Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Processor capabilities determination functions.
   4 *
   5 * Copyright (C) xxxx  the Anonymous
   6 * Copyright (C) 1994 - 2006 Ralf Baechle
   7 * Copyright (C) 2003, 2004  Maciej W. Rozycki
   8 * Copyright (C) 2001, 2004, 2011, 2012	 MIPS Technologies, Inc.
 
 
 
 
 
   9 */
  10#include <linux/init.h>
  11#include <linux/kernel.h>
  12#include <linux/ptrace.h>
  13#include <linux/smp.h>
  14#include <linux/stddef.h>
  15#include <linux/export.h>
  16
  17#include <asm/bugs.h>
  18#include <asm/cpu.h>
  19#include <asm/cpu-features.h>
  20#include <asm/cpu-type.h>
  21#include <asm/fpu.h>
  22#include <asm/mipsregs.h>
  23#include <asm/mipsmtregs.h>
  24#include <asm/msa.h>
  25#include <asm/watch.h>
  26#include <asm/elf.h>
  27#include <asm/pgtable-bits.h>
  28#include <asm/spram.h>
  29#include <linux/uaccess.h>
  30
  31/* Hardware capabilities */
  32unsigned int elf_hwcap __read_mostly;
  33EXPORT_SYMBOL_GPL(elf_hwcap);
  34
  35#ifdef CONFIG_MIPS_FP_SUPPORT
  36
  37/*
  38 * Get the FPU Implementation/Revision.
  39 */
  40static inline unsigned long cpu_get_fpu_id(void)
  41{
  42	unsigned long tmp, fpu_id;
  43
  44	tmp = read_c0_status();
  45	__enable_fpu(FPU_AS_IS);
  46	fpu_id = read_32bit_cp1_register(CP1_REVISION);
  47	write_c0_status(tmp);
  48	return fpu_id;
  49}
  50
  51/*
  52 * Check if the CPU has an external FPU.
  53 */
  54static inline int __cpu_has_fpu(void)
  55{
  56	return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE;
  57}
  58
 
 
 
 
 
 
 
 
 
 
 
 
 
  59/*
  60 * Determine the FCSR mask for FPU hardware.
  61 */
  62static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c)
  63{
  64	unsigned long sr, mask, fcsr, fcsr0, fcsr1;
  65
  66	fcsr = c->fpu_csr31;
  67	mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM;
  68
  69	sr = read_c0_status();
  70	__enable_fpu(FPU_AS_IS);
  71
  72	fcsr0 = fcsr & mask;
  73	write_32bit_cp1_register(CP1_STATUS, fcsr0);
  74	fcsr0 = read_32bit_cp1_register(CP1_STATUS);
  75
  76	fcsr1 = fcsr | ~mask;
  77	write_32bit_cp1_register(CP1_STATUS, fcsr1);
  78	fcsr1 = read_32bit_cp1_register(CP1_STATUS);
  79
  80	write_32bit_cp1_register(CP1_STATUS, fcsr);
  81
  82	write_c0_status(sr);
  83
  84	c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask;
  85}
  86
  87/*
  88 * Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes
  89 * supported by FPU hardware.
  90 */
  91static void cpu_set_fpu_2008(struct cpuinfo_mips *c)
  92{
  93	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
  94			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
  95			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
  96		unsigned long sr, fir, fcsr, fcsr0, fcsr1;
  97
  98		sr = read_c0_status();
  99		__enable_fpu(FPU_AS_IS);
 100
 101		fir = read_32bit_cp1_register(CP1_REVISION);
 102		if (fir & MIPS_FPIR_HAS2008) {
 103			fcsr = read_32bit_cp1_register(CP1_STATUS);
 104
 105			fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 106			write_32bit_cp1_register(CP1_STATUS, fcsr0);
 107			fcsr0 = read_32bit_cp1_register(CP1_STATUS);
 108
 109			fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 110			write_32bit_cp1_register(CP1_STATUS, fcsr1);
 111			fcsr1 = read_32bit_cp1_register(CP1_STATUS);
 112
 113			write_32bit_cp1_register(CP1_STATUS, fcsr);
 114
 115			if (!(fcsr0 & FPU_CSR_NAN2008))
 116				c->options |= MIPS_CPU_NAN_LEGACY;
 117			if (fcsr1 & FPU_CSR_NAN2008)
 118				c->options |= MIPS_CPU_NAN_2008;
 119
 120			if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008)
 121				c->fpu_msk31 &= ~FPU_CSR_ABS2008;
 122			else
 123				c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008;
 124
 125			if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008)
 126				c->fpu_msk31 &= ~FPU_CSR_NAN2008;
 127			else
 128				c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008;
 129		} else {
 130			c->options |= MIPS_CPU_NAN_LEGACY;
 131		}
 132
 133		write_c0_status(sr);
 134	} else {
 135		c->options |= MIPS_CPU_NAN_LEGACY;
 136	}
 137}
 138
 139/*
 140 * IEEE 754 conformance mode to use.  Affects the NaN encoding and the
 141 * ABS.fmt/NEG.fmt execution mode.
 142 */
 143static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT;
 144
 145/*
 146 * Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes
 147 * to support by the FPU emulator according to the IEEE 754 conformance
 148 * mode selected.  Note that "relaxed" straps the emulator so that it
 149 * allows 2008-NaN binaries even for legacy processors.
 150 */
 151static void cpu_set_nofpu_2008(struct cpuinfo_mips *c)
 152{
 153	c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY);
 154	c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 155	c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 156
 157	switch (ieee754) {
 158	case STRICT:
 159		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 160				    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 161				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 162			c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
 163		} else {
 164			c->options |= MIPS_CPU_NAN_LEGACY;
 165			c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 166		}
 167		break;
 168	case LEGACY:
 169		c->options |= MIPS_CPU_NAN_LEGACY;
 170		c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 171		break;
 172	case STD2008:
 173		c->options |= MIPS_CPU_NAN_2008;
 174		c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 175		c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 176		break;
 177	case RELAXED:
 178		c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
 179		break;
 180	}
 181}
 182
 183/*
 184 * Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
 185 * according to the "ieee754=" parameter.
 186 */
 187static void cpu_set_nan_2008(struct cpuinfo_mips *c)
 188{
 189	switch (ieee754) {
 190	case STRICT:
 191		mips_use_nan_legacy = !!cpu_has_nan_legacy;
 192		mips_use_nan_2008 = !!cpu_has_nan_2008;
 193		break;
 194	case LEGACY:
 195		mips_use_nan_legacy = !!cpu_has_nan_legacy;
 196		mips_use_nan_2008 = !cpu_has_nan_legacy;
 197		break;
 198	case STD2008:
 199		mips_use_nan_legacy = !cpu_has_nan_2008;
 200		mips_use_nan_2008 = !!cpu_has_nan_2008;
 201		break;
 202	case RELAXED:
 203		mips_use_nan_legacy = true;
 204		mips_use_nan_2008 = true;
 205		break;
 206	}
 207}
 208
 209/*
 210 * IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override
 211 * settings:
 212 *
 213 * strict:  accept binaries that request a NaN encoding supported by the FPU
 214 * legacy:  only accept legacy-NaN binaries
 215 * 2008:    only accept 2008-NaN binaries
 216 * relaxed: accept any binaries regardless of whether supported by the FPU
 217 */
 218static int __init ieee754_setup(char *s)
 219{
 220	if (!s)
 221		return -1;
 222	else if (!strcmp(s, "strict"))
 223		ieee754 = STRICT;
 224	else if (!strcmp(s, "legacy"))
 225		ieee754 = LEGACY;
 226	else if (!strcmp(s, "2008"))
 227		ieee754 = STD2008;
 228	else if (!strcmp(s, "relaxed"))
 229		ieee754 = RELAXED;
 230	else
 231		return -1;
 232
 233	if (!(boot_cpu_data.options & MIPS_CPU_FPU))
 234		cpu_set_nofpu_2008(&boot_cpu_data);
 235	cpu_set_nan_2008(&boot_cpu_data);
 236
 237	return 0;
 238}
 239
 240early_param("ieee754", ieee754_setup);
 241
 242/*
 243 * Set the FIR feature flags for the FPU emulator.
 244 */
 245static void cpu_set_nofpu_id(struct cpuinfo_mips *c)
 246{
 247	u32 value;
 248
 249	value = 0;
 250	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 251			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 252			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
 253		value |= MIPS_FPIR_D | MIPS_FPIR_S;
 254	if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 255			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
 256		value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W;
 257	if (c->options & MIPS_CPU_NAN_2008)
 258		value |= MIPS_FPIR_HAS2008;
 259	c->fpu_id = value;
 260}
 261
 262/* Determined FPU emulator mask to use for the boot CPU with "nofpu".  */
 263static unsigned int mips_nofpu_msk31;
 264
 265/*
 266 * Set options for FPU hardware.
 267 */
 268static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
 269{
 270	c->fpu_id = cpu_get_fpu_id();
 271	mips_nofpu_msk31 = c->fpu_msk31;
 272
 273	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 274			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 275			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 276		if (c->fpu_id & MIPS_FPIR_3D)
 277			c->ases |= MIPS_ASE_MIPS3D;
 278		if (c->fpu_id & MIPS_FPIR_UFRP)
 279			c->options |= MIPS_CPU_UFR;
 280		if (c->fpu_id & MIPS_FPIR_FREP)
 281			c->options |= MIPS_CPU_FRE;
 282	}
 283
 284	cpu_set_fpu_fcsr_mask(c);
 285	cpu_set_fpu_2008(c);
 286	cpu_set_nan_2008(c);
 287}
 288
 289/*
 290 * Set options for the FPU emulator.
 291 */
 292static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
 293{
 294	c->options &= ~MIPS_CPU_FPU;
 295	c->fpu_msk31 = mips_nofpu_msk31;
 296
 297	cpu_set_nofpu_2008(c);
 298	cpu_set_nan_2008(c);
 299	cpu_set_nofpu_id(c);
 300}
 301
 302static int mips_fpu_disabled;
 303
 304static int __init fpu_disable(char *s)
 305{
 306	cpu_set_nofpu_opts(&boot_cpu_data);
 307	mips_fpu_disabled = 1;
 308
 309	return 1;
 310}
 311
 312__setup("nofpu", fpu_disable);
 313
 314#else /* !CONFIG_MIPS_FP_SUPPORT */
 315
 316#define mips_fpu_disabled 1
 317
 318static inline unsigned long cpu_get_fpu_id(void)
 319{
 320	return FPIR_IMP_NONE;
 321}
 322
 323static inline int __cpu_has_fpu(void)
 324{
 325	return 0;
 326}
 327
 328static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
 329{
 330	/* no-op */
 331}
 332
 333static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
 334{
 335	/* no-op */
 336}
 337
 338#endif /* CONFIG_MIPS_FP_SUPPORT */
 339
 340static inline unsigned long cpu_get_msa_id(void)
 341{
 342	unsigned long status, msa_id;
 343
 344	status = read_c0_status();
 345	__enable_fpu(FPU_64BIT);
 346	enable_msa();
 347	msa_id = read_msa_ir();
 348	disable_msa();
 349	write_c0_status(status);
 350	return msa_id;
 351}
 352
 353static int mips_dsp_disabled;
 354
 355static int __init dsp_disable(char *s)
 356{
 357	cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
 358	mips_dsp_disabled = 1;
 359
 360	return 1;
 361}
 362
 363__setup("nodsp", dsp_disable);
 364
 365static int mips_htw_disabled;
 366
 367static int __init htw_disable(char *s)
 368{
 369	mips_htw_disabled = 1;
 370	cpu_data[0].options &= ~MIPS_CPU_HTW;
 371	write_c0_pwctl(read_c0_pwctl() &
 372		       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
 373
 374	return 1;
 375}
 376
 377__setup("nohtw", htw_disable);
 378
 379static int mips_ftlb_disabled;
 380static int mips_has_ftlb_configured;
 381
 382enum ftlb_flags {
 383	FTLB_EN		= 1 << 0,
 384	FTLB_SET_PROB	= 1 << 1,
 385};
 386
 387static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags);
 388
 389static int __init ftlb_disable(char *s)
 390{
 391	unsigned int config4, mmuextdef;
 392
 393	/*
 394	 * If the core hasn't done any FTLB configuration, there is nothing
 395	 * for us to do here.
 396	 */
 397	if (!mips_has_ftlb_configured)
 398		return 1;
 399
 400	/* Disable it in the boot cpu */
 401	if (set_ftlb_enable(&cpu_data[0], 0)) {
 402		pr_warn("Can't turn FTLB off\n");
 403		return 1;
 404	}
 405
 406	config4 = read_c0_config4();
 407
 408	/* Check that FTLB has been disabled */
 409	mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 410	/* MMUSIZEEXT == VTLB ON, FTLB OFF */
 411	if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
 412		/* This should never happen */
 413		pr_warn("FTLB could not be disabled!\n");
 414		return 1;
 415	}
 416
 417	mips_ftlb_disabled = 1;
 418	mips_has_ftlb_configured = 0;
 419
 420	/*
 421	 * noftlb is mainly used for debug purposes so print
 422	 * an informative message instead of using pr_debug()
 423	 */
 424	pr_info("FTLB has been disabled\n");
 425
 426	/*
 427	 * Some of these bits are duplicated in the decode_config4.
 428	 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
 429	 * once FTLB has been disabled so undo what decode_config4 did.
 430	 */
 431	cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
 432			       cpu_data[0].tlbsizeftlbsets;
 433	cpu_data[0].tlbsizeftlbsets = 0;
 434	cpu_data[0].tlbsizeftlbways = 0;
 435
 436	return 1;
 437}
 438
 439__setup("noftlb", ftlb_disable);
 440
 441/*
 442 * Check if the CPU has per tc perf counters
 443 */
 444static inline void cpu_set_mt_per_tc_perf(struct cpuinfo_mips *c)
 445{
 446	if (read_c0_config7() & MTI_CONF7_PTC)
 447		c->options |= MIPS_CPU_MT_PER_TC_PERF_COUNTERS;
 448}
 449
 450static inline void check_errata(void)
 451{
 452	struct cpuinfo_mips *c = &current_cpu_data;
 453
 454	switch (current_cpu_type()) {
 455	case CPU_34K:
 456		/*
 457		 * Erratum "RPS May Cause Incorrect Instruction Execution"
 458		 * This code only handles VPE0, any SMP/RTOS code
 459		 * making use of VPE1 will be responsable for that VPE.
 460		 */
 461		if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
 462			write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
 463		break;
 464	default:
 465		break;
 466	}
 467}
 468
 469void __init check_bugs32(void)
 470{
 471	check_errata();
 472}
 473
 474/*
 475 * Probe whether cpu has config register by trying to play with
 476 * alternate cache bit and see whether it matters.
 477 * It's used by cpu_probe to distinguish between R3000A and R3081.
 478 */
 479static inline int cpu_has_confreg(void)
 480{
 481#ifdef CONFIG_CPU_R3000
 482	extern unsigned long r3k_cache_size(unsigned long);
 483	unsigned long size1, size2;
 484	unsigned long cfg = read_c0_conf();
 485
 486	size1 = r3k_cache_size(ST0_ISC);
 487	write_c0_conf(cfg ^ R30XX_CONF_AC);
 488	size2 = r3k_cache_size(ST0_ISC);
 489	write_c0_conf(cfg);
 490	return size1 != size2;
 491#else
 492	return 0;
 493#endif
 494}
 495
 496static inline void set_elf_platform(int cpu, const char *plat)
 497{
 498	if (cpu == 0)
 499		__elf_platform = plat;
 500}
 501
 502static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
 503{
 504#ifdef __NEED_VMBITS_PROBE
 505	write_c0_entryhi(0x3fffffffffffe000ULL);
 506	back_to_back_c0_hazard();
 507	c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
 508#endif
 509}
 510
 511static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
 512{
 513	switch (isa) {
 514	case MIPS_CPU_ISA_M64R2:
 515		c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
 516		/* fall through */
 517	case MIPS_CPU_ISA_M64R1:
 518		c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
 519		/* fall through */
 520	case MIPS_CPU_ISA_V:
 521		c->isa_level |= MIPS_CPU_ISA_V;
 522		/* fall through */
 523	case MIPS_CPU_ISA_IV:
 524		c->isa_level |= MIPS_CPU_ISA_IV;
 525		/* fall through */
 526	case MIPS_CPU_ISA_III:
 527		c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
 528		break;
 529
 530	/* R6 incompatible with everything else */
 531	case MIPS_CPU_ISA_M64R6:
 532		c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
 533		/* fall through */
 534	case MIPS_CPU_ISA_M32R6:
 535		c->isa_level |= MIPS_CPU_ISA_M32R6;
 536		/* Break here so we don't add incompatible ISAs */
 537		break;
 538	case MIPS_CPU_ISA_M32R2:
 539		c->isa_level |= MIPS_CPU_ISA_M32R2;
 540		/* fall through */
 541	case MIPS_CPU_ISA_M32R1:
 542		c->isa_level |= MIPS_CPU_ISA_M32R1;
 543		/* fall through */
 544	case MIPS_CPU_ISA_II:
 545		c->isa_level |= MIPS_CPU_ISA_II;
 546		break;
 547	}
 548}
 549
 550static char unknown_isa[] = KERN_ERR \
 551	"Unsupported ISA type, c0.config0: %d.";
 552
 553static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
 554{
 555
 556	unsigned int probability = c->tlbsize / c->tlbsizevtlb;
 557
 558	/*
 559	 * 0 = All TLBWR instructions go to FTLB
 560	 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
 561	 * FTLB and 1 goes to the VTLB.
 562	 * 2 = 7:1: As above with 7:1 ratio.
 563	 * 3 = 3:1: As above with 3:1 ratio.
 564	 *
 565	 * Use the linear midpoint as the probability threshold.
 566	 */
 567	if (probability >= 12)
 568		return 1;
 569	else if (probability >= 6)
 570		return 2;
 571	else
 572		/*
 573		 * So FTLB is less than 4 times bigger than VTLB.
 574		 * A 3:1 ratio can still be useful though.
 575		 */
 576		return 3;
 577}
 578
 579static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags)
 580{
 581	unsigned int config;
 582
 583	/* It's implementation dependent how the FTLB can be enabled */
 584	switch (c->cputype) {
 585	case CPU_PROAPTIV:
 586	case CPU_P5600:
 587	case CPU_P6600:
 588		/* proAptiv & related cores use Config6 to enable the FTLB */
 589		config = read_c0_config6();
 590
 591		if (flags & FTLB_EN)
 592			config |= MIPS_CONF6_FTLBEN;
 593		else
 594			config &= ~MIPS_CONF6_FTLBEN;
 595
 596		if (flags & FTLB_SET_PROB) {
 597			config &= ~(3 << MIPS_CONF6_FTLBP_SHIFT);
 598			config |= calculate_ftlb_probability(c)
 599				  << MIPS_CONF6_FTLBP_SHIFT;
 600		}
 601
 602		write_c0_config6(config);
 603		back_to_back_c0_hazard();
 604		break;
 605	case CPU_I6400:
 606	case CPU_I6500:
 607		/* There's no way to disable the FTLB */
 608		if (!(flags & FTLB_EN))
 609			return 1;
 610		return 0;
 611	case CPU_LOONGSON3:
 612		/* Flush ITLB, DTLB, VTLB and FTLB */
 613		write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB |
 614			      LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB);
 615		/* Loongson-3 cores use Config6 to enable the FTLB */
 616		config = read_c0_config6();
 617		if (flags & FTLB_EN)
 618			/* Enable FTLB */
 619			write_c0_config6(config & ~MIPS_CONF6_FTLBDIS);
 620		else
 621			/* Disable FTLB */
 622			write_c0_config6(config | MIPS_CONF6_FTLBDIS);
 623		break;
 624	default:
 625		return 1;
 626	}
 627
 628	return 0;
 629}
 630
 631static inline unsigned int decode_config0(struct cpuinfo_mips *c)
 632{
 633	unsigned int config0;
 634	int isa, mt;
 635
 636	config0 = read_c0_config();
 637
 638	/*
 639	 * Look for Standard TLB or Dual VTLB and FTLB
 640	 */
 641	mt = config0 & MIPS_CONF_MT;
 642	if (mt == MIPS_CONF_MT_TLB)
 643		c->options |= MIPS_CPU_TLB;
 644	else if (mt == MIPS_CONF_MT_FTLB)
 645		c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
 646
 647	isa = (config0 & MIPS_CONF_AT) >> 13;
 648	switch (isa) {
 649	case 0:
 650		switch ((config0 & MIPS_CONF_AR) >> 10) {
 651		case 0:
 652			set_isa(c, MIPS_CPU_ISA_M32R1);
 653			break;
 654		case 1:
 655			set_isa(c, MIPS_CPU_ISA_M32R2);
 656			break;
 657		case 2:
 658			set_isa(c, MIPS_CPU_ISA_M32R6);
 659			break;
 660		default:
 661			goto unknown;
 662		}
 663		break;
 664	case 2:
 665		switch ((config0 & MIPS_CONF_AR) >> 10) {
 666		case 0:
 667			set_isa(c, MIPS_CPU_ISA_M64R1);
 668			break;
 669		case 1:
 670			set_isa(c, MIPS_CPU_ISA_M64R2);
 671			break;
 672		case 2:
 673			set_isa(c, MIPS_CPU_ISA_M64R6);
 674			break;
 675		default:
 676			goto unknown;
 677		}
 678		break;
 679	default:
 680		goto unknown;
 681	}
 682
 683	return config0 & MIPS_CONF_M;
 684
 685unknown:
 686	panic(unknown_isa, config0);
 687}
 688
 689static inline unsigned int decode_config1(struct cpuinfo_mips *c)
 690{
 691	unsigned int config1;
 692
 693	config1 = read_c0_config1();
 694
 695	if (config1 & MIPS_CONF1_MD)
 696		c->ases |= MIPS_ASE_MDMX;
 697	if (config1 & MIPS_CONF1_PC)
 698		c->options |= MIPS_CPU_PERF;
 699	if (config1 & MIPS_CONF1_WR)
 700		c->options |= MIPS_CPU_WATCH;
 701	if (config1 & MIPS_CONF1_CA)
 702		c->ases |= MIPS_ASE_MIPS16;
 703	if (config1 & MIPS_CONF1_EP)
 704		c->options |= MIPS_CPU_EJTAG;
 705	if (config1 & MIPS_CONF1_FP) {
 706		c->options |= MIPS_CPU_FPU;
 707		c->options |= MIPS_CPU_32FPR;
 708	}
 709	if (cpu_has_tlb) {
 710		c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
 711		c->tlbsizevtlb = c->tlbsize;
 712		c->tlbsizeftlbsets = 0;
 713	}
 714
 715	return config1 & MIPS_CONF_M;
 716}
 717
 718static inline unsigned int decode_config2(struct cpuinfo_mips *c)
 719{
 720	unsigned int config2;
 721
 722	config2 = read_c0_config2();
 723
 724	if (config2 & MIPS_CONF2_SL)
 725		c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
 726
 727	return config2 & MIPS_CONF_M;
 728}
 729
 730static inline unsigned int decode_config3(struct cpuinfo_mips *c)
 731{
 732	unsigned int config3;
 733
 734	config3 = read_c0_config3();
 735
 736	if (config3 & MIPS_CONF3_SM) {
 737		c->ases |= MIPS_ASE_SMARTMIPS;
 738		c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC;
 739	}
 740	if (config3 & MIPS_CONF3_RXI)
 741		c->options |= MIPS_CPU_RIXI;
 742	if (config3 & MIPS_CONF3_CTXTC)
 743		c->options |= MIPS_CPU_CTXTC;
 744	if (config3 & MIPS_CONF3_DSP)
 745		c->ases |= MIPS_ASE_DSP;
 746	if (config3 & MIPS_CONF3_DSP2P) {
 747		c->ases |= MIPS_ASE_DSP2P;
 748		if (cpu_has_mips_r6)
 749			c->ases |= MIPS_ASE_DSP3;
 750	}
 751	if (config3 & MIPS_CONF3_VINT)
 752		c->options |= MIPS_CPU_VINT;
 753	if (config3 & MIPS_CONF3_VEIC)
 754		c->options |= MIPS_CPU_VEIC;
 755	if (config3 & MIPS_CONF3_LPA)
 756		c->options |= MIPS_CPU_LPA;
 757	if (config3 & MIPS_CONF3_MT)
 758		c->ases |= MIPS_ASE_MIPSMT;
 759	if (config3 & MIPS_CONF3_ULRI)
 760		c->options |= MIPS_CPU_ULRI;
 761	if (config3 & MIPS_CONF3_ISA)
 762		c->options |= MIPS_CPU_MICROMIPS;
 763	if (config3 & MIPS_CONF3_VZ)
 764		c->ases |= MIPS_ASE_VZ;
 765	if (config3 & MIPS_CONF3_SC)
 766		c->options |= MIPS_CPU_SEGMENTS;
 767	if (config3 & MIPS_CONF3_BI)
 768		c->options |= MIPS_CPU_BADINSTR;
 769	if (config3 & MIPS_CONF3_BP)
 770		c->options |= MIPS_CPU_BADINSTRP;
 771	if (config3 & MIPS_CONF3_MSA)
 772		c->ases |= MIPS_ASE_MSA;
 773	if (config3 & MIPS_CONF3_PW) {
 774		c->htw_seq = 0;
 775		c->options |= MIPS_CPU_HTW;
 776	}
 777	if (config3 & MIPS_CONF3_CDMM)
 778		c->options |= MIPS_CPU_CDMM;
 779	if (config3 & MIPS_CONF3_SP)
 780		c->options |= MIPS_CPU_SP;
 781
 782	return config3 & MIPS_CONF_M;
 783}
 784
 785static inline unsigned int decode_config4(struct cpuinfo_mips *c)
 786{
 787	unsigned int config4;
 788	unsigned int newcf4;
 789	unsigned int mmuextdef;
 790	unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
 791	unsigned long asid_mask;
 792
 793	config4 = read_c0_config4();
 794
 795	if (cpu_has_tlb) {
 796		if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
 797			c->options |= MIPS_CPU_TLBINV;
 798
 799		/*
 800		 * R6 has dropped the MMUExtDef field from config4.
 801		 * On R6 the fields always describe the FTLB, and only if it is
 802		 * present according to Config.MT.
 803		 */
 804		if (!cpu_has_mips_r6)
 805			mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 806		else if (cpu_has_ftlb)
 807			mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
 808		else
 809			mmuextdef = 0;
 810
 811		switch (mmuextdef) {
 812		case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
 813			c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
 814			c->tlbsizevtlb = c->tlbsize;
 815			break;
 816		case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
 817			c->tlbsizevtlb +=
 818				((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
 819				  MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
 820			c->tlbsize = c->tlbsizevtlb;
 821			ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
 822			/* fall through */
 823		case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
 824			if (mips_ftlb_disabled)
 825				break;
 826			newcf4 = (config4 & ~ftlb_page) |
 827				(page_size_ftlb(mmuextdef) <<
 828				 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
 829			write_c0_config4(newcf4);
 830			back_to_back_c0_hazard();
 831			config4 = read_c0_config4();
 832			if (config4 != newcf4) {
 833				pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
 834				       PAGE_SIZE, config4);
 835				/* Switch FTLB off */
 836				set_ftlb_enable(c, 0);
 837				mips_ftlb_disabled = 1;
 838				break;
 839			}
 840			c->tlbsizeftlbsets = 1 <<
 841				((config4 & MIPS_CONF4_FTLBSETS) >>
 842				 MIPS_CONF4_FTLBSETS_SHIFT);
 843			c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
 844					      MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
 845			c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
 846			mips_has_ftlb_configured = 1;
 847			break;
 848		}
 849	}
 850
 851	c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
 852				>> MIPS_CONF4_KSCREXIST_SHIFT;
 853
 854	asid_mask = MIPS_ENTRYHI_ASID;
 855	if (config4 & MIPS_CONF4_AE)
 856		asid_mask |= MIPS_ENTRYHI_ASIDX;
 857	set_cpu_asid_mask(c, asid_mask);
 858
 859	/*
 860	 * Warn if the computed ASID mask doesn't match the mask the kernel
 861	 * is built for. This may indicate either a serious problem or an
 862	 * easy optimisation opportunity, but either way should be addressed.
 863	 */
 864	WARN_ON(asid_mask != cpu_asid_mask(c));
 865
 866	return config4 & MIPS_CONF_M;
 867}
 868
 869static inline unsigned int decode_config5(struct cpuinfo_mips *c)
 870{
 871	unsigned int config5, max_mmid_width;
 872	unsigned long asid_mask;
 873
 874	config5 = read_c0_config5();
 875	config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
 876
 877	if (cpu_has_mips_r6) {
 878		if (!__builtin_constant_p(cpu_has_mmid) || cpu_has_mmid)
 879			config5 |= MIPS_CONF5_MI;
 880		else
 881			config5 &= ~MIPS_CONF5_MI;
 882	}
 883
 884	write_c0_config5(config5);
 885
 886	if (config5 & MIPS_CONF5_EVA)
 887		c->options |= MIPS_CPU_EVA;
 888	if (config5 & MIPS_CONF5_MRP)
 889		c->options |= MIPS_CPU_MAAR;
 890	if (config5 & MIPS_CONF5_LLB)
 891		c->options |= MIPS_CPU_RW_LLB;
 892	if (config5 & MIPS_CONF5_MVH)
 893		c->options |= MIPS_CPU_MVH;
 894	if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP))
 895		c->options |= MIPS_CPU_VP;
 896	if (config5 & MIPS_CONF5_CA2)
 897		c->ases |= MIPS_ASE_MIPS16E2;
 898
 899	if (config5 & MIPS_CONF5_CRCP)
 900		elf_hwcap |= HWCAP_MIPS_CRC32;
 901
 902	if (cpu_has_mips_r6) {
 903		/* Ensure the write to config5 above takes effect */
 904		back_to_back_c0_hazard();
 905
 906		/* Check whether we successfully enabled MMID support */
 907		config5 = read_c0_config5();
 908		if (config5 & MIPS_CONF5_MI)
 909			c->options |= MIPS_CPU_MMID;
 910
 911		/*
 912		 * Warn if we've hardcoded cpu_has_mmid to a value unsuitable
 913		 * for the CPU we're running on, or if CPUs in an SMP system
 914		 * have inconsistent MMID support.
 915		 */
 916		WARN_ON(!!cpu_has_mmid != !!(config5 & MIPS_CONF5_MI));
 917
 918		if (cpu_has_mmid) {
 919			write_c0_memorymapid(~0ul);
 920			back_to_back_c0_hazard();
 921			asid_mask = read_c0_memorymapid();
 922
 923			/*
 924			 * We maintain a bitmap to track MMID allocation, and
 925			 * need a sensible upper bound on the size of that
 926			 * bitmap. The initial CPU with MMID support (I6500)
 927			 * supports 16 bit MMIDs, which gives us an 8KiB
 928			 * bitmap. The architecture recommends that hardware
 929			 * support 32 bit MMIDs, which would give us a 512MiB
 930			 * bitmap - that's too big in most cases.
 931			 *
 932			 * Cap MMID width at 16 bits for now & we can revisit
 933			 * this if & when hardware supports anything wider.
 934			 */
 935			max_mmid_width = 16;
 936			if (asid_mask > GENMASK(max_mmid_width - 1, 0)) {
 937				pr_info("Capping MMID width at %d bits",
 938					max_mmid_width);
 939				asid_mask = GENMASK(max_mmid_width - 1, 0);
 940			}
 941
 942			set_cpu_asid_mask(c, asid_mask);
 943		}
 944	}
 945
 946	return config5 & MIPS_CONF_M;
 947}
 948
 949static void decode_configs(struct cpuinfo_mips *c)
 950{
 951	int ok;
 952
 953	/* MIPS32 or MIPS64 compliant CPU.  */
 954	c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
 955		     MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
 956
 957	c->scache.flags = MIPS_CACHE_NOT_PRESENT;
 958
 959	/* Enable FTLB if present and not disabled */
 960	set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN);
 961
 962	ok = decode_config0(c);			/* Read Config registers.  */
 963	BUG_ON(!ok);				/* Arch spec violation!	 */
 964	if (ok)
 965		ok = decode_config1(c);
 966	if (ok)
 967		ok = decode_config2(c);
 968	if (ok)
 969		ok = decode_config3(c);
 970	if (ok)
 971		ok = decode_config4(c);
 972	if (ok)
 973		ok = decode_config5(c);
 974
 975	/* Probe the EBase.WG bit */
 976	if (cpu_has_mips_r2_r6) {
 977		u64 ebase;
 978		unsigned int status;
 979
 980		/* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */
 981		ebase = cpu_has_mips64r6 ? read_c0_ebase_64()
 982					 : (s32)read_c0_ebase();
 983		if (ebase & MIPS_EBASE_WG) {
 984			/* WG bit already set, we can avoid the clumsy probe */
 985			c->options |= MIPS_CPU_EBASE_WG;
 986		} else {
 987			/* Its UNDEFINED to change EBase while BEV=0 */
 988			status = read_c0_status();
 989			write_c0_status(status | ST0_BEV);
 990			irq_enable_hazard();
 991			/*
 992			 * On pre-r6 cores, this may well clobber the upper bits
 993			 * of EBase. This is hard to avoid without potentially
 994			 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit.
 995			 */
 996			if (cpu_has_mips64r6)
 997				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
 998			else
 999				write_c0_ebase(ebase | MIPS_EBASE_WG);
1000			back_to_back_c0_hazard();
1001			/* Restore BEV */
1002			write_c0_status(status);
1003			if (read_c0_ebase() & MIPS_EBASE_WG) {
1004				c->options |= MIPS_CPU_EBASE_WG;
1005				write_c0_ebase(ebase);
1006			}
1007		}
1008	}
1009
1010	/* configure the FTLB write probability */
1011	set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB);
1012
1013	mips_probe_watch_registers(c);
1014
1015#ifndef CONFIG_MIPS_CPS
1016	if (cpu_has_mips_r2_r6) {
1017		unsigned int core;
1018
1019		core = get_ebase_cpunum();
1020		if (cpu_has_mipsmt)
1021			core >>= fls(core_nvpes()) - 1;
1022		cpu_set_core(c, core);
1023	}
1024#endif
1025}
1026
1027/*
1028 * Probe for certain guest capabilities by writing config bits and reading back.
1029 * Finally write back the original value.
1030 */
1031#define probe_gc0_config(name, maxconf, bits)				\
1032do {									\
1033	unsigned int tmp;						\
1034	tmp = read_gc0_##name();					\
1035	write_gc0_##name(tmp | (bits));					\
1036	back_to_back_c0_hazard();					\
1037	maxconf = read_gc0_##name();					\
1038	write_gc0_##name(tmp);						\
1039} while (0)
1040
1041/*
1042 * Probe for dynamic guest capabilities by changing certain config bits and
1043 * reading back to see if they change. Finally write back the original value.
1044 */
1045#define probe_gc0_config_dyn(name, maxconf, dynconf, bits)		\
1046do {									\
1047	maxconf = read_gc0_##name();					\
1048	write_gc0_##name(maxconf ^ (bits));				\
1049	back_to_back_c0_hazard();					\
1050	dynconf = maxconf ^ read_gc0_##name();				\
1051	write_gc0_##name(maxconf);					\
1052	maxconf |= dynconf;						\
1053} while (0)
1054
1055static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c)
1056{
1057	unsigned int config0;
1058
1059	probe_gc0_config(config, config0, MIPS_CONF_M);
1060
1061	if (config0 & MIPS_CONF_M)
1062		c->guest.conf |= BIT(1);
1063	return config0 & MIPS_CONF_M;
1064}
1065
1066static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c)
1067{
1068	unsigned int config1, config1_dyn;
1069
1070	probe_gc0_config_dyn(config1, config1, config1_dyn,
1071			     MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR |
1072			     MIPS_CONF1_FP);
1073
1074	if (config1 & MIPS_CONF1_FP)
1075		c->guest.options |= MIPS_CPU_FPU;
1076	if (config1_dyn & MIPS_CONF1_FP)
1077		c->guest.options_dyn |= MIPS_CPU_FPU;
1078
1079	if (config1 & MIPS_CONF1_WR)
1080		c->guest.options |= MIPS_CPU_WATCH;
1081	if (config1_dyn & MIPS_CONF1_WR)
1082		c->guest.options_dyn |= MIPS_CPU_WATCH;
1083
1084	if (config1 & MIPS_CONF1_PC)
1085		c->guest.options |= MIPS_CPU_PERF;
1086	if (config1_dyn & MIPS_CONF1_PC)
1087		c->guest.options_dyn |= MIPS_CPU_PERF;
1088
1089	if (config1 & MIPS_CONF_M)
1090		c->guest.conf |= BIT(2);
1091	return config1 & MIPS_CONF_M;
1092}
1093
1094static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c)
1095{
1096	unsigned int config2;
1097
1098	probe_gc0_config(config2, config2, MIPS_CONF_M);
1099
1100	if (config2 & MIPS_CONF_M)
1101		c->guest.conf |= BIT(3);
1102	return config2 & MIPS_CONF_M;
1103}
1104
1105static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c)
1106{
1107	unsigned int config3, config3_dyn;
1108
1109	probe_gc0_config_dyn(config3, config3, config3_dyn,
1110			     MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_ULRI |
1111			     MIPS_CONF3_CTXTC);
1112
1113	if (config3 & MIPS_CONF3_CTXTC)
1114		c->guest.options |= MIPS_CPU_CTXTC;
1115	if (config3_dyn & MIPS_CONF3_CTXTC)
1116		c->guest.options_dyn |= MIPS_CPU_CTXTC;
1117
1118	if (config3 & MIPS_CONF3_PW)
1119		c->guest.options |= MIPS_CPU_HTW;
1120
1121	if (config3 & MIPS_CONF3_ULRI)
1122		c->guest.options |= MIPS_CPU_ULRI;
1123
1124	if (config3 & MIPS_CONF3_SC)
1125		c->guest.options |= MIPS_CPU_SEGMENTS;
1126
1127	if (config3 & MIPS_CONF3_BI)
1128		c->guest.options |= MIPS_CPU_BADINSTR;
1129	if (config3 & MIPS_CONF3_BP)
1130		c->guest.options |= MIPS_CPU_BADINSTRP;
1131
1132	if (config3 & MIPS_CONF3_MSA)
1133		c->guest.ases |= MIPS_ASE_MSA;
1134	if (config3_dyn & MIPS_CONF3_MSA)
1135		c->guest.ases_dyn |= MIPS_ASE_MSA;
1136
1137	if (config3 & MIPS_CONF_M)
1138		c->guest.conf |= BIT(4);
1139	return config3 & MIPS_CONF_M;
1140}
1141
1142static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c)
1143{
1144	unsigned int config4;
1145
1146	probe_gc0_config(config4, config4,
1147			 MIPS_CONF_M | MIPS_CONF4_KSCREXIST);
1148
1149	c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
1150				>> MIPS_CONF4_KSCREXIST_SHIFT;
1151
1152	if (config4 & MIPS_CONF_M)
1153		c->guest.conf |= BIT(5);
1154	return config4 & MIPS_CONF_M;
1155}
1156
1157static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c)
1158{
1159	unsigned int config5, config5_dyn;
1160
1161	probe_gc0_config_dyn(config5, config5, config5_dyn,
1162			 MIPS_CONF_M | MIPS_CONF5_MVH | MIPS_CONF5_MRP);
1163
1164	if (config5 & MIPS_CONF5_MRP)
1165		c->guest.options |= MIPS_CPU_MAAR;
1166	if (config5_dyn & MIPS_CONF5_MRP)
1167		c->guest.options_dyn |= MIPS_CPU_MAAR;
1168
1169	if (config5 & MIPS_CONF5_LLB)
1170		c->guest.options |= MIPS_CPU_RW_LLB;
1171
1172	if (config5 & MIPS_CONF5_MVH)
1173		c->guest.options |= MIPS_CPU_MVH;
1174
1175	if (config5 & MIPS_CONF_M)
1176		c->guest.conf |= BIT(6);
1177	return config5 & MIPS_CONF_M;
1178}
1179
1180static inline void decode_guest_configs(struct cpuinfo_mips *c)
1181{
1182	unsigned int ok;
1183
1184	ok = decode_guest_config0(c);
1185	if (ok)
1186		ok = decode_guest_config1(c);
1187	if (ok)
1188		ok = decode_guest_config2(c);
1189	if (ok)
1190		ok = decode_guest_config3(c);
1191	if (ok)
1192		ok = decode_guest_config4(c);
1193	if (ok)
1194		decode_guest_config5(c);
1195}
1196
1197static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c)
1198{
1199	unsigned int guestctl0, temp;
1200
1201	guestctl0 = read_c0_guestctl0();
1202
1203	if (guestctl0 & MIPS_GCTL0_G0E)
1204		c->options |= MIPS_CPU_GUESTCTL0EXT;
1205	if (guestctl0 & MIPS_GCTL0_G1)
1206		c->options |= MIPS_CPU_GUESTCTL1;
1207	if (guestctl0 & MIPS_GCTL0_G2)
1208		c->options |= MIPS_CPU_GUESTCTL2;
1209	if (!(guestctl0 & MIPS_GCTL0_RAD)) {
1210		c->options |= MIPS_CPU_GUESTID;
1211
1212		/*
1213		 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0
1214		 * first, otherwise all data accesses will be fully virtualised
1215		 * as if they were performed by guest mode.
1216		 */
1217		write_c0_guestctl1(0);
1218		tlbw_use_hazard();
1219
1220		write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG);
1221		back_to_back_c0_hazard();
1222		temp = read_c0_guestctl0();
1223
1224		if (temp & MIPS_GCTL0_DRG) {
1225			write_c0_guestctl0(guestctl0);
1226			c->options |= MIPS_CPU_DRG;
1227		}
1228	}
1229}
1230
1231static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c)
1232{
1233	if (cpu_has_guestid) {
1234		/* determine the number of bits of GuestID available */
1235		write_c0_guestctl1(MIPS_GCTL1_ID);
1236		back_to_back_c0_hazard();
1237		c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID)
1238						>> MIPS_GCTL1_ID_SHIFT;
1239		write_c0_guestctl1(0);
1240	}
1241}
1242
1243static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c)
1244{
1245	/* determine the number of bits of GTOffset available */
1246	write_c0_gtoffset(0xffffffff);
1247	back_to_back_c0_hazard();
1248	c->gtoffset_mask = read_c0_gtoffset();
1249	write_c0_gtoffset(0);
1250}
1251
1252static inline void cpu_probe_vz(struct cpuinfo_mips *c)
1253{
1254	cpu_probe_guestctl0(c);
1255	if (cpu_has_guestctl1)
1256		cpu_probe_guestctl1(c);
1257
1258	cpu_probe_gtoffset(c);
1259
1260	decode_guest_configs(c);
1261}
1262
1263#define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
1264		| MIPS_CPU_COUNTER)
1265
1266static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
1267{
1268	switch (c->processor_id & PRID_IMP_MASK) {
1269	case PRID_IMP_R2000:
1270		c->cputype = CPU_R2000;
1271		__cpu_name[cpu] = "R2000";
1272		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1273		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1274			     MIPS_CPU_NOFPUEX;
1275		if (__cpu_has_fpu())
1276			c->options |= MIPS_CPU_FPU;
1277		c->tlbsize = 64;
1278		break;
1279	case PRID_IMP_R3000:
1280		if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
1281			if (cpu_has_confreg()) {
1282				c->cputype = CPU_R3081E;
1283				__cpu_name[cpu] = "R3081";
1284			} else {
1285				c->cputype = CPU_R3000A;
1286				__cpu_name[cpu] = "R3000A";
1287			}
1288		} else {
1289			c->cputype = CPU_R3000;
1290			__cpu_name[cpu] = "R3000";
1291		}
1292		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1293		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1294			     MIPS_CPU_NOFPUEX;
1295		if (__cpu_has_fpu())
1296			c->options |= MIPS_CPU_FPU;
1297		c->tlbsize = 64;
1298		break;
1299	case PRID_IMP_R4000:
1300		if (read_c0_config() & CONF_SC) {
1301			if ((c->processor_id & PRID_REV_MASK) >=
1302			    PRID_REV_R4400) {
1303				c->cputype = CPU_R4400PC;
1304				__cpu_name[cpu] = "R4400PC";
1305			} else {
1306				c->cputype = CPU_R4000PC;
1307				__cpu_name[cpu] = "R4000PC";
1308			}
1309		} else {
1310			int cca = read_c0_config() & CONF_CM_CMASK;
1311			int mc;
1312
1313			/*
1314			 * SC and MC versions can't be reliably told apart,
1315			 * but only the latter support coherent caching
1316			 * modes so assume the firmware has set the KSEG0
1317			 * coherency attribute reasonably (if uncached, we
1318			 * assume SC).
1319			 */
1320			switch (cca) {
1321			case CONF_CM_CACHABLE_CE:
1322			case CONF_CM_CACHABLE_COW:
1323			case CONF_CM_CACHABLE_CUW:
1324				mc = 1;
1325				break;
1326			default:
1327				mc = 0;
1328				break;
1329			}
1330			if ((c->processor_id & PRID_REV_MASK) >=
1331			    PRID_REV_R4400) {
1332				c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
1333				__cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
1334			} else {
1335				c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
1336				__cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
1337			}
1338		}
1339
1340		set_isa(c, MIPS_CPU_ISA_III);
1341		c->fpu_msk31 |= FPU_CSR_CONDX;
1342		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1343			     MIPS_CPU_WATCH | MIPS_CPU_VCE |
1344			     MIPS_CPU_LLSC;
1345		c->tlbsize = 48;
1346		break;
1347	case PRID_IMP_VR41XX:
1348		set_isa(c, MIPS_CPU_ISA_III);
1349		c->fpu_msk31 |= FPU_CSR_CONDX;
1350		c->options = R4K_OPTS;
1351		c->tlbsize = 32;
1352		switch (c->processor_id & 0xf0) {
1353		case PRID_REV_VR4111:
1354			c->cputype = CPU_VR4111;
1355			__cpu_name[cpu] = "NEC VR4111";
1356			break;
1357		case PRID_REV_VR4121:
1358			c->cputype = CPU_VR4121;
1359			__cpu_name[cpu] = "NEC VR4121";
1360			break;
1361		case PRID_REV_VR4122:
1362			if ((c->processor_id & 0xf) < 0x3) {
1363				c->cputype = CPU_VR4122;
1364				__cpu_name[cpu] = "NEC VR4122";
1365			} else {
1366				c->cputype = CPU_VR4181A;
1367				__cpu_name[cpu] = "NEC VR4181A";
1368			}
1369			break;
1370		case PRID_REV_VR4130:
1371			if ((c->processor_id & 0xf) < 0x4) {
1372				c->cputype = CPU_VR4131;
1373				__cpu_name[cpu] = "NEC VR4131";
1374			} else {
1375				c->cputype = CPU_VR4133;
1376				c->options |= MIPS_CPU_LLSC;
1377				__cpu_name[cpu] = "NEC VR4133";
1378			}
1379			break;
1380		default:
1381			printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n");
1382			c->cputype = CPU_VR41XX;
1383			__cpu_name[cpu] = "NEC Vr41xx";
1384			break;
1385		}
1386		break;
 
 
 
 
 
 
 
 
 
1387	case PRID_IMP_R4600:
1388		c->cputype = CPU_R4600;
1389		__cpu_name[cpu] = "R4600";
1390		set_isa(c, MIPS_CPU_ISA_III);
1391		c->fpu_msk31 |= FPU_CSR_CONDX;
1392		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1393			     MIPS_CPU_LLSC;
1394		c->tlbsize = 48;
1395		break;
1396	#if 0
1397	case PRID_IMP_R4650:
1398		/*
1399		 * This processor doesn't have an MMU, so it's not
1400		 * "real easy" to run Linux on it. It is left purely
1401		 * for documentation.  Commented out because it shares
1402		 * it's c0_prid id number with the TX3900.
1403		 */
1404		c->cputype = CPU_R4650;
1405		__cpu_name[cpu] = "R4650";
1406		set_isa(c, MIPS_CPU_ISA_III);
1407		c->fpu_msk31 |= FPU_CSR_CONDX;
1408		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1409		c->tlbsize = 48;
1410		break;
1411	#endif
1412	case PRID_IMP_TX39:
1413		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1414		c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE;
1415
1416		if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) {
1417			c->cputype = CPU_TX3927;
1418			__cpu_name[cpu] = "TX3927";
1419			c->tlbsize = 64;
1420		} else {
1421			switch (c->processor_id & PRID_REV_MASK) {
1422			case PRID_REV_TX3912:
1423				c->cputype = CPU_TX3912;
1424				__cpu_name[cpu] = "TX3912";
1425				c->tlbsize = 32;
1426				break;
1427			case PRID_REV_TX3922:
1428				c->cputype = CPU_TX3922;
1429				__cpu_name[cpu] = "TX3922";
1430				c->tlbsize = 64;
1431				break;
1432			}
1433		}
1434		break;
1435	case PRID_IMP_R4700:
1436		c->cputype = CPU_R4700;
1437		__cpu_name[cpu] = "R4700";
1438		set_isa(c, MIPS_CPU_ISA_III);
1439		c->fpu_msk31 |= FPU_CSR_CONDX;
1440		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1441			     MIPS_CPU_LLSC;
1442		c->tlbsize = 48;
1443		break;
1444	case PRID_IMP_TX49:
1445		c->cputype = CPU_TX49XX;
1446		__cpu_name[cpu] = "R49XX";
1447		set_isa(c, MIPS_CPU_ISA_III);
1448		c->fpu_msk31 |= FPU_CSR_CONDX;
1449		c->options = R4K_OPTS | MIPS_CPU_LLSC;
1450		if (!(c->processor_id & 0x08))
1451			c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1452		c->tlbsize = 48;
1453		break;
1454	case PRID_IMP_R5000:
1455		c->cputype = CPU_R5000;
1456		__cpu_name[cpu] = "R5000";
1457		set_isa(c, MIPS_CPU_ISA_IV);
1458		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1459			     MIPS_CPU_LLSC;
1460		c->tlbsize = 48;
1461		break;
 
 
 
 
 
 
 
 
1462	case PRID_IMP_R5500:
1463		c->cputype = CPU_R5500;
1464		__cpu_name[cpu] = "R5500";
1465		set_isa(c, MIPS_CPU_ISA_IV);
1466		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1467			     MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1468		c->tlbsize = 48;
1469		break;
1470	case PRID_IMP_NEVADA:
1471		c->cputype = CPU_NEVADA;
1472		__cpu_name[cpu] = "Nevada";
1473		set_isa(c, MIPS_CPU_ISA_IV);
1474		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1475			     MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1476		c->tlbsize = 48;
1477		break;
1478	case PRID_IMP_RM7000:
1479		c->cputype = CPU_RM7000;
1480		__cpu_name[cpu] = "RM7000";
1481		set_isa(c, MIPS_CPU_ISA_IV);
1482		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1483			     MIPS_CPU_LLSC;
1484		/*
1485		 * Undocumented RM7000:	 Bit 29 in the info register of
1486		 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1487		 * entries.
1488		 *
1489		 * 29	   1 =>	   64 entry JTLB
1490		 *	   0 =>	   48 entry JTLB
1491		 */
1492		c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1493		break;
 
 
 
 
 
 
 
 
 
1494	case PRID_IMP_R10000:
1495		c->cputype = CPU_R10000;
1496		__cpu_name[cpu] = "R10000";
1497		set_isa(c, MIPS_CPU_ISA_IV);
1498		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1499			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1500			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1501			     MIPS_CPU_LLSC;
1502		c->tlbsize = 64;
1503		break;
1504	case PRID_IMP_R12000:
1505		c->cputype = CPU_R12000;
1506		__cpu_name[cpu] = "R12000";
1507		set_isa(c, MIPS_CPU_ISA_IV);
1508		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1509			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1510			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1511			     MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1512		c->tlbsize = 64;
1513		break;
1514	case PRID_IMP_R14000:
1515		if (((c->processor_id >> 4) & 0x0f) > 2) {
1516			c->cputype = CPU_R16000;
1517			__cpu_name[cpu] = "R16000";
1518		} else {
1519			c->cputype = CPU_R14000;
1520			__cpu_name[cpu] = "R14000";
1521		}
1522		set_isa(c, MIPS_CPU_ISA_IV);
1523		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1524			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1525			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1526			     MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1527		c->tlbsize = 64;
1528		break;
1529	case PRID_IMP_LOONGSON_64:  /* Loongson-2/3 */
1530		switch (c->processor_id & PRID_REV_MASK) {
1531		case PRID_REV_LOONGSON2E:
1532			c->cputype = CPU_LOONGSON2;
1533			__cpu_name[cpu] = "ICT Loongson-2";
1534			set_elf_platform(cpu, "loongson2e");
1535			set_isa(c, MIPS_CPU_ISA_III);
1536			c->fpu_msk31 |= FPU_CSR_CONDX;
1537			break;
1538		case PRID_REV_LOONGSON2F:
1539			c->cputype = CPU_LOONGSON2;
1540			__cpu_name[cpu] = "ICT Loongson-2";
1541			set_elf_platform(cpu, "loongson2f");
1542			set_isa(c, MIPS_CPU_ISA_III);
1543			c->fpu_msk31 |= FPU_CSR_CONDX;
1544			break;
1545		case PRID_REV_LOONGSON3A_R1:
1546			c->cputype = CPU_LOONGSON3;
1547			__cpu_name[cpu] = "ICT Loongson-3";
1548			set_elf_platform(cpu, "loongson3a");
1549			set_isa(c, MIPS_CPU_ISA_M64R1);
1550			c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1551				MIPS_ASE_LOONGSON_EXT);
1552			break;
1553		case PRID_REV_LOONGSON3B_R1:
1554		case PRID_REV_LOONGSON3B_R2:
1555			c->cputype = CPU_LOONGSON3;
1556			__cpu_name[cpu] = "ICT Loongson-3";
1557			set_elf_platform(cpu, "loongson3b");
1558			set_isa(c, MIPS_CPU_ISA_M64R1);
1559			c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1560				MIPS_ASE_LOONGSON_EXT);
1561			break;
1562		}
1563
1564		c->options = R4K_OPTS |
1565			     MIPS_CPU_FPU | MIPS_CPU_LLSC |
1566			     MIPS_CPU_32FPR;
1567		c->tlbsize = 64;
1568		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1569		break;
1570	case PRID_IMP_LOONGSON_32:  /* Loongson-1 */
1571		decode_configs(c);
1572
1573		c->cputype = CPU_LOONGSON1;
1574
1575		switch (c->processor_id & PRID_REV_MASK) {
1576		case PRID_REV_LOONGSON1B:
1577			__cpu_name[cpu] = "Loongson 1B";
1578			break;
1579		}
1580
1581		break;
1582	}
1583}
1584
1585static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1586{
1587	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1588	switch (c->processor_id & PRID_IMP_MASK) {
1589	case PRID_IMP_QEMU_GENERIC:
1590		c->writecombine = _CACHE_UNCACHED;
1591		c->cputype = CPU_QEMU_GENERIC;
1592		__cpu_name[cpu] = "MIPS GENERIC QEMU";
1593		break;
1594	case PRID_IMP_4KC:
1595		c->cputype = CPU_4KC;
1596		c->writecombine = _CACHE_UNCACHED;
1597		__cpu_name[cpu] = "MIPS 4Kc";
1598		break;
1599	case PRID_IMP_4KEC:
1600	case PRID_IMP_4KECR2:
1601		c->cputype = CPU_4KEC;
1602		c->writecombine = _CACHE_UNCACHED;
1603		__cpu_name[cpu] = "MIPS 4KEc";
1604		break;
1605	case PRID_IMP_4KSC:
1606	case PRID_IMP_4KSD:
1607		c->cputype = CPU_4KSC;
1608		c->writecombine = _CACHE_UNCACHED;
1609		__cpu_name[cpu] = "MIPS 4KSc";
1610		break;
1611	case PRID_IMP_5KC:
1612		c->cputype = CPU_5KC;
1613		c->writecombine = _CACHE_UNCACHED;
1614		__cpu_name[cpu] = "MIPS 5Kc";
1615		break;
1616	case PRID_IMP_5KE:
1617		c->cputype = CPU_5KE;
1618		c->writecombine = _CACHE_UNCACHED;
1619		__cpu_name[cpu] = "MIPS 5KE";
1620		break;
1621	case PRID_IMP_20KC:
1622		c->cputype = CPU_20KC;
1623		c->writecombine = _CACHE_UNCACHED;
1624		__cpu_name[cpu] = "MIPS 20Kc";
1625		break;
1626	case PRID_IMP_24K:
1627		c->cputype = CPU_24K;
1628		c->writecombine = _CACHE_UNCACHED;
1629		__cpu_name[cpu] = "MIPS 24Kc";
1630		break;
1631	case PRID_IMP_24KE:
1632		c->cputype = CPU_24K;
1633		c->writecombine = _CACHE_UNCACHED;
1634		__cpu_name[cpu] = "MIPS 24KEc";
1635		break;
1636	case PRID_IMP_25KF:
1637		c->cputype = CPU_25KF;
1638		c->writecombine = _CACHE_UNCACHED;
1639		__cpu_name[cpu] = "MIPS 25Kc";
1640		break;
1641	case PRID_IMP_34K:
1642		c->cputype = CPU_34K;
1643		c->writecombine = _CACHE_UNCACHED;
1644		__cpu_name[cpu] = "MIPS 34Kc";
1645		cpu_set_mt_per_tc_perf(c);
1646		break;
1647	case PRID_IMP_74K:
1648		c->cputype = CPU_74K;
1649		c->writecombine = _CACHE_UNCACHED;
1650		__cpu_name[cpu] = "MIPS 74Kc";
1651		break;
1652	case PRID_IMP_M14KC:
1653		c->cputype = CPU_M14KC;
1654		c->writecombine = _CACHE_UNCACHED;
1655		__cpu_name[cpu] = "MIPS M14Kc";
1656		break;
1657	case PRID_IMP_M14KEC:
1658		c->cputype = CPU_M14KEC;
1659		c->writecombine = _CACHE_UNCACHED;
1660		__cpu_name[cpu] = "MIPS M14KEc";
1661		break;
1662	case PRID_IMP_1004K:
1663		c->cputype = CPU_1004K;
1664		c->writecombine = _CACHE_UNCACHED;
1665		__cpu_name[cpu] = "MIPS 1004Kc";
1666		cpu_set_mt_per_tc_perf(c);
1667		break;
1668	case PRID_IMP_1074K:
1669		c->cputype = CPU_1074K;
1670		c->writecombine = _CACHE_UNCACHED;
1671		__cpu_name[cpu] = "MIPS 1074Kc";
1672		break;
1673	case PRID_IMP_INTERAPTIV_UP:
1674		c->cputype = CPU_INTERAPTIV;
1675		__cpu_name[cpu] = "MIPS interAptiv";
1676		cpu_set_mt_per_tc_perf(c);
1677		break;
1678	case PRID_IMP_INTERAPTIV_MP:
1679		c->cputype = CPU_INTERAPTIV;
1680		__cpu_name[cpu] = "MIPS interAptiv (multi)";
1681		cpu_set_mt_per_tc_perf(c);
1682		break;
1683	case PRID_IMP_PROAPTIV_UP:
1684		c->cputype = CPU_PROAPTIV;
1685		__cpu_name[cpu] = "MIPS proAptiv";
1686		break;
1687	case PRID_IMP_PROAPTIV_MP:
1688		c->cputype = CPU_PROAPTIV;
1689		__cpu_name[cpu] = "MIPS proAptiv (multi)";
1690		break;
1691	case PRID_IMP_P5600:
1692		c->cputype = CPU_P5600;
1693		__cpu_name[cpu] = "MIPS P5600";
1694		break;
1695	case PRID_IMP_P6600:
1696		c->cputype = CPU_P6600;
1697		__cpu_name[cpu] = "MIPS P6600";
1698		break;
1699	case PRID_IMP_I6400:
1700		c->cputype = CPU_I6400;
1701		__cpu_name[cpu] = "MIPS I6400";
1702		break;
1703	case PRID_IMP_I6500:
1704		c->cputype = CPU_I6500;
1705		__cpu_name[cpu] = "MIPS I6500";
1706		break;
1707	case PRID_IMP_M5150:
1708		c->cputype = CPU_M5150;
1709		__cpu_name[cpu] = "MIPS M5150";
1710		break;
1711	case PRID_IMP_M6250:
1712		c->cputype = CPU_M6250;
1713		__cpu_name[cpu] = "MIPS M6250";
1714		break;
1715	}
1716
1717	decode_configs(c);
1718
1719	spram_config();
1720
1721	switch (__get_cpu_type(c->cputype)) {
1722	case CPU_I6500:
1723		c->options |= MIPS_CPU_SHARED_FTLB_ENTRIES;
1724		/* fall-through */
1725	case CPU_I6400:
1726		c->options |= MIPS_CPU_SHARED_FTLB_RAM;
1727		/* fall-through */
1728	default:
1729		break;
1730	}
1731}
1732
1733static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1734{
1735	decode_configs(c);
1736	switch (c->processor_id & PRID_IMP_MASK) {
1737	case PRID_IMP_AU1_REV1:
1738	case PRID_IMP_AU1_REV2:
1739		c->cputype = CPU_ALCHEMY;
1740		switch ((c->processor_id >> 24) & 0xff) {
1741		case 0:
1742			__cpu_name[cpu] = "Au1000";
1743			break;
1744		case 1:
1745			__cpu_name[cpu] = "Au1500";
1746			break;
1747		case 2:
1748			__cpu_name[cpu] = "Au1100";
1749			break;
1750		case 3:
1751			__cpu_name[cpu] = "Au1550";
1752			break;
1753		case 4:
1754			__cpu_name[cpu] = "Au1200";
1755			if ((c->processor_id & PRID_REV_MASK) == 2)
1756				__cpu_name[cpu] = "Au1250";
1757			break;
1758		case 5:
1759			__cpu_name[cpu] = "Au1210";
1760			break;
1761		default:
1762			__cpu_name[cpu] = "Au1xxx";
1763			break;
1764		}
1765		break;
1766	}
1767}
1768
1769static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1770{
1771	decode_configs(c);
1772
1773	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1774	switch (c->processor_id & PRID_IMP_MASK) {
1775	case PRID_IMP_SB1:
1776		c->cputype = CPU_SB1;
1777		__cpu_name[cpu] = "SiByte SB1";
1778		/* FPU in pass1 is known to have issues. */
1779		if ((c->processor_id & PRID_REV_MASK) < 0x02)
1780			c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1781		break;
1782	case PRID_IMP_SB1A:
1783		c->cputype = CPU_SB1A;
1784		__cpu_name[cpu] = "SiByte SB1A";
1785		break;
1786	}
1787}
1788
1789static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1790{
1791	decode_configs(c);
1792	switch (c->processor_id & PRID_IMP_MASK) {
1793	case PRID_IMP_SR71000:
1794		c->cputype = CPU_SR71000;
1795		__cpu_name[cpu] = "Sandcraft SR71000";
1796		c->scache.ways = 8;
1797		c->tlbsize = 64;
1798		break;
1799	}
1800}
1801
1802static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1803{
1804	decode_configs(c);
1805	switch (c->processor_id & PRID_IMP_MASK) {
1806	case PRID_IMP_PR4450:
1807		c->cputype = CPU_PR4450;
1808		__cpu_name[cpu] = "Philips PR4450";
1809		set_isa(c, MIPS_CPU_ISA_M32R1);
1810		break;
1811	}
1812}
1813
1814static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1815{
1816	decode_configs(c);
1817	switch (c->processor_id & PRID_IMP_MASK) {
1818	case PRID_IMP_BMIPS32_REV4:
1819	case PRID_IMP_BMIPS32_REV8:
1820		c->cputype = CPU_BMIPS32;
1821		__cpu_name[cpu] = "Broadcom BMIPS32";
1822		set_elf_platform(cpu, "bmips32");
1823		break;
1824	case PRID_IMP_BMIPS3300:
1825	case PRID_IMP_BMIPS3300_ALT:
1826	case PRID_IMP_BMIPS3300_BUG:
1827		c->cputype = CPU_BMIPS3300;
1828		__cpu_name[cpu] = "Broadcom BMIPS3300";
1829		set_elf_platform(cpu, "bmips3300");
1830		break;
1831	case PRID_IMP_BMIPS43XX: {
1832		int rev = c->processor_id & PRID_REV_MASK;
1833
1834		if (rev >= PRID_REV_BMIPS4380_LO &&
1835				rev <= PRID_REV_BMIPS4380_HI) {
1836			c->cputype = CPU_BMIPS4380;
1837			__cpu_name[cpu] = "Broadcom BMIPS4380";
1838			set_elf_platform(cpu, "bmips4380");
1839			c->options |= MIPS_CPU_RIXI;
1840		} else {
1841			c->cputype = CPU_BMIPS4350;
1842			__cpu_name[cpu] = "Broadcom BMIPS4350";
1843			set_elf_platform(cpu, "bmips4350");
1844		}
1845		break;
1846	}
1847	case PRID_IMP_BMIPS5000:
1848	case PRID_IMP_BMIPS5200:
1849		c->cputype = CPU_BMIPS5000;
1850		if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200)
1851			__cpu_name[cpu] = "Broadcom BMIPS5200";
1852		else
1853			__cpu_name[cpu] = "Broadcom BMIPS5000";
1854		set_elf_platform(cpu, "bmips5000");
1855		c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI;
1856		break;
1857	}
1858}
1859
1860static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1861{
1862	decode_configs(c);
1863	switch (c->processor_id & PRID_IMP_MASK) {
1864	case PRID_IMP_CAVIUM_CN38XX:
1865	case PRID_IMP_CAVIUM_CN31XX:
1866	case PRID_IMP_CAVIUM_CN30XX:
1867		c->cputype = CPU_CAVIUM_OCTEON;
1868		__cpu_name[cpu] = "Cavium Octeon";
1869		goto platform;
1870	case PRID_IMP_CAVIUM_CN58XX:
1871	case PRID_IMP_CAVIUM_CN56XX:
1872	case PRID_IMP_CAVIUM_CN50XX:
1873	case PRID_IMP_CAVIUM_CN52XX:
1874		c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1875		__cpu_name[cpu] = "Cavium Octeon+";
1876platform:
1877		set_elf_platform(cpu, "octeon");
1878		break;
1879	case PRID_IMP_CAVIUM_CN61XX:
1880	case PRID_IMP_CAVIUM_CN63XX:
1881	case PRID_IMP_CAVIUM_CN66XX:
1882	case PRID_IMP_CAVIUM_CN68XX:
1883	case PRID_IMP_CAVIUM_CNF71XX:
1884		c->cputype = CPU_CAVIUM_OCTEON2;
1885		__cpu_name[cpu] = "Cavium Octeon II";
1886		set_elf_platform(cpu, "octeon2");
1887		break;
1888	case PRID_IMP_CAVIUM_CN70XX:
1889	case PRID_IMP_CAVIUM_CN73XX:
1890	case PRID_IMP_CAVIUM_CNF75XX:
1891	case PRID_IMP_CAVIUM_CN78XX:
1892		c->cputype = CPU_CAVIUM_OCTEON3;
1893		__cpu_name[cpu] = "Cavium Octeon III";
1894		set_elf_platform(cpu, "octeon3");
1895		break;
1896	default:
1897		printk(KERN_INFO "Unknown Octeon chip!\n");
1898		c->cputype = CPU_UNKNOWN;
1899		break;
1900	}
1901}
1902
1903static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu)
1904{
1905	switch (c->processor_id & PRID_IMP_MASK) {
1906	case PRID_IMP_LOONGSON_64:  /* Loongson-2/3 */
1907		switch (c->processor_id & PRID_REV_MASK) {
1908		case PRID_REV_LOONGSON3A_R2_0:
1909		case PRID_REV_LOONGSON3A_R2_1:
1910			c->cputype = CPU_LOONGSON3;
1911			__cpu_name[cpu] = "ICT Loongson-3";
1912			set_elf_platform(cpu, "loongson3a");
1913			set_isa(c, MIPS_CPU_ISA_M64R2);
1914			break;
1915		case PRID_REV_LOONGSON3A_R3_0:
1916		case PRID_REV_LOONGSON3A_R3_1:
1917			c->cputype = CPU_LOONGSON3;
1918			__cpu_name[cpu] = "ICT Loongson-3";
1919			set_elf_platform(cpu, "loongson3a");
1920			set_isa(c, MIPS_CPU_ISA_M64R2);
1921			break;
1922		}
1923
1924		decode_configs(c);
1925		c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
1926		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1927		c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1928			MIPS_ASE_LOONGSON_EXT | MIPS_ASE_LOONGSON_EXT2);
1929		break;
1930	default:
1931		panic("Unknown Loongson Processor ID!");
1932		break;
1933	}
1934}
1935
1936static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
1937{
1938	decode_configs(c);
1939
1940	/*
1941	 * XBurst misses a config2 register, so config3 decode was skipped in
1942	 * decode_configs().
1943	 */
1944	decode_config3(c);
1945
1946	/* XBurst does not implement the CP0 counter. */
1947	c->options &= ~MIPS_CPU_COUNTER;
1948	BUG_ON(!__builtin_constant_p(cpu_has_counter) || cpu_has_counter);
1949
1950	switch (c->processor_id & PRID_IMP_MASK) {
1951	case PRID_IMP_XBURST:
1952		c->cputype = CPU_XBURST;
1953		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1954		__cpu_name[cpu] = "Ingenic JZRISC";
1955		/*
1956		 * The XBurst core by default attempts to avoid branch target
1957		 * buffer lookups by detecting & special casing loops. This
1958		 * feature will cause BogoMIPS and lpj calculate in error.
1959		 * Set cp0 config7 bit 4 to disable this feature.
1960		 */
1961		set_c0_config7(MIPS_CONF7_BTB_LOOP_EN);
1962		break;
1963	default:
1964		panic("Unknown Ingenic Processor ID!");
1965		break;
1966	}
1967
1968	/*
1969	 * The config0 register in the Xburst CPUs with a processor ID of
1970	 * PRID_COMP_INGENIC_D0 report themselves as MIPS32r2 compatible,
1971	 * but they don't actually support this ISA.
1972	 */
1973	if ((c->processor_id & PRID_COMP_MASK) == PRID_COMP_INGENIC_D0)
1974		c->isa_level &= ~MIPS_CPU_ISA_M32R2;
1975}
1976
1977static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu)
1978{
1979	decode_configs(c);
1980
1981	if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) {
1982		c->cputype = CPU_ALCHEMY;
1983		__cpu_name[cpu] = "Au1300";
1984		/* following stuff is not for Alchemy */
1985		return;
1986	}
1987
1988	c->options = (MIPS_CPU_TLB	 |
1989			MIPS_CPU_4KEX	 |
1990			MIPS_CPU_COUNTER |
1991			MIPS_CPU_DIVEC	 |
1992			MIPS_CPU_WATCH	 |
1993			MIPS_CPU_EJTAG	 |
1994			MIPS_CPU_LLSC);
1995
1996	switch (c->processor_id & PRID_IMP_MASK) {
1997	case PRID_IMP_NETLOGIC_XLP2XX:
1998	case PRID_IMP_NETLOGIC_XLP9XX:
1999	case PRID_IMP_NETLOGIC_XLP5XX:
2000		c->cputype = CPU_XLP;
2001		__cpu_name[cpu] = "Broadcom XLPII";
2002		break;
2003
2004	case PRID_IMP_NETLOGIC_XLP8XX:
2005	case PRID_IMP_NETLOGIC_XLP3XX:
2006		c->cputype = CPU_XLP;
2007		__cpu_name[cpu] = "Netlogic XLP";
2008		break;
2009
2010	case PRID_IMP_NETLOGIC_XLR732:
2011	case PRID_IMP_NETLOGIC_XLR716:
2012	case PRID_IMP_NETLOGIC_XLR532:
2013	case PRID_IMP_NETLOGIC_XLR308:
2014	case PRID_IMP_NETLOGIC_XLR532C:
2015	case PRID_IMP_NETLOGIC_XLR516C:
2016	case PRID_IMP_NETLOGIC_XLR508C:
2017	case PRID_IMP_NETLOGIC_XLR308C:
2018		c->cputype = CPU_XLR;
2019		__cpu_name[cpu] = "Netlogic XLR";
2020		break;
2021
2022	case PRID_IMP_NETLOGIC_XLS608:
2023	case PRID_IMP_NETLOGIC_XLS408:
2024	case PRID_IMP_NETLOGIC_XLS404:
2025	case PRID_IMP_NETLOGIC_XLS208:
2026	case PRID_IMP_NETLOGIC_XLS204:
2027	case PRID_IMP_NETLOGIC_XLS108:
2028	case PRID_IMP_NETLOGIC_XLS104:
2029	case PRID_IMP_NETLOGIC_XLS616B:
2030	case PRID_IMP_NETLOGIC_XLS608B:
2031	case PRID_IMP_NETLOGIC_XLS416B:
2032	case PRID_IMP_NETLOGIC_XLS412B:
2033	case PRID_IMP_NETLOGIC_XLS408B:
2034	case PRID_IMP_NETLOGIC_XLS404B:
2035		c->cputype = CPU_XLR;
2036		__cpu_name[cpu] = "Netlogic XLS";
2037		break;
2038
2039	default:
2040		pr_info("Unknown Netlogic chip id [%02x]!\n",
2041		       c->processor_id);
2042		c->cputype = CPU_XLR;
2043		break;
2044	}
2045
2046	if (c->cputype == CPU_XLP) {
2047		set_isa(c, MIPS_CPU_ISA_M64R2);
2048		c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK);
2049		/* This will be updated again after all threads are woken up */
2050		c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1;
2051	} else {
2052		set_isa(c, MIPS_CPU_ISA_M64R1);
2053		c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1;
2054	}
2055	c->kscratch_mask = 0xf;
2056}
2057
2058#ifdef CONFIG_64BIT
2059/* For use by uaccess.h */
2060u64 __ua_limit;
2061EXPORT_SYMBOL(__ua_limit);
2062#endif
2063
2064const char *__cpu_name[NR_CPUS];
2065const char *__elf_platform;
2066
2067void cpu_probe(void)
2068{
2069	struct cpuinfo_mips *c = &current_cpu_data;
2070	unsigned int cpu = smp_processor_id();
2071
2072	/*
2073	 * Set a default elf platform, cpu probe may later
2074	 * overwrite it with a more precise value
2075	 */
2076	set_elf_platform(cpu, "mips");
2077
2078	c->processor_id = PRID_IMP_UNKNOWN;
2079	c->fpu_id	= FPIR_IMP_NONE;
2080	c->cputype	= CPU_UNKNOWN;
2081	c->writecombine = _CACHE_UNCACHED;
2082
2083	c->fpu_csr31	= FPU_CSR_RN;
2084	c->fpu_msk31	= FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
2085
2086	c->processor_id = read_c0_prid();
2087	switch (c->processor_id & PRID_COMP_MASK) {
2088	case PRID_COMP_LEGACY:
2089		cpu_probe_legacy(c, cpu);
2090		break;
2091	case PRID_COMP_MIPS:
2092		cpu_probe_mips(c, cpu);
2093		break;
2094	case PRID_COMP_ALCHEMY:
2095		cpu_probe_alchemy(c, cpu);
2096		break;
2097	case PRID_COMP_SIBYTE:
2098		cpu_probe_sibyte(c, cpu);
2099		break;
2100	case PRID_COMP_BROADCOM:
2101		cpu_probe_broadcom(c, cpu);
2102		break;
2103	case PRID_COMP_SANDCRAFT:
2104		cpu_probe_sandcraft(c, cpu);
2105		break;
2106	case PRID_COMP_NXP:
2107		cpu_probe_nxp(c, cpu);
2108		break;
2109	case PRID_COMP_CAVIUM:
2110		cpu_probe_cavium(c, cpu);
2111		break;
2112	case PRID_COMP_LOONGSON:
2113		cpu_probe_loongson(c, cpu);
2114		break;
2115	case PRID_COMP_INGENIC_D0:
2116	case PRID_COMP_INGENIC_D1:
2117	case PRID_COMP_INGENIC_E1:
2118		cpu_probe_ingenic(c, cpu);
2119		break;
2120	case PRID_COMP_NETLOGIC:
2121		cpu_probe_netlogic(c, cpu);
2122		break;
2123	}
2124
2125	BUG_ON(!__cpu_name[cpu]);
2126	BUG_ON(c->cputype == CPU_UNKNOWN);
2127
2128	/*
2129	 * Platform code can force the cpu type to optimize code
2130	 * generation. In that case be sure the cpu type is correctly
2131	 * manually setup otherwise it could trigger some nasty bugs.
2132	 */
2133	BUG_ON(current_cpu_type() != c->cputype);
2134
2135	if (cpu_has_rixi) {
2136		/* Enable the RIXI exceptions */
2137		set_c0_pagegrain(PG_IEC);
2138		back_to_back_c0_hazard();
2139		/* Verify the IEC bit is set */
2140		if (read_c0_pagegrain() & PG_IEC)
2141			c->options |= MIPS_CPU_RIXIEX;
2142	}
2143
2144	if (mips_fpu_disabled)
2145		c->options &= ~MIPS_CPU_FPU;
2146
2147	if (mips_dsp_disabled)
2148		c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
2149
2150	if (mips_htw_disabled) {
2151		c->options &= ~MIPS_CPU_HTW;
2152		write_c0_pwctl(read_c0_pwctl() &
2153			       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
2154	}
2155
2156	if (c->options & MIPS_CPU_FPU)
2157		cpu_set_fpu_opts(c);
2158	else
2159		cpu_set_nofpu_opts(c);
2160
2161	if (cpu_has_bp_ghist)
2162		write_c0_r10k_diag(read_c0_r10k_diag() |
2163				   R10K_DIAG_E_GHIST);
2164
2165	if (cpu_has_mips_r2_r6) {
2166		c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
2167		/* R2 has Performance Counter Interrupt indicator */
2168		c->options |= MIPS_CPU_PCI;
2169	}
2170	else
2171		c->srsets = 1;
2172
2173	if (cpu_has_mips_r6)
2174		elf_hwcap |= HWCAP_MIPS_R6;
2175
2176	if (cpu_has_msa) {
2177		c->msa_id = cpu_get_msa_id();
2178		WARN(c->msa_id & MSA_IR_WRPF,
2179		     "Vector register partitioning unimplemented!");
2180		elf_hwcap |= HWCAP_MIPS_MSA;
2181	}
2182
2183	if (cpu_has_mips16)
2184		elf_hwcap |= HWCAP_MIPS_MIPS16;
2185
2186	if (cpu_has_mdmx)
2187		elf_hwcap |= HWCAP_MIPS_MDMX;
2188
2189	if (cpu_has_mips3d)
2190		elf_hwcap |= HWCAP_MIPS_MIPS3D;
2191
2192	if (cpu_has_smartmips)
2193		elf_hwcap |= HWCAP_MIPS_SMARTMIPS;
2194
2195	if (cpu_has_dsp)
2196		elf_hwcap |= HWCAP_MIPS_DSP;
2197
2198	if (cpu_has_dsp2)
2199		elf_hwcap |= HWCAP_MIPS_DSP2;
2200
2201	if (cpu_has_dsp3)
2202		elf_hwcap |= HWCAP_MIPS_DSP3;
2203
2204	if (cpu_has_mips16e2)
2205		elf_hwcap |= HWCAP_MIPS_MIPS16E2;
2206
2207	if (cpu_has_loongson_mmi)
2208		elf_hwcap |= HWCAP_LOONGSON_MMI;
2209
2210	if (cpu_has_loongson_ext)
2211		elf_hwcap |= HWCAP_LOONGSON_EXT;
2212
2213	if (cpu_has_loongson_ext2)
2214		elf_hwcap |= HWCAP_LOONGSON_EXT2;
2215
2216	if (cpu_has_vz)
2217		cpu_probe_vz(c);
2218
2219	cpu_probe_vmbits(c);
2220
2221#ifdef CONFIG_64BIT
2222	if (cpu == 0)
2223		__ua_limit = ~((1ull << cpu_vmbits) - 1);
2224#endif
2225}
2226
2227void cpu_report(void)
2228{
2229	struct cpuinfo_mips *c = &current_cpu_data;
2230
2231	pr_info("CPU%d revision is: %08x (%s)\n",
2232		smp_processor_id(), c->processor_id, cpu_name_string());
2233	if (c->options & MIPS_CPU_FPU)
2234		printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
2235	if (cpu_has_msa)
2236		pr_info("MSA revision is: %08x\n", c->msa_id);
2237}
2238
2239void cpu_set_cluster(struct cpuinfo_mips *cpuinfo, unsigned int cluster)
2240{
2241	/* Ensure the core number fits in the field */
2242	WARN_ON(cluster > (MIPS_GLOBALNUMBER_CLUSTER >>
2243			   MIPS_GLOBALNUMBER_CLUSTER_SHF));
2244
2245	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CLUSTER;
2246	cpuinfo->globalnumber |= cluster << MIPS_GLOBALNUMBER_CLUSTER_SHF;
2247}
2248
2249void cpu_set_core(struct cpuinfo_mips *cpuinfo, unsigned int core)
2250{
2251	/* Ensure the core number fits in the field */
2252	WARN_ON(core > (MIPS_GLOBALNUMBER_CORE >> MIPS_GLOBALNUMBER_CORE_SHF));
2253
2254	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CORE;
2255	cpuinfo->globalnumber |= core << MIPS_GLOBALNUMBER_CORE_SHF;
2256}
2257
2258void cpu_set_vpe_id(struct cpuinfo_mips *cpuinfo, unsigned int vpe)
2259{
2260	/* Ensure the VP(E) ID fits in the field */
2261	WARN_ON(vpe > (MIPS_GLOBALNUMBER_VP >> MIPS_GLOBALNUMBER_VP_SHF));
2262
2263	/* Ensure we're not using VP(E)s without support */
2264	WARN_ON(vpe && !IS_ENABLED(CONFIG_MIPS_MT_SMP) &&
2265		!IS_ENABLED(CONFIG_CPU_MIPSR6));
2266
2267	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_VP;
2268	cpuinfo->globalnumber |= vpe << MIPS_GLOBALNUMBER_VP_SHF;
2269}
v4.17
 
   1/*
   2 * Processor capabilities determination functions.
   3 *
   4 * Copyright (C) xxxx  the Anonymous
   5 * Copyright (C) 1994 - 2006 Ralf Baechle
   6 * Copyright (C) 2003, 2004  Maciej W. Rozycki
   7 * Copyright (C) 2001, 2004, 2011, 2012	 MIPS Technologies, Inc.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; either version
  12 * 2 of the License, or (at your option) any later version.
  13 */
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/ptrace.h>
  17#include <linux/smp.h>
  18#include <linux/stddef.h>
  19#include <linux/export.h>
  20
  21#include <asm/bugs.h>
  22#include <asm/cpu.h>
  23#include <asm/cpu-features.h>
  24#include <asm/cpu-type.h>
  25#include <asm/fpu.h>
  26#include <asm/mipsregs.h>
  27#include <asm/mipsmtregs.h>
  28#include <asm/msa.h>
  29#include <asm/watch.h>
  30#include <asm/elf.h>
  31#include <asm/pgtable-bits.h>
  32#include <asm/spram.h>
  33#include <linux/uaccess.h>
  34
  35/* Hardware capabilities */
  36unsigned int elf_hwcap __read_mostly;
  37EXPORT_SYMBOL_GPL(elf_hwcap);
  38
 
 
  39/*
  40 * Get the FPU Implementation/Revision.
  41 */
  42static inline unsigned long cpu_get_fpu_id(void)
  43{
  44	unsigned long tmp, fpu_id;
  45
  46	tmp = read_c0_status();
  47	__enable_fpu(FPU_AS_IS);
  48	fpu_id = read_32bit_cp1_register(CP1_REVISION);
  49	write_c0_status(tmp);
  50	return fpu_id;
  51}
  52
  53/*
  54 * Check if the CPU has an external FPU.
  55 */
  56static inline int __cpu_has_fpu(void)
  57{
  58	return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE;
  59}
  60
  61static inline unsigned long cpu_get_msa_id(void)
  62{
  63	unsigned long status, msa_id;
  64
  65	status = read_c0_status();
  66	__enable_fpu(FPU_64BIT);
  67	enable_msa();
  68	msa_id = read_msa_ir();
  69	disable_msa();
  70	write_c0_status(status);
  71	return msa_id;
  72}
  73
  74/*
  75 * Determine the FCSR mask for FPU hardware.
  76 */
  77static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c)
  78{
  79	unsigned long sr, mask, fcsr, fcsr0, fcsr1;
  80
  81	fcsr = c->fpu_csr31;
  82	mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM;
  83
  84	sr = read_c0_status();
  85	__enable_fpu(FPU_AS_IS);
  86
  87	fcsr0 = fcsr & mask;
  88	write_32bit_cp1_register(CP1_STATUS, fcsr0);
  89	fcsr0 = read_32bit_cp1_register(CP1_STATUS);
  90
  91	fcsr1 = fcsr | ~mask;
  92	write_32bit_cp1_register(CP1_STATUS, fcsr1);
  93	fcsr1 = read_32bit_cp1_register(CP1_STATUS);
  94
  95	write_32bit_cp1_register(CP1_STATUS, fcsr);
  96
  97	write_c0_status(sr);
  98
  99	c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask;
 100}
 101
 102/*
 103 * Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes
 104 * supported by FPU hardware.
 105 */
 106static void cpu_set_fpu_2008(struct cpuinfo_mips *c)
 107{
 108	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 109			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 110			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 111		unsigned long sr, fir, fcsr, fcsr0, fcsr1;
 112
 113		sr = read_c0_status();
 114		__enable_fpu(FPU_AS_IS);
 115
 116		fir = read_32bit_cp1_register(CP1_REVISION);
 117		if (fir & MIPS_FPIR_HAS2008) {
 118			fcsr = read_32bit_cp1_register(CP1_STATUS);
 119
 120			fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 121			write_32bit_cp1_register(CP1_STATUS, fcsr0);
 122			fcsr0 = read_32bit_cp1_register(CP1_STATUS);
 123
 124			fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 125			write_32bit_cp1_register(CP1_STATUS, fcsr1);
 126			fcsr1 = read_32bit_cp1_register(CP1_STATUS);
 127
 128			write_32bit_cp1_register(CP1_STATUS, fcsr);
 129
 130			if (!(fcsr0 & FPU_CSR_NAN2008))
 131				c->options |= MIPS_CPU_NAN_LEGACY;
 132			if (fcsr1 & FPU_CSR_NAN2008)
 133				c->options |= MIPS_CPU_NAN_2008;
 134
 135			if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008)
 136				c->fpu_msk31 &= ~FPU_CSR_ABS2008;
 137			else
 138				c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008;
 139
 140			if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008)
 141				c->fpu_msk31 &= ~FPU_CSR_NAN2008;
 142			else
 143				c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008;
 144		} else {
 145			c->options |= MIPS_CPU_NAN_LEGACY;
 146		}
 147
 148		write_c0_status(sr);
 149	} else {
 150		c->options |= MIPS_CPU_NAN_LEGACY;
 151	}
 152}
 153
 154/*
 155 * IEEE 754 conformance mode to use.  Affects the NaN encoding and the
 156 * ABS.fmt/NEG.fmt execution mode.
 157 */
 158static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT;
 159
 160/*
 161 * Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes
 162 * to support by the FPU emulator according to the IEEE 754 conformance
 163 * mode selected.  Note that "relaxed" straps the emulator so that it
 164 * allows 2008-NaN binaries even for legacy processors.
 165 */
 166static void cpu_set_nofpu_2008(struct cpuinfo_mips *c)
 167{
 168	c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY);
 169	c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 170	c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 171
 172	switch (ieee754) {
 173	case STRICT:
 174		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 175				    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 176				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 177			c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
 178		} else {
 179			c->options |= MIPS_CPU_NAN_LEGACY;
 180			c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 181		}
 182		break;
 183	case LEGACY:
 184		c->options |= MIPS_CPU_NAN_LEGACY;
 185		c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 186		break;
 187	case STD2008:
 188		c->options |= MIPS_CPU_NAN_2008;
 189		c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 190		c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 191		break;
 192	case RELAXED:
 193		c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
 194		break;
 195	}
 196}
 197
 198/*
 199 * Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
 200 * according to the "ieee754=" parameter.
 201 */
 202static void cpu_set_nan_2008(struct cpuinfo_mips *c)
 203{
 204	switch (ieee754) {
 205	case STRICT:
 206		mips_use_nan_legacy = !!cpu_has_nan_legacy;
 207		mips_use_nan_2008 = !!cpu_has_nan_2008;
 208		break;
 209	case LEGACY:
 210		mips_use_nan_legacy = !!cpu_has_nan_legacy;
 211		mips_use_nan_2008 = !cpu_has_nan_legacy;
 212		break;
 213	case STD2008:
 214		mips_use_nan_legacy = !cpu_has_nan_2008;
 215		mips_use_nan_2008 = !!cpu_has_nan_2008;
 216		break;
 217	case RELAXED:
 218		mips_use_nan_legacy = true;
 219		mips_use_nan_2008 = true;
 220		break;
 221	}
 222}
 223
 224/*
 225 * IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override
 226 * settings:
 227 *
 228 * strict:  accept binaries that request a NaN encoding supported by the FPU
 229 * legacy:  only accept legacy-NaN binaries
 230 * 2008:    only accept 2008-NaN binaries
 231 * relaxed: accept any binaries regardless of whether supported by the FPU
 232 */
 233static int __init ieee754_setup(char *s)
 234{
 235	if (!s)
 236		return -1;
 237	else if (!strcmp(s, "strict"))
 238		ieee754 = STRICT;
 239	else if (!strcmp(s, "legacy"))
 240		ieee754 = LEGACY;
 241	else if (!strcmp(s, "2008"))
 242		ieee754 = STD2008;
 243	else if (!strcmp(s, "relaxed"))
 244		ieee754 = RELAXED;
 245	else
 246		return -1;
 247
 248	if (!(boot_cpu_data.options & MIPS_CPU_FPU))
 249		cpu_set_nofpu_2008(&boot_cpu_data);
 250	cpu_set_nan_2008(&boot_cpu_data);
 251
 252	return 0;
 253}
 254
 255early_param("ieee754", ieee754_setup);
 256
 257/*
 258 * Set the FIR feature flags for the FPU emulator.
 259 */
 260static void cpu_set_nofpu_id(struct cpuinfo_mips *c)
 261{
 262	u32 value;
 263
 264	value = 0;
 265	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 266			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 267			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
 268		value |= MIPS_FPIR_D | MIPS_FPIR_S;
 269	if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 270			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
 271		value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W;
 272	if (c->options & MIPS_CPU_NAN_2008)
 273		value |= MIPS_FPIR_HAS2008;
 274	c->fpu_id = value;
 275}
 276
 277/* Determined FPU emulator mask to use for the boot CPU with "nofpu".  */
 278static unsigned int mips_nofpu_msk31;
 279
 280/*
 281 * Set options for FPU hardware.
 282 */
 283static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
 284{
 285	c->fpu_id = cpu_get_fpu_id();
 286	mips_nofpu_msk31 = c->fpu_msk31;
 287
 288	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 289			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 290			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 291		if (c->fpu_id & MIPS_FPIR_3D)
 292			c->ases |= MIPS_ASE_MIPS3D;
 293		if (c->fpu_id & MIPS_FPIR_UFRP)
 294			c->options |= MIPS_CPU_UFR;
 295		if (c->fpu_id & MIPS_FPIR_FREP)
 296			c->options |= MIPS_CPU_FRE;
 297	}
 298
 299	cpu_set_fpu_fcsr_mask(c);
 300	cpu_set_fpu_2008(c);
 301	cpu_set_nan_2008(c);
 302}
 303
 304/*
 305 * Set options for the FPU emulator.
 306 */
 307static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
 308{
 309	c->options &= ~MIPS_CPU_FPU;
 310	c->fpu_msk31 = mips_nofpu_msk31;
 311
 312	cpu_set_nofpu_2008(c);
 313	cpu_set_nan_2008(c);
 314	cpu_set_nofpu_id(c);
 315}
 316
 317static int mips_fpu_disabled;
 318
 319static int __init fpu_disable(char *s)
 320{
 321	cpu_set_nofpu_opts(&boot_cpu_data);
 322	mips_fpu_disabled = 1;
 323
 324	return 1;
 325}
 326
 327__setup("nofpu", fpu_disable);
 328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 329static int mips_dsp_disabled;
 330
 331static int __init dsp_disable(char *s)
 332{
 333	cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
 334	mips_dsp_disabled = 1;
 335
 336	return 1;
 337}
 338
 339__setup("nodsp", dsp_disable);
 340
 341static int mips_htw_disabled;
 342
 343static int __init htw_disable(char *s)
 344{
 345	mips_htw_disabled = 1;
 346	cpu_data[0].options &= ~MIPS_CPU_HTW;
 347	write_c0_pwctl(read_c0_pwctl() &
 348		       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
 349
 350	return 1;
 351}
 352
 353__setup("nohtw", htw_disable);
 354
 355static int mips_ftlb_disabled;
 356static int mips_has_ftlb_configured;
 357
 358enum ftlb_flags {
 359	FTLB_EN		= 1 << 0,
 360	FTLB_SET_PROB	= 1 << 1,
 361};
 362
 363static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags);
 364
 365static int __init ftlb_disable(char *s)
 366{
 367	unsigned int config4, mmuextdef;
 368
 369	/*
 370	 * If the core hasn't done any FTLB configuration, there is nothing
 371	 * for us to do here.
 372	 */
 373	if (!mips_has_ftlb_configured)
 374		return 1;
 375
 376	/* Disable it in the boot cpu */
 377	if (set_ftlb_enable(&cpu_data[0], 0)) {
 378		pr_warn("Can't turn FTLB off\n");
 379		return 1;
 380	}
 381
 382	config4 = read_c0_config4();
 383
 384	/* Check that FTLB has been disabled */
 385	mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 386	/* MMUSIZEEXT == VTLB ON, FTLB OFF */
 387	if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
 388		/* This should never happen */
 389		pr_warn("FTLB could not be disabled!\n");
 390		return 1;
 391	}
 392
 393	mips_ftlb_disabled = 1;
 394	mips_has_ftlb_configured = 0;
 395
 396	/*
 397	 * noftlb is mainly used for debug purposes so print
 398	 * an informative message instead of using pr_debug()
 399	 */
 400	pr_info("FTLB has been disabled\n");
 401
 402	/*
 403	 * Some of these bits are duplicated in the decode_config4.
 404	 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
 405	 * once FTLB has been disabled so undo what decode_config4 did.
 406	 */
 407	cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
 408			       cpu_data[0].tlbsizeftlbsets;
 409	cpu_data[0].tlbsizeftlbsets = 0;
 410	cpu_data[0].tlbsizeftlbways = 0;
 411
 412	return 1;
 413}
 414
 415__setup("noftlb", ftlb_disable);
 416
 
 
 
 
 
 
 
 
 417
 418static inline void check_errata(void)
 419{
 420	struct cpuinfo_mips *c = &current_cpu_data;
 421
 422	switch (current_cpu_type()) {
 423	case CPU_34K:
 424		/*
 425		 * Erratum "RPS May Cause Incorrect Instruction Execution"
 426		 * This code only handles VPE0, any SMP/RTOS code
 427		 * making use of VPE1 will be responsable for that VPE.
 428		 */
 429		if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
 430			write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
 431		break;
 432	default:
 433		break;
 434	}
 435}
 436
 437void __init check_bugs32(void)
 438{
 439	check_errata();
 440}
 441
 442/*
 443 * Probe whether cpu has config register by trying to play with
 444 * alternate cache bit and see whether it matters.
 445 * It's used by cpu_probe to distinguish between R3000A and R3081.
 446 */
 447static inline int cpu_has_confreg(void)
 448{
 449#ifdef CONFIG_CPU_R3000
 450	extern unsigned long r3k_cache_size(unsigned long);
 451	unsigned long size1, size2;
 452	unsigned long cfg = read_c0_conf();
 453
 454	size1 = r3k_cache_size(ST0_ISC);
 455	write_c0_conf(cfg ^ R30XX_CONF_AC);
 456	size2 = r3k_cache_size(ST0_ISC);
 457	write_c0_conf(cfg);
 458	return size1 != size2;
 459#else
 460	return 0;
 461#endif
 462}
 463
 464static inline void set_elf_platform(int cpu, const char *plat)
 465{
 466	if (cpu == 0)
 467		__elf_platform = plat;
 468}
 469
 470static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
 471{
 472#ifdef __NEED_VMBITS_PROBE
 473	write_c0_entryhi(0x3fffffffffffe000ULL);
 474	back_to_back_c0_hazard();
 475	c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
 476#endif
 477}
 478
 479static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
 480{
 481	switch (isa) {
 482	case MIPS_CPU_ISA_M64R2:
 483		c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
 
 484	case MIPS_CPU_ISA_M64R1:
 485		c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
 
 486	case MIPS_CPU_ISA_V:
 487		c->isa_level |= MIPS_CPU_ISA_V;
 
 488	case MIPS_CPU_ISA_IV:
 489		c->isa_level |= MIPS_CPU_ISA_IV;
 
 490	case MIPS_CPU_ISA_III:
 491		c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
 492		break;
 493
 494	/* R6 incompatible with everything else */
 495	case MIPS_CPU_ISA_M64R6:
 496		c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
 
 497	case MIPS_CPU_ISA_M32R6:
 498		c->isa_level |= MIPS_CPU_ISA_M32R6;
 499		/* Break here so we don't add incompatible ISAs */
 500		break;
 501	case MIPS_CPU_ISA_M32R2:
 502		c->isa_level |= MIPS_CPU_ISA_M32R2;
 
 503	case MIPS_CPU_ISA_M32R1:
 504		c->isa_level |= MIPS_CPU_ISA_M32R1;
 
 505	case MIPS_CPU_ISA_II:
 506		c->isa_level |= MIPS_CPU_ISA_II;
 507		break;
 508	}
 509}
 510
 511static char unknown_isa[] = KERN_ERR \
 512	"Unsupported ISA type, c0.config0: %d.";
 513
 514static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
 515{
 516
 517	unsigned int probability = c->tlbsize / c->tlbsizevtlb;
 518
 519	/*
 520	 * 0 = All TLBWR instructions go to FTLB
 521	 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
 522	 * FTLB and 1 goes to the VTLB.
 523	 * 2 = 7:1: As above with 7:1 ratio.
 524	 * 3 = 3:1: As above with 3:1 ratio.
 525	 *
 526	 * Use the linear midpoint as the probability threshold.
 527	 */
 528	if (probability >= 12)
 529		return 1;
 530	else if (probability >= 6)
 531		return 2;
 532	else
 533		/*
 534		 * So FTLB is less than 4 times bigger than VTLB.
 535		 * A 3:1 ratio can still be useful though.
 536		 */
 537		return 3;
 538}
 539
 540static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags)
 541{
 542	unsigned int config;
 543
 544	/* It's implementation dependent how the FTLB can be enabled */
 545	switch (c->cputype) {
 546	case CPU_PROAPTIV:
 547	case CPU_P5600:
 548	case CPU_P6600:
 549		/* proAptiv & related cores use Config6 to enable the FTLB */
 550		config = read_c0_config6();
 551
 552		if (flags & FTLB_EN)
 553			config |= MIPS_CONF6_FTLBEN;
 554		else
 555			config &= ~MIPS_CONF6_FTLBEN;
 556
 557		if (flags & FTLB_SET_PROB) {
 558			config &= ~(3 << MIPS_CONF6_FTLBP_SHIFT);
 559			config |= calculate_ftlb_probability(c)
 560				  << MIPS_CONF6_FTLBP_SHIFT;
 561		}
 562
 563		write_c0_config6(config);
 564		back_to_back_c0_hazard();
 565		break;
 566	case CPU_I6400:
 567	case CPU_I6500:
 568		/* There's no way to disable the FTLB */
 569		if (!(flags & FTLB_EN))
 570			return 1;
 571		return 0;
 572	case CPU_LOONGSON3:
 573		/* Flush ITLB, DTLB, VTLB and FTLB */
 574		write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB |
 575			      LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB);
 576		/* Loongson-3 cores use Config6 to enable the FTLB */
 577		config = read_c0_config6();
 578		if (flags & FTLB_EN)
 579			/* Enable FTLB */
 580			write_c0_config6(config & ~MIPS_CONF6_FTLBDIS);
 581		else
 582			/* Disable FTLB */
 583			write_c0_config6(config | MIPS_CONF6_FTLBDIS);
 584		break;
 585	default:
 586		return 1;
 587	}
 588
 589	return 0;
 590}
 591
 592static inline unsigned int decode_config0(struct cpuinfo_mips *c)
 593{
 594	unsigned int config0;
 595	int isa, mt;
 596
 597	config0 = read_c0_config();
 598
 599	/*
 600	 * Look for Standard TLB or Dual VTLB and FTLB
 601	 */
 602	mt = config0 & MIPS_CONF_MT;
 603	if (mt == MIPS_CONF_MT_TLB)
 604		c->options |= MIPS_CPU_TLB;
 605	else if (mt == MIPS_CONF_MT_FTLB)
 606		c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
 607
 608	isa = (config0 & MIPS_CONF_AT) >> 13;
 609	switch (isa) {
 610	case 0:
 611		switch ((config0 & MIPS_CONF_AR) >> 10) {
 612		case 0:
 613			set_isa(c, MIPS_CPU_ISA_M32R1);
 614			break;
 615		case 1:
 616			set_isa(c, MIPS_CPU_ISA_M32R2);
 617			break;
 618		case 2:
 619			set_isa(c, MIPS_CPU_ISA_M32R6);
 620			break;
 621		default:
 622			goto unknown;
 623		}
 624		break;
 625	case 2:
 626		switch ((config0 & MIPS_CONF_AR) >> 10) {
 627		case 0:
 628			set_isa(c, MIPS_CPU_ISA_M64R1);
 629			break;
 630		case 1:
 631			set_isa(c, MIPS_CPU_ISA_M64R2);
 632			break;
 633		case 2:
 634			set_isa(c, MIPS_CPU_ISA_M64R6);
 635			break;
 636		default:
 637			goto unknown;
 638		}
 639		break;
 640	default:
 641		goto unknown;
 642	}
 643
 644	return config0 & MIPS_CONF_M;
 645
 646unknown:
 647	panic(unknown_isa, config0);
 648}
 649
 650static inline unsigned int decode_config1(struct cpuinfo_mips *c)
 651{
 652	unsigned int config1;
 653
 654	config1 = read_c0_config1();
 655
 656	if (config1 & MIPS_CONF1_MD)
 657		c->ases |= MIPS_ASE_MDMX;
 658	if (config1 & MIPS_CONF1_PC)
 659		c->options |= MIPS_CPU_PERF;
 660	if (config1 & MIPS_CONF1_WR)
 661		c->options |= MIPS_CPU_WATCH;
 662	if (config1 & MIPS_CONF1_CA)
 663		c->ases |= MIPS_ASE_MIPS16;
 664	if (config1 & MIPS_CONF1_EP)
 665		c->options |= MIPS_CPU_EJTAG;
 666	if (config1 & MIPS_CONF1_FP) {
 667		c->options |= MIPS_CPU_FPU;
 668		c->options |= MIPS_CPU_32FPR;
 669	}
 670	if (cpu_has_tlb) {
 671		c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
 672		c->tlbsizevtlb = c->tlbsize;
 673		c->tlbsizeftlbsets = 0;
 674	}
 675
 676	return config1 & MIPS_CONF_M;
 677}
 678
 679static inline unsigned int decode_config2(struct cpuinfo_mips *c)
 680{
 681	unsigned int config2;
 682
 683	config2 = read_c0_config2();
 684
 685	if (config2 & MIPS_CONF2_SL)
 686		c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
 687
 688	return config2 & MIPS_CONF_M;
 689}
 690
 691static inline unsigned int decode_config3(struct cpuinfo_mips *c)
 692{
 693	unsigned int config3;
 694
 695	config3 = read_c0_config3();
 696
 697	if (config3 & MIPS_CONF3_SM) {
 698		c->ases |= MIPS_ASE_SMARTMIPS;
 699		c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC;
 700	}
 701	if (config3 & MIPS_CONF3_RXI)
 702		c->options |= MIPS_CPU_RIXI;
 703	if (config3 & MIPS_CONF3_CTXTC)
 704		c->options |= MIPS_CPU_CTXTC;
 705	if (config3 & MIPS_CONF3_DSP)
 706		c->ases |= MIPS_ASE_DSP;
 707	if (config3 & MIPS_CONF3_DSP2P) {
 708		c->ases |= MIPS_ASE_DSP2P;
 709		if (cpu_has_mips_r6)
 710			c->ases |= MIPS_ASE_DSP3;
 711	}
 712	if (config3 & MIPS_CONF3_VINT)
 713		c->options |= MIPS_CPU_VINT;
 714	if (config3 & MIPS_CONF3_VEIC)
 715		c->options |= MIPS_CPU_VEIC;
 716	if (config3 & MIPS_CONF3_LPA)
 717		c->options |= MIPS_CPU_LPA;
 718	if (config3 & MIPS_CONF3_MT)
 719		c->ases |= MIPS_ASE_MIPSMT;
 720	if (config3 & MIPS_CONF3_ULRI)
 721		c->options |= MIPS_CPU_ULRI;
 722	if (config3 & MIPS_CONF3_ISA)
 723		c->options |= MIPS_CPU_MICROMIPS;
 724	if (config3 & MIPS_CONF3_VZ)
 725		c->ases |= MIPS_ASE_VZ;
 726	if (config3 & MIPS_CONF3_SC)
 727		c->options |= MIPS_CPU_SEGMENTS;
 728	if (config3 & MIPS_CONF3_BI)
 729		c->options |= MIPS_CPU_BADINSTR;
 730	if (config3 & MIPS_CONF3_BP)
 731		c->options |= MIPS_CPU_BADINSTRP;
 732	if (config3 & MIPS_CONF3_MSA)
 733		c->ases |= MIPS_ASE_MSA;
 734	if (config3 & MIPS_CONF3_PW) {
 735		c->htw_seq = 0;
 736		c->options |= MIPS_CPU_HTW;
 737	}
 738	if (config3 & MIPS_CONF3_CDMM)
 739		c->options |= MIPS_CPU_CDMM;
 740	if (config3 & MIPS_CONF3_SP)
 741		c->options |= MIPS_CPU_SP;
 742
 743	return config3 & MIPS_CONF_M;
 744}
 745
 746static inline unsigned int decode_config4(struct cpuinfo_mips *c)
 747{
 748	unsigned int config4;
 749	unsigned int newcf4;
 750	unsigned int mmuextdef;
 751	unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
 752	unsigned long asid_mask;
 753
 754	config4 = read_c0_config4();
 755
 756	if (cpu_has_tlb) {
 757		if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
 758			c->options |= MIPS_CPU_TLBINV;
 759
 760		/*
 761		 * R6 has dropped the MMUExtDef field from config4.
 762		 * On R6 the fields always describe the FTLB, and only if it is
 763		 * present according to Config.MT.
 764		 */
 765		if (!cpu_has_mips_r6)
 766			mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 767		else if (cpu_has_ftlb)
 768			mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
 769		else
 770			mmuextdef = 0;
 771
 772		switch (mmuextdef) {
 773		case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
 774			c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
 775			c->tlbsizevtlb = c->tlbsize;
 776			break;
 777		case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
 778			c->tlbsizevtlb +=
 779				((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
 780				  MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
 781			c->tlbsize = c->tlbsizevtlb;
 782			ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
 783			/* fall through */
 784		case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
 785			if (mips_ftlb_disabled)
 786				break;
 787			newcf4 = (config4 & ~ftlb_page) |
 788				(page_size_ftlb(mmuextdef) <<
 789				 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
 790			write_c0_config4(newcf4);
 791			back_to_back_c0_hazard();
 792			config4 = read_c0_config4();
 793			if (config4 != newcf4) {
 794				pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
 795				       PAGE_SIZE, config4);
 796				/* Switch FTLB off */
 797				set_ftlb_enable(c, 0);
 798				mips_ftlb_disabled = 1;
 799				break;
 800			}
 801			c->tlbsizeftlbsets = 1 <<
 802				((config4 & MIPS_CONF4_FTLBSETS) >>
 803				 MIPS_CONF4_FTLBSETS_SHIFT);
 804			c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
 805					      MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
 806			c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
 807			mips_has_ftlb_configured = 1;
 808			break;
 809		}
 810	}
 811
 812	c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
 813				>> MIPS_CONF4_KSCREXIST_SHIFT;
 814
 815	asid_mask = MIPS_ENTRYHI_ASID;
 816	if (config4 & MIPS_CONF4_AE)
 817		asid_mask |= MIPS_ENTRYHI_ASIDX;
 818	set_cpu_asid_mask(c, asid_mask);
 819
 820	/*
 821	 * Warn if the computed ASID mask doesn't match the mask the kernel
 822	 * is built for. This may indicate either a serious problem or an
 823	 * easy optimisation opportunity, but either way should be addressed.
 824	 */
 825	WARN_ON(asid_mask != cpu_asid_mask(c));
 826
 827	return config4 & MIPS_CONF_M;
 828}
 829
 830static inline unsigned int decode_config5(struct cpuinfo_mips *c)
 831{
 832	unsigned int config5;
 
 833
 834	config5 = read_c0_config5();
 835	config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
 
 
 
 
 
 
 
 
 836	write_c0_config5(config5);
 837
 838	if (config5 & MIPS_CONF5_EVA)
 839		c->options |= MIPS_CPU_EVA;
 840	if (config5 & MIPS_CONF5_MRP)
 841		c->options |= MIPS_CPU_MAAR;
 842	if (config5 & MIPS_CONF5_LLB)
 843		c->options |= MIPS_CPU_RW_LLB;
 844	if (config5 & MIPS_CONF5_MVH)
 845		c->options |= MIPS_CPU_MVH;
 846	if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP))
 847		c->options |= MIPS_CPU_VP;
 848	if (config5 & MIPS_CONF5_CA2)
 849		c->ases |= MIPS_ASE_MIPS16E2;
 850
 851	if (config5 & MIPS_CONF5_CRCP)
 852		elf_hwcap |= HWCAP_MIPS_CRC32;
 853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854	return config5 & MIPS_CONF_M;
 855}
 856
 857static void decode_configs(struct cpuinfo_mips *c)
 858{
 859	int ok;
 860
 861	/* MIPS32 or MIPS64 compliant CPU.  */
 862	c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
 863		     MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
 864
 865	c->scache.flags = MIPS_CACHE_NOT_PRESENT;
 866
 867	/* Enable FTLB if present and not disabled */
 868	set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN);
 869
 870	ok = decode_config0(c);			/* Read Config registers.  */
 871	BUG_ON(!ok);				/* Arch spec violation!	 */
 872	if (ok)
 873		ok = decode_config1(c);
 874	if (ok)
 875		ok = decode_config2(c);
 876	if (ok)
 877		ok = decode_config3(c);
 878	if (ok)
 879		ok = decode_config4(c);
 880	if (ok)
 881		ok = decode_config5(c);
 882
 883	/* Probe the EBase.WG bit */
 884	if (cpu_has_mips_r2_r6) {
 885		u64 ebase;
 886		unsigned int status;
 887
 888		/* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */
 889		ebase = cpu_has_mips64r6 ? read_c0_ebase_64()
 890					 : (s32)read_c0_ebase();
 891		if (ebase & MIPS_EBASE_WG) {
 892			/* WG bit already set, we can avoid the clumsy probe */
 893			c->options |= MIPS_CPU_EBASE_WG;
 894		} else {
 895			/* Its UNDEFINED to change EBase while BEV=0 */
 896			status = read_c0_status();
 897			write_c0_status(status | ST0_BEV);
 898			irq_enable_hazard();
 899			/*
 900			 * On pre-r6 cores, this may well clobber the upper bits
 901			 * of EBase. This is hard to avoid without potentially
 902			 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit.
 903			 */
 904			if (cpu_has_mips64r6)
 905				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
 906			else
 907				write_c0_ebase(ebase | MIPS_EBASE_WG);
 908			back_to_back_c0_hazard();
 909			/* Restore BEV */
 910			write_c0_status(status);
 911			if (read_c0_ebase() & MIPS_EBASE_WG) {
 912				c->options |= MIPS_CPU_EBASE_WG;
 913				write_c0_ebase(ebase);
 914			}
 915		}
 916	}
 917
 918	/* configure the FTLB write probability */
 919	set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB);
 920
 921	mips_probe_watch_registers(c);
 922
 923#ifndef CONFIG_MIPS_CPS
 924	if (cpu_has_mips_r2_r6) {
 925		unsigned int core;
 926
 927		core = get_ebase_cpunum();
 928		if (cpu_has_mipsmt)
 929			core >>= fls(core_nvpes()) - 1;
 930		cpu_set_core(c, core);
 931	}
 932#endif
 933}
 934
 935/*
 936 * Probe for certain guest capabilities by writing config bits and reading back.
 937 * Finally write back the original value.
 938 */
 939#define probe_gc0_config(name, maxconf, bits)				\
 940do {									\
 941	unsigned int tmp;						\
 942	tmp = read_gc0_##name();					\
 943	write_gc0_##name(tmp | (bits));					\
 944	back_to_back_c0_hazard();					\
 945	maxconf = read_gc0_##name();					\
 946	write_gc0_##name(tmp);						\
 947} while (0)
 948
 949/*
 950 * Probe for dynamic guest capabilities by changing certain config bits and
 951 * reading back to see if they change. Finally write back the original value.
 952 */
 953#define probe_gc0_config_dyn(name, maxconf, dynconf, bits)		\
 954do {									\
 955	maxconf = read_gc0_##name();					\
 956	write_gc0_##name(maxconf ^ (bits));				\
 957	back_to_back_c0_hazard();					\
 958	dynconf = maxconf ^ read_gc0_##name();				\
 959	write_gc0_##name(maxconf);					\
 960	maxconf |= dynconf;						\
 961} while (0)
 962
 963static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c)
 964{
 965	unsigned int config0;
 966
 967	probe_gc0_config(config, config0, MIPS_CONF_M);
 968
 969	if (config0 & MIPS_CONF_M)
 970		c->guest.conf |= BIT(1);
 971	return config0 & MIPS_CONF_M;
 972}
 973
 974static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c)
 975{
 976	unsigned int config1, config1_dyn;
 977
 978	probe_gc0_config_dyn(config1, config1, config1_dyn,
 979			     MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR |
 980			     MIPS_CONF1_FP);
 981
 982	if (config1 & MIPS_CONF1_FP)
 983		c->guest.options |= MIPS_CPU_FPU;
 984	if (config1_dyn & MIPS_CONF1_FP)
 985		c->guest.options_dyn |= MIPS_CPU_FPU;
 986
 987	if (config1 & MIPS_CONF1_WR)
 988		c->guest.options |= MIPS_CPU_WATCH;
 989	if (config1_dyn & MIPS_CONF1_WR)
 990		c->guest.options_dyn |= MIPS_CPU_WATCH;
 991
 992	if (config1 & MIPS_CONF1_PC)
 993		c->guest.options |= MIPS_CPU_PERF;
 994	if (config1_dyn & MIPS_CONF1_PC)
 995		c->guest.options_dyn |= MIPS_CPU_PERF;
 996
 997	if (config1 & MIPS_CONF_M)
 998		c->guest.conf |= BIT(2);
 999	return config1 & MIPS_CONF_M;
1000}
1001
1002static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c)
1003{
1004	unsigned int config2;
1005
1006	probe_gc0_config(config2, config2, MIPS_CONF_M);
1007
1008	if (config2 & MIPS_CONF_M)
1009		c->guest.conf |= BIT(3);
1010	return config2 & MIPS_CONF_M;
1011}
1012
1013static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c)
1014{
1015	unsigned int config3, config3_dyn;
1016
1017	probe_gc0_config_dyn(config3, config3, config3_dyn,
1018			     MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_ULRI |
1019			     MIPS_CONF3_CTXTC);
1020
1021	if (config3 & MIPS_CONF3_CTXTC)
1022		c->guest.options |= MIPS_CPU_CTXTC;
1023	if (config3_dyn & MIPS_CONF3_CTXTC)
1024		c->guest.options_dyn |= MIPS_CPU_CTXTC;
1025
1026	if (config3 & MIPS_CONF3_PW)
1027		c->guest.options |= MIPS_CPU_HTW;
1028
1029	if (config3 & MIPS_CONF3_ULRI)
1030		c->guest.options |= MIPS_CPU_ULRI;
1031
1032	if (config3 & MIPS_CONF3_SC)
1033		c->guest.options |= MIPS_CPU_SEGMENTS;
1034
1035	if (config3 & MIPS_CONF3_BI)
1036		c->guest.options |= MIPS_CPU_BADINSTR;
1037	if (config3 & MIPS_CONF3_BP)
1038		c->guest.options |= MIPS_CPU_BADINSTRP;
1039
1040	if (config3 & MIPS_CONF3_MSA)
1041		c->guest.ases |= MIPS_ASE_MSA;
1042	if (config3_dyn & MIPS_CONF3_MSA)
1043		c->guest.ases_dyn |= MIPS_ASE_MSA;
1044
1045	if (config3 & MIPS_CONF_M)
1046		c->guest.conf |= BIT(4);
1047	return config3 & MIPS_CONF_M;
1048}
1049
1050static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c)
1051{
1052	unsigned int config4;
1053
1054	probe_gc0_config(config4, config4,
1055			 MIPS_CONF_M | MIPS_CONF4_KSCREXIST);
1056
1057	c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
1058				>> MIPS_CONF4_KSCREXIST_SHIFT;
1059
1060	if (config4 & MIPS_CONF_M)
1061		c->guest.conf |= BIT(5);
1062	return config4 & MIPS_CONF_M;
1063}
1064
1065static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c)
1066{
1067	unsigned int config5, config5_dyn;
1068
1069	probe_gc0_config_dyn(config5, config5, config5_dyn,
1070			 MIPS_CONF_M | MIPS_CONF5_MVH | MIPS_CONF5_MRP);
1071
1072	if (config5 & MIPS_CONF5_MRP)
1073		c->guest.options |= MIPS_CPU_MAAR;
1074	if (config5_dyn & MIPS_CONF5_MRP)
1075		c->guest.options_dyn |= MIPS_CPU_MAAR;
1076
1077	if (config5 & MIPS_CONF5_LLB)
1078		c->guest.options |= MIPS_CPU_RW_LLB;
1079
1080	if (config5 & MIPS_CONF5_MVH)
1081		c->guest.options |= MIPS_CPU_MVH;
1082
1083	if (config5 & MIPS_CONF_M)
1084		c->guest.conf |= BIT(6);
1085	return config5 & MIPS_CONF_M;
1086}
1087
1088static inline void decode_guest_configs(struct cpuinfo_mips *c)
1089{
1090	unsigned int ok;
1091
1092	ok = decode_guest_config0(c);
1093	if (ok)
1094		ok = decode_guest_config1(c);
1095	if (ok)
1096		ok = decode_guest_config2(c);
1097	if (ok)
1098		ok = decode_guest_config3(c);
1099	if (ok)
1100		ok = decode_guest_config4(c);
1101	if (ok)
1102		decode_guest_config5(c);
1103}
1104
1105static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c)
1106{
1107	unsigned int guestctl0, temp;
1108
1109	guestctl0 = read_c0_guestctl0();
1110
1111	if (guestctl0 & MIPS_GCTL0_G0E)
1112		c->options |= MIPS_CPU_GUESTCTL0EXT;
1113	if (guestctl0 & MIPS_GCTL0_G1)
1114		c->options |= MIPS_CPU_GUESTCTL1;
1115	if (guestctl0 & MIPS_GCTL0_G2)
1116		c->options |= MIPS_CPU_GUESTCTL2;
1117	if (!(guestctl0 & MIPS_GCTL0_RAD)) {
1118		c->options |= MIPS_CPU_GUESTID;
1119
1120		/*
1121		 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0
1122		 * first, otherwise all data accesses will be fully virtualised
1123		 * as if they were performed by guest mode.
1124		 */
1125		write_c0_guestctl1(0);
1126		tlbw_use_hazard();
1127
1128		write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG);
1129		back_to_back_c0_hazard();
1130		temp = read_c0_guestctl0();
1131
1132		if (temp & MIPS_GCTL0_DRG) {
1133			write_c0_guestctl0(guestctl0);
1134			c->options |= MIPS_CPU_DRG;
1135		}
1136	}
1137}
1138
1139static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c)
1140{
1141	if (cpu_has_guestid) {
1142		/* determine the number of bits of GuestID available */
1143		write_c0_guestctl1(MIPS_GCTL1_ID);
1144		back_to_back_c0_hazard();
1145		c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID)
1146						>> MIPS_GCTL1_ID_SHIFT;
1147		write_c0_guestctl1(0);
1148	}
1149}
1150
1151static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c)
1152{
1153	/* determine the number of bits of GTOffset available */
1154	write_c0_gtoffset(0xffffffff);
1155	back_to_back_c0_hazard();
1156	c->gtoffset_mask = read_c0_gtoffset();
1157	write_c0_gtoffset(0);
1158}
1159
1160static inline void cpu_probe_vz(struct cpuinfo_mips *c)
1161{
1162	cpu_probe_guestctl0(c);
1163	if (cpu_has_guestctl1)
1164		cpu_probe_guestctl1(c);
1165
1166	cpu_probe_gtoffset(c);
1167
1168	decode_guest_configs(c);
1169}
1170
1171#define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
1172		| MIPS_CPU_COUNTER)
1173
1174static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
1175{
1176	switch (c->processor_id & PRID_IMP_MASK) {
1177	case PRID_IMP_R2000:
1178		c->cputype = CPU_R2000;
1179		__cpu_name[cpu] = "R2000";
1180		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1181		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1182			     MIPS_CPU_NOFPUEX;
1183		if (__cpu_has_fpu())
1184			c->options |= MIPS_CPU_FPU;
1185		c->tlbsize = 64;
1186		break;
1187	case PRID_IMP_R3000:
1188		if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
1189			if (cpu_has_confreg()) {
1190				c->cputype = CPU_R3081E;
1191				__cpu_name[cpu] = "R3081";
1192			} else {
1193				c->cputype = CPU_R3000A;
1194				__cpu_name[cpu] = "R3000A";
1195			}
1196		} else {
1197			c->cputype = CPU_R3000;
1198			__cpu_name[cpu] = "R3000";
1199		}
1200		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1201		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1202			     MIPS_CPU_NOFPUEX;
1203		if (__cpu_has_fpu())
1204			c->options |= MIPS_CPU_FPU;
1205		c->tlbsize = 64;
1206		break;
1207	case PRID_IMP_R4000:
1208		if (read_c0_config() & CONF_SC) {
1209			if ((c->processor_id & PRID_REV_MASK) >=
1210			    PRID_REV_R4400) {
1211				c->cputype = CPU_R4400PC;
1212				__cpu_name[cpu] = "R4400PC";
1213			} else {
1214				c->cputype = CPU_R4000PC;
1215				__cpu_name[cpu] = "R4000PC";
1216			}
1217		} else {
1218			int cca = read_c0_config() & CONF_CM_CMASK;
1219			int mc;
1220
1221			/*
1222			 * SC and MC versions can't be reliably told apart,
1223			 * but only the latter support coherent caching
1224			 * modes so assume the firmware has set the KSEG0
1225			 * coherency attribute reasonably (if uncached, we
1226			 * assume SC).
1227			 */
1228			switch (cca) {
1229			case CONF_CM_CACHABLE_CE:
1230			case CONF_CM_CACHABLE_COW:
1231			case CONF_CM_CACHABLE_CUW:
1232				mc = 1;
1233				break;
1234			default:
1235				mc = 0;
1236				break;
1237			}
1238			if ((c->processor_id & PRID_REV_MASK) >=
1239			    PRID_REV_R4400) {
1240				c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
1241				__cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
1242			} else {
1243				c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
1244				__cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
1245			}
1246		}
1247
1248		set_isa(c, MIPS_CPU_ISA_III);
1249		c->fpu_msk31 |= FPU_CSR_CONDX;
1250		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1251			     MIPS_CPU_WATCH | MIPS_CPU_VCE |
1252			     MIPS_CPU_LLSC;
1253		c->tlbsize = 48;
1254		break;
1255	case PRID_IMP_VR41XX:
1256		set_isa(c, MIPS_CPU_ISA_III);
1257		c->fpu_msk31 |= FPU_CSR_CONDX;
1258		c->options = R4K_OPTS;
1259		c->tlbsize = 32;
1260		switch (c->processor_id & 0xf0) {
1261		case PRID_REV_VR4111:
1262			c->cputype = CPU_VR4111;
1263			__cpu_name[cpu] = "NEC VR4111";
1264			break;
1265		case PRID_REV_VR4121:
1266			c->cputype = CPU_VR4121;
1267			__cpu_name[cpu] = "NEC VR4121";
1268			break;
1269		case PRID_REV_VR4122:
1270			if ((c->processor_id & 0xf) < 0x3) {
1271				c->cputype = CPU_VR4122;
1272				__cpu_name[cpu] = "NEC VR4122";
1273			} else {
1274				c->cputype = CPU_VR4181A;
1275				__cpu_name[cpu] = "NEC VR4181A";
1276			}
1277			break;
1278		case PRID_REV_VR4130:
1279			if ((c->processor_id & 0xf) < 0x4) {
1280				c->cputype = CPU_VR4131;
1281				__cpu_name[cpu] = "NEC VR4131";
1282			} else {
1283				c->cputype = CPU_VR4133;
1284				c->options |= MIPS_CPU_LLSC;
1285				__cpu_name[cpu] = "NEC VR4133";
1286			}
1287			break;
1288		default:
1289			printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n");
1290			c->cputype = CPU_VR41XX;
1291			__cpu_name[cpu] = "NEC Vr41xx";
1292			break;
1293		}
1294		break;
1295	case PRID_IMP_R4300:
1296		c->cputype = CPU_R4300;
1297		__cpu_name[cpu] = "R4300";
1298		set_isa(c, MIPS_CPU_ISA_III);
1299		c->fpu_msk31 |= FPU_CSR_CONDX;
1300		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1301			     MIPS_CPU_LLSC;
1302		c->tlbsize = 32;
1303		break;
1304	case PRID_IMP_R4600:
1305		c->cputype = CPU_R4600;
1306		__cpu_name[cpu] = "R4600";
1307		set_isa(c, MIPS_CPU_ISA_III);
1308		c->fpu_msk31 |= FPU_CSR_CONDX;
1309		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1310			     MIPS_CPU_LLSC;
1311		c->tlbsize = 48;
1312		break;
1313	#if 0
1314	case PRID_IMP_R4650:
1315		/*
1316		 * This processor doesn't have an MMU, so it's not
1317		 * "real easy" to run Linux on it. It is left purely
1318		 * for documentation.  Commented out because it shares
1319		 * it's c0_prid id number with the TX3900.
1320		 */
1321		c->cputype = CPU_R4650;
1322		__cpu_name[cpu] = "R4650";
1323		set_isa(c, MIPS_CPU_ISA_III);
1324		c->fpu_msk31 |= FPU_CSR_CONDX;
1325		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1326		c->tlbsize = 48;
1327		break;
1328	#endif
1329	case PRID_IMP_TX39:
1330		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1331		c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE;
1332
1333		if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) {
1334			c->cputype = CPU_TX3927;
1335			__cpu_name[cpu] = "TX3927";
1336			c->tlbsize = 64;
1337		} else {
1338			switch (c->processor_id & PRID_REV_MASK) {
1339			case PRID_REV_TX3912:
1340				c->cputype = CPU_TX3912;
1341				__cpu_name[cpu] = "TX3912";
1342				c->tlbsize = 32;
1343				break;
1344			case PRID_REV_TX3922:
1345				c->cputype = CPU_TX3922;
1346				__cpu_name[cpu] = "TX3922";
1347				c->tlbsize = 64;
1348				break;
1349			}
1350		}
1351		break;
1352	case PRID_IMP_R4700:
1353		c->cputype = CPU_R4700;
1354		__cpu_name[cpu] = "R4700";
1355		set_isa(c, MIPS_CPU_ISA_III);
1356		c->fpu_msk31 |= FPU_CSR_CONDX;
1357		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1358			     MIPS_CPU_LLSC;
1359		c->tlbsize = 48;
1360		break;
1361	case PRID_IMP_TX49:
1362		c->cputype = CPU_TX49XX;
1363		__cpu_name[cpu] = "R49XX";
1364		set_isa(c, MIPS_CPU_ISA_III);
1365		c->fpu_msk31 |= FPU_CSR_CONDX;
1366		c->options = R4K_OPTS | MIPS_CPU_LLSC;
1367		if (!(c->processor_id & 0x08))
1368			c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1369		c->tlbsize = 48;
1370		break;
1371	case PRID_IMP_R5000:
1372		c->cputype = CPU_R5000;
1373		__cpu_name[cpu] = "R5000";
1374		set_isa(c, MIPS_CPU_ISA_IV);
1375		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1376			     MIPS_CPU_LLSC;
1377		c->tlbsize = 48;
1378		break;
1379	case PRID_IMP_R5432:
1380		c->cputype = CPU_R5432;
1381		__cpu_name[cpu] = "R5432";
1382		set_isa(c, MIPS_CPU_ISA_IV);
1383		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1384			     MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1385		c->tlbsize = 48;
1386		break;
1387	case PRID_IMP_R5500:
1388		c->cputype = CPU_R5500;
1389		__cpu_name[cpu] = "R5500";
1390		set_isa(c, MIPS_CPU_ISA_IV);
1391		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1392			     MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1393		c->tlbsize = 48;
1394		break;
1395	case PRID_IMP_NEVADA:
1396		c->cputype = CPU_NEVADA;
1397		__cpu_name[cpu] = "Nevada";
1398		set_isa(c, MIPS_CPU_ISA_IV);
1399		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1400			     MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1401		c->tlbsize = 48;
1402		break;
1403	case PRID_IMP_RM7000:
1404		c->cputype = CPU_RM7000;
1405		__cpu_name[cpu] = "RM7000";
1406		set_isa(c, MIPS_CPU_ISA_IV);
1407		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1408			     MIPS_CPU_LLSC;
1409		/*
1410		 * Undocumented RM7000:	 Bit 29 in the info register of
1411		 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1412		 * entries.
1413		 *
1414		 * 29	   1 =>	   64 entry JTLB
1415		 *	   0 =>	   48 entry JTLB
1416		 */
1417		c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1418		break;
1419	case PRID_IMP_R8000:
1420		c->cputype = CPU_R8000;
1421		__cpu_name[cpu] = "RM8000";
1422		set_isa(c, MIPS_CPU_ISA_IV);
1423		c->options = MIPS_CPU_TLB | MIPS_CPU_4KEX |
1424			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1425			     MIPS_CPU_LLSC;
1426		c->tlbsize = 384;      /* has weird TLB: 3-way x 128 */
1427		break;
1428	case PRID_IMP_R10000:
1429		c->cputype = CPU_R10000;
1430		__cpu_name[cpu] = "R10000";
1431		set_isa(c, MIPS_CPU_ISA_IV);
1432		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1433			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1434			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1435			     MIPS_CPU_LLSC;
1436		c->tlbsize = 64;
1437		break;
1438	case PRID_IMP_R12000:
1439		c->cputype = CPU_R12000;
1440		__cpu_name[cpu] = "R12000";
1441		set_isa(c, MIPS_CPU_ISA_IV);
1442		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1443			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1444			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1445			     MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1446		c->tlbsize = 64;
1447		break;
1448	case PRID_IMP_R14000:
1449		if (((c->processor_id >> 4) & 0x0f) > 2) {
1450			c->cputype = CPU_R16000;
1451			__cpu_name[cpu] = "R16000";
1452		} else {
1453			c->cputype = CPU_R14000;
1454			__cpu_name[cpu] = "R14000";
1455		}
1456		set_isa(c, MIPS_CPU_ISA_IV);
1457		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1458			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1459			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1460			     MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1461		c->tlbsize = 64;
1462		break;
1463	case PRID_IMP_LOONGSON_64:  /* Loongson-2/3 */
1464		switch (c->processor_id & PRID_REV_MASK) {
1465		case PRID_REV_LOONGSON2E:
1466			c->cputype = CPU_LOONGSON2;
1467			__cpu_name[cpu] = "ICT Loongson-2";
1468			set_elf_platform(cpu, "loongson2e");
1469			set_isa(c, MIPS_CPU_ISA_III);
1470			c->fpu_msk31 |= FPU_CSR_CONDX;
1471			break;
1472		case PRID_REV_LOONGSON2F:
1473			c->cputype = CPU_LOONGSON2;
1474			__cpu_name[cpu] = "ICT Loongson-2";
1475			set_elf_platform(cpu, "loongson2f");
1476			set_isa(c, MIPS_CPU_ISA_III);
1477			c->fpu_msk31 |= FPU_CSR_CONDX;
1478			break;
1479		case PRID_REV_LOONGSON3A_R1:
1480			c->cputype = CPU_LOONGSON3;
1481			__cpu_name[cpu] = "ICT Loongson-3";
1482			set_elf_platform(cpu, "loongson3a");
1483			set_isa(c, MIPS_CPU_ISA_M64R1);
 
 
1484			break;
1485		case PRID_REV_LOONGSON3B_R1:
1486		case PRID_REV_LOONGSON3B_R2:
1487			c->cputype = CPU_LOONGSON3;
1488			__cpu_name[cpu] = "ICT Loongson-3";
1489			set_elf_platform(cpu, "loongson3b");
1490			set_isa(c, MIPS_CPU_ISA_M64R1);
 
 
1491			break;
1492		}
1493
1494		c->options = R4K_OPTS |
1495			     MIPS_CPU_FPU | MIPS_CPU_LLSC |
1496			     MIPS_CPU_32FPR;
1497		c->tlbsize = 64;
1498		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1499		break;
1500	case PRID_IMP_LOONGSON_32:  /* Loongson-1 */
1501		decode_configs(c);
1502
1503		c->cputype = CPU_LOONGSON1;
1504
1505		switch (c->processor_id & PRID_REV_MASK) {
1506		case PRID_REV_LOONGSON1B:
1507			__cpu_name[cpu] = "Loongson 1B";
1508			break;
1509		}
1510
1511		break;
1512	}
1513}
1514
1515static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1516{
1517	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1518	switch (c->processor_id & PRID_IMP_MASK) {
1519	case PRID_IMP_QEMU_GENERIC:
1520		c->writecombine = _CACHE_UNCACHED;
1521		c->cputype = CPU_QEMU_GENERIC;
1522		__cpu_name[cpu] = "MIPS GENERIC QEMU";
1523		break;
1524	case PRID_IMP_4KC:
1525		c->cputype = CPU_4KC;
1526		c->writecombine = _CACHE_UNCACHED;
1527		__cpu_name[cpu] = "MIPS 4Kc";
1528		break;
1529	case PRID_IMP_4KEC:
1530	case PRID_IMP_4KECR2:
1531		c->cputype = CPU_4KEC;
1532		c->writecombine = _CACHE_UNCACHED;
1533		__cpu_name[cpu] = "MIPS 4KEc";
1534		break;
1535	case PRID_IMP_4KSC:
1536	case PRID_IMP_4KSD:
1537		c->cputype = CPU_4KSC;
1538		c->writecombine = _CACHE_UNCACHED;
1539		__cpu_name[cpu] = "MIPS 4KSc";
1540		break;
1541	case PRID_IMP_5KC:
1542		c->cputype = CPU_5KC;
1543		c->writecombine = _CACHE_UNCACHED;
1544		__cpu_name[cpu] = "MIPS 5Kc";
1545		break;
1546	case PRID_IMP_5KE:
1547		c->cputype = CPU_5KE;
1548		c->writecombine = _CACHE_UNCACHED;
1549		__cpu_name[cpu] = "MIPS 5KE";
1550		break;
1551	case PRID_IMP_20KC:
1552		c->cputype = CPU_20KC;
1553		c->writecombine = _CACHE_UNCACHED;
1554		__cpu_name[cpu] = "MIPS 20Kc";
1555		break;
1556	case PRID_IMP_24K:
1557		c->cputype = CPU_24K;
1558		c->writecombine = _CACHE_UNCACHED;
1559		__cpu_name[cpu] = "MIPS 24Kc";
1560		break;
1561	case PRID_IMP_24KE:
1562		c->cputype = CPU_24K;
1563		c->writecombine = _CACHE_UNCACHED;
1564		__cpu_name[cpu] = "MIPS 24KEc";
1565		break;
1566	case PRID_IMP_25KF:
1567		c->cputype = CPU_25KF;
1568		c->writecombine = _CACHE_UNCACHED;
1569		__cpu_name[cpu] = "MIPS 25Kc";
1570		break;
1571	case PRID_IMP_34K:
1572		c->cputype = CPU_34K;
1573		c->writecombine = _CACHE_UNCACHED;
1574		__cpu_name[cpu] = "MIPS 34Kc";
 
1575		break;
1576	case PRID_IMP_74K:
1577		c->cputype = CPU_74K;
1578		c->writecombine = _CACHE_UNCACHED;
1579		__cpu_name[cpu] = "MIPS 74Kc";
1580		break;
1581	case PRID_IMP_M14KC:
1582		c->cputype = CPU_M14KC;
1583		c->writecombine = _CACHE_UNCACHED;
1584		__cpu_name[cpu] = "MIPS M14Kc";
1585		break;
1586	case PRID_IMP_M14KEC:
1587		c->cputype = CPU_M14KEC;
1588		c->writecombine = _CACHE_UNCACHED;
1589		__cpu_name[cpu] = "MIPS M14KEc";
1590		break;
1591	case PRID_IMP_1004K:
1592		c->cputype = CPU_1004K;
1593		c->writecombine = _CACHE_UNCACHED;
1594		__cpu_name[cpu] = "MIPS 1004Kc";
 
1595		break;
1596	case PRID_IMP_1074K:
1597		c->cputype = CPU_1074K;
1598		c->writecombine = _CACHE_UNCACHED;
1599		__cpu_name[cpu] = "MIPS 1074Kc";
1600		break;
1601	case PRID_IMP_INTERAPTIV_UP:
1602		c->cputype = CPU_INTERAPTIV;
1603		__cpu_name[cpu] = "MIPS interAptiv";
 
1604		break;
1605	case PRID_IMP_INTERAPTIV_MP:
1606		c->cputype = CPU_INTERAPTIV;
1607		__cpu_name[cpu] = "MIPS interAptiv (multi)";
 
1608		break;
1609	case PRID_IMP_PROAPTIV_UP:
1610		c->cputype = CPU_PROAPTIV;
1611		__cpu_name[cpu] = "MIPS proAptiv";
1612		break;
1613	case PRID_IMP_PROAPTIV_MP:
1614		c->cputype = CPU_PROAPTIV;
1615		__cpu_name[cpu] = "MIPS proAptiv (multi)";
1616		break;
1617	case PRID_IMP_P5600:
1618		c->cputype = CPU_P5600;
1619		__cpu_name[cpu] = "MIPS P5600";
1620		break;
1621	case PRID_IMP_P6600:
1622		c->cputype = CPU_P6600;
1623		__cpu_name[cpu] = "MIPS P6600";
1624		break;
1625	case PRID_IMP_I6400:
1626		c->cputype = CPU_I6400;
1627		__cpu_name[cpu] = "MIPS I6400";
1628		break;
1629	case PRID_IMP_I6500:
1630		c->cputype = CPU_I6500;
1631		__cpu_name[cpu] = "MIPS I6500";
1632		break;
1633	case PRID_IMP_M5150:
1634		c->cputype = CPU_M5150;
1635		__cpu_name[cpu] = "MIPS M5150";
1636		break;
1637	case PRID_IMP_M6250:
1638		c->cputype = CPU_M6250;
1639		__cpu_name[cpu] = "MIPS M6250";
1640		break;
1641	}
1642
1643	decode_configs(c);
1644
1645	spram_config();
1646
1647	switch (__get_cpu_type(c->cputype)) {
1648	case CPU_I6500:
1649		c->options |= MIPS_CPU_SHARED_FTLB_ENTRIES;
1650		/* fall-through */
1651	case CPU_I6400:
1652		c->options |= MIPS_CPU_SHARED_FTLB_RAM;
1653		/* fall-through */
1654	default:
1655		break;
1656	}
1657}
1658
1659static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1660{
1661	decode_configs(c);
1662	switch (c->processor_id & PRID_IMP_MASK) {
1663	case PRID_IMP_AU1_REV1:
1664	case PRID_IMP_AU1_REV2:
1665		c->cputype = CPU_ALCHEMY;
1666		switch ((c->processor_id >> 24) & 0xff) {
1667		case 0:
1668			__cpu_name[cpu] = "Au1000";
1669			break;
1670		case 1:
1671			__cpu_name[cpu] = "Au1500";
1672			break;
1673		case 2:
1674			__cpu_name[cpu] = "Au1100";
1675			break;
1676		case 3:
1677			__cpu_name[cpu] = "Au1550";
1678			break;
1679		case 4:
1680			__cpu_name[cpu] = "Au1200";
1681			if ((c->processor_id & PRID_REV_MASK) == 2)
1682				__cpu_name[cpu] = "Au1250";
1683			break;
1684		case 5:
1685			__cpu_name[cpu] = "Au1210";
1686			break;
1687		default:
1688			__cpu_name[cpu] = "Au1xxx";
1689			break;
1690		}
1691		break;
1692	}
1693}
1694
1695static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1696{
1697	decode_configs(c);
1698
1699	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1700	switch (c->processor_id & PRID_IMP_MASK) {
1701	case PRID_IMP_SB1:
1702		c->cputype = CPU_SB1;
1703		__cpu_name[cpu] = "SiByte SB1";
1704		/* FPU in pass1 is known to have issues. */
1705		if ((c->processor_id & PRID_REV_MASK) < 0x02)
1706			c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1707		break;
1708	case PRID_IMP_SB1A:
1709		c->cputype = CPU_SB1A;
1710		__cpu_name[cpu] = "SiByte SB1A";
1711		break;
1712	}
1713}
1714
1715static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1716{
1717	decode_configs(c);
1718	switch (c->processor_id & PRID_IMP_MASK) {
1719	case PRID_IMP_SR71000:
1720		c->cputype = CPU_SR71000;
1721		__cpu_name[cpu] = "Sandcraft SR71000";
1722		c->scache.ways = 8;
1723		c->tlbsize = 64;
1724		break;
1725	}
1726}
1727
1728static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1729{
1730	decode_configs(c);
1731	switch (c->processor_id & PRID_IMP_MASK) {
1732	case PRID_IMP_PR4450:
1733		c->cputype = CPU_PR4450;
1734		__cpu_name[cpu] = "Philips PR4450";
1735		set_isa(c, MIPS_CPU_ISA_M32R1);
1736		break;
1737	}
1738}
1739
1740static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1741{
1742	decode_configs(c);
1743	switch (c->processor_id & PRID_IMP_MASK) {
1744	case PRID_IMP_BMIPS32_REV4:
1745	case PRID_IMP_BMIPS32_REV8:
1746		c->cputype = CPU_BMIPS32;
1747		__cpu_name[cpu] = "Broadcom BMIPS32";
1748		set_elf_platform(cpu, "bmips32");
1749		break;
1750	case PRID_IMP_BMIPS3300:
1751	case PRID_IMP_BMIPS3300_ALT:
1752	case PRID_IMP_BMIPS3300_BUG:
1753		c->cputype = CPU_BMIPS3300;
1754		__cpu_name[cpu] = "Broadcom BMIPS3300";
1755		set_elf_platform(cpu, "bmips3300");
1756		break;
1757	case PRID_IMP_BMIPS43XX: {
1758		int rev = c->processor_id & PRID_REV_MASK;
1759
1760		if (rev >= PRID_REV_BMIPS4380_LO &&
1761				rev <= PRID_REV_BMIPS4380_HI) {
1762			c->cputype = CPU_BMIPS4380;
1763			__cpu_name[cpu] = "Broadcom BMIPS4380";
1764			set_elf_platform(cpu, "bmips4380");
1765			c->options |= MIPS_CPU_RIXI;
1766		} else {
1767			c->cputype = CPU_BMIPS4350;
1768			__cpu_name[cpu] = "Broadcom BMIPS4350";
1769			set_elf_platform(cpu, "bmips4350");
1770		}
1771		break;
1772	}
1773	case PRID_IMP_BMIPS5000:
1774	case PRID_IMP_BMIPS5200:
1775		c->cputype = CPU_BMIPS5000;
1776		if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200)
1777			__cpu_name[cpu] = "Broadcom BMIPS5200";
1778		else
1779			__cpu_name[cpu] = "Broadcom BMIPS5000";
1780		set_elf_platform(cpu, "bmips5000");
1781		c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI;
1782		break;
1783	}
1784}
1785
1786static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1787{
1788	decode_configs(c);
1789	switch (c->processor_id & PRID_IMP_MASK) {
1790	case PRID_IMP_CAVIUM_CN38XX:
1791	case PRID_IMP_CAVIUM_CN31XX:
1792	case PRID_IMP_CAVIUM_CN30XX:
1793		c->cputype = CPU_CAVIUM_OCTEON;
1794		__cpu_name[cpu] = "Cavium Octeon";
1795		goto platform;
1796	case PRID_IMP_CAVIUM_CN58XX:
1797	case PRID_IMP_CAVIUM_CN56XX:
1798	case PRID_IMP_CAVIUM_CN50XX:
1799	case PRID_IMP_CAVIUM_CN52XX:
1800		c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1801		__cpu_name[cpu] = "Cavium Octeon+";
1802platform:
1803		set_elf_platform(cpu, "octeon");
1804		break;
1805	case PRID_IMP_CAVIUM_CN61XX:
1806	case PRID_IMP_CAVIUM_CN63XX:
1807	case PRID_IMP_CAVIUM_CN66XX:
1808	case PRID_IMP_CAVIUM_CN68XX:
1809	case PRID_IMP_CAVIUM_CNF71XX:
1810		c->cputype = CPU_CAVIUM_OCTEON2;
1811		__cpu_name[cpu] = "Cavium Octeon II";
1812		set_elf_platform(cpu, "octeon2");
1813		break;
1814	case PRID_IMP_CAVIUM_CN70XX:
1815	case PRID_IMP_CAVIUM_CN73XX:
1816	case PRID_IMP_CAVIUM_CNF75XX:
1817	case PRID_IMP_CAVIUM_CN78XX:
1818		c->cputype = CPU_CAVIUM_OCTEON3;
1819		__cpu_name[cpu] = "Cavium Octeon III";
1820		set_elf_platform(cpu, "octeon3");
1821		break;
1822	default:
1823		printk(KERN_INFO "Unknown Octeon chip!\n");
1824		c->cputype = CPU_UNKNOWN;
1825		break;
1826	}
1827}
1828
1829static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu)
1830{
1831	switch (c->processor_id & PRID_IMP_MASK) {
1832	case PRID_IMP_LOONGSON_64:  /* Loongson-2/3 */
1833		switch (c->processor_id & PRID_REV_MASK) {
1834		case PRID_REV_LOONGSON3A_R2:
 
1835			c->cputype = CPU_LOONGSON3;
1836			__cpu_name[cpu] = "ICT Loongson-3";
1837			set_elf_platform(cpu, "loongson3a");
1838			set_isa(c, MIPS_CPU_ISA_M64R2);
1839			break;
1840		case PRID_REV_LOONGSON3A_R3:
 
1841			c->cputype = CPU_LOONGSON3;
1842			__cpu_name[cpu] = "ICT Loongson-3";
1843			set_elf_platform(cpu, "loongson3a");
1844			set_isa(c, MIPS_CPU_ISA_M64R2);
1845			break;
1846		}
1847
1848		decode_configs(c);
1849		c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
1850		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
 
 
1851		break;
1852	default:
1853		panic("Unknown Loongson Processor ID!");
1854		break;
1855	}
1856}
1857
1858static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
1859{
1860	decode_configs(c);
1861	/* JZRISC does not implement the CP0 counter. */
 
 
 
 
 
 
 
1862	c->options &= ~MIPS_CPU_COUNTER;
1863	BUG_ON(!__builtin_constant_p(cpu_has_counter) || cpu_has_counter);
 
1864	switch (c->processor_id & PRID_IMP_MASK) {
1865	case PRID_IMP_JZRISC:
1866		c->cputype = CPU_JZRISC;
1867		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1868		__cpu_name[cpu] = "Ingenic JZRISC";
 
 
 
 
 
 
 
1869		break;
1870	default:
1871		panic("Unknown Ingenic Processor ID!");
1872		break;
1873	}
 
 
 
 
 
 
 
 
1874}
1875
1876static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu)
1877{
1878	decode_configs(c);
1879
1880	if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) {
1881		c->cputype = CPU_ALCHEMY;
1882		__cpu_name[cpu] = "Au1300";
1883		/* following stuff is not for Alchemy */
1884		return;
1885	}
1886
1887	c->options = (MIPS_CPU_TLB	 |
1888			MIPS_CPU_4KEX	 |
1889			MIPS_CPU_COUNTER |
1890			MIPS_CPU_DIVEC	 |
1891			MIPS_CPU_WATCH	 |
1892			MIPS_CPU_EJTAG	 |
1893			MIPS_CPU_LLSC);
1894
1895	switch (c->processor_id & PRID_IMP_MASK) {
1896	case PRID_IMP_NETLOGIC_XLP2XX:
1897	case PRID_IMP_NETLOGIC_XLP9XX:
1898	case PRID_IMP_NETLOGIC_XLP5XX:
1899		c->cputype = CPU_XLP;
1900		__cpu_name[cpu] = "Broadcom XLPII";
1901		break;
1902
1903	case PRID_IMP_NETLOGIC_XLP8XX:
1904	case PRID_IMP_NETLOGIC_XLP3XX:
1905		c->cputype = CPU_XLP;
1906		__cpu_name[cpu] = "Netlogic XLP";
1907		break;
1908
1909	case PRID_IMP_NETLOGIC_XLR732:
1910	case PRID_IMP_NETLOGIC_XLR716:
1911	case PRID_IMP_NETLOGIC_XLR532:
1912	case PRID_IMP_NETLOGIC_XLR308:
1913	case PRID_IMP_NETLOGIC_XLR532C:
1914	case PRID_IMP_NETLOGIC_XLR516C:
1915	case PRID_IMP_NETLOGIC_XLR508C:
1916	case PRID_IMP_NETLOGIC_XLR308C:
1917		c->cputype = CPU_XLR;
1918		__cpu_name[cpu] = "Netlogic XLR";
1919		break;
1920
1921	case PRID_IMP_NETLOGIC_XLS608:
1922	case PRID_IMP_NETLOGIC_XLS408:
1923	case PRID_IMP_NETLOGIC_XLS404:
1924	case PRID_IMP_NETLOGIC_XLS208:
1925	case PRID_IMP_NETLOGIC_XLS204:
1926	case PRID_IMP_NETLOGIC_XLS108:
1927	case PRID_IMP_NETLOGIC_XLS104:
1928	case PRID_IMP_NETLOGIC_XLS616B:
1929	case PRID_IMP_NETLOGIC_XLS608B:
1930	case PRID_IMP_NETLOGIC_XLS416B:
1931	case PRID_IMP_NETLOGIC_XLS412B:
1932	case PRID_IMP_NETLOGIC_XLS408B:
1933	case PRID_IMP_NETLOGIC_XLS404B:
1934		c->cputype = CPU_XLR;
1935		__cpu_name[cpu] = "Netlogic XLS";
1936		break;
1937
1938	default:
1939		pr_info("Unknown Netlogic chip id [%02x]!\n",
1940		       c->processor_id);
1941		c->cputype = CPU_XLR;
1942		break;
1943	}
1944
1945	if (c->cputype == CPU_XLP) {
1946		set_isa(c, MIPS_CPU_ISA_M64R2);
1947		c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK);
1948		/* This will be updated again after all threads are woken up */
1949		c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1;
1950	} else {
1951		set_isa(c, MIPS_CPU_ISA_M64R1);
1952		c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1;
1953	}
1954	c->kscratch_mask = 0xf;
1955}
1956
1957#ifdef CONFIG_64BIT
1958/* For use by uaccess.h */
1959u64 __ua_limit;
1960EXPORT_SYMBOL(__ua_limit);
1961#endif
1962
1963const char *__cpu_name[NR_CPUS];
1964const char *__elf_platform;
1965
1966void cpu_probe(void)
1967{
1968	struct cpuinfo_mips *c = &current_cpu_data;
1969	unsigned int cpu = smp_processor_id();
1970
1971	/*
1972	 * Set a default elf platform, cpu probe may later
1973	 * overwrite it with a more precise value
1974	 */
1975	set_elf_platform(cpu, "mips");
1976
1977	c->processor_id = PRID_IMP_UNKNOWN;
1978	c->fpu_id	= FPIR_IMP_NONE;
1979	c->cputype	= CPU_UNKNOWN;
1980	c->writecombine = _CACHE_UNCACHED;
1981
1982	c->fpu_csr31	= FPU_CSR_RN;
1983	c->fpu_msk31	= FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
1984
1985	c->processor_id = read_c0_prid();
1986	switch (c->processor_id & PRID_COMP_MASK) {
1987	case PRID_COMP_LEGACY:
1988		cpu_probe_legacy(c, cpu);
1989		break;
1990	case PRID_COMP_MIPS:
1991		cpu_probe_mips(c, cpu);
1992		break;
1993	case PRID_COMP_ALCHEMY:
1994		cpu_probe_alchemy(c, cpu);
1995		break;
1996	case PRID_COMP_SIBYTE:
1997		cpu_probe_sibyte(c, cpu);
1998		break;
1999	case PRID_COMP_BROADCOM:
2000		cpu_probe_broadcom(c, cpu);
2001		break;
2002	case PRID_COMP_SANDCRAFT:
2003		cpu_probe_sandcraft(c, cpu);
2004		break;
2005	case PRID_COMP_NXP:
2006		cpu_probe_nxp(c, cpu);
2007		break;
2008	case PRID_COMP_CAVIUM:
2009		cpu_probe_cavium(c, cpu);
2010		break;
2011	case PRID_COMP_LOONGSON:
2012		cpu_probe_loongson(c, cpu);
2013		break;
2014	case PRID_COMP_INGENIC_D0:
2015	case PRID_COMP_INGENIC_D1:
2016	case PRID_COMP_INGENIC_E1:
2017		cpu_probe_ingenic(c, cpu);
2018		break;
2019	case PRID_COMP_NETLOGIC:
2020		cpu_probe_netlogic(c, cpu);
2021		break;
2022	}
2023
2024	BUG_ON(!__cpu_name[cpu]);
2025	BUG_ON(c->cputype == CPU_UNKNOWN);
2026
2027	/*
2028	 * Platform code can force the cpu type to optimize code
2029	 * generation. In that case be sure the cpu type is correctly
2030	 * manually setup otherwise it could trigger some nasty bugs.
2031	 */
2032	BUG_ON(current_cpu_type() != c->cputype);
2033
2034	if (cpu_has_rixi) {
2035		/* Enable the RIXI exceptions */
2036		set_c0_pagegrain(PG_IEC);
2037		back_to_back_c0_hazard();
2038		/* Verify the IEC bit is set */
2039		if (read_c0_pagegrain() & PG_IEC)
2040			c->options |= MIPS_CPU_RIXIEX;
2041	}
2042
2043	if (mips_fpu_disabled)
2044		c->options &= ~MIPS_CPU_FPU;
2045
2046	if (mips_dsp_disabled)
2047		c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
2048
2049	if (mips_htw_disabled) {
2050		c->options &= ~MIPS_CPU_HTW;
2051		write_c0_pwctl(read_c0_pwctl() &
2052			       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
2053	}
2054
2055	if (c->options & MIPS_CPU_FPU)
2056		cpu_set_fpu_opts(c);
2057	else
2058		cpu_set_nofpu_opts(c);
2059
2060	if (cpu_has_bp_ghist)
2061		write_c0_r10k_diag(read_c0_r10k_diag() |
2062				   R10K_DIAG_E_GHIST);
2063
2064	if (cpu_has_mips_r2_r6) {
2065		c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
2066		/* R2 has Performance Counter Interrupt indicator */
2067		c->options |= MIPS_CPU_PCI;
2068	}
2069	else
2070		c->srsets = 1;
2071
2072	if (cpu_has_mips_r6)
2073		elf_hwcap |= HWCAP_MIPS_R6;
2074
2075	if (cpu_has_msa) {
2076		c->msa_id = cpu_get_msa_id();
2077		WARN(c->msa_id & MSA_IR_WRPF,
2078		     "Vector register partitioning unimplemented!");
2079		elf_hwcap |= HWCAP_MIPS_MSA;
2080	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2081
2082	if (cpu_has_vz)
2083		cpu_probe_vz(c);
2084
2085	cpu_probe_vmbits(c);
2086
2087#ifdef CONFIG_64BIT
2088	if (cpu == 0)
2089		__ua_limit = ~((1ull << cpu_vmbits) - 1);
2090#endif
2091}
2092
2093void cpu_report(void)
2094{
2095	struct cpuinfo_mips *c = &current_cpu_data;
2096
2097	pr_info("CPU%d revision is: %08x (%s)\n",
2098		smp_processor_id(), c->processor_id, cpu_name_string());
2099	if (c->options & MIPS_CPU_FPU)
2100		printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
2101	if (cpu_has_msa)
2102		pr_info("MSA revision is: %08x\n", c->msa_id);
2103}
2104
2105void cpu_set_cluster(struct cpuinfo_mips *cpuinfo, unsigned int cluster)
2106{
2107	/* Ensure the core number fits in the field */
2108	WARN_ON(cluster > (MIPS_GLOBALNUMBER_CLUSTER >>
2109			   MIPS_GLOBALNUMBER_CLUSTER_SHF));
2110
2111	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CLUSTER;
2112	cpuinfo->globalnumber |= cluster << MIPS_GLOBALNUMBER_CLUSTER_SHF;
2113}
2114
2115void cpu_set_core(struct cpuinfo_mips *cpuinfo, unsigned int core)
2116{
2117	/* Ensure the core number fits in the field */
2118	WARN_ON(core > (MIPS_GLOBALNUMBER_CORE >> MIPS_GLOBALNUMBER_CORE_SHF));
2119
2120	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CORE;
2121	cpuinfo->globalnumber |= core << MIPS_GLOBALNUMBER_CORE_SHF;
2122}
2123
2124void cpu_set_vpe_id(struct cpuinfo_mips *cpuinfo, unsigned int vpe)
2125{
2126	/* Ensure the VP(E) ID fits in the field */
2127	WARN_ON(vpe > (MIPS_GLOBALNUMBER_VP >> MIPS_GLOBALNUMBER_VP_SHF));
2128
2129	/* Ensure we're not using VP(E)s without support */
2130	WARN_ON(vpe && !IS_ENABLED(CONFIG_MIPS_MT_SMP) &&
2131		!IS_ENABLED(CONFIG_CPU_MIPSR6));
2132
2133	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_VP;
2134	cpuinfo->globalnumber |= vpe << MIPS_GLOBALNUMBER_VP_SHF;
2135}