Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2021 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <linux/crc32.h>
18#include <linux/bitfield.h>
19#include <net/arp.h>
20#include <net/cfg80211.h>
21#include <net/cfg80211-wext.h>
22#include <net/iw_handler.h>
23#include "core.h"
24#include "nl80211.h"
25#include "wext-compat.h"
26#include "rdev-ops.h"
27
28/**
29 * DOC: BSS tree/list structure
30 *
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35 * for other BSSes.
36 *
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
44 *
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
53 *
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
56 * it.
57 *
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
62 */
63
64/*
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
71 */
72static int bss_entries_limit = 1000;
73module_param(bss_entries_limit, int, 0644);
74MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
78
79/**
80 * struct cfg80211_colocated_ap - colocated AP information
81 *
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
99 */
100struct cfg80211_colocated_ap {
101 struct list_head list;
102 u8 bssid[ETH_ALEN];
103 u8 ssid[IEEE80211_MAX_SSID_LEN];
104 size_t ssid_len;
105 u32 short_ssid;
106 u32 center_freq;
107 u8 unsolicited_probe:1,
108 oct_recommended:1,
109 same_ssid:1,
110 multi_bss:1,
111 transmitted_bssid:1,
112 colocated_ess:1,
113 short_ssid_valid:1;
114};
115
116static void bss_free(struct cfg80211_internal_bss *bss)
117{
118 struct cfg80211_bss_ies *ies;
119
120 if (WARN_ON(atomic_read(&bss->hold)))
121 return;
122
123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 if (ies && !bss->pub.hidden_beacon_bss)
125 kfree_rcu(ies, rcu_head);
126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 if (ies)
128 kfree_rcu(ies, rcu_head);
129
130 /*
131 * This happens when the module is removed, it doesn't
132 * really matter any more save for completeness
133 */
134 if (!list_empty(&bss->hidden_list))
135 list_del(&bss->hidden_list);
136
137 kfree(bss);
138}
139
140static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 struct cfg80211_internal_bss *bss)
142{
143 lockdep_assert_held(&rdev->bss_lock);
144
145 bss->refcount++;
146 if (bss->pub.hidden_beacon_bss) {
147 bss = container_of(bss->pub.hidden_beacon_bss,
148 struct cfg80211_internal_bss,
149 pub);
150 bss->refcount++;
151 }
152 if (bss->pub.transmitted_bss) {
153 bss = container_of(bss->pub.transmitted_bss,
154 struct cfg80211_internal_bss,
155 pub);
156 bss->refcount++;
157 }
158}
159
160static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
161 struct cfg80211_internal_bss *bss)
162{
163 lockdep_assert_held(&rdev->bss_lock);
164
165 if (bss->pub.hidden_beacon_bss) {
166 struct cfg80211_internal_bss *hbss;
167 hbss = container_of(bss->pub.hidden_beacon_bss,
168 struct cfg80211_internal_bss,
169 pub);
170 hbss->refcount--;
171 if (hbss->refcount == 0)
172 bss_free(hbss);
173 }
174
175 if (bss->pub.transmitted_bss) {
176 struct cfg80211_internal_bss *tbss;
177
178 tbss = container_of(bss->pub.transmitted_bss,
179 struct cfg80211_internal_bss,
180 pub);
181 tbss->refcount--;
182 if (tbss->refcount == 0)
183 bss_free(tbss);
184 }
185
186 bss->refcount--;
187 if (bss->refcount == 0)
188 bss_free(bss);
189}
190
191static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
192 struct cfg80211_internal_bss *bss)
193{
194 lockdep_assert_held(&rdev->bss_lock);
195
196 if (!list_empty(&bss->hidden_list)) {
197 /*
198 * don't remove the beacon entry if it has
199 * probe responses associated with it
200 */
201 if (!bss->pub.hidden_beacon_bss)
202 return false;
203 /*
204 * if it's a probe response entry break its
205 * link to the other entries in the group
206 */
207 list_del_init(&bss->hidden_list);
208 }
209
210 list_del_init(&bss->list);
211 list_del_init(&bss->pub.nontrans_list);
212 rb_erase(&bss->rbn, &rdev->bss_tree);
213 rdev->bss_entries--;
214 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
215 "rdev bss entries[%d]/list[empty:%d] corruption\n",
216 rdev->bss_entries, list_empty(&rdev->bss_list));
217 bss_ref_put(rdev, bss);
218 return true;
219}
220
221bool cfg80211_is_element_inherited(const struct element *elem,
222 const struct element *non_inherit_elem)
223{
224 u8 id_len, ext_id_len, i, loop_len, id;
225 const u8 *list;
226
227 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
228 return false;
229
230 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
231 return true;
232
233 /*
234 * non inheritance element format is:
235 * ext ID (56) | IDs list len | list | extension IDs list len | list
236 * Both lists are optional. Both lengths are mandatory.
237 * This means valid length is:
238 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
239 */
240 id_len = non_inherit_elem->data[1];
241 if (non_inherit_elem->datalen < 3 + id_len)
242 return true;
243
244 ext_id_len = non_inherit_elem->data[2 + id_len];
245 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
246 return true;
247
248 if (elem->id == WLAN_EID_EXTENSION) {
249 if (!ext_id_len)
250 return true;
251 loop_len = ext_id_len;
252 list = &non_inherit_elem->data[3 + id_len];
253 id = elem->data[0];
254 } else {
255 if (!id_len)
256 return true;
257 loop_len = id_len;
258 list = &non_inherit_elem->data[2];
259 id = elem->id;
260 }
261
262 for (i = 0; i < loop_len; i++) {
263 if (list[i] == id)
264 return false;
265 }
266
267 return true;
268}
269EXPORT_SYMBOL(cfg80211_is_element_inherited);
270
271static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
272 const u8 *subelement, size_t subie_len,
273 u8 *new_ie, gfp_t gfp)
274{
275 u8 *pos, *tmp;
276 const u8 *tmp_old, *tmp_new;
277 const struct element *non_inherit_elem;
278 u8 *sub_copy;
279
280 /* copy subelement as we need to change its content to
281 * mark an ie after it is processed.
282 */
283 sub_copy = kmemdup(subelement, subie_len, gfp);
284 if (!sub_copy)
285 return 0;
286
287 pos = &new_ie[0];
288
289 /* set new ssid */
290 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
291 if (tmp_new) {
292 memcpy(pos, tmp_new, tmp_new[1] + 2);
293 pos += (tmp_new[1] + 2);
294 }
295
296 /* get non inheritance list if exists */
297 non_inherit_elem =
298 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
299 sub_copy, subie_len);
300
301 /* go through IEs in ie (skip SSID) and subelement,
302 * merge them into new_ie
303 */
304 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
305 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
306
307 while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
308 if (tmp_old[0] == 0) {
309 tmp_old++;
310 continue;
311 }
312
313 if (tmp_old[0] == WLAN_EID_EXTENSION)
314 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
315 subie_len);
316 else
317 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
318 subie_len);
319
320 if (!tmp) {
321 const struct element *old_elem = (void *)tmp_old;
322
323 /* ie in old ie but not in subelement */
324 if (cfg80211_is_element_inherited(old_elem,
325 non_inherit_elem)) {
326 memcpy(pos, tmp_old, tmp_old[1] + 2);
327 pos += tmp_old[1] + 2;
328 }
329 } else {
330 /* ie in transmitting ie also in subelement,
331 * copy from subelement and flag the ie in subelement
332 * as copied (by setting eid field to WLAN_EID_SSID,
333 * which is skipped anyway).
334 * For vendor ie, compare OUI + type + subType to
335 * determine if they are the same ie.
336 */
337 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
338 if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
339 /* same vendor ie, copy from
340 * subelement
341 */
342 memcpy(pos, tmp, tmp[1] + 2);
343 pos += tmp[1] + 2;
344 tmp[0] = WLAN_EID_SSID;
345 } else {
346 memcpy(pos, tmp_old, tmp_old[1] + 2);
347 pos += tmp_old[1] + 2;
348 }
349 } else {
350 /* copy ie from subelement into new ie */
351 memcpy(pos, tmp, tmp[1] + 2);
352 pos += tmp[1] + 2;
353 tmp[0] = WLAN_EID_SSID;
354 }
355 }
356
357 if (tmp_old + tmp_old[1] + 2 - ie == ielen)
358 break;
359
360 tmp_old += tmp_old[1] + 2;
361 }
362
363 /* go through subelement again to check if there is any ie not
364 * copied to new ie, skip ssid, capability, bssid-index ie
365 */
366 tmp_new = sub_copy;
367 while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
368 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
369 tmp_new[0] == WLAN_EID_SSID)) {
370 memcpy(pos, tmp_new, tmp_new[1] + 2);
371 pos += tmp_new[1] + 2;
372 }
373 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
374 break;
375 tmp_new += tmp_new[1] + 2;
376 }
377
378 kfree(sub_copy);
379 return pos - new_ie;
380}
381
382static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
383 const u8 *ssid, size_t ssid_len)
384{
385 const struct cfg80211_bss_ies *ies;
386 const u8 *ssidie;
387
388 if (bssid && !ether_addr_equal(a->bssid, bssid))
389 return false;
390
391 if (!ssid)
392 return true;
393
394 ies = rcu_access_pointer(a->ies);
395 if (!ies)
396 return false;
397 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
398 if (!ssidie)
399 return false;
400 if (ssidie[1] != ssid_len)
401 return false;
402 return memcmp(ssidie + 2, ssid, ssid_len) == 0;
403}
404
405static int
406cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
407 struct cfg80211_bss *nontrans_bss)
408{
409 const u8 *ssid;
410 size_t ssid_len;
411 struct cfg80211_bss *bss = NULL;
412
413 rcu_read_lock();
414 ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
415 if (!ssid) {
416 rcu_read_unlock();
417 return -EINVAL;
418 }
419 ssid_len = ssid[1];
420 ssid = ssid + 2;
421 rcu_read_unlock();
422
423 /* check if nontrans_bss is in the list */
424 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
425 if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len))
426 return 0;
427 }
428
429 /* add to the list */
430 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
431 return 0;
432}
433
434static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
435 unsigned long expire_time)
436{
437 struct cfg80211_internal_bss *bss, *tmp;
438 bool expired = false;
439
440 lockdep_assert_held(&rdev->bss_lock);
441
442 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
443 if (atomic_read(&bss->hold))
444 continue;
445 if (!time_after(expire_time, bss->ts))
446 continue;
447
448 if (__cfg80211_unlink_bss(rdev, bss))
449 expired = true;
450 }
451
452 if (expired)
453 rdev->bss_generation++;
454}
455
456static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
457{
458 struct cfg80211_internal_bss *bss, *oldest = NULL;
459 bool ret;
460
461 lockdep_assert_held(&rdev->bss_lock);
462
463 list_for_each_entry(bss, &rdev->bss_list, list) {
464 if (atomic_read(&bss->hold))
465 continue;
466
467 if (!list_empty(&bss->hidden_list) &&
468 !bss->pub.hidden_beacon_bss)
469 continue;
470
471 if (oldest && time_before(oldest->ts, bss->ts))
472 continue;
473 oldest = bss;
474 }
475
476 if (WARN_ON(!oldest))
477 return false;
478
479 /*
480 * The callers make sure to increase rdev->bss_generation if anything
481 * gets removed (and a new entry added), so there's no need to also do
482 * it here.
483 */
484
485 ret = __cfg80211_unlink_bss(rdev, oldest);
486 WARN_ON(!ret);
487 return ret;
488}
489
490static u8 cfg80211_parse_bss_param(u8 data,
491 struct cfg80211_colocated_ap *coloc_ap)
492{
493 coloc_ap->oct_recommended =
494 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
495 coloc_ap->same_ssid =
496 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
497 coloc_ap->multi_bss =
498 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
499 coloc_ap->transmitted_bssid =
500 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
501 coloc_ap->unsolicited_probe =
502 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
503 coloc_ap->colocated_ess =
504 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
505
506 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
507}
508
509static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
510 const struct element **elem, u32 *s_ssid)
511{
512
513 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
514 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
515 return -EINVAL;
516
517 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
518 return 0;
519}
520
521static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
522{
523 struct cfg80211_colocated_ap *ap, *tmp_ap;
524
525 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
526 list_del(&ap->list);
527 kfree(ap);
528 }
529}
530
531static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
532 const u8 *pos, u8 length,
533 const struct element *ssid_elem,
534 int s_ssid_tmp)
535{
536 /* skip the TBTT offset */
537 pos++;
538
539 memcpy(entry->bssid, pos, ETH_ALEN);
540 pos += ETH_ALEN;
541
542 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
543 memcpy(&entry->short_ssid, pos,
544 sizeof(entry->short_ssid));
545 entry->short_ssid_valid = true;
546 pos += 4;
547 }
548
549 /* skip non colocated APs */
550 if (!cfg80211_parse_bss_param(*pos, entry))
551 return -EINVAL;
552 pos++;
553
554 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
555 /*
556 * no information about the short ssid. Consider the entry valid
557 * for now. It would later be dropped in case there are explicit
558 * SSIDs that need to be matched
559 */
560 if (!entry->same_ssid)
561 return 0;
562 }
563
564 if (entry->same_ssid) {
565 entry->short_ssid = s_ssid_tmp;
566 entry->short_ssid_valid = true;
567
568 /*
569 * This is safe because we validate datalen in
570 * cfg80211_parse_colocated_ap(), before calling this
571 * function.
572 */
573 memcpy(&entry->ssid, &ssid_elem->data,
574 ssid_elem->datalen);
575 entry->ssid_len = ssid_elem->datalen;
576 }
577 return 0;
578}
579
580static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
581 struct list_head *list)
582{
583 struct ieee80211_neighbor_ap_info *ap_info;
584 const struct element *elem, *ssid_elem;
585 const u8 *pos, *end;
586 u32 s_ssid_tmp;
587 int n_coloc = 0, ret;
588 LIST_HEAD(ap_list);
589
590 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
591 ies->len);
592 if (!elem)
593 return 0;
594
595 pos = elem->data;
596 end = pos + elem->datalen;
597
598 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
599 if (ret)
600 return ret;
601
602 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
603 while (pos + sizeof(*ap_info) <= end) {
604 enum nl80211_band band;
605 int freq;
606 u8 length, i, count;
607
608 ap_info = (void *)pos;
609 count = u8_get_bits(ap_info->tbtt_info_hdr,
610 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
611 length = ap_info->tbtt_info_len;
612
613 pos += sizeof(*ap_info);
614
615 if (!ieee80211_operating_class_to_band(ap_info->op_class,
616 &band))
617 break;
618
619 freq = ieee80211_channel_to_frequency(ap_info->channel, band);
620
621 if (end - pos < count * length)
622 break;
623
624 /*
625 * TBTT info must include bss param + BSSID +
626 * (short SSID or same_ssid bit to be set).
627 * ignore other options, and move to the
628 * next AP info
629 */
630 if (band != NL80211_BAND_6GHZ ||
631 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
632 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
633 pos += count * length;
634 continue;
635 }
636
637 for (i = 0; i < count; i++) {
638 struct cfg80211_colocated_ap *entry;
639
640 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
641 GFP_ATOMIC);
642
643 if (!entry)
644 break;
645
646 entry->center_freq = freq;
647
648 if (!cfg80211_parse_ap_info(entry, pos, length,
649 ssid_elem, s_ssid_tmp)) {
650 n_coloc++;
651 list_add_tail(&entry->list, &ap_list);
652 } else {
653 kfree(entry);
654 }
655
656 pos += length;
657 }
658 }
659
660 if (pos != end) {
661 cfg80211_free_coloc_ap_list(&ap_list);
662 return 0;
663 }
664
665 list_splice_tail(&ap_list, list);
666 return n_coloc;
667}
668
669static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
670 struct ieee80211_channel *chan,
671 bool add_to_6ghz)
672{
673 int i;
674 u32 n_channels = request->n_channels;
675 struct cfg80211_scan_6ghz_params *params =
676 &request->scan_6ghz_params[request->n_6ghz_params];
677
678 for (i = 0; i < n_channels; i++) {
679 if (request->channels[i] == chan) {
680 if (add_to_6ghz)
681 params->channel_idx = i;
682 return;
683 }
684 }
685
686 request->channels[n_channels] = chan;
687 if (add_to_6ghz)
688 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
689 n_channels;
690
691 request->n_channels++;
692}
693
694static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
695 struct cfg80211_scan_request *request)
696{
697 int i;
698 u32 s_ssid;
699
700 for (i = 0; i < request->n_ssids; i++) {
701 /* wildcard ssid in the scan request */
702 if (!request->ssids[i].ssid_len)
703 return true;
704
705 if (ap->ssid_len &&
706 ap->ssid_len == request->ssids[i].ssid_len) {
707 if (!memcmp(request->ssids[i].ssid, ap->ssid,
708 ap->ssid_len))
709 return true;
710 } else if (ap->short_ssid_valid) {
711 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
712 request->ssids[i].ssid_len);
713
714 if (ap->short_ssid == s_ssid)
715 return true;
716 }
717 }
718
719 return false;
720}
721
722static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
723{
724 u8 i;
725 struct cfg80211_colocated_ap *ap;
726 int n_channels, count = 0, err;
727 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
728 LIST_HEAD(coloc_ap_list);
729 bool need_scan_psc = true;
730 const struct ieee80211_sband_iftype_data *iftd;
731
732 rdev_req->scan_6ghz = true;
733
734 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
735 return -EOPNOTSUPP;
736
737 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
738 rdev_req->wdev->iftype);
739 if (!iftd || !iftd->he_cap.has_he)
740 return -EOPNOTSUPP;
741
742 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
743
744 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
745 struct cfg80211_internal_bss *intbss;
746
747 spin_lock_bh(&rdev->bss_lock);
748 list_for_each_entry(intbss, &rdev->bss_list, list) {
749 struct cfg80211_bss *res = &intbss->pub;
750 const struct cfg80211_bss_ies *ies;
751
752 ies = rcu_access_pointer(res->ies);
753 count += cfg80211_parse_colocated_ap(ies,
754 &coloc_ap_list);
755 }
756 spin_unlock_bh(&rdev->bss_lock);
757 }
758
759 request = kzalloc(struct_size(request, channels, n_channels) +
760 sizeof(*request->scan_6ghz_params) * count +
761 sizeof(*request->ssids) * rdev_req->n_ssids,
762 GFP_KERNEL);
763 if (!request) {
764 cfg80211_free_coloc_ap_list(&coloc_ap_list);
765 return -ENOMEM;
766 }
767
768 *request = *rdev_req;
769 request->n_channels = 0;
770 request->scan_6ghz_params =
771 (void *)&request->channels[n_channels];
772
773 /*
774 * PSC channels should not be scanned in case of direct scan with 1 SSID
775 * and at least one of the reported co-located APs with same SSID
776 * indicating that all APs in the same ESS are co-located
777 */
778 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
779 list_for_each_entry(ap, &coloc_ap_list, list) {
780 if (ap->colocated_ess &&
781 cfg80211_find_ssid_match(ap, request)) {
782 need_scan_psc = false;
783 break;
784 }
785 }
786 }
787
788 /*
789 * add to the scan request the channels that need to be scanned
790 * regardless of the collocated APs (PSC channels or all channels
791 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
792 */
793 for (i = 0; i < rdev_req->n_channels; i++) {
794 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
795 ((need_scan_psc &&
796 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
797 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
798 cfg80211_scan_req_add_chan(request,
799 rdev_req->channels[i],
800 false);
801 }
802 }
803
804 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
805 goto skip;
806
807 list_for_each_entry(ap, &coloc_ap_list, list) {
808 bool found = false;
809 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
810 &request->scan_6ghz_params[request->n_6ghz_params];
811 struct ieee80211_channel *chan =
812 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
813
814 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
815 continue;
816
817 for (i = 0; i < rdev_req->n_channels; i++) {
818 if (rdev_req->channels[i] == chan)
819 found = true;
820 }
821
822 if (!found)
823 continue;
824
825 if (request->n_ssids > 0 &&
826 !cfg80211_find_ssid_match(ap, request))
827 continue;
828
829 cfg80211_scan_req_add_chan(request, chan, true);
830 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
831 scan_6ghz_params->short_ssid = ap->short_ssid;
832 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
833 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
834
835 /*
836 * If a PSC channel is added to the scan and 'need_scan_psc' is
837 * set to false, then all the APs that the scan logic is
838 * interested with on the channel are collocated and thus there
839 * is no need to perform the initial PSC channel listen.
840 */
841 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
842 scan_6ghz_params->psc_no_listen = true;
843
844 request->n_6ghz_params++;
845 }
846
847skip:
848 cfg80211_free_coloc_ap_list(&coloc_ap_list);
849
850 if (request->n_channels) {
851 struct cfg80211_scan_request *old = rdev->int_scan_req;
852 rdev->int_scan_req = request;
853
854 /*
855 * Add the ssids from the parent scan request to the new scan
856 * request, so the driver would be able to use them in its
857 * probe requests to discover hidden APs on PSC channels.
858 */
859 request->ssids = (void *)&request->channels[request->n_channels];
860 request->n_ssids = rdev_req->n_ssids;
861 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
862 request->n_ssids);
863
864 /*
865 * If this scan follows a previous scan, save the scan start
866 * info from the first part of the scan
867 */
868 if (old)
869 rdev->int_scan_req->info = old->info;
870
871 err = rdev_scan(rdev, request);
872 if (err) {
873 rdev->int_scan_req = old;
874 kfree(request);
875 } else {
876 kfree(old);
877 }
878
879 return err;
880 }
881
882 kfree(request);
883 return -EINVAL;
884}
885
886int cfg80211_scan(struct cfg80211_registered_device *rdev)
887{
888 struct cfg80211_scan_request *request;
889 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
890 u32 n_channels = 0, idx, i;
891
892 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
893 return rdev_scan(rdev, rdev_req);
894
895 for (i = 0; i < rdev_req->n_channels; i++) {
896 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
897 n_channels++;
898 }
899
900 if (!n_channels)
901 return cfg80211_scan_6ghz(rdev);
902
903 request = kzalloc(struct_size(request, channels, n_channels),
904 GFP_KERNEL);
905 if (!request)
906 return -ENOMEM;
907
908 *request = *rdev_req;
909 request->n_channels = n_channels;
910
911 for (i = idx = 0; i < rdev_req->n_channels; i++) {
912 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
913 request->channels[idx++] = rdev_req->channels[i];
914 }
915
916 rdev_req->scan_6ghz = false;
917 rdev->int_scan_req = request;
918 return rdev_scan(rdev, request);
919}
920
921void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
922 bool send_message)
923{
924 struct cfg80211_scan_request *request, *rdev_req;
925 struct wireless_dev *wdev;
926 struct sk_buff *msg;
927#ifdef CONFIG_CFG80211_WEXT
928 union iwreq_data wrqu;
929#endif
930
931 lockdep_assert_held(&rdev->wiphy.mtx);
932
933 if (rdev->scan_msg) {
934 nl80211_send_scan_msg(rdev, rdev->scan_msg);
935 rdev->scan_msg = NULL;
936 return;
937 }
938
939 rdev_req = rdev->scan_req;
940 if (!rdev_req)
941 return;
942
943 wdev = rdev_req->wdev;
944 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
945
946 if (wdev_running(wdev) &&
947 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
948 !rdev_req->scan_6ghz && !request->info.aborted &&
949 !cfg80211_scan_6ghz(rdev))
950 return;
951
952 /*
953 * This must be before sending the other events!
954 * Otherwise, wpa_supplicant gets completely confused with
955 * wext events.
956 */
957 if (wdev->netdev)
958 cfg80211_sme_scan_done(wdev->netdev);
959
960 if (!request->info.aborted &&
961 request->flags & NL80211_SCAN_FLAG_FLUSH) {
962 /* flush entries from previous scans */
963 spin_lock_bh(&rdev->bss_lock);
964 __cfg80211_bss_expire(rdev, request->scan_start);
965 spin_unlock_bh(&rdev->bss_lock);
966 }
967
968 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
969
970#ifdef CONFIG_CFG80211_WEXT
971 if (wdev->netdev && !request->info.aborted) {
972 memset(&wrqu, 0, sizeof(wrqu));
973
974 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
975 }
976#endif
977
978 if (wdev->netdev)
979 dev_put(wdev->netdev);
980
981 kfree(rdev->int_scan_req);
982 rdev->int_scan_req = NULL;
983
984 kfree(rdev->scan_req);
985 rdev->scan_req = NULL;
986
987 if (!send_message)
988 rdev->scan_msg = msg;
989 else
990 nl80211_send_scan_msg(rdev, msg);
991}
992
993void __cfg80211_scan_done(struct work_struct *wk)
994{
995 struct cfg80211_registered_device *rdev;
996
997 rdev = container_of(wk, struct cfg80211_registered_device,
998 scan_done_wk);
999
1000 wiphy_lock(&rdev->wiphy);
1001 ___cfg80211_scan_done(rdev, true);
1002 wiphy_unlock(&rdev->wiphy);
1003}
1004
1005void cfg80211_scan_done(struct cfg80211_scan_request *request,
1006 struct cfg80211_scan_info *info)
1007{
1008 struct cfg80211_scan_info old_info = request->info;
1009
1010 trace_cfg80211_scan_done(request, info);
1011 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1012 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1013
1014 request->info = *info;
1015
1016 /*
1017 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1018 * be of the first part. In such a case old_info.scan_start_tsf should
1019 * be non zero.
1020 */
1021 if (request->scan_6ghz && old_info.scan_start_tsf) {
1022 request->info.scan_start_tsf = old_info.scan_start_tsf;
1023 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1024 sizeof(request->info.tsf_bssid));
1025 }
1026
1027 request->notified = true;
1028 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1029}
1030EXPORT_SYMBOL(cfg80211_scan_done);
1031
1032void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1033 struct cfg80211_sched_scan_request *req)
1034{
1035 lockdep_assert_held(&rdev->wiphy.mtx);
1036
1037 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1038}
1039
1040static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1041 struct cfg80211_sched_scan_request *req)
1042{
1043 lockdep_assert_held(&rdev->wiphy.mtx);
1044
1045 list_del_rcu(&req->list);
1046 kfree_rcu(req, rcu_head);
1047}
1048
1049static struct cfg80211_sched_scan_request *
1050cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1051{
1052 struct cfg80211_sched_scan_request *pos;
1053
1054 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1055 lockdep_is_held(&rdev->wiphy.mtx)) {
1056 if (pos->reqid == reqid)
1057 return pos;
1058 }
1059 return NULL;
1060}
1061
1062/*
1063 * Determines if a scheduled scan request can be handled. When a legacy
1064 * scheduled scan is running no other scheduled scan is allowed regardless
1065 * whether the request is for legacy or multi-support scan. When a multi-support
1066 * scheduled scan is running a request for legacy scan is not allowed. In this
1067 * case a request for multi-support scan can be handled if resources are
1068 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1069 */
1070int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1071 bool want_multi)
1072{
1073 struct cfg80211_sched_scan_request *pos;
1074 int i = 0;
1075
1076 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1077 /* request id zero means legacy in progress */
1078 if (!i && !pos->reqid)
1079 return -EINPROGRESS;
1080 i++;
1081 }
1082
1083 if (i) {
1084 /* no legacy allowed when multi request(s) are active */
1085 if (!want_multi)
1086 return -EINPROGRESS;
1087
1088 /* resource limit reached */
1089 if (i == rdev->wiphy.max_sched_scan_reqs)
1090 return -ENOSPC;
1091 }
1092 return 0;
1093}
1094
1095void cfg80211_sched_scan_results_wk(struct work_struct *work)
1096{
1097 struct cfg80211_registered_device *rdev;
1098 struct cfg80211_sched_scan_request *req, *tmp;
1099
1100 rdev = container_of(work, struct cfg80211_registered_device,
1101 sched_scan_res_wk);
1102
1103 wiphy_lock(&rdev->wiphy);
1104 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1105 if (req->report_results) {
1106 req->report_results = false;
1107 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1108 /* flush entries from previous scans */
1109 spin_lock_bh(&rdev->bss_lock);
1110 __cfg80211_bss_expire(rdev, req->scan_start);
1111 spin_unlock_bh(&rdev->bss_lock);
1112 req->scan_start = jiffies;
1113 }
1114 nl80211_send_sched_scan(req,
1115 NL80211_CMD_SCHED_SCAN_RESULTS);
1116 }
1117 }
1118 wiphy_unlock(&rdev->wiphy);
1119}
1120
1121void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1122{
1123 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1124 struct cfg80211_sched_scan_request *request;
1125
1126 trace_cfg80211_sched_scan_results(wiphy, reqid);
1127 /* ignore if we're not scanning */
1128
1129 rcu_read_lock();
1130 request = cfg80211_find_sched_scan_req(rdev, reqid);
1131 if (request) {
1132 request->report_results = true;
1133 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1134 }
1135 rcu_read_unlock();
1136}
1137EXPORT_SYMBOL(cfg80211_sched_scan_results);
1138
1139void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1140{
1141 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1142
1143 lockdep_assert_held(&wiphy->mtx);
1144
1145 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1146
1147 __cfg80211_stop_sched_scan(rdev, reqid, true);
1148}
1149EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1150
1151void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1152{
1153 wiphy_lock(wiphy);
1154 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1155 wiphy_unlock(wiphy);
1156}
1157EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1158
1159int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1160 struct cfg80211_sched_scan_request *req,
1161 bool driver_initiated)
1162{
1163 lockdep_assert_held(&rdev->wiphy.mtx);
1164
1165 if (!driver_initiated) {
1166 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1167 if (err)
1168 return err;
1169 }
1170
1171 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1172
1173 cfg80211_del_sched_scan_req(rdev, req);
1174
1175 return 0;
1176}
1177
1178int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1179 u64 reqid, bool driver_initiated)
1180{
1181 struct cfg80211_sched_scan_request *sched_scan_req;
1182
1183 lockdep_assert_held(&rdev->wiphy.mtx);
1184
1185 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1186 if (!sched_scan_req)
1187 return -ENOENT;
1188
1189 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1190 driver_initiated);
1191}
1192
1193void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1194 unsigned long age_secs)
1195{
1196 struct cfg80211_internal_bss *bss;
1197 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1198
1199 spin_lock_bh(&rdev->bss_lock);
1200 list_for_each_entry(bss, &rdev->bss_list, list)
1201 bss->ts -= age_jiffies;
1202 spin_unlock_bh(&rdev->bss_lock);
1203}
1204
1205void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1206{
1207 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1208}
1209
1210void cfg80211_bss_flush(struct wiphy *wiphy)
1211{
1212 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1213
1214 spin_lock_bh(&rdev->bss_lock);
1215 __cfg80211_bss_expire(rdev, jiffies);
1216 spin_unlock_bh(&rdev->bss_lock);
1217}
1218EXPORT_SYMBOL(cfg80211_bss_flush);
1219
1220const struct element *
1221cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1222 const u8 *match, unsigned int match_len,
1223 unsigned int match_offset)
1224{
1225 const struct element *elem;
1226
1227 for_each_element_id(elem, eid, ies, len) {
1228 if (elem->datalen >= match_offset + match_len &&
1229 !memcmp(elem->data + match_offset, match, match_len))
1230 return elem;
1231 }
1232
1233 return NULL;
1234}
1235EXPORT_SYMBOL(cfg80211_find_elem_match);
1236
1237const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1238 const u8 *ies,
1239 unsigned int len)
1240{
1241 const struct element *elem;
1242 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1243 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1244
1245 if (WARN_ON(oui_type > 0xff))
1246 return NULL;
1247
1248 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1249 match, match_len, 0);
1250
1251 if (!elem || elem->datalen < 4)
1252 return NULL;
1253
1254 return elem;
1255}
1256EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1257
1258/**
1259 * enum bss_compare_mode - BSS compare mode
1260 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1261 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1262 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1263 */
1264enum bss_compare_mode {
1265 BSS_CMP_REGULAR,
1266 BSS_CMP_HIDE_ZLEN,
1267 BSS_CMP_HIDE_NUL,
1268};
1269
1270static int cmp_bss(struct cfg80211_bss *a,
1271 struct cfg80211_bss *b,
1272 enum bss_compare_mode mode)
1273{
1274 const struct cfg80211_bss_ies *a_ies, *b_ies;
1275 const u8 *ie1 = NULL;
1276 const u8 *ie2 = NULL;
1277 int i, r;
1278
1279 if (a->channel != b->channel)
1280 return b->channel->center_freq - a->channel->center_freq;
1281
1282 a_ies = rcu_access_pointer(a->ies);
1283 if (!a_ies)
1284 return -1;
1285 b_ies = rcu_access_pointer(b->ies);
1286 if (!b_ies)
1287 return 1;
1288
1289 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1290 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1291 a_ies->data, a_ies->len);
1292 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1293 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1294 b_ies->data, b_ies->len);
1295 if (ie1 && ie2) {
1296 int mesh_id_cmp;
1297
1298 if (ie1[1] == ie2[1])
1299 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1300 else
1301 mesh_id_cmp = ie2[1] - ie1[1];
1302
1303 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1304 a_ies->data, a_ies->len);
1305 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1306 b_ies->data, b_ies->len);
1307 if (ie1 && ie2) {
1308 if (mesh_id_cmp)
1309 return mesh_id_cmp;
1310 if (ie1[1] != ie2[1])
1311 return ie2[1] - ie1[1];
1312 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1313 }
1314 }
1315
1316 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1317 if (r)
1318 return r;
1319
1320 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1321 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1322
1323 if (!ie1 && !ie2)
1324 return 0;
1325
1326 /*
1327 * Note that with "hide_ssid", the function returns a match if
1328 * the already-present BSS ("b") is a hidden SSID beacon for
1329 * the new BSS ("a").
1330 */
1331
1332 /* sort missing IE before (left of) present IE */
1333 if (!ie1)
1334 return -1;
1335 if (!ie2)
1336 return 1;
1337
1338 switch (mode) {
1339 case BSS_CMP_HIDE_ZLEN:
1340 /*
1341 * In ZLEN mode we assume the BSS entry we're
1342 * looking for has a zero-length SSID. So if
1343 * the one we're looking at right now has that,
1344 * return 0. Otherwise, return the difference
1345 * in length, but since we're looking for the
1346 * 0-length it's really equivalent to returning
1347 * the length of the one we're looking at.
1348 *
1349 * No content comparison is needed as we assume
1350 * the content length is zero.
1351 */
1352 return ie2[1];
1353 case BSS_CMP_REGULAR:
1354 default:
1355 /* sort by length first, then by contents */
1356 if (ie1[1] != ie2[1])
1357 return ie2[1] - ie1[1];
1358 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1359 case BSS_CMP_HIDE_NUL:
1360 if (ie1[1] != ie2[1])
1361 return ie2[1] - ie1[1];
1362 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1363 for (i = 0; i < ie2[1]; i++)
1364 if (ie2[i + 2])
1365 return -1;
1366 return 0;
1367 }
1368}
1369
1370static bool cfg80211_bss_type_match(u16 capability,
1371 enum nl80211_band band,
1372 enum ieee80211_bss_type bss_type)
1373{
1374 bool ret = true;
1375 u16 mask, val;
1376
1377 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1378 return ret;
1379
1380 if (band == NL80211_BAND_60GHZ) {
1381 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1382 switch (bss_type) {
1383 case IEEE80211_BSS_TYPE_ESS:
1384 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1385 break;
1386 case IEEE80211_BSS_TYPE_PBSS:
1387 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1388 break;
1389 case IEEE80211_BSS_TYPE_IBSS:
1390 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1391 break;
1392 default:
1393 return false;
1394 }
1395 } else {
1396 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1397 switch (bss_type) {
1398 case IEEE80211_BSS_TYPE_ESS:
1399 val = WLAN_CAPABILITY_ESS;
1400 break;
1401 case IEEE80211_BSS_TYPE_IBSS:
1402 val = WLAN_CAPABILITY_IBSS;
1403 break;
1404 case IEEE80211_BSS_TYPE_MBSS:
1405 val = 0;
1406 break;
1407 default:
1408 return false;
1409 }
1410 }
1411
1412 ret = ((capability & mask) == val);
1413 return ret;
1414}
1415
1416/* Returned bss is reference counted and must be cleaned up appropriately. */
1417struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1418 struct ieee80211_channel *channel,
1419 const u8 *bssid,
1420 const u8 *ssid, size_t ssid_len,
1421 enum ieee80211_bss_type bss_type,
1422 enum ieee80211_privacy privacy)
1423{
1424 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1425 struct cfg80211_internal_bss *bss, *res = NULL;
1426 unsigned long now = jiffies;
1427 int bss_privacy;
1428
1429 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1430 privacy);
1431
1432 spin_lock_bh(&rdev->bss_lock);
1433
1434 list_for_each_entry(bss, &rdev->bss_list, list) {
1435 if (!cfg80211_bss_type_match(bss->pub.capability,
1436 bss->pub.channel->band, bss_type))
1437 continue;
1438
1439 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1440 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1441 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1442 continue;
1443 if (channel && bss->pub.channel != channel)
1444 continue;
1445 if (!is_valid_ether_addr(bss->pub.bssid))
1446 continue;
1447 /* Don't get expired BSS structs */
1448 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1449 !atomic_read(&bss->hold))
1450 continue;
1451 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1452 res = bss;
1453 bss_ref_get(rdev, res);
1454 break;
1455 }
1456 }
1457
1458 spin_unlock_bh(&rdev->bss_lock);
1459 if (!res)
1460 return NULL;
1461 trace_cfg80211_return_bss(&res->pub);
1462 return &res->pub;
1463}
1464EXPORT_SYMBOL(cfg80211_get_bss);
1465
1466static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1467 struct cfg80211_internal_bss *bss)
1468{
1469 struct rb_node **p = &rdev->bss_tree.rb_node;
1470 struct rb_node *parent = NULL;
1471 struct cfg80211_internal_bss *tbss;
1472 int cmp;
1473
1474 while (*p) {
1475 parent = *p;
1476 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1477
1478 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1479
1480 if (WARN_ON(!cmp)) {
1481 /* will sort of leak this BSS */
1482 return;
1483 }
1484
1485 if (cmp < 0)
1486 p = &(*p)->rb_left;
1487 else
1488 p = &(*p)->rb_right;
1489 }
1490
1491 rb_link_node(&bss->rbn, parent, p);
1492 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1493}
1494
1495static struct cfg80211_internal_bss *
1496rb_find_bss(struct cfg80211_registered_device *rdev,
1497 struct cfg80211_internal_bss *res,
1498 enum bss_compare_mode mode)
1499{
1500 struct rb_node *n = rdev->bss_tree.rb_node;
1501 struct cfg80211_internal_bss *bss;
1502 int r;
1503
1504 while (n) {
1505 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1506 r = cmp_bss(&res->pub, &bss->pub, mode);
1507
1508 if (r == 0)
1509 return bss;
1510 else if (r < 0)
1511 n = n->rb_left;
1512 else
1513 n = n->rb_right;
1514 }
1515
1516 return NULL;
1517}
1518
1519static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1520 struct cfg80211_internal_bss *new)
1521{
1522 const struct cfg80211_bss_ies *ies;
1523 struct cfg80211_internal_bss *bss;
1524 const u8 *ie;
1525 int i, ssidlen;
1526 u8 fold = 0;
1527 u32 n_entries = 0;
1528
1529 ies = rcu_access_pointer(new->pub.beacon_ies);
1530 if (WARN_ON(!ies))
1531 return false;
1532
1533 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1534 if (!ie) {
1535 /* nothing to do */
1536 return true;
1537 }
1538
1539 ssidlen = ie[1];
1540 for (i = 0; i < ssidlen; i++)
1541 fold |= ie[2 + i];
1542
1543 if (fold) {
1544 /* not a hidden SSID */
1545 return true;
1546 }
1547
1548 /* This is the bad part ... */
1549
1550 list_for_each_entry(bss, &rdev->bss_list, list) {
1551 /*
1552 * we're iterating all the entries anyway, so take the
1553 * opportunity to validate the list length accounting
1554 */
1555 n_entries++;
1556
1557 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1558 continue;
1559 if (bss->pub.channel != new->pub.channel)
1560 continue;
1561 if (bss->pub.scan_width != new->pub.scan_width)
1562 continue;
1563 if (rcu_access_pointer(bss->pub.beacon_ies))
1564 continue;
1565 ies = rcu_access_pointer(bss->pub.ies);
1566 if (!ies)
1567 continue;
1568 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1569 if (!ie)
1570 continue;
1571 if (ssidlen && ie[1] != ssidlen)
1572 continue;
1573 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1574 continue;
1575 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1576 list_del(&bss->hidden_list);
1577 /* combine them */
1578 list_add(&bss->hidden_list, &new->hidden_list);
1579 bss->pub.hidden_beacon_bss = &new->pub;
1580 new->refcount += bss->refcount;
1581 rcu_assign_pointer(bss->pub.beacon_ies,
1582 new->pub.beacon_ies);
1583 }
1584
1585 WARN_ONCE(n_entries != rdev->bss_entries,
1586 "rdev bss entries[%d]/list[len:%d] corruption\n",
1587 rdev->bss_entries, n_entries);
1588
1589 return true;
1590}
1591
1592struct cfg80211_non_tx_bss {
1593 struct cfg80211_bss *tx_bss;
1594 u8 max_bssid_indicator;
1595 u8 bssid_index;
1596};
1597
1598static bool
1599cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1600 struct cfg80211_internal_bss *known,
1601 struct cfg80211_internal_bss *new,
1602 bool signal_valid)
1603{
1604 lockdep_assert_held(&rdev->bss_lock);
1605
1606 /* Update IEs */
1607 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1608 const struct cfg80211_bss_ies *old;
1609
1610 old = rcu_access_pointer(known->pub.proberesp_ies);
1611
1612 rcu_assign_pointer(known->pub.proberesp_ies,
1613 new->pub.proberesp_ies);
1614 /* Override possible earlier Beacon frame IEs */
1615 rcu_assign_pointer(known->pub.ies,
1616 new->pub.proberesp_ies);
1617 if (old)
1618 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1619 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1620 const struct cfg80211_bss_ies *old;
1621 struct cfg80211_internal_bss *bss;
1622
1623 if (known->pub.hidden_beacon_bss &&
1624 !list_empty(&known->hidden_list)) {
1625 const struct cfg80211_bss_ies *f;
1626
1627 /* The known BSS struct is one of the probe
1628 * response members of a group, but we're
1629 * receiving a beacon (beacon_ies in the new
1630 * bss is used). This can only mean that the
1631 * AP changed its beacon from not having an
1632 * SSID to showing it, which is confusing so
1633 * drop this information.
1634 */
1635
1636 f = rcu_access_pointer(new->pub.beacon_ies);
1637 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1638 return false;
1639 }
1640
1641 old = rcu_access_pointer(known->pub.beacon_ies);
1642
1643 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1644
1645 /* Override IEs if they were from a beacon before */
1646 if (old == rcu_access_pointer(known->pub.ies))
1647 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1648
1649 /* Assign beacon IEs to all sub entries */
1650 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1651 const struct cfg80211_bss_ies *ies;
1652
1653 ies = rcu_access_pointer(bss->pub.beacon_ies);
1654 WARN_ON(ies != old);
1655
1656 rcu_assign_pointer(bss->pub.beacon_ies,
1657 new->pub.beacon_ies);
1658 }
1659
1660 if (old)
1661 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1662 }
1663
1664 known->pub.beacon_interval = new->pub.beacon_interval;
1665
1666 /* don't update the signal if beacon was heard on
1667 * adjacent channel.
1668 */
1669 if (signal_valid)
1670 known->pub.signal = new->pub.signal;
1671 known->pub.capability = new->pub.capability;
1672 known->ts = new->ts;
1673 known->ts_boottime = new->ts_boottime;
1674 known->parent_tsf = new->parent_tsf;
1675 known->pub.chains = new->pub.chains;
1676 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1677 IEEE80211_MAX_CHAINS);
1678 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1679 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1680 known->pub.bssid_index = new->pub.bssid_index;
1681
1682 return true;
1683}
1684
1685/* Returned bss is reference counted and must be cleaned up appropriately. */
1686struct cfg80211_internal_bss *
1687cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1688 struct cfg80211_internal_bss *tmp,
1689 bool signal_valid, unsigned long ts)
1690{
1691 struct cfg80211_internal_bss *found = NULL;
1692
1693 if (WARN_ON(!tmp->pub.channel))
1694 return NULL;
1695
1696 tmp->ts = ts;
1697
1698 spin_lock_bh(&rdev->bss_lock);
1699
1700 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1701 spin_unlock_bh(&rdev->bss_lock);
1702 return NULL;
1703 }
1704
1705 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1706
1707 if (found) {
1708 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1709 goto drop;
1710 } else {
1711 struct cfg80211_internal_bss *new;
1712 struct cfg80211_internal_bss *hidden;
1713 struct cfg80211_bss_ies *ies;
1714
1715 /*
1716 * create a copy -- the "res" variable that is passed in
1717 * is allocated on the stack since it's not needed in the
1718 * more common case of an update
1719 */
1720 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1721 GFP_ATOMIC);
1722 if (!new) {
1723 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1724 if (ies)
1725 kfree_rcu(ies, rcu_head);
1726 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1727 if (ies)
1728 kfree_rcu(ies, rcu_head);
1729 goto drop;
1730 }
1731 memcpy(new, tmp, sizeof(*new));
1732 new->refcount = 1;
1733 INIT_LIST_HEAD(&new->hidden_list);
1734 INIT_LIST_HEAD(&new->pub.nontrans_list);
1735
1736 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1737 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1738 if (!hidden)
1739 hidden = rb_find_bss(rdev, tmp,
1740 BSS_CMP_HIDE_NUL);
1741 if (hidden) {
1742 new->pub.hidden_beacon_bss = &hidden->pub;
1743 list_add(&new->hidden_list,
1744 &hidden->hidden_list);
1745 hidden->refcount++;
1746 rcu_assign_pointer(new->pub.beacon_ies,
1747 hidden->pub.beacon_ies);
1748 }
1749 } else {
1750 /*
1751 * Ok so we found a beacon, and don't have an entry. If
1752 * it's a beacon with hidden SSID, we might be in for an
1753 * expensive search for any probe responses that should
1754 * be grouped with this beacon for updates ...
1755 */
1756 if (!cfg80211_combine_bsses(rdev, new)) {
1757 bss_ref_put(rdev, new);
1758 goto drop;
1759 }
1760 }
1761
1762 if (rdev->bss_entries >= bss_entries_limit &&
1763 !cfg80211_bss_expire_oldest(rdev)) {
1764 bss_ref_put(rdev, new);
1765 goto drop;
1766 }
1767
1768 /* This must be before the call to bss_ref_get */
1769 if (tmp->pub.transmitted_bss) {
1770 struct cfg80211_internal_bss *pbss =
1771 container_of(tmp->pub.transmitted_bss,
1772 struct cfg80211_internal_bss,
1773 pub);
1774
1775 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1776 bss_ref_get(rdev, pbss);
1777 }
1778
1779 list_add_tail(&new->list, &rdev->bss_list);
1780 rdev->bss_entries++;
1781 rb_insert_bss(rdev, new);
1782 found = new;
1783 }
1784
1785 rdev->bss_generation++;
1786 bss_ref_get(rdev, found);
1787 spin_unlock_bh(&rdev->bss_lock);
1788
1789 return found;
1790 drop:
1791 spin_unlock_bh(&rdev->bss_lock);
1792 return NULL;
1793}
1794
1795/*
1796 * Update RX channel information based on the available frame payload
1797 * information. This is mainly for the 2.4 GHz band where frames can be received
1798 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1799 * element to indicate the current (transmitting) channel, but this might also
1800 * be needed on other bands if RX frequency does not match with the actual
1801 * operating channel of a BSS.
1802 */
1803static struct ieee80211_channel *
1804cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1805 struct ieee80211_channel *channel,
1806 enum nl80211_bss_scan_width scan_width)
1807{
1808 const u8 *tmp;
1809 u32 freq;
1810 int channel_number = -1;
1811 struct ieee80211_channel *alt_channel;
1812
1813 if (channel->band == NL80211_BAND_S1GHZ) {
1814 tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1815 if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1816 struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1817
1818 channel_number = s1gop->primary_ch;
1819 }
1820 } else {
1821 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1822 if (tmp && tmp[1] == 1) {
1823 channel_number = tmp[2];
1824 } else {
1825 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1826 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1827 struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1828
1829 channel_number = htop->primary_chan;
1830 }
1831 }
1832 }
1833
1834 if (channel_number < 0) {
1835 /* No channel information in frame payload */
1836 return channel;
1837 }
1838
1839 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1840 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1841 if (!alt_channel) {
1842 if (channel->band == NL80211_BAND_2GHZ) {
1843 /*
1844 * Better not allow unexpected channels when that could
1845 * be going beyond the 1-11 range (e.g., discovering
1846 * BSS on channel 12 when radio is configured for
1847 * channel 11.
1848 */
1849 return NULL;
1850 }
1851
1852 /* No match for the payload channel number - ignore it */
1853 return channel;
1854 }
1855
1856 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1857 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1858 /*
1859 * Ignore channel number in 5 and 10 MHz channels where there
1860 * may not be an n:1 or 1:n mapping between frequencies and
1861 * channel numbers.
1862 */
1863 return channel;
1864 }
1865
1866 /*
1867 * Use the channel determined through the payload channel number
1868 * instead of the RX channel reported by the driver.
1869 */
1870 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1871 return NULL;
1872 return alt_channel;
1873}
1874
1875/* Returned bss is reference counted and must be cleaned up appropriately. */
1876static struct cfg80211_bss *
1877cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1878 struct cfg80211_inform_bss *data,
1879 enum cfg80211_bss_frame_type ftype,
1880 const u8 *bssid, u64 tsf, u16 capability,
1881 u16 beacon_interval, const u8 *ie, size_t ielen,
1882 struct cfg80211_non_tx_bss *non_tx_data,
1883 gfp_t gfp)
1884{
1885 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1886 struct cfg80211_bss_ies *ies;
1887 struct ieee80211_channel *channel;
1888 struct cfg80211_internal_bss tmp = {}, *res;
1889 int bss_type;
1890 bool signal_valid;
1891 unsigned long ts;
1892
1893 if (WARN_ON(!wiphy))
1894 return NULL;
1895
1896 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1897 (data->signal < 0 || data->signal > 100)))
1898 return NULL;
1899
1900 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1901 data->scan_width);
1902 if (!channel)
1903 return NULL;
1904
1905 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1906 tmp.pub.channel = channel;
1907 tmp.pub.scan_width = data->scan_width;
1908 tmp.pub.signal = data->signal;
1909 tmp.pub.beacon_interval = beacon_interval;
1910 tmp.pub.capability = capability;
1911 tmp.ts_boottime = data->boottime_ns;
1912 tmp.parent_tsf = data->parent_tsf;
1913 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1914
1915 if (non_tx_data) {
1916 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1917 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1918 tmp.pub.bssid_index = non_tx_data->bssid_index;
1919 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1920 } else {
1921 ts = jiffies;
1922 }
1923
1924 /*
1925 * If we do not know here whether the IEs are from a Beacon or Probe
1926 * Response frame, we need to pick one of the options and only use it
1927 * with the driver that does not provide the full Beacon/Probe Response
1928 * frame. Use Beacon frame pointer to avoid indicating that this should
1929 * override the IEs pointer should we have received an earlier
1930 * indication of Probe Response data.
1931 */
1932 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1933 if (!ies)
1934 return NULL;
1935 ies->len = ielen;
1936 ies->tsf = tsf;
1937 ies->from_beacon = false;
1938 memcpy(ies->data, ie, ielen);
1939
1940 switch (ftype) {
1941 case CFG80211_BSS_FTYPE_BEACON:
1942 ies->from_beacon = true;
1943 fallthrough;
1944 case CFG80211_BSS_FTYPE_UNKNOWN:
1945 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1946 break;
1947 case CFG80211_BSS_FTYPE_PRESP:
1948 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1949 break;
1950 }
1951 rcu_assign_pointer(tmp.pub.ies, ies);
1952
1953 signal_valid = data->chan == channel;
1954 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1955 if (!res)
1956 return NULL;
1957
1958 if (channel->band == NL80211_BAND_60GHZ) {
1959 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1960 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1961 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1962 regulatory_hint_found_beacon(wiphy, channel, gfp);
1963 } else {
1964 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1965 regulatory_hint_found_beacon(wiphy, channel, gfp);
1966 }
1967
1968 if (non_tx_data) {
1969 /* this is a nontransmitting bss, we need to add it to
1970 * transmitting bss' list if it is not there
1971 */
1972 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1973 &res->pub)) {
1974 if (__cfg80211_unlink_bss(rdev, res))
1975 rdev->bss_generation++;
1976 }
1977 }
1978
1979 trace_cfg80211_return_bss(&res->pub);
1980 /* cfg80211_bss_update gives us a referenced result */
1981 return &res->pub;
1982}
1983
1984static const struct element
1985*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1986 const struct element *mbssid_elem,
1987 const struct element *sub_elem)
1988{
1989 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1990 const struct element *next_mbssid;
1991 const struct element *next_sub;
1992
1993 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
1994 mbssid_end,
1995 ielen - (mbssid_end - ie));
1996
1997 /*
1998 * If it is not the last subelement in current MBSSID IE or there isn't
1999 * a next MBSSID IE - profile is complete.
2000 */
2001 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2002 !next_mbssid)
2003 return NULL;
2004
2005 /* For any length error, just return NULL */
2006
2007 if (next_mbssid->datalen < 4)
2008 return NULL;
2009
2010 next_sub = (void *)&next_mbssid->data[1];
2011
2012 if (next_mbssid->data + next_mbssid->datalen <
2013 next_sub->data + next_sub->datalen)
2014 return NULL;
2015
2016 if (next_sub->id != 0 || next_sub->datalen < 2)
2017 return NULL;
2018
2019 /*
2020 * Check if the first element in the next sub element is a start
2021 * of a new profile
2022 */
2023 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2024 NULL : next_mbssid;
2025}
2026
2027size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2028 const struct element *mbssid_elem,
2029 const struct element *sub_elem,
2030 u8 *merged_ie, size_t max_copy_len)
2031{
2032 size_t copied_len = sub_elem->datalen;
2033 const struct element *next_mbssid;
2034
2035 if (sub_elem->datalen > max_copy_len)
2036 return 0;
2037
2038 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2039
2040 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2041 mbssid_elem,
2042 sub_elem))) {
2043 const struct element *next_sub = (void *)&next_mbssid->data[1];
2044
2045 if (copied_len + next_sub->datalen > max_copy_len)
2046 break;
2047 memcpy(merged_ie + copied_len, next_sub->data,
2048 next_sub->datalen);
2049 copied_len += next_sub->datalen;
2050 }
2051
2052 return copied_len;
2053}
2054EXPORT_SYMBOL(cfg80211_merge_profile);
2055
2056static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2057 struct cfg80211_inform_bss *data,
2058 enum cfg80211_bss_frame_type ftype,
2059 const u8 *bssid, u64 tsf,
2060 u16 beacon_interval, const u8 *ie,
2061 size_t ielen,
2062 struct cfg80211_non_tx_bss *non_tx_data,
2063 gfp_t gfp)
2064{
2065 const u8 *mbssid_index_ie;
2066 const struct element *elem, *sub;
2067 size_t new_ie_len;
2068 u8 new_bssid[ETH_ALEN];
2069 u8 *new_ie, *profile;
2070 u64 seen_indices = 0;
2071 u16 capability;
2072 struct cfg80211_bss *bss;
2073
2074 if (!non_tx_data)
2075 return;
2076 if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2077 return;
2078 if (!wiphy->support_mbssid)
2079 return;
2080 if (wiphy->support_only_he_mbssid &&
2081 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2082 return;
2083
2084 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2085 if (!new_ie)
2086 return;
2087
2088 profile = kmalloc(ielen, gfp);
2089 if (!profile)
2090 goto out;
2091
2092 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2093 if (elem->datalen < 4)
2094 continue;
2095 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2096 u8 profile_len;
2097
2098 if (sub->id != 0 || sub->datalen < 4) {
2099 /* not a valid BSS profile */
2100 continue;
2101 }
2102
2103 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2104 sub->data[1] != 2) {
2105 /* The first element within the Nontransmitted
2106 * BSSID Profile is not the Nontransmitted
2107 * BSSID Capability element.
2108 */
2109 continue;
2110 }
2111
2112 memset(profile, 0, ielen);
2113 profile_len = cfg80211_merge_profile(ie, ielen,
2114 elem,
2115 sub,
2116 profile,
2117 ielen);
2118
2119 /* found a Nontransmitted BSSID Profile */
2120 mbssid_index_ie = cfg80211_find_ie
2121 (WLAN_EID_MULTI_BSSID_IDX,
2122 profile, profile_len);
2123 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2124 mbssid_index_ie[2] == 0 ||
2125 mbssid_index_ie[2] > 46) {
2126 /* No valid Multiple BSSID-Index element */
2127 continue;
2128 }
2129
2130 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2131 /* We don't support legacy split of a profile */
2132 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2133 mbssid_index_ie[2]);
2134
2135 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2136
2137 non_tx_data->bssid_index = mbssid_index_ie[2];
2138 non_tx_data->max_bssid_indicator = elem->data[0];
2139
2140 cfg80211_gen_new_bssid(bssid,
2141 non_tx_data->max_bssid_indicator,
2142 non_tx_data->bssid_index,
2143 new_bssid);
2144 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2145 new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2146 profile,
2147 profile_len, new_ie,
2148 gfp);
2149 if (!new_ie_len)
2150 continue;
2151
2152 capability = get_unaligned_le16(profile + 2);
2153 bss = cfg80211_inform_single_bss_data(wiphy, data,
2154 ftype,
2155 new_bssid, tsf,
2156 capability,
2157 beacon_interval,
2158 new_ie,
2159 new_ie_len,
2160 non_tx_data,
2161 gfp);
2162 if (!bss)
2163 break;
2164 cfg80211_put_bss(wiphy, bss);
2165 }
2166 }
2167
2168out:
2169 kfree(new_ie);
2170 kfree(profile);
2171}
2172
2173struct cfg80211_bss *
2174cfg80211_inform_bss_data(struct wiphy *wiphy,
2175 struct cfg80211_inform_bss *data,
2176 enum cfg80211_bss_frame_type ftype,
2177 const u8 *bssid, u64 tsf, u16 capability,
2178 u16 beacon_interval, const u8 *ie, size_t ielen,
2179 gfp_t gfp)
2180{
2181 struct cfg80211_bss *res;
2182 struct cfg80211_non_tx_bss non_tx_data;
2183
2184 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2185 capability, beacon_interval, ie,
2186 ielen, NULL, gfp);
2187 if (!res)
2188 return NULL;
2189 non_tx_data.tx_bss = res;
2190 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2191 beacon_interval, ie, ielen, &non_tx_data,
2192 gfp);
2193 return res;
2194}
2195EXPORT_SYMBOL(cfg80211_inform_bss_data);
2196
2197static void
2198cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2199 struct cfg80211_inform_bss *data,
2200 struct ieee80211_mgmt *mgmt, size_t len,
2201 struct cfg80211_non_tx_bss *non_tx_data,
2202 gfp_t gfp)
2203{
2204 enum cfg80211_bss_frame_type ftype;
2205 const u8 *ie = mgmt->u.probe_resp.variable;
2206 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2207 u.probe_resp.variable);
2208
2209 ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2210 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2211
2212 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2213 le64_to_cpu(mgmt->u.probe_resp.timestamp),
2214 le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2215 ie, ielen, non_tx_data, gfp);
2216}
2217
2218static void
2219cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2220 struct cfg80211_bss *nontrans_bss,
2221 struct ieee80211_mgmt *mgmt, size_t len)
2222{
2223 u8 *ie, *new_ie, *pos;
2224 const u8 *nontrans_ssid, *trans_ssid, *mbssid;
2225 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2226 u.probe_resp.variable);
2227 size_t new_ie_len;
2228 struct cfg80211_bss_ies *new_ies;
2229 const struct cfg80211_bss_ies *old;
2230 u8 cpy_len;
2231
2232 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2233
2234 ie = mgmt->u.probe_resp.variable;
2235
2236 new_ie_len = ielen;
2237 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2238 if (!trans_ssid)
2239 return;
2240 new_ie_len -= trans_ssid[1];
2241 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2242 /*
2243 * It's not valid to have the MBSSID element before SSID
2244 * ignore if that happens - the code below assumes it is
2245 * after (while copying things inbetween).
2246 */
2247 if (!mbssid || mbssid < trans_ssid)
2248 return;
2249 new_ie_len -= mbssid[1];
2250
2251 nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
2252 if (!nontrans_ssid)
2253 return;
2254
2255 new_ie_len += nontrans_ssid[1];
2256
2257 /* generate new ie for nontrans BSS
2258 * 1. replace SSID with nontrans BSS' SSID
2259 * 2. skip MBSSID IE
2260 */
2261 new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2262 if (!new_ie)
2263 return;
2264
2265 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2266 if (!new_ies)
2267 goto out_free;
2268
2269 pos = new_ie;
2270
2271 /* copy the nontransmitted SSID */
2272 cpy_len = nontrans_ssid[1] + 2;
2273 memcpy(pos, nontrans_ssid, cpy_len);
2274 pos += cpy_len;
2275 /* copy the IEs between SSID and MBSSID */
2276 cpy_len = trans_ssid[1] + 2;
2277 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2278 pos += (mbssid - (trans_ssid + cpy_len));
2279 /* copy the IEs after MBSSID */
2280 cpy_len = mbssid[1] + 2;
2281 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2282
2283 /* update ie */
2284 new_ies->len = new_ie_len;
2285 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2286 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2287 memcpy(new_ies->data, new_ie, new_ie_len);
2288 if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2289 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2290 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2291 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2292 if (old)
2293 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2294 } else {
2295 old = rcu_access_pointer(nontrans_bss->beacon_ies);
2296 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2297 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2298 if (old)
2299 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2300 }
2301
2302out_free:
2303 kfree(new_ie);
2304}
2305
2306/* cfg80211_inform_bss_width_frame helper */
2307static struct cfg80211_bss *
2308cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2309 struct cfg80211_inform_bss *data,
2310 struct ieee80211_mgmt *mgmt, size_t len,
2311 gfp_t gfp)
2312{
2313 struct cfg80211_internal_bss tmp = {}, *res;
2314 struct cfg80211_bss_ies *ies;
2315 struct ieee80211_channel *channel;
2316 bool signal_valid;
2317 struct ieee80211_ext *ext = NULL;
2318 u8 *bssid, *variable;
2319 u16 capability, beacon_int;
2320 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2321 u.probe_resp.variable);
2322 int bss_type;
2323
2324 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2325 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2326
2327 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2328
2329 if (WARN_ON(!mgmt))
2330 return NULL;
2331
2332 if (WARN_ON(!wiphy))
2333 return NULL;
2334
2335 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2336 (data->signal < 0 || data->signal > 100)))
2337 return NULL;
2338
2339 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2340 ext = (void *) mgmt;
2341 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2342 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2343 min_hdr_len = offsetof(struct ieee80211_ext,
2344 u.s1g_short_beacon.variable);
2345 }
2346
2347 if (WARN_ON(len < min_hdr_len))
2348 return NULL;
2349
2350 ielen = len - min_hdr_len;
2351 variable = mgmt->u.probe_resp.variable;
2352 if (ext) {
2353 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2354 variable = ext->u.s1g_short_beacon.variable;
2355 else
2356 variable = ext->u.s1g_beacon.variable;
2357 }
2358
2359 channel = cfg80211_get_bss_channel(wiphy, variable,
2360 ielen, data->chan, data->scan_width);
2361 if (!channel)
2362 return NULL;
2363
2364 if (ext) {
2365 const struct ieee80211_s1g_bcn_compat_ie *compat;
2366 const struct element *elem;
2367
2368 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2369 variable, ielen);
2370 if (!elem)
2371 return NULL;
2372 if (elem->datalen < sizeof(*compat))
2373 return NULL;
2374 compat = (void *)elem->data;
2375 bssid = ext->u.s1g_beacon.sa;
2376 capability = le16_to_cpu(compat->compat_info);
2377 beacon_int = le16_to_cpu(compat->beacon_int);
2378 } else {
2379 bssid = mgmt->bssid;
2380 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2381 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2382 }
2383
2384 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2385 if (!ies)
2386 return NULL;
2387 ies->len = ielen;
2388 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2389 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2390 ieee80211_is_s1g_beacon(mgmt->frame_control);
2391 memcpy(ies->data, variable, ielen);
2392
2393 if (ieee80211_is_probe_resp(mgmt->frame_control))
2394 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2395 else
2396 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2397 rcu_assign_pointer(tmp.pub.ies, ies);
2398
2399 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2400 tmp.pub.beacon_interval = beacon_int;
2401 tmp.pub.capability = capability;
2402 tmp.pub.channel = channel;
2403 tmp.pub.scan_width = data->scan_width;
2404 tmp.pub.signal = data->signal;
2405 tmp.ts_boottime = data->boottime_ns;
2406 tmp.parent_tsf = data->parent_tsf;
2407 tmp.pub.chains = data->chains;
2408 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2409 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2410
2411 signal_valid = data->chan == channel;
2412 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2413 jiffies);
2414 if (!res)
2415 return NULL;
2416
2417 if (channel->band == NL80211_BAND_60GHZ) {
2418 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2419 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2420 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2421 regulatory_hint_found_beacon(wiphy, channel, gfp);
2422 } else {
2423 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2424 regulatory_hint_found_beacon(wiphy, channel, gfp);
2425 }
2426
2427 trace_cfg80211_return_bss(&res->pub);
2428 /* cfg80211_bss_update gives us a referenced result */
2429 return &res->pub;
2430}
2431
2432struct cfg80211_bss *
2433cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2434 struct cfg80211_inform_bss *data,
2435 struct ieee80211_mgmt *mgmt, size_t len,
2436 gfp_t gfp)
2437{
2438 struct cfg80211_bss *res, *tmp_bss;
2439 const u8 *ie = mgmt->u.probe_resp.variable;
2440 const struct cfg80211_bss_ies *ies1, *ies2;
2441 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2442 u.probe_resp.variable);
2443 struct cfg80211_non_tx_bss non_tx_data;
2444
2445 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2446 len, gfp);
2447 if (!res || !wiphy->support_mbssid ||
2448 !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2449 return res;
2450 if (wiphy->support_only_he_mbssid &&
2451 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2452 return res;
2453
2454 non_tx_data.tx_bss = res;
2455 /* process each non-transmitting bss */
2456 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2457 &non_tx_data, gfp);
2458
2459 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2460
2461 /* check if the res has other nontransmitting bss which is not
2462 * in MBSSID IE
2463 */
2464 ies1 = rcu_access_pointer(res->ies);
2465
2466 /* go through nontrans_list, if the timestamp of the BSS is
2467 * earlier than the timestamp of the transmitting BSS then
2468 * update it
2469 */
2470 list_for_each_entry(tmp_bss, &res->nontrans_list,
2471 nontrans_list) {
2472 ies2 = rcu_access_pointer(tmp_bss->ies);
2473 if (ies2->tsf < ies1->tsf)
2474 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2475 mgmt, len);
2476 }
2477 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2478
2479 return res;
2480}
2481EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2482
2483void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2484{
2485 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2486 struct cfg80211_internal_bss *bss;
2487
2488 if (!pub)
2489 return;
2490
2491 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2492
2493 spin_lock_bh(&rdev->bss_lock);
2494 bss_ref_get(rdev, bss);
2495 spin_unlock_bh(&rdev->bss_lock);
2496}
2497EXPORT_SYMBOL(cfg80211_ref_bss);
2498
2499void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2500{
2501 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2502 struct cfg80211_internal_bss *bss;
2503
2504 if (!pub)
2505 return;
2506
2507 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2508
2509 spin_lock_bh(&rdev->bss_lock);
2510 bss_ref_put(rdev, bss);
2511 spin_unlock_bh(&rdev->bss_lock);
2512}
2513EXPORT_SYMBOL(cfg80211_put_bss);
2514
2515void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2516{
2517 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2518 struct cfg80211_internal_bss *bss, *tmp1;
2519 struct cfg80211_bss *nontrans_bss, *tmp;
2520
2521 if (WARN_ON(!pub))
2522 return;
2523
2524 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2525
2526 spin_lock_bh(&rdev->bss_lock);
2527 if (list_empty(&bss->list))
2528 goto out;
2529
2530 list_for_each_entry_safe(nontrans_bss, tmp,
2531 &pub->nontrans_list,
2532 nontrans_list) {
2533 tmp1 = container_of(nontrans_bss,
2534 struct cfg80211_internal_bss, pub);
2535 if (__cfg80211_unlink_bss(rdev, tmp1))
2536 rdev->bss_generation++;
2537 }
2538
2539 if (__cfg80211_unlink_bss(rdev, bss))
2540 rdev->bss_generation++;
2541out:
2542 spin_unlock_bh(&rdev->bss_lock);
2543}
2544EXPORT_SYMBOL(cfg80211_unlink_bss);
2545
2546void cfg80211_bss_iter(struct wiphy *wiphy,
2547 struct cfg80211_chan_def *chandef,
2548 void (*iter)(struct wiphy *wiphy,
2549 struct cfg80211_bss *bss,
2550 void *data),
2551 void *iter_data)
2552{
2553 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2554 struct cfg80211_internal_bss *bss;
2555
2556 spin_lock_bh(&rdev->bss_lock);
2557
2558 list_for_each_entry(bss, &rdev->bss_list, list) {
2559 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2560 iter(wiphy, &bss->pub, iter_data);
2561 }
2562
2563 spin_unlock_bh(&rdev->bss_lock);
2564}
2565EXPORT_SYMBOL(cfg80211_bss_iter);
2566
2567void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2568 struct ieee80211_channel *chan)
2569{
2570 struct wiphy *wiphy = wdev->wiphy;
2571 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2572 struct cfg80211_internal_bss *cbss = wdev->current_bss;
2573 struct cfg80211_internal_bss *new = NULL;
2574 struct cfg80211_internal_bss *bss;
2575 struct cfg80211_bss *nontrans_bss;
2576 struct cfg80211_bss *tmp;
2577
2578 spin_lock_bh(&rdev->bss_lock);
2579
2580 /*
2581 * Some APs use CSA also for bandwidth changes, i.e., without actually
2582 * changing the control channel, so no need to update in such a case.
2583 */
2584 if (cbss->pub.channel == chan)
2585 goto done;
2586
2587 /* use transmitting bss */
2588 if (cbss->pub.transmitted_bss)
2589 cbss = container_of(cbss->pub.transmitted_bss,
2590 struct cfg80211_internal_bss,
2591 pub);
2592
2593 cbss->pub.channel = chan;
2594
2595 list_for_each_entry(bss, &rdev->bss_list, list) {
2596 if (!cfg80211_bss_type_match(bss->pub.capability,
2597 bss->pub.channel->band,
2598 wdev->conn_bss_type))
2599 continue;
2600
2601 if (bss == cbss)
2602 continue;
2603
2604 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2605 new = bss;
2606 break;
2607 }
2608 }
2609
2610 if (new) {
2611 /* to save time, update IEs for transmitting bss only */
2612 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2613 new->pub.proberesp_ies = NULL;
2614 new->pub.beacon_ies = NULL;
2615 }
2616
2617 list_for_each_entry_safe(nontrans_bss, tmp,
2618 &new->pub.nontrans_list,
2619 nontrans_list) {
2620 bss = container_of(nontrans_bss,
2621 struct cfg80211_internal_bss, pub);
2622 if (__cfg80211_unlink_bss(rdev, bss))
2623 rdev->bss_generation++;
2624 }
2625
2626 WARN_ON(atomic_read(&new->hold));
2627 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2628 rdev->bss_generation++;
2629 }
2630
2631 rb_erase(&cbss->rbn, &rdev->bss_tree);
2632 rb_insert_bss(rdev, cbss);
2633 rdev->bss_generation++;
2634
2635 list_for_each_entry_safe(nontrans_bss, tmp,
2636 &cbss->pub.nontrans_list,
2637 nontrans_list) {
2638 bss = container_of(nontrans_bss,
2639 struct cfg80211_internal_bss, pub);
2640 bss->pub.channel = chan;
2641 rb_erase(&bss->rbn, &rdev->bss_tree);
2642 rb_insert_bss(rdev, bss);
2643 rdev->bss_generation++;
2644 }
2645
2646done:
2647 spin_unlock_bh(&rdev->bss_lock);
2648}
2649
2650#ifdef CONFIG_CFG80211_WEXT
2651static struct cfg80211_registered_device *
2652cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2653{
2654 struct cfg80211_registered_device *rdev;
2655 struct net_device *dev;
2656
2657 ASSERT_RTNL();
2658
2659 dev = dev_get_by_index(net, ifindex);
2660 if (!dev)
2661 return ERR_PTR(-ENODEV);
2662 if (dev->ieee80211_ptr)
2663 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2664 else
2665 rdev = ERR_PTR(-ENODEV);
2666 dev_put(dev);
2667 return rdev;
2668}
2669
2670int cfg80211_wext_siwscan(struct net_device *dev,
2671 struct iw_request_info *info,
2672 union iwreq_data *wrqu, char *extra)
2673{
2674 struct cfg80211_registered_device *rdev;
2675 struct wiphy *wiphy;
2676 struct iw_scan_req *wreq = NULL;
2677 struct cfg80211_scan_request *creq = NULL;
2678 int i, err, n_channels = 0;
2679 enum nl80211_band band;
2680
2681 if (!netif_running(dev))
2682 return -ENETDOWN;
2683
2684 if (wrqu->data.length == sizeof(struct iw_scan_req))
2685 wreq = (struct iw_scan_req *)extra;
2686
2687 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2688
2689 if (IS_ERR(rdev))
2690 return PTR_ERR(rdev);
2691
2692 if (rdev->scan_req || rdev->scan_msg) {
2693 err = -EBUSY;
2694 goto out;
2695 }
2696
2697 wiphy = &rdev->wiphy;
2698
2699 /* Determine number of channels, needed to allocate creq */
2700 if (wreq && wreq->num_channels)
2701 n_channels = wreq->num_channels;
2702 else
2703 n_channels = ieee80211_get_num_supported_channels(wiphy);
2704
2705 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2706 n_channels * sizeof(void *),
2707 GFP_ATOMIC);
2708 if (!creq) {
2709 err = -ENOMEM;
2710 goto out;
2711 }
2712
2713 creq->wiphy = wiphy;
2714 creq->wdev = dev->ieee80211_ptr;
2715 /* SSIDs come after channels */
2716 creq->ssids = (void *)&creq->channels[n_channels];
2717 creq->n_channels = n_channels;
2718 creq->n_ssids = 1;
2719 creq->scan_start = jiffies;
2720
2721 /* translate "Scan on frequencies" request */
2722 i = 0;
2723 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2724 int j;
2725
2726 if (!wiphy->bands[band])
2727 continue;
2728
2729 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2730 /* ignore disabled channels */
2731 if (wiphy->bands[band]->channels[j].flags &
2732 IEEE80211_CHAN_DISABLED)
2733 continue;
2734
2735 /* If we have a wireless request structure and the
2736 * wireless request specifies frequencies, then search
2737 * for the matching hardware channel.
2738 */
2739 if (wreq && wreq->num_channels) {
2740 int k;
2741 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2742 for (k = 0; k < wreq->num_channels; k++) {
2743 struct iw_freq *freq =
2744 &wreq->channel_list[k];
2745 int wext_freq =
2746 cfg80211_wext_freq(freq);
2747
2748 if (wext_freq == wiphy_freq)
2749 goto wext_freq_found;
2750 }
2751 goto wext_freq_not_found;
2752 }
2753
2754 wext_freq_found:
2755 creq->channels[i] = &wiphy->bands[band]->channels[j];
2756 i++;
2757 wext_freq_not_found: ;
2758 }
2759 }
2760 /* No channels found? */
2761 if (!i) {
2762 err = -EINVAL;
2763 goto out;
2764 }
2765
2766 /* Set real number of channels specified in creq->channels[] */
2767 creq->n_channels = i;
2768
2769 /* translate "Scan for SSID" request */
2770 if (wreq) {
2771 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2772 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2773 err = -EINVAL;
2774 goto out;
2775 }
2776 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2777 creq->ssids[0].ssid_len = wreq->essid_len;
2778 }
2779 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2780 creq->n_ssids = 0;
2781 }
2782
2783 for (i = 0; i < NUM_NL80211_BANDS; i++)
2784 if (wiphy->bands[i])
2785 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2786
2787 eth_broadcast_addr(creq->bssid);
2788
2789 wiphy_lock(&rdev->wiphy);
2790
2791 rdev->scan_req = creq;
2792 err = rdev_scan(rdev, creq);
2793 if (err) {
2794 rdev->scan_req = NULL;
2795 /* creq will be freed below */
2796 } else {
2797 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2798 /* creq now owned by driver */
2799 creq = NULL;
2800 dev_hold(dev);
2801 }
2802 wiphy_unlock(&rdev->wiphy);
2803 out:
2804 kfree(creq);
2805 return err;
2806}
2807EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2808
2809static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2810 const struct cfg80211_bss_ies *ies,
2811 char *current_ev, char *end_buf)
2812{
2813 const u8 *pos, *end, *next;
2814 struct iw_event iwe;
2815
2816 if (!ies)
2817 return current_ev;
2818
2819 /*
2820 * If needed, fragment the IEs buffer (at IE boundaries) into short
2821 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2822 */
2823 pos = ies->data;
2824 end = pos + ies->len;
2825
2826 while (end - pos > IW_GENERIC_IE_MAX) {
2827 next = pos + 2 + pos[1];
2828 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2829 next = next + 2 + next[1];
2830
2831 memset(&iwe, 0, sizeof(iwe));
2832 iwe.cmd = IWEVGENIE;
2833 iwe.u.data.length = next - pos;
2834 current_ev = iwe_stream_add_point_check(info, current_ev,
2835 end_buf, &iwe,
2836 (void *)pos);
2837 if (IS_ERR(current_ev))
2838 return current_ev;
2839 pos = next;
2840 }
2841
2842 if (end > pos) {
2843 memset(&iwe, 0, sizeof(iwe));
2844 iwe.cmd = IWEVGENIE;
2845 iwe.u.data.length = end - pos;
2846 current_ev = iwe_stream_add_point_check(info, current_ev,
2847 end_buf, &iwe,
2848 (void *)pos);
2849 if (IS_ERR(current_ev))
2850 return current_ev;
2851 }
2852
2853 return current_ev;
2854}
2855
2856static char *
2857ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2858 struct cfg80211_internal_bss *bss, char *current_ev,
2859 char *end_buf)
2860{
2861 const struct cfg80211_bss_ies *ies;
2862 struct iw_event iwe;
2863 const u8 *ie;
2864 u8 buf[50];
2865 u8 *cfg, *p, *tmp;
2866 int rem, i, sig;
2867 bool ismesh = false;
2868
2869 memset(&iwe, 0, sizeof(iwe));
2870 iwe.cmd = SIOCGIWAP;
2871 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2872 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2873 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2874 IW_EV_ADDR_LEN);
2875 if (IS_ERR(current_ev))
2876 return current_ev;
2877
2878 memset(&iwe, 0, sizeof(iwe));
2879 iwe.cmd = SIOCGIWFREQ;
2880 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2881 iwe.u.freq.e = 0;
2882 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2883 IW_EV_FREQ_LEN);
2884 if (IS_ERR(current_ev))
2885 return current_ev;
2886
2887 memset(&iwe, 0, sizeof(iwe));
2888 iwe.cmd = SIOCGIWFREQ;
2889 iwe.u.freq.m = bss->pub.channel->center_freq;
2890 iwe.u.freq.e = 6;
2891 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2892 IW_EV_FREQ_LEN);
2893 if (IS_ERR(current_ev))
2894 return current_ev;
2895
2896 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2897 memset(&iwe, 0, sizeof(iwe));
2898 iwe.cmd = IWEVQUAL;
2899 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2900 IW_QUAL_NOISE_INVALID |
2901 IW_QUAL_QUAL_UPDATED;
2902 switch (wiphy->signal_type) {
2903 case CFG80211_SIGNAL_TYPE_MBM:
2904 sig = bss->pub.signal / 100;
2905 iwe.u.qual.level = sig;
2906 iwe.u.qual.updated |= IW_QUAL_DBM;
2907 if (sig < -110) /* rather bad */
2908 sig = -110;
2909 else if (sig > -40) /* perfect */
2910 sig = -40;
2911 /* will give a range of 0 .. 70 */
2912 iwe.u.qual.qual = sig + 110;
2913 break;
2914 case CFG80211_SIGNAL_TYPE_UNSPEC:
2915 iwe.u.qual.level = bss->pub.signal;
2916 /* will give range 0 .. 100 */
2917 iwe.u.qual.qual = bss->pub.signal;
2918 break;
2919 default:
2920 /* not reached */
2921 break;
2922 }
2923 current_ev = iwe_stream_add_event_check(info, current_ev,
2924 end_buf, &iwe,
2925 IW_EV_QUAL_LEN);
2926 if (IS_ERR(current_ev))
2927 return current_ev;
2928 }
2929
2930 memset(&iwe, 0, sizeof(iwe));
2931 iwe.cmd = SIOCGIWENCODE;
2932 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2933 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2934 else
2935 iwe.u.data.flags = IW_ENCODE_DISABLED;
2936 iwe.u.data.length = 0;
2937 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2938 &iwe, "");
2939 if (IS_ERR(current_ev))
2940 return current_ev;
2941
2942 rcu_read_lock();
2943 ies = rcu_dereference(bss->pub.ies);
2944 rem = ies->len;
2945 ie = ies->data;
2946
2947 while (rem >= 2) {
2948 /* invalid data */
2949 if (ie[1] > rem - 2)
2950 break;
2951
2952 switch (ie[0]) {
2953 case WLAN_EID_SSID:
2954 memset(&iwe, 0, sizeof(iwe));
2955 iwe.cmd = SIOCGIWESSID;
2956 iwe.u.data.length = ie[1];
2957 iwe.u.data.flags = 1;
2958 current_ev = iwe_stream_add_point_check(info,
2959 current_ev,
2960 end_buf, &iwe,
2961 (u8 *)ie + 2);
2962 if (IS_ERR(current_ev))
2963 goto unlock;
2964 break;
2965 case WLAN_EID_MESH_ID:
2966 memset(&iwe, 0, sizeof(iwe));
2967 iwe.cmd = SIOCGIWESSID;
2968 iwe.u.data.length = ie[1];
2969 iwe.u.data.flags = 1;
2970 current_ev = iwe_stream_add_point_check(info,
2971 current_ev,
2972 end_buf, &iwe,
2973 (u8 *)ie + 2);
2974 if (IS_ERR(current_ev))
2975 goto unlock;
2976 break;
2977 case WLAN_EID_MESH_CONFIG:
2978 ismesh = true;
2979 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2980 break;
2981 cfg = (u8 *)ie + 2;
2982 memset(&iwe, 0, sizeof(iwe));
2983 iwe.cmd = IWEVCUSTOM;
2984 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2985 "0x%02X", cfg[0]);
2986 iwe.u.data.length = strlen(buf);
2987 current_ev = iwe_stream_add_point_check(info,
2988 current_ev,
2989 end_buf,
2990 &iwe, buf);
2991 if (IS_ERR(current_ev))
2992 goto unlock;
2993 sprintf(buf, "Path Selection Metric ID: 0x%02X",
2994 cfg[1]);
2995 iwe.u.data.length = strlen(buf);
2996 current_ev = iwe_stream_add_point_check(info,
2997 current_ev,
2998 end_buf,
2999 &iwe, buf);
3000 if (IS_ERR(current_ev))
3001 goto unlock;
3002 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3003 cfg[2]);
3004 iwe.u.data.length = strlen(buf);
3005 current_ev = iwe_stream_add_point_check(info,
3006 current_ev,
3007 end_buf,
3008 &iwe, buf);
3009 if (IS_ERR(current_ev))
3010 goto unlock;
3011 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3012 iwe.u.data.length = strlen(buf);
3013 current_ev = iwe_stream_add_point_check(info,
3014 current_ev,
3015 end_buf,
3016 &iwe, buf);
3017 if (IS_ERR(current_ev))
3018 goto unlock;
3019 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3020 iwe.u.data.length = strlen(buf);
3021 current_ev = iwe_stream_add_point_check(info,
3022 current_ev,
3023 end_buf,
3024 &iwe, buf);
3025 if (IS_ERR(current_ev))
3026 goto unlock;
3027 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3028 iwe.u.data.length = strlen(buf);
3029 current_ev = iwe_stream_add_point_check(info,
3030 current_ev,
3031 end_buf,
3032 &iwe, buf);
3033 if (IS_ERR(current_ev))
3034 goto unlock;
3035 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3036 iwe.u.data.length = strlen(buf);
3037 current_ev = iwe_stream_add_point_check(info,
3038 current_ev,
3039 end_buf,
3040 &iwe, buf);
3041 if (IS_ERR(current_ev))
3042 goto unlock;
3043 break;
3044 case WLAN_EID_SUPP_RATES:
3045 case WLAN_EID_EXT_SUPP_RATES:
3046 /* display all supported rates in readable format */
3047 p = current_ev + iwe_stream_lcp_len(info);
3048
3049 memset(&iwe, 0, sizeof(iwe));
3050 iwe.cmd = SIOCGIWRATE;
3051 /* Those two flags are ignored... */
3052 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3053
3054 for (i = 0; i < ie[1]; i++) {
3055 iwe.u.bitrate.value =
3056 ((ie[i + 2] & 0x7f) * 500000);
3057 tmp = p;
3058 p = iwe_stream_add_value(info, current_ev, p,
3059 end_buf, &iwe,
3060 IW_EV_PARAM_LEN);
3061 if (p == tmp) {
3062 current_ev = ERR_PTR(-E2BIG);
3063 goto unlock;
3064 }
3065 }
3066 current_ev = p;
3067 break;
3068 }
3069 rem -= ie[1] + 2;
3070 ie += ie[1] + 2;
3071 }
3072
3073 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3074 ismesh) {
3075 memset(&iwe, 0, sizeof(iwe));
3076 iwe.cmd = SIOCGIWMODE;
3077 if (ismesh)
3078 iwe.u.mode = IW_MODE_MESH;
3079 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3080 iwe.u.mode = IW_MODE_MASTER;
3081 else
3082 iwe.u.mode = IW_MODE_ADHOC;
3083 current_ev = iwe_stream_add_event_check(info, current_ev,
3084 end_buf, &iwe,
3085 IW_EV_UINT_LEN);
3086 if (IS_ERR(current_ev))
3087 goto unlock;
3088 }
3089
3090 memset(&iwe, 0, sizeof(iwe));
3091 iwe.cmd = IWEVCUSTOM;
3092 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3093 iwe.u.data.length = strlen(buf);
3094 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3095 &iwe, buf);
3096 if (IS_ERR(current_ev))
3097 goto unlock;
3098 memset(&iwe, 0, sizeof(iwe));
3099 iwe.cmd = IWEVCUSTOM;
3100 sprintf(buf, " Last beacon: %ums ago",
3101 elapsed_jiffies_msecs(bss->ts));
3102 iwe.u.data.length = strlen(buf);
3103 current_ev = iwe_stream_add_point_check(info, current_ev,
3104 end_buf, &iwe, buf);
3105 if (IS_ERR(current_ev))
3106 goto unlock;
3107
3108 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3109
3110 unlock:
3111 rcu_read_unlock();
3112 return current_ev;
3113}
3114
3115
3116static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3117 struct iw_request_info *info,
3118 char *buf, size_t len)
3119{
3120 char *current_ev = buf;
3121 char *end_buf = buf + len;
3122 struct cfg80211_internal_bss *bss;
3123 int err = 0;
3124
3125 spin_lock_bh(&rdev->bss_lock);
3126 cfg80211_bss_expire(rdev);
3127
3128 list_for_each_entry(bss, &rdev->bss_list, list) {
3129 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3130 err = -E2BIG;
3131 break;
3132 }
3133 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3134 current_ev, end_buf);
3135 if (IS_ERR(current_ev)) {
3136 err = PTR_ERR(current_ev);
3137 break;
3138 }
3139 }
3140 spin_unlock_bh(&rdev->bss_lock);
3141
3142 if (err)
3143 return err;
3144 return current_ev - buf;
3145}
3146
3147
3148int cfg80211_wext_giwscan(struct net_device *dev,
3149 struct iw_request_info *info,
3150 struct iw_point *data, char *extra)
3151{
3152 struct cfg80211_registered_device *rdev;
3153 int res;
3154
3155 if (!netif_running(dev))
3156 return -ENETDOWN;
3157
3158 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3159
3160 if (IS_ERR(rdev))
3161 return PTR_ERR(rdev);
3162
3163 if (rdev->scan_req || rdev->scan_msg)
3164 return -EAGAIN;
3165
3166 res = ieee80211_scan_results(rdev, info, extra, data->length);
3167 data->length = 0;
3168 if (res >= 0) {
3169 data->length = res;
3170 res = 0;
3171 }
3172
3173 return res;
3174}
3175EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3176#endif
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2024 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <linux/crc32.h>
18#include <linux/bitfield.h>
19#include <net/arp.h>
20#include <net/cfg80211.h>
21#include <net/cfg80211-wext.h>
22#include <net/iw_handler.h>
23#include <kunit/visibility.h>
24#include "core.h"
25#include "nl80211.h"
26#include "wext-compat.h"
27#include "rdev-ops.h"
28
29/**
30 * DOC: BSS tree/list structure
31 *
32 * At the top level, the BSS list is kept in both a list in each
33 * registered device (@bss_list) as well as an RB-tree for faster
34 * lookup. In the RB-tree, entries can be looked up using their
35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36 * for other BSSes.
37 *
38 * Due to the possibility of hidden SSIDs, there's a second level
39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40 * The hidden_list connects all BSSes belonging to a single AP
41 * that has a hidden SSID, and connects beacon and probe response
42 * entries. For a probe response entry for a hidden SSID, the
43 * hidden_beacon_bss pointer points to the BSS struct holding the
44 * beacon's information.
45 *
46 * Reference counting is done for all these references except for
47 * the hidden_list, so that a beacon BSS struct that is otherwise
48 * not referenced has one reference for being on the bss_list and
49 * one for each probe response entry that points to it using the
50 * hidden_beacon_bss pointer. When a BSS struct that has such a
51 * pointer is get/put, the refcount update is also propagated to
52 * the referenced struct, this ensure that it cannot get removed
53 * while somebody is using the probe response version.
54 *
55 * Note that the hidden_beacon_bss pointer never changes, due to
56 * the reference counting. Therefore, no locking is needed for
57 * it.
58 *
59 * Also note that the hidden_beacon_bss pointer is only relevant
60 * if the driver uses something other than the IEs, e.g. private
61 * data stored in the BSS struct, since the beacon IEs are
62 * also linked into the probe response struct.
63 */
64
65/*
66 * Limit the number of BSS entries stored in mac80211. Each one is
67 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68 * If somebody wants to really attack this though, they'd likely
69 * use small beacons, and only one type of frame, limiting each of
70 * the entries to a much smaller size (in order to generate more
71 * entries in total, so overhead is bigger.)
72 */
73static int bss_entries_limit = 1000;
74module_param(bss_entries_limit, int, 0644);
75MODULE_PARM_DESC(bss_entries_limit,
76 "limit to number of scan BSS entries (per wiphy, default 1000)");
77
78#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
79
80static void bss_free(struct cfg80211_internal_bss *bss)
81{
82 struct cfg80211_bss_ies *ies;
83
84 if (WARN_ON(atomic_read(&bss->hold)))
85 return;
86
87 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
88 if (ies && !bss->pub.hidden_beacon_bss)
89 kfree_rcu(ies, rcu_head);
90 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
91 if (ies)
92 kfree_rcu(ies, rcu_head);
93
94 /*
95 * This happens when the module is removed, it doesn't
96 * really matter any more save for completeness
97 */
98 if (!list_empty(&bss->hidden_list))
99 list_del(&bss->hidden_list);
100
101 kfree(bss);
102}
103
104static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
105 struct cfg80211_internal_bss *bss)
106{
107 lockdep_assert_held(&rdev->bss_lock);
108
109 bss->refcount++;
110
111 if (bss->pub.hidden_beacon_bss)
112 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
113
114 if (bss->pub.transmitted_bss)
115 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
116}
117
118static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
119 struct cfg80211_internal_bss *bss)
120{
121 lockdep_assert_held(&rdev->bss_lock);
122
123 if (bss->pub.hidden_beacon_bss) {
124 struct cfg80211_internal_bss *hbss;
125
126 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
127 hbss->refcount--;
128 if (hbss->refcount == 0)
129 bss_free(hbss);
130 }
131
132 if (bss->pub.transmitted_bss) {
133 struct cfg80211_internal_bss *tbss;
134
135 tbss = bss_from_pub(bss->pub.transmitted_bss);
136 tbss->refcount--;
137 if (tbss->refcount == 0)
138 bss_free(tbss);
139 }
140
141 bss->refcount--;
142 if (bss->refcount == 0)
143 bss_free(bss);
144}
145
146static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147 struct cfg80211_internal_bss *bss)
148{
149 lockdep_assert_held(&rdev->bss_lock);
150
151 if (!list_empty(&bss->hidden_list)) {
152 /*
153 * don't remove the beacon entry if it has
154 * probe responses associated with it
155 */
156 if (!bss->pub.hidden_beacon_bss)
157 return false;
158 /*
159 * if it's a probe response entry break its
160 * link to the other entries in the group
161 */
162 list_del_init(&bss->hidden_list);
163 }
164
165 list_del_init(&bss->list);
166 list_del_init(&bss->pub.nontrans_list);
167 rb_erase(&bss->rbn, &rdev->bss_tree);
168 rdev->bss_entries--;
169 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170 "rdev bss entries[%d]/list[empty:%d] corruption\n",
171 rdev->bss_entries, list_empty(&rdev->bss_list));
172 bss_ref_put(rdev, bss);
173 return true;
174}
175
176bool cfg80211_is_element_inherited(const struct element *elem,
177 const struct element *non_inherit_elem)
178{
179 u8 id_len, ext_id_len, i, loop_len, id;
180 const u8 *list;
181
182 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183 return false;
184
185 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
186 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
187 return false;
188
189 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
190 return true;
191
192 /*
193 * non inheritance element format is:
194 * ext ID (56) | IDs list len | list | extension IDs list len | list
195 * Both lists are optional. Both lengths are mandatory.
196 * This means valid length is:
197 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
198 */
199 id_len = non_inherit_elem->data[1];
200 if (non_inherit_elem->datalen < 3 + id_len)
201 return true;
202
203 ext_id_len = non_inherit_elem->data[2 + id_len];
204 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
205 return true;
206
207 if (elem->id == WLAN_EID_EXTENSION) {
208 if (!ext_id_len)
209 return true;
210 loop_len = ext_id_len;
211 list = &non_inherit_elem->data[3 + id_len];
212 id = elem->data[0];
213 } else {
214 if (!id_len)
215 return true;
216 loop_len = id_len;
217 list = &non_inherit_elem->data[2];
218 id = elem->id;
219 }
220
221 for (i = 0; i < loop_len; i++) {
222 if (list[i] == id)
223 return false;
224 }
225
226 return true;
227}
228EXPORT_SYMBOL(cfg80211_is_element_inherited);
229
230static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
231 const u8 *ie, size_t ie_len,
232 u8 **pos, u8 *buf, size_t buf_len)
233{
234 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
235 elem->data + elem->datalen > ie + ie_len))
236 return 0;
237
238 if (elem->datalen + 2 > buf + buf_len - *pos)
239 return 0;
240
241 memcpy(*pos, elem, elem->datalen + 2);
242 *pos += elem->datalen + 2;
243
244 /* Finish if it is not fragmented */
245 if (elem->datalen != 255)
246 return *pos - buf;
247
248 ie_len = ie + ie_len - elem->data - elem->datalen;
249 ie = (const u8 *)elem->data + elem->datalen;
250
251 for_each_element(elem, ie, ie_len) {
252 if (elem->id != WLAN_EID_FRAGMENT)
253 break;
254
255 if (elem->datalen + 2 > buf + buf_len - *pos)
256 return 0;
257
258 memcpy(*pos, elem, elem->datalen + 2);
259 *pos += elem->datalen + 2;
260
261 if (elem->datalen != 255)
262 break;
263 }
264
265 return *pos - buf;
266}
267
268VISIBLE_IF_CFG80211_KUNIT size_t
269cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
270 const u8 *subie, size_t subie_len,
271 u8 *new_ie, size_t new_ie_len)
272{
273 const struct element *non_inherit_elem, *parent, *sub;
274 u8 *pos = new_ie;
275 u8 id, ext_id;
276 unsigned int match_len;
277
278 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
279 subie, subie_len);
280
281 /* We copy the elements one by one from the parent to the generated
282 * elements.
283 * If they are not inherited (included in subie or in the non
284 * inheritance element), then we copy all occurrences the first time
285 * we see this element type.
286 */
287 for_each_element(parent, ie, ielen) {
288 if (parent->id == WLAN_EID_FRAGMENT)
289 continue;
290
291 if (parent->id == WLAN_EID_EXTENSION) {
292 if (parent->datalen < 1)
293 continue;
294
295 id = WLAN_EID_EXTENSION;
296 ext_id = parent->data[0];
297 match_len = 1;
298 } else {
299 id = parent->id;
300 match_len = 0;
301 }
302
303 /* Find first occurrence in subie */
304 sub = cfg80211_find_elem_match(id, subie, subie_len,
305 &ext_id, match_len, 0);
306
307 /* Copy from parent if not in subie and inherited */
308 if (!sub &&
309 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
310 if (!cfg80211_copy_elem_with_frags(parent,
311 ie, ielen,
312 &pos, new_ie,
313 new_ie_len))
314 return 0;
315
316 continue;
317 }
318
319 /* Already copied if an earlier element had the same type */
320 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
321 &ext_id, match_len, 0))
322 continue;
323
324 /* Not inheriting, copy all similar elements from subie */
325 while (sub) {
326 if (!cfg80211_copy_elem_with_frags(sub,
327 subie, subie_len,
328 &pos, new_ie,
329 new_ie_len))
330 return 0;
331
332 sub = cfg80211_find_elem_match(id,
333 sub->data + sub->datalen,
334 subie_len + subie -
335 (sub->data +
336 sub->datalen),
337 &ext_id, match_len, 0);
338 }
339 }
340
341 /* The above misses elements that are included in subie but not in the
342 * parent, so do a pass over subie and append those.
343 * Skip the non-tx BSSID caps and non-inheritance element.
344 */
345 for_each_element(sub, subie, subie_len) {
346 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
347 continue;
348
349 if (sub->id == WLAN_EID_FRAGMENT)
350 continue;
351
352 if (sub->id == WLAN_EID_EXTENSION) {
353 if (sub->datalen < 1)
354 continue;
355
356 id = WLAN_EID_EXTENSION;
357 ext_id = sub->data[0];
358 match_len = 1;
359
360 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
361 continue;
362 } else {
363 id = sub->id;
364 match_len = 0;
365 }
366
367 /* Processed if one was included in the parent */
368 if (cfg80211_find_elem_match(id, ie, ielen,
369 &ext_id, match_len, 0))
370 continue;
371
372 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
373 &pos, new_ie, new_ie_len))
374 return 0;
375 }
376
377 return pos - new_ie;
378}
379EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
380
381static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
382 const u8 *ssid, size_t ssid_len)
383{
384 const struct cfg80211_bss_ies *ies;
385 const struct element *ssid_elem;
386
387 if (bssid && !ether_addr_equal(a->bssid, bssid))
388 return false;
389
390 if (!ssid)
391 return true;
392
393 ies = rcu_access_pointer(a->ies);
394 if (!ies)
395 return false;
396 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
397 if (!ssid_elem)
398 return false;
399 if (ssid_elem->datalen != ssid_len)
400 return false;
401 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
402}
403
404static int
405cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
406 struct cfg80211_bss *nontrans_bss)
407{
408 const struct element *ssid_elem;
409 struct cfg80211_bss *bss = NULL;
410
411 rcu_read_lock();
412 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
413 if (!ssid_elem) {
414 rcu_read_unlock();
415 return -EINVAL;
416 }
417
418 /* check if nontrans_bss is in the list */
419 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
420 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
421 ssid_elem->datalen)) {
422 rcu_read_unlock();
423 return 0;
424 }
425 }
426
427 rcu_read_unlock();
428
429 /*
430 * This is a bit weird - it's not on the list, but already on another
431 * one! The only way that could happen is if there's some BSSID/SSID
432 * shared by multiple APs in their multi-BSSID profiles, potentially
433 * with hidden SSID mixed in ... ignore it.
434 */
435 if (!list_empty(&nontrans_bss->nontrans_list))
436 return -EINVAL;
437
438 /* add to the list */
439 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
440 return 0;
441}
442
443static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
444 unsigned long expire_time)
445{
446 struct cfg80211_internal_bss *bss, *tmp;
447 bool expired = false;
448
449 lockdep_assert_held(&rdev->bss_lock);
450
451 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
452 if (atomic_read(&bss->hold))
453 continue;
454 if (!time_after(expire_time, bss->ts))
455 continue;
456
457 if (__cfg80211_unlink_bss(rdev, bss))
458 expired = true;
459 }
460
461 if (expired)
462 rdev->bss_generation++;
463}
464
465static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
466{
467 struct cfg80211_internal_bss *bss, *oldest = NULL;
468 bool ret;
469
470 lockdep_assert_held(&rdev->bss_lock);
471
472 list_for_each_entry(bss, &rdev->bss_list, list) {
473 if (atomic_read(&bss->hold))
474 continue;
475
476 if (!list_empty(&bss->hidden_list) &&
477 !bss->pub.hidden_beacon_bss)
478 continue;
479
480 if (oldest && time_before(oldest->ts, bss->ts))
481 continue;
482 oldest = bss;
483 }
484
485 if (WARN_ON(!oldest))
486 return false;
487
488 /*
489 * The callers make sure to increase rdev->bss_generation if anything
490 * gets removed (and a new entry added), so there's no need to also do
491 * it here.
492 */
493
494 ret = __cfg80211_unlink_bss(rdev, oldest);
495 WARN_ON(!ret);
496 return ret;
497}
498
499static u8 cfg80211_parse_bss_param(u8 data,
500 struct cfg80211_colocated_ap *coloc_ap)
501{
502 coloc_ap->oct_recommended =
503 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
504 coloc_ap->same_ssid =
505 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
506 coloc_ap->multi_bss =
507 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
508 coloc_ap->transmitted_bssid =
509 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
510 coloc_ap->unsolicited_probe =
511 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
512 coloc_ap->colocated_ess =
513 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
514
515 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
516}
517
518static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
519 const struct element **elem, u32 *s_ssid)
520{
521
522 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
523 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
524 return -EINVAL;
525
526 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
527 return 0;
528}
529
530VISIBLE_IF_CFG80211_KUNIT void
531cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
532{
533 struct cfg80211_colocated_ap *ap, *tmp_ap;
534
535 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
536 list_del(&ap->list);
537 kfree(ap);
538 }
539}
540EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
541
542static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
543 const u8 *pos, u8 length,
544 const struct element *ssid_elem,
545 u32 s_ssid_tmp)
546{
547 u8 bss_params;
548
549 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
550
551 /* The length is already verified by the caller to contain bss_params */
552 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
553 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
554
555 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
556 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
557 entry->short_ssid_valid = true;
558
559 bss_params = tbtt_info->bss_params;
560
561 /* Ignore disabled links */
562 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
563 if (le16_get_bits(tbtt_info->mld_params.params,
564 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
565 return -EINVAL;
566 }
567
568 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
569 psd_20))
570 entry->psd_20 = tbtt_info->psd_20;
571 } else {
572 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
573
574 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
575
576 bss_params = tbtt_info->bss_params;
577
578 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
579 psd_20))
580 entry->psd_20 = tbtt_info->psd_20;
581 }
582
583 /* ignore entries with invalid BSSID */
584 if (!is_valid_ether_addr(entry->bssid))
585 return -EINVAL;
586
587 /* skip non colocated APs */
588 if (!cfg80211_parse_bss_param(bss_params, entry))
589 return -EINVAL;
590
591 /* no information about the short ssid. Consider the entry valid
592 * for now. It would later be dropped in case there are explicit
593 * SSIDs that need to be matched
594 */
595 if (!entry->same_ssid && !entry->short_ssid_valid)
596 return 0;
597
598 if (entry->same_ssid) {
599 entry->short_ssid = s_ssid_tmp;
600 entry->short_ssid_valid = true;
601
602 /*
603 * This is safe because we validate datalen in
604 * cfg80211_parse_colocated_ap(), before calling this
605 * function.
606 */
607 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
608 entry->ssid_len = ssid_elem->datalen;
609 }
610
611 return 0;
612}
613
614bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
615 enum cfg80211_rnr_iter_ret
616 (*iter)(void *data, u8 type,
617 const struct ieee80211_neighbor_ap_info *info,
618 const u8 *tbtt_info, u8 tbtt_info_len),
619 void *iter_data)
620{
621 const struct element *rnr;
622 const u8 *pos, *end;
623
624 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
625 elems, elems_len) {
626 const struct ieee80211_neighbor_ap_info *info;
627
628 pos = rnr->data;
629 end = rnr->data + rnr->datalen;
630
631 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
632 while (sizeof(*info) <= end - pos) {
633 u8 length, i, count;
634 u8 type;
635
636 info = (void *)pos;
637 count = u8_get_bits(info->tbtt_info_hdr,
638 IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
639 1;
640 length = info->tbtt_info_len;
641
642 pos += sizeof(*info);
643
644 if (count * length > end - pos)
645 return false;
646
647 type = u8_get_bits(info->tbtt_info_hdr,
648 IEEE80211_AP_INFO_TBTT_HDR_TYPE);
649
650 for (i = 0; i < count; i++) {
651 switch (iter(iter_data, type, info,
652 pos, length)) {
653 case RNR_ITER_CONTINUE:
654 break;
655 case RNR_ITER_BREAK:
656 return true;
657 case RNR_ITER_ERROR:
658 return false;
659 }
660
661 pos += length;
662 }
663 }
664
665 if (pos != end)
666 return false;
667 }
668
669 return true;
670}
671EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
672
673struct colocated_ap_data {
674 const struct element *ssid_elem;
675 struct list_head ap_list;
676 u32 s_ssid_tmp;
677 int n_coloc;
678};
679
680static enum cfg80211_rnr_iter_ret
681cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
682 const struct ieee80211_neighbor_ap_info *info,
683 const u8 *tbtt_info, u8 tbtt_info_len)
684{
685 struct colocated_ap_data *data = _data;
686 struct cfg80211_colocated_ap *entry;
687 enum nl80211_band band;
688
689 if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
690 return RNR_ITER_CONTINUE;
691
692 if (!ieee80211_operating_class_to_band(info->op_class, &band))
693 return RNR_ITER_CONTINUE;
694
695 /* TBTT info must include bss param + BSSID + (short SSID or
696 * same_ssid bit to be set). Ignore other options, and move to
697 * the next AP info
698 */
699 if (band != NL80211_BAND_6GHZ ||
700 !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
701 bss_params) ||
702 tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
703 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
704 bss_params)))
705 return RNR_ITER_CONTINUE;
706
707 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC);
708 if (!entry)
709 return RNR_ITER_ERROR;
710
711 entry->center_freq =
712 ieee80211_channel_to_frequency(info->channel, band);
713
714 if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len,
715 data->ssid_elem, data->s_ssid_tmp)) {
716 data->n_coloc++;
717 list_add_tail(&entry->list, &data->ap_list);
718 } else {
719 kfree(entry);
720 }
721
722 return RNR_ITER_CONTINUE;
723}
724
725VISIBLE_IF_CFG80211_KUNIT int
726cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
727 struct list_head *list)
728{
729 struct colocated_ap_data data = {};
730 int ret;
731
732 INIT_LIST_HEAD(&data.ap_list);
733
734 ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp);
735 if (ret)
736 return 0;
737
738 if (!cfg80211_iter_rnr(ies->data, ies->len,
739 cfg80211_parse_colocated_ap_iter, &data)) {
740 cfg80211_free_coloc_ap_list(&data.ap_list);
741 return 0;
742 }
743
744 list_splice_tail(&data.ap_list, list);
745 return data.n_coloc;
746}
747EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
748
749static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
750 struct ieee80211_channel *chan,
751 bool add_to_6ghz)
752{
753 int i;
754 u32 n_channels = request->n_channels;
755 struct cfg80211_scan_6ghz_params *params =
756 &request->scan_6ghz_params[request->n_6ghz_params];
757
758 for (i = 0; i < n_channels; i++) {
759 if (request->channels[i] == chan) {
760 if (add_to_6ghz)
761 params->channel_idx = i;
762 return;
763 }
764 }
765
766 request->channels[n_channels] = chan;
767 if (add_to_6ghz)
768 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
769 n_channels;
770
771 request->n_channels++;
772}
773
774static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
775 struct cfg80211_scan_request *request)
776{
777 int i;
778 u32 s_ssid;
779
780 for (i = 0; i < request->n_ssids; i++) {
781 /* wildcard ssid in the scan request */
782 if (!request->ssids[i].ssid_len) {
783 if (ap->multi_bss && !ap->transmitted_bssid)
784 continue;
785
786 return true;
787 }
788
789 if (ap->ssid_len &&
790 ap->ssid_len == request->ssids[i].ssid_len) {
791 if (!memcmp(request->ssids[i].ssid, ap->ssid,
792 ap->ssid_len))
793 return true;
794 } else if (ap->short_ssid_valid) {
795 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
796 request->ssids[i].ssid_len);
797
798 if (ap->short_ssid == s_ssid)
799 return true;
800 }
801 }
802
803 return false;
804}
805
806static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
807{
808 u8 i;
809 struct cfg80211_colocated_ap *ap;
810 int n_channels, count = 0, err;
811 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
812 LIST_HEAD(coloc_ap_list);
813 bool need_scan_psc = true;
814 const struct ieee80211_sband_iftype_data *iftd;
815
816 rdev_req->scan_6ghz = true;
817
818 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
819 return -EOPNOTSUPP;
820
821 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
822 rdev_req->wdev->iftype);
823 if (!iftd || !iftd->he_cap.has_he)
824 return -EOPNOTSUPP;
825
826 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
827
828 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
829 struct cfg80211_internal_bss *intbss;
830
831 spin_lock_bh(&rdev->bss_lock);
832 list_for_each_entry(intbss, &rdev->bss_list, list) {
833 struct cfg80211_bss *res = &intbss->pub;
834 const struct cfg80211_bss_ies *ies;
835 const struct element *ssid_elem;
836 struct cfg80211_colocated_ap *entry;
837 u32 s_ssid_tmp;
838 int ret;
839
840 ies = rcu_access_pointer(res->ies);
841 count += cfg80211_parse_colocated_ap(ies,
842 &coloc_ap_list);
843
844 /* In case the scan request specified a specific BSSID
845 * and the BSS is found and operating on 6GHz band then
846 * add this AP to the collocated APs list.
847 * This is relevant for ML probe requests when the lower
848 * band APs have not been discovered.
849 */
850 if (is_broadcast_ether_addr(rdev_req->bssid) ||
851 !ether_addr_equal(rdev_req->bssid, res->bssid) ||
852 res->channel->band != NL80211_BAND_6GHZ)
853 continue;
854
855 ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
856 &s_ssid_tmp);
857 if (ret)
858 continue;
859
860 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
861 GFP_ATOMIC);
862
863 if (!entry)
864 continue;
865
866 memcpy(entry->bssid, res->bssid, ETH_ALEN);
867 entry->short_ssid = s_ssid_tmp;
868 memcpy(entry->ssid, ssid_elem->data,
869 ssid_elem->datalen);
870 entry->ssid_len = ssid_elem->datalen;
871 entry->short_ssid_valid = true;
872 entry->center_freq = res->channel->center_freq;
873
874 list_add_tail(&entry->list, &coloc_ap_list);
875 count++;
876 }
877 spin_unlock_bh(&rdev->bss_lock);
878 }
879
880 request = kzalloc(struct_size(request, channels, n_channels) +
881 sizeof(*request->scan_6ghz_params) * count +
882 sizeof(*request->ssids) * rdev_req->n_ssids,
883 GFP_KERNEL);
884 if (!request) {
885 cfg80211_free_coloc_ap_list(&coloc_ap_list);
886 return -ENOMEM;
887 }
888
889 *request = *rdev_req;
890 request->n_channels = 0;
891 request->scan_6ghz_params =
892 (void *)&request->channels[n_channels];
893
894 /*
895 * PSC channels should not be scanned in case of direct scan with 1 SSID
896 * and at least one of the reported co-located APs with same SSID
897 * indicating that all APs in the same ESS are co-located
898 */
899 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
900 list_for_each_entry(ap, &coloc_ap_list, list) {
901 if (ap->colocated_ess &&
902 cfg80211_find_ssid_match(ap, request)) {
903 need_scan_psc = false;
904 break;
905 }
906 }
907 }
908
909 /*
910 * add to the scan request the channels that need to be scanned
911 * regardless of the collocated APs (PSC channels or all channels
912 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
913 */
914 for (i = 0; i < rdev_req->n_channels; i++) {
915 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
916 ((need_scan_psc &&
917 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
918 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
919 cfg80211_scan_req_add_chan(request,
920 rdev_req->channels[i],
921 false);
922 }
923 }
924
925 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
926 goto skip;
927
928 list_for_each_entry(ap, &coloc_ap_list, list) {
929 bool found = false;
930 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
931 &request->scan_6ghz_params[request->n_6ghz_params];
932 struct ieee80211_channel *chan =
933 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
934
935 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
936 continue;
937
938 for (i = 0; i < rdev_req->n_channels; i++) {
939 if (rdev_req->channels[i] == chan)
940 found = true;
941 }
942
943 if (!found)
944 continue;
945
946 if (request->n_ssids > 0 &&
947 !cfg80211_find_ssid_match(ap, request))
948 continue;
949
950 if (!is_broadcast_ether_addr(request->bssid) &&
951 !ether_addr_equal(request->bssid, ap->bssid))
952 continue;
953
954 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
955 continue;
956
957 cfg80211_scan_req_add_chan(request, chan, true);
958 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
959 scan_6ghz_params->short_ssid = ap->short_ssid;
960 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
961 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
962 scan_6ghz_params->psd_20 = ap->psd_20;
963
964 /*
965 * If a PSC channel is added to the scan and 'need_scan_psc' is
966 * set to false, then all the APs that the scan logic is
967 * interested with on the channel are collocated and thus there
968 * is no need to perform the initial PSC channel listen.
969 */
970 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
971 scan_6ghz_params->psc_no_listen = true;
972
973 request->n_6ghz_params++;
974 }
975
976skip:
977 cfg80211_free_coloc_ap_list(&coloc_ap_list);
978
979 if (request->n_channels) {
980 struct cfg80211_scan_request *old = rdev->int_scan_req;
981 rdev->int_scan_req = request;
982
983 /*
984 * Add the ssids from the parent scan request to the new scan
985 * request, so the driver would be able to use them in its
986 * probe requests to discover hidden APs on PSC channels.
987 */
988 request->ssids = (void *)&request->channels[request->n_channels];
989 request->n_ssids = rdev_req->n_ssids;
990 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
991 request->n_ssids);
992
993 /*
994 * If this scan follows a previous scan, save the scan start
995 * info from the first part of the scan
996 */
997 if (old)
998 rdev->int_scan_req->info = old->info;
999
1000 err = rdev_scan(rdev, request);
1001 if (err) {
1002 rdev->int_scan_req = old;
1003 kfree(request);
1004 } else {
1005 kfree(old);
1006 }
1007
1008 return err;
1009 }
1010
1011 kfree(request);
1012 return -EINVAL;
1013}
1014
1015int cfg80211_scan(struct cfg80211_registered_device *rdev)
1016{
1017 struct cfg80211_scan_request *request;
1018 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1019 u32 n_channels = 0, idx, i;
1020
1021 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1022 return rdev_scan(rdev, rdev_req);
1023
1024 for (i = 0; i < rdev_req->n_channels; i++) {
1025 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1026 n_channels++;
1027 }
1028
1029 if (!n_channels)
1030 return cfg80211_scan_6ghz(rdev);
1031
1032 request = kzalloc(struct_size(request, channels, n_channels),
1033 GFP_KERNEL);
1034 if (!request)
1035 return -ENOMEM;
1036
1037 *request = *rdev_req;
1038 request->n_channels = n_channels;
1039
1040 for (i = idx = 0; i < rdev_req->n_channels; i++) {
1041 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1042 request->channels[idx++] = rdev_req->channels[i];
1043 }
1044
1045 rdev_req->scan_6ghz = false;
1046 rdev->int_scan_req = request;
1047 return rdev_scan(rdev, request);
1048}
1049
1050void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1051 bool send_message)
1052{
1053 struct cfg80211_scan_request *request, *rdev_req;
1054 struct wireless_dev *wdev;
1055 struct sk_buff *msg;
1056#ifdef CONFIG_CFG80211_WEXT
1057 union iwreq_data wrqu;
1058#endif
1059
1060 lockdep_assert_held(&rdev->wiphy.mtx);
1061
1062 if (rdev->scan_msg) {
1063 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1064 rdev->scan_msg = NULL;
1065 return;
1066 }
1067
1068 rdev_req = rdev->scan_req;
1069 if (!rdev_req)
1070 return;
1071
1072 wdev = rdev_req->wdev;
1073 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1074
1075 if (wdev_running(wdev) &&
1076 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1077 !rdev_req->scan_6ghz && !request->info.aborted &&
1078 !cfg80211_scan_6ghz(rdev))
1079 return;
1080
1081 /*
1082 * This must be before sending the other events!
1083 * Otherwise, wpa_supplicant gets completely confused with
1084 * wext events.
1085 */
1086 if (wdev->netdev)
1087 cfg80211_sme_scan_done(wdev->netdev);
1088
1089 if (!request->info.aborted &&
1090 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1091 /* flush entries from previous scans */
1092 spin_lock_bh(&rdev->bss_lock);
1093 __cfg80211_bss_expire(rdev, request->scan_start);
1094 spin_unlock_bh(&rdev->bss_lock);
1095 }
1096
1097 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1098
1099#ifdef CONFIG_CFG80211_WEXT
1100 if (wdev->netdev && !request->info.aborted) {
1101 memset(&wrqu, 0, sizeof(wrqu));
1102
1103 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1104 }
1105#endif
1106
1107 dev_put(wdev->netdev);
1108
1109 kfree(rdev->int_scan_req);
1110 rdev->int_scan_req = NULL;
1111
1112 kfree(rdev->scan_req);
1113 rdev->scan_req = NULL;
1114
1115 if (!send_message)
1116 rdev->scan_msg = msg;
1117 else
1118 nl80211_send_scan_msg(rdev, msg);
1119}
1120
1121void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1122{
1123 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1124}
1125
1126void cfg80211_scan_done(struct cfg80211_scan_request *request,
1127 struct cfg80211_scan_info *info)
1128{
1129 struct cfg80211_scan_info old_info = request->info;
1130
1131 trace_cfg80211_scan_done(request, info);
1132 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1133 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1134
1135 request->info = *info;
1136
1137 /*
1138 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1139 * be of the first part. In such a case old_info.scan_start_tsf should
1140 * be non zero.
1141 */
1142 if (request->scan_6ghz && old_info.scan_start_tsf) {
1143 request->info.scan_start_tsf = old_info.scan_start_tsf;
1144 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1145 sizeof(request->info.tsf_bssid));
1146 }
1147
1148 request->notified = true;
1149 wiphy_work_queue(request->wiphy,
1150 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1151}
1152EXPORT_SYMBOL(cfg80211_scan_done);
1153
1154void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1155 struct cfg80211_sched_scan_request *req)
1156{
1157 lockdep_assert_held(&rdev->wiphy.mtx);
1158
1159 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1160}
1161
1162static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1163 struct cfg80211_sched_scan_request *req)
1164{
1165 lockdep_assert_held(&rdev->wiphy.mtx);
1166
1167 list_del_rcu(&req->list);
1168 kfree_rcu(req, rcu_head);
1169}
1170
1171static struct cfg80211_sched_scan_request *
1172cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1173{
1174 struct cfg80211_sched_scan_request *pos;
1175
1176 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1177 lockdep_is_held(&rdev->wiphy.mtx)) {
1178 if (pos->reqid == reqid)
1179 return pos;
1180 }
1181 return NULL;
1182}
1183
1184/*
1185 * Determines if a scheduled scan request can be handled. When a legacy
1186 * scheduled scan is running no other scheduled scan is allowed regardless
1187 * whether the request is for legacy or multi-support scan. When a multi-support
1188 * scheduled scan is running a request for legacy scan is not allowed. In this
1189 * case a request for multi-support scan can be handled if resources are
1190 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1191 */
1192int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1193 bool want_multi)
1194{
1195 struct cfg80211_sched_scan_request *pos;
1196 int i = 0;
1197
1198 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1199 /* request id zero means legacy in progress */
1200 if (!i && !pos->reqid)
1201 return -EINPROGRESS;
1202 i++;
1203 }
1204
1205 if (i) {
1206 /* no legacy allowed when multi request(s) are active */
1207 if (!want_multi)
1208 return -EINPROGRESS;
1209
1210 /* resource limit reached */
1211 if (i == rdev->wiphy.max_sched_scan_reqs)
1212 return -ENOSPC;
1213 }
1214 return 0;
1215}
1216
1217void cfg80211_sched_scan_results_wk(struct work_struct *work)
1218{
1219 struct cfg80211_registered_device *rdev;
1220 struct cfg80211_sched_scan_request *req, *tmp;
1221
1222 rdev = container_of(work, struct cfg80211_registered_device,
1223 sched_scan_res_wk);
1224
1225 wiphy_lock(&rdev->wiphy);
1226 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1227 if (req->report_results) {
1228 req->report_results = false;
1229 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1230 /* flush entries from previous scans */
1231 spin_lock_bh(&rdev->bss_lock);
1232 __cfg80211_bss_expire(rdev, req->scan_start);
1233 spin_unlock_bh(&rdev->bss_lock);
1234 req->scan_start = jiffies;
1235 }
1236 nl80211_send_sched_scan(req,
1237 NL80211_CMD_SCHED_SCAN_RESULTS);
1238 }
1239 }
1240 wiphy_unlock(&rdev->wiphy);
1241}
1242
1243void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1244{
1245 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1246 struct cfg80211_sched_scan_request *request;
1247
1248 trace_cfg80211_sched_scan_results(wiphy, reqid);
1249 /* ignore if we're not scanning */
1250
1251 rcu_read_lock();
1252 request = cfg80211_find_sched_scan_req(rdev, reqid);
1253 if (request) {
1254 request->report_results = true;
1255 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1256 }
1257 rcu_read_unlock();
1258}
1259EXPORT_SYMBOL(cfg80211_sched_scan_results);
1260
1261void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1262{
1263 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1264
1265 lockdep_assert_held(&wiphy->mtx);
1266
1267 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1268
1269 __cfg80211_stop_sched_scan(rdev, reqid, true);
1270}
1271EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1272
1273void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1274{
1275 wiphy_lock(wiphy);
1276 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1277 wiphy_unlock(wiphy);
1278}
1279EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1280
1281int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1282 struct cfg80211_sched_scan_request *req,
1283 bool driver_initiated)
1284{
1285 lockdep_assert_held(&rdev->wiphy.mtx);
1286
1287 if (!driver_initiated) {
1288 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1289 if (err)
1290 return err;
1291 }
1292
1293 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1294
1295 cfg80211_del_sched_scan_req(rdev, req);
1296
1297 return 0;
1298}
1299
1300int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1301 u64 reqid, bool driver_initiated)
1302{
1303 struct cfg80211_sched_scan_request *sched_scan_req;
1304
1305 lockdep_assert_held(&rdev->wiphy.mtx);
1306
1307 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1308 if (!sched_scan_req)
1309 return -ENOENT;
1310
1311 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1312 driver_initiated);
1313}
1314
1315void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1316 unsigned long age_secs)
1317{
1318 struct cfg80211_internal_bss *bss;
1319 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1320
1321 spin_lock_bh(&rdev->bss_lock);
1322 list_for_each_entry(bss, &rdev->bss_list, list)
1323 bss->ts -= age_jiffies;
1324 spin_unlock_bh(&rdev->bss_lock);
1325}
1326
1327void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1328{
1329 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1330}
1331
1332void cfg80211_bss_flush(struct wiphy *wiphy)
1333{
1334 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1335
1336 spin_lock_bh(&rdev->bss_lock);
1337 __cfg80211_bss_expire(rdev, jiffies);
1338 spin_unlock_bh(&rdev->bss_lock);
1339}
1340EXPORT_SYMBOL(cfg80211_bss_flush);
1341
1342const struct element *
1343cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1344 const u8 *match, unsigned int match_len,
1345 unsigned int match_offset)
1346{
1347 const struct element *elem;
1348
1349 for_each_element_id(elem, eid, ies, len) {
1350 if (elem->datalen >= match_offset + match_len &&
1351 !memcmp(elem->data + match_offset, match, match_len))
1352 return elem;
1353 }
1354
1355 return NULL;
1356}
1357EXPORT_SYMBOL(cfg80211_find_elem_match);
1358
1359const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1360 const u8 *ies,
1361 unsigned int len)
1362{
1363 const struct element *elem;
1364 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1365 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1366
1367 if (WARN_ON(oui_type > 0xff))
1368 return NULL;
1369
1370 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1371 match, match_len, 0);
1372
1373 if (!elem || elem->datalen < 4)
1374 return NULL;
1375
1376 return elem;
1377}
1378EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1379
1380/**
1381 * enum bss_compare_mode - BSS compare mode
1382 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1383 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1384 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1385 */
1386enum bss_compare_mode {
1387 BSS_CMP_REGULAR,
1388 BSS_CMP_HIDE_ZLEN,
1389 BSS_CMP_HIDE_NUL,
1390};
1391
1392static int cmp_bss(struct cfg80211_bss *a,
1393 struct cfg80211_bss *b,
1394 enum bss_compare_mode mode)
1395{
1396 const struct cfg80211_bss_ies *a_ies, *b_ies;
1397 const u8 *ie1 = NULL;
1398 const u8 *ie2 = NULL;
1399 int i, r;
1400
1401 if (a->channel != b->channel)
1402 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1403 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1404
1405 a_ies = rcu_access_pointer(a->ies);
1406 if (!a_ies)
1407 return -1;
1408 b_ies = rcu_access_pointer(b->ies);
1409 if (!b_ies)
1410 return 1;
1411
1412 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1413 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1414 a_ies->data, a_ies->len);
1415 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1416 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1417 b_ies->data, b_ies->len);
1418 if (ie1 && ie2) {
1419 int mesh_id_cmp;
1420
1421 if (ie1[1] == ie2[1])
1422 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1423 else
1424 mesh_id_cmp = ie2[1] - ie1[1];
1425
1426 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1427 a_ies->data, a_ies->len);
1428 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1429 b_ies->data, b_ies->len);
1430 if (ie1 && ie2) {
1431 if (mesh_id_cmp)
1432 return mesh_id_cmp;
1433 if (ie1[1] != ie2[1])
1434 return ie2[1] - ie1[1];
1435 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1436 }
1437 }
1438
1439 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1440 if (r)
1441 return r;
1442
1443 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1444 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1445
1446 if (!ie1 && !ie2)
1447 return 0;
1448
1449 /*
1450 * Note that with "hide_ssid", the function returns a match if
1451 * the already-present BSS ("b") is a hidden SSID beacon for
1452 * the new BSS ("a").
1453 */
1454
1455 /* sort missing IE before (left of) present IE */
1456 if (!ie1)
1457 return -1;
1458 if (!ie2)
1459 return 1;
1460
1461 switch (mode) {
1462 case BSS_CMP_HIDE_ZLEN:
1463 /*
1464 * In ZLEN mode we assume the BSS entry we're
1465 * looking for has a zero-length SSID. So if
1466 * the one we're looking at right now has that,
1467 * return 0. Otherwise, return the difference
1468 * in length, but since we're looking for the
1469 * 0-length it's really equivalent to returning
1470 * the length of the one we're looking at.
1471 *
1472 * No content comparison is needed as we assume
1473 * the content length is zero.
1474 */
1475 return ie2[1];
1476 case BSS_CMP_REGULAR:
1477 default:
1478 /* sort by length first, then by contents */
1479 if (ie1[1] != ie2[1])
1480 return ie2[1] - ie1[1];
1481 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1482 case BSS_CMP_HIDE_NUL:
1483 if (ie1[1] != ie2[1])
1484 return ie2[1] - ie1[1];
1485 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1486 for (i = 0; i < ie2[1]; i++)
1487 if (ie2[i + 2])
1488 return -1;
1489 return 0;
1490 }
1491}
1492
1493static bool cfg80211_bss_type_match(u16 capability,
1494 enum nl80211_band band,
1495 enum ieee80211_bss_type bss_type)
1496{
1497 bool ret = true;
1498 u16 mask, val;
1499
1500 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1501 return ret;
1502
1503 if (band == NL80211_BAND_60GHZ) {
1504 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1505 switch (bss_type) {
1506 case IEEE80211_BSS_TYPE_ESS:
1507 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1508 break;
1509 case IEEE80211_BSS_TYPE_PBSS:
1510 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1511 break;
1512 case IEEE80211_BSS_TYPE_IBSS:
1513 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1514 break;
1515 default:
1516 return false;
1517 }
1518 } else {
1519 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1520 switch (bss_type) {
1521 case IEEE80211_BSS_TYPE_ESS:
1522 val = WLAN_CAPABILITY_ESS;
1523 break;
1524 case IEEE80211_BSS_TYPE_IBSS:
1525 val = WLAN_CAPABILITY_IBSS;
1526 break;
1527 case IEEE80211_BSS_TYPE_MBSS:
1528 val = 0;
1529 break;
1530 default:
1531 return false;
1532 }
1533 }
1534
1535 ret = ((capability & mask) == val);
1536 return ret;
1537}
1538
1539/* Returned bss is reference counted and must be cleaned up appropriately. */
1540struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1541 struct ieee80211_channel *channel,
1542 const u8 *bssid,
1543 const u8 *ssid, size_t ssid_len,
1544 enum ieee80211_bss_type bss_type,
1545 enum ieee80211_privacy privacy,
1546 u32 use_for)
1547{
1548 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1549 struct cfg80211_internal_bss *bss, *res = NULL;
1550 unsigned long now = jiffies;
1551 int bss_privacy;
1552
1553 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1554 privacy);
1555
1556 spin_lock_bh(&rdev->bss_lock);
1557
1558 list_for_each_entry(bss, &rdev->bss_list, list) {
1559 if (!cfg80211_bss_type_match(bss->pub.capability,
1560 bss->pub.channel->band, bss_type))
1561 continue;
1562
1563 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1564 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1565 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1566 continue;
1567 if (channel && bss->pub.channel != channel)
1568 continue;
1569 if (!is_valid_ether_addr(bss->pub.bssid))
1570 continue;
1571 if ((bss->pub.use_for & use_for) != use_for)
1572 continue;
1573 /* Don't get expired BSS structs */
1574 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1575 !atomic_read(&bss->hold))
1576 continue;
1577 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1578 res = bss;
1579 bss_ref_get(rdev, res);
1580 break;
1581 }
1582 }
1583
1584 spin_unlock_bh(&rdev->bss_lock);
1585 if (!res)
1586 return NULL;
1587 trace_cfg80211_return_bss(&res->pub);
1588 return &res->pub;
1589}
1590EXPORT_SYMBOL(__cfg80211_get_bss);
1591
1592static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1593 struct cfg80211_internal_bss *bss)
1594{
1595 struct rb_node **p = &rdev->bss_tree.rb_node;
1596 struct rb_node *parent = NULL;
1597 struct cfg80211_internal_bss *tbss;
1598 int cmp;
1599
1600 while (*p) {
1601 parent = *p;
1602 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1603
1604 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1605
1606 if (WARN_ON(!cmp)) {
1607 /* will sort of leak this BSS */
1608 return;
1609 }
1610
1611 if (cmp < 0)
1612 p = &(*p)->rb_left;
1613 else
1614 p = &(*p)->rb_right;
1615 }
1616
1617 rb_link_node(&bss->rbn, parent, p);
1618 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1619}
1620
1621static struct cfg80211_internal_bss *
1622rb_find_bss(struct cfg80211_registered_device *rdev,
1623 struct cfg80211_internal_bss *res,
1624 enum bss_compare_mode mode)
1625{
1626 struct rb_node *n = rdev->bss_tree.rb_node;
1627 struct cfg80211_internal_bss *bss;
1628 int r;
1629
1630 while (n) {
1631 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1632 r = cmp_bss(&res->pub, &bss->pub, mode);
1633
1634 if (r == 0)
1635 return bss;
1636 else if (r < 0)
1637 n = n->rb_left;
1638 else
1639 n = n->rb_right;
1640 }
1641
1642 return NULL;
1643}
1644
1645static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1646 struct cfg80211_internal_bss *new)
1647{
1648 const struct cfg80211_bss_ies *ies;
1649 struct cfg80211_internal_bss *bss;
1650 const u8 *ie;
1651 int i, ssidlen;
1652 u8 fold = 0;
1653 u32 n_entries = 0;
1654
1655 ies = rcu_access_pointer(new->pub.beacon_ies);
1656 if (WARN_ON(!ies))
1657 return false;
1658
1659 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1660 if (!ie) {
1661 /* nothing to do */
1662 return true;
1663 }
1664
1665 ssidlen = ie[1];
1666 for (i = 0; i < ssidlen; i++)
1667 fold |= ie[2 + i];
1668
1669 if (fold) {
1670 /* not a hidden SSID */
1671 return true;
1672 }
1673
1674 /* This is the bad part ... */
1675
1676 list_for_each_entry(bss, &rdev->bss_list, list) {
1677 /*
1678 * we're iterating all the entries anyway, so take the
1679 * opportunity to validate the list length accounting
1680 */
1681 n_entries++;
1682
1683 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1684 continue;
1685 if (bss->pub.channel != new->pub.channel)
1686 continue;
1687 if (rcu_access_pointer(bss->pub.beacon_ies))
1688 continue;
1689 ies = rcu_access_pointer(bss->pub.ies);
1690 if (!ies)
1691 continue;
1692 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1693 if (!ie)
1694 continue;
1695 if (ssidlen && ie[1] != ssidlen)
1696 continue;
1697 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1698 continue;
1699 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1700 list_del(&bss->hidden_list);
1701 /* combine them */
1702 list_add(&bss->hidden_list, &new->hidden_list);
1703 bss->pub.hidden_beacon_bss = &new->pub;
1704 new->refcount += bss->refcount;
1705 rcu_assign_pointer(bss->pub.beacon_ies,
1706 new->pub.beacon_ies);
1707 }
1708
1709 WARN_ONCE(n_entries != rdev->bss_entries,
1710 "rdev bss entries[%d]/list[len:%d] corruption\n",
1711 rdev->bss_entries, n_entries);
1712
1713 return true;
1714}
1715
1716static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1717 const struct cfg80211_bss_ies *new_ies,
1718 const struct cfg80211_bss_ies *old_ies)
1719{
1720 struct cfg80211_internal_bss *bss;
1721
1722 /* Assign beacon IEs to all sub entries */
1723 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1724 const struct cfg80211_bss_ies *ies;
1725
1726 ies = rcu_access_pointer(bss->pub.beacon_ies);
1727 WARN_ON(ies != old_ies);
1728
1729 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1730 }
1731}
1732
1733static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1734 struct cfg80211_internal_bss *known,
1735 const struct cfg80211_bss_ies *old)
1736{
1737 const struct ieee80211_ext_chansw_ie *ecsa;
1738 const struct element *elem_new, *elem_old;
1739 const struct cfg80211_bss_ies *new, *bcn;
1740
1741 if (known->pub.proberesp_ecsa_stuck)
1742 return;
1743
1744 new = rcu_dereference_protected(known->pub.proberesp_ies,
1745 lockdep_is_held(&rdev->bss_lock));
1746 if (WARN_ON(!new))
1747 return;
1748
1749 if (new->tsf - old->tsf < USEC_PER_SEC)
1750 return;
1751
1752 elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1753 old->data, old->len);
1754 if (!elem_old)
1755 return;
1756
1757 elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1758 new->data, new->len);
1759 if (!elem_new)
1760 return;
1761
1762 bcn = rcu_dereference_protected(known->pub.beacon_ies,
1763 lockdep_is_held(&rdev->bss_lock));
1764 if (bcn &&
1765 cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1766 bcn->data, bcn->len))
1767 return;
1768
1769 if (elem_new->datalen != elem_old->datalen)
1770 return;
1771 if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1772 return;
1773 if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1774 return;
1775
1776 ecsa = (void *)elem_new->data;
1777
1778 if (!ecsa->mode)
1779 return;
1780
1781 if (ecsa->new_ch_num !=
1782 ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1783 return;
1784
1785 known->pub.proberesp_ecsa_stuck = 1;
1786}
1787
1788static bool
1789cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1790 struct cfg80211_internal_bss *known,
1791 struct cfg80211_internal_bss *new,
1792 bool signal_valid)
1793{
1794 lockdep_assert_held(&rdev->bss_lock);
1795
1796 /* Update IEs */
1797 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1798 const struct cfg80211_bss_ies *old;
1799
1800 old = rcu_access_pointer(known->pub.proberesp_ies);
1801
1802 rcu_assign_pointer(known->pub.proberesp_ies,
1803 new->pub.proberesp_ies);
1804 /* Override possible earlier Beacon frame IEs */
1805 rcu_assign_pointer(known->pub.ies,
1806 new->pub.proberesp_ies);
1807 if (old) {
1808 cfg80211_check_stuck_ecsa(rdev, known, old);
1809 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1810 }
1811 }
1812
1813 if (rcu_access_pointer(new->pub.beacon_ies)) {
1814 const struct cfg80211_bss_ies *old;
1815
1816 if (known->pub.hidden_beacon_bss &&
1817 !list_empty(&known->hidden_list)) {
1818 const struct cfg80211_bss_ies *f;
1819
1820 /* The known BSS struct is one of the probe
1821 * response members of a group, but we're
1822 * receiving a beacon (beacon_ies in the new
1823 * bss is used). This can only mean that the
1824 * AP changed its beacon from not having an
1825 * SSID to showing it, which is confusing so
1826 * drop this information.
1827 */
1828
1829 f = rcu_access_pointer(new->pub.beacon_ies);
1830 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1831 return false;
1832 }
1833
1834 old = rcu_access_pointer(known->pub.beacon_ies);
1835
1836 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1837
1838 /* Override IEs if they were from a beacon before */
1839 if (old == rcu_access_pointer(known->pub.ies))
1840 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1841
1842 cfg80211_update_hidden_bsses(known,
1843 rcu_access_pointer(new->pub.beacon_ies),
1844 old);
1845
1846 if (old)
1847 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1848 }
1849
1850 known->pub.beacon_interval = new->pub.beacon_interval;
1851
1852 /* don't update the signal if beacon was heard on
1853 * adjacent channel.
1854 */
1855 if (signal_valid)
1856 known->pub.signal = new->pub.signal;
1857 known->pub.capability = new->pub.capability;
1858 known->ts = new->ts;
1859 known->ts_boottime = new->ts_boottime;
1860 known->parent_tsf = new->parent_tsf;
1861 known->pub.chains = new->pub.chains;
1862 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1863 IEEE80211_MAX_CHAINS);
1864 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1865 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1866 known->pub.bssid_index = new->pub.bssid_index;
1867 known->pub.use_for &= new->pub.use_for;
1868 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1869
1870 return true;
1871}
1872
1873/* Returned bss is reference counted and must be cleaned up appropriately. */
1874static struct cfg80211_internal_bss *
1875__cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1876 struct cfg80211_internal_bss *tmp,
1877 bool signal_valid, unsigned long ts)
1878{
1879 struct cfg80211_internal_bss *found = NULL;
1880 struct cfg80211_bss_ies *ies;
1881
1882 if (WARN_ON(!tmp->pub.channel))
1883 goto free_ies;
1884
1885 tmp->ts = ts;
1886
1887 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1888 goto free_ies;
1889
1890 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1891
1892 if (found) {
1893 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1894 return NULL;
1895 } else {
1896 struct cfg80211_internal_bss *new;
1897 struct cfg80211_internal_bss *hidden;
1898
1899 /*
1900 * create a copy -- the "res" variable that is passed in
1901 * is allocated on the stack since it's not needed in the
1902 * more common case of an update
1903 */
1904 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1905 GFP_ATOMIC);
1906 if (!new)
1907 goto free_ies;
1908 memcpy(new, tmp, sizeof(*new));
1909 new->refcount = 1;
1910 INIT_LIST_HEAD(&new->hidden_list);
1911 INIT_LIST_HEAD(&new->pub.nontrans_list);
1912 /* we'll set this later if it was non-NULL */
1913 new->pub.transmitted_bss = NULL;
1914
1915 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1916 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1917 if (!hidden)
1918 hidden = rb_find_bss(rdev, tmp,
1919 BSS_CMP_HIDE_NUL);
1920 if (hidden) {
1921 new->pub.hidden_beacon_bss = &hidden->pub;
1922 list_add(&new->hidden_list,
1923 &hidden->hidden_list);
1924 hidden->refcount++;
1925
1926 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1927 rcu_assign_pointer(new->pub.beacon_ies,
1928 hidden->pub.beacon_ies);
1929 if (ies)
1930 kfree_rcu(ies, rcu_head);
1931 }
1932 } else {
1933 /*
1934 * Ok so we found a beacon, and don't have an entry. If
1935 * it's a beacon with hidden SSID, we might be in for an
1936 * expensive search for any probe responses that should
1937 * be grouped with this beacon for updates ...
1938 */
1939 if (!cfg80211_combine_bsses(rdev, new)) {
1940 bss_ref_put(rdev, new);
1941 return NULL;
1942 }
1943 }
1944
1945 if (rdev->bss_entries >= bss_entries_limit &&
1946 !cfg80211_bss_expire_oldest(rdev)) {
1947 bss_ref_put(rdev, new);
1948 return NULL;
1949 }
1950
1951 /* This must be before the call to bss_ref_get */
1952 if (tmp->pub.transmitted_bss) {
1953 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1954 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1955 }
1956
1957 list_add_tail(&new->list, &rdev->bss_list);
1958 rdev->bss_entries++;
1959 rb_insert_bss(rdev, new);
1960 found = new;
1961 }
1962
1963 rdev->bss_generation++;
1964 bss_ref_get(rdev, found);
1965
1966 return found;
1967
1968free_ies:
1969 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1970 if (ies)
1971 kfree_rcu(ies, rcu_head);
1972 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1973 if (ies)
1974 kfree_rcu(ies, rcu_head);
1975
1976 return NULL;
1977}
1978
1979struct cfg80211_internal_bss *
1980cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1981 struct cfg80211_internal_bss *tmp,
1982 bool signal_valid, unsigned long ts)
1983{
1984 struct cfg80211_internal_bss *res;
1985
1986 spin_lock_bh(&rdev->bss_lock);
1987 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1988 spin_unlock_bh(&rdev->bss_lock);
1989
1990 return res;
1991}
1992
1993int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1994 enum nl80211_band band)
1995{
1996 const struct element *tmp;
1997
1998 if (band == NL80211_BAND_6GHZ) {
1999 struct ieee80211_he_operation *he_oper;
2000
2001 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2002 ielen);
2003 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2004 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2005 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2006
2007 he_oper = (void *)&tmp->data[1];
2008
2009 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2010 if (!he_6ghz_oper)
2011 return -1;
2012
2013 return he_6ghz_oper->primary;
2014 }
2015 } else if (band == NL80211_BAND_S1GHZ) {
2016 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2017 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2018 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2019
2020 return s1gop->oper_ch;
2021 }
2022 } else {
2023 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2024 if (tmp && tmp->datalen == 1)
2025 return tmp->data[0];
2026
2027 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2028 if (tmp &&
2029 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2030 struct ieee80211_ht_operation *htop = (void *)tmp->data;
2031
2032 return htop->primary_chan;
2033 }
2034 }
2035
2036 return -1;
2037}
2038EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2039
2040/*
2041 * Update RX channel information based on the available frame payload
2042 * information. This is mainly for the 2.4 GHz band where frames can be received
2043 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2044 * element to indicate the current (transmitting) channel, but this might also
2045 * be needed on other bands if RX frequency does not match with the actual
2046 * operating channel of a BSS, or if the AP reports a different primary channel.
2047 */
2048static struct ieee80211_channel *
2049cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2050 struct ieee80211_channel *channel)
2051{
2052 u32 freq;
2053 int channel_number;
2054 struct ieee80211_channel *alt_channel;
2055
2056 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2057 channel->band);
2058
2059 if (channel_number < 0) {
2060 /* No channel information in frame payload */
2061 return channel;
2062 }
2063
2064 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2065
2066 /*
2067 * Frame info (beacon/prob res) is the same as received channel,
2068 * no need for further processing.
2069 */
2070 if (freq == ieee80211_channel_to_khz(channel))
2071 return channel;
2072
2073 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2074 if (!alt_channel) {
2075 if (channel->band == NL80211_BAND_2GHZ ||
2076 channel->band == NL80211_BAND_6GHZ) {
2077 /*
2078 * Better not allow unexpected channels when that could
2079 * be going beyond the 1-11 range (e.g., discovering
2080 * BSS on channel 12 when radio is configured for
2081 * channel 11) or beyond the 6 GHz channel range.
2082 */
2083 return NULL;
2084 }
2085
2086 /* No match for the payload channel number - ignore it */
2087 return channel;
2088 }
2089
2090 /*
2091 * Use the channel determined through the payload channel number
2092 * instead of the RX channel reported by the driver.
2093 */
2094 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2095 return NULL;
2096 return alt_channel;
2097}
2098
2099struct cfg80211_inform_single_bss_data {
2100 struct cfg80211_inform_bss *drv_data;
2101 enum cfg80211_bss_frame_type ftype;
2102 struct ieee80211_channel *channel;
2103 u8 bssid[ETH_ALEN];
2104 u64 tsf;
2105 u16 capability;
2106 u16 beacon_interval;
2107 const u8 *ie;
2108 size_t ielen;
2109
2110 enum {
2111 BSS_SOURCE_DIRECT = 0,
2112 BSS_SOURCE_MBSSID,
2113 BSS_SOURCE_STA_PROFILE,
2114 } bss_source;
2115 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2116 struct cfg80211_bss *source_bss;
2117 u8 max_bssid_indicator;
2118 u8 bssid_index;
2119
2120 u8 use_for;
2121 u64 cannot_use_reasons;
2122};
2123
2124static bool cfg80211_6ghz_power_type_valid(const u8 *ie, size_t ielen,
2125 const u32 flags)
2126{
2127 const struct element *tmp;
2128 struct ieee80211_he_operation *he_oper;
2129
2130 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ielen);
2131 if (tmp && tmp->datalen >= sizeof(*he_oper) + 1) {
2132 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2133
2134 he_oper = (void *)&tmp->data[1];
2135 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2136
2137 if (!he_6ghz_oper)
2138 return false;
2139
2140 switch (u8_get_bits(he_6ghz_oper->control,
2141 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2142 case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2143 return true;
2144 case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2145 return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
2146 case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2147 return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
2148 }
2149 }
2150 return false;
2151}
2152
2153/* Returned bss is reference counted and must be cleaned up appropriately. */
2154static struct cfg80211_bss *
2155cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2156 struct cfg80211_inform_single_bss_data *data,
2157 gfp_t gfp)
2158{
2159 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2160 struct cfg80211_inform_bss *drv_data = data->drv_data;
2161 struct cfg80211_bss_ies *ies;
2162 struct ieee80211_channel *channel;
2163 struct cfg80211_internal_bss tmp = {}, *res;
2164 int bss_type;
2165 bool signal_valid;
2166 unsigned long ts;
2167
2168 if (WARN_ON(!wiphy))
2169 return NULL;
2170
2171 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2172 (drv_data->signal < 0 || drv_data->signal > 100)))
2173 return NULL;
2174
2175 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2176 return NULL;
2177
2178 channel = data->channel;
2179 if (!channel)
2180 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2181 drv_data->chan);
2182 if (!channel)
2183 return NULL;
2184
2185 if (channel->band == NL80211_BAND_6GHZ &&
2186 !cfg80211_6ghz_power_type_valid(data->ie, data->ielen,
2187 channel->flags)) {
2188 data->use_for = 0;
2189 data->cannot_use_reasons =
2190 NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
2191 }
2192
2193 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2194 tmp.pub.channel = channel;
2195 if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2196 tmp.pub.signal = drv_data->signal;
2197 else
2198 tmp.pub.signal = 0;
2199 tmp.pub.beacon_interval = data->beacon_interval;
2200 tmp.pub.capability = data->capability;
2201 tmp.ts_boottime = drv_data->boottime_ns;
2202 tmp.parent_tsf = drv_data->parent_tsf;
2203 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2204 tmp.pub.chains = drv_data->chains;
2205 memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
2206 IEEE80211_MAX_CHAINS);
2207 tmp.pub.use_for = data->use_for;
2208 tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2209
2210 switch (data->bss_source) {
2211 case BSS_SOURCE_MBSSID:
2212 tmp.pub.transmitted_bss = data->source_bss;
2213 fallthrough;
2214 case BSS_SOURCE_STA_PROFILE:
2215 ts = bss_from_pub(data->source_bss)->ts;
2216 tmp.pub.bssid_index = data->bssid_index;
2217 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2218 break;
2219 case BSS_SOURCE_DIRECT:
2220 ts = jiffies;
2221
2222 if (channel->band == NL80211_BAND_60GHZ) {
2223 bss_type = data->capability &
2224 WLAN_CAPABILITY_DMG_TYPE_MASK;
2225 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2226 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2227 regulatory_hint_found_beacon(wiphy, channel,
2228 gfp);
2229 } else {
2230 if (data->capability & WLAN_CAPABILITY_ESS)
2231 regulatory_hint_found_beacon(wiphy, channel,
2232 gfp);
2233 }
2234 break;
2235 }
2236
2237 /*
2238 * If we do not know here whether the IEs are from a Beacon or Probe
2239 * Response frame, we need to pick one of the options and only use it
2240 * with the driver that does not provide the full Beacon/Probe Response
2241 * frame. Use Beacon frame pointer to avoid indicating that this should
2242 * override the IEs pointer should we have received an earlier
2243 * indication of Probe Response data.
2244 */
2245 ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2246 if (!ies)
2247 return NULL;
2248 ies->len = data->ielen;
2249 ies->tsf = data->tsf;
2250 ies->from_beacon = false;
2251 memcpy(ies->data, data->ie, data->ielen);
2252
2253 switch (data->ftype) {
2254 case CFG80211_BSS_FTYPE_BEACON:
2255 case CFG80211_BSS_FTYPE_S1G_BEACON:
2256 ies->from_beacon = true;
2257 fallthrough;
2258 case CFG80211_BSS_FTYPE_UNKNOWN:
2259 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2260 break;
2261 case CFG80211_BSS_FTYPE_PRESP:
2262 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2263 break;
2264 }
2265 rcu_assign_pointer(tmp.pub.ies, ies);
2266
2267 signal_valid = drv_data->chan == channel;
2268 spin_lock_bh(&rdev->bss_lock);
2269 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2270 if (!res)
2271 goto drop;
2272
2273 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2274
2275 if (data->bss_source == BSS_SOURCE_MBSSID) {
2276 /* this is a nontransmitting bss, we need to add it to
2277 * transmitting bss' list if it is not there
2278 */
2279 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2280 if (__cfg80211_unlink_bss(rdev, res)) {
2281 rdev->bss_generation++;
2282 res = NULL;
2283 }
2284 }
2285
2286 if (!res)
2287 goto drop;
2288 }
2289 spin_unlock_bh(&rdev->bss_lock);
2290
2291 trace_cfg80211_return_bss(&res->pub);
2292 /* __cfg80211_bss_update gives us a referenced result */
2293 return &res->pub;
2294
2295drop:
2296 spin_unlock_bh(&rdev->bss_lock);
2297 return NULL;
2298}
2299
2300static const struct element
2301*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2302 const struct element *mbssid_elem,
2303 const struct element *sub_elem)
2304{
2305 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2306 const struct element *next_mbssid;
2307 const struct element *next_sub;
2308
2309 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2310 mbssid_end,
2311 ielen - (mbssid_end - ie));
2312
2313 /*
2314 * If it is not the last subelement in current MBSSID IE or there isn't
2315 * a next MBSSID IE - profile is complete.
2316 */
2317 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2318 !next_mbssid)
2319 return NULL;
2320
2321 /* For any length error, just return NULL */
2322
2323 if (next_mbssid->datalen < 4)
2324 return NULL;
2325
2326 next_sub = (void *)&next_mbssid->data[1];
2327
2328 if (next_mbssid->data + next_mbssid->datalen <
2329 next_sub->data + next_sub->datalen)
2330 return NULL;
2331
2332 if (next_sub->id != 0 || next_sub->datalen < 2)
2333 return NULL;
2334
2335 /*
2336 * Check if the first element in the next sub element is a start
2337 * of a new profile
2338 */
2339 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2340 NULL : next_mbssid;
2341}
2342
2343size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2344 const struct element *mbssid_elem,
2345 const struct element *sub_elem,
2346 u8 *merged_ie, size_t max_copy_len)
2347{
2348 size_t copied_len = sub_elem->datalen;
2349 const struct element *next_mbssid;
2350
2351 if (sub_elem->datalen > max_copy_len)
2352 return 0;
2353
2354 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2355
2356 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2357 mbssid_elem,
2358 sub_elem))) {
2359 const struct element *next_sub = (void *)&next_mbssid->data[1];
2360
2361 if (copied_len + next_sub->datalen > max_copy_len)
2362 break;
2363 memcpy(merged_ie + copied_len, next_sub->data,
2364 next_sub->datalen);
2365 copied_len += next_sub->datalen;
2366 }
2367
2368 return copied_len;
2369}
2370EXPORT_SYMBOL(cfg80211_merge_profile);
2371
2372static void
2373cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2374 struct cfg80211_inform_single_bss_data *tx_data,
2375 struct cfg80211_bss *source_bss,
2376 gfp_t gfp)
2377{
2378 struct cfg80211_inform_single_bss_data data = {
2379 .drv_data = tx_data->drv_data,
2380 .ftype = tx_data->ftype,
2381 .tsf = tx_data->tsf,
2382 .beacon_interval = tx_data->beacon_interval,
2383 .source_bss = source_bss,
2384 .bss_source = BSS_SOURCE_MBSSID,
2385 .use_for = tx_data->use_for,
2386 .cannot_use_reasons = tx_data->cannot_use_reasons,
2387 };
2388 const u8 *mbssid_index_ie;
2389 const struct element *elem, *sub;
2390 u8 *new_ie, *profile;
2391 u64 seen_indices = 0;
2392 struct cfg80211_bss *bss;
2393
2394 if (!source_bss)
2395 return;
2396 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2397 tx_data->ie, tx_data->ielen))
2398 return;
2399 if (!wiphy->support_mbssid)
2400 return;
2401 if (wiphy->support_only_he_mbssid &&
2402 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2403 tx_data->ie, tx_data->ielen))
2404 return;
2405
2406 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2407 if (!new_ie)
2408 return;
2409
2410 profile = kmalloc(tx_data->ielen, gfp);
2411 if (!profile)
2412 goto out;
2413
2414 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2415 tx_data->ie, tx_data->ielen) {
2416 if (elem->datalen < 4)
2417 continue;
2418 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2419 continue;
2420 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2421 u8 profile_len;
2422
2423 if (sub->id != 0 || sub->datalen < 4) {
2424 /* not a valid BSS profile */
2425 continue;
2426 }
2427
2428 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2429 sub->data[1] != 2) {
2430 /* The first element within the Nontransmitted
2431 * BSSID Profile is not the Nontransmitted
2432 * BSSID Capability element.
2433 */
2434 continue;
2435 }
2436
2437 memset(profile, 0, tx_data->ielen);
2438 profile_len = cfg80211_merge_profile(tx_data->ie,
2439 tx_data->ielen,
2440 elem,
2441 sub,
2442 profile,
2443 tx_data->ielen);
2444
2445 /* found a Nontransmitted BSSID Profile */
2446 mbssid_index_ie = cfg80211_find_ie
2447 (WLAN_EID_MULTI_BSSID_IDX,
2448 profile, profile_len);
2449 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2450 mbssid_index_ie[2] == 0 ||
2451 mbssid_index_ie[2] > 46) {
2452 /* No valid Multiple BSSID-Index element */
2453 continue;
2454 }
2455
2456 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2457 /* We don't support legacy split of a profile */
2458 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2459 mbssid_index_ie[2]);
2460
2461 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2462
2463 data.bssid_index = mbssid_index_ie[2];
2464 data.max_bssid_indicator = elem->data[0];
2465
2466 cfg80211_gen_new_bssid(tx_data->bssid,
2467 data.max_bssid_indicator,
2468 data.bssid_index,
2469 data.bssid);
2470
2471 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2472 data.ie = new_ie;
2473 data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2474 tx_data->ielen,
2475 profile,
2476 profile_len,
2477 new_ie,
2478 IEEE80211_MAX_DATA_LEN);
2479 if (!data.ielen)
2480 continue;
2481
2482 data.capability = get_unaligned_le16(profile + 2);
2483 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2484 if (!bss)
2485 break;
2486 cfg80211_put_bss(wiphy, bss);
2487 }
2488 }
2489
2490out:
2491 kfree(new_ie);
2492 kfree(profile);
2493}
2494
2495ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2496 size_t ieslen, u8 *data, size_t data_len,
2497 u8 frag_id)
2498{
2499 const struct element *next;
2500 ssize_t copied;
2501 u8 elem_datalen;
2502
2503 if (!elem)
2504 return -EINVAL;
2505
2506 /* elem might be invalid after the memmove */
2507 next = (void *)(elem->data + elem->datalen);
2508 elem_datalen = elem->datalen;
2509
2510 if (elem->id == WLAN_EID_EXTENSION) {
2511 copied = elem->datalen - 1;
2512
2513 if (data) {
2514 if (copied > data_len)
2515 return -ENOSPC;
2516
2517 memmove(data, elem->data + 1, copied);
2518 }
2519 } else {
2520 copied = elem->datalen;
2521
2522 if (data) {
2523 if (copied > data_len)
2524 return -ENOSPC;
2525
2526 memmove(data, elem->data, copied);
2527 }
2528 }
2529
2530 /* Fragmented elements must have 255 bytes */
2531 if (elem_datalen < 255)
2532 return copied;
2533
2534 for (elem = next;
2535 elem->data < ies + ieslen &&
2536 elem->data + elem->datalen <= ies + ieslen;
2537 elem = next) {
2538 /* elem might be invalid after the memmove */
2539 next = (void *)(elem->data + elem->datalen);
2540
2541 if (elem->id != frag_id)
2542 break;
2543
2544 elem_datalen = elem->datalen;
2545
2546 if (data) {
2547 if (copied + elem_datalen > data_len)
2548 return -ENOSPC;
2549
2550 memmove(data + copied, elem->data, elem_datalen);
2551 }
2552
2553 copied += elem_datalen;
2554
2555 /* Only the last fragment may be short */
2556 if (elem_datalen != 255)
2557 break;
2558 }
2559
2560 return copied;
2561}
2562EXPORT_SYMBOL(cfg80211_defragment_element);
2563
2564struct cfg80211_mle {
2565 struct ieee80211_multi_link_elem *mle;
2566 struct ieee80211_mle_per_sta_profile
2567 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2568 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2569
2570 u8 data[];
2571};
2572
2573static struct cfg80211_mle *
2574cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2575 gfp_t gfp)
2576{
2577 const struct element *elem;
2578 struct cfg80211_mle *res;
2579 size_t buf_len;
2580 ssize_t mle_len;
2581 u8 common_size, idx;
2582
2583 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2584 return NULL;
2585
2586 /* Required length for first defragmentation */
2587 buf_len = mle->datalen - 1;
2588 for_each_element(elem, mle->data + mle->datalen,
2589 ielen - sizeof(*mle) + mle->datalen) {
2590 if (elem->id != WLAN_EID_FRAGMENT)
2591 break;
2592
2593 buf_len += elem->datalen;
2594 }
2595
2596 res = kzalloc(struct_size(res, data, buf_len), gfp);
2597 if (!res)
2598 return NULL;
2599
2600 mle_len = cfg80211_defragment_element(mle, ie, ielen,
2601 res->data, buf_len,
2602 WLAN_EID_FRAGMENT);
2603 if (mle_len < 0)
2604 goto error;
2605
2606 res->mle = (void *)res->data;
2607
2608 /* Find the sub-element area in the buffer */
2609 common_size = ieee80211_mle_common_size((u8 *)res->mle);
2610 ie = res->data + common_size;
2611 ielen = mle_len - common_size;
2612
2613 idx = 0;
2614 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2615 ie, ielen) {
2616 res->sta_prof[idx] = (void *)elem->data;
2617 res->sta_prof_len[idx] = elem->datalen;
2618
2619 idx++;
2620 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2621 break;
2622 }
2623 if (!for_each_element_completed(elem, ie, ielen))
2624 goto error;
2625
2626 /* Defragment sta_info in-place */
2627 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2628 idx++) {
2629 if (res->sta_prof_len[idx] < 255)
2630 continue;
2631
2632 elem = (void *)res->sta_prof[idx] - 2;
2633
2634 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2635 res->sta_prof[idx + 1])
2636 buf_len = (u8 *)res->sta_prof[idx + 1] -
2637 (u8 *)res->sta_prof[idx];
2638 else
2639 buf_len = ielen + ie - (u8 *)elem;
2640
2641 res->sta_prof_len[idx] =
2642 cfg80211_defragment_element(elem,
2643 (u8 *)elem, buf_len,
2644 (u8 *)res->sta_prof[idx],
2645 buf_len,
2646 IEEE80211_MLE_SUBELEM_FRAGMENT);
2647 if (res->sta_prof_len[idx] < 0)
2648 goto error;
2649 }
2650
2651 return res;
2652
2653error:
2654 kfree(res);
2655 return NULL;
2656}
2657
2658struct tbtt_info_iter_data {
2659 const struct ieee80211_neighbor_ap_info *ap_info;
2660 u8 param_ch_count;
2661 u32 use_for;
2662 u8 mld_id, link_id;
2663 bool non_tx;
2664};
2665
2666static enum cfg80211_rnr_iter_ret
2667cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
2668 const struct ieee80211_neighbor_ap_info *info,
2669 const u8 *tbtt_info, u8 tbtt_info_len)
2670{
2671 const struct ieee80211_rnr_mld_params *mld_params;
2672 struct tbtt_info_iter_data *data = _data;
2673 u8 link_id;
2674 bool non_tx = false;
2675
2676 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2677 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
2678 mld_params)) {
2679 const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 =
2680 (void *)tbtt_info;
2681
2682 non_tx = (tbtt_info_ge_11->bss_params &
2683 (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID |
2684 IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) ==
2685 IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2686 mld_params = &tbtt_info_ge_11->mld_params;
2687 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2688 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
2689 mld_params = (void *)tbtt_info;
2690 else
2691 return RNR_ITER_CONTINUE;
2692
2693 link_id = le16_get_bits(mld_params->params,
2694 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2695
2696 if (data->mld_id != mld_params->mld_id)
2697 return RNR_ITER_CONTINUE;
2698
2699 if (data->link_id != link_id)
2700 return RNR_ITER_CONTINUE;
2701
2702 data->ap_info = info;
2703 data->param_ch_count =
2704 le16_get_bits(mld_params->params,
2705 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2706 data->non_tx = non_tx;
2707
2708 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
2709 data->use_for = NL80211_BSS_USE_FOR_ALL;
2710 else
2711 data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2712 return RNR_ITER_BREAK;
2713}
2714
2715static u8
2716cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2717 const struct ieee80211_neighbor_ap_info **ap_info,
2718 u8 *param_ch_count, bool *non_tx)
2719{
2720 struct tbtt_info_iter_data data = {
2721 .mld_id = mld_id,
2722 .link_id = link_id,
2723 };
2724
2725 cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
2726
2727 *ap_info = data.ap_info;
2728 *param_ch_count = data.param_ch_count;
2729 *non_tx = data.non_tx;
2730
2731 return data.use_for;
2732}
2733
2734static struct element *
2735cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2736 bool same_mld, u8 link_id, u8 bss_change_count,
2737 gfp_t gfp)
2738{
2739 const struct cfg80211_bss_ies *ies;
2740 struct ieee80211_neighbor_ap_info ap_info;
2741 struct ieee80211_tbtt_info_ge_11 tbtt_info;
2742 u32 short_ssid;
2743 const struct element *elem;
2744 struct element *res;
2745
2746 /*
2747 * We only generate the RNR to permit ML lookups. For that we do not
2748 * need an entry for the corresponding transmitting BSS, lets just skip
2749 * it even though it would be easy to add.
2750 */
2751 if (!same_mld)
2752 return NULL;
2753
2754 /* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2755 rcu_read_lock();
2756 ies = rcu_dereference(source_bss->ies);
2757
2758 ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2759 ap_info.tbtt_info_hdr =
2760 u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2761 IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2762 u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2763
2764 ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
2765
2766 /* operating class */
2767 elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2768 ies->data, ies->len);
2769 if (elem && elem->datalen >= 1) {
2770 ap_info.op_class = elem->data[0];
2771 } else {
2772 struct cfg80211_chan_def chandef;
2773
2774 /* The AP is not providing us with anything to work with. So
2775 * make up a somewhat reasonable operating class, but don't
2776 * bother with it too much as no one will ever use the
2777 * information.
2778 */
2779 cfg80211_chandef_create(&chandef, source_bss->channel,
2780 NL80211_CHAN_NO_HT);
2781
2782 if (!ieee80211_chandef_to_operating_class(&chandef,
2783 &ap_info.op_class))
2784 goto out_unlock;
2785 }
2786
2787 /* Just set TBTT offset and PSD 20 to invalid/unknown */
2788 tbtt_info.tbtt_offset = 255;
2789 tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2790
2791 memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2792 if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
2793 goto out_unlock;
2794
2795 rcu_read_unlock();
2796
2797 tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2798
2799 tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2800
2801 if (is_mbssid) {
2802 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2803 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2804 }
2805
2806 tbtt_info.mld_params.mld_id = 0;
2807 tbtt_info.mld_params.params =
2808 le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2809 le16_encode_bits(bss_change_count,
2810 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2811
2812 res = kzalloc(struct_size(res, data,
2813 sizeof(ap_info) + ap_info.tbtt_info_len),
2814 gfp);
2815 if (!res)
2816 return NULL;
2817
2818 /* Copy the data */
2819 res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2820 res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2821 memcpy(res->data, &ap_info, sizeof(ap_info));
2822 memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2823
2824 return res;
2825
2826out_unlock:
2827 rcu_read_unlock();
2828 return NULL;
2829}
2830
2831static void
2832cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2833 struct cfg80211_inform_single_bss_data *tx_data,
2834 struct cfg80211_bss *source_bss,
2835 const struct element *elem,
2836 gfp_t gfp)
2837{
2838 struct cfg80211_inform_single_bss_data data = {
2839 .drv_data = tx_data->drv_data,
2840 .ftype = tx_data->ftype,
2841 .source_bss = source_bss,
2842 .bss_source = BSS_SOURCE_STA_PROFILE,
2843 };
2844 struct element *reporter_rnr = NULL;
2845 struct ieee80211_multi_link_elem *ml_elem;
2846 struct cfg80211_mle *mle;
2847 u16 control;
2848 u8 ml_common_len;
2849 u8 *new_ie = NULL;
2850 struct cfg80211_bss *bss;
2851 u8 mld_id, reporter_link_id, bss_change_count;
2852 u16 seen_links = 0;
2853 u8 i;
2854
2855 if (!ieee80211_mle_type_ok(elem->data + 1,
2856 IEEE80211_ML_CONTROL_TYPE_BASIC,
2857 elem->datalen - 1))
2858 return;
2859
2860 ml_elem = (void *)(elem->data + 1);
2861 control = le16_to_cpu(ml_elem->control);
2862 ml_common_len = ml_elem->variable[0];
2863
2864 /* Must be present when transmitted by an AP (in a probe response) */
2865 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2866 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2867 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2868 return;
2869
2870 reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1);
2871 bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1);
2872
2873 /*
2874 * The MLD ID of the reporting AP is always zero. It is set if the AP
2875 * is part of an MBSSID set and will be non-zero for ML Elements
2876 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2877 * Draft P802.11be_D3.2, 35.3.4.2)
2878 */
2879 mld_id = ieee80211_mle_get_mld_id(elem->data + 1);
2880
2881 /* Fully defrag the ML element for sta information/profile iteration */
2882 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2883 if (!mle)
2884 return;
2885
2886 /* No point in doing anything if there is no per-STA profile */
2887 if (!mle->sta_prof[0])
2888 goto out;
2889
2890 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2891 if (!new_ie)
2892 goto out;
2893
2894 reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
2895 u16_get_bits(control,
2896 IEEE80211_MLC_BASIC_PRES_MLD_ID),
2897 mld_id == 0, reporter_link_id,
2898 bss_change_count,
2899 gfp);
2900
2901 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2902 const struct ieee80211_neighbor_ap_info *ap_info;
2903 enum nl80211_band band;
2904 u32 freq;
2905 const u8 *profile;
2906 ssize_t profile_len;
2907 u8 param_ch_count;
2908 u8 link_id, use_for;
2909 bool non_tx;
2910
2911 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2912 mle->sta_prof_len[i]))
2913 continue;
2914
2915 control = le16_to_cpu(mle->sta_prof[i]->control);
2916
2917 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2918 continue;
2919
2920 link_id = u16_get_bits(control,
2921 IEEE80211_MLE_STA_CONTROL_LINK_ID);
2922 if (seen_links & BIT(link_id))
2923 break;
2924 seen_links |= BIT(link_id);
2925
2926 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2927 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2928 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2929 continue;
2930
2931 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2932 data.beacon_interval =
2933 get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2934 data.tsf = tx_data->tsf +
2935 get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2936
2937 /* sta_info_len counts itself */
2938 profile = mle->sta_prof[i]->variable +
2939 mle->sta_prof[i]->sta_info_len - 1;
2940 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2941 profile;
2942
2943 if (profile_len < 2)
2944 continue;
2945
2946 data.capability = get_unaligned_le16(profile);
2947 profile += 2;
2948 profile_len -= 2;
2949
2950 /* Find in RNR to look up channel information */
2951 use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
2952 tx_data->ielen,
2953 mld_id, link_id,
2954 &ap_info,
2955 ¶m_ch_count,
2956 &non_tx);
2957 if (!use_for)
2958 continue;
2959
2960 /*
2961 * As of 802.11be_D5.0, the specification does not give us any
2962 * way of discovering both the MaxBSSID and the Multiple-BSSID
2963 * Index. It does seem like the Multiple-BSSID Index element
2964 * may be provided, but section 9.4.2.45 explicitly forbids
2965 * including a Multiple-BSSID Element (in this case without any
2966 * subelements).
2967 * Without both pieces of information we cannot calculate the
2968 * reference BSSID, so simply ignore the BSS.
2969 */
2970 if (non_tx)
2971 continue;
2972
2973 /* We could sanity check the BSSID is included */
2974
2975 if (!ieee80211_operating_class_to_band(ap_info->op_class,
2976 &band))
2977 continue;
2978
2979 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2980 data.channel = ieee80211_get_channel_khz(wiphy, freq);
2981
2982 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
2983 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
2984 use_for = 0;
2985 data.cannot_use_reasons =
2986 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
2987 }
2988 data.use_for = use_for;
2989
2990 /* Generate new elements */
2991 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2992 data.ie = new_ie;
2993 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2994 profile, profile_len,
2995 new_ie,
2996 IEEE80211_MAX_DATA_LEN);
2997 if (!data.ielen)
2998 continue;
2999
3000 /* The generated elements do not contain:
3001 * - Basic ML element
3002 * - A TBTT entry in the RNR for the transmitting AP
3003 *
3004 * This information is needed both internally and in userspace
3005 * as such, we should append it here.
3006 */
3007 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
3008 IEEE80211_MAX_DATA_LEN)
3009 continue;
3010
3011 /* Copy the Basic Multi-Link element including the common
3012 * information, and then fix up the link ID and BSS param
3013 * change count.
3014 * Note that the ML element length has been verified and we
3015 * also checked that it contains the link ID.
3016 */
3017 new_ie[data.ielen++] = WLAN_EID_EXTENSION;
3018 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
3019 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
3020 memcpy(new_ie + data.ielen, ml_elem,
3021 sizeof(*ml_elem) + ml_common_len);
3022
3023 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
3024 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
3025 param_ch_count;
3026
3027 data.ielen += sizeof(*ml_elem) + ml_common_len;
3028
3029 if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
3030 if (data.ielen + sizeof(struct element) +
3031 reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
3032 continue;
3033
3034 memcpy(new_ie + data.ielen, reporter_rnr,
3035 sizeof(struct element) + reporter_rnr->datalen);
3036 data.ielen += sizeof(struct element) +
3037 reporter_rnr->datalen;
3038 }
3039
3040 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
3041 if (!bss)
3042 break;
3043 cfg80211_put_bss(wiphy, bss);
3044 }
3045
3046out:
3047 kfree(reporter_rnr);
3048 kfree(new_ie);
3049 kfree(mle);
3050}
3051
3052static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
3053 struct cfg80211_inform_single_bss_data *tx_data,
3054 struct cfg80211_bss *source_bss,
3055 gfp_t gfp)
3056{
3057 const struct element *elem;
3058
3059 if (!source_bss)
3060 return;
3061
3062 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
3063 return;
3064
3065 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
3066 tx_data->ie, tx_data->ielen)
3067 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
3068 elem, gfp);
3069}
3070
3071struct cfg80211_bss *
3072cfg80211_inform_bss_data(struct wiphy *wiphy,
3073 struct cfg80211_inform_bss *data,
3074 enum cfg80211_bss_frame_type ftype,
3075 const u8 *bssid, u64 tsf, u16 capability,
3076 u16 beacon_interval, const u8 *ie, size_t ielen,
3077 gfp_t gfp)
3078{
3079 struct cfg80211_inform_single_bss_data inform_data = {
3080 .drv_data = data,
3081 .ftype = ftype,
3082 .tsf = tsf,
3083 .capability = capability,
3084 .beacon_interval = beacon_interval,
3085 .ie = ie,
3086 .ielen = ielen,
3087 .use_for = data->restrict_use ?
3088 data->use_for :
3089 NL80211_BSS_USE_FOR_ALL,
3090 .cannot_use_reasons = data->cannot_use_reasons,
3091 };
3092 struct cfg80211_bss *res;
3093
3094 memcpy(inform_data.bssid, bssid, ETH_ALEN);
3095
3096 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
3097 if (!res)
3098 return NULL;
3099
3100 /* don't do any further MBSSID/ML handling for S1G */
3101 if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
3102 return res;
3103
3104 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3105
3106 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3107
3108 return res;
3109}
3110EXPORT_SYMBOL(cfg80211_inform_bss_data);
3111
3112struct cfg80211_bss *
3113cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3114 struct cfg80211_inform_bss *data,
3115 struct ieee80211_mgmt *mgmt, size_t len,
3116 gfp_t gfp)
3117{
3118 size_t min_hdr_len = offsetof(struct ieee80211_mgmt,
3119 u.probe_resp.variable);
3120 struct ieee80211_ext *ext = NULL;
3121 enum cfg80211_bss_frame_type ftype;
3122 u16 beacon_interval;
3123 const u8 *bssid;
3124 u16 capability;
3125 const u8 *ie;
3126 size_t ielen;
3127 u64 tsf;
3128
3129 if (WARN_ON(!mgmt))
3130 return NULL;
3131
3132 if (WARN_ON(!wiphy))
3133 return NULL;
3134
3135 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3136 offsetof(struct ieee80211_mgmt, u.beacon.variable));
3137
3138 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3139
3140 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
3141 ext = (void *) mgmt;
3142 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
3143 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3144 min_hdr_len = offsetof(struct ieee80211_ext,
3145 u.s1g_short_beacon.variable);
3146 }
3147
3148 if (WARN_ON(len < min_hdr_len))
3149 return NULL;
3150
3151 ielen = len - min_hdr_len;
3152 ie = mgmt->u.probe_resp.variable;
3153 if (ext) {
3154 const struct ieee80211_s1g_bcn_compat_ie *compat;
3155 const struct element *elem;
3156
3157 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3158 ie = ext->u.s1g_short_beacon.variable;
3159 else
3160 ie = ext->u.s1g_beacon.variable;
3161
3162 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen);
3163 if (!elem)
3164 return NULL;
3165 if (elem->datalen < sizeof(*compat))
3166 return NULL;
3167 compat = (void *)elem->data;
3168 bssid = ext->u.s1g_beacon.sa;
3169 capability = le16_to_cpu(compat->compat_info);
3170 beacon_interval = le16_to_cpu(compat->beacon_int);
3171 } else {
3172 bssid = mgmt->bssid;
3173 beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3174 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3175 }
3176
3177 tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3178
3179 if (ieee80211_is_probe_resp(mgmt->frame_control))
3180 ftype = CFG80211_BSS_FTYPE_PRESP;
3181 else if (ext)
3182 ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
3183 else
3184 ftype = CFG80211_BSS_FTYPE_BEACON;
3185
3186 return cfg80211_inform_bss_data(wiphy, data, ftype,
3187 bssid, tsf, capability,
3188 beacon_interval, ie, ielen,
3189 gfp);
3190}
3191EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3192
3193void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3194{
3195 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3196
3197 if (!pub)
3198 return;
3199
3200 spin_lock_bh(&rdev->bss_lock);
3201 bss_ref_get(rdev, bss_from_pub(pub));
3202 spin_unlock_bh(&rdev->bss_lock);
3203}
3204EXPORT_SYMBOL(cfg80211_ref_bss);
3205
3206void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3207{
3208 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3209
3210 if (!pub)
3211 return;
3212
3213 spin_lock_bh(&rdev->bss_lock);
3214 bss_ref_put(rdev, bss_from_pub(pub));
3215 spin_unlock_bh(&rdev->bss_lock);
3216}
3217EXPORT_SYMBOL(cfg80211_put_bss);
3218
3219void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3220{
3221 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3222 struct cfg80211_internal_bss *bss, *tmp1;
3223 struct cfg80211_bss *nontrans_bss, *tmp;
3224
3225 if (WARN_ON(!pub))
3226 return;
3227
3228 bss = bss_from_pub(pub);
3229
3230 spin_lock_bh(&rdev->bss_lock);
3231 if (list_empty(&bss->list))
3232 goto out;
3233
3234 list_for_each_entry_safe(nontrans_bss, tmp,
3235 &pub->nontrans_list,
3236 nontrans_list) {
3237 tmp1 = bss_from_pub(nontrans_bss);
3238 if (__cfg80211_unlink_bss(rdev, tmp1))
3239 rdev->bss_generation++;
3240 }
3241
3242 if (__cfg80211_unlink_bss(rdev, bss))
3243 rdev->bss_generation++;
3244out:
3245 spin_unlock_bh(&rdev->bss_lock);
3246}
3247EXPORT_SYMBOL(cfg80211_unlink_bss);
3248
3249void cfg80211_bss_iter(struct wiphy *wiphy,
3250 struct cfg80211_chan_def *chandef,
3251 void (*iter)(struct wiphy *wiphy,
3252 struct cfg80211_bss *bss,
3253 void *data),
3254 void *iter_data)
3255{
3256 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3257 struct cfg80211_internal_bss *bss;
3258
3259 spin_lock_bh(&rdev->bss_lock);
3260
3261 list_for_each_entry(bss, &rdev->bss_list, list) {
3262 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3263 false))
3264 iter(wiphy, &bss->pub, iter_data);
3265 }
3266
3267 spin_unlock_bh(&rdev->bss_lock);
3268}
3269EXPORT_SYMBOL(cfg80211_bss_iter);
3270
3271void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3272 unsigned int link_id,
3273 struct ieee80211_channel *chan)
3274{
3275 struct wiphy *wiphy = wdev->wiphy;
3276 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3277 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3278 struct cfg80211_internal_bss *new = NULL;
3279 struct cfg80211_internal_bss *bss;
3280 struct cfg80211_bss *nontrans_bss;
3281 struct cfg80211_bss *tmp;
3282
3283 spin_lock_bh(&rdev->bss_lock);
3284
3285 /*
3286 * Some APs use CSA also for bandwidth changes, i.e., without actually
3287 * changing the control channel, so no need to update in such a case.
3288 */
3289 if (cbss->pub.channel == chan)
3290 goto done;
3291
3292 /* use transmitting bss */
3293 if (cbss->pub.transmitted_bss)
3294 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3295
3296 cbss->pub.channel = chan;
3297
3298 list_for_each_entry(bss, &rdev->bss_list, list) {
3299 if (!cfg80211_bss_type_match(bss->pub.capability,
3300 bss->pub.channel->band,
3301 wdev->conn_bss_type))
3302 continue;
3303
3304 if (bss == cbss)
3305 continue;
3306
3307 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3308 new = bss;
3309 break;
3310 }
3311 }
3312
3313 if (new) {
3314 /* to save time, update IEs for transmitting bss only */
3315 cfg80211_update_known_bss(rdev, cbss, new, false);
3316 new->pub.proberesp_ies = NULL;
3317 new->pub.beacon_ies = NULL;
3318
3319 list_for_each_entry_safe(nontrans_bss, tmp,
3320 &new->pub.nontrans_list,
3321 nontrans_list) {
3322 bss = bss_from_pub(nontrans_bss);
3323 if (__cfg80211_unlink_bss(rdev, bss))
3324 rdev->bss_generation++;
3325 }
3326
3327 WARN_ON(atomic_read(&new->hold));
3328 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3329 rdev->bss_generation++;
3330 }
3331
3332 rb_erase(&cbss->rbn, &rdev->bss_tree);
3333 rb_insert_bss(rdev, cbss);
3334 rdev->bss_generation++;
3335
3336 list_for_each_entry_safe(nontrans_bss, tmp,
3337 &cbss->pub.nontrans_list,
3338 nontrans_list) {
3339 bss = bss_from_pub(nontrans_bss);
3340 bss->pub.channel = chan;
3341 rb_erase(&bss->rbn, &rdev->bss_tree);
3342 rb_insert_bss(rdev, bss);
3343 rdev->bss_generation++;
3344 }
3345
3346done:
3347 spin_unlock_bh(&rdev->bss_lock);
3348}
3349
3350#ifdef CONFIG_CFG80211_WEXT
3351static struct cfg80211_registered_device *
3352cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3353{
3354 struct cfg80211_registered_device *rdev;
3355 struct net_device *dev;
3356
3357 ASSERT_RTNL();
3358
3359 dev = dev_get_by_index(net, ifindex);
3360 if (!dev)
3361 return ERR_PTR(-ENODEV);
3362 if (dev->ieee80211_ptr)
3363 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3364 else
3365 rdev = ERR_PTR(-ENODEV);
3366 dev_put(dev);
3367 return rdev;
3368}
3369
3370int cfg80211_wext_siwscan(struct net_device *dev,
3371 struct iw_request_info *info,
3372 union iwreq_data *wrqu, char *extra)
3373{
3374 struct cfg80211_registered_device *rdev;
3375 struct wiphy *wiphy;
3376 struct iw_scan_req *wreq = NULL;
3377 struct cfg80211_scan_request *creq;
3378 int i, err, n_channels = 0;
3379 enum nl80211_band band;
3380
3381 if (!netif_running(dev))
3382 return -ENETDOWN;
3383
3384 if (wrqu->data.length == sizeof(struct iw_scan_req))
3385 wreq = (struct iw_scan_req *)extra;
3386
3387 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3388
3389 if (IS_ERR(rdev))
3390 return PTR_ERR(rdev);
3391
3392 if (rdev->scan_req || rdev->scan_msg)
3393 return -EBUSY;
3394
3395 wiphy = &rdev->wiphy;
3396
3397 /* Determine number of channels, needed to allocate creq */
3398 if (wreq && wreq->num_channels)
3399 n_channels = wreq->num_channels;
3400 else
3401 n_channels = ieee80211_get_num_supported_channels(wiphy);
3402
3403 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3404 n_channels * sizeof(void *),
3405 GFP_ATOMIC);
3406 if (!creq)
3407 return -ENOMEM;
3408
3409 creq->wiphy = wiphy;
3410 creq->wdev = dev->ieee80211_ptr;
3411 /* SSIDs come after channels */
3412 creq->ssids = (void *)&creq->channels[n_channels];
3413 creq->n_channels = n_channels;
3414 creq->n_ssids = 1;
3415 creq->scan_start = jiffies;
3416
3417 /* translate "Scan on frequencies" request */
3418 i = 0;
3419 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3420 int j;
3421
3422 if (!wiphy->bands[band])
3423 continue;
3424
3425 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3426 /* ignore disabled channels */
3427 if (wiphy->bands[band]->channels[j].flags &
3428 IEEE80211_CHAN_DISABLED)
3429 continue;
3430
3431 /* If we have a wireless request structure and the
3432 * wireless request specifies frequencies, then search
3433 * for the matching hardware channel.
3434 */
3435 if (wreq && wreq->num_channels) {
3436 int k;
3437 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3438 for (k = 0; k < wreq->num_channels; k++) {
3439 struct iw_freq *freq =
3440 &wreq->channel_list[k];
3441 int wext_freq =
3442 cfg80211_wext_freq(freq);
3443
3444 if (wext_freq == wiphy_freq)
3445 goto wext_freq_found;
3446 }
3447 goto wext_freq_not_found;
3448 }
3449
3450 wext_freq_found:
3451 creq->channels[i] = &wiphy->bands[band]->channels[j];
3452 i++;
3453 wext_freq_not_found: ;
3454 }
3455 }
3456 /* No channels found? */
3457 if (!i) {
3458 err = -EINVAL;
3459 goto out;
3460 }
3461
3462 /* Set real number of channels specified in creq->channels[] */
3463 creq->n_channels = i;
3464
3465 /* translate "Scan for SSID" request */
3466 if (wreq) {
3467 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3468 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3469 err = -EINVAL;
3470 goto out;
3471 }
3472 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3473 creq->ssids[0].ssid_len = wreq->essid_len;
3474 }
3475 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3476 creq->n_ssids = 0;
3477 }
3478
3479 for (i = 0; i < NUM_NL80211_BANDS; i++)
3480 if (wiphy->bands[i])
3481 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3482
3483 eth_broadcast_addr(creq->bssid);
3484
3485 wiphy_lock(&rdev->wiphy);
3486
3487 rdev->scan_req = creq;
3488 err = rdev_scan(rdev, creq);
3489 if (err) {
3490 rdev->scan_req = NULL;
3491 /* creq will be freed below */
3492 } else {
3493 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3494 /* creq now owned by driver */
3495 creq = NULL;
3496 dev_hold(dev);
3497 }
3498 wiphy_unlock(&rdev->wiphy);
3499 out:
3500 kfree(creq);
3501 return err;
3502}
3503EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3504
3505static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3506 const struct cfg80211_bss_ies *ies,
3507 char *current_ev, char *end_buf)
3508{
3509 const u8 *pos, *end, *next;
3510 struct iw_event iwe;
3511
3512 if (!ies)
3513 return current_ev;
3514
3515 /*
3516 * If needed, fragment the IEs buffer (at IE boundaries) into short
3517 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3518 */
3519 pos = ies->data;
3520 end = pos + ies->len;
3521
3522 while (end - pos > IW_GENERIC_IE_MAX) {
3523 next = pos + 2 + pos[1];
3524 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3525 next = next + 2 + next[1];
3526
3527 memset(&iwe, 0, sizeof(iwe));
3528 iwe.cmd = IWEVGENIE;
3529 iwe.u.data.length = next - pos;
3530 current_ev = iwe_stream_add_point_check(info, current_ev,
3531 end_buf, &iwe,
3532 (void *)pos);
3533 if (IS_ERR(current_ev))
3534 return current_ev;
3535 pos = next;
3536 }
3537
3538 if (end > pos) {
3539 memset(&iwe, 0, sizeof(iwe));
3540 iwe.cmd = IWEVGENIE;
3541 iwe.u.data.length = end - pos;
3542 current_ev = iwe_stream_add_point_check(info, current_ev,
3543 end_buf, &iwe,
3544 (void *)pos);
3545 if (IS_ERR(current_ev))
3546 return current_ev;
3547 }
3548
3549 return current_ev;
3550}
3551
3552static char *
3553ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3554 struct cfg80211_internal_bss *bss, char *current_ev,
3555 char *end_buf)
3556{
3557 const struct cfg80211_bss_ies *ies;
3558 struct iw_event iwe;
3559 const u8 *ie;
3560 u8 buf[50];
3561 u8 *cfg, *p, *tmp;
3562 int rem, i, sig;
3563 bool ismesh = false;
3564
3565 memset(&iwe, 0, sizeof(iwe));
3566 iwe.cmd = SIOCGIWAP;
3567 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3568 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3569 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3570 IW_EV_ADDR_LEN);
3571 if (IS_ERR(current_ev))
3572 return current_ev;
3573
3574 memset(&iwe, 0, sizeof(iwe));
3575 iwe.cmd = SIOCGIWFREQ;
3576 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3577 iwe.u.freq.e = 0;
3578 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3579 IW_EV_FREQ_LEN);
3580 if (IS_ERR(current_ev))
3581 return current_ev;
3582
3583 memset(&iwe, 0, sizeof(iwe));
3584 iwe.cmd = SIOCGIWFREQ;
3585 iwe.u.freq.m = bss->pub.channel->center_freq;
3586 iwe.u.freq.e = 6;
3587 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3588 IW_EV_FREQ_LEN);
3589 if (IS_ERR(current_ev))
3590 return current_ev;
3591
3592 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3593 memset(&iwe, 0, sizeof(iwe));
3594 iwe.cmd = IWEVQUAL;
3595 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3596 IW_QUAL_NOISE_INVALID |
3597 IW_QUAL_QUAL_UPDATED;
3598 switch (wiphy->signal_type) {
3599 case CFG80211_SIGNAL_TYPE_MBM:
3600 sig = bss->pub.signal / 100;
3601 iwe.u.qual.level = sig;
3602 iwe.u.qual.updated |= IW_QUAL_DBM;
3603 if (sig < -110) /* rather bad */
3604 sig = -110;
3605 else if (sig > -40) /* perfect */
3606 sig = -40;
3607 /* will give a range of 0 .. 70 */
3608 iwe.u.qual.qual = sig + 110;
3609 break;
3610 case CFG80211_SIGNAL_TYPE_UNSPEC:
3611 iwe.u.qual.level = bss->pub.signal;
3612 /* will give range 0 .. 100 */
3613 iwe.u.qual.qual = bss->pub.signal;
3614 break;
3615 default:
3616 /* not reached */
3617 break;
3618 }
3619 current_ev = iwe_stream_add_event_check(info, current_ev,
3620 end_buf, &iwe,
3621 IW_EV_QUAL_LEN);
3622 if (IS_ERR(current_ev))
3623 return current_ev;
3624 }
3625
3626 memset(&iwe, 0, sizeof(iwe));
3627 iwe.cmd = SIOCGIWENCODE;
3628 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3629 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3630 else
3631 iwe.u.data.flags = IW_ENCODE_DISABLED;
3632 iwe.u.data.length = 0;
3633 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3634 &iwe, "");
3635 if (IS_ERR(current_ev))
3636 return current_ev;
3637
3638 rcu_read_lock();
3639 ies = rcu_dereference(bss->pub.ies);
3640 rem = ies->len;
3641 ie = ies->data;
3642
3643 while (rem >= 2) {
3644 /* invalid data */
3645 if (ie[1] > rem - 2)
3646 break;
3647
3648 switch (ie[0]) {
3649 case WLAN_EID_SSID:
3650 memset(&iwe, 0, sizeof(iwe));
3651 iwe.cmd = SIOCGIWESSID;
3652 iwe.u.data.length = ie[1];
3653 iwe.u.data.flags = 1;
3654 current_ev = iwe_stream_add_point_check(info,
3655 current_ev,
3656 end_buf, &iwe,
3657 (u8 *)ie + 2);
3658 if (IS_ERR(current_ev))
3659 goto unlock;
3660 break;
3661 case WLAN_EID_MESH_ID:
3662 memset(&iwe, 0, sizeof(iwe));
3663 iwe.cmd = SIOCGIWESSID;
3664 iwe.u.data.length = ie[1];
3665 iwe.u.data.flags = 1;
3666 current_ev = iwe_stream_add_point_check(info,
3667 current_ev,
3668 end_buf, &iwe,
3669 (u8 *)ie + 2);
3670 if (IS_ERR(current_ev))
3671 goto unlock;
3672 break;
3673 case WLAN_EID_MESH_CONFIG:
3674 ismesh = true;
3675 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3676 break;
3677 cfg = (u8 *)ie + 2;
3678 memset(&iwe, 0, sizeof(iwe));
3679 iwe.cmd = IWEVCUSTOM;
3680 iwe.u.data.length = sprintf(buf,
3681 "Mesh Network Path Selection Protocol ID: 0x%02X",
3682 cfg[0]);
3683 current_ev = iwe_stream_add_point_check(info,
3684 current_ev,
3685 end_buf,
3686 &iwe, buf);
3687 if (IS_ERR(current_ev))
3688 goto unlock;
3689 iwe.u.data.length = sprintf(buf,
3690 "Path Selection Metric ID: 0x%02X",
3691 cfg[1]);
3692 current_ev = iwe_stream_add_point_check(info,
3693 current_ev,
3694 end_buf,
3695 &iwe, buf);
3696 if (IS_ERR(current_ev))
3697 goto unlock;
3698 iwe.u.data.length = sprintf(buf,
3699 "Congestion Control Mode ID: 0x%02X",
3700 cfg[2]);
3701 current_ev = iwe_stream_add_point_check(info,
3702 current_ev,
3703 end_buf,
3704 &iwe, buf);
3705 if (IS_ERR(current_ev))
3706 goto unlock;
3707 iwe.u.data.length = sprintf(buf,
3708 "Synchronization ID: 0x%02X",
3709 cfg[3]);
3710 current_ev = iwe_stream_add_point_check(info,
3711 current_ev,
3712 end_buf,
3713 &iwe, buf);
3714 if (IS_ERR(current_ev))
3715 goto unlock;
3716 iwe.u.data.length = sprintf(buf,
3717 "Authentication ID: 0x%02X",
3718 cfg[4]);
3719 current_ev = iwe_stream_add_point_check(info,
3720 current_ev,
3721 end_buf,
3722 &iwe, buf);
3723 if (IS_ERR(current_ev))
3724 goto unlock;
3725 iwe.u.data.length = sprintf(buf,
3726 "Formation Info: 0x%02X",
3727 cfg[5]);
3728 current_ev = iwe_stream_add_point_check(info,
3729 current_ev,
3730 end_buf,
3731 &iwe, buf);
3732 if (IS_ERR(current_ev))
3733 goto unlock;
3734 iwe.u.data.length = sprintf(buf,
3735 "Capabilities: 0x%02X",
3736 cfg[6]);
3737 current_ev = iwe_stream_add_point_check(info,
3738 current_ev,
3739 end_buf,
3740 &iwe, buf);
3741 if (IS_ERR(current_ev))
3742 goto unlock;
3743 break;
3744 case WLAN_EID_SUPP_RATES:
3745 case WLAN_EID_EXT_SUPP_RATES:
3746 /* display all supported rates in readable format */
3747 p = current_ev + iwe_stream_lcp_len(info);
3748
3749 memset(&iwe, 0, sizeof(iwe));
3750 iwe.cmd = SIOCGIWRATE;
3751 /* Those two flags are ignored... */
3752 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3753
3754 for (i = 0; i < ie[1]; i++) {
3755 iwe.u.bitrate.value =
3756 ((ie[i + 2] & 0x7f) * 500000);
3757 tmp = p;
3758 p = iwe_stream_add_value(info, current_ev, p,
3759 end_buf, &iwe,
3760 IW_EV_PARAM_LEN);
3761 if (p == tmp) {
3762 current_ev = ERR_PTR(-E2BIG);
3763 goto unlock;
3764 }
3765 }
3766 current_ev = p;
3767 break;
3768 }
3769 rem -= ie[1] + 2;
3770 ie += ie[1] + 2;
3771 }
3772
3773 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3774 ismesh) {
3775 memset(&iwe, 0, sizeof(iwe));
3776 iwe.cmd = SIOCGIWMODE;
3777 if (ismesh)
3778 iwe.u.mode = IW_MODE_MESH;
3779 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3780 iwe.u.mode = IW_MODE_MASTER;
3781 else
3782 iwe.u.mode = IW_MODE_ADHOC;
3783 current_ev = iwe_stream_add_event_check(info, current_ev,
3784 end_buf, &iwe,
3785 IW_EV_UINT_LEN);
3786 if (IS_ERR(current_ev))
3787 goto unlock;
3788 }
3789
3790 memset(&iwe, 0, sizeof(iwe));
3791 iwe.cmd = IWEVCUSTOM;
3792 iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3793 (unsigned long long)(ies->tsf));
3794 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3795 &iwe, buf);
3796 if (IS_ERR(current_ev))
3797 goto unlock;
3798 memset(&iwe, 0, sizeof(iwe));
3799 iwe.cmd = IWEVCUSTOM;
3800 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3801 elapsed_jiffies_msecs(bss->ts));
3802 current_ev = iwe_stream_add_point_check(info, current_ev,
3803 end_buf, &iwe, buf);
3804 if (IS_ERR(current_ev))
3805 goto unlock;
3806
3807 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3808
3809 unlock:
3810 rcu_read_unlock();
3811 return current_ev;
3812}
3813
3814
3815static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3816 struct iw_request_info *info,
3817 char *buf, size_t len)
3818{
3819 char *current_ev = buf;
3820 char *end_buf = buf + len;
3821 struct cfg80211_internal_bss *bss;
3822 int err = 0;
3823
3824 spin_lock_bh(&rdev->bss_lock);
3825 cfg80211_bss_expire(rdev);
3826
3827 list_for_each_entry(bss, &rdev->bss_list, list) {
3828 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3829 err = -E2BIG;
3830 break;
3831 }
3832 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3833 current_ev, end_buf);
3834 if (IS_ERR(current_ev)) {
3835 err = PTR_ERR(current_ev);
3836 break;
3837 }
3838 }
3839 spin_unlock_bh(&rdev->bss_lock);
3840
3841 if (err)
3842 return err;
3843 return current_ev - buf;
3844}
3845
3846
3847int cfg80211_wext_giwscan(struct net_device *dev,
3848 struct iw_request_info *info,
3849 union iwreq_data *wrqu, char *extra)
3850{
3851 struct iw_point *data = &wrqu->data;
3852 struct cfg80211_registered_device *rdev;
3853 int res;
3854
3855 if (!netif_running(dev))
3856 return -ENETDOWN;
3857
3858 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3859
3860 if (IS_ERR(rdev))
3861 return PTR_ERR(rdev);
3862
3863 if (rdev->scan_req || rdev->scan_msg)
3864 return -EAGAIN;
3865
3866 res = ieee80211_scan_results(rdev, info, extra, data->length);
3867 data->length = 0;
3868 if (res >= 0) {
3869 data->length = res;
3870 res = 0;
3871 }
3872
3873 return res;
3874}
3875EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3876#endif