Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * cfg80211 scan result handling
   4 *
   5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright 2016	Intel Deutschland GmbH
   8 * Copyright (C) 2018-2021 Intel Corporation
   9 */
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/module.h>
  13#include <linux/netdevice.h>
  14#include <linux/wireless.h>
  15#include <linux/nl80211.h>
  16#include <linux/etherdevice.h>
  17#include <linux/crc32.h>
  18#include <linux/bitfield.h>
  19#include <net/arp.h>
  20#include <net/cfg80211.h>
  21#include <net/cfg80211-wext.h>
  22#include <net/iw_handler.h>
  23#include "core.h"
  24#include "nl80211.h"
  25#include "wext-compat.h"
  26#include "rdev-ops.h"
  27
  28/**
  29 * DOC: BSS tree/list structure
  30 *
  31 * At the top level, the BSS list is kept in both a list in each
  32 * registered device (@bss_list) as well as an RB-tree for faster
  33 * lookup. In the RB-tree, entries can be looked up using their
  34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
  35 * for other BSSes.
  36 *
  37 * Due to the possibility of hidden SSIDs, there's a second level
  38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
  39 * The hidden_list connects all BSSes belonging to a single AP
  40 * that has a hidden SSID, and connects beacon and probe response
  41 * entries. For a probe response entry for a hidden SSID, the
  42 * hidden_beacon_bss pointer points to the BSS struct holding the
  43 * beacon's information.
  44 *
  45 * Reference counting is done for all these references except for
  46 * the hidden_list, so that a beacon BSS struct that is otherwise
  47 * not referenced has one reference for being on the bss_list and
  48 * one for each probe response entry that points to it using the
  49 * hidden_beacon_bss pointer. When a BSS struct that has such a
  50 * pointer is get/put, the refcount update is also propagated to
  51 * the referenced struct, this ensure that it cannot get removed
  52 * while somebody is using the probe response version.
  53 *
  54 * Note that the hidden_beacon_bss pointer never changes, due to
  55 * the reference counting. Therefore, no locking is needed for
  56 * it.
  57 *
  58 * Also note that the hidden_beacon_bss pointer is only relevant
  59 * if the driver uses something other than the IEs, e.g. private
  60 * data stored in the BSS struct, since the beacon IEs are
  61 * also linked into the probe response struct.
  62 */
  63
  64/*
  65 * Limit the number of BSS entries stored in mac80211. Each one is
  66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
  67 * If somebody wants to really attack this though, they'd likely
  68 * use small beacons, and only one type of frame, limiting each of
  69 * the entries to a much smaller size (in order to generate more
  70 * entries in total, so overhead is bigger.)
  71 */
  72static int bss_entries_limit = 1000;
  73module_param(bss_entries_limit, int, 0644);
  74MODULE_PARM_DESC(bss_entries_limit,
  75                 "limit to number of scan BSS entries (per wiphy, default 1000)");
  76
  77#define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
  78
  79/**
  80 * struct cfg80211_colocated_ap - colocated AP information
  81 *
  82 * @list: linked list to all colocated aPS
  83 * @bssid: BSSID of the reported AP
  84 * @ssid: SSID of the reported AP
  85 * @ssid_len: length of the ssid
  86 * @center_freq: frequency the reported AP is on
  87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
  88 *	that operate in the same channel as the reported AP and that might be
  89 *	detected by a STA receiving this frame, are transmitting unsolicited
  90 *	Probe Response frames every 20 TUs
  91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
  92 * @same_ssid: the reported AP has the same SSID as the reporting AP
  93 * @multi_bss: the reported AP is part of a multiple BSSID set
  94 * @transmitted_bssid: the reported AP is the transmitting BSSID
  95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
  96 *	colocated and can be discovered via legacy bands.
  97 * @short_ssid_valid: short_ssid is valid and can be used
  98 * @short_ssid: the short SSID for this SSID
  99 */
 100struct cfg80211_colocated_ap {
 101	struct list_head list;
 102	u8 bssid[ETH_ALEN];
 103	u8 ssid[IEEE80211_MAX_SSID_LEN];
 104	size_t ssid_len;
 105	u32 short_ssid;
 106	u32 center_freq;
 107	u8 unsolicited_probe:1,
 108	   oct_recommended:1,
 109	   same_ssid:1,
 110	   multi_bss:1,
 111	   transmitted_bssid:1,
 112	   colocated_ess:1,
 113	   short_ssid_valid:1;
 114};
 115
 116static void bss_free(struct cfg80211_internal_bss *bss)
 117{
 118	struct cfg80211_bss_ies *ies;
 119
 120	if (WARN_ON(atomic_read(&bss->hold)))
 121		return;
 122
 123	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
 124	if (ies && !bss->pub.hidden_beacon_bss)
 125		kfree_rcu(ies, rcu_head);
 126	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
 127	if (ies)
 128		kfree_rcu(ies, rcu_head);
 129
 130	/*
 131	 * This happens when the module is removed, it doesn't
 132	 * really matter any more save for completeness
 133	 */
 134	if (!list_empty(&bss->hidden_list))
 135		list_del(&bss->hidden_list);
 136
 137	kfree(bss);
 138}
 139
 140static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
 141			       struct cfg80211_internal_bss *bss)
 142{
 143	lockdep_assert_held(&rdev->bss_lock);
 144
 145	bss->refcount++;
 146	if (bss->pub.hidden_beacon_bss) {
 147		bss = container_of(bss->pub.hidden_beacon_bss,
 148				   struct cfg80211_internal_bss,
 149				   pub);
 150		bss->refcount++;
 151	}
 152	if (bss->pub.transmitted_bss) {
 153		bss = container_of(bss->pub.transmitted_bss,
 154				   struct cfg80211_internal_bss,
 155				   pub);
 156		bss->refcount++;
 157	}
 158}
 159
 160static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
 161			       struct cfg80211_internal_bss *bss)
 162{
 163	lockdep_assert_held(&rdev->bss_lock);
 164
 165	if (bss->pub.hidden_beacon_bss) {
 166		struct cfg80211_internal_bss *hbss;
 167		hbss = container_of(bss->pub.hidden_beacon_bss,
 168				    struct cfg80211_internal_bss,
 169				    pub);
 170		hbss->refcount--;
 171		if (hbss->refcount == 0)
 172			bss_free(hbss);
 173	}
 174
 175	if (bss->pub.transmitted_bss) {
 176		struct cfg80211_internal_bss *tbss;
 177
 178		tbss = container_of(bss->pub.transmitted_bss,
 179				    struct cfg80211_internal_bss,
 180				    pub);
 181		tbss->refcount--;
 182		if (tbss->refcount == 0)
 183			bss_free(tbss);
 184	}
 185
 186	bss->refcount--;
 187	if (bss->refcount == 0)
 188		bss_free(bss);
 189}
 190
 191static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
 192				  struct cfg80211_internal_bss *bss)
 193{
 194	lockdep_assert_held(&rdev->bss_lock);
 195
 196	if (!list_empty(&bss->hidden_list)) {
 197		/*
 198		 * don't remove the beacon entry if it has
 199		 * probe responses associated with it
 200		 */
 201		if (!bss->pub.hidden_beacon_bss)
 202			return false;
 203		/*
 204		 * if it's a probe response entry break its
 205		 * link to the other entries in the group
 206		 */
 207		list_del_init(&bss->hidden_list);
 208	}
 209
 210	list_del_init(&bss->list);
 211	list_del_init(&bss->pub.nontrans_list);
 212	rb_erase(&bss->rbn, &rdev->bss_tree);
 213	rdev->bss_entries--;
 214	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
 215		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
 216		  rdev->bss_entries, list_empty(&rdev->bss_list));
 217	bss_ref_put(rdev, bss);
 218	return true;
 219}
 220
 221bool cfg80211_is_element_inherited(const struct element *elem,
 222				   const struct element *non_inherit_elem)
 223{
 224	u8 id_len, ext_id_len, i, loop_len, id;
 225	const u8 *list;
 226
 227	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
 228		return false;
 229
 230	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
 231		return true;
 232
 233	/*
 234	 * non inheritance element format is:
 235	 * ext ID (56) | IDs list len | list | extension IDs list len | list
 236	 * Both lists are optional. Both lengths are mandatory.
 237	 * This means valid length is:
 238	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
 239	 */
 240	id_len = non_inherit_elem->data[1];
 241	if (non_inherit_elem->datalen < 3 + id_len)
 242		return true;
 243
 244	ext_id_len = non_inherit_elem->data[2 + id_len];
 245	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
 246		return true;
 247
 248	if (elem->id == WLAN_EID_EXTENSION) {
 249		if (!ext_id_len)
 250			return true;
 251		loop_len = ext_id_len;
 252		list = &non_inherit_elem->data[3 + id_len];
 253		id = elem->data[0];
 254	} else {
 255		if (!id_len)
 256			return true;
 257		loop_len = id_len;
 258		list = &non_inherit_elem->data[2];
 259		id = elem->id;
 260	}
 261
 262	for (i = 0; i < loop_len; i++) {
 263		if (list[i] == id)
 264			return false;
 265	}
 266
 267	return true;
 268}
 269EXPORT_SYMBOL(cfg80211_is_element_inherited);
 270
 271static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
 272				  const u8 *subelement, size_t subie_len,
 273				  u8 *new_ie, gfp_t gfp)
 274{
 275	u8 *pos, *tmp;
 276	const u8 *tmp_old, *tmp_new;
 277	const struct element *non_inherit_elem;
 278	u8 *sub_copy;
 279
 280	/* copy subelement as we need to change its content to
 281	 * mark an ie after it is processed.
 282	 */
 283	sub_copy = kmemdup(subelement, subie_len, gfp);
 284	if (!sub_copy)
 285		return 0;
 286
 287	pos = &new_ie[0];
 288
 289	/* set new ssid */
 290	tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
 291	if (tmp_new) {
 292		memcpy(pos, tmp_new, tmp_new[1] + 2);
 293		pos += (tmp_new[1] + 2);
 294	}
 295
 296	/* get non inheritance list if exists */
 297	non_inherit_elem =
 298		cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
 299				       sub_copy, subie_len);
 300
 301	/* go through IEs in ie (skip SSID) and subelement,
 302	 * merge them into new_ie
 303	 */
 304	tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
 305	tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
 306
 307	while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
 
 308		if (tmp_old[0] == 0) {
 309			tmp_old++;
 310			continue;
 311		}
 312
 313		if (tmp_old[0] == WLAN_EID_EXTENSION)
 314			tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
 315							 subie_len);
 316		else
 317			tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
 318						     subie_len);
 319
 320		if (!tmp) {
 321			const struct element *old_elem = (void *)tmp_old;
 322
 323			/* ie in old ie but not in subelement */
 324			if (cfg80211_is_element_inherited(old_elem,
 325							  non_inherit_elem)) {
 326				memcpy(pos, tmp_old, tmp_old[1] + 2);
 327				pos += tmp_old[1] + 2;
 328			}
 329		} else {
 330			/* ie in transmitting ie also in subelement,
 331			 * copy from subelement and flag the ie in subelement
 332			 * as copied (by setting eid field to WLAN_EID_SSID,
 333			 * which is skipped anyway).
 334			 * For vendor ie, compare OUI + type + subType to
 335			 * determine if they are the same ie.
 336			 */
 337			if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
 338				if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
 
 339					/* same vendor ie, copy from
 340					 * subelement
 341					 */
 342					memcpy(pos, tmp, tmp[1] + 2);
 343					pos += tmp[1] + 2;
 344					tmp[0] = WLAN_EID_SSID;
 345				} else {
 346					memcpy(pos, tmp_old, tmp_old[1] + 2);
 347					pos += tmp_old[1] + 2;
 348				}
 349			} else {
 350				/* copy ie from subelement into new ie */
 351				memcpy(pos, tmp, tmp[1] + 2);
 352				pos += tmp[1] + 2;
 353				tmp[0] = WLAN_EID_SSID;
 354			}
 355		}
 356
 357		if (tmp_old + tmp_old[1] + 2 - ie == ielen)
 358			break;
 359
 360		tmp_old += tmp_old[1] + 2;
 361	}
 362
 363	/* go through subelement again to check if there is any ie not
 364	 * copied to new ie, skip ssid, capability, bssid-index ie
 365	 */
 366	tmp_new = sub_copy;
 367	while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
 
 368		if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
 369		      tmp_new[0] == WLAN_EID_SSID)) {
 370			memcpy(pos, tmp_new, tmp_new[1] + 2);
 371			pos += tmp_new[1] + 2;
 372		}
 373		if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
 374			break;
 375		tmp_new += tmp_new[1] + 2;
 376	}
 377
 378	kfree(sub_copy);
 379	return pos - new_ie;
 380}
 381
 382static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
 383		   const u8 *ssid, size_t ssid_len)
 384{
 385	const struct cfg80211_bss_ies *ies;
 386	const u8 *ssidie;
 387
 388	if (bssid && !ether_addr_equal(a->bssid, bssid))
 389		return false;
 390
 391	if (!ssid)
 392		return true;
 393
 394	ies = rcu_access_pointer(a->ies);
 395	if (!ies)
 396		return false;
 397	ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
 398	if (!ssidie)
 399		return false;
 400	if (ssidie[1] != ssid_len)
 401		return false;
 402	return memcmp(ssidie + 2, ssid, ssid_len) == 0;
 403}
 404
 405static int
 406cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
 407			   struct cfg80211_bss *nontrans_bss)
 408{
 409	const u8 *ssid;
 410	size_t ssid_len;
 411	struct cfg80211_bss *bss = NULL;
 412
 413	rcu_read_lock();
 414	ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
 415	if (!ssid) {
 416		rcu_read_unlock();
 417		return -EINVAL;
 418	}
 419	ssid_len = ssid[1];
 420	ssid = ssid + 2;
 421	rcu_read_unlock();
 422
 423	/* check if nontrans_bss is in the list */
 424	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
 425		if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len))
 
 
 426			return 0;
 
 427	}
 428
 
 
 
 
 
 
 
 
 
 
 
 429	/* add to the list */
 430	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
 431	return 0;
 432}
 433
 434static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
 435				  unsigned long expire_time)
 436{
 437	struct cfg80211_internal_bss *bss, *tmp;
 438	bool expired = false;
 439
 440	lockdep_assert_held(&rdev->bss_lock);
 441
 442	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
 443		if (atomic_read(&bss->hold))
 444			continue;
 445		if (!time_after(expire_time, bss->ts))
 446			continue;
 447
 448		if (__cfg80211_unlink_bss(rdev, bss))
 449			expired = true;
 450	}
 451
 452	if (expired)
 453		rdev->bss_generation++;
 454}
 455
 456static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
 457{
 458	struct cfg80211_internal_bss *bss, *oldest = NULL;
 459	bool ret;
 460
 461	lockdep_assert_held(&rdev->bss_lock);
 462
 463	list_for_each_entry(bss, &rdev->bss_list, list) {
 464		if (atomic_read(&bss->hold))
 465			continue;
 466
 467		if (!list_empty(&bss->hidden_list) &&
 468		    !bss->pub.hidden_beacon_bss)
 469			continue;
 470
 471		if (oldest && time_before(oldest->ts, bss->ts))
 472			continue;
 473		oldest = bss;
 474	}
 475
 476	if (WARN_ON(!oldest))
 477		return false;
 478
 479	/*
 480	 * The callers make sure to increase rdev->bss_generation if anything
 481	 * gets removed (and a new entry added), so there's no need to also do
 482	 * it here.
 483	 */
 484
 485	ret = __cfg80211_unlink_bss(rdev, oldest);
 486	WARN_ON(!ret);
 487	return ret;
 488}
 489
 490static u8 cfg80211_parse_bss_param(u8 data,
 491				   struct cfg80211_colocated_ap *coloc_ap)
 492{
 493	coloc_ap->oct_recommended =
 494		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
 495	coloc_ap->same_ssid =
 496		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
 497	coloc_ap->multi_bss =
 498		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
 499	coloc_ap->transmitted_bssid =
 500		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
 501	coloc_ap->unsolicited_probe =
 502		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
 503	coloc_ap->colocated_ess =
 504		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
 505
 506	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
 507}
 508
 509static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
 510				    const struct element **elem, u32 *s_ssid)
 511{
 512
 513	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
 514	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
 515		return -EINVAL;
 516
 517	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
 518	return 0;
 519}
 520
 521static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
 522{
 523	struct cfg80211_colocated_ap *ap, *tmp_ap;
 524
 525	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
 526		list_del(&ap->list);
 527		kfree(ap);
 528	}
 529}
 530
 531static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
 532				  const u8 *pos, u8 length,
 533				  const struct element *ssid_elem,
 534				  int s_ssid_tmp)
 535{
 536	/* skip the TBTT offset */
 537	pos++;
 538
 539	memcpy(entry->bssid, pos, ETH_ALEN);
 540	pos += ETH_ALEN;
 541
 542	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
 543		memcpy(&entry->short_ssid, pos,
 544		       sizeof(entry->short_ssid));
 545		entry->short_ssid_valid = true;
 546		pos += 4;
 547	}
 548
 549	/* skip non colocated APs */
 550	if (!cfg80211_parse_bss_param(*pos, entry))
 551		return -EINVAL;
 552	pos++;
 553
 554	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
 555		/*
 556		 * no information about the short ssid. Consider the entry valid
 557		 * for now. It would later be dropped in case there are explicit
 558		 * SSIDs that need to be matched
 559		 */
 560		if (!entry->same_ssid)
 561			return 0;
 562	}
 563
 564	if (entry->same_ssid) {
 565		entry->short_ssid = s_ssid_tmp;
 566		entry->short_ssid_valid = true;
 567
 568		/*
 569		 * This is safe because we validate datalen in
 570		 * cfg80211_parse_colocated_ap(), before calling this
 571		 * function.
 572		 */
 573		memcpy(&entry->ssid, &ssid_elem->data,
 574		       ssid_elem->datalen);
 575		entry->ssid_len = ssid_elem->datalen;
 576	}
 577	return 0;
 578}
 579
 580static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
 581				       struct list_head *list)
 582{
 583	struct ieee80211_neighbor_ap_info *ap_info;
 584	const struct element *elem, *ssid_elem;
 585	const u8 *pos, *end;
 586	u32 s_ssid_tmp;
 587	int n_coloc = 0, ret;
 588	LIST_HEAD(ap_list);
 589
 590	elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
 591				  ies->len);
 592	if (!elem)
 593		return 0;
 594
 595	pos = elem->data;
 596	end = pos + elem->datalen;
 597
 598	ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
 599	if (ret)
 600		return ret;
 601
 602	/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
 603	while (pos + sizeof(*ap_info) <= end) {
 604		enum nl80211_band band;
 605		int freq;
 606		u8 length, i, count;
 607
 608		ap_info = (void *)pos;
 609		count = u8_get_bits(ap_info->tbtt_info_hdr,
 610				    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
 611		length = ap_info->tbtt_info_len;
 612
 613		pos += sizeof(*ap_info);
 614
 615		if (!ieee80211_operating_class_to_band(ap_info->op_class,
 616						       &band))
 617			break;
 618
 619		freq = ieee80211_channel_to_frequency(ap_info->channel, band);
 620
 621		if (end - pos < count * length)
 622			break;
 623
 624		/*
 625		 * TBTT info must include bss param + BSSID +
 626		 * (short SSID or same_ssid bit to be set).
 627		 * ignore other options, and move to the
 628		 * next AP info
 629		 */
 630		if (band != NL80211_BAND_6GHZ ||
 631		    (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
 632		     length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
 633			pos += count * length;
 634			continue;
 635		}
 636
 637		for (i = 0; i < count; i++) {
 638			struct cfg80211_colocated_ap *entry;
 639
 640			entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
 641					GFP_ATOMIC);
 642
 643			if (!entry)
 644				break;
 645
 646			entry->center_freq = freq;
 647
 648			if (!cfg80211_parse_ap_info(entry, pos, length,
 649						    ssid_elem, s_ssid_tmp)) {
 650				n_coloc++;
 651				list_add_tail(&entry->list, &ap_list);
 652			} else {
 653				kfree(entry);
 654			}
 655
 656			pos += length;
 657		}
 658	}
 659
 660	if (pos != end) {
 661		cfg80211_free_coloc_ap_list(&ap_list);
 662		return 0;
 663	}
 664
 665	list_splice_tail(&ap_list, list);
 666	return n_coloc;
 667}
 668
 669static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
 670					struct ieee80211_channel *chan,
 671					bool add_to_6ghz)
 672{
 673	int i;
 674	u32 n_channels = request->n_channels;
 675	struct cfg80211_scan_6ghz_params *params =
 676		&request->scan_6ghz_params[request->n_6ghz_params];
 677
 678	for (i = 0; i < n_channels; i++) {
 679		if (request->channels[i] == chan) {
 680			if (add_to_6ghz)
 681				params->channel_idx = i;
 682			return;
 683		}
 684	}
 685
 686	request->channels[n_channels] = chan;
 687	if (add_to_6ghz)
 688		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
 689			n_channels;
 690
 691	request->n_channels++;
 692}
 693
 694static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
 695				     struct cfg80211_scan_request *request)
 696{
 697	int i;
 698	u32 s_ssid;
 699
 700	for (i = 0; i < request->n_ssids; i++) {
 701		/* wildcard ssid in the scan request */
 702		if (!request->ssids[i].ssid_len)
 
 
 
 703			return true;
 
 704
 705		if (ap->ssid_len &&
 706		    ap->ssid_len == request->ssids[i].ssid_len) {
 707			if (!memcmp(request->ssids[i].ssid, ap->ssid,
 708				    ap->ssid_len))
 709				return true;
 710		} else if (ap->short_ssid_valid) {
 711			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
 712					   request->ssids[i].ssid_len);
 713
 714			if (ap->short_ssid == s_ssid)
 715				return true;
 716		}
 717	}
 718
 719	return false;
 720}
 721
 722static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
 723{
 724	u8 i;
 725	struct cfg80211_colocated_ap *ap;
 726	int n_channels, count = 0, err;
 727	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
 728	LIST_HEAD(coloc_ap_list);
 729	bool need_scan_psc = true;
 730	const struct ieee80211_sband_iftype_data *iftd;
 731
 732	rdev_req->scan_6ghz = true;
 733
 734	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
 735		return -EOPNOTSUPP;
 736
 737	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
 738					       rdev_req->wdev->iftype);
 739	if (!iftd || !iftd->he_cap.has_he)
 740		return -EOPNOTSUPP;
 741
 742	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
 743
 744	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
 745		struct cfg80211_internal_bss *intbss;
 746
 747		spin_lock_bh(&rdev->bss_lock);
 748		list_for_each_entry(intbss, &rdev->bss_list, list) {
 749			struct cfg80211_bss *res = &intbss->pub;
 750			const struct cfg80211_bss_ies *ies;
 751
 752			ies = rcu_access_pointer(res->ies);
 753			count += cfg80211_parse_colocated_ap(ies,
 754							     &coloc_ap_list);
 755		}
 756		spin_unlock_bh(&rdev->bss_lock);
 757	}
 758
 759	request = kzalloc(struct_size(request, channels, n_channels) +
 760			  sizeof(*request->scan_6ghz_params) * count +
 761			  sizeof(*request->ssids) * rdev_req->n_ssids,
 762			  GFP_KERNEL);
 763	if (!request) {
 764		cfg80211_free_coloc_ap_list(&coloc_ap_list);
 765		return -ENOMEM;
 766	}
 767
 768	*request = *rdev_req;
 769	request->n_channels = 0;
 770	request->scan_6ghz_params =
 771		(void *)&request->channels[n_channels];
 772
 773	/*
 774	 * PSC channels should not be scanned in case of direct scan with 1 SSID
 775	 * and at least one of the reported co-located APs with same SSID
 776	 * indicating that all APs in the same ESS are co-located
 777	 */
 778	if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
 779		list_for_each_entry(ap, &coloc_ap_list, list) {
 780			if (ap->colocated_ess &&
 781			    cfg80211_find_ssid_match(ap, request)) {
 782				need_scan_psc = false;
 783				break;
 784			}
 785		}
 786	}
 787
 788	/*
 789	 * add to the scan request the channels that need to be scanned
 790	 * regardless of the collocated APs (PSC channels or all channels
 791	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
 792	 */
 793	for (i = 0; i < rdev_req->n_channels; i++) {
 794		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
 795		    ((need_scan_psc &&
 796		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
 797		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
 798			cfg80211_scan_req_add_chan(request,
 799						   rdev_req->channels[i],
 800						   false);
 801		}
 802	}
 803
 804	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
 805		goto skip;
 806
 807	list_for_each_entry(ap, &coloc_ap_list, list) {
 808		bool found = false;
 809		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
 810			&request->scan_6ghz_params[request->n_6ghz_params];
 811		struct ieee80211_channel *chan =
 812			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
 813
 814		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
 815			continue;
 816
 817		for (i = 0; i < rdev_req->n_channels; i++) {
 818			if (rdev_req->channels[i] == chan)
 819				found = true;
 820		}
 821
 822		if (!found)
 823			continue;
 824
 825		if (request->n_ssids > 0 &&
 826		    !cfg80211_find_ssid_match(ap, request))
 827			continue;
 828
 
 
 
 829		cfg80211_scan_req_add_chan(request, chan, true);
 830		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
 831		scan_6ghz_params->short_ssid = ap->short_ssid;
 832		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
 833		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
 834
 835		/*
 836		 * If a PSC channel is added to the scan and 'need_scan_psc' is
 837		 * set to false, then all the APs that the scan logic is
 838		 * interested with on the channel are collocated and thus there
 839		 * is no need to perform the initial PSC channel listen.
 840		 */
 841		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
 842			scan_6ghz_params->psc_no_listen = true;
 843
 844		request->n_6ghz_params++;
 845	}
 846
 847skip:
 848	cfg80211_free_coloc_ap_list(&coloc_ap_list);
 849
 850	if (request->n_channels) {
 851		struct cfg80211_scan_request *old = rdev->int_scan_req;
 852		rdev->int_scan_req = request;
 853
 854		/*
 855		 * Add the ssids from the parent scan request to the new scan
 856		 * request, so the driver would be able to use them in its
 857		 * probe requests to discover hidden APs on PSC channels.
 858		 */
 859		request->ssids = (void *)&request->channels[request->n_channels];
 860		request->n_ssids = rdev_req->n_ssids;
 861		memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
 862		       request->n_ssids);
 863
 864		/*
 865		 * If this scan follows a previous scan, save the scan start
 866		 * info from the first part of the scan
 867		 */
 868		if (old)
 869			rdev->int_scan_req->info = old->info;
 870
 871		err = rdev_scan(rdev, request);
 872		if (err) {
 873			rdev->int_scan_req = old;
 874			kfree(request);
 875		} else {
 876			kfree(old);
 877		}
 878
 879		return err;
 880	}
 881
 882	kfree(request);
 883	return -EINVAL;
 884}
 885
 886int cfg80211_scan(struct cfg80211_registered_device *rdev)
 887{
 888	struct cfg80211_scan_request *request;
 889	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
 890	u32 n_channels = 0, idx, i;
 891
 892	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
 893		return rdev_scan(rdev, rdev_req);
 894
 895	for (i = 0; i < rdev_req->n_channels; i++) {
 896		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
 897			n_channels++;
 898	}
 899
 900	if (!n_channels)
 901		return cfg80211_scan_6ghz(rdev);
 902
 903	request = kzalloc(struct_size(request, channels, n_channels),
 904			  GFP_KERNEL);
 905	if (!request)
 906		return -ENOMEM;
 907
 908	*request = *rdev_req;
 909	request->n_channels = n_channels;
 910
 911	for (i = idx = 0; i < rdev_req->n_channels; i++) {
 912		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
 913			request->channels[idx++] = rdev_req->channels[i];
 914	}
 915
 916	rdev_req->scan_6ghz = false;
 917	rdev->int_scan_req = request;
 918	return rdev_scan(rdev, request);
 919}
 920
 921void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
 922			   bool send_message)
 923{
 924	struct cfg80211_scan_request *request, *rdev_req;
 925	struct wireless_dev *wdev;
 926	struct sk_buff *msg;
 927#ifdef CONFIG_CFG80211_WEXT
 928	union iwreq_data wrqu;
 929#endif
 930
 931	lockdep_assert_held(&rdev->wiphy.mtx);
 932
 933	if (rdev->scan_msg) {
 934		nl80211_send_scan_msg(rdev, rdev->scan_msg);
 935		rdev->scan_msg = NULL;
 936		return;
 937	}
 938
 939	rdev_req = rdev->scan_req;
 940	if (!rdev_req)
 941		return;
 942
 943	wdev = rdev_req->wdev;
 944	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
 945
 946	if (wdev_running(wdev) &&
 947	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
 948	    !rdev_req->scan_6ghz && !request->info.aborted &&
 949	    !cfg80211_scan_6ghz(rdev))
 950		return;
 951
 952	/*
 953	 * This must be before sending the other events!
 954	 * Otherwise, wpa_supplicant gets completely confused with
 955	 * wext events.
 956	 */
 957	if (wdev->netdev)
 958		cfg80211_sme_scan_done(wdev->netdev);
 959
 960	if (!request->info.aborted &&
 961	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
 962		/* flush entries from previous scans */
 963		spin_lock_bh(&rdev->bss_lock);
 964		__cfg80211_bss_expire(rdev, request->scan_start);
 965		spin_unlock_bh(&rdev->bss_lock);
 966	}
 967
 968	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
 969
 970#ifdef CONFIG_CFG80211_WEXT
 971	if (wdev->netdev && !request->info.aborted) {
 972		memset(&wrqu, 0, sizeof(wrqu));
 973
 974		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
 975	}
 976#endif
 977
 978	if (wdev->netdev)
 979		dev_put(wdev->netdev);
 980
 981	kfree(rdev->int_scan_req);
 982	rdev->int_scan_req = NULL;
 983
 984	kfree(rdev->scan_req);
 985	rdev->scan_req = NULL;
 986
 987	if (!send_message)
 988		rdev->scan_msg = msg;
 989	else
 990		nl80211_send_scan_msg(rdev, msg);
 991}
 992
 993void __cfg80211_scan_done(struct work_struct *wk)
 994{
 995	struct cfg80211_registered_device *rdev;
 996
 997	rdev = container_of(wk, struct cfg80211_registered_device,
 998			    scan_done_wk);
 999
1000	wiphy_lock(&rdev->wiphy);
1001	___cfg80211_scan_done(rdev, true);
1002	wiphy_unlock(&rdev->wiphy);
1003}
1004
1005void cfg80211_scan_done(struct cfg80211_scan_request *request,
1006			struct cfg80211_scan_info *info)
1007{
1008	struct cfg80211_scan_info old_info = request->info;
1009
1010	trace_cfg80211_scan_done(request, info);
1011	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1012		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1013
1014	request->info = *info;
1015
1016	/*
1017	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1018	 * be of the first part. In such a case old_info.scan_start_tsf should
1019	 * be non zero.
1020	 */
1021	if (request->scan_6ghz && old_info.scan_start_tsf) {
1022		request->info.scan_start_tsf = old_info.scan_start_tsf;
1023		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1024		       sizeof(request->info.tsf_bssid));
1025	}
1026
1027	request->notified = true;
1028	queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1029}
1030EXPORT_SYMBOL(cfg80211_scan_done);
1031
1032void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1033				 struct cfg80211_sched_scan_request *req)
1034{
1035	lockdep_assert_held(&rdev->wiphy.mtx);
1036
1037	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1038}
1039
1040static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1041					struct cfg80211_sched_scan_request *req)
1042{
1043	lockdep_assert_held(&rdev->wiphy.mtx);
1044
1045	list_del_rcu(&req->list);
1046	kfree_rcu(req, rcu_head);
1047}
1048
1049static struct cfg80211_sched_scan_request *
1050cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1051{
1052	struct cfg80211_sched_scan_request *pos;
1053
1054	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1055				lockdep_is_held(&rdev->wiphy.mtx)) {
1056		if (pos->reqid == reqid)
1057			return pos;
1058	}
1059	return NULL;
1060}
1061
1062/*
1063 * Determines if a scheduled scan request can be handled. When a legacy
1064 * scheduled scan is running no other scheduled scan is allowed regardless
1065 * whether the request is for legacy or multi-support scan. When a multi-support
1066 * scheduled scan is running a request for legacy scan is not allowed. In this
1067 * case a request for multi-support scan can be handled if resources are
1068 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1069 */
1070int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1071				     bool want_multi)
1072{
1073	struct cfg80211_sched_scan_request *pos;
1074	int i = 0;
1075
1076	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1077		/* request id zero means legacy in progress */
1078		if (!i && !pos->reqid)
1079			return -EINPROGRESS;
1080		i++;
1081	}
1082
1083	if (i) {
1084		/* no legacy allowed when multi request(s) are active */
1085		if (!want_multi)
1086			return -EINPROGRESS;
1087
1088		/* resource limit reached */
1089		if (i == rdev->wiphy.max_sched_scan_reqs)
1090			return -ENOSPC;
1091	}
1092	return 0;
1093}
1094
1095void cfg80211_sched_scan_results_wk(struct work_struct *work)
1096{
1097	struct cfg80211_registered_device *rdev;
1098	struct cfg80211_sched_scan_request *req, *tmp;
1099
1100	rdev = container_of(work, struct cfg80211_registered_device,
1101			   sched_scan_res_wk);
1102
1103	wiphy_lock(&rdev->wiphy);
1104	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1105		if (req->report_results) {
1106			req->report_results = false;
1107			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1108				/* flush entries from previous scans */
1109				spin_lock_bh(&rdev->bss_lock);
1110				__cfg80211_bss_expire(rdev, req->scan_start);
1111				spin_unlock_bh(&rdev->bss_lock);
1112				req->scan_start = jiffies;
1113			}
1114			nl80211_send_sched_scan(req,
1115						NL80211_CMD_SCHED_SCAN_RESULTS);
1116		}
1117	}
1118	wiphy_unlock(&rdev->wiphy);
1119}
1120
1121void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1122{
1123	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1124	struct cfg80211_sched_scan_request *request;
1125
1126	trace_cfg80211_sched_scan_results(wiphy, reqid);
1127	/* ignore if we're not scanning */
1128
1129	rcu_read_lock();
1130	request = cfg80211_find_sched_scan_req(rdev, reqid);
1131	if (request) {
1132		request->report_results = true;
1133		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1134	}
1135	rcu_read_unlock();
1136}
1137EXPORT_SYMBOL(cfg80211_sched_scan_results);
1138
1139void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1140{
1141	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1142
1143	lockdep_assert_held(&wiphy->mtx);
1144
1145	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1146
1147	__cfg80211_stop_sched_scan(rdev, reqid, true);
1148}
1149EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1150
1151void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1152{
1153	wiphy_lock(wiphy);
1154	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1155	wiphy_unlock(wiphy);
1156}
1157EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1158
1159int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1160				 struct cfg80211_sched_scan_request *req,
1161				 bool driver_initiated)
1162{
1163	lockdep_assert_held(&rdev->wiphy.mtx);
1164
1165	if (!driver_initiated) {
1166		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1167		if (err)
1168			return err;
1169	}
1170
1171	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1172
1173	cfg80211_del_sched_scan_req(rdev, req);
1174
1175	return 0;
1176}
1177
1178int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1179			       u64 reqid, bool driver_initiated)
1180{
1181	struct cfg80211_sched_scan_request *sched_scan_req;
1182
1183	lockdep_assert_held(&rdev->wiphy.mtx);
1184
1185	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1186	if (!sched_scan_req)
1187		return -ENOENT;
1188
1189	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1190					    driver_initiated);
1191}
1192
1193void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1194                      unsigned long age_secs)
1195{
1196	struct cfg80211_internal_bss *bss;
1197	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1198
1199	spin_lock_bh(&rdev->bss_lock);
1200	list_for_each_entry(bss, &rdev->bss_list, list)
1201		bss->ts -= age_jiffies;
1202	spin_unlock_bh(&rdev->bss_lock);
1203}
1204
1205void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1206{
1207	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1208}
1209
1210void cfg80211_bss_flush(struct wiphy *wiphy)
1211{
1212	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1213
1214	spin_lock_bh(&rdev->bss_lock);
1215	__cfg80211_bss_expire(rdev, jiffies);
1216	spin_unlock_bh(&rdev->bss_lock);
1217}
1218EXPORT_SYMBOL(cfg80211_bss_flush);
1219
1220const struct element *
1221cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1222			 const u8 *match, unsigned int match_len,
1223			 unsigned int match_offset)
1224{
1225	const struct element *elem;
1226
1227	for_each_element_id(elem, eid, ies, len) {
1228		if (elem->datalen >= match_offset + match_len &&
1229		    !memcmp(elem->data + match_offset, match, match_len))
1230			return elem;
1231	}
1232
1233	return NULL;
1234}
1235EXPORT_SYMBOL(cfg80211_find_elem_match);
1236
1237const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1238						const u8 *ies,
1239						unsigned int len)
1240{
1241	const struct element *elem;
1242	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1243	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1244
1245	if (WARN_ON(oui_type > 0xff))
1246		return NULL;
1247
1248	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1249					match, match_len, 0);
1250
1251	if (!elem || elem->datalen < 4)
1252		return NULL;
1253
1254	return elem;
1255}
1256EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1257
1258/**
1259 * enum bss_compare_mode - BSS compare mode
1260 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1261 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1262 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1263 */
1264enum bss_compare_mode {
1265	BSS_CMP_REGULAR,
1266	BSS_CMP_HIDE_ZLEN,
1267	BSS_CMP_HIDE_NUL,
1268};
1269
1270static int cmp_bss(struct cfg80211_bss *a,
1271		   struct cfg80211_bss *b,
1272		   enum bss_compare_mode mode)
1273{
1274	const struct cfg80211_bss_ies *a_ies, *b_ies;
1275	const u8 *ie1 = NULL;
1276	const u8 *ie2 = NULL;
1277	int i, r;
1278
1279	if (a->channel != b->channel)
1280		return b->channel->center_freq - a->channel->center_freq;
 
1281
1282	a_ies = rcu_access_pointer(a->ies);
1283	if (!a_ies)
1284		return -1;
1285	b_ies = rcu_access_pointer(b->ies);
1286	if (!b_ies)
1287		return 1;
1288
1289	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1290		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1291				       a_ies->data, a_ies->len);
1292	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1293		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1294				       b_ies->data, b_ies->len);
1295	if (ie1 && ie2) {
1296		int mesh_id_cmp;
1297
1298		if (ie1[1] == ie2[1])
1299			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1300		else
1301			mesh_id_cmp = ie2[1] - ie1[1];
1302
1303		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1304				       a_ies->data, a_ies->len);
1305		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1306				       b_ies->data, b_ies->len);
1307		if (ie1 && ie2) {
1308			if (mesh_id_cmp)
1309				return mesh_id_cmp;
1310			if (ie1[1] != ie2[1])
1311				return ie2[1] - ie1[1];
1312			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1313		}
1314	}
1315
1316	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1317	if (r)
1318		return r;
1319
1320	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1321	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1322
1323	if (!ie1 && !ie2)
1324		return 0;
1325
1326	/*
1327	 * Note that with "hide_ssid", the function returns a match if
1328	 * the already-present BSS ("b") is a hidden SSID beacon for
1329	 * the new BSS ("a").
1330	 */
1331
1332	/* sort missing IE before (left of) present IE */
1333	if (!ie1)
1334		return -1;
1335	if (!ie2)
1336		return 1;
1337
1338	switch (mode) {
1339	case BSS_CMP_HIDE_ZLEN:
1340		/*
1341		 * In ZLEN mode we assume the BSS entry we're
1342		 * looking for has a zero-length SSID. So if
1343		 * the one we're looking at right now has that,
1344		 * return 0. Otherwise, return the difference
1345		 * in length, but since we're looking for the
1346		 * 0-length it's really equivalent to returning
1347		 * the length of the one we're looking at.
1348		 *
1349		 * No content comparison is needed as we assume
1350		 * the content length is zero.
1351		 */
1352		return ie2[1];
1353	case BSS_CMP_REGULAR:
1354	default:
1355		/* sort by length first, then by contents */
1356		if (ie1[1] != ie2[1])
1357			return ie2[1] - ie1[1];
1358		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1359	case BSS_CMP_HIDE_NUL:
1360		if (ie1[1] != ie2[1])
1361			return ie2[1] - ie1[1];
1362		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1363		for (i = 0; i < ie2[1]; i++)
1364			if (ie2[i + 2])
1365				return -1;
1366		return 0;
1367	}
1368}
1369
1370static bool cfg80211_bss_type_match(u16 capability,
1371				    enum nl80211_band band,
1372				    enum ieee80211_bss_type bss_type)
1373{
1374	bool ret = true;
1375	u16 mask, val;
1376
1377	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1378		return ret;
1379
1380	if (band == NL80211_BAND_60GHZ) {
1381		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1382		switch (bss_type) {
1383		case IEEE80211_BSS_TYPE_ESS:
1384			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1385			break;
1386		case IEEE80211_BSS_TYPE_PBSS:
1387			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1388			break;
1389		case IEEE80211_BSS_TYPE_IBSS:
1390			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1391			break;
1392		default:
1393			return false;
1394		}
1395	} else {
1396		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1397		switch (bss_type) {
1398		case IEEE80211_BSS_TYPE_ESS:
1399			val = WLAN_CAPABILITY_ESS;
1400			break;
1401		case IEEE80211_BSS_TYPE_IBSS:
1402			val = WLAN_CAPABILITY_IBSS;
1403			break;
1404		case IEEE80211_BSS_TYPE_MBSS:
1405			val = 0;
1406			break;
1407		default:
1408			return false;
1409		}
1410	}
1411
1412	ret = ((capability & mask) == val);
1413	return ret;
1414}
1415
1416/* Returned bss is reference counted and must be cleaned up appropriately. */
1417struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1418				      struct ieee80211_channel *channel,
1419				      const u8 *bssid,
1420				      const u8 *ssid, size_t ssid_len,
1421				      enum ieee80211_bss_type bss_type,
1422				      enum ieee80211_privacy privacy)
1423{
1424	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1425	struct cfg80211_internal_bss *bss, *res = NULL;
1426	unsigned long now = jiffies;
1427	int bss_privacy;
1428
1429	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1430			       privacy);
1431
1432	spin_lock_bh(&rdev->bss_lock);
1433
1434	list_for_each_entry(bss, &rdev->bss_list, list) {
1435		if (!cfg80211_bss_type_match(bss->pub.capability,
1436					     bss->pub.channel->band, bss_type))
1437			continue;
1438
1439		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1440		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1441		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1442			continue;
1443		if (channel && bss->pub.channel != channel)
1444			continue;
1445		if (!is_valid_ether_addr(bss->pub.bssid))
1446			continue;
1447		/* Don't get expired BSS structs */
1448		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1449		    !atomic_read(&bss->hold))
1450			continue;
1451		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1452			res = bss;
1453			bss_ref_get(rdev, res);
1454			break;
1455		}
1456	}
1457
1458	spin_unlock_bh(&rdev->bss_lock);
1459	if (!res)
1460		return NULL;
1461	trace_cfg80211_return_bss(&res->pub);
1462	return &res->pub;
1463}
1464EXPORT_SYMBOL(cfg80211_get_bss);
1465
1466static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1467			  struct cfg80211_internal_bss *bss)
1468{
1469	struct rb_node **p = &rdev->bss_tree.rb_node;
1470	struct rb_node *parent = NULL;
1471	struct cfg80211_internal_bss *tbss;
1472	int cmp;
1473
1474	while (*p) {
1475		parent = *p;
1476		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1477
1478		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1479
1480		if (WARN_ON(!cmp)) {
1481			/* will sort of leak this BSS */
1482			return;
1483		}
1484
1485		if (cmp < 0)
1486			p = &(*p)->rb_left;
1487		else
1488			p = &(*p)->rb_right;
1489	}
1490
1491	rb_link_node(&bss->rbn, parent, p);
1492	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1493}
1494
1495static struct cfg80211_internal_bss *
1496rb_find_bss(struct cfg80211_registered_device *rdev,
1497	    struct cfg80211_internal_bss *res,
1498	    enum bss_compare_mode mode)
1499{
1500	struct rb_node *n = rdev->bss_tree.rb_node;
1501	struct cfg80211_internal_bss *bss;
1502	int r;
1503
1504	while (n) {
1505		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1506		r = cmp_bss(&res->pub, &bss->pub, mode);
1507
1508		if (r == 0)
1509			return bss;
1510		else if (r < 0)
1511			n = n->rb_left;
1512		else
1513			n = n->rb_right;
1514	}
1515
1516	return NULL;
1517}
1518
1519static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1520				   struct cfg80211_internal_bss *new)
1521{
1522	const struct cfg80211_bss_ies *ies;
1523	struct cfg80211_internal_bss *bss;
1524	const u8 *ie;
1525	int i, ssidlen;
1526	u8 fold = 0;
1527	u32 n_entries = 0;
1528
1529	ies = rcu_access_pointer(new->pub.beacon_ies);
1530	if (WARN_ON(!ies))
1531		return false;
1532
1533	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1534	if (!ie) {
1535		/* nothing to do */
1536		return true;
1537	}
1538
1539	ssidlen = ie[1];
1540	for (i = 0; i < ssidlen; i++)
1541		fold |= ie[2 + i];
1542
1543	if (fold) {
1544		/* not a hidden SSID */
1545		return true;
1546	}
1547
1548	/* This is the bad part ... */
1549
1550	list_for_each_entry(bss, &rdev->bss_list, list) {
1551		/*
1552		 * we're iterating all the entries anyway, so take the
1553		 * opportunity to validate the list length accounting
1554		 */
1555		n_entries++;
1556
1557		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1558			continue;
1559		if (bss->pub.channel != new->pub.channel)
1560			continue;
1561		if (bss->pub.scan_width != new->pub.scan_width)
1562			continue;
1563		if (rcu_access_pointer(bss->pub.beacon_ies))
1564			continue;
1565		ies = rcu_access_pointer(bss->pub.ies);
1566		if (!ies)
1567			continue;
1568		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1569		if (!ie)
1570			continue;
1571		if (ssidlen && ie[1] != ssidlen)
1572			continue;
1573		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1574			continue;
1575		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1576			list_del(&bss->hidden_list);
1577		/* combine them */
1578		list_add(&bss->hidden_list, &new->hidden_list);
1579		bss->pub.hidden_beacon_bss = &new->pub;
1580		new->refcount += bss->refcount;
1581		rcu_assign_pointer(bss->pub.beacon_ies,
1582				   new->pub.beacon_ies);
1583	}
1584
1585	WARN_ONCE(n_entries != rdev->bss_entries,
1586		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1587		  rdev->bss_entries, n_entries);
1588
1589	return true;
1590}
1591
1592struct cfg80211_non_tx_bss {
1593	struct cfg80211_bss *tx_bss;
1594	u8 max_bssid_indicator;
1595	u8 bssid_index;
1596};
1597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1598static bool
1599cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1600			  struct cfg80211_internal_bss *known,
1601			  struct cfg80211_internal_bss *new,
1602			  bool signal_valid)
1603{
1604	lockdep_assert_held(&rdev->bss_lock);
1605
1606	/* Update IEs */
1607	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1608		const struct cfg80211_bss_ies *old;
1609
1610		old = rcu_access_pointer(known->pub.proberesp_ies);
1611
1612		rcu_assign_pointer(known->pub.proberesp_ies,
1613				   new->pub.proberesp_ies);
1614		/* Override possible earlier Beacon frame IEs */
1615		rcu_assign_pointer(known->pub.ies,
1616				   new->pub.proberesp_ies);
1617		if (old)
1618			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1619	} else if (rcu_access_pointer(new->pub.beacon_ies)) {
1620		const struct cfg80211_bss_ies *old;
1621		struct cfg80211_internal_bss *bss;
1622
1623		if (known->pub.hidden_beacon_bss &&
1624		    !list_empty(&known->hidden_list)) {
1625			const struct cfg80211_bss_ies *f;
1626
1627			/* The known BSS struct is one of the probe
1628			 * response members of a group, but we're
1629			 * receiving a beacon (beacon_ies in the new
1630			 * bss is used). This can only mean that the
1631			 * AP changed its beacon from not having an
1632			 * SSID to showing it, which is confusing so
1633			 * drop this information.
1634			 */
1635
1636			f = rcu_access_pointer(new->pub.beacon_ies);
1637			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1638			return false;
1639		}
1640
1641		old = rcu_access_pointer(known->pub.beacon_ies);
1642
1643		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1644
1645		/* Override IEs if they were from a beacon before */
1646		if (old == rcu_access_pointer(known->pub.ies))
1647			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1648
1649		/* Assign beacon IEs to all sub entries */
1650		list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1651			const struct cfg80211_bss_ies *ies;
1652
1653			ies = rcu_access_pointer(bss->pub.beacon_ies);
1654			WARN_ON(ies != old);
1655
1656			rcu_assign_pointer(bss->pub.beacon_ies,
1657					   new->pub.beacon_ies);
1658		}
1659
1660		if (old)
1661			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1662	}
1663
1664	known->pub.beacon_interval = new->pub.beacon_interval;
1665
1666	/* don't update the signal if beacon was heard on
1667	 * adjacent channel.
1668	 */
1669	if (signal_valid)
1670		known->pub.signal = new->pub.signal;
1671	known->pub.capability = new->pub.capability;
1672	known->ts = new->ts;
1673	known->ts_boottime = new->ts_boottime;
1674	known->parent_tsf = new->parent_tsf;
1675	known->pub.chains = new->pub.chains;
1676	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1677	       IEEE80211_MAX_CHAINS);
1678	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1679	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1680	known->pub.bssid_index = new->pub.bssid_index;
1681
1682	return true;
1683}
1684
1685/* Returned bss is reference counted and must be cleaned up appropriately. */
1686struct cfg80211_internal_bss *
1687cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1688		    struct cfg80211_internal_bss *tmp,
1689		    bool signal_valid, unsigned long ts)
1690{
1691	struct cfg80211_internal_bss *found = NULL;
1692
1693	if (WARN_ON(!tmp->pub.channel))
1694		return NULL;
1695
1696	tmp->ts = ts;
1697
1698	spin_lock_bh(&rdev->bss_lock);
1699
1700	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1701		spin_unlock_bh(&rdev->bss_lock);
1702		return NULL;
1703	}
1704
1705	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1706
1707	if (found) {
1708		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1709			goto drop;
1710	} else {
1711		struct cfg80211_internal_bss *new;
1712		struct cfg80211_internal_bss *hidden;
1713		struct cfg80211_bss_ies *ies;
1714
1715		/*
1716		 * create a copy -- the "res" variable that is passed in
1717		 * is allocated on the stack since it's not needed in the
1718		 * more common case of an update
1719		 */
1720		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1721			      GFP_ATOMIC);
1722		if (!new) {
1723			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1724			if (ies)
1725				kfree_rcu(ies, rcu_head);
1726			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1727			if (ies)
1728				kfree_rcu(ies, rcu_head);
1729			goto drop;
1730		}
1731		memcpy(new, tmp, sizeof(*new));
1732		new->refcount = 1;
1733		INIT_LIST_HEAD(&new->hidden_list);
1734		INIT_LIST_HEAD(&new->pub.nontrans_list);
 
 
1735
1736		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1737			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1738			if (!hidden)
1739				hidden = rb_find_bss(rdev, tmp,
1740						     BSS_CMP_HIDE_NUL);
1741			if (hidden) {
1742				new->pub.hidden_beacon_bss = &hidden->pub;
1743				list_add(&new->hidden_list,
1744					 &hidden->hidden_list);
1745				hidden->refcount++;
1746				rcu_assign_pointer(new->pub.beacon_ies,
1747						   hidden->pub.beacon_ies);
1748			}
1749		} else {
1750			/*
1751			 * Ok so we found a beacon, and don't have an entry. If
1752			 * it's a beacon with hidden SSID, we might be in for an
1753			 * expensive search for any probe responses that should
1754			 * be grouped with this beacon for updates ...
1755			 */
1756			if (!cfg80211_combine_bsses(rdev, new)) {
1757				bss_ref_put(rdev, new);
1758				goto drop;
1759			}
1760		}
1761
1762		if (rdev->bss_entries >= bss_entries_limit &&
1763		    !cfg80211_bss_expire_oldest(rdev)) {
1764			bss_ref_put(rdev, new);
1765			goto drop;
1766		}
1767
1768		/* This must be before the call to bss_ref_get */
1769		if (tmp->pub.transmitted_bss) {
1770			struct cfg80211_internal_bss *pbss =
1771				container_of(tmp->pub.transmitted_bss,
1772					     struct cfg80211_internal_bss,
1773					     pub);
1774
1775			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1776			bss_ref_get(rdev, pbss);
1777		}
1778
1779		list_add_tail(&new->list, &rdev->bss_list);
1780		rdev->bss_entries++;
1781		rb_insert_bss(rdev, new);
1782		found = new;
1783	}
1784
1785	rdev->bss_generation++;
1786	bss_ref_get(rdev, found);
1787	spin_unlock_bh(&rdev->bss_lock);
1788
1789	return found;
1790 drop:
1791	spin_unlock_bh(&rdev->bss_lock);
1792	return NULL;
1793}
1794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1795/*
1796 * Update RX channel information based on the available frame payload
1797 * information. This is mainly for the 2.4 GHz band where frames can be received
1798 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1799 * element to indicate the current (transmitting) channel, but this might also
1800 * be needed on other bands if RX frequency does not match with the actual
1801 * operating channel of a BSS.
1802 */
1803static struct ieee80211_channel *
1804cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1805			 struct ieee80211_channel *channel,
1806			 enum nl80211_bss_scan_width scan_width)
 
1807{
1808	const u8 *tmp;
1809	u32 freq;
1810	int channel_number = -1;
1811	struct ieee80211_channel *alt_channel;
1812
1813	if (channel->band == NL80211_BAND_S1GHZ) {
1814		tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1815		if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1816			struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1817
1818			channel_number = s1gop->primary_ch;
1819		}
1820	} else {
1821		tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1822		if (tmp && tmp[1] == 1) {
1823			channel_number = tmp[2];
1824		} else {
1825			tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1826			if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1827				struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1828
1829				channel_number = htop->primary_chan;
1830			}
1831		}
1832	}
1833
1834	if (channel_number < 0) {
1835		/* No channel information in frame payload */
1836		return channel;
1837	}
1838
1839	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
 
 
 
 
 
 
 
 
 
 
1840	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1841	if (!alt_channel) {
1842		if (channel->band == NL80211_BAND_2GHZ) {
1843			/*
1844			 * Better not allow unexpected channels when that could
1845			 * be going beyond the 1-11 range (e.g., discovering
1846			 * BSS on channel 12 when radio is configured for
1847			 * channel 11.
1848			 */
1849			return NULL;
1850		}
1851
1852		/* No match for the payload channel number - ignore it */
1853		return channel;
1854	}
1855
1856	if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1857	    scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1858		/*
1859		 * Ignore channel number in 5 and 10 MHz channels where there
1860		 * may not be an n:1 or 1:n mapping between frequencies and
1861		 * channel numbers.
1862		 */
1863		return channel;
1864	}
1865
1866	/*
1867	 * Use the channel determined through the payload channel number
1868	 * instead of the RX channel reported by the driver.
1869	 */
1870	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1871		return NULL;
1872	return alt_channel;
1873}
1874
1875/* Returned bss is reference counted and must be cleaned up appropriately. */
1876static struct cfg80211_bss *
1877cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1878				struct cfg80211_inform_bss *data,
1879				enum cfg80211_bss_frame_type ftype,
1880				const u8 *bssid, u64 tsf, u16 capability,
1881				u16 beacon_interval, const u8 *ie, size_t ielen,
1882				struct cfg80211_non_tx_bss *non_tx_data,
1883				gfp_t gfp)
1884{
1885	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1886	struct cfg80211_bss_ies *ies;
1887	struct ieee80211_channel *channel;
1888	struct cfg80211_internal_bss tmp = {}, *res;
1889	int bss_type;
1890	bool signal_valid;
1891	unsigned long ts;
1892
1893	if (WARN_ON(!wiphy))
1894		return NULL;
1895
1896	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1897		    (data->signal < 0 || data->signal > 100)))
1898		return NULL;
1899
1900	channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1901					   data->scan_width);
1902	if (!channel)
1903		return NULL;
1904
1905	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1906	tmp.pub.channel = channel;
1907	tmp.pub.scan_width = data->scan_width;
1908	tmp.pub.signal = data->signal;
1909	tmp.pub.beacon_interval = beacon_interval;
1910	tmp.pub.capability = capability;
1911	tmp.ts_boottime = data->boottime_ns;
1912	tmp.parent_tsf = data->parent_tsf;
1913	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1914
1915	if (non_tx_data) {
1916		tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1917		ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1918		tmp.pub.bssid_index = non_tx_data->bssid_index;
1919		tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1920	} else {
1921		ts = jiffies;
1922	}
1923
1924	/*
1925	 * If we do not know here whether the IEs are from a Beacon or Probe
1926	 * Response frame, we need to pick one of the options and only use it
1927	 * with the driver that does not provide the full Beacon/Probe Response
1928	 * frame. Use Beacon frame pointer to avoid indicating that this should
1929	 * override the IEs pointer should we have received an earlier
1930	 * indication of Probe Response data.
1931	 */
1932	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1933	if (!ies)
1934		return NULL;
1935	ies->len = ielen;
1936	ies->tsf = tsf;
1937	ies->from_beacon = false;
1938	memcpy(ies->data, ie, ielen);
1939
1940	switch (ftype) {
1941	case CFG80211_BSS_FTYPE_BEACON:
1942		ies->from_beacon = true;
1943		fallthrough;
1944	case CFG80211_BSS_FTYPE_UNKNOWN:
1945		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1946		break;
1947	case CFG80211_BSS_FTYPE_PRESP:
1948		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1949		break;
1950	}
1951	rcu_assign_pointer(tmp.pub.ies, ies);
1952
1953	signal_valid = data->chan == channel;
1954	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1955	if (!res)
1956		return NULL;
1957
1958	if (channel->band == NL80211_BAND_60GHZ) {
1959		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1960		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1961		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1962			regulatory_hint_found_beacon(wiphy, channel, gfp);
1963	} else {
1964		if (res->pub.capability & WLAN_CAPABILITY_ESS)
1965			regulatory_hint_found_beacon(wiphy, channel, gfp);
1966	}
1967
1968	if (non_tx_data) {
1969		/* this is a nontransmitting bss, we need to add it to
1970		 * transmitting bss' list if it is not there
1971		 */
 
1972		if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1973					       &res->pub)) {
1974			if (__cfg80211_unlink_bss(rdev, res))
1975				rdev->bss_generation++;
 
 
1976		}
 
 
 
 
1977	}
1978
1979	trace_cfg80211_return_bss(&res->pub);
1980	/* cfg80211_bss_update gives us a referenced result */
1981	return &res->pub;
1982}
1983
1984static const struct element
1985*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1986				   const struct element *mbssid_elem,
1987				   const struct element *sub_elem)
1988{
1989	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1990	const struct element *next_mbssid;
1991	const struct element *next_sub;
1992
1993	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
1994					 mbssid_end,
1995					 ielen - (mbssid_end - ie));
1996
1997	/*
1998	 * If it is not the last subelement in current MBSSID IE or there isn't
1999	 * a next MBSSID IE - profile is complete.
2000	*/
2001	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2002	    !next_mbssid)
2003		return NULL;
2004
2005	/* For any length error, just return NULL */
2006
2007	if (next_mbssid->datalen < 4)
2008		return NULL;
2009
2010	next_sub = (void *)&next_mbssid->data[1];
2011
2012	if (next_mbssid->data + next_mbssid->datalen <
2013	    next_sub->data + next_sub->datalen)
2014		return NULL;
2015
2016	if (next_sub->id != 0 || next_sub->datalen < 2)
2017		return NULL;
2018
2019	/*
2020	 * Check if the first element in the next sub element is a start
2021	 * of a new profile
2022	 */
2023	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2024	       NULL : next_mbssid;
2025}
2026
2027size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2028			      const struct element *mbssid_elem,
2029			      const struct element *sub_elem,
2030			      u8 *merged_ie, size_t max_copy_len)
2031{
2032	size_t copied_len = sub_elem->datalen;
2033	const struct element *next_mbssid;
2034
2035	if (sub_elem->datalen > max_copy_len)
2036		return 0;
2037
2038	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2039
2040	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2041								mbssid_elem,
2042								sub_elem))) {
2043		const struct element *next_sub = (void *)&next_mbssid->data[1];
2044
2045		if (copied_len + next_sub->datalen > max_copy_len)
2046			break;
2047		memcpy(merged_ie + copied_len, next_sub->data,
2048		       next_sub->datalen);
2049		copied_len += next_sub->datalen;
2050	}
2051
2052	return copied_len;
2053}
2054EXPORT_SYMBOL(cfg80211_merge_profile);
2055
2056static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2057				       struct cfg80211_inform_bss *data,
2058				       enum cfg80211_bss_frame_type ftype,
2059				       const u8 *bssid, u64 tsf,
2060				       u16 beacon_interval, const u8 *ie,
2061				       size_t ielen,
2062				       struct cfg80211_non_tx_bss *non_tx_data,
2063				       gfp_t gfp)
2064{
2065	const u8 *mbssid_index_ie;
2066	const struct element *elem, *sub;
2067	size_t new_ie_len;
2068	u8 new_bssid[ETH_ALEN];
2069	u8 *new_ie, *profile;
2070	u64 seen_indices = 0;
2071	u16 capability;
2072	struct cfg80211_bss *bss;
2073
2074	if (!non_tx_data)
2075		return;
2076	if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2077		return;
2078	if (!wiphy->support_mbssid)
2079		return;
2080	if (wiphy->support_only_he_mbssid &&
2081	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2082		return;
2083
2084	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2085	if (!new_ie)
2086		return;
2087
2088	profile = kmalloc(ielen, gfp);
2089	if (!profile)
2090		goto out;
2091
2092	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2093		if (elem->datalen < 4)
2094			continue;
 
 
2095		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2096			u8 profile_len;
2097
2098			if (sub->id != 0 || sub->datalen < 4) {
2099				/* not a valid BSS profile */
2100				continue;
2101			}
2102
2103			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2104			    sub->data[1] != 2) {
2105				/* The first element within the Nontransmitted
2106				 * BSSID Profile is not the Nontransmitted
2107				 * BSSID Capability element.
2108				 */
2109				continue;
2110			}
2111
2112			memset(profile, 0, ielen);
2113			profile_len = cfg80211_merge_profile(ie, ielen,
2114							     elem,
2115							     sub,
2116							     profile,
2117							     ielen);
2118
2119			/* found a Nontransmitted BSSID Profile */
2120			mbssid_index_ie = cfg80211_find_ie
2121				(WLAN_EID_MULTI_BSSID_IDX,
2122				 profile, profile_len);
2123			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2124			    mbssid_index_ie[2] == 0 ||
2125			    mbssid_index_ie[2] > 46) {
2126				/* No valid Multiple BSSID-Index element */
2127				continue;
2128			}
2129
2130			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2131				/* We don't support legacy split of a profile */
2132				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2133						    mbssid_index_ie[2]);
2134
2135			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2136
2137			non_tx_data->bssid_index = mbssid_index_ie[2];
2138			non_tx_data->max_bssid_indicator = elem->data[0];
2139
2140			cfg80211_gen_new_bssid(bssid,
2141					       non_tx_data->max_bssid_indicator,
2142					       non_tx_data->bssid_index,
2143					       new_bssid);
2144			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2145			new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2146							 profile,
2147							 profile_len, new_ie,
2148							 gfp);
2149			if (!new_ie_len)
2150				continue;
2151
2152			capability = get_unaligned_le16(profile + 2);
2153			bss = cfg80211_inform_single_bss_data(wiphy, data,
2154							      ftype,
2155							      new_bssid, tsf,
2156							      capability,
2157							      beacon_interval,
2158							      new_ie,
2159							      new_ie_len,
2160							      non_tx_data,
2161							      gfp);
2162			if (!bss)
2163				break;
2164			cfg80211_put_bss(wiphy, bss);
2165		}
2166	}
2167
2168out:
2169	kfree(new_ie);
2170	kfree(profile);
2171}
2172
2173struct cfg80211_bss *
2174cfg80211_inform_bss_data(struct wiphy *wiphy,
2175			 struct cfg80211_inform_bss *data,
2176			 enum cfg80211_bss_frame_type ftype,
2177			 const u8 *bssid, u64 tsf, u16 capability,
2178			 u16 beacon_interval, const u8 *ie, size_t ielen,
2179			 gfp_t gfp)
2180{
2181	struct cfg80211_bss *res;
2182	struct cfg80211_non_tx_bss non_tx_data;
2183
2184	res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2185					      capability, beacon_interval, ie,
2186					      ielen, NULL, gfp);
2187	if (!res)
2188		return NULL;
2189	non_tx_data.tx_bss = res;
2190	cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2191				   beacon_interval, ie, ielen, &non_tx_data,
2192				   gfp);
2193	return res;
2194}
2195EXPORT_SYMBOL(cfg80211_inform_bss_data);
2196
2197static void
2198cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2199				 struct cfg80211_inform_bss *data,
2200				 struct ieee80211_mgmt *mgmt, size_t len,
2201				 struct cfg80211_non_tx_bss *non_tx_data,
2202				 gfp_t gfp)
2203{
2204	enum cfg80211_bss_frame_type ftype;
2205	const u8 *ie = mgmt->u.probe_resp.variable;
2206	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2207				      u.probe_resp.variable);
2208
2209	ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2210		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2211
2212	cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2213				   le64_to_cpu(mgmt->u.probe_resp.timestamp),
2214				   le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2215				   ie, ielen, non_tx_data, gfp);
2216}
2217
2218static void
2219cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2220				   struct cfg80211_bss *nontrans_bss,
2221				   struct ieee80211_mgmt *mgmt, size_t len)
2222{
2223	u8 *ie, *new_ie, *pos;
2224	const u8 *nontrans_ssid, *trans_ssid, *mbssid;
 
2225	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2226				      u.probe_resp.variable);
2227	size_t new_ie_len;
2228	struct cfg80211_bss_ies *new_ies;
2229	const struct cfg80211_bss_ies *old;
2230	u8 cpy_len;
2231
2232	lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2233
2234	ie = mgmt->u.probe_resp.variable;
2235
2236	new_ie_len = ielen;
2237	trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2238	if (!trans_ssid)
2239		return;
2240	new_ie_len -= trans_ssid[1];
2241	mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2242	/*
2243	 * It's not valid to have the MBSSID element before SSID
2244	 * ignore if that happens - the code below assumes it is
2245	 * after (while copying things inbetween).
2246	 */
2247	if (!mbssid || mbssid < trans_ssid)
2248		return;
2249	new_ie_len -= mbssid[1];
2250
2251	nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
2252	if (!nontrans_ssid)
2253		return;
2254
2255	new_ie_len += nontrans_ssid[1];
2256
2257	/* generate new ie for nontrans BSS
2258	 * 1. replace SSID with nontrans BSS' SSID
2259	 * 2. skip MBSSID IE
2260	 */
2261	new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2262	if (!new_ie)
2263		return;
2264
2265	new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2266	if (!new_ies)
2267		goto out_free;
2268
2269	pos = new_ie;
2270
2271	/* copy the nontransmitted SSID */
2272	cpy_len = nontrans_ssid[1] + 2;
2273	memcpy(pos, nontrans_ssid, cpy_len);
2274	pos += cpy_len;
2275	/* copy the IEs between SSID and MBSSID */
2276	cpy_len = trans_ssid[1] + 2;
2277	memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2278	pos += (mbssid - (trans_ssid + cpy_len));
2279	/* copy the IEs after MBSSID */
2280	cpy_len = mbssid[1] + 2;
2281	memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2282
2283	/* update ie */
2284	new_ies->len = new_ie_len;
2285	new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2286	new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2287	memcpy(new_ies->data, new_ie, new_ie_len);
2288	if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2289		old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2290		rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2291		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2292		if (old)
2293			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2294	} else {
2295		old = rcu_access_pointer(nontrans_bss->beacon_ies);
2296		rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
 
 
2297		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2298		if (old)
2299			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2300	}
2301
2302out_free:
2303	kfree(new_ie);
2304}
2305
2306/* cfg80211_inform_bss_width_frame helper */
2307static struct cfg80211_bss *
2308cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2309				      struct cfg80211_inform_bss *data,
2310				      struct ieee80211_mgmt *mgmt, size_t len,
2311				      gfp_t gfp)
2312{
2313	struct cfg80211_internal_bss tmp = {}, *res;
2314	struct cfg80211_bss_ies *ies;
2315	struct ieee80211_channel *channel;
2316	bool signal_valid;
2317	struct ieee80211_ext *ext = NULL;
2318	u8 *bssid, *variable;
2319	u16 capability, beacon_int;
2320	size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2321					     u.probe_resp.variable);
2322	int bss_type;
 
2323
2324	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2325			offsetof(struct ieee80211_mgmt, u.beacon.variable));
2326
2327	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2328
2329	if (WARN_ON(!mgmt))
2330		return NULL;
2331
2332	if (WARN_ON(!wiphy))
2333		return NULL;
2334
2335	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2336		    (data->signal < 0 || data->signal > 100)))
2337		return NULL;
2338
2339	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2340		ext = (void *) mgmt;
2341		min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2342		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2343			min_hdr_len = offsetof(struct ieee80211_ext,
2344					       u.s1g_short_beacon.variable);
2345	}
2346
2347	if (WARN_ON(len < min_hdr_len))
2348		return NULL;
2349
2350	ielen = len - min_hdr_len;
2351	variable = mgmt->u.probe_resp.variable;
2352	if (ext) {
2353		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2354			variable = ext->u.s1g_short_beacon.variable;
2355		else
2356			variable = ext->u.s1g_beacon.variable;
2357	}
2358
 
 
 
 
 
 
 
2359	channel = cfg80211_get_bss_channel(wiphy, variable,
2360					   ielen, data->chan, data->scan_width);
 
2361	if (!channel)
2362		return NULL;
2363
2364	if (ext) {
2365		const struct ieee80211_s1g_bcn_compat_ie *compat;
2366		const struct element *elem;
2367
2368		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2369					  variable, ielen);
2370		if (!elem)
2371			return NULL;
2372		if (elem->datalen < sizeof(*compat))
2373			return NULL;
2374		compat = (void *)elem->data;
2375		bssid = ext->u.s1g_beacon.sa;
2376		capability = le16_to_cpu(compat->compat_info);
2377		beacon_int = le16_to_cpu(compat->beacon_int);
2378	} else {
2379		bssid = mgmt->bssid;
2380		beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2381		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2382	}
2383
2384	ies = kzalloc(sizeof(*ies) + ielen, gfp);
2385	if (!ies)
2386		return NULL;
2387	ies->len = ielen;
2388	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2389	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2390			   ieee80211_is_s1g_beacon(mgmt->frame_control);
2391	memcpy(ies->data, variable, ielen);
2392
2393	if (ieee80211_is_probe_resp(mgmt->frame_control))
2394		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2395	else
2396		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2397	rcu_assign_pointer(tmp.pub.ies, ies);
2398
2399	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2400	tmp.pub.beacon_interval = beacon_int;
2401	tmp.pub.capability = capability;
2402	tmp.pub.channel = channel;
2403	tmp.pub.scan_width = data->scan_width;
2404	tmp.pub.signal = data->signal;
2405	tmp.ts_boottime = data->boottime_ns;
2406	tmp.parent_tsf = data->parent_tsf;
2407	tmp.pub.chains = data->chains;
2408	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2409	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2410
2411	signal_valid = data->chan == channel;
2412	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2413				  jiffies);
2414	if (!res)
2415		return NULL;
2416
2417	if (channel->band == NL80211_BAND_60GHZ) {
2418		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2419		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2420		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2421			regulatory_hint_found_beacon(wiphy, channel, gfp);
2422	} else {
2423		if (res->pub.capability & WLAN_CAPABILITY_ESS)
2424			regulatory_hint_found_beacon(wiphy, channel, gfp);
2425	}
2426
2427	trace_cfg80211_return_bss(&res->pub);
2428	/* cfg80211_bss_update gives us a referenced result */
2429	return &res->pub;
2430}
2431
2432struct cfg80211_bss *
2433cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2434			       struct cfg80211_inform_bss *data,
2435			       struct ieee80211_mgmt *mgmt, size_t len,
2436			       gfp_t gfp)
2437{
2438	struct cfg80211_bss *res, *tmp_bss;
2439	const u8 *ie = mgmt->u.probe_resp.variable;
2440	const struct cfg80211_bss_ies *ies1, *ies2;
2441	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2442				      u.probe_resp.variable);
2443	struct cfg80211_non_tx_bss non_tx_data;
2444
2445	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2446						    len, gfp);
 
 
 
 
 
2447	if (!res || !wiphy->support_mbssid ||
2448	    !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2449		return res;
2450	if (wiphy->support_only_he_mbssid &&
2451	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2452		return res;
2453
2454	non_tx_data.tx_bss = res;
2455	/* process each non-transmitting bss */
2456	cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2457					 &non_tx_data, gfp);
2458
2459	spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2460
2461	/* check if the res has other nontransmitting bss which is not
2462	 * in MBSSID IE
2463	 */
2464	ies1 = rcu_access_pointer(res->ies);
2465
2466	/* go through nontrans_list, if the timestamp of the BSS is
2467	 * earlier than the timestamp of the transmitting BSS then
2468	 * update it
2469	 */
2470	list_for_each_entry(tmp_bss, &res->nontrans_list,
2471			    nontrans_list) {
2472		ies2 = rcu_access_pointer(tmp_bss->ies);
2473		if (ies2->tsf < ies1->tsf)
2474			cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2475							   mgmt, len);
2476	}
2477	spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2478
2479	return res;
2480}
2481EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2482
2483void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2484{
2485	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2486	struct cfg80211_internal_bss *bss;
2487
2488	if (!pub)
2489		return;
2490
2491	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2492
2493	spin_lock_bh(&rdev->bss_lock);
2494	bss_ref_get(rdev, bss);
2495	spin_unlock_bh(&rdev->bss_lock);
2496}
2497EXPORT_SYMBOL(cfg80211_ref_bss);
2498
2499void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2500{
2501	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2502	struct cfg80211_internal_bss *bss;
2503
2504	if (!pub)
2505		return;
2506
2507	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2508
2509	spin_lock_bh(&rdev->bss_lock);
2510	bss_ref_put(rdev, bss);
2511	spin_unlock_bh(&rdev->bss_lock);
2512}
2513EXPORT_SYMBOL(cfg80211_put_bss);
2514
2515void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2516{
2517	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2518	struct cfg80211_internal_bss *bss, *tmp1;
2519	struct cfg80211_bss *nontrans_bss, *tmp;
2520
2521	if (WARN_ON(!pub))
2522		return;
2523
2524	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2525
2526	spin_lock_bh(&rdev->bss_lock);
2527	if (list_empty(&bss->list))
2528		goto out;
2529
2530	list_for_each_entry_safe(nontrans_bss, tmp,
2531				 &pub->nontrans_list,
2532				 nontrans_list) {
2533		tmp1 = container_of(nontrans_bss,
2534				    struct cfg80211_internal_bss, pub);
2535		if (__cfg80211_unlink_bss(rdev, tmp1))
2536			rdev->bss_generation++;
2537	}
2538
2539	if (__cfg80211_unlink_bss(rdev, bss))
2540		rdev->bss_generation++;
2541out:
2542	spin_unlock_bh(&rdev->bss_lock);
2543}
2544EXPORT_SYMBOL(cfg80211_unlink_bss);
2545
2546void cfg80211_bss_iter(struct wiphy *wiphy,
2547		       struct cfg80211_chan_def *chandef,
2548		       void (*iter)(struct wiphy *wiphy,
2549				    struct cfg80211_bss *bss,
2550				    void *data),
2551		       void *iter_data)
2552{
2553	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2554	struct cfg80211_internal_bss *bss;
2555
2556	spin_lock_bh(&rdev->bss_lock);
2557
2558	list_for_each_entry(bss, &rdev->bss_list, list) {
2559		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
 
2560			iter(wiphy, &bss->pub, iter_data);
2561	}
2562
2563	spin_unlock_bh(&rdev->bss_lock);
2564}
2565EXPORT_SYMBOL(cfg80211_bss_iter);
2566
2567void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
 
2568				     struct ieee80211_channel *chan)
2569{
2570	struct wiphy *wiphy = wdev->wiphy;
2571	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2572	struct cfg80211_internal_bss *cbss = wdev->current_bss;
2573	struct cfg80211_internal_bss *new = NULL;
2574	struct cfg80211_internal_bss *bss;
2575	struct cfg80211_bss *nontrans_bss;
2576	struct cfg80211_bss *tmp;
2577
2578	spin_lock_bh(&rdev->bss_lock);
2579
2580	/*
2581	 * Some APs use CSA also for bandwidth changes, i.e., without actually
2582	 * changing the control channel, so no need to update in such a case.
2583	 */
2584	if (cbss->pub.channel == chan)
2585		goto done;
2586
2587	/* use transmitting bss */
2588	if (cbss->pub.transmitted_bss)
2589		cbss = container_of(cbss->pub.transmitted_bss,
2590				    struct cfg80211_internal_bss,
2591				    pub);
2592
2593	cbss->pub.channel = chan;
2594
2595	list_for_each_entry(bss, &rdev->bss_list, list) {
2596		if (!cfg80211_bss_type_match(bss->pub.capability,
2597					     bss->pub.channel->band,
2598					     wdev->conn_bss_type))
2599			continue;
2600
2601		if (bss == cbss)
2602			continue;
2603
2604		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2605			new = bss;
2606			break;
2607		}
2608	}
2609
2610	if (new) {
2611		/* to save time, update IEs for transmitting bss only */
2612		if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2613			new->pub.proberesp_ies = NULL;
2614			new->pub.beacon_ies = NULL;
2615		}
2616
2617		list_for_each_entry_safe(nontrans_bss, tmp,
2618					 &new->pub.nontrans_list,
2619					 nontrans_list) {
2620			bss = container_of(nontrans_bss,
2621					   struct cfg80211_internal_bss, pub);
2622			if (__cfg80211_unlink_bss(rdev, bss))
2623				rdev->bss_generation++;
2624		}
2625
2626		WARN_ON(atomic_read(&new->hold));
2627		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2628			rdev->bss_generation++;
2629	}
2630
2631	rb_erase(&cbss->rbn, &rdev->bss_tree);
2632	rb_insert_bss(rdev, cbss);
2633	rdev->bss_generation++;
2634
2635	list_for_each_entry_safe(nontrans_bss, tmp,
2636				 &cbss->pub.nontrans_list,
2637				 nontrans_list) {
2638		bss = container_of(nontrans_bss,
2639				   struct cfg80211_internal_bss, pub);
2640		bss->pub.channel = chan;
2641		rb_erase(&bss->rbn, &rdev->bss_tree);
2642		rb_insert_bss(rdev, bss);
2643		rdev->bss_generation++;
2644	}
2645
2646done:
2647	spin_unlock_bh(&rdev->bss_lock);
2648}
2649
2650#ifdef CONFIG_CFG80211_WEXT
2651static struct cfg80211_registered_device *
2652cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2653{
2654	struct cfg80211_registered_device *rdev;
2655	struct net_device *dev;
2656
2657	ASSERT_RTNL();
2658
2659	dev = dev_get_by_index(net, ifindex);
2660	if (!dev)
2661		return ERR_PTR(-ENODEV);
2662	if (dev->ieee80211_ptr)
2663		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2664	else
2665		rdev = ERR_PTR(-ENODEV);
2666	dev_put(dev);
2667	return rdev;
2668}
2669
2670int cfg80211_wext_siwscan(struct net_device *dev,
2671			  struct iw_request_info *info,
2672			  union iwreq_data *wrqu, char *extra)
2673{
2674	struct cfg80211_registered_device *rdev;
2675	struct wiphy *wiphy;
2676	struct iw_scan_req *wreq = NULL;
2677	struct cfg80211_scan_request *creq = NULL;
2678	int i, err, n_channels = 0;
2679	enum nl80211_band band;
2680
2681	if (!netif_running(dev))
2682		return -ENETDOWN;
2683
2684	if (wrqu->data.length == sizeof(struct iw_scan_req))
2685		wreq = (struct iw_scan_req *)extra;
2686
2687	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2688
2689	if (IS_ERR(rdev))
2690		return PTR_ERR(rdev);
2691
2692	if (rdev->scan_req || rdev->scan_msg) {
2693		err = -EBUSY;
2694		goto out;
2695	}
2696
2697	wiphy = &rdev->wiphy;
2698
2699	/* Determine number of channels, needed to allocate creq */
2700	if (wreq && wreq->num_channels)
2701		n_channels = wreq->num_channels;
2702	else
2703		n_channels = ieee80211_get_num_supported_channels(wiphy);
2704
2705	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2706		       n_channels * sizeof(void *),
2707		       GFP_ATOMIC);
2708	if (!creq) {
2709		err = -ENOMEM;
2710		goto out;
2711	}
2712
2713	creq->wiphy = wiphy;
2714	creq->wdev = dev->ieee80211_ptr;
2715	/* SSIDs come after channels */
2716	creq->ssids = (void *)&creq->channels[n_channels];
2717	creq->n_channels = n_channels;
2718	creq->n_ssids = 1;
2719	creq->scan_start = jiffies;
2720
2721	/* translate "Scan on frequencies" request */
2722	i = 0;
2723	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2724		int j;
2725
2726		if (!wiphy->bands[band])
2727			continue;
2728
2729		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2730			/* ignore disabled channels */
2731			if (wiphy->bands[band]->channels[j].flags &
2732						IEEE80211_CHAN_DISABLED)
2733				continue;
2734
2735			/* If we have a wireless request structure and the
2736			 * wireless request specifies frequencies, then search
2737			 * for the matching hardware channel.
2738			 */
2739			if (wreq && wreq->num_channels) {
2740				int k;
2741				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2742				for (k = 0; k < wreq->num_channels; k++) {
2743					struct iw_freq *freq =
2744						&wreq->channel_list[k];
2745					int wext_freq =
2746						cfg80211_wext_freq(freq);
2747
2748					if (wext_freq == wiphy_freq)
2749						goto wext_freq_found;
2750				}
2751				goto wext_freq_not_found;
2752			}
2753
2754		wext_freq_found:
2755			creq->channels[i] = &wiphy->bands[band]->channels[j];
2756			i++;
2757		wext_freq_not_found: ;
2758		}
2759	}
2760	/* No channels found? */
2761	if (!i) {
2762		err = -EINVAL;
2763		goto out;
2764	}
2765
2766	/* Set real number of channels specified in creq->channels[] */
2767	creq->n_channels = i;
2768
2769	/* translate "Scan for SSID" request */
2770	if (wreq) {
2771		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2772			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2773				err = -EINVAL;
2774				goto out;
2775			}
2776			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2777			creq->ssids[0].ssid_len = wreq->essid_len;
2778		}
2779		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2780			creq->n_ssids = 0;
2781	}
2782
2783	for (i = 0; i < NUM_NL80211_BANDS; i++)
2784		if (wiphy->bands[i])
2785			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2786
2787	eth_broadcast_addr(creq->bssid);
2788
2789	wiphy_lock(&rdev->wiphy);
2790
2791	rdev->scan_req = creq;
2792	err = rdev_scan(rdev, creq);
2793	if (err) {
2794		rdev->scan_req = NULL;
2795		/* creq will be freed below */
2796	} else {
2797		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2798		/* creq now owned by driver */
2799		creq = NULL;
2800		dev_hold(dev);
2801	}
2802	wiphy_unlock(&rdev->wiphy);
2803 out:
2804	kfree(creq);
2805	return err;
2806}
2807EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2808
2809static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2810				    const struct cfg80211_bss_ies *ies,
2811				    char *current_ev, char *end_buf)
2812{
2813	const u8 *pos, *end, *next;
2814	struct iw_event iwe;
2815
2816	if (!ies)
2817		return current_ev;
2818
2819	/*
2820	 * If needed, fragment the IEs buffer (at IE boundaries) into short
2821	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2822	 */
2823	pos = ies->data;
2824	end = pos + ies->len;
2825
2826	while (end - pos > IW_GENERIC_IE_MAX) {
2827		next = pos + 2 + pos[1];
2828		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2829			next = next + 2 + next[1];
2830
2831		memset(&iwe, 0, sizeof(iwe));
2832		iwe.cmd = IWEVGENIE;
2833		iwe.u.data.length = next - pos;
2834		current_ev = iwe_stream_add_point_check(info, current_ev,
2835							end_buf, &iwe,
2836							(void *)pos);
2837		if (IS_ERR(current_ev))
2838			return current_ev;
2839		pos = next;
2840	}
2841
2842	if (end > pos) {
2843		memset(&iwe, 0, sizeof(iwe));
2844		iwe.cmd = IWEVGENIE;
2845		iwe.u.data.length = end - pos;
2846		current_ev = iwe_stream_add_point_check(info, current_ev,
2847							end_buf, &iwe,
2848							(void *)pos);
2849		if (IS_ERR(current_ev))
2850			return current_ev;
2851	}
2852
2853	return current_ev;
2854}
2855
2856static char *
2857ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2858	      struct cfg80211_internal_bss *bss, char *current_ev,
2859	      char *end_buf)
2860{
2861	const struct cfg80211_bss_ies *ies;
2862	struct iw_event iwe;
2863	const u8 *ie;
2864	u8 buf[50];
2865	u8 *cfg, *p, *tmp;
2866	int rem, i, sig;
2867	bool ismesh = false;
2868
2869	memset(&iwe, 0, sizeof(iwe));
2870	iwe.cmd = SIOCGIWAP;
2871	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2872	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2873	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2874						IW_EV_ADDR_LEN);
2875	if (IS_ERR(current_ev))
2876		return current_ev;
2877
2878	memset(&iwe, 0, sizeof(iwe));
2879	iwe.cmd = SIOCGIWFREQ;
2880	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2881	iwe.u.freq.e = 0;
2882	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2883						IW_EV_FREQ_LEN);
2884	if (IS_ERR(current_ev))
2885		return current_ev;
2886
2887	memset(&iwe, 0, sizeof(iwe));
2888	iwe.cmd = SIOCGIWFREQ;
2889	iwe.u.freq.m = bss->pub.channel->center_freq;
2890	iwe.u.freq.e = 6;
2891	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2892						IW_EV_FREQ_LEN);
2893	if (IS_ERR(current_ev))
2894		return current_ev;
2895
2896	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2897		memset(&iwe, 0, sizeof(iwe));
2898		iwe.cmd = IWEVQUAL;
2899		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2900				     IW_QUAL_NOISE_INVALID |
2901				     IW_QUAL_QUAL_UPDATED;
2902		switch (wiphy->signal_type) {
2903		case CFG80211_SIGNAL_TYPE_MBM:
2904			sig = bss->pub.signal / 100;
2905			iwe.u.qual.level = sig;
2906			iwe.u.qual.updated |= IW_QUAL_DBM;
2907			if (sig < -110)		/* rather bad */
2908				sig = -110;
2909			else if (sig > -40)	/* perfect */
2910				sig = -40;
2911			/* will give a range of 0 .. 70 */
2912			iwe.u.qual.qual = sig + 110;
2913			break;
2914		case CFG80211_SIGNAL_TYPE_UNSPEC:
2915			iwe.u.qual.level = bss->pub.signal;
2916			/* will give range 0 .. 100 */
2917			iwe.u.qual.qual = bss->pub.signal;
2918			break;
2919		default:
2920			/* not reached */
2921			break;
2922		}
2923		current_ev = iwe_stream_add_event_check(info, current_ev,
2924							end_buf, &iwe,
2925							IW_EV_QUAL_LEN);
2926		if (IS_ERR(current_ev))
2927			return current_ev;
2928	}
2929
2930	memset(&iwe, 0, sizeof(iwe));
2931	iwe.cmd = SIOCGIWENCODE;
2932	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2933		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2934	else
2935		iwe.u.data.flags = IW_ENCODE_DISABLED;
2936	iwe.u.data.length = 0;
2937	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2938						&iwe, "");
2939	if (IS_ERR(current_ev))
2940		return current_ev;
2941
2942	rcu_read_lock();
2943	ies = rcu_dereference(bss->pub.ies);
2944	rem = ies->len;
2945	ie = ies->data;
2946
2947	while (rem >= 2) {
2948		/* invalid data */
2949		if (ie[1] > rem - 2)
2950			break;
2951
2952		switch (ie[0]) {
2953		case WLAN_EID_SSID:
2954			memset(&iwe, 0, sizeof(iwe));
2955			iwe.cmd = SIOCGIWESSID;
2956			iwe.u.data.length = ie[1];
2957			iwe.u.data.flags = 1;
2958			current_ev = iwe_stream_add_point_check(info,
2959								current_ev,
2960								end_buf, &iwe,
2961								(u8 *)ie + 2);
2962			if (IS_ERR(current_ev))
2963				goto unlock;
2964			break;
2965		case WLAN_EID_MESH_ID:
2966			memset(&iwe, 0, sizeof(iwe));
2967			iwe.cmd = SIOCGIWESSID;
2968			iwe.u.data.length = ie[1];
2969			iwe.u.data.flags = 1;
2970			current_ev = iwe_stream_add_point_check(info,
2971								current_ev,
2972								end_buf, &iwe,
2973								(u8 *)ie + 2);
2974			if (IS_ERR(current_ev))
2975				goto unlock;
2976			break;
2977		case WLAN_EID_MESH_CONFIG:
2978			ismesh = true;
2979			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2980				break;
2981			cfg = (u8 *)ie + 2;
2982			memset(&iwe, 0, sizeof(iwe));
2983			iwe.cmd = IWEVCUSTOM;
2984			sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2985				"0x%02X", cfg[0]);
2986			iwe.u.data.length = strlen(buf);
2987			current_ev = iwe_stream_add_point_check(info,
2988								current_ev,
2989								end_buf,
2990								&iwe, buf);
2991			if (IS_ERR(current_ev))
2992				goto unlock;
2993			sprintf(buf, "Path Selection Metric ID: 0x%02X",
2994				cfg[1]);
2995			iwe.u.data.length = strlen(buf);
2996			current_ev = iwe_stream_add_point_check(info,
2997								current_ev,
2998								end_buf,
2999								&iwe, buf);
3000			if (IS_ERR(current_ev))
3001				goto unlock;
3002			sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3003				cfg[2]);
3004			iwe.u.data.length = strlen(buf);
3005			current_ev = iwe_stream_add_point_check(info,
3006								current_ev,
3007								end_buf,
3008								&iwe, buf);
3009			if (IS_ERR(current_ev))
3010				goto unlock;
3011			sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3012			iwe.u.data.length = strlen(buf);
3013			current_ev = iwe_stream_add_point_check(info,
3014								current_ev,
3015								end_buf,
3016								&iwe, buf);
3017			if (IS_ERR(current_ev))
3018				goto unlock;
3019			sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3020			iwe.u.data.length = strlen(buf);
3021			current_ev = iwe_stream_add_point_check(info,
3022								current_ev,
3023								end_buf,
3024								&iwe, buf);
3025			if (IS_ERR(current_ev))
3026				goto unlock;
3027			sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3028			iwe.u.data.length = strlen(buf);
3029			current_ev = iwe_stream_add_point_check(info,
3030								current_ev,
3031								end_buf,
3032								&iwe, buf);
3033			if (IS_ERR(current_ev))
3034				goto unlock;
3035			sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3036			iwe.u.data.length = strlen(buf);
3037			current_ev = iwe_stream_add_point_check(info,
3038								current_ev,
3039								end_buf,
3040								&iwe, buf);
3041			if (IS_ERR(current_ev))
3042				goto unlock;
3043			break;
3044		case WLAN_EID_SUPP_RATES:
3045		case WLAN_EID_EXT_SUPP_RATES:
3046			/* display all supported rates in readable format */
3047			p = current_ev + iwe_stream_lcp_len(info);
3048
3049			memset(&iwe, 0, sizeof(iwe));
3050			iwe.cmd = SIOCGIWRATE;
3051			/* Those two flags are ignored... */
3052			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3053
3054			for (i = 0; i < ie[1]; i++) {
3055				iwe.u.bitrate.value =
3056					((ie[i + 2] & 0x7f) * 500000);
3057				tmp = p;
3058				p = iwe_stream_add_value(info, current_ev, p,
3059							 end_buf, &iwe,
3060							 IW_EV_PARAM_LEN);
3061				if (p == tmp) {
3062					current_ev = ERR_PTR(-E2BIG);
3063					goto unlock;
3064				}
3065			}
3066			current_ev = p;
3067			break;
3068		}
3069		rem -= ie[1] + 2;
3070		ie += ie[1] + 2;
3071	}
3072
3073	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3074	    ismesh) {
3075		memset(&iwe, 0, sizeof(iwe));
3076		iwe.cmd = SIOCGIWMODE;
3077		if (ismesh)
3078			iwe.u.mode = IW_MODE_MESH;
3079		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3080			iwe.u.mode = IW_MODE_MASTER;
3081		else
3082			iwe.u.mode = IW_MODE_ADHOC;
3083		current_ev = iwe_stream_add_event_check(info, current_ev,
3084							end_buf, &iwe,
3085							IW_EV_UINT_LEN);
3086		if (IS_ERR(current_ev))
3087			goto unlock;
3088	}
3089
3090	memset(&iwe, 0, sizeof(iwe));
3091	iwe.cmd = IWEVCUSTOM;
3092	sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3093	iwe.u.data.length = strlen(buf);
3094	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3095						&iwe, buf);
3096	if (IS_ERR(current_ev))
3097		goto unlock;
3098	memset(&iwe, 0, sizeof(iwe));
3099	iwe.cmd = IWEVCUSTOM;
3100	sprintf(buf, " Last beacon: %ums ago",
3101		elapsed_jiffies_msecs(bss->ts));
3102	iwe.u.data.length = strlen(buf);
3103	current_ev = iwe_stream_add_point_check(info, current_ev,
3104						end_buf, &iwe, buf);
3105	if (IS_ERR(current_ev))
3106		goto unlock;
3107
3108	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3109
3110 unlock:
3111	rcu_read_unlock();
3112	return current_ev;
3113}
3114
3115
3116static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3117				  struct iw_request_info *info,
3118				  char *buf, size_t len)
3119{
3120	char *current_ev = buf;
3121	char *end_buf = buf + len;
3122	struct cfg80211_internal_bss *bss;
3123	int err = 0;
3124
3125	spin_lock_bh(&rdev->bss_lock);
3126	cfg80211_bss_expire(rdev);
3127
3128	list_for_each_entry(bss, &rdev->bss_list, list) {
3129		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3130			err = -E2BIG;
3131			break;
3132		}
3133		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3134					   current_ev, end_buf);
3135		if (IS_ERR(current_ev)) {
3136			err = PTR_ERR(current_ev);
3137			break;
3138		}
3139	}
3140	spin_unlock_bh(&rdev->bss_lock);
3141
3142	if (err)
3143		return err;
3144	return current_ev - buf;
3145}
3146
3147
3148int cfg80211_wext_giwscan(struct net_device *dev,
3149			  struct iw_request_info *info,
3150			  struct iw_point *data, char *extra)
3151{
 
3152	struct cfg80211_registered_device *rdev;
3153	int res;
3154
3155	if (!netif_running(dev))
3156		return -ENETDOWN;
3157
3158	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3159
3160	if (IS_ERR(rdev))
3161		return PTR_ERR(rdev);
3162
3163	if (rdev->scan_req || rdev->scan_msg)
3164		return -EAGAIN;
3165
3166	res = ieee80211_scan_results(rdev, info, extra, data->length);
3167	data->length = 0;
3168	if (res >= 0) {
3169		data->length = res;
3170		res = 0;
3171	}
3172
3173	return res;
3174}
3175EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3176#endif
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * cfg80211 scan result handling
   4 *
   5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright 2016	Intel Deutschland GmbH
   8 * Copyright (C) 2018-2022 Intel Corporation
   9 */
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/module.h>
  13#include <linux/netdevice.h>
  14#include <linux/wireless.h>
  15#include <linux/nl80211.h>
  16#include <linux/etherdevice.h>
  17#include <linux/crc32.h>
  18#include <linux/bitfield.h>
  19#include <net/arp.h>
  20#include <net/cfg80211.h>
  21#include <net/cfg80211-wext.h>
  22#include <net/iw_handler.h>
  23#include "core.h"
  24#include "nl80211.h"
  25#include "wext-compat.h"
  26#include "rdev-ops.h"
  27
  28/**
  29 * DOC: BSS tree/list structure
  30 *
  31 * At the top level, the BSS list is kept in both a list in each
  32 * registered device (@bss_list) as well as an RB-tree for faster
  33 * lookup. In the RB-tree, entries can be looked up using their
  34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
  35 * for other BSSes.
  36 *
  37 * Due to the possibility of hidden SSIDs, there's a second level
  38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
  39 * The hidden_list connects all BSSes belonging to a single AP
  40 * that has a hidden SSID, and connects beacon and probe response
  41 * entries. For a probe response entry for a hidden SSID, the
  42 * hidden_beacon_bss pointer points to the BSS struct holding the
  43 * beacon's information.
  44 *
  45 * Reference counting is done for all these references except for
  46 * the hidden_list, so that a beacon BSS struct that is otherwise
  47 * not referenced has one reference for being on the bss_list and
  48 * one for each probe response entry that points to it using the
  49 * hidden_beacon_bss pointer. When a BSS struct that has such a
  50 * pointer is get/put, the refcount update is also propagated to
  51 * the referenced struct, this ensure that it cannot get removed
  52 * while somebody is using the probe response version.
  53 *
  54 * Note that the hidden_beacon_bss pointer never changes, due to
  55 * the reference counting. Therefore, no locking is needed for
  56 * it.
  57 *
  58 * Also note that the hidden_beacon_bss pointer is only relevant
  59 * if the driver uses something other than the IEs, e.g. private
  60 * data stored in the BSS struct, since the beacon IEs are
  61 * also linked into the probe response struct.
  62 */
  63
  64/*
  65 * Limit the number of BSS entries stored in mac80211. Each one is
  66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
  67 * If somebody wants to really attack this though, they'd likely
  68 * use small beacons, and only one type of frame, limiting each of
  69 * the entries to a much smaller size (in order to generate more
  70 * entries in total, so overhead is bigger.)
  71 */
  72static int bss_entries_limit = 1000;
  73module_param(bss_entries_limit, int, 0644);
  74MODULE_PARM_DESC(bss_entries_limit,
  75                 "limit to number of scan BSS entries (per wiphy, default 1000)");
  76
  77#define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
  78
  79/**
  80 * struct cfg80211_colocated_ap - colocated AP information
  81 *
  82 * @list: linked list to all colocated aPS
  83 * @bssid: BSSID of the reported AP
  84 * @ssid: SSID of the reported AP
  85 * @ssid_len: length of the ssid
  86 * @center_freq: frequency the reported AP is on
  87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
  88 *	that operate in the same channel as the reported AP and that might be
  89 *	detected by a STA receiving this frame, are transmitting unsolicited
  90 *	Probe Response frames every 20 TUs
  91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
  92 * @same_ssid: the reported AP has the same SSID as the reporting AP
  93 * @multi_bss: the reported AP is part of a multiple BSSID set
  94 * @transmitted_bssid: the reported AP is the transmitting BSSID
  95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
  96 *	colocated and can be discovered via legacy bands.
  97 * @short_ssid_valid: short_ssid is valid and can be used
  98 * @short_ssid: the short SSID for this SSID
  99 */
 100struct cfg80211_colocated_ap {
 101	struct list_head list;
 102	u8 bssid[ETH_ALEN];
 103	u8 ssid[IEEE80211_MAX_SSID_LEN];
 104	size_t ssid_len;
 105	u32 short_ssid;
 106	u32 center_freq;
 107	u8 unsolicited_probe:1,
 108	   oct_recommended:1,
 109	   same_ssid:1,
 110	   multi_bss:1,
 111	   transmitted_bssid:1,
 112	   colocated_ess:1,
 113	   short_ssid_valid:1;
 114};
 115
 116static void bss_free(struct cfg80211_internal_bss *bss)
 117{
 118	struct cfg80211_bss_ies *ies;
 119
 120	if (WARN_ON(atomic_read(&bss->hold)))
 121		return;
 122
 123	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
 124	if (ies && !bss->pub.hidden_beacon_bss)
 125		kfree_rcu(ies, rcu_head);
 126	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
 127	if (ies)
 128		kfree_rcu(ies, rcu_head);
 129
 130	/*
 131	 * This happens when the module is removed, it doesn't
 132	 * really matter any more save for completeness
 133	 */
 134	if (!list_empty(&bss->hidden_list))
 135		list_del(&bss->hidden_list);
 136
 137	kfree(bss);
 138}
 139
 140static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
 141			       struct cfg80211_internal_bss *bss)
 142{
 143	lockdep_assert_held(&rdev->bss_lock);
 144
 145	bss->refcount++;
 146
 147	if (bss->pub.hidden_beacon_bss)
 148		bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
 149
 150	if (bss->pub.transmitted_bss)
 151		bss_from_pub(bss->pub.transmitted_bss)->refcount++;
 
 
 
 
 
 
 152}
 153
 154static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
 155			       struct cfg80211_internal_bss *bss)
 156{
 157	lockdep_assert_held(&rdev->bss_lock);
 158
 159	if (bss->pub.hidden_beacon_bss) {
 160		struct cfg80211_internal_bss *hbss;
 161
 162		hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
 
 163		hbss->refcount--;
 164		if (hbss->refcount == 0)
 165			bss_free(hbss);
 166	}
 167
 168	if (bss->pub.transmitted_bss) {
 169		struct cfg80211_internal_bss *tbss;
 170
 171		tbss = bss_from_pub(bss->pub.transmitted_bss);
 
 
 172		tbss->refcount--;
 173		if (tbss->refcount == 0)
 174			bss_free(tbss);
 175	}
 176
 177	bss->refcount--;
 178	if (bss->refcount == 0)
 179		bss_free(bss);
 180}
 181
 182static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
 183				  struct cfg80211_internal_bss *bss)
 184{
 185	lockdep_assert_held(&rdev->bss_lock);
 186
 187	if (!list_empty(&bss->hidden_list)) {
 188		/*
 189		 * don't remove the beacon entry if it has
 190		 * probe responses associated with it
 191		 */
 192		if (!bss->pub.hidden_beacon_bss)
 193			return false;
 194		/*
 195		 * if it's a probe response entry break its
 196		 * link to the other entries in the group
 197		 */
 198		list_del_init(&bss->hidden_list);
 199	}
 200
 201	list_del_init(&bss->list);
 202	list_del_init(&bss->pub.nontrans_list);
 203	rb_erase(&bss->rbn, &rdev->bss_tree);
 204	rdev->bss_entries--;
 205	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
 206		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
 207		  rdev->bss_entries, list_empty(&rdev->bss_list));
 208	bss_ref_put(rdev, bss);
 209	return true;
 210}
 211
 212bool cfg80211_is_element_inherited(const struct element *elem,
 213				   const struct element *non_inherit_elem)
 214{
 215	u8 id_len, ext_id_len, i, loop_len, id;
 216	const u8 *list;
 217
 218	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
 219		return false;
 220
 221	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
 222		return true;
 223
 224	/*
 225	 * non inheritance element format is:
 226	 * ext ID (56) | IDs list len | list | extension IDs list len | list
 227	 * Both lists are optional. Both lengths are mandatory.
 228	 * This means valid length is:
 229	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
 230	 */
 231	id_len = non_inherit_elem->data[1];
 232	if (non_inherit_elem->datalen < 3 + id_len)
 233		return true;
 234
 235	ext_id_len = non_inherit_elem->data[2 + id_len];
 236	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
 237		return true;
 238
 239	if (elem->id == WLAN_EID_EXTENSION) {
 240		if (!ext_id_len)
 241			return true;
 242		loop_len = ext_id_len;
 243		list = &non_inherit_elem->data[3 + id_len];
 244		id = elem->data[0];
 245	} else {
 246		if (!id_len)
 247			return true;
 248		loop_len = id_len;
 249		list = &non_inherit_elem->data[2];
 250		id = elem->id;
 251	}
 252
 253	for (i = 0; i < loop_len; i++) {
 254		if (list[i] == id)
 255			return false;
 256	}
 257
 258	return true;
 259}
 260EXPORT_SYMBOL(cfg80211_is_element_inherited);
 261
 262static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
 263				  const u8 *subelement, size_t subie_len,
 264				  u8 *new_ie, gfp_t gfp)
 265{
 266	u8 *pos, *tmp;
 267	const u8 *tmp_old, *tmp_new;
 268	const struct element *non_inherit_elem;
 269	u8 *sub_copy;
 270
 271	/* copy subelement as we need to change its content to
 272	 * mark an ie after it is processed.
 273	 */
 274	sub_copy = kmemdup(subelement, subie_len, gfp);
 275	if (!sub_copy)
 276		return 0;
 277
 278	pos = &new_ie[0];
 279
 280	/* set new ssid */
 281	tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
 282	if (tmp_new) {
 283		memcpy(pos, tmp_new, tmp_new[1] + 2);
 284		pos += (tmp_new[1] + 2);
 285	}
 286
 287	/* get non inheritance list if exists */
 288	non_inherit_elem =
 289		cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
 290				       sub_copy, subie_len);
 291
 292	/* go through IEs in ie (skip SSID) and subelement,
 293	 * merge them into new_ie
 294	 */
 295	tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
 296	tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
 297
 298	while (tmp_old + 2 - ie <= ielen &&
 299	       tmp_old + tmp_old[1] + 2 - ie <= ielen) {
 300		if (tmp_old[0] == 0) {
 301			tmp_old++;
 302			continue;
 303		}
 304
 305		if (tmp_old[0] == WLAN_EID_EXTENSION)
 306			tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
 307							 subie_len);
 308		else
 309			tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
 310						     subie_len);
 311
 312		if (!tmp) {
 313			const struct element *old_elem = (void *)tmp_old;
 314
 315			/* ie in old ie but not in subelement */
 316			if (cfg80211_is_element_inherited(old_elem,
 317							  non_inherit_elem)) {
 318				memcpy(pos, tmp_old, tmp_old[1] + 2);
 319				pos += tmp_old[1] + 2;
 320			}
 321		} else {
 322			/* ie in transmitting ie also in subelement,
 323			 * copy from subelement and flag the ie in subelement
 324			 * as copied (by setting eid field to WLAN_EID_SSID,
 325			 * which is skipped anyway).
 326			 * For vendor ie, compare OUI + type + subType to
 327			 * determine if they are the same ie.
 328			 */
 329			if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
 330				if (tmp_old[1] >= 5 && tmp[1] >= 5 &&
 331				    !memcmp(tmp_old + 2, tmp + 2, 5)) {
 332					/* same vendor ie, copy from
 333					 * subelement
 334					 */
 335					memcpy(pos, tmp, tmp[1] + 2);
 336					pos += tmp[1] + 2;
 337					tmp[0] = WLAN_EID_SSID;
 338				} else {
 339					memcpy(pos, tmp_old, tmp_old[1] + 2);
 340					pos += tmp_old[1] + 2;
 341				}
 342			} else {
 343				/* copy ie from subelement into new ie */
 344				memcpy(pos, tmp, tmp[1] + 2);
 345				pos += tmp[1] + 2;
 346				tmp[0] = WLAN_EID_SSID;
 347			}
 348		}
 349
 350		if (tmp_old + tmp_old[1] + 2 - ie == ielen)
 351			break;
 352
 353		tmp_old += tmp_old[1] + 2;
 354	}
 355
 356	/* go through subelement again to check if there is any ie not
 357	 * copied to new ie, skip ssid, capability, bssid-index ie
 358	 */
 359	tmp_new = sub_copy;
 360	while (tmp_new + 2 - sub_copy <= subie_len &&
 361	       tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
 362		if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
 363		      tmp_new[0] == WLAN_EID_SSID)) {
 364			memcpy(pos, tmp_new, tmp_new[1] + 2);
 365			pos += tmp_new[1] + 2;
 366		}
 367		if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
 368			break;
 369		tmp_new += tmp_new[1] + 2;
 370	}
 371
 372	kfree(sub_copy);
 373	return pos - new_ie;
 374}
 375
 376static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
 377		   const u8 *ssid, size_t ssid_len)
 378{
 379	const struct cfg80211_bss_ies *ies;
 380	const struct element *ssid_elem;
 381
 382	if (bssid && !ether_addr_equal(a->bssid, bssid))
 383		return false;
 384
 385	if (!ssid)
 386		return true;
 387
 388	ies = rcu_access_pointer(a->ies);
 389	if (!ies)
 390		return false;
 391	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
 392	if (!ssid_elem)
 393		return false;
 394	if (ssid_elem->datalen != ssid_len)
 395		return false;
 396	return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
 397}
 398
 399static int
 400cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
 401			   struct cfg80211_bss *nontrans_bss)
 402{
 403	const struct element *ssid_elem;
 
 404	struct cfg80211_bss *bss = NULL;
 405
 406	rcu_read_lock();
 407	ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
 408	if (!ssid_elem) {
 409		rcu_read_unlock();
 410		return -EINVAL;
 411	}
 
 
 
 412
 413	/* check if nontrans_bss is in the list */
 414	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
 415		if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
 416			   ssid_elem->datalen)) {
 417			rcu_read_unlock();
 418			return 0;
 419		}
 420	}
 421
 422	rcu_read_unlock();
 423
 424	/*
 425	 * This is a bit weird - it's not on the list, but already on another
 426	 * one! The only way that could happen is if there's some BSSID/SSID
 427	 * shared by multiple APs in their multi-BSSID profiles, potentially
 428	 * with hidden SSID mixed in ... ignore it.
 429	 */
 430	if (!list_empty(&nontrans_bss->nontrans_list))
 431		return -EINVAL;
 432
 433	/* add to the list */
 434	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
 435	return 0;
 436}
 437
 438static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
 439				  unsigned long expire_time)
 440{
 441	struct cfg80211_internal_bss *bss, *tmp;
 442	bool expired = false;
 443
 444	lockdep_assert_held(&rdev->bss_lock);
 445
 446	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
 447		if (atomic_read(&bss->hold))
 448			continue;
 449		if (!time_after(expire_time, bss->ts))
 450			continue;
 451
 452		if (__cfg80211_unlink_bss(rdev, bss))
 453			expired = true;
 454	}
 455
 456	if (expired)
 457		rdev->bss_generation++;
 458}
 459
 460static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
 461{
 462	struct cfg80211_internal_bss *bss, *oldest = NULL;
 463	bool ret;
 464
 465	lockdep_assert_held(&rdev->bss_lock);
 466
 467	list_for_each_entry(bss, &rdev->bss_list, list) {
 468		if (atomic_read(&bss->hold))
 469			continue;
 470
 471		if (!list_empty(&bss->hidden_list) &&
 472		    !bss->pub.hidden_beacon_bss)
 473			continue;
 474
 475		if (oldest && time_before(oldest->ts, bss->ts))
 476			continue;
 477		oldest = bss;
 478	}
 479
 480	if (WARN_ON(!oldest))
 481		return false;
 482
 483	/*
 484	 * The callers make sure to increase rdev->bss_generation if anything
 485	 * gets removed (and a new entry added), so there's no need to also do
 486	 * it here.
 487	 */
 488
 489	ret = __cfg80211_unlink_bss(rdev, oldest);
 490	WARN_ON(!ret);
 491	return ret;
 492}
 493
 494static u8 cfg80211_parse_bss_param(u8 data,
 495				   struct cfg80211_colocated_ap *coloc_ap)
 496{
 497	coloc_ap->oct_recommended =
 498		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
 499	coloc_ap->same_ssid =
 500		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
 501	coloc_ap->multi_bss =
 502		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
 503	coloc_ap->transmitted_bssid =
 504		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
 505	coloc_ap->unsolicited_probe =
 506		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
 507	coloc_ap->colocated_ess =
 508		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
 509
 510	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
 511}
 512
 513static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
 514				    const struct element **elem, u32 *s_ssid)
 515{
 516
 517	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
 518	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
 519		return -EINVAL;
 520
 521	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
 522	return 0;
 523}
 524
 525static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
 526{
 527	struct cfg80211_colocated_ap *ap, *tmp_ap;
 528
 529	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
 530		list_del(&ap->list);
 531		kfree(ap);
 532	}
 533}
 534
 535static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
 536				  const u8 *pos, u8 length,
 537				  const struct element *ssid_elem,
 538				  int s_ssid_tmp)
 539{
 540	/* skip the TBTT offset */
 541	pos++;
 542
 543	memcpy(entry->bssid, pos, ETH_ALEN);
 544	pos += ETH_ALEN;
 545
 546	if (length >= IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
 547		memcpy(&entry->short_ssid, pos,
 548		       sizeof(entry->short_ssid));
 549		entry->short_ssid_valid = true;
 550		pos += 4;
 551	}
 552
 553	/* skip non colocated APs */
 554	if (!cfg80211_parse_bss_param(*pos, entry))
 555		return -EINVAL;
 556	pos++;
 557
 558	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
 559		/*
 560		 * no information about the short ssid. Consider the entry valid
 561		 * for now. It would later be dropped in case there are explicit
 562		 * SSIDs that need to be matched
 563		 */
 564		if (!entry->same_ssid)
 565			return 0;
 566	}
 567
 568	if (entry->same_ssid) {
 569		entry->short_ssid = s_ssid_tmp;
 570		entry->short_ssid_valid = true;
 571
 572		/*
 573		 * This is safe because we validate datalen in
 574		 * cfg80211_parse_colocated_ap(), before calling this
 575		 * function.
 576		 */
 577		memcpy(&entry->ssid, &ssid_elem->data,
 578		       ssid_elem->datalen);
 579		entry->ssid_len = ssid_elem->datalen;
 580	}
 581	return 0;
 582}
 583
 584static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
 585				       struct list_head *list)
 586{
 587	struct ieee80211_neighbor_ap_info *ap_info;
 588	const struct element *elem, *ssid_elem;
 589	const u8 *pos, *end;
 590	u32 s_ssid_tmp;
 591	int n_coloc = 0, ret;
 592	LIST_HEAD(ap_list);
 593
 594	elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
 595				  ies->len);
 596	if (!elem)
 597		return 0;
 598
 599	pos = elem->data;
 600	end = pos + elem->datalen;
 601
 602	ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
 603	if (ret)
 604		return ret;
 605
 606	/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
 607	while (pos + sizeof(*ap_info) <= end) {
 608		enum nl80211_band band;
 609		int freq;
 610		u8 length, i, count;
 611
 612		ap_info = (void *)pos;
 613		count = u8_get_bits(ap_info->tbtt_info_hdr,
 614				    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
 615		length = ap_info->tbtt_info_len;
 616
 617		pos += sizeof(*ap_info);
 618
 619		if (!ieee80211_operating_class_to_band(ap_info->op_class,
 620						       &band))
 621			break;
 622
 623		freq = ieee80211_channel_to_frequency(ap_info->channel, band);
 624
 625		if (end - pos < count * length)
 626			break;
 627
 628		/*
 629		 * TBTT info must include bss param + BSSID +
 630		 * (short SSID or same_ssid bit to be set).
 631		 * ignore other options, and move to the
 632		 * next AP info
 633		 */
 634		if (band != NL80211_BAND_6GHZ ||
 635		    (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
 636		     length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
 637			pos += count * length;
 638			continue;
 639		}
 640
 641		for (i = 0; i < count; i++) {
 642			struct cfg80211_colocated_ap *entry;
 643
 644			entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
 645					GFP_ATOMIC);
 646
 647			if (!entry)
 648				break;
 649
 650			entry->center_freq = freq;
 651
 652			if (!cfg80211_parse_ap_info(entry, pos, length,
 653						    ssid_elem, s_ssid_tmp)) {
 654				n_coloc++;
 655				list_add_tail(&entry->list, &ap_list);
 656			} else {
 657				kfree(entry);
 658			}
 659
 660			pos += length;
 661		}
 662	}
 663
 664	if (pos != end) {
 665		cfg80211_free_coloc_ap_list(&ap_list);
 666		return 0;
 667	}
 668
 669	list_splice_tail(&ap_list, list);
 670	return n_coloc;
 671}
 672
 673static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
 674					struct ieee80211_channel *chan,
 675					bool add_to_6ghz)
 676{
 677	int i;
 678	u32 n_channels = request->n_channels;
 679	struct cfg80211_scan_6ghz_params *params =
 680		&request->scan_6ghz_params[request->n_6ghz_params];
 681
 682	for (i = 0; i < n_channels; i++) {
 683		if (request->channels[i] == chan) {
 684			if (add_to_6ghz)
 685				params->channel_idx = i;
 686			return;
 687		}
 688	}
 689
 690	request->channels[n_channels] = chan;
 691	if (add_to_6ghz)
 692		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
 693			n_channels;
 694
 695	request->n_channels++;
 696}
 697
 698static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
 699				     struct cfg80211_scan_request *request)
 700{
 701	int i;
 702	u32 s_ssid;
 703
 704	for (i = 0; i < request->n_ssids; i++) {
 705		/* wildcard ssid in the scan request */
 706		if (!request->ssids[i].ssid_len) {
 707			if (ap->multi_bss && !ap->transmitted_bssid)
 708				continue;
 709
 710			return true;
 711		}
 712
 713		if (ap->ssid_len &&
 714		    ap->ssid_len == request->ssids[i].ssid_len) {
 715			if (!memcmp(request->ssids[i].ssid, ap->ssid,
 716				    ap->ssid_len))
 717				return true;
 718		} else if (ap->short_ssid_valid) {
 719			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
 720					   request->ssids[i].ssid_len);
 721
 722			if (ap->short_ssid == s_ssid)
 723				return true;
 724		}
 725	}
 726
 727	return false;
 728}
 729
 730static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
 731{
 732	u8 i;
 733	struct cfg80211_colocated_ap *ap;
 734	int n_channels, count = 0, err;
 735	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
 736	LIST_HEAD(coloc_ap_list);
 737	bool need_scan_psc = true;
 738	const struct ieee80211_sband_iftype_data *iftd;
 739
 740	rdev_req->scan_6ghz = true;
 741
 742	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
 743		return -EOPNOTSUPP;
 744
 745	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
 746					       rdev_req->wdev->iftype);
 747	if (!iftd || !iftd->he_cap.has_he)
 748		return -EOPNOTSUPP;
 749
 750	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
 751
 752	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
 753		struct cfg80211_internal_bss *intbss;
 754
 755		spin_lock_bh(&rdev->bss_lock);
 756		list_for_each_entry(intbss, &rdev->bss_list, list) {
 757			struct cfg80211_bss *res = &intbss->pub;
 758			const struct cfg80211_bss_ies *ies;
 759
 760			ies = rcu_access_pointer(res->ies);
 761			count += cfg80211_parse_colocated_ap(ies,
 762							     &coloc_ap_list);
 763		}
 764		spin_unlock_bh(&rdev->bss_lock);
 765	}
 766
 767	request = kzalloc(struct_size(request, channels, n_channels) +
 768			  sizeof(*request->scan_6ghz_params) * count +
 769			  sizeof(*request->ssids) * rdev_req->n_ssids,
 770			  GFP_KERNEL);
 771	if (!request) {
 772		cfg80211_free_coloc_ap_list(&coloc_ap_list);
 773		return -ENOMEM;
 774	}
 775
 776	*request = *rdev_req;
 777	request->n_channels = 0;
 778	request->scan_6ghz_params =
 779		(void *)&request->channels[n_channels];
 780
 781	/*
 782	 * PSC channels should not be scanned in case of direct scan with 1 SSID
 783	 * and at least one of the reported co-located APs with same SSID
 784	 * indicating that all APs in the same ESS are co-located
 785	 */
 786	if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
 787		list_for_each_entry(ap, &coloc_ap_list, list) {
 788			if (ap->colocated_ess &&
 789			    cfg80211_find_ssid_match(ap, request)) {
 790				need_scan_psc = false;
 791				break;
 792			}
 793		}
 794	}
 795
 796	/*
 797	 * add to the scan request the channels that need to be scanned
 798	 * regardless of the collocated APs (PSC channels or all channels
 799	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
 800	 */
 801	for (i = 0; i < rdev_req->n_channels; i++) {
 802		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
 803		    ((need_scan_psc &&
 804		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
 805		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
 806			cfg80211_scan_req_add_chan(request,
 807						   rdev_req->channels[i],
 808						   false);
 809		}
 810	}
 811
 812	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
 813		goto skip;
 814
 815	list_for_each_entry(ap, &coloc_ap_list, list) {
 816		bool found = false;
 817		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
 818			&request->scan_6ghz_params[request->n_6ghz_params];
 819		struct ieee80211_channel *chan =
 820			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
 821
 822		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
 823			continue;
 824
 825		for (i = 0; i < rdev_req->n_channels; i++) {
 826			if (rdev_req->channels[i] == chan)
 827				found = true;
 828		}
 829
 830		if (!found)
 831			continue;
 832
 833		if (request->n_ssids > 0 &&
 834		    !cfg80211_find_ssid_match(ap, request))
 835			continue;
 836
 837		if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
 838			continue;
 839
 840		cfg80211_scan_req_add_chan(request, chan, true);
 841		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
 842		scan_6ghz_params->short_ssid = ap->short_ssid;
 843		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
 844		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
 845
 846		/*
 847		 * If a PSC channel is added to the scan and 'need_scan_psc' is
 848		 * set to false, then all the APs that the scan logic is
 849		 * interested with on the channel are collocated and thus there
 850		 * is no need to perform the initial PSC channel listen.
 851		 */
 852		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
 853			scan_6ghz_params->psc_no_listen = true;
 854
 855		request->n_6ghz_params++;
 856	}
 857
 858skip:
 859	cfg80211_free_coloc_ap_list(&coloc_ap_list);
 860
 861	if (request->n_channels) {
 862		struct cfg80211_scan_request *old = rdev->int_scan_req;
 863		rdev->int_scan_req = request;
 864
 865		/*
 866		 * Add the ssids from the parent scan request to the new scan
 867		 * request, so the driver would be able to use them in its
 868		 * probe requests to discover hidden APs on PSC channels.
 869		 */
 870		request->ssids = (void *)&request->channels[request->n_channels];
 871		request->n_ssids = rdev_req->n_ssids;
 872		memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
 873		       request->n_ssids);
 874
 875		/*
 876		 * If this scan follows a previous scan, save the scan start
 877		 * info from the first part of the scan
 878		 */
 879		if (old)
 880			rdev->int_scan_req->info = old->info;
 881
 882		err = rdev_scan(rdev, request);
 883		if (err) {
 884			rdev->int_scan_req = old;
 885			kfree(request);
 886		} else {
 887			kfree(old);
 888		}
 889
 890		return err;
 891	}
 892
 893	kfree(request);
 894	return -EINVAL;
 895}
 896
 897int cfg80211_scan(struct cfg80211_registered_device *rdev)
 898{
 899	struct cfg80211_scan_request *request;
 900	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
 901	u32 n_channels = 0, idx, i;
 902
 903	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
 904		return rdev_scan(rdev, rdev_req);
 905
 906	for (i = 0; i < rdev_req->n_channels; i++) {
 907		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
 908			n_channels++;
 909	}
 910
 911	if (!n_channels)
 912		return cfg80211_scan_6ghz(rdev);
 913
 914	request = kzalloc(struct_size(request, channels, n_channels),
 915			  GFP_KERNEL);
 916	if (!request)
 917		return -ENOMEM;
 918
 919	*request = *rdev_req;
 920	request->n_channels = n_channels;
 921
 922	for (i = idx = 0; i < rdev_req->n_channels; i++) {
 923		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
 924			request->channels[idx++] = rdev_req->channels[i];
 925	}
 926
 927	rdev_req->scan_6ghz = false;
 928	rdev->int_scan_req = request;
 929	return rdev_scan(rdev, request);
 930}
 931
 932void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
 933			   bool send_message)
 934{
 935	struct cfg80211_scan_request *request, *rdev_req;
 936	struct wireless_dev *wdev;
 937	struct sk_buff *msg;
 938#ifdef CONFIG_CFG80211_WEXT
 939	union iwreq_data wrqu;
 940#endif
 941
 942	lockdep_assert_held(&rdev->wiphy.mtx);
 943
 944	if (rdev->scan_msg) {
 945		nl80211_send_scan_msg(rdev, rdev->scan_msg);
 946		rdev->scan_msg = NULL;
 947		return;
 948	}
 949
 950	rdev_req = rdev->scan_req;
 951	if (!rdev_req)
 952		return;
 953
 954	wdev = rdev_req->wdev;
 955	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
 956
 957	if (wdev_running(wdev) &&
 958	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
 959	    !rdev_req->scan_6ghz && !request->info.aborted &&
 960	    !cfg80211_scan_6ghz(rdev))
 961		return;
 962
 963	/*
 964	 * This must be before sending the other events!
 965	 * Otherwise, wpa_supplicant gets completely confused with
 966	 * wext events.
 967	 */
 968	if (wdev->netdev)
 969		cfg80211_sme_scan_done(wdev->netdev);
 970
 971	if (!request->info.aborted &&
 972	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
 973		/* flush entries from previous scans */
 974		spin_lock_bh(&rdev->bss_lock);
 975		__cfg80211_bss_expire(rdev, request->scan_start);
 976		spin_unlock_bh(&rdev->bss_lock);
 977	}
 978
 979	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
 980
 981#ifdef CONFIG_CFG80211_WEXT
 982	if (wdev->netdev && !request->info.aborted) {
 983		memset(&wrqu, 0, sizeof(wrqu));
 984
 985		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
 986	}
 987#endif
 988
 989	dev_put(wdev->netdev);
 
 990
 991	kfree(rdev->int_scan_req);
 992	rdev->int_scan_req = NULL;
 993
 994	kfree(rdev->scan_req);
 995	rdev->scan_req = NULL;
 996
 997	if (!send_message)
 998		rdev->scan_msg = msg;
 999	else
1000		nl80211_send_scan_msg(rdev, msg);
1001}
1002
1003void __cfg80211_scan_done(struct work_struct *wk)
1004{
1005	struct cfg80211_registered_device *rdev;
1006
1007	rdev = container_of(wk, struct cfg80211_registered_device,
1008			    scan_done_wk);
1009
1010	wiphy_lock(&rdev->wiphy);
1011	___cfg80211_scan_done(rdev, true);
1012	wiphy_unlock(&rdev->wiphy);
1013}
1014
1015void cfg80211_scan_done(struct cfg80211_scan_request *request,
1016			struct cfg80211_scan_info *info)
1017{
1018	struct cfg80211_scan_info old_info = request->info;
1019
1020	trace_cfg80211_scan_done(request, info);
1021	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1022		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1023
1024	request->info = *info;
1025
1026	/*
1027	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1028	 * be of the first part. In such a case old_info.scan_start_tsf should
1029	 * be non zero.
1030	 */
1031	if (request->scan_6ghz && old_info.scan_start_tsf) {
1032		request->info.scan_start_tsf = old_info.scan_start_tsf;
1033		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1034		       sizeof(request->info.tsf_bssid));
1035	}
1036
1037	request->notified = true;
1038	queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1039}
1040EXPORT_SYMBOL(cfg80211_scan_done);
1041
1042void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1043				 struct cfg80211_sched_scan_request *req)
1044{
1045	lockdep_assert_held(&rdev->wiphy.mtx);
1046
1047	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1048}
1049
1050static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1051					struct cfg80211_sched_scan_request *req)
1052{
1053	lockdep_assert_held(&rdev->wiphy.mtx);
1054
1055	list_del_rcu(&req->list);
1056	kfree_rcu(req, rcu_head);
1057}
1058
1059static struct cfg80211_sched_scan_request *
1060cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1061{
1062	struct cfg80211_sched_scan_request *pos;
1063
1064	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1065				lockdep_is_held(&rdev->wiphy.mtx)) {
1066		if (pos->reqid == reqid)
1067			return pos;
1068	}
1069	return NULL;
1070}
1071
1072/*
1073 * Determines if a scheduled scan request can be handled. When a legacy
1074 * scheduled scan is running no other scheduled scan is allowed regardless
1075 * whether the request is for legacy or multi-support scan. When a multi-support
1076 * scheduled scan is running a request for legacy scan is not allowed. In this
1077 * case a request for multi-support scan can be handled if resources are
1078 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1079 */
1080int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1081				     bool want_multi)
1082{
1083	struct cfg80211_sched_scan_request *pos;
1084	int i = 0;
1085
1086	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1087		/* request id zero means legacy in progress */
1088		if (!i && !pos->reqid)
1089			return -EINPROGRESS;
1090		i++;
1091	}
1092
1093	if (i) {
1094		/* no legacy allowed when multi request(s) are active */
1095		if (!want_multi)
1096			return -EINPROGRESS;
1097
1098		/* resource limit reached */
1099		if (i == rdev->wiphy.max_sched_scan_reqs)
1100			return -ENOSPC;
1101	}
1102	return 0;
1103}
1104
1105void cfg80211_sched_scan_results_wk(struct work_struct *work)
1106{
1107	struct cfg80211_registered_device *rdev;
1108	struct cfg80211_sched_scan_request *req, *tmp;
1109
1110	rdev = container_of(work, struct cfg80211_registered_device,
1111			   sched_scan_res_wk);
1112
1113	wiphy_lock(&rdev->wiphy);
1114	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1115		if (req->report_results) {
1116			req->report_results = false;
1117			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1118				/* flush entries from previous scans */
1119				spin_lock_bh(&rdev->bss_lock);
1120				__cfg80211_bss_expire(rdev, req->scan_start);
1121				spin_unlock_bh(&rdev->bss_lock);
1122				req->scan_start = jiffies;
1123			}
1124			nl80211_send_sched_scan(req,
1125						NL80211_CMD_SCHED_SCAN_RESULTS);
1126		}
1127	}
1128	wiphy_unlock(&rdev->wiphy);
1129}
1130
1131void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1132{
1133	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1134	struct cfg80211_sched_scan_request *request;
1135
1136	trace_cfg80211_sched_scan_results(wiphy, reqid);
1137	/* ignore if we're not scanning */
1138
1139	rcu_read_lock();
1140	request = cfg80211_find_sched_scan_req(rdev, reqid);
1141	if (request) {
1142		request->report_results = true;
1143		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1144	}
1145	rcu_read_unlock();
1146}
1147EXPORT_SYMBOL(cfg80211_sched_scan_results);
1148
1149void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1150{
1151	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1152
1153	lockdep_assert_held(&wiphy->mtx);
1154
1155	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1156
1157	__cfg80211_stop_sched_scan(rdev, reqid, true);
1158}
1159EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1160
1161void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1162{
1163	wiphy_lock(wiphy);
1164	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1165	wiphy_unlock(wiphy);
1166}
1167EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1168
1169int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1170				 struct cfg80211_sched_scan_request *req,
1171				 bool driver_initiated)
1172{
1173	lockdep_assert_held(&rdev->wiphy.mtx);
1174
1175	if (!driver_initiated) {
1176		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1177		if (err)
1178			return err;
1179	}
1180
1181	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1182
1183	cfg80211_del_sched_scan_req(rdev, req);
1184
1185	return 0;
1186}
1187
1188int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1189			       u64 reqid, bool driver_initiated)
1190{
1191	struct cfg80211_sched_scan_request *sched_scan_req;
1192
1193	lockdep_assert_held(&rdev->wiphy.mtx);
1194
1195	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1196	if (!sched_scan_req)
1197		return -ENOENT;
1198
1199	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1200					    driver_initiated);
1201}
1202
1203void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1204                      unsigned long age_secs)
1205{
1206	struct cfg80211_internal_bss *bss;
1207	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1208
1209	spin_lock_bh(&rdev->bss_lock);
1210	list_for_each_entry(bss, &rdev->bss_list, list)
1211		bss->ts -= age_jiffies;
1212	spin_unlock_bh(&rdev->bss_lock);
1213}
1214
1215void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1216{
1217	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1218}
1219
1220void cfg80211_bss_flush(struct wiphy *wiphy)
1221{
1222	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1223
1224	spin_lock_bh(&rdev->bss_lock);
1225	__cfg80211_bss_expire(rdev, jiffies);
1226	spin_unlock_bh(&rdev->bss_lock);
1227}
1228EXPORT_SYMBOL(cfg80211_bss_flush);
1229
1230const struct element *
1231cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1232			 const u8 *match, unsigned int match_len,
1233			 unsigned int match_offset)
1234{
1235	const struct element *elem;
1236
1237	for_each_element_id(elem, eid, ies, len) {
1238		if (elem->datalen >= match_offset + match_len &&
1239		    !memcmp(elem->data + match_offset, match, match_len))
1240			return elem;
1241	}
1242
1243	return NULL;
1244}
1245EXPORT_SYMBOL(cfg80211_find_elem_match);
1246
1247const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1248						const u8 *ies,
1249						unsigned int len)
1250{
1251	const struct element *elem;
1252	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1253	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1254
1255	if (WARN_ON(oui_type > 0xff))
1256		return NULL;
1257
1258	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1259					match, match_len, 0);
1260
1261	if (!elem || elem->datalen < 4)
1262		return NULL;
1263
1264	return elem;
1265}
1266EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1267
1268/**
1269 * enum bss_compare_mode - BSS compare mode
1270 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1271 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1272 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1273 */
1274enum bss_compare_mode {
1275	BSS_CMP_REGULAR,
1276	BSS_CMP_HIDE_ZLEN,
1277	BSS_CMP_HIDE_NUL,
1278};
1279
1280static int cmp_bss(struct cfg80211_bss *a,
1281		   struct cfg80211_bss *b,
1282		   enum bss_compare_mode mode)
1283{
1284	const struct cfg80211_bss_ies *a_ies, *b_ies;
1285	const u8 *ie1 = NULL;
1286	const u8 *ie2 = NULL;
1287	int i, r;
1288
1289	if (a->channel != b->channel)
1290		return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1291		       (a->channel->center_freq * 1000 + a->channel->freq_offset);
1292
1293	a_ies = rcu_access_pointer(a->ies);
1294	if (!a_ies)
1295		return -1;
1296	b_ies = rcu_access_pointer(b->ies);
1297	if (!b_ies)
1298		return 1;
1299
1300	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1301		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1302				       a_ies->data, a_ies->len);
1303	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1304		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1305				       b_ies->data, b_ies->len);
1306	if (ie1 && ie2) {
1307		int mesh_id_cmp;
1308
1309		if (ie1[1] == ie2[1])
1310			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1311		else
1312			mesh_id_cmp = ie2[1] - ie1[1];
1313
1314		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1315				       a_ies->data, a_ies->len);
1316		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1317				       b_ies->data, b_ies->len);
1318		if (ie1 && ie2) {
1319			if (mesh_id_cmp)
1320				return mesh_id_cmp;
1321			if (ie1[1] != ie2[1])
1322				return ie2[1] - ie1[1];
1323			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1324		}
1325	}
1326
1327	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1328	if (r)
1329		return r;
1330
1331	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1332	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1333
1334	if (!ie1 && !ie2)
1335		return 0;
1336
1337	/*
1338	 * Note that with "hide_ssid", the function returns a match if
1339	 * the already-present BSS ("b") is a hidden SSID beacon for
1340	 * the new BSS ("a").
1341	 */
1342
1343	/* sort missing IE before (left of) present IE */
1344	if (!ie1)
1345		return -1;
1346	if (!ie2)
1347		return 1;
1348
1349	switch (mode) {
1350	case BSS_CMP_HIDE_ZLEN:
1351		/*
1352		 * In ZLEN mode we assume the BSS entry we're
1353		 * looking for has a zero-length SSID. So if
1354		 * the one we're looking at right now has that,
1355		 * return 0. Otherwise, return the difference
1356		 * in length, but since we're looking for the
1357		 * 0-length it's really equivalent to returning
1358		 * the length of the one we're looking at.
1359		 *
1360		 * No content comparison is needed as we assume
1361		 * the content length is zero.
1362		 */
1363		return ie2[1];
1364	case BSS_CMP_REGULAR:
1365	default:
1366		/* sort by length first, then by contents */
1367		if (ie1[1] != ie2[1])
1368			return ie2[1] - ie1[1];
1369		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1370	case BSS_CMP_HIDE_NUL:
1371		if (ie1[1] != ie2[1])
1372			return ie2[1] - ie1[1];
1373		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1374		for (i = 0; i < ie2[1]; i++)
1375			if (ie2[i + 2])
1376				return -1;
1377		return 0;
1378	}
1379}
1380
1381static bool cfg80211_bss_type_match(u16 capability,
1382				    enum nl80211_band band,
1383				    enum ieee80211_bss_type bss_type)
1384{
1385	bool ret = true;
1386	u16 mask, val;
1387
1388	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1389		return ret;
1390
1391	if (band == NL80211_BAND_60GHZ) {
1392		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1393		switch (bss_type) {
1394		case IEEE80211_BSS_TYPE_ESS:
1395			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1396			break;
1397		case IEEE80211_BSS_TYPE_PBSS:
1398			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1399			break;
1400		case IEEE80211_BSS_TYPE_IBSS:
1401			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1402			break;
1403		default:
1404			return false;
1405		}
1406	} else {
1407		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1408		switch (bss_type) {
1409		case IEEE80211_BSS_TYPE_ESS:
1410			val = WLAN_CAPABILITY_ESS;
1411			break;
1412		case IEEE80211_BSS_TYPE_IBSS:
1413			val = WLAN_CAPABILITY_IBSS;
1414			break;
1415		case IEEE80211_BSS_TYPE_MBSS:
1416			val = 0;
1417			break;
1418		default:
1419			return false;
1420		}
1421	}
1422
1423	ret = ((capability & mask) == val);
1424	return ret;
1425}
1426
1427/* Returned bss is reference counted and must be cleaned up appropriately. */
1428struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1429				      struct ieee80211_channel *channel,
1430				      const u8 *bssid,
1431				      const u8 *ssid, size_t ssid_len,
1432				      enum ieee80211_bss_type bss_type,
1433				      enum ieee80211_privacy privacy)
1434{
1435	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1436	struct cfg80211_internal_bss *bss, *res = NULL;
1437	unsigned long now = jiffies;
1438	int bss_privacy;
1439
1440	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1441			       privacy);
1442
1443	spin_lock_bh(&rdev->bss_lock);
1444
1445	list_for_each_entry(bss, &rdev->bss_list, list) {
1446		if (!cfg80211_bss_type_match(bss->pub.capability,
1447					     bss->pub.channel->band, bss_type))
1448			continue;
1449
1450		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1451		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1452		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1453			continue;
1454		if (channel && bss->pub.channel != channel)
1455			continue;
1456		if (!is_valid_ether_addr(bss->pub.bssid))
1457			continue;
1458		/* Don't get expired BSS structs */
1459		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1460		    !atomic_read(&bss->hold))
1461			continue;
1462		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1463			res = bss;
1464			bss_ref_get(rdev, res);
1465			break;
1466		}
1467	}
1468
1469	spin_unlock_bh(&rdev->bss_lock);
1470	if (!res)
1471		return NULL;
1472	trace_cfg80211_return_bss(&res->pub);
1473	return &res->pub;
1474}
1475EXPORT_SYMBOL(cfg80211_get_bss);
1476
1477static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1478			  struct cfg80211_internal_bss *bss)
1479{
1480	struct rb_node **p = &rdev->bss_tree.rb_node;
1481	struct rb_node *parent = NULL;
1482	struct cfg80211_internal_bss *tbss;
1483	int cmp;
1484
1485	while (*p) {
1486		parent = *p;
1487		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1488
1489		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1490
1491		if (WARN_ON(!cmp)) {
1492			/* will sort of leak this BSS */
1493			return;
1494		}
1495
1496		if (cmp < 0)
1497			p = &(*p)->rb_left;
1498		else
1499			p = &(*p)->rb_right;
1500	}
1501
1502	rb_link_node(&bss->rbn, parent, p);
1503	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1504}
1505
1506static struct cfg80211_internal_bss *
1507rb_find_bss(struct cfg80211_registered_device *rdev,
1508	    struct cfg80211_internal_bss *res,
1509	    enum bss_compare_mode mode)
1510{
1511	struct rb_node *n = rdev->bss_tree.rb_node;
1512	struct cfg80211_internal_bss *bss;
1513	int r;
1514
1515	while (n) {
1516		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1517		r = cmp_bss(&res->pub, &bss->pub, mode);
1518
1519		if (r == 0)
1520			return bss;
1521		else if (r < 0)
1522			n = n->rb_left;
1523		else
1524			n = n->rb_right;
1525	}
1526
1527	return NULL;
1528}
1529
1530static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1531				   struct cfg80211_internal_bss *new)
1532{
1533	const struct cfg80211_bss_ies *ies;
1534	struct cfg80211_internal_bss *bss;
1535	const u8 *ie;
1536	int i, ssidlen;
1537	u8 fold = 0;
1538	u32 n_entries = 0;
1539
1540	ies = rcu_access_pointer(new->pub.beacon_ies);
1541	if (WARN_ON(!ies))
1542		return false;
1543
1544	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1545	if (!ie) {
1546		/* nothing to do */
1547		return true;
1548	}
1549
1550	ssidlen = ie[1];
1551	for (i = 0; i < ssidlen; i++)
1552		fold |= ie[2 + i];
1553
1554	if (fold) {
1555		/* not a hidden SSID */
1556		return true;
1557	}
1558
1559	/* This is the bad part ... */
1560
1561	list_for_each_entry(bss, &rdev->bss_list, list) {
1562		/*
1563		 * we're iterating all the entries anyway, so take the
1564		 * opportunity to validate the list length accounting
1565		 */
1566		n_entries++;
1567
1568		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1569			continue;
1570		if (bss->pub.channel != new->pub.channel)
1571			continue;
1572		if (bss->pub.scan_width != new->pub.scan_width)
1573			continue;
1574		if (rcu_access_pointer(bss->pub.beacon_ies))
1575			continue;
1576		ies = rcu_access_pointer(bss->pub.ies);
1577		if (!ies)
1578			continue;
1579		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1580		if (!ie)
1581			continue;
1582		if (ssidlen && ie[1] != ssidlen)
1583			continue;
1584		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1585			continue;
1586		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1587			list_del(&bss->hidden_list);
1588		/* combine them */
1589		list_add(&bss->hidden_list, &new->hidden_list);
1590		bss->pub.hidden_beacon_bss = &new->pub;
1591		new->refcount += bss->refcount;
1592		rcu_assign_pointer(bss->pub.beacon_ies,
1593				   new->pub.beacon_ies);
1594	}
1595
1596	WARN_ONCE(n_entries != rdev->bss_entries,
1597		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1598		  rdev->bss_entries, n_entries);
1599
1600	return true;
1601}
1602
1603struct cfg80211_non_tx_bss {
1604	struct cfg80211_bss *tx_bss;
1605	u8 max_bssid_indicator;
1606	u8 bssid_index;
1607};
1608
1609static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1610					 const struct cfg80211_bss_ies *new_ies,
1611					 const struct cfg80211_bss_ies *old_ies)
1612{
1613	struct cfg80211_internal_bss *bss;
1614
1615	/* Assign beacon IEs to all sub entries */
1616	list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1617		const struct cfg80211_bss_ies *ies;
1618
1619		ies = rcu_access_pointer(bss->pub.beacon_ies);
1620		WARN_ON(ies != old_ies);
1621
1622		rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1623	}
1624}
1625
1626static bool
1627cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1628			  struct cfg80211_internal_bss *known,
1629			  struct cfg80211_internal_bss *new,
1630			  bool signal_valid)
1631{
1632	lockdep_assert_held(&rdev->bss_lock);
1633
1634	/* Update IEs */
1635	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1636		const struct cfg80211_bss_ies *old;
1637
1638		old = rcu_access_pointer(known->pub.proberesp_ies);
1639
1640		rcu_assign_pointer(known->pub.proberesp_ies,
1641				   new->pub.proberesp_ies);
1642		/* Override possible earlier Beacon frame IEs */
1643		rcu_assign_pointer(known->pub.ies,
1644				   new->pub.proberesp_ies);
1645		if (old)
1646			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1647	} else if (rcu_access_pointer(new->pub.beacon_ies)) {
1648		const struct cfg80211_bss_ies *old;
 
1649
1650		if (known->pub.hidden_beacon_bss &&
1651		    !list_empty(&known->hidden_list)) {
1652			const struct cfg80211_bss_ies *f;
1653
1654			/* The known BSS struct is one of the probe
1655			 * response members of a group, but we're
1656			 * receiving a beacon (beacon_ies in the new
1657			 * bss is used). This can only mean that the
1658			 * AP changed its beacon from not having an
1659			 * SSID to showing it, which is confusing so
1660			 * drop this information.
1661			 */
1662
1663			f = rcu_access_pointer(new->pub.beacon_ies);
1664			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1665			return false;
1666		}
1667
1668		old = rcu_access_pointer(known->pub.beacon_ies);
1669
1670		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1671
1672		/* Override IEs if they were from a beacon before */
1673		if (old == rcu_access_pointer(known->pub.ies))
1674			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1675
1676		cfg80211_update_hidden_bsses(known,
1677					     rcu_access_pointer(new->pub.beacon_ies),
1678					     old);
 
 
 
 
 
 
 
1679
1680		if (old)
1681			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1682	}
1683
1684	known->pub.beacon_interval = new->pub.beacon_interval;
1685
1686	/* don't update the signal if beacon was heard on
1687	 * adjacent channel.
1688	 */
1689	if (signal_valid)
1690		known->pub.signal = new->pub.signal;
1691	known->pub.capability = new->pub.capability;
1692	known->ts = new->ts;
1693	known->ts_boottime = new->ts_boottime;
1694	known->parent_tsf = new->parent_tsf;
1695	known->pub.chains = new->pub.chains;
1696	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1697	       IEEE80211_MAX_CHAINS);
1698	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1699	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1700	known->pub.bssid_index = new->pub.bssid_index;
1701
1702	return true;
1703}
1704
1705/* Returned bss is reference counted and must be cleaned up appropriately. */
1706struct cfg80211_internal_bss *
1707cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1708		    struct cfg80211_internal_bss *tmp,
1709		    bool signal_valid, unsigned long ts)
1710{
1711	struct cfg80211_internal_bss *found = NULL;
1712
1713	if (WARN_ON(!tmp->pub.channel))
1714		return NULL;
1715
1716	tmp->ts = ts;
1717
1718	spin_lock_bh(&rdev->bss_lock);
1719
1720	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1721		spin_unlock_bh(&rdev->bss_lock);
1722		return NULL;
1723	}
1724
1725	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1726
1727	if (found) {
1728		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1729			goto drop;
1730	} else {
1731		struct cfg80211_internal_bss *new;
1732		struct cfg80211_internal_bss *hidden;
1733		struct cfg80211_bss_ies *ies;
1734
1735		/*
1736		 * create a copy -- the "res" variable that is passed in
1737		 * is allocated on the stack since it's not needed in the
1738		 * more common case of an update
1739		 */
1740		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1741			      GFP_ATOMIC);
1742		if (!new) {
1743			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1744			if (ies)
1745				kfree_rcu(ies, rcu_head);
1746			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1747			if (ies)
1748				kfree_rcu(ies, rcu_head);
1749			goto drop;
1750		}
1751		memcpy(new, tmp, sizeof(*new));
1752		new->refcount = 1;
1753		INIT_LIST_HEAD(&new->hidden_list);
1754		INIT_LIST_HEAD(&new->pub.nontrans_list);
1755		/* we'll set this later if it was non-NULL */
1756		new->pub.transmitted_bss = NULL;
1757
1758		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1759			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1760			if (!hidden)
1761				hidden = rb_find_bss(rdev, tmp,
1762						     BSS_CMP_HIDE_NUL);
1763			if (hidden) {
1764				new->pub.hidden_beacon_bss = &hidden->pub;
1765				list_add(&new->hidden_list,
1766					 &hidden->hidden_list);
1767				hidden->refcount++;
1768				rcu_assign_pointer(new->pub.beacon_ies,
1769						   hidden->pub.beacon_ies);
1770			}
1771		} else {
1772			/*
1773			 * Ok so we found a beacon, and don't have an entry. If
1774			 * it's a beacon with hidden SSID, we might be in for an
1775			 * expensive search for any probe responses that should
1776			 * be grouped with this beacon for updates ...
1777			 */
1778			if (!cfg80211_combine_bsses(rdev, new)) {
1779				bss_ref_put(rdev, new);
1780				goto drop;
1781			}
1782		}
1783
1784		if (rdev->bss_entries >= bss_entries_limit &&
1785		    !cfg80211_bss_expire_oldest(rdev)) {
1786			bss_ref_put(rdev, new);
1787			goto drop;
1788		}
1789
1790		/* This must be before the call to bss_ref_get */
1791		if (tmp->pub.transmitted_bss) {
 
 
 
 
 
1792			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1793			bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1794		}
1795
1796		list_add_tail(&new->list, &rdev->bss_list);
1797		rdev->bss_entries++;
1798		rb_insert_bss(rdev, new);
1799		found = new;
1800	}
1801
1802	rdev->bss_generation++;
1803	bss_ref_get(rdev, found);
1804	spin_unlock_bh(&rdev->bss_lock);
1805
1806	return found;
1807 drop:
1808	spin_unlock_bh(&rdev->bss_lock);
1809	return NULL;
1810}
1811
1812int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1813				    enum nl80211_band band,
1814				    enum cfg80211_bss_frame_type ftype)
1815{
1816	const struct element *tmp;
1817
1818	if (band == NL80211_BAND_6GHZ) {
1819		struct ieee80211_he_operation *he_oper;
1820
1821		tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1822					     ielen);
1823		if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1824		    tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1825			const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1826
1827			he_oper = (void *)&tmp->data[1];
1828
1829			he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1830			if (!he_6ghz_oper)
1831				return -1;
1832
1833			if (ftype != CFG80211_BSS_FTYPE_BEACON ||
1834			    he_6ghz_oper->control & IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON)
1835				return he_6ghz_oper->primary;
1836		}
1837	} else if (band == NL80211_BAND_S1GHZ) {
1838		tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1839		if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1840			struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1841
1842			return s1gop->oper_ch;
1843		}
1844	} else {
1845		tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1846		if (tmp && tmp->datalen == 1)
1847			return tmp->data[0];
1848
1849		tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1850		if (tmp &&
1851		    tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1852			struct ieee80211_ht_operation *htop = (void *)tmp->data;
1853
1854			return htop->primary_chan;
1855		}
1856	}
1857
1858	return -1;
1859}
1860EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1861
1862/*
1863 * Update RX channel information based on the available frame payload
1864 * information. This is mainly for the 2.4 GHz band where frames can be received
1865 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1866 * element to indicate the current (transmitting) channel, but this might also
1867 * be needed on other bands if RX frequency does not match with the actual
1868 * operating channel of a BSS, or if the AP reports a different primary channel.
1869 */
1870static struct ieee80211_channel *
1871cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1872			 struct ieee80211_channel *channel,
1873			 enum nl80211_bss_scan_width scan_width,
1874			 enum cfg80211_bss_frame_type ftype)
1875{
 
1876	u32 freq;
1877	int channel_number;
1878	struct ieee80211_channel *alt_channel;
1879
1880	channel_number = cfg80211_get_ies_channel_number(ie, ielen,
1881							 channel->band, ftype);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1882
1883	if (channel_number < 0) {
1884		/* No channel information in frame payload */
1885		return channel;
1886	}
1887
1888	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1889
1890	/*
1891	 * In 6GHz, duplicated beacon indication is relevant for
1892	 * beacons only.
1893	 */
1894	if (channel->band == NL80211_BAND_6GHZ &&
1895	    (freq == channel->center_freq ||
1896	     abs(freq - channel->center_freq) > 80))
1897		return channel;
1898
1899	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1900	if (!alt_channel) {
1901		if (channel->band == NL80211_BAND_2GHZ) {
1902			/*
1903			 * Better not allow unexpected channels when that could
1904			 * be going beyond the 1-11 range (e.g., discovering
1905			 * BSS on channel 12 when radio is configured for
1906			 * channel 11.
1907			 */
1908			return NULL;
1909		}
1910
1911		/* No match for the payload channel number - ignore it */
1912		return channel;
1913	}
1914
1915	if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1916	    scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1917		/*
1918		 * Ignore channel number in 5 and 10 MHz channels where there
1919		 * may not be an n:1 or 1:n mapping between frequencies and
1920		 * channel numbers.
1921		 */
1922		return channel;
1923	}
1924
1925	/*
1926	 * Use the channel determined through the payload channel number
1927	 * instead of the RX channel reported by the driver.
1928	 */
1929	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1930		return NULL;
1931	return alt_channel;
1932}
1933
1934/* Returned bss is reference counted and must be cleaned up appropriately. */
1935static struct cfg80211_bss *
1936cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1937				struct cfg80211_inform_bss *data,
1938				enum cfg80211_bss_frame_type ftype,
1939				const u8 *bssid, u64 tsf, u16 capability,
1940				u16 beacon_interval, const u8 *ie, size_t ielen,
1941				struct cfg80211_non_tx_bss *non_tx_data,
1942				gfp_t gfp)
1943{
1944	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1945	struct cfg80211_bss_ies *ies;
1946	struct ieee80211_channel *channel;
1947	struct cfg80211_internal_bss tmp = {}, *res;
1948	int bss_type;
1949	bool signal_valid;
1950	unsigned long ts;
1951
1952	if (WARN_ON(!wiphy))
1953		return NULL;
1954
1955	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1956		    (data->signal < 0 || data->signal > 100)))
1957		return NULL;
1958
1959	channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1960					   data->scan_width, ftype);
1961	if (!channel)
1962		return NULL;
1963
1964	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1965	tmp.pub.channel = channel;
1966	tmp.pub.scan_width = data->scan_width;
1967	tmp.pub.signal = data->signal;
1968	tmp.pub.beacon_interval = beacon_interval;
1969	tmp.pub.capability = capability;
1970	tmp.ts_boottime = data->boottime_ns;
1971	tmp.parent_tsf = data->parent_tsf;
1972	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1973
1974	if (non_tx_data) {
1975		tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1976		ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1977		tmp.pub.bssid_index = non_tx_data->bssid_index;
1978		tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1979	} else {
1980		ts = jiffies;
1981	}
1982
1983	/*
1984	 * If we do not know here whether the IEs are from a Beacon or Probe
1985	 * Response frame, we need to pick one of the options and only use it
1986	 * with the driver that does not provide the full Beacon/Probe Response
1987	 * frame. Use Beacon frame pointer to avoid indicating that this should
1988	 * override the IEs pointer should we have received an earlier
1989	 * indication of Probe Response data.
1990	 */
1991	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1992	if (!ies)
1993		return NULL;
1994	ies->len = ielen;
1995	ies->tsf = tsf;
1996	ies->from_beacon = false;
1997	memcpy(ies->data, ie, ielen);
1998
1999	switch (ftype) {
2000	case CFG80211_BSS_FTYPE_BEACON:
2001		ies->from_beacon = true;
2002		fallthrough;
2003	case CFG80211_BSS_FTYPE_UNKNOWN:
2004		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2005		break;
2006	case CFG80211_BSS_FTYPE_PRESP:
2007		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2008		break;
2009	}
2010	rcu_assign_pointer(tmp.pub.ies, ies);
2011
2012	signal_valid = data->chan == channel;
2013	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
2014	if (!res)
2015		return NULL;
2016
2017	if (channel->band == NL80211_BAND_60GHZ) {
2018		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2019		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2020		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2021			regulatory_hint_found_beacon(wiphy, channel, gfp);
2022	} else {
2023		if (res->pub.capability & WLAN_CAPABILITY_ESS)
2024			regulatory_hint_found_beacon(wiphy, channel, gfp);
2025	}
2026
2027	if (non_tx_data) {
2028		/* this is a nontransmitting bss, we need to add it to
2029		 * transmitting bss' list if it is not there
2030		 */
2031		spin_lock_bh(&rdev->bss_lock);
2032		if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
2033					       &res->pub)) {
2034			if (__cfg80211_unlink_bss(rdev, res)) {
2035				rdev->bss_generation++;
2036				res = NULL;
2037			}
2038		}
2039		spin_unlock_bh(&rdev->bss_lock);
2040
2041		if (!res)
2042			return NULL;
2043	}
2044
2045	trace_cfg80211_return_bss(&res->pub);
2046	/* cfg80211_bss_update gives us a referenced result */
2047	return &res->pub;
2048}
2049
2050static const struct element
2051*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2052				   const struct element *mbssid_elem,
2053				   const struct element *sub_elem)
2054{
2055	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2056	const struct element *next_mbssid;
2057	const struct element *next_sub;
2058
2059	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2060					 mbssid_end,
2061					 ielen - (mbssid_end - ie));
2062
2063	/*
2064	 * If it is not the last subelement in current MBSSID IE or there isn't
2065	 * a next MBSSID IE - profile is complete.
2066	*/
2067	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2068	    !next_mbssid)
2069		return NULL;
2070
2071	/* For any length error, just return NULL */
2072
2073	if (next_mbssid->datalen < 4)
2074		return NULL;
2075
2076	next_sub = (void *)&next_mbssid->data[1];
2077
2078	if (next_mbssid->data + next_mbssid->datalen <
2079	    next_sub->data + next_sub->datalen)
2080		return NULL;
2081
2082	if (next_sub->id != 0 || next_sub->datalen < 2)
2083		return NULL;
2084
2085	/*
2086	 * Check if the first element in the next sub element is a start
2087	 * of a new profile
2088	 */
2089	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2090	       NULL : next_mbssid;
2091}
2092
2093size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2094			      const struct element *mbssid_elem,
2095			      const struct element *sub_elem,
2096			      u8 *merged_ie, size_t max_copy_len)
2097{
2098	size_t copied_len = sub_elem->datalen;
2099	const struct element *next_mbssid;
2100
2101	if (sub_elem->datalen > max_copy_len)
2102		return 0;
2103
2104	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2105
2106	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2107								mbssid_elem,
2108								sub_elem))) {
2109		const struct element *next_sub = (void *)&next_mbssid->data[1];
2110
2111		if (copied_len + next_sub->datalen > max_copy_len)
2112			break;
2113		memcpy(merged_ie + copied_len, next_sub->data,
2114		       next_sub->datalen);
2115		copied_len += next_sub->datalen;
2116	}
2117
2118	return copied_len;
2119}
2120EXPORT_SYMBOL(cfg80211_merge_profile);
2121
2122static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2123				       struct cfg80211_inform_bss *data,
2124				       enum cfg80211_bss_frame_type ftype,
2125				       const u8 *bssid, u64 tsf,
2126				       u16 beacon_interval, const u8 *ie,
2127				       size_t ielen,
2128				       struct cfg80211_non_tx_bss *non_tx_data,
2129				       gfp_t gfp)
2130{
2131	const u8 *mbssid_index_ie;
2132	const struct element *elem, *sub;
2133	size_t new_ie_len;
2134	u8 new_bssid[ETH_ALEN];
2135	u8 *new_ie, *profile;
2136	u64 seen_indices = 0;
2137	u16 capability;
2138	struct cfg80211_bss *bss;
2139
2140	if (!non_tx_data)
2141		return;
2142	if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2143		return;
2144	if (!wiphy->support_mbssid)
2145		return;
2146	if (wiphy->support_only_he_mbssid &&
2147	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2148		return;
2149
2150	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2151	if (!new_ie)
2152		return;
2153
2154	profile = kmalloc(ielen, gfp);
2155	if (!profile)
2156		goto out;
2157
2158	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2159		if (elem->datalen < 4)
2160			continue;
2161		if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2162			continue;
2163		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2164			u8 profile_len;
2165
2166			if (sub->id != 0 || sub->datalen < 4) {
2167				/* not a valid BSS profile */
2168				continue;
2169			}
2170
2171			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2172			    sub->data[1] != 2) {
2173				/* The first element within the Nontransmitted
2174				 * BSSID Profile is not the Nontransmitted
2175				 * BSSID Capability element.
2176				 */
2177				continue;
2178			}
2179
2180			memset(profile, 0, ielen);
2181			profile_len = cfg80211_merge_profile(ie, ielen,
2182							     elem,
2183							     sub,
2184							     profile,
2185							     ielen);
2186
2187			/* found a Nontransmitted BSSID Profile */
2188			mbssid_index_ie = cfg80211_find_ie
2189				(WLAN_EID_MULTI_BSSID_IDX,
2190				 profile, profile_len);
2191			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2192			    mbssid_index_ie[2] == 0 ||
2193			    mbssid_index_ie[2] > 46) {
2194				/* No valid Multiple BSSID-Index element */
2195				continue;
2196			}
2197
2198			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2199				/* We don't support legacy split of a profile */
2200				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2201						    mbssid_index_ie[2]);
2202
2203			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2204
2205			non_tx_data->bssid_index = mbssid_index_ie[2];
2206			non_tx_data->max_bssid_indicator = elem->data[0];
2207
2208			cfg80211_gen_new_bssid(bssid,
2209					       non_tx_data->max_bssid_indicator,
2210					       non_tx_data->bssid_index,
2211					       new_bssid);
2212			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2213			new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2214							 profile,
2215							 profile_len, new_ie,
2216							 gfp);
2217			if (!new_ie_len)
2218				continue;
2219
2220			capability = get_unaligned_le16(profile + 2);
2221			bss = cfg80211_inform_single_bss_data(wiphy, data,
2222							      ftype,
2223							      new_bssid, tsf,
2224							      capability,
2225							      beacon_interval,
2226							      new_ie,
2227							      new_ie_len,
2228							      non_tx_data,
2229							      gfp);
2230			if (!bss)
2231				break;
2232			cfg80211_put_bss(wiphy, bss);
2233		}
2234	}
2235
2236out:
2237	kfree(new_ie);
2238	kfree(profile);
2239}
2240
2241struct cfg80211_bss *
2242cfg80211_inform_bss_data(struct wiphy *wiphy,
2243			 struct cfg80211_inform_bss *data,
2244			 enum cfg80211_bss_frame_type ftype,
2245			 const u8 *bssid, u64 tsf, u16 capability,
2246			 u16 beacon_interval, const u8 *ie, size_t ielen,
2247			 gfp_t gfp)
2248{
2249	struct cfg80211_bss *res;
2250	struct cfg80211_non_tx_bss non_tx_data;
2251
2252	res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2253					      capability, beacon_interval, ie,
2254					      ielen, NULL, gfp);
2255	if (!res)
2256		return NULL;
2257	non_tx_data.tx_bss = res;
2258	cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2259				   beacon_interval, ie, ielen, &non_tx_data,
2260				   gfp);
2261	return res;
2262}
2263EXPORT_SYMBOL(cfg80211_inform_bss_data);
2264
2265static void
2266cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2267				 struct cfg80211_inform_bss *data,
2268				 struct ieee80211_mgmt *mgmt, size_t len,
2269				 struct cfg80211_non_tx_bss *non_tx_data,
2270				 gfp_t gfp)
2271{
2272	enum cfg80211_bss_frame_type ftype;
2273	const u8 *ie = mgmt->u.probe_resp.variable;
2274	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2275				      u.probe_resp.variable);
2276
2277	ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2278		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2279
2280	cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2281				   le64_to_cpu(mgmt->u.probe_resp.timestamp),
2282				   le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2283				   ie, ielen, non_tx_data, gfp);
2284}
2285
2286static void
2287cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2288				   struct cfg80211_bss *nontrans_bss,
2289				   struct ieee80211_mgmt *mgmt, size_t len)
2290{
2291	u8 *ie, *new_ie, *pos;
2292	const struct element *nontrans_ssid;
2293	const u8 *trans_ssid, *mbssid;
2294	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2295				      u.probe_resp.variable);
2296	size_t new_ie_len;
2297	struct cfg80211_bss_ies *new_ies;
2298	const struct cfg80211_bss_ies *old;
2299	size_t cpy_len;
2300
2301	lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2302
2303	ie = mgmt->u.probe_resp.variable;
2304
2305	new_ie_len = ielen;
2306	trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2307	if (!trans_ssid)
2308		return;
2309	new_ie_len -= trans_ssid[1];
2310	mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2311	/*
2312	 * It's not valid to have the MBSSID element before SSID
2313	 * ignore if that happens - the code below assumes it is
2314	 * after (while copying things inbetween).
2315	 */
2316	if (!mbssid || mbssid < trans_ssid)
2317		return;
2318	new_ie_len -= mbssid[1];
2319
2320	nontrans_ssid = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
2321	if (!nontrans_ssid)
2322		return;
2323
2324	new_ie_len += nontrans_ssid->datalen;
2325
2326	/* generate new ie for nontrans BSS
2327	 * 1. replace SSID with nontrans BSS' SSID
2328	 * 2. skip MBSSID IE
2329	 */
2330	new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2331	if (!new_ie)
2332		return;
2333
2334	new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2335	if (!new_ies)
2336		goto out_free;
2337
2338	pos = new_ie;
2339
2340	/* copy the nontransmitted SSID */
2341	cpy_len = nontrans_ssid->datalen + 2;
2342	memcpy(pos, nontrans_ssid, cpy_len);
2343	pos += cpy_len;
2344	/* copy the IEs between SSID and MBSSID */
2345	cpy_len = trans_ssid[1] + 2;
2346	memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2347	pos += (mbssid - (trans_ssid + cpy_len));
2348	/* copy the IEs after MBSSID */
2349	cpy_len = mbssid[1] + 2;
2350	memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2351
2352	/* update ie */
2353	new_ies->len = new_ie_len;
2354	new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2355	new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2356	memcpy(new_ies->data, new_ie, new_ie_len);
2357	if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2358		old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2359		rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2360		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2361		if (old)
2362			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2363	} else {
2364		old = rcu_access_pointer(nontrans_bss->beacon_ies);
2365		rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2366		cfg80211_update_hidden_bsses(bss_from_pub(nontrans_bss),
2367					     new_ies, old);
2368		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2369		if (old)
2370			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2371	}
2372
2373out_free:
2374	kfree(new_ie);
2375}
2376
2377/* cfg80211_inform_bss_width_frame helper */
2378static struct cfg80211_bss *
2379cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2380				      struct cfg80211_inform_bss *data,
2381				      struct ieee80211_mgmt *mgmt, size_t len,
2382				      gfp_t gfp)
2383{
2384	struct cfg80211_internal_bss tmp = {}, *res;
2385	struct cfg80211_bss_ies *ies;
2386	struct ieee80211_channel *channel;
2387	bool signal_valid;
2388	struct ieee80211_ext *ext = NULL;
2389	u8 *bssid, *variable;
2390	u16 capability, beacon_int;
2391	size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2392					     u.probe_resp.variable);
2393	int bss_type;
2394	enum cfg80211_bss_frame_type ftype;
2395
2396	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2397			offsetof(struct ieee80211_mgmt, u.beacon.variable));
2398
2399	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2400
2401	if (WARN_ON(!mgmt))
2402		return NULL;
2403
2404	if (WARN_ON(!wiphy))
2405		return NULL;
2406
2407	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2408		    (data->signal < 0 || data->signal > 100)))
2409		return NULL;
2410
2411	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2412		ext = (void *) mgmt;
2413		min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2414		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2415			min_hdr_len = offsetof(struct ieee80211_ext,
2416					       u.s1g_short_beacon.variable);
2417	}
2418
2419	if (WARN_ON(len < min_hdr_len))
2420		return NULL;
2421
2422	ielen = len - min_hdr_len;
2423	variable = mgmt->u.probe_resp.variable;
2424	if (ext) {
2425		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2426			variable = ext->u.s1g_short_beacon.variable;
2427		else
2428			variable = ext->u.s1g_beacon.variable;
2429	}
2430
2431	if (ieee80211_is_beacon(mgmt->frame_control))
2432		ftype = CFG80211_BSS_FTYPE_BEACON;
2433	else if (ieee80211_is_probe_resp(mgmt->frame_control))
2434		ftype = CFG80211_BSS_FTYPE_PRESP;
2435	else
2436		ftype = CFG80211_BSS_FTYPE_UNKNOWN;
2437
2438	channel = cfg80211_get_bss_channel(wiphy, variable,
2439					   ielen, data->chan, data->scan_width,
2440					   ftype);
2441	if (!channel)
2442		return NULL;
2443
2444	if (ext) {
2445		const struct ieee80211_s1g_bcn_compat_ie *compat;
2446		const struct element *elem;
2447
2448		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2449					  variable, ielen);
2450		if (!elem)
2451			return NULL;
2452		if (elem->datalen < sizeof(*compat))
2453			return NULL;
2454		compat = (void *)elem->data;
2455		bssid = ext->u.s1g_beacon.sa;
2456		capability = le16_to_cpu(compat->compat_info);
2457		beacon_int = le16_to_cpu(compat->beacon_int);
2458	} else {
2459		bssid = mgmt->bssid;
2460		beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2461		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2462	}
2463
2464	ies = kzalloc(sizeof(*ies) + ielen, gfp);
2465	if (!ies)
2466		return NULL;
2467	ies->len = ielen;
2468	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2469	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2470			   ieee80211_is_s1g_beacon(mgmt->frame_control);
2471	memcpy(ies->data, variable, ielen);
2472
2473	if (ieee80211_is_probe_resp(mgmt->frame_control))
2474		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2475	else
2476		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2477	rcu_assign_pointer(tmp.pub.ies, ies);
2478
2479	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2480	tmp.pub.beacon_interval = beacon_int;
2481	tmp.pub.capability = capability;
2482	tmp.pub.channel = channel;
2483	tmp.pub.scan_width = data->scan_width;
2484	tmp.pub.signal = data->signal;
2485	tmp.ts_boottime = data->boottime_ns;
2486	tmp.parent_tsf = data->parent_tsf;
2487	tmp.pub.chains = data->chains;
2488	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2489	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2490
2491	signal_valid = data->chan == channel;
2492	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2493				  jiffies);
2494	if (!res)
2495		return NULL;
2496
2497	if (channel->band == NL80211_BAND_60GHZ) {
2498		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2499		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2500		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2501			regulatory_hint_found_beacon(wiphy, channel, gfp);
2502	} else {
2503		if (res->pub.capability & WLAN_CAPABILITY_ESS)
2504			regulatory_hint_found_beacon(wiphy, channel, gfp);
2505	}
2506
2507	trace_cfg80211_return_bss(&res->pub);
2508	/* cfg80211_bss_update gives us a referenced result */
2509	return &res->pub;
2510}
2511
2512struct cfg80211_bss *
2513cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2514			       struct cfg80211_inform_bss *data,
2515			       struct ieee80211_mgmt *mgmt, size_t len,
2516			       gfp_t gfp)
2517{
2518	struct cfg80211_bss *res, *tmp_bss;
2519	const u8 *ie = mgmt->u.probe_resp.variable;
2520	const struct cfg80211_bss_ies *ies1, *ies2;
2521	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2522				      u.probe_resp.variable);
2523	struct cfg80211_non_tx_bss non_tx_data = {};
2524
2525	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2526						    len, gfp);
2527
2528	/* don't do any further MBSSID handling for S1G */
2529	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
2530		return res;
2531
2532	if (!res || !wiphy->support_mbssid ||
2533	    !cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2534		return res;
2535	if (wiphy->support_only_he_mbssid &&
2536	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2537		return res;
2538
2539	non_tx_data.tx_bss = res;
2540	/* process each non-transmitting bss */
2541	cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2542					 &non_tx_data, gfp);
2543
2544	spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2545
2546	/* check if the res has other nontransmitting bss which is not
2547	 * in MBSSID IE
2548	 */
2549	ies1 = rcu_access_pointer(res->ies);
2550
2551	/* go through nontrans_list, if the timestamp of the BSS is
2552	 * earlier than the timestamp of the transmitting BSS then
2553	 * update it
2554	 */
2555	list_for_each_entry(tmp_bss, &res->nontrans_list,
2556			    nontrans_list) {
2557		ies2 = rcu_access_pointer(tmp_bss->ies);
2558		if (ies2->tsf < ies1->tsf)
2559			cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2560							   mgmt, len);
2561	}
2562	spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2563
2564	return res;
2565}
2566EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2567
2568void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2569{
2570	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
 
2571
2572	if (!pub)
2573		return;
2574
 
 
2575	spin_lock_bh(&rdev->bss_lock);
2576	bss_ref_get(rdev, bss_from_pub(pub));
2577	spin_unlock_bh(&rdev->bss_lock);
2578}
2579EXPORT_SYMBOL(cfg80211_ref_bss);
2580
2581void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2582{
2583	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
 
2584
2585	if (!pub)
2586		return;
2587
 
 
2588	spin_lock_bh(&rdev->bss_lock);
2589	bss_ref_put(rdev, bss_from_pub(pub));
2590	spin_unlock_bh(&rdev->bss_lock);
2591}
2592EXPORT_SYMBOL(cfg80211_put_bss);
2593
2594void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2595{
2596	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2597	struct cfg80211_internal_bss *bss, *tmp1;
2598	struct cfg80211_bss *nontrans_bss, *tmp;
2599
2600	if (WARN_ON(!pub))
2601		return;
2602
2603	bss = bss_from_pub(pub);
2604
2605	spin_lock_bh(&rdev->bss_lock);
2606	if (list_empty(&bss->list))
2607		goto out;
2608
2609	list_for_each_entry_safe(nontrans_bss, tmp,
2610				 &pub->nontrans_list,
2611				 nontrans_list) {
2612		tmp1 = bss_from_pub(nontrans_bss);
 
2613		if (__cfg80211_unlink_bss(rdev, tmp1))
2614			rdev->bss_generation++;
2615	}
2616
2617	if (__cfg80211_unlink_bss(rdev, bss))
2618		rdev->bss_generation++;
2619out:
2620	spin_unlock_bh(&rdev->bss_lock);
2621}
2622EXPORT_SYMBOL(cfg80211_unlink_bss);
2623
2624void cfg80211_bss_iter(struct wiphy *wiphy,
2625		       struct cfg80211_chan_def *chandef,
2626		       void (*iter)(struct wiphy *wiphy,
2627				    struct cfg80211_bss *bss,
2628				    void *data),
2629		       void *iter_data)
2630{
2631	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2632	struct cfg80211_internal_bss *bss;
2633
2634	spin_lock_bh(&rdev->bss_lock);
2635
2636	list_for_each_entry(bss, &rdev->bss_list, list) {
2637		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
2638						     false))
2639			iter(wiphy, &bss->pub, iter_data);
2640	}
2641
2642	spin_unlock_bh(&rdev->bss_lock);
2643}
2644EXPORT_SYMBOL(cfg80211_bss_iter);
2645
2646void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2647				     unsigned int link_id,
2648				     struct ieee80211_channel *chan)
2649{
2650	struct wiphy *wiphy = wdev->wiphy;
2651	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2652	struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
2653	struct cfg80211_internal_bss *new = NULL;
2654	struct cfg80211_internal_bss *bss;
2655	struct cfg80211_bss *nontrans_bss;
2656	struct cfg80211_bss *tmp;
2657
2658	spin_lock_bh(&rdev->bss_lock);
2659
2660	/*
2661	 * Some APs use CSA also for bandwidth changes, i.e., without actually
2662	 * changing the control channel, so no need to update in such a case.
2663	 */
2664	if (cbss->pub.channel == chan)
2665		goto done;
2666
2667	/* use transmitting bss */
2668	if (cbss->pub.transmitted_bss)
2669		cbss = bss_from_pub(cbss->pub.transmitted_bss);
 
 
2670
2671	cbss->pub.channel = chan;
2672
2673	list_for_each_entry(bss, &rdev->bss_list, list) {
2674		if (!cfg80211_bss_type_match(bss->pub.capability,
2675					     bss->pub.channel->band,
2676					     wdev->conn_bss_type))
2677			continue;
2678
2679		if (bss == cbss)
2680			continue;
2681
2682		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2683			new = bss;
2684			break;
2685		}
2686	}
2687
2688	if (new) {
2689		/* to save time, update IEs for transmitting bss only */
2690		if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2691			new->pub.proberesp_ies = NULL;
2692			new->pub.beacon_ies = NULL;
2693		}
2694
2695		list_for_each_entry_safe(nontrans_bss, tmp,
2696					 &new->pub.nontrans_list,
2697					 nontrans_list) {
2698			bss = bss_from_pub(nontrans_bss);
 
2699			if (__cfg80211_unlink_bss(rdev, bss))
2700				rdev->bss_generation++;
2701		}
2702
2703		WARN_ON(atomic_read(&new->hold));
2704		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2705			rdev->bss_generation++;
2706	}
2707
2708	rb_erase(&cbss->rbn, &rdev->bss_tree);
2709	rb_insert_bss(rdev, cbss);
2710	rdev->bss_generation++;
2711
2712	list_for_each_entry_safe(nontrans_bss, tmp,
2713				 &cbss->pub.nontrans_list,
2714				 nontrans_list) {
2715		bss = bss_from_pub(nontrans_bss);
 
2716		bss->pub.channel = chan;
2717		rb_erase(&bss->rbn, &rdev->bss_tree);
2718		rb_insert_bss(rdev, bss);
2719		rdev->bss_generation++;
2720	}
2721
2722done:
2723	spin_unlock_bh(&rdev->bss_lock);
2724}
2725
2726#ifdef CONFIG_CFG80211_WEXT
2727static struct cfg80211_registered_device *
2728cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2729{
2730	struct cfg80211_registered_device *rdev;
2731	struct net_device *dev;
2732
2733	ASSERT_RTNL();
2734
2735	dev = dev_get_by_index(net, ifindex);
2736	if (!dev)
2737		return ERR_PTR(-ENODEV);
2738	if (dev->ieee80211_ptr)
2739		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2740	else
2741		rdev = ERR_PTR(-ENODEV);
2742	dev_put(dev);
2743	return rdev;
2744}
2745
2746int cfg80211_wext_siwscan(struct net_device *dev,
2747			  struct iw_request_info *info,
2748			  union iwreq_data *wrqu, char *extra)
2749{
2750	struct cfg80211_registered_device *rdev;
2751	struct wiphy *wiphy;
2752	struct iw_scan_req *wreq = NULL;
2753	struct cfg80211_scan_request *creq;
2754	int i, err, n_channels = 0;
2755	enum nl80211_band band;
2756
2757	if (!netif_running(dev))
2758		return -ENETDOWN;
2759
2760	if (wrqu->data.length == sizeof(struct iw_scan_req))
2761		wreq = (struct iw_scan_req *)extra;
2762
2763	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2764
2765	if (IS_ERR(rdev))
2766		return PTR_ERR(rdev);
2767
2768	if (rdev->scan_req || rdev->scan_msg)
2769		return -EBUSY;
 
 
2770
2771	wiphy = &rdev->wiphy;
2772
2773	/* Determine number of channels, needed to allocate creq */
2774	if (wreq && wreq->num_channels)
2775		n_channels = wreq->num_channels;
2776	else
2777		n_channels = ieee80211_get_num_supported_channels(wiphy);
2778
2779	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2780		       n_channels * sizeof(void *),
2781		       GFP_ATOMIC);
2782	if (!creq)
2783		return -ENOMEM;
 
 
2784
2785	creq->wiphy = wiphy;
2786	creq->wdev = dev->ieee80211_ptr;
2787	/* SSIDs come after channels */
2788	creq->ssids = (void *)&creq->channels[n_channels];
2789	creq->n_channels = n_channels;
2790	creq->n_ssids = 1;
2791	creq->scan_start = jiffies;
2792
2793	/* translate "Scan on frequencies" request */
2794	i = 0;
2795	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2796		int j;
2797
2798		if (!wiphy->bands[band])
2799			continue;
2800
2801		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2802			/* ignore disabled channels */
2803			if (wiphy->bands[band]->channels[j].flags &
2804						IEEE80211_CHAN_DISABLED)
2805				continue;
2806
2807			/* If we have a wireless request structure and the
2808			 * wireless request specifies frequencies, then search
2809			 * for the matching hardware channel.
2810			 */
2811			if (wreq && wreq->num_channels) {
2812				int k;
2813				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2814				for (k = 0; k < wreq->num_channels; k++) {
2815					struct iw_freq *freq =
2816						&wreq->channel_list[k];
2817					int wext_freq =
2818						cfg80211_wext_freq(freq);
2819
2820					if (wext_freq == wiphy_freq)
2821						goto wext_freq_found;
2822				}
2823				goto wext_freq_not_found;
2824			}
2825
2826		wext_freq_found:
2827			creq->channels[i] = &wiphy->bands[band]->channels[j];
2828			i++;
2829		wext_freq_not_found: ;
2830		}
2831	}
2832	/* No channels found? */
2833	if (!i) {
2834		err = -EINVAL;
2835		goto out;
2836	}
2837
2838	/* Set real number of channels specified in creq->channels[] */
2839	creq->n_channels = i;
2840
2841	/* translate "Scan for SSID" request */
2842	if (wreq) {
2843		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2844			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2845				err = -EINVAL;
2846				goto out;
2847			}
2848			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2849			creq->ssids[0].ssid_len = wreq->essid_len;
2850		}
2851		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2852			creq->n_ssids = 0;
2853	}
2854
2855	for (i = 0; i < NUM_NL80211_BANDS; i++)
2856		if (wiphy->bands[i])
2857			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2858
2859	eth_broadcast_addr(creq->bssid);
2860
2861	wiphy_lock(&rdev->wiphy);
2862
2863	rdev->scan_req = creq;
2864	err = rdev_scan(rdev, creq);
2865	if (err) {
2866		rdev->scan_req = NULL;
2867		/* creq will be freed below */
2868	} else {
2869		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2870		/* creq now owned by driver */
2871		creq = NULL;
2872		dev_hold(dev);
2873	}
2874	wiphy_unlock(&rdev->wiphy);
2875 out:
2876	kfree(creq);
2877	return err;
2878}
2879EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2880
2881static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2882				    const struct cfg80211_bss_ies *ies,
2883				    char *current_ev, char *end_buf)
2884{
2885	const u8 *pos, *end, *next;
2886	struct iw_event iwe;
2887
2888	if (!ies)
2889		return current_ev;
2890
2891	/*
2892	 * If needed, fragment the IEs buffer (at IE boundaries) into short
2893	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2894	 */
2895	pos = ies->data;
2896	end = pos + ies->len;
2897
2898	while (end - pos > IW_GENERIC_IE_MAX) {
2899		next = pos + 2 + pos[1];
2900		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2901			next = next + 2 + next[1];
2902
2903		memset(&iwe, 0, sizeof(iwe));
2904		iwe.cmd = IWEVGENIE;
2905		iwe.u.data.length = next - pos;
2906		current_ev = iwe_stream_add_point_check(info, current_ev,
2907							end_buf, &iwe,
2908							(void *)pos);
2909		if (IS_ERR(current_ev))
2910			return current_ev;
2911		pos = next;
2912	}
2913
2914	if (end > pos) {
2915		memset(&iwe, 0, sizeof(iwe));
2916		iwe.cmd = IWEVGENIE;
2917		iwe.u.data.length = end - pos;
2918		current_ev = iwe_stream_add_point_check(info, current_ev,
2919							end_buf, &iwe,
2920							(void *)pos);
2921		if (IS_ERR(current_ev))
2922			return current_ev;
2923	}
2924
2925	return current_ev;
2926}
2927
2928static char *
2929ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2930	      struct cfg80211_internal_bss *bss, char *current_ev,
2931	      char *end_buf)
2932{
2933	const struct cfg80211_bss_ies *ies;
2934	struct iw_event iwe;
2935	const u8 *ie;
2936	u8 buf[50];
2937	u8 *cfg, *p, *tmp;
2938	int rem, i, sig;
2939	bool ismesh = false;
2940
2941	memset(&iwe, 0, sizeof(iwe));
2942	iwe.cmd = SIOCGIWAP;
2943	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2944	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2945	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2946						IW_EV_ADDR_LEN);
2947	if (IS_ERR(current_ev))
2948		return current_ev;
2949
2950	memset(&iwe, 0, sizeof(iwe));
2951	iwe.cmd = SIOCGIWFREQ;
2952	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2953	iwe.u.freq.e = 0;
2954	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2955						IW_EV_FREQ_LEN);
2956	if (IS_ERR(current_ev))
2957		return current_ev;
2958
2959	memset(&iwe, 0, sizeof(iwe));
2960	iwe.cmd = SIOCGIWFREQ;
2961	iwe.u.freq.m = bss->pub.channel->center_freq;
2962	iwe.u.freq.e = 6;
2963	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2964						IW_EV_FREQ_LEN);
2965	if (IS_ERR(current_ev))
2966		return current_ev;
2967
2968	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2969		memset(&iwe, 0, sizeof(iwe));
2970		iwe.cmd = IWEVQUAL;
2971		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2972				     IW_QUAL_NOISE_INVALID |
2973				     IW_QUAL_QUAL_UPDATED;
2974		switch (wiphy->signal_type) {
2975		case CFG80211_SIGNAL_TYPE_MBM:
2976			sig = bss->pub.signal / 100;
2977			iwe.u.qual.level = sig;
2978			iwe.u.qual.updated |= IW_QUAL_DBM;
2979			if (sig < -110)		/* rather bad */
2980				sig = -110;
2981			else if (sig > -40)	/* perfect */
2982				sig = -40;
2983			/* will give a range of 0 .. 70 */
2984			iwe.u.qual.qual = sig + 110;
2985			break;
2986		case CFG80211_SIGNAL_TYPE_UNSPEC:
2987			iwe.u.qual.level = bss->pub.signal;
2988			/* will give range 0 .. 100 */
2989			iwe.u.qual.qual = bss->pub.signal;
2990			break;
2991		default:
2992			/* not reached */
2993			break;
2994		}
2995		current_ev = iwe_stream_add_event_check(info, current_ev,
2996							end_buf, &iwe,
2997							IW_EV_QUAL_LEN);
2998		if (IS_ERR(current_ev))
2999			return current_ev;
3000	}
3001
3002	memset(&iwe, 0, sizeof(iwe));
3003	iwe.cmd = SIOCGIWENCODE;
3004	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3005		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3006	else
3007		iwe.u.data.flags = IW_ENCODE_DISABLED;
3008	iwe.u.data.length = 0;
3009	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3010						&iwe, "");
3011	if (IS_ERR(current_ev))
3012		return current_ev;
3013
3014	rcu_read_lock();
3015	ies = rcu_dereference(bss->pub.ies);
3016	rem = ies->len;
3017	ie = ies->data;
3018
3019	while (rem >= 2) {
3020		/* invalid data */
3021		if (ie[1] > rem - 2)
3022			break;
3023
3024		switch (ie[0]) {
3025		case WLAN_EID_SSID:
3026			memset(&iwe, 0, sizeof(iwe));
3027			iwe.cmd = SIOCGIWESSID;
3028			iwe.u.data.length = ie[1];
3029			iwe.u.data.flags = 1;
3030			current_ev = iwe_stream_add_point_check(info,
3031								current_ev,
3032								end_buf, &iwe,
3033								(u8 *)ie + 2);
3034			if (IS_ERR(current_ev))
3035				goto unlock;
3036			break;
3037		case WLAN_EID_MESH_ID:
3038			memset(&iwe, 0, sizeof(iwe));
3039			iwe.cmd = SIOCGIWESSID;
3040			iwe.u.data.length = ie[1];
3041			iwe.u.data.flags = 1;
3042			current_ev = iwe_stream_add_point_check(info,
3043								current_ev,
3044								end_buf, &iwe,
3045								(u8 *)ie + 2);
3046			if (IS_ERR(current_ev))
3047				goto unlock;
3048			break;
3049		case WLAN_EID_MESH_CONFIG:
3050			ismesh = true;
3051			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3052				break;
3053			cfg = (u8 *)ie + 2;
3054			memset(&iwe, 0, sizeof(iwe));
3055			iwe.cmd = IWEVCUSTOM;
3056			sprintf(buf, "Mesh Network Path Selection Protocol ID: "
3057				"0x%02X", cfg[0]);
3058			iwe.u.data.length = strlen(buf);
3059			current_ev = iwe_stream_add_point_check(info,
3060								current_ev,
3061								end_buf,
3062								&iwe, buf);
3063			if (IS_ERR(current_ev))
3064				goto unlock;
3065			sprintf(buf, "Path Selection Metric ID: 0x%02X",
3066				cfg[1]);
3067			iwe.u.data.length = strlen(buf);
3068			current_ev = iwe_stream_add_point_check(info,
3069								current_ev,
3070								end_buf,
3071								&iwe, buf);
3072			if (IS_ERR(current_ev))
3073				goto unlock;
3074			sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3075				cfg[2]);
3076			iwe.u.data.length = strlen(buf);
3077			current_ev = iwe_stream_add_point_check(info,
3078								current_ev,
3079								end_buf,
3080								&iwe, buf);
3081			if (IS_ERR(current_ev))
3082				goto unlock;
3083			sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3084			iwe.u.data.length = strlen(buf);
3085			current_ev = iwe_stream_add_point_check(info,
3086								current_ev,
3087								end_buf,
3088								&iwe, buf);
3089			if (IS_ERR(current_ev))
3090				goto unlock;
3091			sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3092			iwe.u.data.length = strlen(buf);
3093			current_ev = iwe_stream_add_point_check(info,
3094								current_ev,
3095								end_buf,
3096								&iwe, buf);
3097			if (IS_ERR(current_ev))
3098				goto unlock;
3099			sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3100			iwe.u.data.length = strlen(buf);
3101			current_ev = iwe_stream_add_point_check(info,
3102								current_ev,
3103								end_buf,
3104								&iwe, buf);
3105			if (IS_ERR(current_ev))
3106				goto unlock;
3107			sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3108			iwe.u.data.length = strlen(buf);
3109			current_ev = iwe_stream_add_point_check(info,
3110								current_ev,
3111								end_buf,
3112								&iwe, buf);
3113			if (IS_ERR(current_ev))
3114				goto unlock;
3115			break;
3116		case WLAN_EID_SUPP_RATES:
3117		case WLAN_EID_EXT_SUPP_RATES:
3118			/* display all supported rates in readable format */
3119			p = current_ev + iwe_stream_lcp_len(info);
3120
3121			memset(&iwe, 0, sizeof(iwe));
3122			iwe.cmd = SIOCGIWRATE;
3123			/* Those two flags are ignored... */
3124			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3125
3126			for (i = 0; i < ie[1]; i++) {
3127				iwe.u.bitrate.value =
3128					((ie[i + 2] & 0x7f) * 500000);
3129				tmp = p;
3130				p = iwe_stream_add_value(info, current_ev, p,
3131							 end_buf, &iwe,
3132							 IW_EV_PARAM_LEN);
3133				if (p == tmp) {
3134					current_ev = ERR_PTR(-E2BIG);
3135					goto unlock;
3136				}
3137			}
3138			current_ev = p;
3139			break;
3140		}
3141		rem -= ie[1] + 2;
3142		ie += ie[1] + 2;
3143	}
3144
3145	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3146	    ismesh) {
3147		memset(&iwe, 0, sizeof(iwe));
3148		iwe.cmd = SIOCGIWMODE;
3149		if (ismesh)
3150			iwe.u.mode = IW_MODE_MESH;
3151		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3152			iwe.u.mode = IW_MODE_MASTER;
3153		else
3154			iwe.u.mode = IW_MODE_ADHOC;
3155		current_ev = iwe_stream_add_event_check(info, current_ev,
3156							end_buf, &iwe,
3157							IW_EV_UINT_LEN);
3158		if (IS_ERR(current_ev))
3159			goto unlock;
3160	}
3161
3162	memset(&iwe, 0, sizeof(iwe));
3163	iwe.cmd = IWEVCUSTOM;
3164	sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3165	iwe.u.data.length = strlen(buf);
3166	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3167						&iwe, buf);
3168	if (IS_ERR(current_ev))
3169		goto unlock;
3170	memset(&iwe, 0, sizeof(iwe));
3171	iwe.cmd = IWEVCUSTOM;
3172	sprintf(buf, " Last beacon: %ums ago",
3173		elapsed_jiffies_msecs(bss->ts));
3174	iwe.u.data.length = strlen(buf);
3175	current_ev = iwe_stream_add_point_check(info, current_ev,
3176						end_buf, &iwe, buf);
3177	if (IS_ERR(current_ev))
3178		goto unlock;
3179
3180	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3181
3182 unlock:
3183	rcu_read_unlock();
3184	return current_ev;
3185}
3186
3187
3188static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3189				  struct iw_request_info *info,
3190				  char *buf, size_t len)
3191{
3192	char *current_ev = buf;
3193	char *end_buf = buf + len;
3194	struct cfg80211_internal_bss *bss;
3195	int err = 0;
3196
3197	spin_lock_bh(&rdev->bss_lock);
3198	cfg80211_bss_expire(rdev);
3199
3200	list_for_each_entry(bss, &rdev->bss_list, list) {
3201		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3202			err = -E2BIG;
3203			break;
3204		}
3205		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3206					   current_ev, end_buf);
3207		if (IS_ERR(current_ev)) {
3208			err = PTR_ERR(current_ev);
3209			break;
3210		}
3211	}
3212	spin_unlock_bh(&rdev->bss_lock);
3213
3214	if (err)
3215		return err;
3216	return current_ev - buf;
3217}
3218
3219
3220int cfg80211_wext_giwscan(struct net_device *dev,
3221			  struct iw_request_info *info,
3222			  union iwreq_data *wrqu, char *extra)
3223{
3224	struct iw_point *data = &wrqu->data;
3225	struct cfg80211_registered_device *rdev;
3226	int res;
3227
3228	if (!netif_running(dev))
3229		return -ENETDOWN;
3230
3231	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3232
3233	if (IS_ERR(rdev))
3234		return PTR_ERR(rdev);
3235
3236	if (rdev->scan_req || rdev->scan_msg)
3237		return -EAGAIN;
3238
3239	res = ieee80211_scan_results(rdev, info, extra, data->length);
3240	data->length = 0;
3241	if (res >= 0) {
3242		data->length = res;
3243		res = 0;
3244	}
3245
3246	return res;
3247}
3248EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3249#endif