1A;
1710 __cpu_name[cpu] = "SiByte SB1A";
1711 break;
1712 }
1713}
1714
1715static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1716{
1717 decode_configs(c);
1718 switch (c->processor_id & PRID_IMP_MASK) {
1719 case PRID_IMP_SR71000:
1720 c->cputype = CPU_SR71000;
1721 __cpu_name[cpu] = "Sandcraft SR71000";
1722 c->scache.ways = 8;
1723 c->tlbsize = 64;
1724 break;
1725 }
1726}
1727
1728static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1729{
1730 decode_configs(c);
1731 switch (c->processor_id & PRID_IMP_MASK) {
1732 case PRID_IMP_PR4450:
1733 c->cputype = CPU_PR4450;
1734 __cpu_name[cpu] = "Philips PR4450";
1735 set_isa(c, MIPS_CPU_ISA_M32R1);
1736 break;
1737 }
1738}
1739
1740static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1741{
1742 decode_configs(c);
1743 switch (c->processor_id & PRID_IMP_MASK) {
1744 case PRID_IMP_BMIPS32_REV4:
1745 case PRID_IMP_BMIPS32_REV8:
1746 c->cputype = CPU_BMIPS32;
1747 __cpu_name[cpu] = "Broadcom BMIPS32";
1748 set_elf_platform(cpu, "bmips32");
1749 break;
1750 case PRID_IMP_BMIPS3300:
1751 case PRID_IMP_BMIPS3300_ALT:
1752 case PRID_IMP_BMIPS3300_BUG:
1753 c->cputype = CPU_BMIPS3300;
1754 __cpu_name[cpu] = "Broadcom BMIPS3300";
1755 set_elf_platform(cpu, "bmips3300");
1756 break;
1757 case PRID_IMP_BMIPS43XX: {
1758 int rev = c->processor_id & PRID_REV_MASK;
1759
1760 if (rev >= PRID_REV_BMIPS4380_LO &&
1761 rev <= PRID_REV_BMIPS4380_HI) {
1762 c->cputype = CPU_BMIPS4380;
1763 __cpu_name[cpu] = "Broadcom BMIPS4380";
1764 set_elf_platform(cpu, "bmips4380");
1765 c->options |= MIPS_CPU_RIXI;
1766 } else {
1767 c->cputype = CPU_BMIPS4350;
1768 __cpu_name[cpu] = "Broadcom BMIPS4350";
1769 set_elf_platform(cpu, "bmips4350");
1770 }
1771 break;
1772 }
1773 case PRID_IMP_BMIPS5000:
1774 case PRID_IMP_BMIPS5200:
1775 c->cputype = CPU_BMIPS5000;
1776 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200)
1777 __cpu_name[cpu] = "Broadcom BMIPS5200";
1778 else
1779 __cpu_name[cpu] = "Broadcom BMIPS5000";
1780 set_elf_platform(cpu, "bmips5000");
1781 c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI;
1782 break;
1783 }
1784}
1785
1786static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1787{
1788 decode_configs(c);
1789 switch (c->processor_id & PRID_IMP_MASK) {
1790 case PRID_IMP_CAVIUM_CN38XX:
1791 case PRID_IMP_CAVIUM_CN31XX:
1792 case PRID_IMP_CAVIUM_CN30XX:
1793 c->cputype = CPU_CAVIUM_OCTEON;
1794 __cpu_name[cpu] = "Cavium Octeon";
1795 goto platform;
1796 case PRID_IMP_CAVIUM_CN58XX:
1797 case PRID_IMP_CAVIUM_CN56XX:
1798 case PRID_IMP_CAVIUM_CN50XX:
1799 case PRID_IMP_CAVIUM_CN52XX:
1800 c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1801 __cpu_name[cpu] = "Cavium Octeon+";
1802platform:
1803 set_elf_platform(cpu, "octeon");
1804 break;
1805 case PRID_IMP_CAVIUM_CN61XX:
1806 case PRID_IMP_CAVIUM_CN63XX:
1807 case PRID_IMP_CAVIUM_CN66XX:
1808 case PRID_IMP_CAVIUM_CN68XX:
1809 case PRID_IMP_CAVIUM_CNF71XX:
1810 c->cputype = CPU_CAVIUM_OCTEON2;
1811 __cpu_name[cpu] = "Cavium Octeon II";
1812 set_elf_platform(cpu, "octeon2");
1813 break;
1814 case PRID_IMP_CAVIUM_CN70XX:
1815 case PRID_IMP_CAVIUM_CN73XX:
1816 case PRID_IMP_CAVIUM_CNF75XX:
1817 case PRID_IMP_CAVIUM_CN78XX:
1818 c->cputype = CPU_CAVIUM_OCTEON3;
1819 __cpu_name[cpu] = "Cavium Octeon III";
1820 set_elf_platform(cpu, "octeon3");
1821 break;
1822 default:
1823 printk(KERN_INFO "Unknown Octeon chip!\n");
1824 c->cputype = CPU_UNKNOWN;
1825 break;
1826 }
1827}
1828
1829static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu)
1830{
1831 switch (c->processor_id & PRID_IMP_MASK) {
1832 case PRID_IMP_LOONGSON_64: /* Loongson-2/3 */
1833 switch (c->processor_id & PRID_REV_MASK) {
1834 case PRID_REV_LOONGSON3A_R2:
1835 c->cputype = CPU_LOONGSON3;
1836 __cpu_name[cpu] = "ICT Loongson-3";
1837 set_elf_platform(cpu, "loongson3a");
1838 set_isa(c, MIPS_CPU_ISA_M64R2);
1839 break;
1840 case PRID_REV_LOONGSON3A_R3:
1841 c->cputype = CPU_LOONGSON3;
1842 __cpu_name[cpu] = "ICT Loongson-3";
1843 set_elf_platform(cpu, "loongson3a");
1844 set_isa(c, MIPS_CPU_ISA_M64R2);
1845 break;
1846 }
1847
1848 decode_configs(c);
1849 c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
1850 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1851 break;
1852 default:
1853 panic("Unknown Loongson Processor ID!");
1854 break;
1855 }
1856}
1857
1858static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
1859{
1860 decode_configs(c);
1861 /* JZRISC does not implement the CP0 counter. */
1862 c->options &= ~MIPS_CPU_COUNTER;
1863 BUG_ON(!__builtin_constant_p(cpu_has_counter) || cpu_has_counter);
1864 switch (c->processor_id & PRID_IMP_MASK) {
1865 case PRID_IMP_JZRISC:
1866 c->cputype = CPU_JZRISC;
1867 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1868 __cpu_name[cpu] = "Ingenic JZRISC";
1869 break;
1870 default:
1871 panic("Unknown Ingenic Processor ID!");
1872 break;
1873 }
1874}
1875
1876static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu)
1877{
1878 decode_configs(c);
1879
1880 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) {
1881 c->cputype = CPU_ALCHEMY;
1882 __cpu_name[cpu] = "Au1300";
1883 /* following stuff is not for Alchemy */
1884 return;
1885 }
1886
1887 c->options = (MIPS_CPU_TLB |
1888 MIPS_CPU_4KEX |
1889 MIPS_CPU_COUNTER |
1890 MIPS_CPU_DIVEC |
1891 MIPS_CPU_WATCH |
1892 MIPS_CPU_EJTAG |
1893 MIPS_CPU_LLSC);
1894
1895 switch (c->processor_id & PRID_IMP_MASK) {
1896 case PRID_IMP_NETLOGIC_XLP2XX:
1897 case PRID_IMP_NETLOGIC_XLP9XX:
1898 case PRID_IMP_NETLOGIC_XLP5XX:
1899 c->cputype = CPU_XLP;
1900 __cpu_name[cpu] = "Broadcom XLPII";
1901 break;
1902
1903 case PRID_IMP_NETLOGIC_XLP8XX:
1904 case PRID_IMP_NETLOGIC_XLP3XX:
1905 c->cputype = CPU_XLP;
1906 __cpu_name[cpu] = "Netlogic XLP";
1907 break;
1908
1909 case PRID_IMP_NETLOGIC_XLR732:
1910 case PRID_IMP_NETLOGIC_XLR716:
1911 case PRID_IMP_NETLOGIC_XLR532:
1912 case PRID_IMP_NETLOGIC_XLR308:
1913 case PRID_IMP_NETLOGIC_XLR532C:
1914 case PRID_IMP_NETLOGIC_XLR516C:
1915 case PRID_IMP_NETLOGIC_XLR508C:
1916 case PRID_IMP_NETLOGIC_XLR308C:
1917 c->cputype = CPU_XLR;
1918 __cpu_name[cpu] = "Netlogic XLR";
1919 break;
1920
1921 case PRID_IMP_NETLOGIC_XLS608:
1922 case PRID_IMP_NETLOGIC_XLS408:
1923 case PRID_IMP_NETLOGIC_XLS404:
1924 case PRID_IMP_NETLOGIC_XLS208:
1925 case PRID_IMP_NETLOGIC_XLS204:
1926 case PRID_IMP_NETLOGIC_XLS108:
1927 case PRID_IMP_NETLOGIC_XLS104:
1928 case PRID_IMP_NETLOGIC_XLS616B:
1929 case PRID_IMP_NETLOGIC_XLS608B:
1930 case PRID_IMP_NETLOGIC_XLS416B:
1931 case PRID_IMP_NETLOGIC_XLS412B:
1932 case PRID_IMP_NETLOGIC_XLS408B:
1933 case PRID_IMP_NETLOGIC_XLS404B:
1934 c->cputype = CPU_XLR;
1935 __cpu_name[cpu] = "Netlogic XLS";
1936 break;
1937
1938 default:
1939 pr_info("Unknown Netlogic chip id [%02x]!\n",
1940 c->processor_id);
1941 c->cputype = CPU_XLR;
1942 break;
1943 }
1944
1945 if (c->cputype == CPU_XLP) {
1946 set_isa(c, MIPS_CPU_ISA_M64R2);
1947 c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK);
1948 /* This will be updated again after all threads are woken up */
1949 c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1;
1950 } else {
1951 set_isa(c, MIPS_CPU_ISA_M64R1);
1952 c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1;
1953 }
1954 c->kscratch_mask = 0xf;
1955}
1956
1957#ifdef CONFIG_64BIT
1958/* For use by uaccess.h */
1959u64 __ua_limit;
1960EXPORT_SYMBOL(__ua_limit);
1961#endif
1962
1963const char *__cpu_name[NR_CPUS];
1964const char *__elf_platform;
1965
1966void cpu_probe(void)
1967{
1968 struct cpuinfo_mips *c = ¤t_cpu_data;
1969 unsigned int cpu = smp_processor_id();
1970
1971 /*
1972 * Set a default elf platform, cpu probe may later
1973 * overwrite it with a more precise value
1974 */
1975 set_elf_platform(cpu, "mips");
1976
1977 c->processor_id = PRID_IMP_UNKNOWN;
1978 c->fpu_id = FPIR_IMP_NONE;
1979 c->cputype = CPU_UNKNOWN;
1980 c->writecombine = _CACHE_UNCACHED;
1981
1982 c->fpu_csr31 = FPU_CSR_RN;
1983 c->fpu_msk31 = FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
1984
1985 c->processor_id = read_c0_prid();
1986 switch (c->processor_id & PRID_COMP_MASK) {
1987 case PRID_COMP_LEGACY:
1988 cpu_probe_legacy(c, cpu);
1989 break;
1990 case PRID_COMP_MIPS:
1991 cpu_probe_mips(c, cpu);
1992 break;
1993 case PRID_COMP_ALCHEMY:
1994 cpu_probe_alchemy(c, cpu);
1995 break;
1996 case PRID_COMP_SIBYTE:
1997 cpu_probe_sibyte(c, cpu);
1998 break;
1999 case PRID_COMP_BROADCOM:
2000 cpu_probe_broadcom(c, cpu);
2001 break;
2002 case PRID_COMP_SANDCRAFT:
2003 cpu_probe_sandcraft(c, cpu);
2004 break;
2005 case PRID_COMP_NXP:
2006 cpu_probe_nxp(c, cpu);
2007 break;
2008 case PRID_COMP_CAVIUM:
2009 cpu_probe_cavium(c, cpu);
2010 break;
2011 case PRID_COMP_LOONGSON:
2012 cpu_probe_loongson(c, cpu);
2013 break;
2014 case PRID_COMP_INGENIC_D0:
2015 case PRID_COMP_INGENIC_D1:
2016 case PRID_COMP_INGENIC_E1:
2017 cpu_probe_ingenic(c, cpu);
2018 break;
2019 case PRID_COMP_NETLOGIC:
2020 cpu_probe_netlogic(c, cpu);
2021 break;
2022 }
2023
2024 BUG_ON(!__cpu_name[cpu]);
2025 BUG_ON(c->cputype == CPU_UNKNOWN);
2026
2027 /*
2028 * Platform code can force the cpu type to optimize code
2029 * generation. In that case be sure the cpu type is correctly
2030 * manually setup otherwise it could trigger some nasty bugs.
2031 */
2032 BUG_ON(current_cpu_type() != c->cputype);
2033
2034 if (cpu_has_rixi) {
2035 /* Enable the RIXI exceptions */
2036 set_c0_pagegrain(PG_IEC);
2037 back_to_back_c0_hazard();
2038 /* Verify the IEC bit is set */
2039 if (read_c0_pagegrain() & PG_IEC)
2040 c->options |= MIPS_CPU_RIXIEX;
2041 }
2042
2043 if (mips_fpu_disabled)
2044 c->options &= ~MIPS_CPU_FPU;
2045
2046 if (mips_dsp_disabled)
2047 c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
2048
2049 if (mips_htw_disabled) {
2050 c->options &= ~MIPS_CPU_HTW;
2051 write_c0_pwctl(read_c0_pwctl() &
2052 ~(1 << MIPS_PWCTL_PWEN_SHIFT));
2053 }
2054
2055 if (c->options & MIPS_CPU_FPU)
2056 cpu_set_fpu_opts(c);
2057 else
2058 cpu_set_nofpu_opts(c);
2059
2060 if (cpu_has_bp_ghist)
2061 write_c0_r10k_diag(read_c0_r10k_diag() |
2062 R10K_DIAG_E_GHIST);
2063
2064 if (cpu_has_mips_r2_r6) {
2065 c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
2066 /* R2 has Performance Counter Interrupt indicator */
2067 c->options |= MIPS_CPU_PCI;
2068 }
2069 else
2070 c->srsets = 1;
2071
2072 if (cpu_has_mips_r6)
2073 elf_hwcap |= HWCAP_MIPS_R6;
2074
2075 if (cpu_has_msa) {
2076 c->msa_id = cpu_get_msa_id();
2077 WARN(c->msa_id & MSA_IR_WRPF,
2078 "Vector register partitioning unimplemented!");
2079 elf_hwcap |= HWCAP_MIPS_MSA;
2080 }
2081
2082 if (cpu_has_vz)
2083 cpu_probe_vz(c);
2084
2085 cpu_probe_vmbits(c);
2086
2087#ifdef CONFIG_64BIT
2088 if (cpu == 0)
2089 __ua_limit = ~((1ull << cpu_vmbits) - 1);
2090#endif
2091}
2092
2093void cpu_report(void)
2094{
2095 struct cpuinfo_mips *c = ¤t_cpu_data;
2096
2097 pr_info("CPU%d revision is: %08x (%s)\n",
2098 smp_processor_id(), c->processor_id, cpu_name_string());
2099 if (c->options & MIPS_CPU_FPU)
2100 printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
2101 if (cpu_has_msa)
2102 pr_info("MSA revision is: %08x\n", c->msa_id);
2103}
2104
2105void cpu_set_cluster(struct cpuinfo_mips *cpuinfo, unsigned int cluster)
2106{
2107 /* Ensure the core number fits in the field */
2108 WARN_ON(cluster > (MIPS_GLOBALNUMBER_CLUSTER >>
2109 MIPS_GLOBALNUMBER_CLUSTER_SHF));
2110
2111 cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CLUSTER;
2112 cpuinfo->globalnumber |= cluster << MIPS_GLOBALNUMBER_CLUSTER_SHF;
2113}
2114
2115void cpu_set_core(struct cpuinfo_mips *cpuinfo, unsigned int core)
2116{
2117 /* Ensure the core number fits in the field */
2118 WARN_ON(core > (MIPS_GLOBALNUMBER_CORE >> MIPS_GLOBALNUMBER_CORE_SHF));
2119
2120 cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CORE;
2121 cpuinfo->globalnumber |= core << MIPS_GLOBALNUMBER_CORE_SHF;
2122}
2123
2124void cpu_set_vpe_id(struct cpuinfo_mips *cpuinfo, unsigned int vpe)
2125{
2126 /* Ensure the VP(E) ID fits in the field */
2127 WARN_ON(vpe > (MIPS_GLOBALNUMBER_VP >> MIPS_GLOBALNUMBER_VP_SHF));
2128
2129 /* Ensure we're not using VP(E)s without support */
2130 WARN_ON(vpe && !IS_ENABLED(CONFIG_MIPS_MT_SMP) &&
2131 !IS_ENABLED(CONFIG_CPU_MIPSR6));
2132
2133 cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_VP;
2134 cpuinfo->globalnumber |= vpe << MIPS_GLOBALNUMBER_VP_SHF;
2135}