Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * cfg80211 scan result handling
   4 *
   5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright 2016	Intel Deutschland GmbH
   8 * Copyright (C) 2018-2021 Intel Corporation
   9 */
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/module.h>
  13#include <linux/netdevice.h>
  14#include <linux/wireless.h>
  15#include <linux/nl80211.h>
  16#include <linux/etherdevice.h>
  17#include <linux/crc32.h>
  18#include <linux/bitfield.h>
  19#include <net/arp.h>
  20#include <net/cfg80211.h>
  21#include <net/cfg80211-wext.h>
  22#include <net/iw_handler.h>
 
  23#include "core.h"
  24#include "nl80211.h"
  25#include "wext-compat.h"
  26#include "rdev-ops.h"
  27
  28/**
  29 * DOC: BSS tree/list structure
  30 *
  31 * At the top level, the BSS list is kept in both a list in each
  32 * registered device (@bss_list) as well as an RB-tree for faster
  33 * lookup. In the RB-tree, entries can be looked up using their
  34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
  35 * for other BSSes.
  36 *
  37 * Due to the possibility of hidden SSIDs, there's a second level
  38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
  39 * The hidden_list connects all BSSes belonging to a single AP
  40 * that has a hidden SSID, and connects beacon and probe response
  41 * entries. For a probe response entry for a hidden SSID, the
  42 * hidden_beacon_bss pointer points to the BSS struct holding the
  43 * beacon's information.
  44 *
  45 * Reference counting is done for all these references except for
  46 * the hidden_list, so that a beacon BSS struct that is otherwise
  47 * not referenced has one reference for being on the bss_list and
  48 * one for each probe response entry that points to it using the
  49 * hidden_beacon_bss pointer. When a BSS struct that has such a
  50 * pointer is get/put, the refcount update is also propagated to
  51 * the referenced struct, this ensure that it cannot get removed
  52 * while somebody is using the probe response version.
  53 *
  54 * Note that the hidden_beacon_bss pointer never changes, due to
  55 * the reference counting. Therefore, no locking is needed for
  56 * it.
  57 *
  58 * Also note that the hidden_beacon_bss pointer is only relevant
  59 * if the driver uses something other than the IEs, e.g. private
  60 * data stored in the BSS struct, since the beacon IEs are
  61 * also linked into the probe response struct.
  62 */
  63
  64/*
  65 * Limit the number of BSS entries stored in mac80211. Each one is
  66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
  67 * If somebody wants to really attack this though, they'd likely
  68 * use small beacons, and only one type of frame, limiting each of
  69 * the entries to a much smaller size (in order to generate more
  70 * entries in total, so overhead is bigger.)
  71 */
  72static int bss_entries_limit = 1000;
  73module_param(bss_entries_limit, int, 0644);
  74MODULE_PARM_DESC(bss_entries_limit,
  75                 "limit to number of scan BSS entries (per wiphy, default 1000)");
  76
  77#define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
  78
  79/**
  80 * struct cfg80211_colocated_ap - colocated AP information
  81 *
  82 * @list: linked list to all colocated aPS
  83 * @bssid: BSSID of the reported AP
  84 * @ssid: SSID of the reported AP
  85 * @ssid_len: length of the ssid
  86 * @center_freq: frequency the reported AP is on
  87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
  88 *	that operate in the same channel as the reported AP and that might be
  89 *	detected by a STA receiving this frame, are transmitting unsolicited
  90 *	Probe Response frames every 20 TUs
  91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
  92 * @same_ssid: the reported AP has the same SSID as the reporting AP
  93 * @multi_bss: the reported AP is part of a multiple BSSID set
  94 * @transmitted_bssid: the reported AP is the transmitting BSSID
  95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
  96 *	colocated and can be discovered via legacy bands.
  97 * @short_ssid_valid: short_ssid is valid and can be used
  98 * @short_ssid: the short SSID for this SSID
  99 */
 100struct cfg80211_colocated_ap {
 101	struct list_head list;
 102	u8 bssid[ETH_ALEN];
 103	u8 ssid[IEEE80211_MAX_SSID_LEN];
 104	size_t ssid_len;
 105	u32 short_ssid;
 106	u32 center_freq;
 107	u8 unsolicited_probe:1,
 108	   oct_recommended:1,
 109	   same_ssid:1,
 110	   multi_bss:1,
 111	   transmitted_bssid:1,
 112	   colocated_ess:1,
 113	   short_ssid_valid:1;
 114};
 115
 116static void bss_free(struct cfg80211_internal_bss *bss)
 117{
 118	struct cfg80211_bss_ies *ies;
 119
 120	if (WARN_ON(atomic_read(&bss->hold)))
 121		return;
 122
 123	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
 124	if (ies && !bss->pub.hidden_beacon_bss)
 125		kfree_rcu(ies, rcu_head);
 126	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
 127	if (ies)
 128		kfree_rcu(ies, rcu_head);
 129
 130	/*
 131	 * This happens when the module is removed, it doesn't
 132	 * really matter any more save for completeness
 133	 */
 134	if (!list_empty(&bss->hidden_list))
 135		list_del(&bss->hidden_list);
 136
 137	kfree(bss);
 138}
 139
 140static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
 141			       struct cfg80211_internal_bss *bss)
 142{
 143	lockdep_assert_held(&rdev->bss_lock);
 144
 145	bss->refcount++;
 146	if (bss->pub.hidden_beacon_bss) {
 147		bss = container_of(bss->pub.hidden_beacon_bss,
 148				   struct cfg80211_internal_bss,
 149				   pub);
 150		bss->refcount++;
 151	}
 152	if (bss->pub.transmitted_bss) {
 153		bss = container_of(bss->pub.transmitted_bss,
 154				   struct cfg80211_internal_bss,
 155				   pub);
 156		bss->refcount++;
 157	}
 158}
 159
 160static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
 161			       struct cfg80211_internal_bss *bss)
 162{
 163	lockdep_assert_held(&rdev->bss_lock);
 164
 165	if (bss->pub.hidden_beacon_bss) {
 166		struct cfg80211_internal_bss *hbss;
 167		hbss = container_of(bss->pub.hidden_beacon_bss,
 168				    struct cfg80211_internal_bss,
 169				    pub);
 170		hbss->refcount--;
 171		if (hbss->refcount == 0)
 172			bss_free(hbss);
 173	}
 174
 175	if (bss->pub.transmitted_bss) {
 176		struct cfg80211_internal_bss *tbss;
 177
 178		tbss = container_of(bss->pub.transmitted_bss,
 179				    struct cfg80211_internal_bss,
 180				    pub);
 181		tbss->refcount--;
 182		if (tbss->refcount == 0)
 183			bss_free(tbss);
 184	}
 185
 186	bss->refcount--;
 187	if (bss->refcount == 0)
 188		bss_free(bss);
 189}
 190
 191static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
 192				  struct cfg80211_internal_bss *bss)
 193{
 194	lockdep_assert_held(&rdev->bss_lock);
 195
 196	if (!list_empty(&bss->hidden_list)) {
 197		/*
 198		 * don't remove the beacon entry if it has
 199		 * probe responses associated with it
 200		 */
 201		if (!bss->pub.hidden_beacon_bss)
 202			return false;
 203		/*
 204		 * if it's a probe response entry break its
 205		 * link to the other entries in the group
 206		 */
 207		list_del_init(&bss->hidden_list);
 208	}
 209
 210	list_del_init(&bss->list);
 211	list_del_init(&bss->pub.nontrans_list);
 212	rb_erase(&bss->rbn, &rdev->bss_tree);
 213	rdev->bss_entries--;
 214	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
 215		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
 216		  rdev->bss_entries, list_empty(&rdev->bss_list));
 217	bss_ref_put(rdev, bss);
 218	return true;
 219}
 220
 221bool cfg80211_is_element_inherited(const struct element *elem,
 222				   const struct element *non_inherit_elem)
 223{
 224	u8 id_len, ext_id_len, i, loop_len, id;
 225	const u8 *list;
 226
 227	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
 228		return false;
 229
 
 
 
 
 230	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
 231		return true;
 232
 233	/*
 234	 * non inheritance element format is:
 235	 * ext ID (56) | IDs list len | list | extension IDs list len | list
 236	 * Both lists are optional. Both lengths are mandatory.
 237	 * This means valid length is:
 238	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
 239	 */
 240	id_len = non_inherit_elem->data[1];
 241	if (non_inherit_elem->datalen < 3 + id_len)
 242		return true;
 243
 244	ext_id_len = non_inherit_elem->data[2 + id_len];
 245	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
 246		return true;
 247
 248	if (elem->id == WLAN_EID_EXTENSION) {
 249		if (!ext_id_len)
 250			return true;
 251		loop_len = ext_id_len;
 252		list = &non_inherit_elem->data[3 + id_len];
 253		id = elem->data[0];
 254	} else {
 255		if (!id_len)
 256			return true;
 257		loop_len = id_len;
 258		list = &non_inherit_elem->data[2];
 259		id = elem->id;
 260	}
 261
 262	for (i = 0; i < loop_len; i++) {
 263		if (list[i] == id)
 264			return false;
 265	}
 266
 267	return true;
 268}
 269EXPORT_SYMBOL(cfg80211_is_element_inherited);
 270
 271static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
 272				  const u8 *subelement, size_t subie_len,
 273				  u8 *new_ie, gfp_t gfp)
 274{
 275	u8 *pos, *tmp;
 276	const u8 *tmp_old, *tmp_new;
 277	const struct element *non_inherit_elem;
 278	u8 *sub_copy;
 279
 280	/* copy subelement as we need to change its content to
 281	 * mark an ie after it is processed.
 282	 */
 283	sub_copy = kmemdup(subelement, subie_len, gfp);
 284	if (!sub_copy)
 285		return 0;
 286
 287	pos = &new_ie[0];
 
 
 
 
 
 288
 289	/* set new ssid */
 290	tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
 291	if (tmp_new) {
 292		memcpy(pos, tmp_new, tmp_new[1] + 2);
 293		pos += (tmp_new[1] + 2);
 
 
 
 
 
 
 
 
 
 
 294	}
 295
 296	/* get non inheritance list if exists */
 297	non_inherit_elem =
 298		cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
 299				       sub_copy, subie_len);
 300
 301	/* go through IEs in ie (skip SSID) and subelement,
 302	 * merge them into new_ie
 303	 */
 304	tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
 305	tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
 
 
 
 
 306
 307	while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
 308		if (tmp_old[0] == 0) {
 309			tmp_old++;
 
 
 
 
 
 
 
 
 310			continue;
 
 
 
 
 
 
 
 
 
 
 
 311		}
 312
 313		if (tmp_old[0] == WLAN_EID_EXTENSION)
 314			tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
 315							 subie_len);
 316		else
 317			tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
 318						     subie_len);
 319
 320		if (!tmp) {
 321			const struct element *old_elem = (void *)tmp_old;
 
 
 
 
 
 
 322
 323			/* ie in old ie but not in subelement */
 324			if (cfg80211_is_element_inherited(old_elem,
 325							  non_inherit_elem)) {
 326				memcpy(pos, tmp_old, tmp_old[1] + 2);
 327				pos += tmp_old[1] + 2;
 328			}
 329		} else {
 330			/* ie in transmitting ie also in subelement,
 331			 * copy from subelement and flag the ie in subelement
 332			 * as copied (by setting eid field to WLAN_EID_SSID,
 333			 * which is skipped anyway).
 334			 * For vendor ie, compare OUI + type + subType to
 335			 * determine if they are the same ie.
 336			 */
 337			if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
 338				if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
 339					/* same vendor ie, copy from
 340					 * subelement
 341					 */
 342					memcpy(pos, tmp, tmp[1] + 2);
 343					pos += tmp[1] + 2;
 344					tmp[0] = WLAN_EID_SSID;
 345				} else {
 346					memcpy(pos, tmp_old, tmp_old[1] + 2);
 347					pos += tmp_old[1] + 2;
 348				}
 349			} else {
 350				/* copy ie from subelement into new ie */
 351				memcpy(pos, tmp, tmp[1] + 2);
 352				pos += tmp[1] + 2;
 353				tmp[0] = WLAN_EID_SSID;
 354			}
 355		}
 356
 357		if (tmp_old + tmp_old[1] + 2 - ie == ielen)
 358			break;
 
 
 
 
 
 
 
 
 
 
 359
 360		tmp_old += tmp_old[1] + 2;
 
 
 
 
 
 
 361	}
 362
 363	/* go through subelement again to check if there is any ie not
 364	 * copied to new ie, skip ssid, capability, bssid-index ie
 
 365	 */
 366	tmp_new = sub_copy;
 367	while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
 368		if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
 369		      tmp_new[0] == WLAN_EID_SSID)) {
 370			memcpy(pos, tmp_new, tmp_new[1] + 2);
 371			pos += tmp_new[1] + 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372		}
 373		if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
 374			break;
 375		tmp_new += tmp_new[1] + 2;
 
 
 
 
 
 
 376	}
 377
 378	kfree(sub_copy);
 379	return pos - new_ie;
 380}
 
 381
 382static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
 383		   const u8 *ssid, size_t ssid_len)
 384{
 385	const struct cfg80211_bss_ies *ies;
 386	const u8 *ssidie;
 387
 388	if (bssid && !ether_addr_equal(a->bssid, bssid))
 389		return false;
 390
 391	if (!ssid)
 392		return true;
 393
 394	ies = rcu_access_pointer(a->ies);
 395	if (!ies)
 396		return false;
 397	ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
 398	if (!ssidie)
 399		return false;
 400	if (ssidie[1] != ssid_len)
 401		return false;
 402	return memcmp(ssidie + 2, ssid, ssid_len) == 0;
 403}
 404
 405static int
 406cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
 407			   struct cfg80211_bss *nontrans_bss)
 408{
 409	const u8 *ssid;
 410	size_t ssid_len;
 411	struct cfg80211_bss *bss = NULL;
 412
 413	rcu_read_lock();
 414	ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
 415	if (!ssid) {
 416		rcu_read_unlock();
 417		return -EINVAL;
 418	}
 419	ssid_len = ssid[1];
 420	ssid = ssid + 2;
 421	rcu_read_unlock();
 422
 423	/* check if nontrans_bss is in the list */
 424	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
 425		if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len))
 
 
 426			return 0;
 
 427	}
 428
 
 
 
 
 
 
 
 
 
 
 
 429	/* add to the list */
 430	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
 431	return 0;
 432}
 433
 434static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
 435				  unsigned long expire_time)
 436{
 437	struct cfg80211_internal_bss *bss, *tmp;
 438	bool expired = false;
 439
 440	lockdep_assert_held(&rdev->bss_lock);
 441
 442	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
 443		if (atomic_read(&bss->hold))
 444			continue;
 445		if (!time_after(expire_time, bss->ts))
 446			continue;
 447
 448		if (__cfg80211_unlink_bss(rdev, bss))
 449			expired = true;
 450	}
 451
 452	if (expired)
 453		rdev->bss_generation++;
 454}
 455
 456static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
 457{
 458	struct cfg80211_internal_bss *bss, *oldest = NULL;
 459	bool ret;
 460
 461	lockdep_assert_held(&rdev->bss_lock);
 462
 463	list_for_each_entry(bss, &rdev->bss_list, list) {
 464		if (atomic_read(&bss->hold))
 465			continue;
 466
 467		if (!list_empty(&bss->hidden_list) &&
 468		    !bss->pub.hidden_beacon_bss)
 469			continue;
 470
 471		if (oldest && time_before(oldest->ts, bss->ts))
 472			continue;
 473		oldest = bss;
 474	}
 475
 476	if (WARN_ON(!oldest))
 477		return false;
 478
 479	/*
 480	 * The callers make sure to increase rdev->bss_generation if anything
 481	 * gets removed (and a new entry added), so there's no need to also do
 482	 * it here.
 483	 */
 484
 485	ret = __cfg80211_unlink_bss(rdev, oldest);
 486	WARN_ON(!ret);
 487	return ret;
 488}
 489
 490static u8 cfg80211_parse_bss_param(u8 data,
 491				   struct cfg80211_colocated_ap *coloc_ap)
 492{
 493	coloc_ap->oct_recommended =
 494		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
 495	coloc_ap->same_ssid =
 496		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
 497	coloc_ap->multi_bss =
 498		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
 499	coloc_ap->transmitted_bssid =
 500		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
 501	coloc_ap->unsolicited_probe =
 502		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
 503	coloc_ap->colocated_ess =
 504		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
 505
 506	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
 507}
 508
 509static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
 510				    const struct element **elem, u32 *s_ssid)
 511{
 512
 513	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
 514	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
 515		return -EINVAL;
 516
 517	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
 518	return 0;
 519}
 520
 521static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
 
 522{
 523	struct cfg80211_colocated_ap *ap, *tmp_ap;
 524
 525	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
 526		list_del(&ap->list);
 527		kfree(ap);
 528	}
 529}
 
 530
 531static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
 532				  const u8 *pos, u8 length,
 533				  const struct element *ssid_elem,
 534				  int s_ssid_tmp)
 535{
 536	/* skip the TBTT offset */
 537	pos++;
 538
 539	memcpy(entry->bssid, pos, ETH_ALEN);
 540	pos += ETH_ALEN;
 541
 542	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
 543		memcpy(&entry->short_ssid, pos,
 544		       sizeof(entry->short_ssid));
 
 
 
 545		entry->short_ssid_valid = true;
 546		pos += 4;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547	}
 548
 
 
 
 
 549	/* skip non colocated APs */
 550	if (!cfg80211_parse_bss_param(*pos, entry))
 551		return -EINVAL;
 552	pos++;
 553
 554	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
 555		/*
 556		 * no information about the short ssid. Consider the entry valid
 557		 * for now. It would later be dropped in case there are explicit
 558		 * SSIDs that need to be matched
 559		 */
 560		if (!entry->same_ssid)
 561			return 0;
 562	}
 563
 564	if (entry->same_ssid) {
 565		entry->short_ssid = s_ssid_tmp;
 566		entry->short_ssid_valid = true;
 567
 568		/*
 569		 * This is safe because we validate datalen in
 570		 * cfg80211_parse_colocated_ap(), before calling this
 571		 * function.
 572		 */
 573		memcpy(&entry->ssid, &ssid_elem->data,
 574		       ssid_elem->datalen);
 575		entry->ssid_len = ssid_elem->datalen;
 576	}
 
 577	return 0;
 578}
 579
 580static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
 581				       struct list_head *list)
 
 
 
 
 582{
 583	struct ieee80211_neighbor_ap_info *ap_info;
 584	const struct element *elem, *ssid_elem;
 585	const u8 *pos, *end;
 586	u32 s_ssid_tmp;
 587	int n_coloc = 0, ret;
 588	LIST_HEAD(ap_list);
 589
 590	elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
 591				  ies->len);
 592	if (!elem)
 593		return 0;
 594
 595	pos = elem->data;
 596	end = pos + elem->datalen;
 597
 598	ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
 599	if (ret)
 600		return ret;
 601
 602	/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
 603	while (pos + sizeof(*ap_info) <= end) {
 604		enum nl80211_band band;
 605		int freq;
 606		u8 length, i, count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607
 608		ap_info = (void *)pos;
 609		count = u8_get_bits(ap_info->tbtt_info_hdr,
 610				    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
 611		length = ap_info->tbtt_info_len;
 612
 613		pos += sizeof(*ap_info);
 
 
 614
 615		if (!ieee80211_operating_class_to_band(ap_info->op_class,
 616						       &band))
 617			break;
 618
 619		freq = ieee80211_channel_to_frequency(ap_info->channel, band);
 
 
 
 
 
 620
 621		if (end - pos < count * length)
 622			break;
 
 
 
 
 
 
 623
 624		/*
 625		 * TBTT info must include bss param + BSSID +
 626		 * (short SSID or same_ssid bit to be set).
 627		 * ignore other options, and move to the
 628		 * next AP info
 629		 */
 630		if (band != NL80211_BAND_6GHZ ||
 631		    (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
 632		     length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
 633			pos += count * length;
 634			continue;
 635		}
 636
 637		for (i = 0; i < count; i++) {
 638			struct cfg80211_colocated_ap *entry;
 639
 640			entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
 641					GFP_ATOMIC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 642
 643			if (!entry)
 644				break;
 645
 646			entry->center_freq = freq;
 
 
 
 
 
 647
 648			if (!cfg80211_parse_ap_info(entry, pos, length,
 649						    ssid_elem, s_ssid_tmp)) {
 650				n_coloc++;
 651				list_add_tail(&entry->list, &ap_list);
 652			} else {
 653				kfree(entry);
 654			}
 655
 656			pos += length;
 657		}
 658	}
 659
 660	if (pos != end) {
 661		cfg80211_free_coloc_ap_list(&ap_list);
 
 662		return 0;
 663	}
 664
 665	list_splice_tail(&ap_list, list);
 666	return n_coloc;
 667}
 
 668
 669static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
 670					struct ieee80211_channel *chan,
 671					bool add_to_6ghz)
 672{
 673	int i;
 674	u32 n_channels = request->n_channels;
 675	struct cfg80211_scan_6ghz_params *params =
 676		&request->scan_6ghz_params[request->n_6ghz_params];
 677
 678	for (i = 0; i < n_channels; i++) {
 679		if (request->channels[i] == chan) {
 680			if (add_to_6ghz)
 681				params->channel_idx = i;
 682			return;
 683		}
 684	}
 685
 686	request->channels[n_channels] = chan;
 687	if (add_to_6ghz)
 688		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
 689			n_channels;
 690
 691	request->n_channels++;
 692}
 693
 694static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
 695				     struct cfg80211_scan_request *request)
 696{
 697	int i;
 698	u32 s_ssid;
 699
 700	for (i = 0; i < request->n_ssids; i++) {
 701		/* wildcard ssid in the scan request */
 702		if (!request->ssids[i].ssid_len)
 
 
 
 703			return true;
 
 704
 705		if (ap->ssid_len &&
 706		    ap->ssid_len == request->ssids[i].ssid_len) {
 707			if (!memcmp(request->ssids[i].ssid, ap->ssid,
 708				    ap->ssid_len))
 709				return true;
 710		} else if (ap->short_ssid_valid) {
 711			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
 712					   request->ssids[i].ssid_len);
 713
 714			if (ap->short_ssid == s_ssid)
 715				return true;
 716		}
 717	}
 718
 719	return false;
 720}
 721
 722static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
 723{
 724	u8 i;
 725	struct cfg80211_colocated_ap *ap;
 726	int n_channels, count = 0, err;
 727	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
 728	LIST_HEAD(coloc_ap_list);
 729	bool need_scan_psc = true;
 730	const struct ieee80211_sband_iftype_data *iftd;
 731
 732	rdev_req->scan_6ghz = true;
 733
 734	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
 735		return -EOPNOTSUPP;
 736
 737	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
 738					       rdev_req->wdev->iftype);
 739	if (!iftd || !iftd->he_cap.has_he)
 740		return -EOPNOTSUPP;
 741
 742	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
 743
 744	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
 745		struct cfg80211_internal_bss *intbss;
 746
 747		spin_lock_bh(&rdev->bss_lock);
 748		list_for_each_entry(intbss, &rdev->bss_list, list) {
 749			struct cfg80211_bss *res = &intbss->pub;
 750			const struct cfg80211_bss_ies *ies;
 
 
 
 
 751
 752			ies = rcu_access_pointer(res->ies);
 753			count += cfg80211_parse_colocated_ap(ies,
 754							     &coloc_ap_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755		}
 756		spin_unlock_bh(&rdev->bss_lock);
 757	}
 758
 759	request = kzalloc(struct_size(request, channels, n_channels) +
 760			  sizeof(*request->scan_6ghz_params) * count +
 761			  sizeof(*request->ssids) * rdev_req->n_ssids,
 762			  GFP_KERNEL);
 763	if (!request) {
 764		cfg80211_free_coloc_ap_list(&coloc_ap_list);
 765		return -ENOMEM;
 766	}
 767
 768	*request = *rdev_req;
 769	request->n_channels = 0;
 770	request->scan_6ghz_params =
 771		(void *)&request->channels[n_channels];
 772
 773	/*
 774	 * PSC channels should not be scanned in case of direct scan with 1 SSID
 775	 * and at least one of the reported co-located APs with same SSID
 776	 * indicating that all APs in the same ESS are co-located
 777	 */
 778	if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
 779		list_for_each_entry(ap, &coloc_ap_list, list) {
 780			if (ap->colocated_ess &&
 781			    cfg80211_find_ssid_match(ap, request)) {
 782				need_scan_psc = false;
 783				break;
 784			}
 785		}
 786	}
 787
 788	/*
 789	 * add to the scan request the channels that need to be scanned
 790	 * regardless of the collocated APs (PSC channels or all channels
 791	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
 792	 */
 793	for (i = 0; i < rdev_req->n_channels; i++) {
 794		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
 795		    ((need_scan_psc &&
 796		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
 797		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
 798			cfg80211_scan_req_add_chan(request,
 799						   rdev_req->channels[i],
 800						   false);
 801		}
 802	}
 803
 804	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
 805		goto skip;
 806
 807	list_for_each_entry(ap, &coloc_ap_list, list) {
 808		bool found = false;
 809		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
 810			&request->scan_6ghz_params[request->n_6ghz_params];
 811		struct ieee80211_channel *chan =
 812			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
 813
 814		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
 815			continue;
 816
 817		for (i = 0; i < rdev_req->n_channels; i++) {
 818			if (rdev_req->channels[i] == chan)
 819				found = true;
 820		}
 821
 822		if (!found)
 823			continue;
 824
 825		if (request->n_ssids > 0 &&
 826		    !cfg80211_find_ssid_match(ap, request))
 827			continue;
 828
 
 
 
 
 
 
 
 829		cfg80211_scan_req_add_chan(request, chan, true);
 830		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
 831		scan_6ghz_params->short_ssid = ap->short_ssid;
 832		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
 833		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
 
 834
 835		/*
 836		 * If a PSC channel is added to the scan and 'need_scan_psc' is
 837		 * set to false, then all the APs that the scan logic is
 838		 * interested with on the channel are collocated and thus there
 839		 * is no need to perform the initial PSC channel listen.
 840		 */
 841		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
 842			scan_6ghz_params->psc_no_listen = true;
 843
 844		request->n_6ghz_params++;
 845	}
 846
 847skip:
 848	cfg80211_free_coloc_ap_list(&coloc_ap_list);
 849
 850	if (request->n_channels) {
 851		struct cfg80211_scan_request *old = rdev->int_scan_req;
 852		rdev->int_scan_req = request;
 853
 854		/*
 855		 * Add the ssids from the parent scan request to the new scan
 856		 * request, so the driver would be able to use them in its
 857		 * probe requests to discover hidden APs on PSC channels.
 858		 */
 859		request->ssids = (void *)&request->channels[request->n_channels];
 860		request->n_ssids = rdev_req->n_ssids;
 861		memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
 862		       request->n_ssids);
 863
 864		/*
 865		 * If this scan follows a previous scan, save the scan start
 866		 * info from the first part of the scan
 867		 */
 868		if (old)
 869			rdev->int_scan_req->info = old->info;
 870
 871		err = rdev_scan(rdev, request);
 872		if (err) {
 873			rdev->int_scan_req = old;
 874			kfree(request);
 875		} else {
 876			kfree(old);
 877		}
 878
 879		return err;
 880	}
 881
 882	kfree(request);
 883	return -EINVAL;
 884}
 885
 886int cfg80211_scan(struct cfg80211_registered_device *rdev)
 887{
 888	struct cfg80211_scan_request *request;
 889	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
 890	u32 n_channels = 0, idx, i;
 891
 892	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
 893		return rdev_scan(rdev, rdev_req);
 894
 895	for (i = 0; i < rdev_req->n_channels; i++) {
 896		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
 897			n_channels++;
 898	}
 899
 900	if (!n_channels)
 901		return cfg80211_scan_6ghz(rdev);
 902
 903	request = kzalloc(struct_size(request, channels, n_channels),
 904			  GFP_KERNEL);
 905	if (!request)
 906		return -ENOMEM;
 907
 908	*request = *rdev_req;
 909	request->n_channels = n_channels;
 910
 911	for (i = idx = 0; i < rdev_req->n_channels; i++) {
 912		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
 913			request->channels[idx++] = rdev_req->channels[i];
 914	}
 915
 916	rdev_req->scan_6ghz = false;
 917	rdev->int_scan_req = request;
 918	return rdev_scan(rdev, request);
 919}
 920
 921void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
 922			   bool send_message)
 923{
 924	struct cfg80211_scan_request *request, *rdev_req;
 925	struct wireless_dev *wdev;
 926	struct sk_buff *msg;
 927#ifdef CONFIG_CFG80211_WEXT
 928	union iwreq_data wrqu;
 929#endif
 930
 931	lockdep_assert_held(&rdev->wiphy.mtx);
 932
 933	if (rdev->scan_msg) {
 934		nl80211_send_scan_msg(rdev, rdev->scan_msg);
 935		rdev->scan_msg = NULL;
 936		return;
 937	}
 938
 939	rdev_req = rdev->scan_req;
 940	if (!rdev_req)
 941		return;
 942
 943	wdev = rdev_req->wdev;
 944	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
 945
 946	if (wdev_running(wdev) &&
 947	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
 948	    !rdev_req->scan_6ghz && !request->info.aborted &&
 949	    !cfg80211_scan_6ghz(rdev))
 950		return;
 951
 952	/*
 953	 * This must be before sending the other events!
 954	 * Otherwise, wpa_supplicant gets completely confused with
 955	 * wext events.
 956	 */
 957	if (wdev->netdev)
 958		cfg80211_sme_scan_done(wdev->netdev);
 959
 960	if (!request->info.aborted &&
 961	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
 962		/* flush entries from previous scans */
 963		spin_lock_bh(&rdev->bss_lock);
 964		__cfg80211_bss_expire(rdev, request->scan_start);
 965		spin_unlock_bh(&rdev->bss_lock);
 966	}
 967
 968	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
 969
 970#ifdef CONFIG_CFG80211_WEXT
 971	if (wdev->netdev && !request->info.aborted) {
 972		memset(&wrqu, 0, sizeof(wrqu));
 973
 974		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
 975	}
 976#endif
 977
 978	if (wdev->netdev)
 979		dev_put(wdev->netdev);
 980
 981	kfree(rdev->int_scan_req);
 982	rdev->int_scan_req = NULL;
 983
 984	kfree(rdev->scan_req);
 985	rdev->scan_req = NULL;
 986
 987	if (!send_message)
 988		rdev->scan_msg = msg;
 989	else
 990		nl80211_send_scan_msg(rdev, msg);
 991}
 992
 993void __cfg80211_scan_done(struct work_struct *wk)
 994{
 995	struct cfg80211_registered_device *rdev;
 996
 997	rdev = container_of(wk, struct cfg80211_registered_device,
 998			    scan_done_wk);
 999
1000	wiphy_lock(&rdev->wiphy);
1001	___cfg80211_scan_done(rdev, true);
1002	wiphy_unlock(&rdev->wiphy);
1003}
1004
1005void cfg80211_scan_done(struct cfg80211_scan_request *request,
1006			struct cfg80211_scan_info *info)
1007{
1008	struct cfg80211_scan_info old_info = request->info;
1009
1010	trace_cfg80211_scan_done(request, info);
1011	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1012		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1013
1014	request->info = *info;
1015
1016	/*
1017	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1018	 * be of the first part. In such a case old_info.scan_start_tsf should
1019	 * be non zero.
1020	 */
1021	if (request->scan_6ghz && old_info.scan_start_tsf) {
1022		request->info.scan_start_tsf = old_info.scan_start_tsf;
1023		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1024		       sizeof(request->info.tsf_bssid));
1025	}
1026
1027	request->notified = true;
1028	queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
 
1029}
1030EXPORT_SYMBOL(cfg80211_scan_done);
1031
1032void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1033				 struct cfg80211_sched_scan_request *req)
1034{
1035	lockdep_assert_held(&rdev->wiphy.mtx);
1036
1037	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1038}
1039
1040static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1041					struct cfg80211_sched_scan_request *req)
1042{
1043	lockdep_assert_held(&rdev->wiphy.mtx);
1044
1045	list_del_rcu(&req->list);
1046	kfree_rcu(req, rcu_head);
1047}
1048
1049static struct cfg80211_sched_scan_request *
1050cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1051{
1052	struct cfg80211_sched_scan_request *pos;
1053
1054	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1055				lockdep_is_held(&rdev->wiphy.mtx)) {
1056		if (pos->reqid == reqid)
1057			return pos;
1058	}
1059	return NULL;
1060}
1061
1062/*
1063 * Determines if a scheduled scan request can be handled. When a legacy
1064 * scheduled scan is running no other scheduled scan is allowed regardless
1065 * whether the request is for legacy or multi-support scan. When a multi-support
1066 * scheduled scan is running a request for legacy scan is not allowed. In this
1067 * case a request for multi-support scan can be handled if resources are
1068 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1069 */
1070int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1071				     bool want_multi)
1072{
1073	struct cfg80211_sched_scan_request *pos;
1074	int i = 0;
1075
1076	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1077		/* request id zero means legacy in progress */
1078		if (!i && !pos->reqid)
1079			return -EINPROGRESS;
1080		i++;
1081	}
1082
1083	if (i) {
1084		/* no legacy allowed when multi request(s) are active */
1085		if (!want_multi)
1086			return -EINPROGRESS;
1087
1088		/* resource limit reached */
1089		if (i == rdev->wiphy.max_sched_scan_reqs)
1090			return -ENOSPC;
1091	}
1092	return 0;
1093}
1094
1095void cfg80211_sched_scan_results_wk(struct work_struct *work)
1096{
1097	struct cfg80211_registered_device *rdev;
1098	struct cfg80211_sched_scan_request *req, *tmp;
1099
1100	rdev = container_of(work, struct cfg80211_registered_device,
1101			   sched_scan_res_wk);
1102
1103	wiphy_lock(&rdev->wiphy);
1104	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1105		if (req->report_results) {
1106			req->report_results = false;
1107			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1108				/* flush entries from previous scans */
1109				spin_lock_bh(&rdev->bss_lock);
1110				__cfg80211_bss_expire(rdev, req->scan_start);
1111				spin_unlock_bh(&rdev->bss_lock);
1112				req->scan_start = jiffies;
1113			}
1114			nl80211_send_sched_scan(req,
1115						NL80211_CMD_SCHED_SCAN_RESULTS);
1116		}
1117	}
1118	wiphy_unlock(&rdev->wiphy);
1119}
1120
1121void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1122{
1123	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1124	struct cfg80211_sched_scan_request *request;
1125
1126	trace_cfg80211_sched_scan_results(wiphy, reqid);
1127	/* ignore if we're not scanning */
1128
1129	rcu_read_lock();
1130	request = cfg80211_find_sched_scan_req(rdev, reqid);
1131	if (request) {
1132		request->report_results = true;
1133		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1134	}
1135	rcu_read_unlock();
1136}
1137EXPORT_SYMBOL(cfg80211_sched_scan_results);
1138
1139void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1140{
1141	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1142
1143	lockdep_assert_held(&wiphy->mtx);
1144
1145	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1146
1147	__cfg80211_stop_sched_scan(rdev, reqid, true);
1148}
1149EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1150
1151void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1152{
1153	wiphy_lock(wiphy);
1154	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1155	wiphy_unlock(wiphy);
1156}
1157EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1158
1159int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1160				 struct cfg80211_sched_scan_request *req,
1161				 bool driver_initiated)
1162{
1163	lockdep_assert_held(&rdev->wiphy.mtx);
1164
1165	if (!driver_initiated) {
1166		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1167		if (err)
1168			return err;
1169	}
1170
1171	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1172
1173	cfg80211_del_sched_scan_req(rdev, req);
1174
1175	return 0;
1176}
1177
1178int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1179			       u64 reqid, bool driver_initiated)
1180{
1181	struct cfg80211_sched_scan_request *sched_scan_req;
1182
1183	lockdep_assert_held(&rdev->wiphy.mtx);
1184
1185	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1186	if (!sched_scan_req)
1187		return -ENOENT;
1188
1189	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1190					    driver_initiated);
1191}
1192
1193void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1194                      unsigned long age_secs)
1195{
1196	struct cfg80211_internal_bss *bss;
1197	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1198
1199	spin_lock_bh(&rdev->bss_lock);
1200	list_for_each_entry(bss, &rdev->bss_list, list)
1201		bss->ts -= age_jiffies;
1202	spin_unlock_bh(&rdev->bss_lock);
1203}
1204
1205void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1206{
1207	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1208}
1209
1210void cfg80211_bss_flush(struct wiphy *wiphy)
1211{
1212	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1213
1214	spin_lock_bh(&rdev->bss_lock);
1215	__cfg80211_bss_expire(rdev, jiffies);
1216	spin_unlock_bh(&rdev->bss_lock);
1217}
1218EXPORT_SYMBOL(cfg80211_bss_flush);
1219
1220const struct element *
1221cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1222			 const u8 *match, unsigned int match_len,
1223			 unsigned int match_offset)
1224{
1225	const struct element *elem;
1226
1227	for_each_element_id(elem, eid, ies, len) {
1228		if (elem->datalen >= match_offset + match_len &&
1229		    !memcmp(elem->data + match_offset, match, match_len))
1230			return elem;
1231	}
1232
1233	return NULL;
1234}
1235EXPORT_SYMBOL(cfg80211_find_elem_match);
1236
1237const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1238						const u8 *ies,
1239						unsigned int len)
1240{
1241	const struct element *elem;
1242	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1243	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1244
1245	if (WARN_ON(oui_type > 0xff))
1246		return NULL;
1247
1248	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1249					match, match_len, 0);
1250
1251	if (!elem || elem->datalen < 4)
1252		return NULL;
1253
1254	return elem;
1255}
1256EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1257
1258/**
1259 * enum bss_compare_mode - BSS compare mode
1260 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1261 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1262 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1263 */
1264enum bss_compare_mode {
1265	BSS_CMP_REGULAR,
1266	BSS_CMP_HIDE_ZLEN,
1267	BSS_CMP_HIDE_NUL,
1268};
1269
1270static int cmp_bss(struct cfg80211_bss *a,
1271		   struct cfg80211_bss *b,
1272		   enum bss_compare_mode mode)
1273{
1274	const struct cfg80211_bss_ies *a_ies, *b_ies;
1275	const u8 *ie1 = NULL;
1276	const u8 *ie2 = NULL;
1277	int i, r;
1278
1279	if (a->channel != b->channel)
1280		return b->channel->center_freq - a->channel->center_freq;
 
1281
1282	a_ies = rcu_access_pointer(a->ies);
1283	if (!a_ies)
1284		return -1;
1285	b_ies = rcu_access_pointer(b->ies);
1286	if (!b_ies)
1287		return 1;
1288
1289	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1290		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1291				       a_ies->data, a_ies->len);
1292	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1293		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1294				       b_ies->data, b_ies->len);
1295	if (ie1 && ie2) {
1296		int mesh_id_cmp;
1297
1298		if (ie1[1] == ie2[1])
1299			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1300		else
1301			mesh_id_cmp = ie2[1] - ie1[1];
1302
1303		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1304				       a_ies->data, a_ies->len);
1305		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1306				       b_ies->data, b_ies->len);
1307		if (ie1 && ie2) {
1308			if (mesh_id_cmp)
1309				return mesh_id_cmp;
1310			if (ie1[1] != ie2[1])
1311				return ie2[1] - ie1[1];
1312			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1313		}
1314	}
1315
1316	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1317	if (r)
1318		return r;
1319
1320	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1321	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1322
1323	if (!ie1 && !ie2)
1324		return 0;
1325
1326	/*
1327	 * Note that with "hide_ssid", the function returns a match if
1328	 * the already-present BSS ("b") is a hidden SSID beacon for
1329	 * the new BSS ("a").
1330	 */
1331
1332	/* sort missing IE before (left of) present IE */
1333	if (!ie1)
1334		return -1;
1335	if (!ie2)
1336		return 1;
1337
1338	switch (mode) {
1339	case BSS_CMP_HIDE_ZLEN:
1340		/*
1341		 * In ZLEN mode we assume the BSS entry we're
1342		 * looking for has a zero-length SSID. So if
1343		 * the one we're looking at right now has that,
1344		 * return 0. Otherwise, return the difference
1345		 * in length, but since we're looking for the
1346		 * 0-length it's really equivalent to returning
1347		 * the length of the one we're looking at.
1348		 *
1349		 * No content comparison is needed as we assume
1350		 * the content length is zero.
1351		 */
1352		return ie2[1];
1353	case BSS_CMP_REGULAR:
1354	default:
1355		/* sort by length first, then by contents */
1356		if (ie1[1] != ie2[1])
1357			return ie2[1] - ie1[1];
1358		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1359	case BSS_CMP_HIDE_NUL:
1360		if (ie1[1] != ie2[1])
1361			return ie2[1] - ie1[1];
1362		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1363		for (i = 0; i < ie2[1]; i++)
1364			if (ie2[i + 2])
1365				return -1;
1366		return 0;
1367	}
1368}
1369
1370static bool cfg80211_bss_type_match(u16 capability,
1371				    enum nl80211_band band,
1372				    enum ieee80211_bss_type bss_type)
1373{
1374	bool ret = true;
1375	u16 mask, val;
1376
1377	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1378		return ret;
1379
1380	if (band == NL80211_BAND_60GHZ) {
1381		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1382		switch (bss_type) {
1383		case IEEE80211_BSS_TYPE_ESS:
1384			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1385			break;
1386		case IEEE80211_BSS_TYPE_PBSS:
1387			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1388			break;
1389		case IEEE80211_BSS_TYPE_IBSS:
1390			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1391			break;
1392		default:
1393			return false;
1394		}
1395	} else {
1396		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1397		switch (bss_type) {
1398		case IEEE80211_BSS_TYPE_ESS:
1399			val = WLAN_CAPABILITY_ESS;
1400			break;
1401		case IEEE80211_BSS_TYPE_IBSS:
1402			val = WLAN_CAPABILITY_IBSS;
1403			break;
1404		case IEEE80211_BSS_TYPE_MBSS:
1405			val = 0;
1406			break;
1407		default:
1408			return false;
1409		}
1410	}
1411
1412	ret = ((capability & mask) == val);
1413	return ret;
1414}
1415
1416/* Returned bss is reference counted and must be cleaned up appropriately. */
1417struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1418				      struct ieee80211_channel *channel,
1419				      const u8 *bssid,
1420				      const u8 *ssid, size_t ssid_len,
1421				      enum ieee80211_bss_type bss_type,
1422				      enum ieee80211_privacy privacy)
 
1423{
1424	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1425	struct cfg80211_internal_bss *bss, *res = NULL;
1426	unsigned long now = jiffies;
1427	int bss_privacy;
1428
1429	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1430			       privacy);
1431
1432	spin_lock_bh(&rdev->bss_lock);
1433
1434	list_for_each_entry(bss, &rdev->bss_list, list) {
1435		if (!cfg80211_bss_type_match(bss->pub.capability,
1436					     bss->pub.channel->band, bss_type))
1437			continue;
1438
1439		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1440		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1441		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1442			continue;
1443		if (channel && bss->pub.channel != channel)
1444			continue;
1445		if (!is_valid_ether_addr(bss->pub.bssid))
1446			continue;
 
 
1447		/* Don't get expired BSS structs */
1448		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1449		    !atomic_read(&bss->hold))
1450			continue;
1451		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1452			res = bss;
1453			bss_ref_get(rdev, res);
1454			break;
1455		}
1456	}
1457
1458	spin_unlock_bh(&rdev->bss_lock);
1459	if (!res)
1460		return NULL;
1461	trace_cfg80211_return_bss(&res->pub);
1462	return &res->pub;
1463}
1464EXPORT_SYMBOL(cfg80211_get_bss);
1465
1466static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1467			  struct cfg80211_internal_bss *bss)
1468{
1469	struct rb_node **p = &rdev->bss_tree.rb_node;
1470	struct rb_node *parent = NULL;
1471	struct cfg80211_internal_bss *tbss;
1472	int cmp;
1473
1474	while (*p) {
1475		parent = *p;
1476		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1477
1478		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1479
1480		if (WARN_ON(!cmp)) {
1481			/* will sort of leak this BSS */
1482			return;
1483		}
1484
1485		if (cmp < 0)
1486			p = &(*p)->rb_left;
1487		else
1488			p = &(*p)->rb_right;
1489	}
1490
1491	rb_link_node(&bss->rbn, parent, p);
1492	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1493}
1494
1495static struct cfg80211_internal_bss *
1496rb_find_bss(struct cfg80211_registered_device *rdev,
1497	    struct cfg80211_internal_bss *res,
1498	    enum bss_compare_mode mode)
1499{
1500	struct rb_node *n = rdev->bss_tree.rb_node;
1501	struct cfg80211_internal_bss *bss;
1502	int r;
1503
1504	while (n) {
1505		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1506		r = cmp_bss(&res->pub, &bss->pub, mode);
1507
1508		if (r == 0)
1509			return bss;
1510		else if (r < 0)
1511			n = n->rb_left;
1512		else
1513			n = n->rb_right;
1514	}
1515
1516	return NULL;
1517}
1518
1519static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1520				   struct cfg80211_internal_bss *new)
1521{
1522	const struct cfg80211_bss_ies *ies;
1523	struct cfg80211_internal_bss *bss;
1524	const u8 *ie;
1525	int i, ssidlen;
1526	u8 fold = 0;
1527	u32 n_entries = 0;
1528
1529	ies = rcu_access_pointer(new->pub.beacon_ies);
1530	if (WARN_ON(!ies))
1531		return false;
1532
1533	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1534	if (!ie) {
1535		/* nothing to do */
1536		return true;
1537	}
1538
1539	ssidlen = ie[1];
1540	for (i = 0; i < ssidlen; i++)
1541		fold |= ie[2 + i];
1542
1543	if (fold) {
1544		/* not a hidden SSID */
1545		return true;
1546	}
1547
1548	/* This is the bad part ... */
1549
1550	list_for_each_entry(bss, &rdev->bss_list, list) {
1551		/*
1552		 * we're iterating all the entries anyway, so take the
1553		 * opportunity to validate the list length accounting
1554		 */
1555		n_entries++;
1556
1557		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1558			continue;
1559		if (bss->pub.channel != new->pub.channel)
1560			continue;
1561		if (bss->pub.scan_width != new->pub.scan_width)
1562			continue;
1563		if (rcu_access_pointer(bss->pub.beacon_ies))
1564			continue;
1565		ies = rcu_access_pointer(bss->pub.ies);
1566		if (!ies)
1567			continue;
1568		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1569		if (!ie)
1570			continue;
1571		if (ssidlen && ie[1] != ssidlen)
1572			continue;
1573		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1574			continue;
1575		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1576			list_del(&bss->hidden_list);
1577		/* combine them */
1578		list_add(&bss->hidden_list, &new->hidden_list);
1579		bss->pub.hidden_beacon_bss = &new->pub;
1580		new->refcount += bss->refcount;
1581		rcu_assign_pointer(bss->pub.beacon_ies,
1582				   new->pub.beacon_ies);
1583	}
1584
1585	WARN_ONCE(n_entries != rdev->bss_entries,
1586		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1587		  rdev->bss_entries, n_entries);
1588
1589	return true;
1590}
1591
1592struct cfg80211_non_tx_bss {
1593	struct cfg80211_bss *tx_bss;
1594	u8 max_bssid_indicator;
1595	u8 bssid_index;
1596};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1597
1598static bool
1599cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1600			  struct cfg80211_internal_bss *known,
1601			  struct cfg80211_internal_bss *new,
1602			  bool signal_valid)
1603{
1604	lockdep_assert_held(&rdev->bss_lock);
1605
1606	/* Update IEs */
1607	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1608		const struct cfg80211_bss_ies *old;
1609
1610		old = rcu_access_pointer(known->pub.proberesp_ies);
1611
1612		rcu_assign_pointer(known->pub.proberesp_ies,
1613				   new->pub.proberesp_ies);
1614		/* Override possible earlier Beacon frame IEs */
1615		rcu_assign_pointer(known->pub.ies,
1616				   new->pub.proberesp_ies);
1617		if (old)
 
1618			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1619	} else if (rcu_access_pointer(new->pub.beacon_ies)) {
 
 
 
1620		const struct cfg80211_bss_ies *old;
1621		struct cfg80211_internal_bss *bss;
1622
1623		if (known->pub.hidden_beacon_bss &&
1624		    !list_empty(&known->hidden_list)) {
1625			const struct cfg80211_bss_ies *f;
1626
1627			/* The known BSS struct is one of the probe
1628			 * response members of a group, but we're
1629			 * receiving a beacon (beacon_ies in the new
1630			 * bss is used). This can only mean that the
1631			 * AP changed its beacon from not having an
1632			 * SSID to showing it, which is confusing so
1633			 * drop this information.
1634			 */
1635
1636			f = rcu_access_pointer(new->pub.beacon_ies);
1637			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1638			return false;
1639		}
1640
1641		old = rcu_access_pointer(known->pub.beacon_ies);
1642
1643		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1644
1645		/* Override IEs if they were from a beacon before */
1646		if (old == rcu_access_pointer(known->pub.ies))
1647			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1648
1649		/* Assign beacon IEs to all sub entries */
1650		list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1651			const struct cfg80211_bss_ies *ies;
1652
1653			ies = rcu_access_pointer(bss->pub.beacon_ies);
1654			WARN_ON(ies != old);
1655
1656			rcu_assign_pointer(bss->pub.beacon_ies,
1657					   new->pub.beacon_ies);
1658		}
1659
1660		if (old)
1661			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1662	}
1663
1664	known->pub.beacon_interval = new->pub.beacon_interval;
1665
1666	/* don't update the signal if beacon was heard on
1667	 * adjacent channel.
1668	 */
1669	if (signal_valid)
1670		known->pub.signal = new->pub.signal;
1671	known->pub.capability = new->pub.capability;
1672	known->ts = new->ts;
1673	known->ts_boottime = new->ts_boottime;
1674	known->parent_tsf = new->parent_tsf;
1675	known->pub.chains = new->pub.chains;
1676	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1677	       IEEE80211_MAX_CHAINS);
1678	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1679	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1680	known->pub.bssid_index = new->pub.bssid_index;
 
 
1681
1682	return true;
1683}
1684
1685/* Returned bss is reference counted and must be cleaned up appropriately. */
1686struct cfg80211_internal_bss *
1687cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1688		    struct cfg80211_internal_bss *tmp,
1689		    bool signal_valid, unsigned long ts)
1690{
1691	struct cfg80211_internal_bss *found = NULL;
 
1692
1693	if (WARN_ON(!tmp->pub.channel))
1694		return NULL;
1695
1696	tmp->ts = ts;
1697
1698	spin_lock_bh(&rdev->bss_lock);
1699
1700	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1701		spin_unlock_bh(&rdev->bss_lock);
1702		return NULL;
1703	}
1704
1705	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1706
1707	if (found) {
1708		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1709			goto drop;
1710	} else {
1711		struct cfg80211_internal_bss *new;
1712		struct cfg80211_internal_bss *hidden;
1713		struct cfg80211_bss_ies *ies;
1714
1715		/*
1716		 * create a copy -- the "res" variable that is passed in
1717		 * is allocated on the stack since it's not needed in the
1718		 * more common case of an update
1719		 */
1720		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1721			      GFP_ATOMIC);
1722		if (!new) {
1723			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1724			if (ies)
1725				kfree_rcu(ies, rcu_head);
1726			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1727			if (ies)
1728				kfree_rcu(ies, rcu_head);
1729			goto drop;
1730		}
1731		memcpy(new, tmp, sizeof(*new));
1732		new->refcount = 1;
1733		INIT_LIST_HEAD(&new->hidden_list);
1734		INIT_LIST_HEAD(&new->pub.nontrans_list);
 
 
1735
1736		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1737			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1738			if (!hidden)
1739				hidden = rb_find_bss(rdev, tmp,
1740						     BSS_CMP_HIDE_NUL);
1741			if (hidden) {
1742				new->pub.hidden_beacon_bss = &hidden->pub;
1743				list_add(&new->hidden_list,
1744					 &hidden->hidden_list);
1745				hidden->refcount++;
 
 
1746				rcu_assign_pointer(new->pub.beacon_ies,
1747						   hidden->pub.beacon_ies);
 
 
1748			}
1749		} else {
1750			/*
1751			 * Ok so we found a beacon, and don't have an entry. If
1752			 * it's a beacon with hidden SSID, we might be in for an
1753			 * expensive search for any probe responses that should
1754			 * be grouped with this beacon for updates ...
1755			 */
1756			if (!cfg80211_combine_bsses(rdev, new)) {
1757				bss_ref_put(rdev, new);
1758				goto drop;
1759			}
1760		}
1761
1762		if (rdev->bss_entries >= bss_entries_limit &&
1763		    !cfg80211_bss_expire_oldest(rdev)) {
1764			bss_ref_put(rdev, new);
1765			goto drop;
1766		}
1767
1768		/* This must be before the call to bss_ref_get */
1769		if (tmp->pub.transmitted_bss) {
1770			struct cfg80211_internal_bss *pbss =
1771				container_of(tmp->pub.transmitted_bss,
1772					     struct cfg80211_internal_bss,
1773					     pub);
1774
1775			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1776			bss_ref_get(rdev, pbss);
1777		}
1778
1779		list_add_tail(&new->list, &rdev->bss_list);
1780		rdev->bss_entries++;
1781		rb_insert_bss(rdev, new);
1782		found = new;
1783	}
1784
1785	rdev->bss_generation++;
1786	bss_ref_get(rdev, found);
1787	spin_unlock_bh(&rdev->bss_lock);
1788
1789	return found;
1790 drop:
1791	spin_unlock_bh(&rdev->bss_lock);
 
 
 
 
 
 
 
1792	return NULL;
1793}
1794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1795/*
1796 * Update RX channel information based on the available frame payload
1797 * information. This is mainly for the 2.4 GHz band where frames can be received
1798 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1799 * element to indicate the current (transmitting) channel, but this might also
1800 * be needed on other bands if RX frequency does not match with the actual
1801 * operating channel of a BSS.
1802 */
1803static struct ieee80211_channel *
1804cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1805			 struct ieee80211_channel *channel,
1806			 enum nl80211_bss_scan_width scan_width)
1807{
1808	const u8 *tmp;
1809	u32 freq;
1810	int channel_number = -1;
1811	struct ieee80211_channel *alt_channel;
1812
1813	if (channel->band == NL80211_BAND_S1GHZ) {
1814		tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1815		if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1816			struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1817
1818			channel_number = s1gop->primary_ch;
1819		}
1820	} else {
1821		tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1822		if (tmp && tmp[1] == 1) {
1823			channel_number = tmp[2];
1824		} else {
1825			tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1826			if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1827				struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1828
1829				channel_number = htop->primary_chan;
1830			}
1831		}
1832	}
1833
1834	if (channel_number < 0) {
1835		/* No channel information in frame payload */
1836		return channel;
1837	}
1838
1839	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
 
 
 
 
 
 
 
 
1840	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1841	if (!alt_channel) {
1842		if (channel->band == NL80211_BAND_2GHZ) {
 
1843			/*
1844			 * Better not allow unexpected channels when that could
1845			 * be going beyond the 1-11 range (e.g., discovering
1846			 * BSS on channel 12 when radio is configured for
1847			 * channel 11.
1848			 */
1849			return NULL;
1850		}
1851
1852		/* No match for the payload channel number - ignore it */
1853		return channel;
1854	}
1855
1856	if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1857	    scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1858		/*
1859		 * Ignore channel number in 5 and 10 MHz channels where there
1860		 * may not be an n:1 or 1:n mapping between frequencies and
1861		 * channel numbers.
1862		 */
1863		return channel;
1864	}
1865
1866	/*
1867	 * Use the channel determined through the payload channel number
1868	 * instead of the RX channel reported by the driver.
1869	 */
1870	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1871		return NULL;
1872	return alt_channel;
1873}
1874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1875/* Returned bss is reference counted and must be cleaned up appropriately. */
1876static struct cfg80211_bss *
1877cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1878				struct cfg80211_inform_bss *data,
1879				enum cfg80211_bss_frame_type ftype,
1880				const u8 *bssid, u64 tsf, u16 capability,
1881				u16 beacon_interval, const u8 *ie, size_t ielen,
1882				struct cfg80211_non_tx_bss *non_tx_data,
1883				gfp_t gfp)
1884{
1885	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
 
1886	struct cfg80211_bss_ies *ies;
1887	struct ieee80211_channel *channel;
1888	struct cfg80211_internal_bss tmp = {}, *res;
1889	int bss_type;
1890	bool signal_valid;
1891	unsigned long ts;
1892
1893	if (WARN_ON(!wiphy))
1894		return NULL;
1895
1896	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1897		    (data->signal < 0 || data->signal > 100)))
1898		return NULL;
1899
1900	channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1901					   data->scan_width);
 
 
 
 
 
1902	if (!channel)
1903		return NULL;
1904
1905	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
 
 
 
 
 
 
 
 
1906	tmp.pub.channel = channel;
1907	tmp.pub.scan_width = data->scan_width;
1908	tmp.pub.signal = data->signal;
1909	tmp.pub.beacon_interval = beacon_interval;
1910	tmp.pub.capability = capability;
1911	tmp.ts_boottime = data->boottime_ns;
1912	tmp.parent_tsf = data->parent_tsf;
1913	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1914
1915	if (non_tx_data) {
1916		tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1917		ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1918		tmp.pub.bssid_index = non_tx_data->bssid_index;
1919		tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1920	} else {
 
 
 
 
 
 
 
 
 
 
 
1921		ts = jiffies;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1922	}
1923
1924	/*
1925	 * If we do not know here whether the IEs are from a Beacon or Probe
1926	 * Response frame, we need to pick one of the options and only use it
1927	 * with the driver that does not provide the full Beacon/Probe Response
1928	 * frame. Use Beacon frame pointer to avoid indicating that this should
1929	 * override the IEs pointer should we have received an earlier
1930	 * indication of Probe Response data.
1931	 */
1932	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1933	if (!ies)
1934		return NULL;
1935	ies->len = ielen;
1936	ies->tsf = tsf;
1937	ies->from_beacon = false;
1938	memcpy(ies->data, ie, ielen);
1939
1940	switch (ftype) {
1941	case CFG80211_BSS_FTYPE_BEACON:
 
1942		ies->from_beacon = true;
1943		fallthrough;
1944	case CFG80211_BSS_FTYPE_UNKNOWN:
1945		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1946		break;
1947	case CFG80211_BSS_FTYPE_PRESP:
1948		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1949		break;
1950	}
1951	rcu_assign_pointer(tmp.pub.ies, ies);
1952
1953	signal_valid = data->chan == channel;
1954	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
 
1955	if (!res)
1956		return NULL;
1957
1958	if (channel->band == NL80211_BAND_60GHZ) {
1959		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1960		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1961		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1962			regulatory_hint_found_beacon(wiphy, channel, gfp);
1963	} else {
1964		if (res->pub.capability & WLAN_CAPABILITY_ESS)
1965			regulatory_hint_found_beacon(wiphy, channel, gfp);
1966	}
1967
1968	if (non_tx_data) {
1969		/* this is a nontransmitting bss, we need to add it to
1970		 * transmitting bss' list if it is not there
1971		 */
1972		if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1973					       &res->pub)) {
1974			if (__cfg80211_unlink_bss(rdev, res))
1975				rdev->bss_generation++;
 
 
1976		}
 
 
 
1977	}
 
1978
1979	trace_cfg80211_return_bss(&res->pub);
1980	/* cfg80211_bss_update gives us a referenced result */
1981	return &res->pub;
 
 
 
 
1982}
1983
1984static const struct element
1985*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1986				   const struct element *mbssid_elem,
1987				   const struct element *sub_elem)
1988{
1989	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1990	const struct element *next_mbssid;
1991	const struct element *next_sub;
1992
1993	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
1994					 mbssid_end,
1995					 ielen - (mbssid_end - ie));
1996
1997	/*
1998	 * If it is not the last subelement in current MBSSID IE or there isn't
1999	 * a next MBSSID IE - profile is complete.
2000	*/
2001	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2002	    !next_mbssid)
2003		return NULL;
2004
2005	/* For any length error, just return NULL */
2006
2007	if (next_mbssid->datalen < 4)
2008		return NULL;
2009
2010	next_sub = (void *)&next_mbssid->data[1];
2011
2012	if (next_mbssid->data + next_mbssid->datalen <
2013	    next_sub->data + next_sub->datalen)
2014		return NULL;
2015
2016	if (next_sub->id != 0 || next_sub->datalen < 2)
2017		return NULL;
2018
2019	/*
2020	 * Check if the first element in the next sub element is a start
2021	 * of a new profile
2022	 */
2023	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2024	       NULL : next_mbssid;
2025}
2026
2027size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2028			      const struct element *mbssid_elem,
2029			      const struct element *sub_elem,
2030			      u8 *merged_ie, size_t max_copy_len)
2031{
2032	size_t copied_len = sub_elem->datalen;
2033	const struct element *next_mbssid;
2034
2035	if (sub_elem->datalen > max_copy_len)
2036		return 0;
2037
2038	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2039
2040	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2041								mbssid_elem,
2042								sub_elem))) {
2043		const struct element *next_sub = (void *)&next_mbssid->data[1];
2044
2045		if (copied_len + next_sub->datalen > max_copy_len)
2046			break;
2047		memcpy(merged_ie + copied_len, next_sub->data,
2048		       next_sub->datalen);
2049		copied_len += next_sub->datalen;
2050	}
2051
2052	return copied_len;
2053}
2054EXPORT_SYMBOL(cfg80211_merge_profile);
2055
2056static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2057				       struct cfg80211_inform_bss *data,
2058				       enum cfg80211_bss_frame_type ftype,
2059				       const u8 *bssid, u64 tsf,
2060				       u16 beacon_interval, const u8 *ie,
2061				       size_t ielen,
2062				       struct cfg80211_non_tx_bss *non_tx_data,
2063				       gfp_t gfp)
2064{
 
 
 
 
 
 
 
2065	const u8 *mbssid_index_ie;
2066	const struct element *elem, *sub;
2067	size_t new_ie_len;
2068	u8 new_bssid[ETH_ALEN];
2069	u8 *new_ie, *profile;
2070	u64 seen_indices = 0;
2071	u16 capability;
2072	struct cfg80211_bss *bss;
2073
2074	if (!non_tx_data)
2075		return;
2076	if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
 
2077		return;
2078	if (!wiphy->support_mbssid)
2079		return;
2080	if (wiphy->support_only_he_mbssid &&
2081	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
 
2082		return;
2083
2084	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2085	if (!new_ie)
2086		return;
2087
2088	profile = kmalloc(ielen, gfp);
2089	if (!profile)
2090		goto out;
2091
2092	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
 
2093		if (elem->datalen < 4)
2094			continue;
 
 
2095		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2096			u8 profile_len;
2097
2098			if (sub->id != 0 || sub->datalen < 4) {
2099				/* not a valid BSS profile */
2100				continue;
2101			}
2102
2103			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2104			    sub->data[1] != 2) {
2105				/* The first element within the Nontransmitted
2106				 * BSSID Profile is not the Nontransmitted
2107				 * BSSID Capability element.
2108				 */
2109				continue;
2110			}
2111
2112			memset(profile, 0, ielen);
2113			profile_len = cfg80211_merge_profile(ie, ielen,
 
2114							     elem,
2115							     sub,
2116							     profile,
2117							     ielen);
2118
2119			/* found a Nontransmitted BSSID Profile */
2120			mbssid_index_ie = cfg80211_find_ie
2121				(WLAN_EID_MULTI_BSSID_IDX,
2122				 profile, profile_len);
2123			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2124			    mbssid_index_ie[2] == 0 ||
2125			    mbssid_index_ie[2] > 46) {
2126				/* No valid Multiple BSSID-Index element */
2127				continue;
2128			}
2129
2130			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2131				/* We don't support legacy split of a profile */
2132				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2133						    mbssid_index_ie[2]);
2134
2135			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2136
2137			non_tx_data->bssid_index = mbssid_index_ie[2];
2138			non_tx_data->max_bssid_indicator = elem->data[0];
 
 
 
 
 
2139
2140			cfg80211_gen_new_bssid(bssid,
2141					       non_tx_data->max_bssid_indicator,
2142					       non_tx_data->bssid_index,
2143					       new_bssid);
2144			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2145			new_ie_len = cfg80211_gen_new_ie(ie, ielen,
 
 
2146							 profile,
2147							 profile_len, new_ie,
2148							 gfp);
2149			if (!new_ie_len)
 
2150				continue;
2151
2152			capability = get_unaligned_le16(profile + 2);
2153			bss = cfg80211_inform_single_bss_data(wiphy, data,
2154							      ftype,
2155							      new_bssid, tsf,
2156							      capability,
2157							      beacon_interval,
2158							      new_ie,
2159							      new_ie_len,
2160							      non_tx_data,
2161							      gfp);
2162			if (!bss)
2163				break;
2164			cfg80211_put_bss(wiphy, bss);
2165		}
2166	}
2167
2168out:
2169	kfree(new_ie);
2170	kfree(profile);
2171}
2172
2173struct cfg80211_bss *
2174cfg80211_inform_bss_data(struct wiphy *wiphy,
2175			 struct cfg80211_inform_bss *data,
2176			 enum cfg80211_bss_frame_type ftype,
2177			 const u8 *bssid, u64 tsf, u16 capability,
2178			 u16 beacon_interval, const u8 *ie, size_t ielen,
2179			 gfp_t gfp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2180{
2181	struct cfg80211_bss *res;
2182	struct cfg80211_non_tx_bss non_tx_data;
 
 
 
2183
2184	res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2185					      capability, beacon_interval, ie,
2186					      ielen, NULL, gfp);
 
 
 
 
 
 
 
 
 
 
 
2187	if (!res)
2188		return NULL;
2189	non_tx_data.tx_bss = res;
2190	cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2191				   beacon_interval, ie, ielen, &non_tx_data,
2192				   gfp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2193	return res;
 
 
 
 
2194}
2195EXPORT_SYMBOL(cfg80211_inform_bss_data);
2196
2197static void
2198cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2199				 struct cfg80211_inform_bss *data,
2200				 struct ieee80211_mgmt *mgmt, size_t len,
2201				 struct cfg80211_non_tx_bss *non_tx_data,
2202				 gfp_t gfp)
2203{
2204	enum cfg80211_bss_frame_type ftype;
2205	const u8 *ie = mgmt->u.probe_resp.variable;
2206	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2207				      u.probe_resp.variable);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2208
2209	ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2210		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
 
 
 
2211
2212	cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2213				   le64_to_cpu(mgmt->u.probe_resp.timestamp),
2214				   le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2215				   ie, ielen, non_tx_data, gfp);
 
2216}
2217
2218static void
2219cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2220				   struct cfg80211_bss *nontrans_bss,
2221				   struct ieee80211_mgmt *mgmt, size_t len)
2222{
2223	u8 *ie, *new_ie, *pos;
2224	const u8 *nontrans_ssid, *trans_ssid, *mbssid;
2225	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2226				      u.probe_resp.variable);
2227	size_t new_ie_len;
2228	struct cfg80211_bss_ies *new_ies;
2229	const struct cfg80211_bss_ies *old;
2230	u8 cpy_len;
2231
2232	lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2233
2234	ie = mgmt->u.probe_resp.variable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2235
2236	new_ie_len = ielen;
2237	trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2238	if (!trans_ssid)
2239		return;
2240	new_ie_len -= trans_ssid[1];
2241	mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2242	/*
2243	 * It's not valid to have the MBSSID element before SSID
2244	 * ignore if that happens - the code below assumes it is
2245	 * after (while copying things inbetween).
2246	 */
2247	if (!mbssid || mbssid < trans_ssid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2248		return;
2249	new_ie_len -= mbssid[1];
2250
2251	nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
2252	if (!nontrans_ssid)
 
 
 
 
 
 
2253		return;
2254
2255	new_ie_len += nontrans_ssid[1];
 
2256
2257	/* generate new ie for nontrans BSS
2258	 * 1. replace SSID with nontrans BSS' SSID
2259	 * 2. skip MBSSID IE
2260	 */
2261	new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2262	if (!new_ie)
 
 
 
 
 
2263		return;
2264
2265	new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2266	if (!new_ies)
2267		goto out_free;
2268
2269	pos = new_ie;
2270
2271	/* copy the nontransmitted SSID */
2272	cpy_len = nontrans_ssid[1] + 2;
2273	memcpy(pos, nontrans_ssid, cpy_len);
2274	pos += cpy_len;
2275	/* copy the IEs between SSID and MBSSID */
2276	cpy_len = trans_ssid[1] + 2;
2277	memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2278	pos += (mbssid - (trans_ssid + cpy_len));
2279	/* copy the IEs after MBSSID */
2280	cpy_len = mbssid[1] + 2;
2281	memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2282
2283	/* update ie */
2284	new_ies->len = new_ie_len;
2285	new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2286	new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2287	memcpy(new_ies->data, new_ie, new_ie_len);
2288	if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2289		old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2290		rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2291		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2292		if (old)
2293			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2294	} else {
2295		old = rcu_access_pointer(nontrans_bss->beacon_ies);
2296		rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2297		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2298		if (old)
2299			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2300	}
2301
2302out_free:
 
2303	kfree(new_ie);
 
2304}
2305
2306/* cfg80211_inform_bss_width_frame helper */
2307static struct cfg80211_bss *
2308cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2309				      struct cfg80211_inform_bss *data,
2310				      struct ieee80211_mgmt *mgmt, size_t len,
2311				      gfp_t gfp)
2312{
2313	struct cfg80211_internal_bss tmp = {}, *res;
2314	struct cfg80211_bss_ies *ies;
2315	struct ieee80211_channel *channel;
2316	bool signal_valid;
2317	struct ieee80211_ext *ext = NULL;
2318	u8 *bssid, *variable;
2319	u16 capability, beacon_int;
2320	size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2321					     u.probe_resp.variable);
2322	int bss_type;
2323
2324	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2325			offsetof(struct ieee80211_mgmt, u.beacon.variable));
2326
2327	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2328
2329	if (WARN_ON(!mgmt))
2330		return NULL;
2331
2332	if (WARN_ON(!wiphy))
2333		return NULL;
2334
2335	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2336		    (data->signal < 0 || data->signal > 100)))
2337		return NULL;
 
2338
2339	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2340		ext = (void *) mgmt;
2341		min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2342		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2343			min_hdr_len = offsetof(struct ieee80211_ext,
2344					       u.s1g_short_beacon.variable);
2345	}
2346
2347	if (WARN_ON(len < min_hdr_len))
2348		return NULL;
2349
2350	ielen = len - min_hdr_len;
2351	variable = mgmt->u.probe_resp.variable;
2352	if (ext) {
2353		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2354			variable = ext->u.s1g_short_beacon.variable;
2355		else
2356			variable = ext->u.s1g_beacon.variable;
2357	}
2358
2359	channel = cfg80211_get_bss_channel(wiphy, variable,
2360					   ielen, data->chan, data->scan_width);
2361	if (!channel)
2362		return NULL;
2363
2364	if (ext) {
2365		const struct ieee80211_s1g_bcn_compat_ie *compat;
2366		const struct element *elem;
2367
2368		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2369					  variable, ielen);
 
 
 
 
2370		if (!elem)
2371			return NULL;
2372		if (elem->datalen < sizeof(*compat))
2373			return NULL;
2374		compat = (void *)elem->data;
2375		bssid = ext->u.s1g_beacon.sa;
2376		capability = le16_to_cpu(compat->compat_info);
2377		beacon_int = le16_to_cpu(compat->beacon_int);
2378	} else {
2379		bssid = mgmt->bssid;
2380		beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2381		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2382	}
2383
2384	ies = kzalloc(sizeof(*ies) + ielen, gfp);
2385	if (!ies)
2386		return NULL;
2387	ies->len = ielen;
2388	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2389	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2390			   ieee80211_is_s1g_beacon(mgmt->frame_control);
2391	memcpy(ies->data, variable, ielen);
2392
2393	if (ieee80211_is_probe_resp(mgmt->frame_control))
2394		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
 
 
2395	else
2396		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2397	rcu_assign_pointer(tmp.pub.ies, ies);
2398
2399	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2400	tmp.pub.beacon_interval = beacon_int;
2401	tmp.pub.capability = capability;
2402	tmp.pub.channel = channel;
2403	tmp.pub.scan_width = data->scan_width;
2404	tmp.pub.signal = data->signal;
2405	tmp.ts_boottime = data->boottime_ns;
2406	tmp.parent_tsf = data->parent_tsf;
2407	tmp.pub.chains = data->chains;
2408	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2409	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2410
2411	signal_valid = data->chan == channel;
2412	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2413				  jiffies);
2414	if (!res)
2415		return NULL;
2416
2417	if (channel->band == NL80211_BAND_60GHZ) {
2418		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2419		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2420		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2421			regulatory_hint_found_beacon(wiphy, channel, gfp);
2422	} else {
2423		if (res->pub.capability & WLAN_CAPABILITY_ESS)
2424			regulatory_hint_found_beacon(wiphy, channel, gfp);
2425	}
2426
2427	trace_cfg80211_return_bss(&res->pub);
2428	/* cfg80211_bss_update gives us a referenced result */
2429	return &res->pub;
2430}
2431
2432struct cfg80211_bss *
2433cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2434			       struct cfg80211_inform_bss *data,
2435			       struct ieee80211_mgmt *mgmt, size_t len,
2436			       gfp_t gfp)
2437{
2438	struct cfg80211_bss *res, *tmp_bss;
2439	const u8 *ie = mgmt->u.probe_resp.variable;
2440	const struct cfg80211_bss_ies *ies1, *ies2;
2441	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2442				      u.probe_resp.variable);
2443	struct cfg80211_non_tx_bss non_tx_data;
2444
2445	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2446						    len, gfp);
2447	if (!res || !wiphy->support_mbssid ||
2448	    !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2449		return res;
2450	if (wiphy->support_only_he_mbssid &&
2451	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2452		return res;
2453
2454	non_tx_data.tx_bss = res;
2455	/* process each non-transmitting bss */
2456	cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2457					 &non_tx_data, gfp);
2458
2459	spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2460
2461	/* check if the res has other nontransmitting bss which is not
2462	 * in MBSSID IE
2463	 */
2464	ies1 = rcu_access_pointer(res->ies);
2465
2466	/* go through nontrans_list, if the timestamp of the BSS is
2467	 * earlier than the timestamp of the transmitting BSS then
2468	 * update it
2469	 */
2470	list_for_each_entry(tmp_bss, &res->nontrans_list,
2471			    nontrans_list) {
2472		ies2 = rcu_access_pointer(tmp_bss->ies);
2473		if (ies2->tsf < ies1->tsf)
2474			cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2475							   mgmt, len);
2476	}
2477	spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2478
2479	return res;
2480}
2481EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2482
2483void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2484{
2485	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2486	struct cfg80211_internal_bss *bss;
2487
2488	if (!pub)
2489		return;
2490
2491	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2492
2493	spin_lock_bh(&rdev->bss_lock);
2494	bss_ref_get(rdev, bss);
2495	spin_unlock_bh(&rdev->bss_lock);
2496}
2497EXPORT_SYMBOL(cfg80211_ref_bss);
2498
2499void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2500{
2501	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2502	struct cfg80211_internal_bss *bss;
2503
2504	if (!pub)
2505		return;
2506
2507	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2508
2509	spin_lock_bh(&rdev->bss_lock);
2510	bss_ref_put(rdev, bss);
2511	spin_unlock_bh(&rdev->bss_lock);
2512}
2513EXPORT_SYMBOL(cfg80211_put_bss);
2514
2515void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2516{
2517	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2518	struct cfg80211_internal_bss *bss, *tmp1;
2519	struct cfg80211_bss *nontrans_bss, *tmp;
2520
2521	if (WARN_ON(!pub))
2522		return;
2523
2524	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2525
2526	spin_lock_bh(&rdev->bss_lock);
2527	if (list_empty(&bss->list))
2528		goto out;
2529
2530	list_for_each_entry_safe(nontrans_bss, tmp,
2531				 &pub->nontrans_list,
2532				 nontrans_list) {
2533		tmp1 = container_of(nontrans_bss,
2534				    struct cfg80211_internal_bss, pub);
2535		if (__cfg80211_unlink_bss(rdev, tmp1))
2536			rdev->bss_generation++;
2537	}
2538
2539	if (__cfg80211_unlink_bss(rdev, bss))
2540		rdev->bss_generation++;
2541out:
2542	spin_unlock_bh(&rdev->bss_lock);
2543}
2544EXPORT_SYMBOL(cfg80211_unlink_bss);
2545
2546void cfg80211_bss_iter(struct wiphy *wiphy,
2547		       struct cfg80211_chan_def *chandef,
2548		       void (*iter)(struct wiphy *wiphy,
2549				    struct cfg80211_bss *bss,
2550				    void *data),
2551		       void *iter_data)
2552{
2553	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2554	struct cfg80211_internal_bss *bss;
2555
2556	spin_lock_bh(&rdev->bss_lock);
2557
2558	list_for_each_entry(bss, &rdev->bss_list, list) {
2559		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
 
2560			iter(wiphy, &bss->pub, iter_data);
2561	}
2562
2563	spin_unlock_bh(&rdev->bss_lock);
2564}
2565EXPORT_SYMBOL(cfg80211_bss_iter);
2566
2567void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
 
2568				     struct ieee80211_channel *chan)
2569{
2570	struct wiphy *wiphy = wdev->wiphy;
2571	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2572	struct cfg80211_internal_bss *cbss = wdev->current_bss;
2573	struct cfg80211_internal_bss *new = NULL;
2574	struct cfg80211_internal_bss *bss;
2575	struct cfg80211_bss *nontrans_bss;
2576	struct cfg80211_bss *tmp;
2577
2578	spin_lock_bh(&rdev->bss_lock);
2579
2580	/*
2581	 * Some APs use CSA also for bandwidth changes, i.e., without actually
2582	 * changing the control channel, so no need to update in such a case.
2583	 */
2584	if (cbss->pub.channel == chan)
2585		goto done;
2586
2587	/* use transmitting bss */
2588	if (cbss->pub.transmitted_bss)
2589		cbss = container_of(cbss->pub.transmitted_bss,
2590				    struct cfg80211_internal_bss,
2591				    pub);
2592
2593	cbss->pub.channel = chan;
2594
2595	list_for_each_entry(bss, &rdev->bss_list, list) {
2596		if (!cfg80211_bss_type_match(bss->pub.capability,
2597					     bss->pub.channel->band,
2598					     wdev->conn_bss_type))
2599			continue;
2600
2601		if (bss == cbss)
2602			continue;
2603
2604		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2605			new = bss;
2606			break;
2607		}
2608	}
2609
2610	if (new) {
2611		/* to save time, update IEs for transmitting bss only */
2612		if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2613			new->pub.proberesp_ies = NULL;
2614			new->pub.beacon_ies = NULL;
2615		}
2616
2617		list_for_each_entry_safe(nontrans_bss, tmp,
2618					 &new->pub.nontrans_list,
2619					 nontrans_list) {
2620			bss = container_of(nontrans_bss,
2621					   struct cfg80211_internal_bss, pub);
2622			if (__cfg80211_unlink_bss(rdev, bss))
2623				rdev->bss_generation++;
2624		}
2625
2626		WARN_ON(atomic_read(&new->hold));
2627		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2628			rdev->bss_generation++;
2629	}
2630
2631	rb_erase(&cbss->rbn, &rdev->bss_tree);
2632	rb_insert_bss(rdev, cbss);
2633	rdev->bss_generation++;
2634
2635	list_for_each_entry_safe(nontrans_bss, tmp,
2636				 &cbss->pub.nontrans_list,
2637				 nontrans_list) {
2638		bss = container_of(nontrans_bss,
2639				   struct cfg80211_internal_bss, pub);
2640		bss->pub.channel = chan;
2641		rb_erase(&bss->rbn, &rdev->bss_tree);
2642		rb_insert_bss(rdev, bss);
2643		rdev->bss_generation++;
2644	}
2645
2646done:
2647	spin_unlock_bh(&rdev->bss_lock);
2648}
2649
2650#ifdef CONFIG_CFG80211_WEXT
2651static struct cfg80211_registered_device *
2652cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2653{
2654	struct cfg80211_registered_device *rdev;
2655	struct net_device *dev;
2656
2657	ASSERT_RTNL();
2658
2659	dev = dev_get_by_index(net, ifindex);
2660	if (!dev)
2661		return ERR_PTR(-ENODEV);
2662	if (dev->ieee80211_ptr)
2663		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2664	else
2665		rdev = ERR_PTR(-ENODEV);
2666	dev_put(dev);
2667	return rdev;
2668}
2669
2670int cfg80211_wext_siwscan(struct net_device *dev,
2671			  struct iw_request_info *info,
2672			  union iwreq_data *wrqu, char *extra)
2673{
2674	struct cfg80211_registered_device *rdev;
2675	struct wiphy *wiphy;
2676	struct iw_scan_req *wreq = NULL;
2677	struct cfg80211_scan_request *creq = NULL;
2678	int i, err, n_channels = 0;
2679	enum nl80211_band band;
2680
2681	if (!netif_running(dev))
2682		return -ENETDOWN;
2683
2684	if (wrqu->data.length == sizeof(struct iw_scan_req))
2685		wreq = (struct iw_scan_req *)extra;
2686
2687	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2688
2689	if (IS_ERR(rdev))
2690		return PTR_ERR(rdev);
2691
2692	if (rdev->scan_req || rdev->scan_msg) {
2693		err = -EBUSY;
2694		goto out;
2695	}
2696
2697	wiphy = &rdev->wiphy;
2698
2699	/* Determine number of channels, needed to allocate creq */
2700	if (wreq && wreq->num_channels)
2701		n_channels = wreq->num_channels;
2702	else
2703		n_channels = ieee80211_get_num_supported_channels(wiphy);
2704
2705	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2706		       n_channels * sizeof(void *),
2707		       GFP_ATOMIC);
2708	if (!creq) {
2709		err = -ENOMEM;
2710		goto out;
2711	}
2712
2713	creq->wiphy = wiphy;
2714	creq->wdev = dev->ieee80211_ptr;
2715	/* SSIDs come after channels */
2716	creq->ssids = (void *)&creq->channels[n_channels];
2717	creq->n_channels = n_channels;
2718	creq->n_ssids = 1;
2719	creq->scan_start = jiffies;
2720
2721	/* translate "Scan on frequencies" request */
2722	i = 0;
2723	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2724		int j;
2725
2726		if (!wiphy->bands[band])
2727			continue;
2728
2729		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2730			/* ignore disabled channels */
2731			if (wiphy->bands[band]->channels[j].flags &
2732						IEEE80211_CHAN_DISABLED)
2733				continue;
2734
2735			/* If we have a wireless request structure and the
2736			 * wireless request specifies frequencies, then search
2737			 * for the matching hardware channel.
2738			 */
2739			if (wreq && wreq->num_channels) {
2740				int k;
2741				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2742				for (k = 0; k < wreq->num_channels; k++) {
2743					struct iw_freq *freq =
2744						&wreq->channel_list[k];
2745					int wext_freq =
2746						cfg80211_wext_freq(freq);
2747
2748					if (wext_freq == wiphy_freq)
2749						goto wext_freq_found;
2750				}
2751				goto wext_freq_not_found;
2752			}
2753
2754		wext_freq_found:
2755			creq->channels[i] = &wiphy->bands[band]->channels[j];
2756			i++;
2757		wext_freq_not_found: ;
2758		}
2759	}
2760	/* No channels found? */
2761	if (!i) {
2762		err = -EINVAL;
2763		goto out;
2764	}
2765
2766	/* Set real number of channels specified in creq->channels[] */
2767	creq->n_channels = i;
2768
2769	/* translate "Scan for SSID" request */
2770	if (wreq) {
2771		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2772			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2773				err = -EINVAL;
2774				goto out;
2775			}
2776			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2777			creq->ssids[0].ssid_len = wreq->essid_len;
2778		}
2779		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2780			creq->n_ssids = 0;
2781	}
2782
2783	for (i = 0; i < NUM_NL80211_BANDS; i++)
2784		if (wiphy->bands[i])
2785			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2786
2787	eth_broadcast_addr(creq->bssid);
2788
2789	wiphy_lock(&rdev->wiphy);
2790
2791	rdev->scan_req = creq;
2792	err = rdev_scan(rdev, creq);
2793	if (err) {
2794		rdev->scan_req = NULL;
2795		/* creq will be freed below */
2796	} else {
2797		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2798		/* creq now owned by driver */
2799		creq = NULL;
2800		dev_hold(dev);
2801	}
2802	wiphy_unlock(&rdev->wiphy);
2803 out:
2804	kfree(creq);
2805	return err;
2806}
2807EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2808
2809static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2810				    const struct cfg80211_bss_ies *ies,
2811				    char *current_ev, char *end_buf)
2812{
2813	const u8 *pos, *end, *next;
2814	struct iw_event iwe;
2815
2816	if (!ies)
2817		return current_ev;
2818
2819	/*
2820	 * If needed, fragment the IEs buffer (at IE boundaries) into short
2821	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2822	 */
2823	pos = ies->data;
2824	end = pos + ies->len;
2825
2826	while (end - pos > IW_GENERIC_IE_MAX) {
2827		next = pos + 2 + pos[1];
2828		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2829			next = next + 2 + next[1];
2830
2831		memset(&iwe, 0, sizeof(iwe));
2832		iwe.cmd = IWEVGENIE;
2833		iwe.u.data.length = next - pos;
2834		current_ev = iwe_stream_add_point_check(info, current_ev,
2835							end_buf, &iwe,
2836							(void *)pos);
2837		if (IS_ERR(current_ev))
2838			return current_ev;
2839		pos = next;
2840	}
2841
2842	if (end > pos) {
2843		memset(&iwe, 0, sizeof(iwe));
2844		iwe.cmd = IWEVGENIE;
2845		iwe.u.data.length = end - pos;
2846		current_ev = iwe_stream_add_point_check(info, current_ev,
2847							end_buf, &iwe,
2848							(void *)pos);
2849		if (IS_ERR(current_ev))
2850			return current_ev;
2851	}
2852
2853	return current_ev;
2854}
2855
2856static char *
2857ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2858	      struct cfg80211_internal_bss *bss, char *current_ev,
2859	      char *end_buf)
2860{
2861	const struct cfg80211_bss_ies *ies;
2862	struct iw_event iwe;
2863	const u8 *ie;
2864	u8 buf[50];
2865	u8 *cfg, *p, *tmp;
2866	int rem, i, sig;
2867	bool ismesh = false;
2868
2869	memset(&iwe, 0, sizeof(iwe));
2870	iwe.cmd = SIOCGIWAP;
2871	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2872	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2873	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2874						IW_EV_ADDR_LEN);
2875	if (IS_ERR(current_ev))
2876		return current_ev;
2877
2878	memset(&iwe, 0, sizeof(iwe));
2879	iwe.cmd = SIOCGIWFREQ;
2880	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2881	iwe.u.freq.e = 0;
2882	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2883						IW_EV_FREQ_LEN);
2884	if (IS_ERR(current_ev))
2885		return current_ev;
2886
2887	memset(&iwe, 0, sizeof(iwe));
2888	iwe.cmd = SIOCGIWFREQ;
2889	iwe.u.freq.m = bss->pub.channel->center_freq;
2890	iwe.u.freq.e = 6;
2891	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2892						IW_EV_FREQ_LEN);
2893	if (IS_ERR(current_ev))
2894		return current_ev;
2895
2896	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2897		memset(&iwe, 0, sizeof(iwe));
2898		iwe.cmd = IWEVQUAL;
2899		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2900				     IW_QUAL_NOISE_INVALID |
2901				     IW_QUAL_QUAL_UPDATED;
2902		switch (wiphy->signal_type) {
2903		case CFG80211_SIGNAL_TYPE_MBM:
2904			sig = bss->pub.signal / 100;
2905			iwe.u.qual.level = sig;
2906			iwe.u.qual.updated |= IW_QUAL_DBM;
2907			if (sig < -110)		/* rather bad */
2908				sig = -110;
2909			else if (sig > -40)	/* perfect */
2910				sig = -40;
2911			/* will give a range of 0 .. 70 */
2912			iwe.u.qual.qual = sig + 110;
2913			break;
2914		case CFG80211_SIGNAL_TYPE_UNSPEC:
2915			iwe.u.qual.level = bss->pub.signal;
2916			/* will give range 0 .. 100 */
2917			iwe.u.qual.qual = bss->pub.signal;
2918			break;
2919		default:
2920			/* not reached */
2921			break;
2922		}
2923		current_ev = iwe_stream_add_event_check(info, current_ev,
2924							end_buf, &iwe,
2925							IW_EV_QUAL_LEN);
2926		if (IS_ERR(current_ev))
2927			return current_ev;
2928	}
2929
2930	memset(&iwe, 0, sizeof(iwe));
2931	iwe.cmd = SIOCGIWENCODE;
2932	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2933		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2934	else
2935		iwe.u.data.flags = IW_ENCODE_DISABLED;
2936	iwe.u.data.length = 0;
2937	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2938						&iwe, "");
2939	if (IS_ERR(current_ev))
2940		return current_ev;
2941
2942	rcu_read_lock();
2943	ies = rcu_dereference(bss->pub.ies);
2944	rem = ies->len;
2945	ie = ies->data;
2946
2947	while (rem >= 2) {
2948		/* invalid data */
2949		if (ie[1] > rem - 2)
2950			break;
2951
2952		switch (ie[0]) {
2953		case WLAN_EID_SSID:
2954			memset(&iwe, 0, sizeof(iwe));
2955			iwe.cmd = SIOCGIWESSID;
2956			iwe.u.data.length = ie[1];
2957			iwe.u.data.flags = 1;
2958			current_ev = iwe_stream_add_point_check(info,
2959								current_ev,
2960								end_buf, &iwe,
2961								(u8 *)ie + 2);
2962			if (IS_ERR(current_ev))
2963				goto unlock;
2964			break;
2965		case WLAN_EID_MESH_ID:
2966			memset(&iwe, 0, sizeof(iwe));
2967			iwe.cmd = SIOCGIWESSID;
2968			iwe.u.data.length = ie[1];
2969			iwe.u.data.flags = 1;
2970			current_ev = iwe_stream_add_point_check(info,
2971								current_ev,
2972								end_buf, &iwe,
2973								(u8 *)ie + 2);
2974			if (IS_ERR(current_ev))
2975				goto unlock;
2976			break;
2977		case WLAN_EID_MESH_CONFIG:
2978			ismesh = true;
2979			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2980				break;
2981			cfg = (u8 *)ie + 2;
2982			memset(&iwe, 0, sizeof(iwe));
2983			iwe.cmd = IWEVCUSTOM;
2984			sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2985				"0x%02X", cfg[0]);
2986			iwe.u.data.length = strlen(buf);
2987			current_ev = iwe_stream_add_point_check(info,
2988								current_ev,
2989								end_buf,
2990								&iwe, buf);
2991			if (IS_ERR(current_ev))
2992				goto unlock;
2993			sprintf(buf, "Path Selection Metric ID: 0x%02X",
2994				cfg[1]);
2995			iwe.u.data.length = strlen(buf);
2996			current_ev = iwe_stream_add_point_check(info,
2997								current_ev,
2998								end_buf,
2999								&iwe, buf);
3000			if (IS_ERR(current_ev))
3001				goto unlock;
3002			sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3003				cfg[2]);
3004			iwe.u.data.length = strlen(buf);
3005			current_ev = iwe_stream_add_point_check(info,
3006								current_ev,
3007								end_buf,
3008								&iwe, buf);
3009			if (IS_ERR(current_ev))
3010				goto unlock;
3011			sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3012			iwe.u.data.length = strlen(buf);
 
3013			current_ev = iwe_stream_add_point_check(info,
3014								current_ev,
3015								end_buf,
3016								&iwe, buf);
3017			if (IS_ERR(current_ev))
3018				goto unlock;
3019			sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3020			iwe.u.data.length = strlen(buf);
 
3021			current_ev = iwe_stream_add_point_check(info,
3022								current_ev,
3023								end_buf,
3024								&iwe, buf);
3025			if (IS_ERR(current_ev))
3026				goto unlock;
3027			sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3028			iwe.u.data.length = strlen(buf);
 
3029			current_ev = iwe_stream_add_point_check(info,
3030								current_ev,
3031								end_buf,
3032								&iwe, buf);
3033			if (IS_ERR(current_ev))
3034				goto unlock;
3035			sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3036			iwe.u.data.length = strlen(buf);
 
3037			current_ev = iwe_stream_add_point_check(info,
3038								current_ev,
3039								end_buf,
3040								&iwe, buf);
3041			if (IS_ERR(current_ev))
3042				goto unlock;
3043			break;
3044		case WLAN_EID_SUPP_RATES:
3045		case WLAN_EID_EXT_SUPP_RATES:
3046			/* display all supported rates in readable format */
3047			p = current_ev + iwe_stream_lcp_len(info);
3048
3049			memset(&iwe, 0, sizeof(iwe));
3050			iwe.cmd = SIOCGIWRATE;
3051			/* Those two flags are ignored... */
3052			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3053
3054			for (i = 0; i < ie[1]; i++) {
3055				iwe.u.bitrate.value =
3056					((ie[i + 2] & 0x7f) * 500000);
3057				tmp = p;
3058				p = iwe_stream_add_value(info, current_ev, p,
3059							 end_buf, &iwe,
3060							 IW_EV_PARAM_LEN);
3061				if (p == tmp) {
3062					current_ev = ERR_PTR(-E2BIG);
3063					goto unlock;
3064				}
3065			}
3066			current_ev = p;
3067			break;
3068		}
3069		rem -= ie[1] + 2;
3070		ie += ie[1] + 2;
3071	}
3072
3073	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3074	    ismesh) {
3075		memset(&iwe, 0, sizeof(iwe));
3076		iwe.cmd = SIOCGIWMODE;
3077		if (ismesh)
3078			iwe.u.mode = IW_MODE_MESH;
3079		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3080			iwe.u.mode = IW_MODE_MASTER;
3081		else
3082			iwe.u.mode = IW_MODE_ADHOC;
3083		current_ev = iwe_stream_add_event_check(info, current_ev,
3084							end_buf, &iwe,
3085							IW_EV_UINT_LEN);
3086		if (IS_ERR(current_ev))
3087			goto unlock;
3088	}
3089
3090	memset(&iwe, 0, sizeof(iwe));
3091	iwe.cmd = IWEVCUSTOM;
3092	sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3093	iwe.u.data.length = strlen(buf);
3094	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3095						&iwe, buf);
3096	if (IS_ERR(current_ev))
3097		goto unlock;
3098	memset(&iwe, 0, sizeof(iwe));
3099	iwe.cmd = IWEVCUSTOM;
3100	sprintf(buf, " Last beacon: %ums ago",
3101		elapsed_jiffies_msecs(bss->ts));
3102	iwe.u.data.length = strlen(buf);
3103	current_ev = iwe_stream_add_point_check(info, current_ev,
3104						end_buf, &iwe, buf);
3105	if (IS_ERR(current_ev))
3106		goto unlock;
3107
3108	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3109
3110 unlock:
3111	rcu_read_unlock();
3112	return current_ev;
3113}
3114
3115
3116static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3117				  struct iw_request_info *info,
3118				  char *buf, size_t len)
3119{
3120	char *current_ev = buf;
3121	char *end_buf = buf + len;
3122	struct cfg80211_internal_bss *bss;
3123	int err = 0;
3124
3125	spin_lock_bh(&rdev->bss_lock);
3126	cfg80211_bss_expire(rdev);
3127
3128	list_for_each_entry(bss, &rdev->bss_list, list) {
3129		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3130			err = -E2BIG;
3131			break;
3132		}
3133		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3134					   current_ev, end_buf);
3135		if (IS_ERR(current_ev)) {
3136			err = PTR_ERR(current_ev);
3137			break;
3138		}
3139	}
3140	spin_unlock_bh(&rdev->bss_lock);
3141
3142	if (err)
3143		return err;
3144	return current_ev - buf;
3145}
3146
3147
3148int cfg80211_wext_giwscan(struct net_device *dev,
3149			  struct iw_request_info *info,
3150			  struct iw_point *data, char *extra)
3151{
 
3152	struct cfg80211_registered_device *rdev;
3153	int res;
3154
3155	if (!netif_running(dev))
3156		return -ENETDOWN;
3157
3158	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3159
3160	if (IS_ERR(rdev))
3161		return PTR_ERR(rdev);
3162
3163	if (rdev->scan_req || rdev->scan_msg)
3164		return -EAGAIN;
3165
3166	res = ieee80211_scan_results(rdev, info, extra, data->length);
3167	data->length = 0;
3168	if (res >= 0) {
3169		data->length = res;
3170		res = 0;
3171	}
3172
3173	return res;
3174}
3175EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3176#endif
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * cfg80211 scan result handling
   4 *
   5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright 2016	Intel Deutschland GmbH
   8 * Copyright (C) 2018-2024 Intel Corporation
   9 */
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/module.h>
  13#include <linux/netdevice.h>
  14#include <linux/wireless.h>
  15#include <linux/nl80211.h>
  16#include <linux/etherdevice.h>
  17#include <linux/crc32.h>
  18#include <linux/bitfield.h>
  19#include <net/arp.h>
  20#include <net/cfg80211.h>
  21#include <net/cfg80211-wext.h>
  22#include <net/iw_handler.h>
  23#include <kunit/visibility.h>
  24#include "core.h"
  25#include "nl80211.h"
  26#include "wext-compat.h"
  27#include "rdev-ops.h"
  28
  29/**
  30 * DOC: BSS tree/list structure
  31 *
  32 * At the top level, the BSS list is kept in both a list in each
  33 * registered device (@bss_list) as well as an RB-tree for faster
  34 * lookup. In the RB-tree, entries can be looked up using their
  35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
  36 * for other BSSes.
  37 *
  38 * Due to the possibility of hidden SSIDs, there's a second level
  39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
  40 * The hidden_list connects all BSSes belonging to a single AP
  41 * that has a hidden SSID, and connects beacon and probe response
  42 * entries. For a probe response entry for a hidden SSID, the
  43 * hidden_beacon_bss pointer points to the BSS struct holding the
  44 * beacon's information.
  45 *
  46 * Reference counting is done for all these references except for
  47 * the hidden_list, so that a beacon BSS struct that is otherwise
  48 * not referenced has one reference for being on the bss_list and
  49 * one for each probe response entry that points to it using the
  50 * hidden_beacon_bss pointer. When a BSS struct that has such a
  51 * pointer is get/put, the refcount update is also propagated to
  52 * the referenced struct, this ensure that it cannot get removed
  53 * while somebody is using the probe response version.
  54 *
  55 * Note that the hidden_beacon_bss pointer never changes, due to
  56 * the reference counting. Therefore, no locking is needed for
  57 * it.
  58 *
  59 * Also note that the hidden_beacon_bss pointer is only relevant
  60 * if the driver uses something other than the IEs, e.g. private
  61 * data stored in the BSS struct, since the beacon IEs are
  62 * also linked into the probe response struct.
  63 */
  64
  65/*
  66 * Limit the number of BSS entries stored in mac80211. Each one is
  67 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
  68 * If somebody wants to really attack this though, they'd likely
  69 * use small beacons, and only one type of frame, limiting each of
  70 * the entries to a much smaller size (in order to generate more
  71 * entries in total, so overhead is bigger.)
  72 */
  73static int bss_entries_limit = 1000;
  74module_param(bss_entries_limit, int, 0644);
  75MODULE_PARM_DESC(bss_entries_limit,
  76                 "limit to number of scan BSS entries (per wiphy, default 1000)");
  77
  78#define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
  79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80static void bss_free(struct cfg80211_internal_bss *bss)
  81{
  82	struct cfg80211_bss_ies *ies;
  83
  84	if (WARN_ON(atomic_read(&bss->hold)))
  85		return;
  86
  87	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
  88	if (ies && !bss->pub.hidden_beacon_bss)
  89		kfree_rcu(ies, rcu_head);
  90	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
  91	if (ies)
  92		kfree_rcu(ies, rcu_head);
  93
  94	/*
  95	 * This happens when the module is removed, it doesn't
  96	 * really matter any more save for completeness
  97	 */
  98	if (!list_empty(&bss->hidden_list))
  99		list_del(&bss->hidden_list);
 100
 101	kfree(bss);
 102}
 103
 104static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
 105			       struct cfg80211_internal_bss *bss)
 106{
 107	lockdep_assert_held(&rdev->bss_lock);
 108
 109	bss->refcount++;
 110
 111	if (bss->pub.hidden_beacon_bss)
 112		bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
 113
 114	if (bss->pub.transmitted_bss)
 115		bss_from_pub(bss->pub.transmitted_bss)->refcount++;
 
 
 
 
 
 
 116}
 117
 118static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
 119			       struct cfg80211_internal_bss *bss)
 120{
 121	lockdep_assert_held(&rdev->bss_lock);
 122
 123	if (bss->pub.hidden_beacon_bss) {
 124		struct cfg80211_internal_bss *hbss;
 125
 126		hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
 
 127		hbss->refcount--;
 128		if (hbss->refcount == 0)
 129			bss_free(hbss);
 130	}
 131
 132	if (bss->pub.transmitted_bss) {
 133		struct cfg80211_internal_bss *tbss;
 134
 135		tbss = bss_from_pub(bss->pub.transmitted_bss);
 
 
 136		tbss->refcount--;
 137		if (tbss->refcount == 0)
 138			bss_free(tbss);
 139	}
 140
 141	bss->refcount--;
 142	if (bss->refcount == 0)
 143		bss_free(bss);
 144}
 145
 146static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
 147				  struct cfg80211_internal_bss *bss)
 148{
 149	lockdep_assert_held(&rdev->bss_lock);
 150
 151	if (!list_empty(&bss->hidden_list)) {
 152		/*
 153		 * don't remove the beacon entry if it has
 154		 * probe responses associated with it
 155		 */
 156		if (!bss->pub.hidden_beacon_bss)
 157			return false;
 158		/*
 159		 * if it's a probe response entry break its
 160		 * link to the other entries in the group
 161		 */
 162		list_del_init(&bss->hidden_list);
 163	}
 164
 165	list_del_init(&bss->list);
 166	list_del_init(&bss->pub.nontrans_list);
 167	rb_erase(&bss->rbn, &rdev->bss_tree);
 168	rdev->bss_entries--;
 169	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
 170		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
 171		  rdev->bss_entries, list_empty(&rdev->bss_list));
 172	bss_ref_put(rdev, bss);
 173	return true;
 174}
 175
 176bool cfg80211_is_element_inherited(const struct element *elem,
 177				   const struct element *non_inherit_elem)
 178{
 179	u8 id_len, ext_id_len, i, loop_len, id;
 180	const u8 *list;
 181
 182	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
 183		return false;
 184
 185	if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
 186	    elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
 187		return false;
 188
 189	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
 190		return true;
 191
 192	/*
 193	 * non inheritance element format is:
 194	 * ext ID (56) | IDs list len | list | extension IDs list len | list
 195	 * Both lists are optional. Both lengths are mandatory.
 196	 * This means valid length is:
 197	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
 198	 */
 199	id_len = non_inherit_elem->data[1];
 200	if (non_inherit_elem->datalen < 3 + id_len)
 201		return true;
 202
 203	ext_id_len = non_inherit_elem->data[2 + id_len];
 204	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
 205		return true;
 206
 207	if (elem->id == WLAN_EID_EXTENSION) {
 208		if (!ext_id_len)
 209			return true;
 210		loop_len = ext_id_len;
 211		list = &non_inherit_elem->data[3 + id_len];
 212		id = elem->data[0];
 213	} else {
 214		if (!id_len)
 215			return true;
 216		loop_len = id_len;
 217		list = &non_inherit_elem->data[2];
 218		id = elem->id;
 219	}
 220
 221	for (i = 0; i < loop_len; i++) {
 222		if (list[i] == id)
 223			return false;
 224	}
 225
 226	return true;
 227}
 228EXPORT_SYMBOL(cfg80211_is_element_inherited);
 229
 230static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
 231					    const u8 *ie, size_t ie_len,
 232					    u8 **pos, u8 *buf, size_t buf_len)
 233{
 234	if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
 235		    elem->data + elem->datalen > ie + ie_len))
 236		return 0;
 
 237
 238	if (elem->datalen + 2 > buf + buf_len - *pos)
 
 
 
 
 239		return 0;
 240
 241	memcpy(*pos, elem, elem->datalen + 2);
 242	*pos += elem->datalen + 2;
 243
 244	/* Finish if it is not fragmented  */
 245	if (elem->datalen != 255)
 246		return *pos - buf;
 247
 248	ie_len = ie + ie_len - elem->data - elem->datalen;
 249	ie = (const u8 *)elem->data + elem->datalen;
 250
 251	for_each_element(elem, ie, ie_len) {
 252		if (elem->id != WLAN_EID_FRAGMENT)
 253			break;
 254
 255		if (elem->datalen + 2 > buf + buf_len - *pos)
 256			return 0;
 257
 258		memcpy(*pos, elem, elem->datalen + 2);
 259		*pos += elem->datalen + 2;
 260
 261		if (elem->datalen != 255)
 262			break;
 263	}
 264
 265	return *pos - buf;
 266}
 
 
 267
 268VISIBLE_IF_CFG80211_KUNIT size_t
 269cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
 270		    const u8 *subie, size_t subie_len,
 271		    u8 *new_ie, size_t new_ie_len)
 272{
 273	const struct element *non_inherit_elem, *parent, *sub;
 274	u8 *pos = new_ie;
 275	u8 id, ext_id;
 276	unsigned int match_len;
 277
 278	non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
 279						  subie, subie_len);
 280
 281	/* We copy the elements one by one from the parent to the generated
 282	 * elements.
 283	 * If they are not inherited (included in subie or in the non
 284	 * inheritance element), then we copy all occurrences the first time
 285	 * we see this element type.
 286	 */
 287	for_each_element(parent, ie, ielen) {
 288		if (parent->id == WLAN_EID_FRAGMENT)
 289			continue;
 290
 291		if (parent->id == WLAN_EID_EXTENSION) {
 292			if (parent->datalen < 1)
 293				continue;
 294
 295			id = WLAN_EID_EXTENSION;
 296			ext_id = parent->data[0];
 297			match_len = 1;
 298		} else {
 299			id = parent->id;
 300			match_len = 0;
 301		}
 302
 303		/* Find first occurrence in subie */
 304		sub = cfg80211_find_elem_match(id, subie, subie_len,
 305					       &ext_id, match_len, 0);
 
 
 
 306
 307		/* Copy from parent if not in subie and inherited */
 308		if (!sub &&
 309		    cfg80211_is_element_inherited(parent, non_inherit_elem)) {
 310			if (!cfg80211_copy_elem_with_frags(parent,
 311							   ie, ielen,
 312							   &pos, new_ie,
 313							   new_ie_len))
 314				return 0;
 315
 316			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317		}
 318
 319		/* Already copied if an earlier element had the same type */
 320		if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
 321					     &ext_id, match_len, 0))
 322			continue;
 323
 324		/* Not inheriting, copy all similar elements from subie */
 325		while (sub) {
 326			if (!cfg80211_copy_elem_with_frags(sub,
 327							   subie, subie_len,
 328							   &pos, new_ie,
 329							   new_ie_len))
 330				return 0;
 331
 332			sub = cfg80211_find_elem_match(id,
 333						       sub->data + sub->datalen,
 334						       subie_len + subie -
 335						       (sub->data +
 336							sub->datalen),
 337						       &ext_id, match_len, 0);
 338		}
 339	}
 340
 341	/* The above misses elements that are included in subie but not in the
 342	 * parent, so do a pass over subie and append those.
 343	 * Skip the non-tx BSSID caps and non-inheritance element.
 344	 */
 345	for_each_element(sub, subie, subie_len) {
 346		if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
 347			continue;
 348
 349		if (sub->id == WLAN_EID_FRAGMENT)
 350			continue;
 351
 352		if (sub->id == WLAN_EID_EXTENSION) {
 353			if (sub->datalen < 1)
 354				continue;
 355
 356			id = WLAN_EID_EXTENSION;
 357			ext_id = sub->data[0];
 358			match_len = 1;
 359
 360			if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
 361				continue;
 362		} else {
 363			id = sub->id;
 364			match_len = 0;
 365		}
 366
 367		/* Processed if one was included in the parent */
 368		if (cfg80211_find_elem_match(id, ie, ielen,
 369					     &ext_id, match_len, 0))
 370			continue;
 371
 372		if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
 373						   &pos, new_ie, new_ie_len))
 374			return 0;
 375	}
 376
 
 377	return pos - new_ie;
 378}
 379EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
 380
 381static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
 382		   const u8 *ssid, size_t ssid_len)
 383{
 384	const struct cfg80211_bss_ies *ies;
 385	const struct element *ssid_elem;
 386
 387	if (bssid && !ether_addr_equal(a->bssid, bssid))
 388		return false;
 389
 390	if (!ssid)
 391		return true;
 392
 393	ies = rcu_access_pointer(a->ies);
 394	if (!ies)
 395		return false;
 396	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
 397	if (!ssid_elem)
 398		return false;
 399	if (ssid_elem->datalen != ssid_len)
 400		return false;
 401	return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
 402}
 403
 404static int
 405cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
 406			   struct cfg80211_bss *nontrans_bss)
 407{
 408	const struct element *ssid_elem;
 
 409	struct cfg80211_bss *bss = NULL;
 410
 411	rcu_read_lock();
 412	ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
 413	if (!ssid_elem) {
 414		rcu_read_unlock();
 415		return -EINVAL;
 416	}
 
 
 
 417
 418	/* check if nontrans_bss is in the list */
 419	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
 420		if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
 421			   ssid_elem->datalen)) {
 422			rcu_read_unlock();
 423			return 0;
 424		}
 425	}
 426
 427	rcu_read_unlock();
 428
 429	/*
 430	 * This is a bit weird - it's not on the list, but already on another
 431	 * one! The only way that could happen is if there's some BSSID/SSID
 432	 * shared by multiple APs in their multi-BSSID profiles, potentially
 433	 * with hidden SSID mixed in ... ignore it.
 434	 */
 435	if (!list_empty(&nontrans_bss->nontrans_list))
 436		return -EINVAL;
 437
 438	/* add to the list */
 439	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
 440	return 0;
 441}
 442
 443static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
 444				  unsigned long expire_time)
 445{
 446	struct cfg80211_internal_bss *bss, *tmp;
 447	bool expired = false;
 448
 449	lockdep_assert_held(&rdev->bss_lock);
 450
 451	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
 452		if (atomic_read(&bss->hold))
 453			continue;
 454		if (!time_after(expire_time, bss->ts))
 455			continue;
 456
 457		if (__cfg80211_unlink_bss(rdev, bss))
 458			expired = true;
 459	}
 460
 461	if (expired)
 462		rdev->bss_generation++;
 463}
 464
 465static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
 466{
 467	struct cfg80211_internal_bss *bss, *oldest = NULL;
 468	bool ret;
 469
 470	lockdep_assert_held(&rdev->bss_lock);
 471
 472	list_for_each_entry(bss, &rdev->bss_list, list) {
 473		if (atomic_read(&bss->hold))
 474			continue;
 475
 476		if (!list_empty(&bss->hidden_list) &&
 477		    !bss->pub.hidden_beacon_bss)
 478			continue;
 479
 480		if (oldest && time_before(oldest->ts, bss->ts))
 481			continue;
 482		oldest = bss;
 483	}
 484
 485	if (WARN_ON(!oldest))
 486		return false;
 487
 488	/*
 489	 * The callers make sure to increase rdev->bss_generation if anything
 490	 * gets removed (and a new entry added), so there's no need to also do
 491	 * it here.
 492	 */
 493
 494	ret = __cfg80211_unlink_bss(rdev, oldest);
 495	WARN_ON(!ret);
 496	return ret;
 497}
 498
 499static u8 cfg80211_parse_bss_param(u8 data,
 500				   struct cfg80211_colocated_ap *coloc_ap)
 501{
 502	coloc_ap->oct_recommended =
 503		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
 504	coloc_ap->same_ssid =
 505		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
 506	coloc_ap->multi_bss =
 507		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
 508	coloc_ap->transmitted_bssid =
 509		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
 510	coloc_ap->unsolicited_probe =
 511		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
 512	coloc_ap->colocated_ess =
 513		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
 514
 515	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
 516}
 517
 518static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
 519				    const struct element **elem, u32 *s_ssid)
 520{
 521
 522	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
 523	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
 524		return -EINVAL;
 525
 526	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
 527	return 0;
 528}
 529
 530VISIBLE_IF_CFG80211_KUNIT void
 531cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
 532{
 533	struct cfg80211_colocated_ap *ap, *tmp_ap;
 534
 535	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
 536		list_del(&ap->list);
 537		kfree(ap);
 538	}
 539}
 540EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
 541
 542static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
 543				  const u8 *pos, u8 length,
 544				  const struct element *ssid_elem,
 545				  u32 s_ssid_tmp)
 546{
 547	u8 bss_params;
 
 548
 549	entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
 
 550
 551	/* The length is already verified by the caller to contain bss_params */
 552	if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
 553		struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
 554
 555		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
 556		entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
 557		entry->short_ssid_valid = true;
 558
 559		bss_params = tbtt_info->bss_params;
 560
 561		/* Ignore disabled links */
 562		if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
 563			if (le16_get_bits(tbtt_info->mld_params.params,
 564					  IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
 565				return -EINVAL;
 566		}
 567
 568		if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
 569					  psd_20))
 570			entry->psd_20 = tbtt_info->psd_20;
 571	} else {
 572		struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
 573
 574		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
 575
 576		bss_params = tbtt_info->bss_params;
 577
 578		if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
 579					  psd_20))
 580			entry->psd_20 = tbtt_info->psd_20;
 581	}
 582
 583	/* ignore entries with invalid BSSID */
 584	if (!is_valid_ether_addr(entry->bssid))
 585		return -EINVAL;
 586
 587	/* skip non colocated APs */
 588	if (!cfg80211_parse_bss_param(bss_params, entry))
 589		return -EINVAL;
 
 590
 591	/* no information about the short ssid. Consider the entry valid
 592	 * for now. It would later be dropped in case there are explicit
 593	 * SSIDs that need to be matched
 594	 */
 595	if (!entry->same_ssid && !entry->short_ssid_valid)
 596		return 0;
 
 
 
 597
 598	if (entry->same_ssid) {
 599		entry->short_ssid = s_ssid_tmp;
 600		entry->short_ssid_valid = true;
 601
 602		/*
 603		 * This is safe because we validate datalen in
 604		 * cfg80211_parse_colocated_ap(), before calling this
 605		 * function.
 606		 */
 607		memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
 
 608		entry->ssid_len = ssid_elem->datalen;
 609	}
 610
 611	return 0;
 612}
 613
 614bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
 615		       enum cfg80211_rnr_iter_ret
 616		       (*iter)(void *data, u8 type,
 617			       const struct ieee80211_neighbor_ap_info *info,
 618			       const u8 *tbtt_info, u8 tbtt_info_len),
 619		       void *iter_data)
 620{
 621	const struct element *rnr;
 
 622	const u8 *pos, *end;
 
 
 
 
 
 
 
 
 
 
 
 623
 624	for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
 625			    elems, elems_len) {
 626		const struct ieee80211_neighbor_ap_info *info;
 627
 628		pos = rnr->data;
 629		end = rnr->data + rnr->datalen;
 630
 631		/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
 632		while (sizeof(*info) <= end - pos) {
 633			u8 length, i, count;
 634			u8 type;
 635
 636			info = (void *)pos;
 637			count = u8_get_bits(info->tbtt_info_hdr,
 638					    IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
 639				1;
 640			length = info->tbtt_info_len;
 641
 642			pos += sizeof(*info);
 643
 644			if (count * length > end - pos)
 645				return false;
 646
 647			type = u8_get_bits(info->tbtt_info_hdr,
 648					   IEEE80211_AP_INFO_TBTT_HDR_TYPE);
 649
 650			for (i = 0; i < count; i++) {
 651				switch (iter(iter_data, type, info,
 652					     pos, length)) {
 653				case RNR_ITER_CONTINUE:
 654					break;
 655				case RNR_ITER_BREAK:
 656					return true;
 657				case RNR_ITER_ERROR:
 658					return false;
 659				}
 660
 661				pos += length;
 662			}
 663		}
 
 664
 665		if (pos != end)
 666			return false;
 667	}
 668
 669	return true;
 670}
 671EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
 672
 673struct colocated_ap_data {
 674	const struct element *ssid_elem;
 675	struct list_head ap_list;
 676	u32 s_ssid_tmp;
 677	int n_coloc;
 678};
 679
 680static enum cfg80211_rnr_iter_ret
 681cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
 682				 const struct ieee80211_neighbor_ap_info *info,
 683				 const u8 *tbtt_info, u8 tbtt_info_len)
 684{
 685	struct colocated_ap_data *data = _data;
 686	struct cfg80211_colocated_ap *entry;
 687	enum nl80211_band band;
 688
 689	if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
 690		return RNR_ITER_CONTINUE;
 
 
 
 
 
 
 
 
 
 
 691
 692	if (!ieee80211_operating_class_to_band(info->op_class, &band))
 693		return RNR_ITER_CONTINUE;
 694
 695	/* TBTT info must include bss param + BSSID + (short SSID or
 696	 * same_ssid bit to be set). Ignore other options, and move to
 697	 * the next AP info
 698	 */
 699	if (band != NL80211_BAND_6GHZ ||
 700	    !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
 701					   bss_params) ||
 702	      tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
 703	      tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
 704					   bss_params)))
 705		return RNR_ITER_CONTINUE;
 706
 707	entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC);
 708	if (!entry)
 709		return RNR_ITER_ERROR;
 710
 711	entry->center_freq =
 712		ieee80211_channel_to_frequency(info->channel, band);
 713
 714	if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len,
 715				    data->ssid_elem, data->s_ssid_tmp)) {
 716		data->n_coloc++;
 717		list_add_tail(&entry->list, &data->ap_list);
 718	} else {
 719		kfree(entry);
 720	}
 721
 722	return RNR_ITER_CONTINUE;
 723}
 724
 725VISIBLE_IF_CFG80211_KUNIT int
 726cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
 727			    struct list_head *list)
 728{
 729	struct colocated_ap_data data = {};
 730	int ret;
 731
 732	INIT_LIST_HEAD(&data.ap_list);
 
 
 
 
 
 
 733
 734	ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp);
 735	if (ret)
 736		return 0;
 737
 738	if (!cfg80211_iter_rnr(ies->data, ies->len,
 739			       cfg80211_parse_colocated_ap_iter, &data)) {
 740		cfg80211_free_coloc_ap_list(&data.ap_list);
 741		return 0;
 742	}
 743
 744	list_splice_tail(&data.ap_list, list);
 745	return data.n_coloc;
 746}
 747EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
 748
 749static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
 750					struct ieee80211_channel *chan,
 751					bool add_to_6ghz)
 752{
 753	int i;
 754	u32 n_channels = request->n_channels;
 755	struct cfg80211_scan_6ghz_params *params =
 756		&request->scan_6ghz_params[request->n_6ghz_params];
 757
 758	for (i = 0; i < n_channels; i++) {
 759		if (request->channels[i] == chan) {
 760			if (add_to_6ghz)
 761				params->channel_idx = i;
 762			return;
 763		}
 764	}
 765
 766	request->channels[n_channels] = chan;
 767	if (add_to_6ghz)
 768		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
 769			n_channels;
 770
 771	request->n_channels++;
 772}
 773
 774static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
 775				     struct cfg80211_scan_request *request)
 776{
 777	int i;
 778	u32 s_ssid;
 779
 780	for (i = 0; i < request->n_ssids; i++) {
 781		/* wildcard ssid in the scan request */
 782		if (!request->ssids[i].ssid_len) {
 783			if (ap->multi_bss && !ap->transmitted_bssid)
 784				continue;
 785
 786			return true;
 787		}
 788
 789		if (ap->ssid_len &&
 790		    ap->ssid_len == request->ssids[i].ssid_len) {
 791			if (!memcmp(request->ssids[i].ssid, ap->ssid,
 792				    ap->ssid_len))
 793				return true;
 794		} else if (ap->short_ssid_valid) {
 795			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
 796					   request->ssids[i].ssid_len);
 797
 798			if (ap->short_ssid == s_ssid)
 799				return true;
 800		}
 801	}
 802
 803	return false;
 804}
 805
 806static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
 807{
 808	u8 i;
 809	struct cfg80211_colocated_ap *ap;
 810	int n_channels, count = 0, err;
 811	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
 812	LIST_HEAD(coloc_ap_list);
 813	bool need_scan_psc = true;
 814	const struct ieee80211_sband_iftype_data *iftd;
 815
 816	rdev_req->scan_6ghz = true;
 817
 818	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
 819		return -EOPNOTSUPP;
 820
 821	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
 822					       rdev_req->wdev->iftype);
 823	if (!iftd || !iftd->he_cap.has_he)
 824		return -EOPNOTSUPP;
 825
 826	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
 827
 828	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
 829		struct cfg80211_internal_bss *intbss;
 830
 831		spin_lock_bh(&rdev->bss_lock);
 832		list_for_each_entry(intbss, &rdev->bss_list, list) {
 833			struct cfg80211_bss *res = &intbss->pub;
 834			const struct cfg80211_bss_ies *ies;
 835			const struct element *ssid_elem;
 836			struct cfg80211_colocated_ap *entry;
 837			u32 s_ssid_tmp;
 838			int ret;
 839
 840			ies = rcu_access_pointer(res->ies);
 841			count += cfg80211_parse_colocated_ap(ies,
 842							     &coloc_ap_list);
 843
 844			/* In case the scan request specified a specific BSSID
 845			 * and the BSS is found and operating on 6GHz band then
 846			 * add this AP to the collocated APs list.
 847			 * This is relevant for ML probe requests when the lower
 848			 * band APs have not been discovered.
 849			 */
 850			if (is_broadcast_ether_addr(rdev_req->bssid) ||
 851			    !ether_addr_equal(rdev_req->bssid, res->bssid) ||
 852			    res->channel->band != NL80211_BAND_6GHZ)
 853				continue;
 854
 855			ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
 856						       &s_ssid_tmp);
 857			if (ret)
 858				continue;
 859
 860			entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
 861					GFP_ATOMIC);
 862
 863			if (!entry)
 864				continue;
 865
 866			memcpy(entry->bssid, res->bssid, ETH_ALEN);
 867			entry->short_ssid = s_ssid_tmp;
 868			memcpy(entry->ssid, ssid_elem->data,
 869			       ssid_elem->datalen);
 870			entry->ssid_len = ssid_elem->datalen;
 871			entry->short_ssid_valid = true;
 872			entry->center_freq = res->channel->center_freq;
 873
 874			list_add_tail(&entry->list, &coloc_ap_list);
 875			count++;
 876		}
 877		spin_unlock_bh(&rdev->bss_lock);
 878	}
 879
 880	request = kzalloc(struct_size(request, channels, n_channels) +
 881			  sizeof(*request->scan_6ghz_params) * count +
 882			  sizeof(*request->ssids) * rdev_req->n_ssids,
 883			  GFP_KERNEL);
 884	if (!request) {
 885		cfg80211_free_coloc_ap_list(&coloc_ap_list);
 886		return -ENOMEM;
 887	}
 888
 889	*request = *rdev_req;
 890	request->n_channels = 0;
 891	request->scan_6ghz_params =
 892		(void *)&request->channels[n_channels];
 893
 894	/*
 895	 * PSC channels should not be scanned in case of direct scan with 1 SSID
 896	 * and at least one of the reported co-located APs with same SSID
 897	 * indicating that all APs in the same ESS are co-located
 898	 */
 899	if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
 900		list_for_each_entry(ap, &coloc_ap_list, list) {
 901			if (ap->colocated_ess &&
 902			    cfg80211_find_ssid_match(ap, request)) {
 903				need_scan_psc = false;
 904				break;
 905			}
 906		}
 907	}
 908
 909	/*
 910	 * add to the scan request the channels that need to be scanned
 911	 * regardless of the collocated APs (PSC channels or all channels
 912	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
 913	 */
 914	for (i = 0; i < rdev_req->n_channels; i++) {
 915		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
 916		    ((need_scan_psc &&
 917		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
 918		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
 919			cfg80211_scan_req_add_chan(request,
 920						   rdev_req->channels[i],
 921						   false);
 922		}
 923	}
 924
 925	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
 926		goto skip;
 927
 928	list_for_each_entry(ap, &coloc_ap_list, list) {
 929		bool found = false;
 930		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
 931			&request->scan_6ghz_params[request->n_6ghz_params];
 932		struct ieee80211_channel *chan =
 933			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
 934
 935		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
 936			continue;
 937
 938		for (i = 0; i < rdev_req->n_channels; i++) {
 939			if (rdev_req->channels[i] == chan)
 940				found = true;
 941		}
 942
 943		if (!found)
 944			continue;
 945
 946		if (request->n_ssids > 0 &&
 947		    !cfg80211_find_ssid_match(ap, request))
 948			continue;
 949
 950		if (!is_broadcast_ether_addr(request->bssid) &&
 951		    !ether_addr_equal(request->bssid, ap->bssid))
 952			continue;
 953
 954		if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
 955			continue;
 956
 957		cfg80211_scan_req_add_chan(request, chan, true);
 958		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
 959		scan_6ghz_params->short_ssid = ap->short_ssid;
 960		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
 961		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
 962		scan_6ghz_params->psd_20 = ap->psd_20;
 963
 964		/*
 965		 * If a PSC channel is added to the scan and 'need_scan_psc' is
 966		 * set to false, then all the APs that the scan logic is
 967		 * interested with on the channel are collocated and thus there
 968		 * is no need to perform the initial PSC channel listen.
 969		 */
 970		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
 971			scan_6ghz_params->psc_no_listen = true;
 972
 973		request->n_6ghz_params++;
 974	}
 975
 976skip:
 977	cfg80211_free_coloc_ap_list(&coloc_ap_list);
 978
 979	if (request->n_channels) {
 980		struct cfg80211_scan_request *old = rdev->int_scan_req;
 981		rdev->int_scan_req = request;
 982
 983		/*
 984		 * Add the ssids from the parent scan request to the new scan
 985		 * request, so the driver would be able to use them in its
 986		 * probe requests to discover hidden APs on PSC channels.
 987		 */
 988		request->ssids = (void *)&request->channels[request->n_channels];
 989		request->n_ssids = rdev_req->n_ssids;
 990		memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
 991		       request->n_ssids);
 992
 993		/*
 994		 * If this scan follows a previous scan, save the scan start
 995		 * info from the first part of the scan
 996		 */
 997		if (old)
 998			rdev->int_scan_req->info = old->info;
 999
1000		err = rdev_scan(rdev, request);
1001		if (err) {
1002			rdev->int_scan_req = old;
1003			kfree(request);
1004		} else {
1005			kfree(old);
1006		}
1007
1008		return err;
1009	}
1010
1011	kfree(request);
1012	return -EINVAL;
1013}
1014
1015int cfg80211_scan(struct cfg80211_registered_device *rdev)
1016{
1017	struct cfg80211_scan_request *request;
1018	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1019	u32 n_channels = 0, idx, i;
1020
1021	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1022		return rdev_scan(rdev, rdev_req);
1023
1024	for (i = 0; i < rdev_req->n_channels; i++) {
1025		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1026			n_channels++;
1027	}
1028
1029	if (!n_channels)
1030		return cfg80211_scan_6ghz(rdev);
1031
1032	request = kzalloc(struct_size(request, channels, n_channels),
1033			  GFP_KERNEL);
1034	if (!request)
1035		return -ENOMEM;
1036
1037	*request = *rdev_req;
1038	request->n_channels = n_channels;
1039
1040	for (i = idx = 0; i < rdev_req->n_channels; i++) {
1041		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1042			request->channels[idx++] = rdev_req->channels[i];
1043	}
1044
1045	rdev_req->scan_6ghz = false;
1046	rdev->int_scan_req = request;
1047	return rdev_scan(rdev, request);
1048}
1049
1050void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1051			   bool send_message)
1052{
1053	struct cfg80211_scan_request *request, *rdev_req;
1054	struct wireless_dev *wdev;
1055	struct sk_buff *msg;
1056#ifdef CONFIG_CFG80211_WEXT
1057	union iwreq_data wrqu;
1058#endif
1059
1060	lockdep_assert_held(&rdev->wiphy.mtx);
1061
1062	if (rdev->scan_msg) {
1063		nl80211_send_scan_msg(rdev, rdev->scan_msg);
1064		rdev->scan_msg = NULL;
1065		return;
1066	}
1067
1068	rdev_req = rdev->scan_req;
1069	if (!rdev_req)
1070		return;
1071
1072	wdev = rdev_req->wdev;
1073	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1074
1075	if (wdev_running(wdev) &&
1076	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1077	    !rdev_req->scan_6ghz && !request->info.aborted &&
1078	    !cfg80211_scan_6ghz(rdev))
1079		return;
1080
1081	/*
1082	 * This must be before sending the other events!
1083	 * Otherwise, wpa_supplicant gets completely confused with
1084	 * wext events.
1085	 */
1086	if (wdev->netdev)
1087		cfg80211_sme_scan_done(wdev->netdev);
1088
1089	if (!request->info.aborted &&
1090	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
1091		/* flush entries from previous scans */
1092		spin_lock_bh(&rdev->bss_lock);
1093		__cfg80211_bss_expire(rdev, request->scan_start);
1094		spin_unlock_bh(&rdev->bss_lock);
1095	}
1096
1097	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1098
1099#ifdef CONFIG_CFG80211_WEXT
1100	if (wdev->netdev && !request->info.aborted) {
1101		memset(&wrqu, 0, sizeof(wrqu));
1102
1103		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1104	}
1105#endif
1106
1107	dev_put(wdev->netdev);
 
1108
1109	kfree(rdev->int_scan_req);
1110	rdev->int_scan_req = NULL;
1111
1112	kfree(rdev->scan_req);
1113	rdev->scan_req = NULL;
1114
1115	if (!send_message)
1116		rdev->scan_msg = msg;
1117	else
1118		nl80211_send_scan_msg(rdev, msg);
1119}
1120
1121void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1122{
1123	___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
 
 
 
 
 
 
 
1124}
1125
1126void cfg80211_scan_done(struct cfg80211_scan_request *request,
1127			struct cfg80211_scan_info *info)
1128{
1129	struct cfg80211_scan_info old_info = request->info;
1130
1131	trace_cfg80211_scan_done(request, info);
1132	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1133		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1134
1135	request->info = *info;
1136
1137	/*
1138	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1139	 * be of the first part. In such a case old_info.scan_start_tsf should
1140	 * be non zero.
1141	 */
1142	if (request->scan_6ghz && old_info.scan_start_tsf) {
1143		request->info.scan_start_tsf = old_info.scan_start_tsf;
1144		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1145		       sizeof(request->info.tsf_bssid));
1146	}
1147
1148	request->notified = true;
1149	wiphy_work_queue(request->wiphy,
1150			 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1151}
1152EXPORT_SYMBOL(cfg80211_scan_done);
1153
1154void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1155				 struct cfg80211_sched_scan_request *req)
1156{
1157	lockdep_assert_held(&rdev->wiphy.mtx);
1158
1159	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1160}
1161
1162static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1163					struct cfg80211_sched_scan_request *req)
1164{
1165	lockdep_assert_held(&rdev->wiphy.mtx);
1166
1167	list_del_rcu(&req->list);
1168	kfree_rcu(req, rcu_head);
1169}
1170
1171static struct cfg80211_sched_scan_request *
1172cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1173{
1174	struct cfg80211_sched_scan_request *pos;
1175
1176	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1177				lockdep_is_held(&rdev->wiphy.mtx)) {
1178		if (pos->reqid == reqid)
1179			return pos;
1180	}
1181	return NULL;
1182}
1183
1184/*
1185 * Determines if a scheduled scan request can be handled. When a legacy
1186 * scheduled scan is running no other scheduled scan is allowed regardless
1187 * whether the request is for legacy or multi-support scan. When a multi-support
1188 * scheduled scan is running a request for legacy scan is not allowed. In this
1189 * case a request for multi-support scan can be handled if resources are
1190 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1191 */
1192int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1193				     bool want_multi)
1194{
1195	struct cfg80211_sched_scan_request *pos;
1196	int i = 0;
1197
1198	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1199		/* request id zero means legacy in progress */
1200		if (!i && !pos->reqid)
1201			return -EINPROGRESS;
1202		i++;
1203	}
1204
1205	if (i) {
1206		/* no legacy allowed when multi request(s) are active */
1207		if (!want_multi)
1208			return -EINPROGRESS;
1209
1210		/* resource limit reached */
1211		if (i == rdev->wiphy.max_sched_scan_reqs)
1212			return -ENOSPC;
1213	}
1214	return 0;
1215}
1216
1217void cfg80211_sched_scan_results_wk(struct work_struct *work)
1218{
1219	struct cfg80211_registered_device *rdev;
1220	struct cfg80211_sched_scan_request *req, *tmp;
1221
1222	rdev = container_of(work, struct cfg80211_registered_device,
1223			   sched_scan_res_wk);
1224
1225	wiphy_lock(&rdev->wiphy);
1226	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1227		if (req->report_results) {
1228			req->report_results = false;
1229			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1230				/* flush entries from previous scans */
1231				spin_lock_bh(&rdev->bss_lock);
1232				__cfg80211_bss_expire(rdev, req->scan_start);
1233				spin_unlock_bh(&rdev->bss_lock);
1234				req->scan_start = jiffies;
1235			}
1236			nl80211_send_sched_scan(req,
1237						NL80211_CMD_SCHED_SCAN_RESULTS);
1238		}
1239	}
1240	wiphy_unlock(&rdev->wiphy);
1241}
1242
1243void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1244{
1245	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1246	struct cfg80211_sched_scan_request *request;
1247
1248	trace_cfg80211_sched_scan_results(wiphy, reqid);
1249	/* ignore if we're not scanning */
1250
1251	rcu_read_lock();
1252	request = cfg80211_find_sched_scan_req(rdev, reqid);
1253	if (request) {
1254		request->report_results = true;
1255		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1256	}
1257	rcu_read_unlock();
1258}
1259EXPORT_SYMBOL(cfg80211_sched_scan_results);
1260
1261void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1262{
1263	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1264
1265	lockdep_assert_held(&wiphy->mtx);
1266
1267	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1268
1269	__cfg80211_stop_sched_scan(rdev, reqid, true);
1270}
1271EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1272
1273void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1274{
1275	wiphy_lock(wiphy);
1276	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1277	wiphy_unlock(wiphy);
1278}
1279EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1280
1281int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1282				 struct cfg80211_sched_scan_request *req,
1283				 bool driver_initiated)
1284{
1285	lockdep_assert_held(&rdev->wiphy.mtx);
1286
1287	if (!driver_initiated) {
1288		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1289		if (err)
1290			return err;
1291	}
1292
1293	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1294
1295	cfg80211_del_sched_scan_req(rdev, req);
1296
1297	return 0;
1298}
1299
1300int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1301			       u64 reqid, bool driver_initiated)
1302{
1303	struct cfg80211_sched_scan_request *sched_scan_req;
1304
1305	lockdep_assert_held(&rdev->wiphy.mtx);
1306
1307	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1308	if (!sched_scan_req)
1309		return -ENOENT;
1310
1311	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1312					    driver_initiated);
1313}
1314
1315void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1316                      unsigned long age_secs)
1317{
1318	struct cfg80211_internal_bss *bss;
1319	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1320
1321	spin_lock_bh(&rdev->bss_lock);
1322	list_for_each_entry(bss, &rdev->bss_list, list)
1323		bss->ts -= age_jiffies;
1324	spin_unlock_bh(&rdev->bss_lock);
1325}
1326
1327void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1328{
1329	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1330}
1331
1332void cfg80211_bss_flush(struct wiphy *wiphy)
1333{
1334	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1335
1336	spin_lock_bh(&rdev->bss_lock);
1337	__cfg80211_bss_expire(rdev, jiffies);
1338	spin_unlock_bh(&rdev->bss_lock);
1339}
1340EXPORT_SYMBOL(cfg80211_bss_flush);
1341
1342const struct element *
1343cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1344			 const u8 *match, unsigned int match_len,
1345			 unsigned int match_offset)
1346{
1347	const struct element *elem;
1348
1349	for_each_element_id(elem, eid, ies, len) {
1350		if (elem->datalen >= match_offset + match_len &&
1351		    !memcmp(elem->data + match_offset, match, match_len))
1352			return elem;
1353	}
1354
1355	return NULL;
1356}
1357EXPORT_SYMBOL(cfg80211_find_elem_match);
1358
1359const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1360						const u8 *ies,
1361						unsigned int len)
1362{
1363	const struct element *elem;
1364	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1365	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1366
1367	if (WARN_ON(oui_type > 0xff))
1368		return NULL;
1369
1370	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1371					match, match_len, 0);
1372
1373	if (!elem || elem->datalen < 4)
1374		return NULL;
1375
1376	return elem;
1377}
1378EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1379
1380/**
1381 * enum bss_compare_mode - BSS compare mode
1382 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1383 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1384 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1385 */
1386enum bss_compare_mode {
1387	BSS_CMP_REGULAR,
1388	BSS_CMP_HIDE_ZLEN,
1389	BSS_CMP_HIDE_NUL,
1390};
1391
1392static int cmp_bss(struct cfg80211_bss *a,
1393		   struct cfg80211_bss *b,
1394		   enum bss_compare_mode mode)
1395{
1396	const struct cfg80211_bss_ies *a_ies, *b_ies;
1397	const u8 *ie1 = NULL;
1398	const u8 *ie2 = NULL;
1399	int i, r;
1400
1401	if (a->channel != b->channel)
1402		return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1403		       (a->channel->center_freq * 1000 + a->channel->freq_offset);
1404
1405	a_ies = rcu_access_pointer(a->ies);
1406	if (!a_ies)
1407		return -1;
1408	b_ies = rcu_access_pointer(b->ies);
1409	if (!b_ies)
1410		return 1;
1411
1412	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1413		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1414				       a_ies->data, a_ies->len);
1415	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1416		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1417				       b_ies->data, b_ies->len);
1418	if (ie1 && ie2) {
1419		int mesh_id_cmp;
1420
1421		if (ie1[1] == ie2[1])
1422			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1423		else
1424			mesh_id_cmp = ie2[1] - ie1[1];
1425
1426		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1427				       a_ies->data, a_ies->len);
1428		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1429				       b_ies->data, b_ies->len);
1430		if (ie1 && ie2) {
1431			if (mesh_id_cmp)
1432				return mesh_id_cmp;
1433			if (ie1[1] != ie2[1])
1434				return ie2[1] - ie1[1];
1435			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1436		}
1437	}
1438
1439	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1440	if (r)
1441		return r;
1442
1443	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1444	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1445
1446	if (!ie1 && !ie2)
1447		return 0;
1448
1449	/*
1450	 * Note that with "hide_ssid", the function returns a match if
1451	 * the already-present BSS ("b") is a hidden SSID beacon for
1452	 * the new BSS ("a").
1453	 */
1454
1455	/* sort missing IE before (left of) present IE */
1456	if (!ie1)
1457		return -1;
1458	if (!ie2)
1459		return 1;
1460
1461	switch (mode) {
1462	case BSS_CMP_HIDE_ZLEN:
1463		/*
1464		 * In ZLEN mode we assume the BSS entry we're
1465		 * looking for has a zero-length SSID. So if
1466		 * the one we're looking at right now has that,
1467		 * return 0. Otherwise, return the difference
1468		 * in length, but since we're looking for the
1469		 * 0-length it's really equivalent to returning
1470		 * the length of the one we're looking at.
1471		 *
1472		 * No content comparison is needed as we assume
1473		 * the content length is zero.
1474		 */
1475		return ie2[1];
1476	case BSS_CMP_REGULAR:
1477	default:
1478		/* sort by length first, then by contents */
1479		if (ie1[1] != ie2[1])
1480			return ie2[1] - ie1[1];
1481		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1482	case BSS_CMP_HIDE_NUL:
1483		if (ie1[1] != ie2[1])
1484			return ie2[1] - ie1[1];
1485		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1486		for (i = 0; i < ie2[1]; i++)
1487			if (ie2[i + 2])
1488				return -1;
1489		return 0;
1490	}
1491}
1492
1493static bool cfg80211_bss_type_match(u16 capability,
1494				    enum nl80211_band band,
1495				    enum ieee80211_bss_type bss_type)
1496{
1497	bool ret = true;
1498	u16 mask, val;
1499
1500	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1501		return ret;
1502
1503	if (band == NL80211_BAND_60GHZ) {
1504		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1505		switch (bss_type) {
1506		case IEEE80211_BSS_TYPE_ESS:
1507			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1508			break;
1509		case IEEE80211_BSS_TYPE_PBSS:
1510			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1511			break;
1512		case IEEE80211_BSS_TYPE_IBSS:
1513			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1514			break;
1515		default:
1516			return false;
1517		}
1518	} else {
1519		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1520		switch (bss_type) {
1521		case IEEE80211_BSS_TYPE_ESS:
1522			val = WLAN_CAPABILITY_ESS;
1523			break;
1524		case IEEE80211_BSS_TYPE_IBSS:
1525			val = WLAN_CAPABILITY_IBSS;
1526			break;
1527		case IEEE80211_BSS_TYPE_MBSS:
1528			val = 0;
1529			break;
1530		default:
1531			return false;
1532		}
1533	}
1534
1535	ret = ((capability & mask) == val);
1536	return ret;
1537}
1538
1539/* Returned bss is reference counted and must be cleaned up appropriately. */
1540struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1541					struct ieee80211_channel *channel,
1542					const u8 *bssid,
1543					const u8 *ssid, size_t ssid_len,
1544					enum ieee80211_bss_type bss_type,
1545					enum ieee80211_privacy privacy,
1546					u32 use_for)
1547{
1548	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1549	struct cfg80211_internal_bss *bss, *res = NULL;
1550	unsigned long now = jiffies;
1551	int bss_privacy;
1552
1553	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1554			       privacy);
1555
1556	spin_lock_bh(&rdev->bss_lock);
1557
1558	list_for_each_entry(bss, &rdev->bss_list, list) {
1559		if (!cfg80211_bss_type_match(bss->pub.capability,
1560					     bss->pub.channel->band, bss_type))
1561			continue;
1562
1563		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1564		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1565		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1566			continue;
1567		if (channel && bss->pub.channel != channel)
1568			continue;
1569		if (!is_valid_ether_addr(bss->pub.bssid))
1570			continue;
1571		if ((bss->pub.use_for & use_for) != use_for)
1572			continue;
1573		/* Don't get expired BSS structs */
1574		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1575		    !atomic_read(&bss->hold))
1576			continue;
1577		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1578			res = bss;
1579			bss_ref_get(rdev, res);
1580			break;
1581		}
1582	}
1583
1584	spin_unlock_bh(&rdev->bss_lock);
1585	if (!res)
1586		return NULL;
1587	trace_cfg80211_return_bss(&res->pub);
1588	return &res->pub;
1589}
1590EXPORT_SYMBOL(__cfg80211_get_bss);
1591
1592static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1593			  struct cfg80211_internal_bss *bss)
1594{
1595	struct rb_node **p = &rdev->bss_tree.rb_node;
1596	struct rb_node *parent = NULL;
1597	struct cfg80211_internal_bss *tbss;
1598	int cmp;
1599
1600	while (*p) {
1601		parent = *p;
1602		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1603
1604		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1605
1606		if (WARN_ON(!cmp)) {
1607			/* will sort of leak this BSS */
1608			return;
1609		}
1610
1611		if (cmp < 0)
1612			p = &(*p)->rb_left;
1613		else
1614			p = &(*p)->rb_right;
1615	}
1616
1617	rb_link_node(&bss->rbn, parent, p);
1618	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1619}
1620
1621static struct cfg80211_internal_bss *
1622rb_find_bss(struct cfg80211_registered_device *rdev,
1623	    struct cfg80211_internal_bss *res,
1624	    enum bss_compare_mode mode)
1625{
1626	struct rb_node *n = rdev->bss_tree.rb_node;
1627	struct cfg80211_internal_bss *bss;
1628	int r;
1629
1630	while (n) {
1631		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1632		r = cmp_bss(&res->pub, &bss->pub, mode);
1633
1634		if (r == 0)
1635			return bss;
1636		else if (r < 0)
1637			n = n->rb_left;
1638		else
1639			n = n->rb_right;
1640	}
1641
1642	return NULL;
1643}
1644
1645static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1646				   struct cfg80211_internal_bss *new)
1647{
1648	const struct cfg80211_bss_ies *ies;
1649	struct cfg80211_internal_bss *bss;
1650	const u8 *ie;
1651	int i, ssidlen;
1652	u8 fold = 0;
1653	u32 n_entries = 0;
1654
1655	ies = rcu_access_pointer(new->pub.beacon_ies);
1656	if (WARN_ON(!ies))
1657		return false;
1658
1659	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1660	if (!ie) {
1661		/* nothing to do */
1662		return true;
1663	}
1664
1665	ssidlen = ie[1];
1666	for (i = 0; i < ssidlen; i++)
1667		fold |= ie[2 + i];
1668
1669	if (fold) {
1670		/* not a hidden SSID */
1671		return true;
1672	}
1673
1674	/* This is the bad part ... */
1675
1676	list_for_each_entry(bss, &rdev->bss_list, list) {
1677		/*
1678		 * we're iterating all the entries anyway, so take the
1679		 * opportunity to validate the list length accounting
1680		 */
1681		n_entries++;
1682
1683		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1684			continue;
1685		if (bss->pub.channel != new->pub.channel)
1686			continue;
 
 
1687		if (rcu_access_pointer(bss->pub.beacon_ies))
1688			continue;
1689		ies = rcu_access_pointer(bss->pub.ies);
1690		if (!ies)
1691			continue;
1692		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1693		if (!ie)
1694			continue;
1695		if (ssidlen && ie[1] != ssidlen)
1696			continue;
1697		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1698			continue;
1699		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1700			list_del(&bss->hidden_list);
1701		/* combine them */
1702		list_add(&bss->hidden_list, &new->hidden_list);
1703		bss->pub.hidden_beacon_bss = &new->pub;
1704		new->refcount += bss->refcount;
1705		rcu_assign_pointer(bss->pub.beacon_ies,
1706				   new->pub.beacon_ies);
1707	}
1708
1709	WARN_ONCE(n_entries != rdev->bss_entries,
1710		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1711		  rdev->bss_entries, n_entries);
1712
1713	return true;
1714}
1715
1716static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1717					 const struct cfg80211_bss_ies *new_ies,
1718					 const struct cfg80211_bss_ies *old_ies)
1719{
1720	struct cfg80211_internal_bss *bss;
1721
1722	/* Assign beacon IEs to all sub entries */
1723	list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1724		const struct cfg80211_bss_ies *ies;
1725
1726		ies = rcu_access_pointer(bss->pub.beacon_ies);
1727		WARN_ON(ies != old_ies);
1728
1729		rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1730	}
1731}
1732
1733static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1734				      struct cfg80211_internal_bss *known,
1735				      const struct cfg80211_bss_ies *old)
1736{
1737	const struct ieee80211_ext_chansw_ie *ecsa;
1738	const struct element *elem_new, *elem_old;
1739	const struct cfg80211_bss_ies *new, *bcn;
1740
1741	if (known->pub.proberesp_ecsa_stuck)
1742		return;
1743
1744	new = rcu_dereference_protected(known->pub.proberesp_ies,
1745					lockdep_is_held(&rdev->bss_lock));
1746	if (WARN_ON(!new))
1747		return;
1748
1749	if (new->tsf - old->tsf < USEC_PER_SEC)
1750		return;
1751
1752	elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1753				      old->data, old->len);
1754	if (!elem_old)
1755		return;
1756
1757	elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1758				      new->data, new->len);
1759	if (!elem_new)
1760		return;
1761
1762	bcn = rcu_dereference_protected(known->pub.beacon_ies,
1763					lockdep_is_held(&rdev->bss_lock));
1764	if (bcn &&
1765	    cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1766			       bcn->data, bcn->len))
1767		return;
1768
1769	if (elem_new->datalen != elem_old->datalen)
1770		return;
1771	if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1772		return;
1773	if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1774		return;
1775
1776	ecsa = (void *)elem_new->data;
1777
1778	if (!ecsa->mode)
1779		return;
1780
1781	if (ecsa->new_ch_num !=
1782	    ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1783		return;
1784
1785	known->pub.proberesp_ecsa_stuck = 1;
1786}
1787
1788static bool
1789cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1790			  struct cfg80211_internal_bss *known,
1791			  struct cfg80211_internal_bss *new,
1792			  bool signal_valid)
1793{
1794	lockdep_assert_held(&rdev->bss_lock);
1795
1796	/* Update IEs */
1797	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1798		const struct cfg80211_bss_ies *old;
1799
1800		old = rcu_access_pointer(known->pub.proberesp_ies);
1801
1802		rcu_assign_pointer(known->pub.proberesp_ies,
1803				   new->pub.proberesp_ies);
1804		/* Override possible earlier Beacon frame IEs */
1805		rcu_assign_pointer(known->pub.ies,
1806				   new->pub.proberesp_ies);
1807		if (old) {
1808			cfg80211_check_stuck_ecsa(rdev, known, old);
1809			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1810		}
1811	}
1812
1813	if (rcu_access_pointer(new->pub.beacon_ies)) {
1814		const struct cfg80211_bss_ies *old;
 
1815
1816		if (known->pub.hidden_beacon_bss &&
1817		    !list_empty(&known->hidden_list)) {
1818			const struct cfg80211_bss_ies *f;
1819
1820			/* The known BSS struct is one of the probe
1821			 * response members of a group, but we're
1822			 * receiving a beacon (beacon_ies in the new
1823			 * bss is used). This can only mean that the
1824			 * AP changed its beacon from not having an
1825			 * SSID to showing it, which is confusing so
1826			 * drop this information.
1827			 */
1828
1829			f = rcu_access_pointer(new->pub.beacon_ies);
1830			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1831			return false;
1832		}
1833
1834		old = rcu_access_pointer(known->pub.beacon_ies);
1835
1836		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1837
1838		/* Override IEs if they were from a beacon before */
1839		if (old == rcu_access_pointer(known->pub.ies))
1840			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1841
1842		cfg80211_update_hidden_bsses(known,
1843					     rcu_access_pointer(new->pub.beacon_ies),
1844					     old);
 
 
 
 
 
 
 
1845
1846		if (old)
1847			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1848	}
1849
1850	known->pub.beacon_interval = new->pub.beacon_interval;
1851
1852	/* don't update the signal if beacon was heard on
1853	 * adjacent channel.
1854	 */
1855	if (signal_valid)
1856		known->pub.signal = new->pub.signal;
1857	known->pub.capability = new->pub.capability;
1858	known->ts = new->ts;
1859	known->ts_boottime = new->ts_boottime;
1860	known->parent_tsf = new->parent_tsf;
1861	known->pub.chains = new->pub.chains;
1862	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1863	       IEEE80211_MAX_CHAINS);
1864	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1865	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1866	known->pub.bssid_index = new->pub.bssid_index;
1867	known->pub.use_for &= new->pub.use_for;
1868	known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1869
1870	return true;
1871}
1872
1873/* Returned bss is reference counted and must be cleaned up appropriately. */
1874static struct cfg80211_internal_bss *
1875__cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1876		      struct cfg80211_internal_bss *tmp,
1877		      bool signal_valid, unsigned long ts)
1878{
1879	struct cfg80211_internal_bss *found = NULL;
1880	struct cfg80211_bss_ies *ies;
1881
1882	if (WARN_ON(!tmp->pub.channel))
1883		goto free_ies;
1884
1885	tmp->ts = ts;
1886
1887	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1888		goto free_ies;
 
 
 
 
1889
1890	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1891
1892	if (found) {
1893		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1894			return NULL;
1895	} else {
1896		struct cfg80211_internal_bss *new;
1897		struct cfg80211_internal_bss *hidden;
 
1898
1899		/*
1900		 * create a copy -- the "res" variable that is passed in
1901		 * is allocated on the stack since it's not needed in the
1902		 * more common case of an update
1903		 */
1904		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1905			      GFP_ATOMIC);
1906		if (!new)
1907			goto free_ies;
 
 
 
 
 
 
 
1908		memcpy(new, tmp, sizeof(*new));
1909		new->refcount = 1;
1910		INIT_LIST_HEAD(&new->hidden_list);
1911		INIT_LIST_HEAD(&new->pub.nontrans_list);
1912		/* we'll set this later if it was non-NULL */
1913		new->pub.transmitted_bss = NULL;
1914
1915		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1916			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1917			if (!hidden)
1918				hidden = rb_find_bss(rdev, tmp,
1919						     BSS_CMP_HIDE_NUL);
1920			if (hidden) {
1921				new->pub.hidden_beacon_bss = &hidden->pub;
1922				list_add(&new->hidden_list,
1923					 &hidden->hidden_list);
1924				hidden->refcount++;
1925
1926				ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1927				rcu_assign_pointer(new->pub.beacon_ies,
1928						   hidden->pub.beacon_ies);
1929				if (ies)
1930					kfree_rcu(ies, rcu_head);
1931			}
1932		} else {
1933			/*
1934			 * Ok so we found a beacon, and don't have an entry. If
1935			 * it's a beacon with hidden SSID, we might be in for an
1936			 * expensive search for any probe responses that should
1937			 * be grouped with this beacon for updates ...
1938			 */
1939			if (!cfg80211_combine_bsses(rdev, new)) {
1940				bss_ref_put(rdev, new);
1941				return NULL;
1942			}
1943		}
1944
1945		if (rdev->bss_entries >= bss_entries_limit &&
1946		    !cfg80211_bss_expire_oldest(rdev)) {
1947			bss_ref_put(rdev, new);
1948			return NULL;
1949		}
1950
1951		/* This must be before the call to bss_ref_get */
1952		if (tmp->pub.transmitted_bss) {
 
 
 
 
 
1953			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1954			bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1955		}
1956
1957		list_add_tail(&new->list, &rdev->bss_list);
1958		rdev->bss_entries++;
1959		rb_insert_bss(rdev, new);
1960		found = new;
1961	}
1962
1963	rdev->bss_generation++;
1964	bss_ref_get(rdev, found);
 
1965
1966	return found;
1967
1968free_ies:
1969	ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1970	if (ies)
1971		kfree_rcu(ies, rcu_head);
1972	ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1973	if (ies)
1974		kfree_rcu(ies, rcu_head);
1975
1976	return NULL;
1977}
1978
1979struct cfg80211_internal_bss *
1980cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1981		    struct cfg80211_internal_bss *tmp,
1982		    bool signal_valid, unsigned long ts)
1983{
1984	struct cfg80211_internal_bss *res;
1985
1986	spin_lock_bh(&rdev->bss_lock);
1987	res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1988	spin_unlock_bh(&rdev->bss_lock);
1989
1990	return res;
1991}
1992
1993int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1994				    enum nl80211_band band)
1995{
1996	const struct element *tmp;
1997
1998	if (band == NL80211_BAND_6GHZ) {
1999		struct ieee80211_he_operation *he_oper;
2000
2001		tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2002					     ielen);
2003		if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2004		    tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2005			const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2006
2007			he_oper = (void *)&tmp->data[1];
2008
2009			he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2010			if (!he_6ghz_oper)
2011				return -1;
2012
2013			return he_6ghz_oper->primary;
2014		}
2015	} else if (band == NL80211_BAND_S1GHZ) {
2016		tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2017		if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2018			struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2019
2020			return s1gop->oper_ch;
2021		}
2022	} else {
2023		tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2024		if (tmp && tmp->datalen == 1)
2025			return tmp->data[0];
2026
2027		tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2028		if (tmp &&
2029		    tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2030			struct ieee80211_ht_operation *htop = (void *)tmp->data;
2031
2032			return htop->primary_chan;
2033		}
2034	}
2035
2036	return -1;
2037}
2038EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2039
2040/*
2041 * Update RX channel information based on the available frame payload
2042 * information. This is mainly for the 2.4 GHz band where frames can be received
2043 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2044 * element to indicate the current (transmitting) channel, but this might also
2045 * be needed on other bands if RX frequency does not match with the actual
2046 * operating channel of a BSS, or if the AP reports a different primary channel.
2047 */
2048static struct ieee80211_channel *
2049cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2050			 struct ieee80211_channel *channel)
 
2051{
 
2052	u32 freq;
2053	int channel_number;
2054	struct ieee80211_channel *alt_channel;
2055
2056	channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2057							 channel->band);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2058
2059	if (channel_number < 0) {
2060		/* No channel information in frame payload */
2061		return channel;
2062	}
2063
2064	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2065
2066	/*
2067	 * Frame info (beacon/prob res) is the same as received channel,
2068	 * no need for further processing.
2069	 */
2070	if (freq == ieee80211_channel_to_khz(channel))
2071		return channel;
2072
2073	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2074	if (!alt_channel) {
2075		if (channel->band == NL80211_BAND_2GHZ ||
2076		    channel->band == NL80211_BAND_6GHZ) {
2077			/*
2078			 * Better not allow unexpected channels when that could
2079			 * be going beyond the 1-11 range (e.g., discovering
2080			 * BSS on channel 12 when radio is configured for
2081			 * channel 11) or beyond the 6 GHz channel range.
2082			 */
2083			return NULL;
2084		}
2085
2086		/* No match for the payload channel number - ignore it */
2087		return channel;
2088	}
2089
 
 
 
 
 
 
 
 
 
 
2090	/*
2091	 * Use the channel determined through the payload channel number
2092	 * instead of the RX channel reported by the driver.
2093	 */
2094	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2095		return NULL;
2096	return alt_channel;
2097}
2098
2099struct cfg80211_inform_single_bss_data {
2100	struct cfg80211_inform_bss *drv_data;
2101	enum cfg80211_bss_frame_type ftype;
2102	struct ieee80211_channel *channel;
2103	u8 bssid[ETH_ALEN];
2104	u64 tsf;
2105	u16 capability;
2106	u16 beacon_interval;
2107	const u8 *ie;
2108	size_t ielen;
2109
2110	enum {
2111		BSS_SOURCE_DIRECT = 0,
2112		BSS_SOURCE_MBSSID,
2113		BSS_SOURCE_STA_PROFILE,
2114	} bss_source;
2115	/* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2116	struct cfg80211_bss *source_bss;
2117	u8 max_bssid_indicator;
2118	u8 bssid_index;
2119
2120	u8 use_for;
2121	u64 cannot_use_reasons;
2122};
2123
2124static bool cfg80211_6ghz_power_type_valid(const u8 *ie, size_t ielen,
2125					   const u32 flags)
2126{
2127	const struct element *tmp;
2128	struct ieee80211_he_operation *he_oper;
2129
2130	tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ielen);
2131	if (tmp && tmp->datalen >= sizeof(*he_oper) + 1) {
2132		const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2133
2134		he_oper = (void *)&tmp->data[1];
2135		he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2136
2137		if (!he_6ghz_oper)
2138			return false;
2139
2140		switch (u8_get_bits(he_6ghz_oper->control,
2141				    IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2142		case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2143			return true;
2144		case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2145			return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
2146		case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2147			return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
2148		}
2149	}
2150	return false;
2151}
2152
2153/* Returned bss is reference counted and must be cleaned up appropriately. */
2154static struct cfg80211_bss *
2155cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2156				struct cfg80211_inform_single_bss_data *data,
 
 
 
 
2157				gfp_t gfp)
2158{
2159	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2160	struct cfg80211_inform_bss *drv_data = data->drv_data;
2161	struct cfg80211_bss_ies *ies;
2162	struct ieee80211_channel *channel;
2163	struct cfg80211_internal_bss tmp = {}, *res;
2164	int bss_type;
2165	bool signal_valid;
2166	unsigned long ts;
2167
2168	if (WARN_ON(!wiphy))
2169		return NULL;
2170
2171	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2172		    (drv_data->signal < 0 || drv_data->signal > 100)))
2173		return NULL;
2174
2175	if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2176		return NULL;
2177
2178	channel = data->channel;
2179	if (!channel)
2180		channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2181						   drv_data->chan);
2182	if (!channel)
2183		return NULL;
2184
2185	if (channel->band == NL80211_BAND_6GHZ &&
2186	    !cfg80211_6ghz_power_type_valid(data->ie, data->ielen,
2187					    channel->flags)) {
2188		data->use_for = 0;
2189		data->cannot_use_reasons =
2190			NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
2191	}
2192
2193	memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2194	tmp.pub.channel = channel;
2195	if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2196		tmp.pub.signal = drv_data->signal;
2197	else
2198		tmp.pub.signal = 0;
2199	tmp.pub.beacon_interval = data->beacon_interval;
2200	tmp.pub.capability = data->capability;
2201	tmp.ts_boottime = drv_data->boottime_ns;
2202	tmp.parent_tsf = drv_data->parent_tsf;
2203	ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2204	tmp.pub.chains = drv_data->chains;
2205	memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
2206	       IEEE80211_MAX_CHAINS);
2207	tmp.pub.use_for = data->use_for;
2208	tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2209
2210	switch (data->bss_source) {
2211	case BSS_SOURCE_MBSSID:
2212		tmp.pub.transmitted_bss = data->source_bss;
2213		fallthrough;
2214	case BSS_SOURCE_STA_PROFILE:
2215		ts = bss_from_pub(data->source_bss)->ts;
2216		tmp.pub.bssid_index = data->bssid_index;
2217		tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2218		break;
2219	case BSS_SOURCE_DIRECT:
2220		ts = jiffies;
2221
2222		if (channel->band == NL80211_BAND_60GHZ) {
2223			bss_type = data->capability &
2224				   WLAN_CAPABILITY_DMG_TYPE_MASK;
2225			if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2226			    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2227				regulatory_hint_found_beacon(wiphy, channel,
2228							     gfp);
2229		} else {
2230			if (data->capability & WLAN_CAPABILITY_ESS)
2231				regulatory_hint_found_beacon(wiphy, channel,
2232							     gfp);
2233		}
2234		break;
2235	}
2236
2237	/*
2238	 * If we do not know here whether the IEs are from a Beacon or Probe
2239	 * Response frame, we need to pick one of the options and only use it
2240	 * with the driver that does not provide the full Beacon/Probe Response
2241	 * frame. Use Beacon frame pointer to avoid indicating that this should
2242	 * override the IEs pointer should we have received an earlier
2243	 * indication of Probe Response data.
2244	 */
2245	ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2246	if (!ies)
2247		return NULL;
2248	ies->len = data->ielen;
2249	ies->tsf = data->tsf;
2250	ies->from_beacon = false;
2251	memcpy(ies->data, data->ie, data->ielen);
2252
2253	switch (data->ftype) {
2254	case CFG80211_BSS_FTYPE_BEACON:
2255	case CFG80211_BSS_FTYPE_S1G_BEACON:
2256		ies->from_beacon = true;
2257		fallthrough;
2258	case CFG80211_BSS_FTYPE_UNKNOWN:
2259		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2260		break;
2261	case CFG80211_BSS_FTYPE_PRESP:
2262		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2263		break;
2264	}
2265	rcu_assign_pointer(tmp.pub.ies, ies);
2266
2267	signal_valid = drv_data->chan == channel;
2268	spin_lock_bh(&rdev->bss_lock);
2269	res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2270	if (!res)
2271		goto drop;
2272
2273	rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
 
 
 
 
 
 
 
 
2274
2275	if (data->bss_source == BSS_SOURCE_MBSSID) {
2276		/* this is a nontransmitting bss, we need to add it to
2277		 * transmitting bss' list if it is not there
2278		 */
2279		if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2280			if (__cfg80211_unlink_bss(rdev, res)) {
 
2281				rdev->bss_generation++;
2282				res = NULL;
2283			}
2284		}
2285
2286		if (!res)
2287			goto drop;
2288	}
2289	spin_unlock_bh(&rdev->bss_lock);
2290
2291	trace_cfg80211_return_bss(&res->pub);
2292	/* __cfg80211_bss_update gives us a referenced result */
2293	return &res->pub;
2294
2295drop:
2296	spin_unlock_bh(&rdev->bss_lock);
2297	return NULL;
2298}
2299
2300static const struct element
2301*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2302				   const struct element *mbssid_elem,
2303				   const struct element *sub_elem)
2304{
2305	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2306	const struct element *next_mbssid;
2307	const struct element *next_sub;
2308
2309	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2310					 mbssid_end,
2311					 ielen - (mbssid_end - ie));
2312
2313	/*
2314	 * If it is not the last subelement in current MBSSID IE or there isn't
2315	 * a next MBSSID IE - profile is complete.
2316	*/
2317	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2318	    !next_mbssid)
2319		return NULL;
2320
2321	/* For any length error, just return NULL */
2322
2323	if (next_mbssid->datalen < 4)
2324		return NULL;
2325
2326	next_sub = (void *)&next_mbssid->data[1];
2327
2328	if (next_mbssid->data + next_mbssid->datalen <
2329	    next_sub->data + next_sub->datalen)
2330		return NULL;
2331
2332	if (next_sub->id != 0 || next_sub->datalen < 2)
2333		return NULL;
2334
2335	/*
2336	 * Check if the first element in the next sub element is a start
2337	 * of a new profile
2338	 */
2339	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2340	       NULL : next_mbssid;
2341}
2342
2343size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2344			      const struct element *mbssid_elem,
2345			      const struct element *sub_elem,
2346			      u8 *merged_ie, size_t max_copy_len)
2347{
2348	size_t copied_len = sub_elem->datalen;
2349	const struct element *next_mbssid;
2350
2351	if (sub_elem->datalen > max_copy_len)
2352		return 0;
2353
2354	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2355
2356	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2357								mbssid_elem,
2358								sub_elem))) {
2359		const struct element *next_sub = (void *)&next_mbssid->data[1];
2360
2361		if (copied_len + next_sub->datalen > max_copy_len)
2362			break;
2363		memcpy(merged_ie + copied_len, next_sub->data,
2364		       next_sub->datalen);
2365		copied_len += next_sub->datalen;
2366	}
2367
2368	return copied_len;
2369}
2370EXPORT_SYMBOL(cfg80211_merge_profile);
2371
2372static void
2373cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2374			   struct cfg80211_inform_single_bss_data *tx_data,
2375			   struct cfg80211_bss *source_bss,
2376			   gfp_t gfp)
2377{
2378	struct cfg80211_inform_single_bss_data data = {
2379		.drv_data = tx_data->drv_data,
2380		.ftype = tx_data->ftype,
2381		.tsf = tx_data->tsf,
2382		.beacon_interval = tx_data->beacon_interval,
2383		.source_bss = source_bss,
2384		.bss_source = BSS_SOURCE_MBSSID,
2385		.use_for = tx_data->use_for,
2386		.cannot_use_reasons = tx_data->cannot_use_reasons,
2387	};
2388	const u8 *mbssid_index_ie;
2389	const struct element *elem, *sub;
 
 
2390	u8 *new_ie, *profile;
2391	u64 seen_indices = 0;
 
2392	struct cfg80211_bss *bss;
2393
2394	if (!source_bss)
2395		return;
2396	if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2397				tx_data->ie, tx_data->ielen))
2398		return;
2399	if (!wiphy->support_mbssid)
2400		return;
2401	if (wiphy->support_only_he_mbssid &&
2402	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2403				    tx_data->ie, tx_data->ielen))
2404		return;
2405
2406	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2407	if (!new_ie)
2408		return;
2409
2410	profile = kmalloc(tx_data->ielen, gfp);
2411	if (!profile)
2412		goto out;
2413
2414	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2415			    tx_data->ie, tx_data->ielen) {
2416		if (elem->datalen < 4)
2417			continue;
2418		if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2419			continue;
2420		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2421			u8 profile_len;
2422
2423			if (sub->id != 0 || sub->datalen < 4) {
2424				/* not a valid BSS profile */
2425				continue;
2426			}
2427
2428			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2429			    sub->data[1] != 2) {
2430				/* The first element within the Nontransmitted
2431				 * BSSID Profile is not the Nontransmitted
2432				 * BSSID Capability element.
2433				 */
2434				continue;
2435			}
2436
2437			memset(profile, 0, tx_data->ielen);
2438			profile_len = cfg80211_merge_profile(tx_data->ie,
2439							     tx_data->ielen,
2440							     elem,
2441							     sub,
2442							     profile,
2443							     tx_data->ielen);
2444
2445			/* found a Nontransmitted BSSID Profile */
2446			mbssid_index_ie = cfg80211_find_ie
2447				(WLAN_EID_MULTI_BSSID_IDX,
2448				 profile, profile_len);
2449			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2450			    mbssid_index_ie[2] == 0 ||
2451			    mbssid_index_ie[2] > 46) {
2452				/* No valid Multiple BSSID-Index element */
2453				continue;
2454			}
2455
2456			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2457				/* We don't support legacy split of a profile */
2458				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2459						    mbssid_index_ie[2]);
2460
2461			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2462
2463			data.bssid_index = mbssid_index_ie[2];
2464			data.max_bssid_indicator = elem->data[0];
2465
2466			cfg80211_gen_new_bssid(tx_data->bssid,
2467					       data.max_bssid_indicator,
2468					       data.bssid_index,
2469					       data.bssid);
2470
 
 
 
 
2471			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2472			data.ie = new_ie;
2473			data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2474							 tx_data->ielen,
2475							 profile,
2476							 profile_len,
2477							 new_ie,
2478							 IEEE80211_MAX_DATA_LEN);
2479			if (!data.ielen)
2480				continue;
2481
2482			data.capability = get_unaligned_le16(profile + 2);
2483			bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
 
 
 
 
 
 
 
 
2484			if (!bss)
2485				break;
2486			cfg80211_put_bss(wiphy, bss);
2487		}
2488	}
2489
2490out:
2491	kfree(new_ie);
2492	kfree(profile);
2493}
2494
2495ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2496				    size_t ieslen, u8 *data, size_t data_len,
2497				    u8 frag_id)
2498{
2499	const struct element *next;
2500	ssize_t copied;
2501	u8 elem_datalen;
2502
2503	if (!elem)
2504		return -EINVAL;
2505
2506	/* elem might be invalid after the memmove */
2507	next = (void *)(elem->data + elem->datalen);
2508	elem_datalen = elem->datalen;
2509
2510	if (elem->id == WLAN_EID_EXTENSION) {
2511		copied = elem->datalen - 1;
2512
2513		if (data) {
2514			if (copied > data_len)
2515				return -ENOSPC;
2516
2517			memmove(data, elem->data + 1, copied);
2518		}
2519	} else {
2520		copied = elem->datalen;
2521
2522		if (data) {
2523			if (copied > data_len)
2524				return -ENOSPC;
2525
2526			memmove(data, elem->data, copied);
2527		}
2528	}
2529
2530	/* Fragmented elements must have 255 bytes */
2531	if (elem_datalen < 255)
2532		return copied;
2533
2534	for (elem = next;
2535	     elem->data < ies + ieslen &&
2536		elem->data + elem->datalen <= ies + ieslen;
2537	     elem = next) {
2538		/* elem might be invalid after the memmove */
2539		next = (void *)(elem->data + elem->datalen);
2540
2541		if (elem->id != frag_id)
2542			break;
2543
2544		elem_datalen = elem->datalen;
2545
2546		if (data) {
2547			if (copied + elem_datalen > data_len)
2548				return -ENOSPC;
2549
2550			memmove(data + copied, elem->data, elem_datalen);
2551		}
2552
2553		copied += elem_datalen;
2554
2555		/* Only the last fragment may be short */
2556		if (elem_datalen != 255)
2557			break;
2558	}
2559
2560	return copied;
2561}
2562EXPORT_SYMBOL(cfg80211_defragment_element);
2563
2564struct cfg80211_mle {
2565	struct ieee80211_multi_link_elem *mle;
2566	struct ieee80211_mle_per_sta_profile
2567		*sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2568	ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2569
2570	u8 data[];
2571};
2572
2573static struct cfg80211_mle *
2574cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2575		    gfp_t gfp)
2576{
2577	const struct element *elem;
2578	struct cfg80211_mle *res;
2579	size_t buf_len;
2580	ssize_t mle_len;
2581	u8 common_size, idx;
2582
2583	if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2584		return NULL;
2585
2586	/* Required length for first defragmentation */
2587	buf_len = mle->datalen - 1;
2588	for_each_element(elem, mle->data + mle->datalen,
2589			 ielen - sizeof(*mle) + mle->datalen) {
2590		if (elem->id != WLAN_EID_FRAGMENT)
2591			break;
2592
2593		buf_len += elem->datalen;
2594	}
2595
2596	res = kzalloc(struct_size(res, data, buf_len), gfp);
2597	if (!res)
2598		return NULL;
2599
2600	mle_len = cfg80211_defragment_element(mle, ie, ielen,
2601					      res->data, buf_len,
2602					      WLAN_EID_FRAGMENT);
2603	if (mle_len < 0)
2604		goto error;
2605
2606	res->mle = (void *)res->data;
2607
2608	/* Find the sub-element area in the buffer */
2609	common_size = ieee80211_mle_common_size((u8 *)res->mle);
2610	ie = res->data + common_size;
2611	ielen = mle_len - common_size;
2612
2613	idx = 0;
2614	for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2615			    ie, ielen) {
2616		res->sta_prof[idx] = (void *)elem->data;
2617		res->sta_prof_len[idx] = elem->datalen;
2618
2619		idx++;
2620		if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2621			break;
2622	}
2623	if (!for_each_element_completed(elem, ie, ielen))
2624		goto error;
2625
2626	/* Defragment sta_info in-place */
2627	for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2628	     idx++) {
2629		if (res->sta_prof_len[idx] < 255)
2630			continue;
2631
2632		elem = (void *)res->sta_prof[idx] - 2;
2633
2634		if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2635		    res->sta_prof[idx + 1])
2636			buf_len = (u8 *)res->sta_prof[idx + 1] -
2637				  (u8 *)res->sta_prof[idx];
2638		else
2639			buf_len = ielen + ie - (u8 *)elem;
2640
2641		res->sta_prof_len[idx] =
2642			cfg80211_defragment_element(elem,
2643						    (u8 *)elem, buf_len,
2644						    (u8 *)res->sta_prof[idx],
2645						    buf_len,
2646						    IEEE80211_MLE_SUBELEM_FRAGMENT);
2647		if (res->sta_prof_len[idx] < 0)
2648			goto error;
2649	}
2650
2651	return res;
2652
2653error:
2654	kfree(res);
2655	return NULL;
2656}
 
2657
2658struct tbtt_info_iter_data {
2659	const struct ieee80211_neighbor_ap_info *ap_info;
2660	u8 param_ch_count;
2661	u32 use_for;
2662	u8 mld_id, link_id;
2663	bool non_tx;
2664};
2665
2666static enum cfg80211_rnr_iter_ret
2667cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
2668			  const struct ieee80211_neighbor_ap_info *info,
2669			  const u8 *tbtt_info, u8 tbtt_info_len)
2670{
2671	const struct ieee80211_rnr_mld_params *mld_params;
2672	struct tbtt_info_iter_data *data = _data;
2673	u8 link_id;
2674	bool non_tx = false;
2675
2676	if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2677	    tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
2678					 mld_params)) {
2679		const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 =
2680			(void *)tbtt_info;
2681
2682		non_tx = (tbtt_info_ge_11->bss_params &
2683			  (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID |
2684			   IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) ==
2685			 IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2686		mld_params = &tbtt_info_ge_11->mld_params;
2687	} else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2688		 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
2689		mld_params = (void *)tbtt_info;
2690	else
2691		return RNR_ITER_CONTINUE;
2692
2693	link_id = le16_get_bits(mld_params->params,
2694				IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2695
2696	if (data->mld_id != mld_params->mld_id)
2697		return RNR_ITER_CONTINUE;
2698
2699	if (data->link_id != link_id)
2700		return RNR_ITER_CONTINUE;
2701
2702	data->ap_info = info;
2703	data->param_ch_count =
2704		le16_get_bits(mld_params->params,
2705			      IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2706	data->non_tx = non_tx;
2707
2708	if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
2709		data->use_for = NL80211_BSS_USE_FOR_ALL;
2710	else
2711		data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2712	return RNR_ITER_BREAK;
2713}
2714
2715static u8
2716cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2717			     const struct ieee80211_neighbor_ap_info **ap_info,
2718			     u8 *param_ch_count, bool *non_tx)
2719{
2720	struct tbtt_info_iter_data data = {
2721		.mld_id = mld_id,
2722		.link_id = link_id,
2723	};
 
 
 
 
2724
2725	cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
2726
2727	*ap_info = data.ap_info;
2728	*param_ch_count = data.param_ch_count;
2729	*non_tx = data.non_tx;
2730
2731	return data.use_for;
2732}
2733
2734static struct element *
2735cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2736			  bool same_mld, u8 link_id, u8 bss_change_count,
2737			  gfp_t gfp)
2738{
2739	const struct cfg80211_bss_ies *ies;
2740	struct ieee80211_neighbor_ap_info ap_info;
2741	struct ieee80211_tbtt_info_ge_11 tbtt_info;
2742	u32 short_ssid;
2743	const struct element *elem;
2744	struct element *res;
2745
 
 
 
 
 
 
2746	/*
2747	 * We only generate the RNR to permit ML lookups. For that we do not
2748	 * need an entry for the corresponding transmitting BSS, lets just skip
2749	 * it even though it would be easy to add.
2750	 */
2751	if (!same_mld)
2752		return NULL;
2753
2754	/* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2755	rcu_read_lock();
2756	ies = rcu_dereference(source_bss->ies);
2757
2758	ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2759	ap_info.tbtt_info_hdr =
2760			u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2761				       IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2762			u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2763
2764	ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
2765
2766	/* operating class */
2767	elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2768				  ies->data, ies->len);
2769	if (elem && elem->datalen >= 1) {
2770		ap_info.op_class = elem->data[0];
2771	} else {
2772		struct cfg80211_chan_def chandef;
2773
2774		/* The AP is not providing us with anything to work with. So
2775		 * make up a somewhat reasonable operating class, but don't
2776		 * bother with it too much as no one will ever use the
2777		 * information.
2778		 */
2779		cfg80211_chandef_create(&chandef, source_bss->channel,
2780					NL80211_CHAN_NO_HT);
2781
2782		if (!ieee80211_chandef_to_operating_class(&chandef,
2783							  &ap_info.op_class))
2784			goto out_unlock;
2785	}
2786
2787	/* Just set TBTT offset and PSD 20 to invalid/unknown */
2788	tbtt_info.tbtt_offset = 255;
2789	tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2790
2791	memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2792	if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
2793		goto out_unlock;
2794
2795	rcu_read_unlock();
2796
2797	tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2798
2799	tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2800
2801	if (is_mbssid) {
2802		tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2803		tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2804	}
2805
2806	tbtt_info.mld_params.mld_id = 0;
2807	tbtt_info.mld_params.params =
2808		le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2809		le16_encode_bits(bss_change_count,
2810				 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2811
2812	res = kzalloc(struct_size(res, data,
2813				  sizeof(ap_info) + ap_info.tbtt_info_len),
2814		      gfp);
2815	if (!res)
2816		return NULL;
2817
2818	/* Copy the data */
2819	res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2820	res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2821	memcpy(res->data, &ap_info, sizeof(ap_info));
2822	memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2823
2824	return res;
2825
2826out_unlock:
2827	rcu_read_unlock();
2828	return NULL;
2829}
2830
2831static void
2832cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2833				struct cfg80211_inform_single_bss_data *tx_data,
2834				struct cfg80211_bss *source_bss,
2835				const struct element *elem,
2836				gfp_t gfp)
2837{
2838	struct cfg80211_inform_single_bss_data data = {
2839		.drv_data = tx_data->drv_data,
2840		.ftype = tx_data->ftype,
2841		.source_bss = source_bss,
2842		.bss_source = BSS_SOURCE_STA_PROFILE,
2843	};
2844	struct element *reporter_rnr = NULL;
2845	struct ieee80211_multi_link_elem *ml_elem;
2846	struct cfg80211_mle *mle;
2847	u16 control;
2848	u8 ml_common_len;
2849	u8 *new_ie = NULL;
2850	struct cfg80211_bss *bss;
2851	u8 mld_id, reporter_link_id, bss_change_count;
2852	u16 seen_links = 0;
2853	u8 i;
2854
2855	if (!ieee80211_mle_type_ok(elem->data + 1,
2856				   IEEE80211_ML_CONTROL_TYPE_BASIC,
2857				   elem->datalen - 1))
2858		return;
 
2859
2860	ml_elem = (void *)(elem->data + 1);
2861	control = le16_to_cpu(ml_elem->control);
2862	ml_common_len = ml_elem->variable[0];
2863
2864	/* Must be present when transmitted by an AP (in a probe response) */
2865	if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2866	    !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2867	    !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2868		return;
2869
2870	reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1);
2871	bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1);
2872
2873	/*
2874	 * The MLD ID of the reporting AP is always zero. It is set if the AP
2875	 * is part of an MBSSID set and will be non-zero for ML Elements
2876	 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2877	 * Draft P802.11be_D3.2, 35.3.4.2)
2878	 */
2879	mld_id = ieee80211_mle_get_mld_id(elem->data + 1);
2880
2881	/* Fully defrag the ML element for sta information/profile iteration */
2882	mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2883	if (!mle)
2884		return;
2885
2886	/* No point in doing anything if there is no per-STA profile */
2887	if (!mle->sta_prof[0])
2888		goto out;
2889
2890	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2891	if (!new_ie)
2892		goto out;
2893
2894	reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
2895						 u16_get_bits(control,
2896							      IEEE80211_MLC_BASIC_PRES_MLD_ID),
2897						 mld_id == 0, reporter_link_id,
2898						 bss_change_count,
2899						 gfp);
2900
2901	for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2902		const struct ieee80211_neighbor_ap_info *ap_info;
2903		enum nl80211_band band;
2904		u32 freq;
2905		const u8 *profile;
2906		ssize_t profile_len;
2907		u8 param_ch_count;
2908		u8 link_id, use_for;
2909		bool non_tx;
2910
2911		if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2912							  mle->sta_prof_len[i]))
2913			continue;
2914
2915		control = le16_to_cpu(mle->sta_prof[i]->control);
2916
2917		if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2918			continue;
2919
2920		link_id = u16_get_bits(control,
2921				       IEEE80211_MLE_STA_CONTROL_LINK_ID);
2922		if (seen_links & BIT(link_id))
2923			break;
2924		seen_links |= BIT(link_id);
2925
2926		if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2927		    !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2928		    !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2929			continue;
2930
2931		memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2932		data.beacon_interval =
2933			get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2934		data.tsf = tx_data->tsf +
2935			   get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2936
2937		/* sta_info_len counts itself */
2938		profile = mle->sta_prof[i]->variable +
2939			  mle->sta_prof[i]->sta_info_len - 1;
2940		profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2941			      profile;
2942
2943		if (profile_len < 2)
2944			continue;
2945
2946		data.capability = get_unaligned_le16(profile);
2947		profile += 2;
2948		profile_len -= 2;
2949
2950		/* Find in RNR to look up channel information */
2951		use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
2952						       tx_data->ielen,
2953						       mld_id, link_id,
2954						       &ap_info,
2955						       &param_ch_count,
2956						       &non_tx);
2957		if (!use_for)
2958			continue;
2959
2960		/*
2961		 * As of 802.11be_D5.0, the specification does not give us any
2962		 * way of discovering both the MaxBSSID and the Multiple-BSSID
2963		 * Index. It does seem like the Multiple-BSSID Index element
2964		 * may be provided, but section 9.4.2.45 explicitly forbids
2965		 * including a Multiple-BSSID Element (in this case without any
2966		 * subelements).
2967		 * Without both pieces of information we cannot calculate the
2968		 * reference BSSID, so simply ignore the BSS.
2969		 */
2970		if (non_tx)
2971			continue;
2972
2973		/* We could sanity check the BSSID is included */
2974
2975		if (!ieee80211_operating_class_to_band(ap_info->op_class,
2976						       &band))
2977			continue;
2978
2979		freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2980		data.channel = ieee80211_get_channel_khz(wiphy, freq);
2981
2982		if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
2983		    !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
2984			use_for = 0;
2985			data.cannot_use_reasons =
2986				NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
2987		}
2988		data.use_for = use_for;
2989
2990		/* Generate new elements */
2991		memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2992		data.ie = new_ie;
2993		data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2994						 profile, profile_len,
2995						 new_ie,
2996						 IEEE80211_MAX_DATA_LEN);
2997		if (!data.ielen)
2998			continue;
2999
3000		/* The generated elements do not contain:
3001		 *  - Basic ML element
3002		 *  - A TBTT entry in the RNR for the transmitting AP
3003		 *
3004		 * This information is needed both internally and in userspace
3005		 * as such, we should append it here.
3006		 */
3007		if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
3008		    IEEE80211_MAX_DATA_LEN)
3009			continue;
3010
3011		/* Copy the Basic Multi-Link element including the common
3012		 * information, and then fix up the link ID and BSS param
3013		 * change count.
3014		 * Note that the ML element length has been verified and we
3015		 * also checked that it contains the link ID.
3016		 */
3017		new_ie[data.ielen++] = WLAN_EID_EXTENSION;
3018		new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
3019		new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
3020		memcpy(new_ie + data.ielen, ml_elem,
3021		       sizeof(*ml_elem) + ml_common_len);
3022
3023		new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
3024		new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
3025			param_ch_count;
3026
3027		data.ielen += sizeof(*ml_elem) + ml_common_len;
3028
3029		if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
3030			if (data.ielen + sizeof(struct element) +
3031			    reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
3032				continue;
3033
3034			memcpy(new_ie + data.ielen, reporter_rnr,
3035			       sizeof(struct element) + reporter_rnr->datalen);
3036			data.ielen += sizeof(struct element) +
3037				      reporter_rnr->datalen;
3038		}
3039
3040		bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
3041		if (!bss)
3042			break;
3043		cfg80211_put_bss(wiphy, bss);
3044	}
3045
3046out:
3047	kfree(reporter_rnr);
3048	kfree(new_ie);
3049	kfree(mle);
3050}
3051
3052static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
3053				       struct cfg80211_inform_single_bss_data *tx_data,
3054				       struct cfg80211_bss *source_bss,
3055				       gfp_t gfp)
 
 
3056{
3057	const struct element *elem;
 
 
 
 
 
 
 
 
 
3058
3059	if (!source_bss)
3060		return;
3061
3062	if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
3063		return;
3064
3065	for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
3066			       tx_data->ie, tx_data->ielen)
3067		cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
3068						elem, gfp);
3069}
3070
3071struct cfg80211_bss *
3072cfg80211_inform_bss_data(struct wiphy *wiphy,
3073			 struct cfg80211_inform_bss *data,
3074			 enum cfg80211_bss_frame_type ftype,
3075			 const u8 *bssid, u64 tsf, u16 capability,
3076			 u16 beacon_interval, const u8 *ie, size_t ielen,
3077			 gfp_t gfp)
3078{
3079	struct cfg80211_inform_single_bss_data inform_data = {
3080		.drv_data = data,
3081		.ftype = ftype,
3082		.tsf = tsf,
3083		.capability = capability,
3084		.beacon_interval = beacon_interval,
3085		.ie = ie,
3086		.ielen = ielen,
3087		.use_for = data->restrict_use ?
3088				data->use_for :
3089				NL80211_BSS_USE_FOR_ALL,
3090		.cannot_use_reasons = data->cannot_use_reasons,
3091	};
3092	struct cfg80211_bss *res;
3093
3094	memcpy(inform_data.bssid, bssid, ETH_ALEN);
3095
3096	res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
3097	if (!res)
3098		return NULL;
3099
3100	/* don't do any further MBSSID/ML handling for S1G */
3101	if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
3102		return res;
3103
3104	cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3105
3106	cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3107
3108	return res;
3109}
3110EXPORT_SYMBOL(cfg80211_inform_bss_data);
3111
3112struct cfg80211_bss *
3113cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3114			       struct cfg80211_inform_bss *data,
3115			       struct ieee80211_mgmt *mgmt, size_t len,
3116			       gfp_t gfp)
3117{
3118	size_t min_hdr_len = offsetof(struct ieee80211_mgmt,
3119				      u.probe_resp.variable);
3120	struct ieee80211_ext *ext = NULL;
3121	enum cfg80211_bss_frame_type ftype;
3122	u16 beacon_interval;
3123	const u8 *bssid;
3124	u16 capability;
3125	const u8 *ie;
3126	size_t ielen;
3127	u64 tsf;
3128
3129	if (WARN_ON(!mgmt))
3130		return NULL;
3131
3132	if (WARN_ON(!wiphy))
3133		return NULL;
3134
3135	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3136		     offsetof(struct ieee80211_mgmt, u.beacon.variable));
3137
3138	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3139
3140	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
3141		ext = (void *) mgmt;
3142		min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
3143		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3144			min_hdr_len = offsetof(struct ieee80211_ext,
3145					       u.s1g_short_beacon.variable);
3146	}
3147
3148	if (WARN_ON(len < min_hdr_len))
3149		return NULL;
3150
3151	ielen = len - min_hdr_len;
3152	ie = mgmt->u.probe_resp.variable;
 
 
 
 
 
 
 
 
 
 
 
 
3153	if (ext) {
3154		const struct ieee80211_s1g_bcn_compat_ie *compat;
3155		const struct element *elem;
3156
3157		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3158			ie = ext->u.s1g_short_beacon.variable;
3159		else
3160			ie = ext->u.s1g_beacon.variable;
3161
3162		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen);
3163		if (!elem)
3164			return NULL;
3165		if (elem->datalen < sizeof(*compat))
3166			return NULL;
3167		compat = (void *)elem->data;
3168		bssid = ext->u.s1g_beacon.sa;
3169		capability = le16_to_cpu(compat->compat_info);
3170		beacon_interval = le16_to_cpu(compat->beacon_int);
3171	} else {
3172		bssid = mgmt->bssid;
3173		beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3174		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3175	}
3176
3177	tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
 
 
 
 
 
 
 
3178
3179	if (ieee80211_is_probe_resp(mgmt->frame_control))
3180		ftype = CFG80211_BSS_FTYPE_PRESP;
3181	else if (ext)
3182		ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
3183	else
3184		ftype = CFG80211_BSS_FTYPE_BEACON;
 
3185
3186	return cfg80211_inform_bss_data(wiphy, data, ftype,
3187					bssid, tsf, capability,
3188					beacon_interval, ie, ielen,
3189					gfp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3190}
3191EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3192
3193void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3194{
3195	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
 
3196
3197	if (!pub)
3198		return;
3199
 
 
3200	spin_lock_bh(&rdev->bss_lock);
3201	bss_ref_get(rdev, bss_from_pub(pub));
3202	spin_unlock_bh(&rdev->bss_lock);
3203}
3204EXPORT_SYMBOL(cfg80211_ref_bss);
3205
3206void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3207{
3208	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
 
3209
3210	if (!pub)
3211		return;
3212
 
 
3213	spin_lock_bh(&rdev->bss_lock);
3214	bss_ref_put(rdev, bss_from_pub(pub));
3215	spin_unlock_bh(&rdev->bss_lock);
3216}
3217EXPORT_SYMBOL(cfg80211_put_bss);
3218
3219void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3220{
3221	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3222	struct cfg80211_internal_bss *bss, *tmp1;
3223	struct cfg80211_bss *nontrans_bss, *tmp;
3224
3225	if (WARN_ON(!pub))
3226		return;
3227
3228	bss = bss_from_pub(pub);
3229
3230	spin_lock_bh(&rdev->bss_lock);
3231	if (list_empty(&bss->list))
3232		goto out;
3233
3234	list_for_each_entry_safe(nontrans_bss, tmp,
3235				 &pub->nontrans_list,
3236				 nontrans_list) {
3237		tmp1 = bss_from_pub(nontrans_bss);
 
3238		if (__cfg80211_unlink_bss(rdev, tmp1))
3239			rdev->bss_generation++;
3240	}
3241
3242	if (__cfg80211_unlink_bss(rdev, bss))
3243		rdev->bss_generation++;
3244out:
3245	spin_unlock_bh(&rdev->bss_lock);
3246}
3247EXPORT_SYMBOL(cfg80211_unlink_bss);
3248
3249void cfg80211_bss_iter(struct wiphy *wiphy,
3250		       struct cfg80211_chan_def *chandef,
3251		       void (*iter)(struct wiphy *wiphy,
3252				    struct cfg80211_bss *bss,
3253				    void *data),
3254		       void *iter_data)
3255{
3256	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3257	struct cfg80211_internal_bss *bss;
3258
3259	spin_lock_bh(&rdev->bss_lock);
3260
3261	list_for_each_entry(bss, &rdev->bss_list, list) {
3262		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3263						     false))
3264			iter(wiphy, &bss->pub, iter_data);
3265	}
3266
3267	spin_unlock_bh(&rdev->bss_lock);
3268}
3269EXPORT_SYMBOL(cfg80211_bss_iter);
3270
3271void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3272				     unsigned int link_id,
3273				     struct ieee80211_channel *chan)
3274{
3275	struct wiphy *wiphy = wdev->wiphy;
3276	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3277	struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3278	struct cfg80211_internal_bss *new = NULL;
3279	struct cfg80211_internal_bss *bss;
3280	struct cfg80211_bss *nontrans_bss;
3281	struct cfg80211_bss *tmp;
3282
3283	spin_lock_bh(&rdev->bss_lock);
3284
3285	/*
3286	 * Some APs use CSA also for bandwidth changes, i.e., without actually
3287	 * changing the control channel, so no need to update in such a case.
3288	 */
3289	if (cbss->pub.channel == chan)
3290		goto done;
3291
3292	/* use transmitting bss */
3293	if (cbss->pub.transmitted_bss)
3294		cbss = bss_from_pub(cbss->pub.transmitted_bss);
 
 
3295
3296	cbss->pub.channel = chan;
3297
3298	list_for_each_entry(bss, &rdev->bss_list, list) {
3299		if (!cfg80211_bss_type_match(bss->pub.capability,
3300					     bss->pub.channel->band,
3301					     wdev->conn_bss_type))
3302			continue;
3303
3304		if (bss == cbss)
3305			continue;
3306
3307		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3308			new = bss;
3309			break;
3310		}
3311	}
3312
3313	if (new) {
3314		/* to save time, update IEs for transmitting bss only */
3315		cfg80211_update_known_bss(rdev, cbss, new, false);
3316		new->pub.proberesp_ies = NULL;
3317		new->pub.beacon_ies = NULL;
 
3318
3319		list_for_each_entry_safe(nontrans_bss, tmp,
3320					 &new->pub.nontrans_list,
3321					 nontrans_list) {
3322			bss = bss_from_pub(nontrans_bss);
 
3323			if (__cfg80211_unlink_bss(rdev, bss))
3324				rdev->bss_generation++;
3325		}
3326
3327		WARN_ON(atomic_read(&new->hold));
3328		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3329			rdev->bss_generation++;
3330	}
3331
3332	rb_erase(&cbss->rbn, &rdev->bss_tree);
3333	rb_insert_bss(rdev, cbss);
3334	rdev->bss_generation++;
3335
3336	list_for_each_entry_safe(nontrans_bss, tmp,
3337				 &cbss->pub.nontrans_list,
3338				 nontrans_list) {
3339		bss = bss_from_pub(nontrans_bss);
 
3340		bss->pub.channel = chan;
3341		rb_erase(&bss->rbn, &rdev->bss_tree);
3342		rb_insert_bss(rdev, bss);
3343		rdev->bss_generation++;
3344	}
3345
3346done:
3347	spin_unlock_bh(&rdev->bss_lock);
3348}
3349
3350#ifdef CONFIG_CFG80211_WEXT
3351static struct cfg80211_registered_device *
3352cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3353{
3354	struct cfg80211_registered_device *rdev;
3355	struct net_device *dev;
3356
3357	ASSERT_RTNL();
3358
3359	dev = dev_get_by_index(net, ifindex);
3360	if (!dev)
3361		return ERR_PTR(-ENODEV);
3362	if (dev->ieee80211_ptr)
3363		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3364	else
3365		rdev = ERR_PTR(-ENODEV);
3366	dev_put(dev);
3367	return rdev;
3368}
3369
3370int cfg80211_wext_siwscan(struct net_device *dev,
3371			  struct iw_request_info *info,
3372			  union iwreq_data *wrqu, char *extra)
3373{
3374	struct cfg80211_registered_device *rdev;
3375	struct wiphy *wiphy;
3376	struct iw_scan_req *wreq = NULL;
3377	struct cfg80211_scan_request *creq;
3378	int i, err, n_channels = 0;
3379	enum nl80211_band band;
3380
3381	if (!netif_running(dev))
3382		return -ENETDOWN;
3383
3384	if (wrqu->data.length == sizeof(struct iw_scan_req))
3385		wreq = (struct iw_scan_req *)extra;
3386
3387	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3388
3389	if (IS_ERR(rdev))
3390		return PTR_ERR(rdev);
3391
3392	if (rdev->scan_req || rdev->scan_msg)
3393		return -EBUSY;
 
 
3394
3395	wiphy = &rdev->wiphy;
3396
3397	/* Determine number of channels, needed to allocate creq */
3398	if (wreq && wreq->num_channels)
3399		n_channels = wreq->num_channels;
3400	else
3401		n_channels = ieee80211_get_num_supported_channels(wiphy);
3402
3403	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3404		       n_channels * sizeof(void *),
3405		       GFP_ATOMIC);
3406	if (!creq)
3407		return -ENOMEM;
 
 
3408
3409	creq->wiphy = wiphy;
3410	creq->wdev = dev->ieee80211_ptr;
3411	/* SSIDs come after channels */
3412	creq->ssids = (void *)&creq->channels[n_channels];
3413	creq->n_channels = n_channels;
3414	creq->n_ssids = 1;
3415	creq->scan_start = jiffies;
3416
3417	/* translate "Scan on frequencies" request */
3418	i = 0;
3419	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3420		int j;
3421
3422		if (!wiphy->bands[band])
3423			continue;
3424
3425		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3426			/* ignore disabled channels */
3427			if (wiphy->bands[band]->channels[j].flags &
3428						IEEE80211_CHAN_DISABLED)
3429				continue;
3430
3431			/* If we have a wireless request structure and the
3432			 * wireless request specifies frequencies, then search
3433			 * for the matching hardware channel.
3434			 */
3435			if (wreq && wreq->num_channels) {
3436				int k;
3437				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3438				for (k = 0; k < wreq->num_channels; k++) {
3439					struct iw_freq *freq =
3440						&wreq->channel_list[k];
3441					int wext_freq =
3442						cfg80211_wext_freq(freq);
3443
3444					if (wext_freq == wiphy_freq)
3445						goto wext_freq_found;
3446				}
3447				goto wext_freq_not_found;
3448			}
3449
3450		wext_freq_found:
3451			creq->channels[i] = &wiphy->bands[band]->channels[j];
3452			i++;
3453		wext_freq_not_found: ;
3454		}
3455	}
3456	/* No channels found? */
3457	if (!i) {
3458		err = -EINVAL;
3459		goto out;
3460	}
3461
3462	/* Set real number of channels specified in creq->channels[] */
3463	creq->n_channels = i;
3464
3465	/* translate "Scan for SSID" request */
3466	if (wreq) {
3467		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3468			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3469				err = -EINVAL;
3470				goto out;
3471			}
3472			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3473			creq->ssids[0].ssid_len = wreq->essid_len;
3474		}
3475		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3476			creq->n_ssids = 0;
3477	}
3478
3479	for (i = 0; i < NUM_NL80211_BANDS; i++)
3480		if (wiphy->bands[i])
3481			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3482
3483	eth_broadcast_addr(creq->bssid);
3484
3485	wiphy_lock(&rdev->wiphy);
3486
3487	rdev->scan_req = creq;
3488	err = rdev_scan(rdev, creq);
3489	if (err) {
3490		rdev->scan_req = NULL;
3491		/* creq will be freed below */
3492	} else {
3493		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3494		/* creq now owned by driver */
3495		creq = NULL;
3496		dev_hold(dev);
3497	}
3498	wiphy_unlock(&rdev->wiphy);
3499 out:
3500	kfree(creq);
3501	return err;
3502}
3503EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3504
3505static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3506				    const struct cfg80211_bss_ies *ies,
3507				    char *current_ev, char *end_buf)
3508{
3509	const u8 *pos, *end, *next;
3510	struct iw_event iwe;
3511
3512	if (!ies)
3513		return current_ev;
3514
3515	/*
3516	 * If needed, fragment the IEs buffer (at IE boundaries) into short
3517	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3518	 */
3519	pos = ies->data;
3520	end = pos + ies->len;
3521
3522	while (end - pos > IW_GENERIC_IE_MAX) {
3523		next = pos + 2 + pos[1];
3524		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3525			next = next + 2 + next[1];
3526
3527		memset(&iwe, 0, sizeof(iwe));
3528		iwe.cmd = IWEVGENIE;
3529		iwe.u.data.length = next - pos;
3530		current_ev = iwe_stream_add_point_check(info, current_ev,
3531							end_buf, &iwe,
3532							(void *)pos);
3533		if (IS_ERR(current_ev))
3534			return current_ev;
3535		pos = next;
3536	}
3537
3538	if (end > pos) {
3539		memset(&iwe, 0, sizeof(iwe));
3540		iwe.cmd = IWEVGENIE;
3541		iwe.u.data.length = end - pos;
3542		current_ev = iwe_stream_add_point_check(info, current_ev,
3543							end_buf, &iwe,
3544							(void *)pos);
3545		if (IS_ERR(current_ev))
3546			return current_ev;
3547	}
3548
3549	return current_ev;
3550}
3551
3552static char *
3553ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3554	      struct cfg80211_internal_bss *bss, char *current_ev,
3555	      char *end_buf)
3556{
3557	const struct cfg80211_bss_ies *ies;
3558	struct iw_event iwe;
3559	const u8 *ie;
3560	u8 buf[50];
3561	u8 *cfg, *p, *tmp;
3562	int rem, i, sig;
3563	bool ismesh = false;
3564
3565	memset(&iwe, 0, sizeof(iwe));
3566	iwe.cmd = SIOCGIWAP;
3567	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3568	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3569	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3570						IW_EV_ADDR_LEN);
3571	if (IS_ERR(current_ev))
3572		return current_ev;
3573
3574	memset(&iwe, 0, sizeof(iwe));
3575	iwe.cmd = SIOCGIWFREQ;
3576	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3577	iwe.u.freq.e = 0;
3578	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3579						IW_EV_FREQ_LEN);
3580	if (IS_ERR(current_ev))
3581		return current_ev;
3582
3583	memset(&iwe, 0, sizeof(iwe));
3584	iwe.cmd = SIOCGIWFREQ;
3585	iwe.u.freq.m = bss->pub.channel->center_freq;
3586	iwe.u.freq.e = 6;
3587	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3588						IW_EV_FREQ_LEN);
3589	if (IS_ERR(current_ev))
3590		return current_ev;
3591
3592	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3593		memset(&iwe, 0, sizeof(iwe));
3594		iwe.cmd = IWEVQUAL;
3595		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3596				     IW_QUAL_NOISE_INVALID |
3597				     IW_QUAL_QUAL_UPDATED;
3598		switch (wiphy->signal_type) {
3599		case CFG80211_SIGNAL_TYPE_MBM:
3600			sig = bss->pub.signal / 100;
3601			iwe.u.qual.level = sig;
3602			iwe.u.qual.updated |= IW_QUAL_DBM;
3603			if (sig < -110)		/* rather bad */
3604				sig = -110;
3605			else if (sig > -40)	/* perfect */
3606				sig = -40;
3607			/* will give a range of 0 .. 70 */
3608			iwe.u.qual.qual = sig + 110;
3609			break;
3610		case CFG80211_SIGNAL_TYPE_UNSPEC:
3611			iwe.u.qual.level = bss->pub.signal;
3612			/* will give range 0 .. 100 */
3613			iwe.u.qual.qual = bss->pub.signal;
3614			break;
3615		default:
3616			/* not reached */
3617			break;
3618		}
3619		current_ev = iwe_stream_add_event_check(info, current_ev,
3620							end_buf, &iwe,
3621							IW_EV_QUAL_LEN);
3622		if (IS_ERR(current_ev))
3623			return current_ev;
3624	}
3625
3626	memset(&iwe, 0, sizeof(iwe));
3627	iwe.cmd = SIOCGIWENCODE;
3628	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3629		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3630	else
3631		iwe.u.data.flags = IW_ENCODE_DISABLED;
3632	iwe.u.data.length = 0;
3633	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3634						&iwe, "");
3635	if (IS_ERR(current_ev))
3636		return current_ev;
3637
3638	rcu_read_lock();
3639	ies = rcu_dereference(bss->pub.ies);
3640	rem = ies->len;
3641	ie = ies->data;
3642
3643	while (rem >= 2) {
3644		/* invalid data */
3645		if (ie[1] > rem - 2)
3646			break;
3647
3648		switch (ie[0]) {
3649		case WLAN_EID_SSID:
3650			memset(&iwe, 0, sizeof(iwe));
3651			iwe.cmd = SIOCGIWESSID;
3652			iwe.u.data.length = ie[1];
3653			iwe.u.data.flags = 1;
3654			current_ev = iwe_stream_add_point_check(info,
3655								current_ev,
3656								end_buf, &iwe,
3657								(u8 *)ie + 2);
3658			if (IS_ERR(current_ev))
3659				goto unlock;
3660			break;
3661		case WLAN_EID_MESH_ID:
3662			memset(&iwe, 0, sizeof(iwe));
3663			iwe.cmd = SIOCGIWESSID;
3664			iwe.u.data.length = ie[1];
3665			iwe.u.data.flags = 1;
3666			current_ev = iwe_stream_add_point_check(info,
3667								current_ev,
3668								end_buf, &iwe,
3669								(u8 *)ie + 2);
3670			if (IS_ERR(current_ev))
3671				goto unlock;
3672			break;
3673		case WLAN_EID_MESH_CONFIG:
3674			ismesh = true;
3675			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3676				break;
3677			cfg = (u8 *)ie + 2;
3678			memset(&iwe, 0, sizeof(iwe));
3679			iwe.cmd = IWEVCUSTOM;
3680			iwe.u.data.length = sprintf(buf,
3681						    "Mesh Network Path Selection Protocol ID: 0x%02X",
3682						    cfg[0]);
3683			current_ev = iwe_stream_add_point_check(info,
3684								current_ev,
3685								end_buf,
3686								&iwe, buf);
3687			if (IS_ERR(current_ev))
3688				goto unlock;
3689			iwe.u.data.length = sprintf(buf,
3690						    "Path Selection Metric ID: 0x%02X",
3691						    cfg[1]);
3692			current_ev = iwe_stream_add_point_check(info,
3693								current_ev,
3694								end_buf,
3695								&iwe, buf);
3696			if (IS_ERR(current_ev))
3697				goto unlock;
3698			iwe.u.data.length = sprintf(buf,
3699						    "Congestion Control Mode ID: 0x%02X",
3700						    cfg[2]);
3701			current_ev = iwe_stream_add_point_check(info,
3702								current_ev,
3703								end_buf,
3704								&iwe, buf);
3705			if (IS_ERR(current_ev))
3706				goto unlock;
3707			iwe.u.data.length = sprintf(buf,
3708						    "Synchronization ID: 0x%02X",
3709						    cfg[3]);
3710			current_ev = iwe_stream_add_point_check(info,
3711								current_ev,
3712								end_buf,
3713								&iwe, buf);
3714			if (IS_ERR(current_ev))
3715				goto unlock;
3716			iwe.u.data.length = sprintf(buf,
3717						    "Authentication ID: 0x%02X",
3718						    cfg[4]);
3719			current_ev = iwe_stream_add_point_check(info,
3720								current_ev,
3721								end_buf,
3722								&iwe, buf);
3723			if (IS_ERR(current_ev))
3724				goto unlock;
3725			iwe.u.data.length = sprintf(buf,
3726						    "Formation Info: 0x%02X",
3727						    cfg[5]);
3728			current_ev = iwe_stream_add_point_check(info,
3729								current_ev,
3730								end_buf,
3731								&iwe, buf);
3732			if (IS_ERR(current_ev))
3733				goto unlock;
3734			iwe.u.data.length = sprintf(buf,
3735						    "Capabilities: 0x%02X",
3736						    cfg[6]);
3737			current_ev = iwe_stream_add_point_check(info,
3738								current_ev,
3739								end_buf,
3740								&iwe, buf);
3741			if (IS_ERR(current_ev))
3742				goto unlock;
3743			break;
3744		case WLAN_EID_SUPP_RATES:
3745		case WLAN_EID_EXT_SUPP_RATES:
3746			/* display all supported rates in readable format */
3747			p = current_ev + iwe_stream_lcp_len(info);
3748
3749			memset(&iwe, 0, sizeof(iwe));
3750			iwe.cmd = SIOCGIWRATE;
3751			/* Those two flags are ignored... */
3752			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3753
3754			for (i = 0; i < ie[1]; i++) {
3755				iwe.u.bitrate.value =
3756					((ie[i + 2] & 0x7f) * 500000);
3757				tmp = p;
3758				p = iwe_stream_add_value(info, current_ev, p,
3759							 end_buf, &iwe,
3760							 IW_EV_PARAM_LEN);
3761				if (p == tmp) {
3762					current_ev = ERR_PTR(-E2BIG);
3763					goto unlock;
3764				}
3765			}
3766			current_ev = p;
3767			break;
3768		}
3769		rem -= ie[1] + 2;
3770		ie += ie[1] + 2;
3771	}
3772
3773	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3774	    ismesh) {
3775		memset(&iwe, 0, sizeof(iwe));
3776		iwe.cmd = SIOCGIWMODE;
3777		if (ismesh)
3778			iwe.u.mode = IW_MODE_MESH;
3779		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3780			iwe.u.mode = IW_MODE_MASTER;
3781		else
3782			iwe.u.mode = IW_MODE_ADHOC;
3783		current_ev = iwe_stream_add_event_check(info, current_ev,
3784							end_buf, &iwe,
3785							IW_EV_UINT_LEN);
3786		if (IS_ERR(current_ev))
3787			goto unlock;
3788	}
3789
3790	memset(&iwe, 0, sizeof(iwe));
3791	iwe.cmd = IWEVCUSTOM;
3792	iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3793				    (unsigned long long)(ies->tsf));
3794	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3795						&iwe, buf);
3796	if (IS_ERR(current_ev))
3797		goto unlock;
3798	memset(&iwe, 0, sizeof(iwe));
3799	iwe.cmd = IWEVCUSTOM;
3800	iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3801				    elapsed_jiffies_msecs(bss->ts));
 
3802	current_ev = iwe_stream_add_point_check(info, current_ev,
3803						end_buf, &iwe, buf);
3804	if (IS_ERR(current_ev))
3805		goto unlock;
3806
3807	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3808
3809 unlock:
3810	rcu_read_unlock();
3811	return current_ev;
3812}
3813
3814
3815static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3816				  struct iw_request_info *info,
3817				  char *buf, size_t len)
3818{
3819	char *current_ev = buf;
3820	char *end_buf = buf + len;
3821	struct cfg80211_internal_bss *bss;
3822	int err = 0;
3823
3824	spin_lock_bh(&rdev->bss_lock);
3825	cfg80211_bss_expire(rdev);
3826
3827	list_for_each_entry(bss, &rdev->bss_list, list) {
3828		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3829			err = -E2BIG;
3830			break;
3831		}
3832		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3833					   current_ev, end_buf);
3834		if (IS_ERR(current_ev)) {
3835			err = PTR_ERR(current_ev);
3836			break;
3837		}
3838	}
3839	spin_unlock_bh(&rdev->bss_lock);
3840
3841	if (err)
3842		return err;
3843	return current_ev - buf;
3844}
3845
3846
3847int cfg80211_wext_giwscan(struct net_device *dev,
3848			  struct iw_request_info *info,
3849			  union iwreq_data *wrqu, char *extra)
3850{
3851	struct iw_point *data = &wrqu->data;
3852	struct cfg80211_registered_device *rdev;
3853	int res;
3854
3855	if (!netif_running(dev))
3856		return -ENETDOWN;
3857
3858	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3859
3860	if (IS_ERR(rdev))
3861		return PTR_ERR(rdev);
3862
3863	if (rdev->scan_req || rdev->scan_msg)
3864		return -EAGAIN;
3865
3866	res = ieee80211_scan_results(rdev, info, extra, data->length);
3867	data->length = 0;
3868	if (res >= 0) {
3869		data->length = res;
3870		res = 0;
3871	}
3872
3873	return res;
3874}
3875EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3876#endif