Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2021 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <linux/crc32.h>
18#include <linux/bitfield.h>
19#include <net/arp.h>
20#include <net/cfg80211.h>
21#include <net/cfg80211-wext.h>
22#include <net/iw_handler.h>
23#include "core.h"
24#include "nl80211.h"
25#include "wext-compat.h"
26#include "rdev-ops.h"
27
28/**
29 * DOC: BSS tree/list structure
30 *
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35 * for other BSSes.
36 *
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
44 *
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
53 *
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
56 * it.
57 *
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
62 */
63
64/*
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
71 */
72static int bss_entries_limit = 1000;
73module_param(bss_entries_limit, int, 0644);
74MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
78
79/**
80 * struct cfg80211_colocated_ap - colocated AP information
81 *
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
99 */
100struct cfg80211_colocated_ap {
101 struct list_head list;
102 u8 bssid[ETH_ALEN];
103 u8 ssid[IEEE80211_MAX_SSID_LEN];
104 size_t ssid_len;
105 u32 short_ssid;
106 u32 center_freq;
107 u8 unsolicited_probe:1,
108 oct_recommended:1,
109 same_ssid:1,
110 multi_bss:1,
111 transmitted_bssid:1,
112 colocated_ess:1,
113 short_ssid_valid:1;
114};
115
116static void bss_free(struct cfg80211_internal_bss *bss)
117{
118 struct cfg80211_bss_ies *ies;
119
120 if (WARN_ON(atomic_read(&bss->hold)))
121 return;
122
123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 if (ies && !bss->pub.hidden_beacon_bss)
125 kfree_rcu(ies, rcu_head);
126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 if (ies)
128 kfree_rcu(ies, rcu_head);
129
130 /*
131 * This happens when the module is removed, it doesn't
132 * really matter any more save for completeness
133 */
134 if (!list_empty(&bss->hidden_list))
135 list_del(&bss->hidden_list);
136
137 kfree(bss);
138}
139
140static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 struct cfg80211_internal_bss *bss)
142{
143 lockdep_assert_held(&rdev->bss_lock);
144
145 bss->refcount++;
146 if (bss->pub.hidden_beacon_bss) {
147 bss = container_of(bss->pub.hidden_beacon_bss,
148 struct cfg80211_internal_bss,
149 pub);
150 bss->refcount++;
151 }
152 if (bss->pub.transmitted_bss) {
153 bss = container_of(bss->pub.transmitted_bss,
154 struct cfg80211_internal_bss,
155 pub);
156 bss->refcount++;
157 }
158}
159
160static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
161 struct cfg80211_internal_bss *bss)
162{
163 lockdep_assert_held(&rdev->bss_lock);
164
165 if (bss->pub.hidden_beacon_bss) {
166 struct cfg80211_internal_bss *hbss;
167 hbss = container_of(bss->pub.hidden_beacon_bss,
168 struct cfg80211_internal_bss,
169 pub);
170 hbss->refcount--;
171 if (hbss->refcount == 0)
172 bss_free(hbss);
173 }
174
175 if (bss->pub.transmitted_bss) {
176 struct cfg80211_internal_bss *tbss;
177
178 tbss = container_of(bss->pub.transmitted_bss,
179 struct cfg80211_internal_bss,
180 pub);
181 tbss->refcount--;
182 if (tbss->refcount == 0)
183 bss_free(tbss);
184 }
185
186 bss->refcount--;
187 if (bss->refcount == 0)
188 bss_free(bss);
189}
190
191static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
192 struct cfg80211_internal_bss *bss)
193{
194 lockdep_assert_held(&rdev->bss_lock);
195
196 if (!list_empty(&bss->hidden_list)) {
197 /*
198 * don't remove the beacon entry if it has
199 * probe responses associated with it
200 */
201 if (!bss->pub.hidden_beacon_bss)
202 return false;
203 /*
204 * if it's a probe response entry break its
205 * link to the other entries in the group
206 */
207 list_del_init(&bss->hidden_list);
208 }
209
210 list_del_init(&bss->list);
211 list_del_init(&bss->pub.nontrans_list);
212 rb_erase(&bss->rbn, &rdev->bss_tree);
213 rdev->bss_entries--;
214 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
215 "rdev bss entries[%d]/list[empty:%d] corruption\n",
216 rdev->bss_entries, list_empty(&rdev->bss_list));
217 bss_ref_put(rdev, bss);
218 return true;
219}
220
221bool cfg80211_is_element_inherited(const struct element *elem,
222 const struct element *non_inherit_elem)
223{
224 u8 id_len, ext_id_len, i, loop_len, id;
225 const u8 *list;
226
227 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
228 return false;
229
230 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
231 return true;
232
233 /*
234 * non inheritance element format is:
235 * ext ID (56) | IDs list len | list | extension IDs list len | list
236 * Both lists are optional. Both lengths are mandatory.
237 * This means valid length is:
238 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
239 */
240 id_len = non_inherit_elem->data[1];
241 if (non_inherit_elem->datalen < 3 + id_len)
242 return true;
243
244 ext_id_len = non_inherit_elem->data[2 + id_len];
245 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
246 return true;
247
248 if (elem->id == WLAN_EID_EXTENSION) {
249 if (!ext_id_len)
250 return true;
251 loop_len = ext_id_len;
252 list = &non_inherit_elem->data[3 + id_len];
253 id = elem->data[0];
254 } else {
255 if (!id_len)
256 return true;
257 loop_len = id_len;
258 list = &non_inherit_elem->data[2];
259 id = elem->id;
260 }
261
262 for (i = 0; i < loop_len; i++) {
263 if (list[i] == id)
264 return false;
265 }
266
267 return true;
268}
269EXPORT_SYMBOL(cfg80211_is_element_inherited);
270
271static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
272 const u8 *subelement, size_t subie_len,
273 u8 *new_ie, gfp_t gfp)
274{
275 u8 *pos, *tmp;
276 const u8 *tmp_old, *tmp_new;
277 const struct element *non_inherit_elem;
278 u8 *sub_copy;
279
280 /* copy subelement as we need to change its content to
281 * mark an ie after it is processed.
282 */
283 sub_copy = kmemdup(subelement, subie_len, gfp);
284 if (!sub_copy)
285 return 0;
286
287 pos = &new_ie[0];
288
289 /* set new ssid */
290 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
291 if (tmp_new) {
292 memcpy(pos, tmp_new, tmp_new[1] + 2);
293 pos += (tmp_new[1] + 2);
294 }
295
296 /* get non inheritance list if exists */
297 non_inherit_elem =
298 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
299 sub_copy, subie_len);
300
301 /* go through IEs in ie (skip SSID) and subelement,
302 * merge them into new_ie
303 */
304 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
305 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
306
307 while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
308 if (tmp_old[0] == 0) {
309 tmp_old++;
310 continue;
311 }
312
313 if (tmp_old[0] == WLAN_EID_EXTENSION)
314 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
315 subie_len);
316 else
317 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
318 subie_len);
319
320 if (!tmp) {
321 const struct element *old_elem = (void *)tmp_old;
322
323 /* ie in old ie but not in subelement */
324 if (cfg80211_is_element_inherited(old_elem,
325 non_inherit_elem)) {
326 memcpy(pos, tmp_old, tmp_old[1] + 2);
327 pos += tmp_old[1] + 2;
328 }
329 } else {
330 /* ie in transmitting ie also in subelement,
331 * copy from subelement and flag the ie in subelement
332 * as copied (by setting eid field to WLAN_EID_SSID,
333 * which is skipped anyway).
334 * For vendor ie, compare OUI + type + subType to
335 * determine if they are the same ie.
336 */
337 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
338 if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
339 /* same vendor ie, copy from
340 * subelement
341 */
342 memcpy(pos, tmp, tmp[1] + 2);
343 pos += tmp[1] + 2;
344 tmp[0] = WLAN_EID_SSID;
345 } else {
346 memcpy(pos, tmp_old, tmp_old[1] + 2);
347 pos += tmp_old[1] + 2;
348 }
349 } else {
350 /* copy ie from subelement into new ie */
351 memcpy(pos, tmp, tmp[1] + 2);
352 pos += tmp[1] + 2;
353 tmp[0] = WLAN_EID_SSID;
354 }
355 }
356
357 if (tmp_old + tmp_old[1] + 2 - ie == ielen)
358 break;
359
360 tmp_old += tmp_old[1] + 2;
361 }
362
363 /* go through subelement again to check if there is any ie not
364 * copied to new ie, skip ssid, capability, bssid-index ie
365 */
366 tmp_new = sub_copy;
367 while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
368 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
369 tmp_new[0] == WLAN_EID_SSID)) {
370 memcpy(pos, tmp_new, tmp_new[1] + 2);
371 pos += tmp_new[1] + 2;
372 }
373 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
374 break;
375 tmp_new += tmp_new[1] + 2;
376 }
377
378 kfree(sub_copy);
379 return pos - new_ie;
380}
381
382static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
383 const u8 *ssid, size_t ssid_len)
384{
385 const struct cfg80211_bss_ies *ies;
386 const u8 *ssidie;
387
388 if (bssid && !ether_addr_equal(a->bssid, bssid))
389 return false;
390
391 if (!ssid)
392 return true;
393
394 ies = rcu_access_pointer(a->ies);
395 if (!ies)
396 return false;
397 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
398 if (!ssidie)
399 return false;
400 if (ssidie[1] != ssid_len)
401 return false;
402 return memcmp(ssidie + 2, ssid, ssid_len) == 0;
403}
404
405static int
406cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
407 struct cfg80211_bss *nontrans_bss)
408{
409 const u8 *ssid;
410 size_t ssid_len;
411 struct cfg80211_bss *bss = NULL;
412
413 rcu_read_lock();
414 ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
415 if (!ssid) {
416 rcu_read_unlock();
417 return -EINVAL;
418 }
419 ssid_len = ssid[1];
420 ssid = ssid + 2;
421 rcu_read_unlock();
422
423 /* check if nontrans_bss is in the list */
424 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
425 if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len))
426 return 0;
427 }
428
429 /* add to the list */
430 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
431 return 0;
432}
433
434static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
435 unsigned long expire_time)
436{
437 struct cfg80211_internal_bss *bss, *tmp;
438 bool expired = false;
439
440 lockdep_assert_held(&rdev->bss_lock);
441
442 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
443 if (atomic_read(&bss->hold))
444 continue;
445 if (!time_after(expire_time, bss->ts))
446 continue;
447
448 if (__cfg80211_unlink_bss(rdev, bss))
449 expired = true;
450 }
451
452 if (expired)
453 rdev->bss_generation++;
454}
455
456static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
457{
458 struct cfg80211_internal_bss *bss, *oldest = NULL;
459 bool ret;
460
461 lockdep_assert_held(&rdev->bss_lock);
462
463 list_for_each_entry(bss, &rdev->bss_list, list) {
464 if (atomic_read(&bss->hold))
465 continue;
466
467 if (!list_empty(&bss->hidden_list) &&
468 !bss->pub.hidden_beacon_bss)
469 continue;
470
471 if (oldest && time_before(oldest->ts, bss->ts))
472 continue;
473 oldest = bss;
474 }
475
476 if (WARN_ON(!oldest))
477 return false;
478
479 /*
480 * The callers make sure to increase rdev->bss_generation if anything
481 * gets removed (and a new entry added), so there's no need to also do
482 * it here.
483 */
484
485 ret = __cfg80211_unlink_bss(rdev, oldest);
486 WARN_ON(!ret);
487 return ret;
488}
489
490static u8 cfg80211_parse_bss_param(u8 data,
491 struct cfg80211_colocated_ap *coloc_ap)
492{
493 coloc_ap->oct_recommended =
494 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
495 coloc_ap->same_ssid =
496 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
497 coloc_ap->multi_bss =
498 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
499 coloc_ap->transmitted_bssid =
500 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
501 coloc_ap->unsolicited_probe =
502 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
503 coloc_ap->colocated_ess =
504 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
505
506 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
507}
508
509static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
510 const struct element **elem, u32 *s_ssid)
511{
512
513 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
514 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
515 return -EINVAL;
516
517 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
518 return 0;
519}
520
521static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
522{
523 struct cfg80211_colocated_ap *ap, *tmp_ap;
524
525 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
526 list_del(&ap->list);
527 kfree(ap);
528 }
529}
530
531static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
532 const u8 *pos, u8 length,
533 const struct element *ssid_elem,
534 int s_ssid_tmp)
535{
536 /* skip the TBTT offset */
537 pos++;
538
539 memcpy(entry->bssid, pos, ETH_ALEN);
540 pos += ETH_ALEN;
541
542 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
543 memcpy(&entry->short_ssid, pos,
544 sizeof(entry->short_ssid));
545 entry->short_ssid_valid = true;
546 pos += 4;
547 }
548
549 /* skip non colocated APs */
550 if (!cfg80211_parse_bss_param(*pos, entry))
551 return -EINVAL;
552 pos++;
553
554 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
555 /*
556 * no information about the short ssid. Consider the entry valid
557 * for now. It would later be dropped in case there are explicit
558 * SSIDs that need to be matched
559 */
560 if (!entry->same_ssid)
561 return 0;
562 }
563
564 if (entry->same_ssid) {
565 entry->short_ssid = s_ssid_tmp;
566 entry->short_ssid_valid = true;
567
568 /*
569 * This is safe because we validate datalen in
570 * cfg80211_parse_colocated_ap(), before calling this
571 * function.
572 */
573 memcpy(&entry->ssid, &ssid_elem->data,
574 ssid_elem->datalen);
575 entry->ssid_len = ssid_elem->datalen;
576 }
577 return 0;
578}
579
580static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
581 struct list_head *list)
582{
583 struct ieee80211_neighbor_ap_info *ap_info;
584 const struct element *elem, *ssid_elem;
585 const u8 *pos, *end;
586 u32 s_ssid_tmp;
587 int n_coloc = 0, ret;
588 LIST_HEAD(ap_list);
589
590 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
591 ies->len);
592 if (!elem)
593 return 0;
594
595 pos = elem->data;
596 end = pos + elem->datalen;
597
598 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
599 if (ret)
600 return ret;
601
602 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
603 while (pos + sizeof(*ap_info) <= end) {
604 enum nl80211_band band;
605 int freq;
606 u8 length, i, count;
607
608 ap_info = (void *)pos;
609 count = u8_get_bits(ap_info->tbtt_info_hdr,
610 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
611 length = ap_info->tbtt_info_len;
612
613 pos += sizeof(*ap_info);
614
615 if (!ieee80211_operating_class_to_band(ap_info->op_class,
616 &band))
617 break;
618
619 freq = ieee80211_channel_to_frequency(ap_info->channel, band);
620
621 if (end - pos < count * length)
622 break;
623
624 /*
625 * TBTT info must include bss param + BSSID +
626 * (short SSID or same_ssid bit to be set).
627 * ignore other options, and move to the
628 * next AP info
629 */
630 if (band != NL80211_BAND_6GHZ ||
631 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
632 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
633 pos += count * length;
634 continue;
635 }
636
637 for (i = 0; i < count; i++) {
638 struct cfg80211_colocated_ap *entry;
639
640 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
641 GFP_ATOMIC);
642
643 if (!entry)
644 break;
645
646 entry->center_freq = freq;
647
648 if (!cfg80211_parse_ap_info(entry, pos, length,
649 ssid_elem, s_ssid_tmp)) {
650 n_coloc++;
651 list_add_tail(&entry->list, &ap_list);
652 } else {
653 kfree(entry);
654 }
655
656 pos += length;
657 }
658 }
659
660 if (pos != end) {
661 cfg80211_free_coloc_ap_list(&ap_list);
662 return 0;
663 }
664
665 list_splice_tail(&ap_list, list);
666 return n_coloc;
667}
668
669static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
670 struct ieee80211_channel *chan,
671 bool add_to_6ghz)
672{
673 int i;
674 u32 n_channels = request->n_channels;
675 struct cfg80211_scan_6ghz_params *params =
676 &request->scan_6ghz_params[request->n_6ghz_params];
677
678 for (i = 0; i < n_channels; i++) {
679 if (request->channels[i] == chan) {
680 if (add_to_6ghz)
681 params->channel_idx = i;
682 return;
683 }
684 }
685
686 request->channels[n_channels] = chan;
687 if (add_to_6ghz)
688 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
689 n_channels;
690
691 request->n_channels++;
692}
693
694static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
695 struct cfg80211_scan_request *request)
696{
697 int i;
698 u32 s_ssid;
699
700 for (i = 0; i < request->n_ssids; i++) {
701 /* wildcard ssid in the scan request */
702 if (!request->ssids[i].ssid_len)
703 return true;
704
705 if (ap->ssid_len &&
706 ap->ssid_len == request->ssids[i].ssid_len) {
707 if (!memcmp(request->ssids[i].ssid, ap->ssid,
708 ap->ssid_len))
709 return true;
710 } else if (ap->short_ssid_valid) {
711 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
712 request->ssids[i].ssid_len);
713
714 if (ap->short_ssid == s_ssid)
715 return true;
716 }
717 }
718
719 return false;
720}
721
722static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
723{
724 u8 i;
725 struct cfg80211_colocated_ap *ap;
726 int n_channels, count = 0, err;
727 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
728 LIST_HEAD(coloc_ap_list);
729 bool need_scan_psc = true;
730 const struct ieee80211_sband_iftype_data *iftd;
731
732 rdev_req->scan_6ghz = true;
733
734 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
735 return -EOPNOTSUPP;
736
737 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
738 rdev_req->wdev->iftype);
739 if (!iftd || !iftd->he_cap.has_he)
740 return -EOPNOTSUPP;
741
742 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
743
744 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
745 struct cfg80211_internal_bss *intbss;
746
747 spin_lock_bh(&rdev->bss_lock);
748 list_for_each_entry(intbss, &rdev->bss_list, list) {
749 struct cfg80211_bss *res = &intbss->pub;
750 const struct cfg80211_bss_ies *ies;
751
752 ies = rcu_access_pointer(res->ies);
753 count += cfg80211_parse_colocated_ap(ies,
754 &coloc_ap_list);
755 }
756 spin_unlock_bh(&rdev->bss_lock);
757 }
758
759 request = kzalloc(struct_size(request, channels, n_channels) +
760 sizeof(*request->scan_6ghz_params) * count +
761 sizeof(*request->ssids) * rdev_req->n_ssids,
762 GFP_KERNEL);
763 if (!request) {
764 cfg80211_free_coloc_ap_list(&coloc_ap_list);
765 return -ENOMEM;
766 }
767
768 *request = *rdev_req;
769 request->n_channels = 0;
770 request->scan_6ghz_params =
771 (void *)&request->channels[n_channels];
772
773 /*
774 * PSC channels should not be scanned in case of direct scan with 1 SSID
775 * and at least one of the reported co-located APs with same SSID
776 * indicating that all APs in the same ESS are co-located
777 */
778 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
779 list_for_each_entry(ap, &coloc_ap_list, list) {
780 if (ap->colocated_ess &&
781 cfg80211_find_ssid_match(ap, request)) {
782 need_scan_psc = false;
783 break;
784 }
785 }
786 }
787
788 /*
789 * add to the scan request the channels that need to be scanned
790 * regardless of the collocated APs (PSC channels or all channels
791 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
792 */
793 for (i = 0; i < rdev_req->n_channels; i++) {
794 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
795 ((need_scan_psc &&
796 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
797 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
798 cfg80211_scan_req_add_chan(request,
799 rdev_req->channels[i],
800 false);
801 }
802 }
803
804 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
805 goto skip;
806
807 list_for_each_entry(ap, &coloc_ap_list, list) {
808 bool found = false;
809 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
810 &request->scan_6ghz_params[request->n_6ghz_params];
811 struct ieee80211_channel *chan =
812 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
813
814 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
815 continue;
816
817 for (i = 0; i < rdev_req->n_channels; i++) {
818 if (rdev_req->channels[i] == chan)
819 found = true;
820 }
821
822 if (!found)
823 continue;
824
825 if (request->n_ssids > 0 &&
826 !cfg80211_find_ssid_match(ap, request))
827 continue;
828
829 cfg80211_scan_req_add_chan(request, chan, true);
830 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
831 scan_6ghz_params->short_ssid = ap->short_ssid;
832 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
833 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
834
835 /*
836 * If a PSC channel is added to the scan and 'need_scan_psc' is
837 * set to false, then all the APs that the scan logic is
838 * interested with on the channel are collocated and thus there
839 * is no need to perform the initial PSC channel listen.
840 */
841 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
842 scan_6ghz_params->psc_no_listen = true;
843
844 request->n_6ghz_params++;
845 }
846
847skip:
848 cfg80211_free_coloc_ap_list(&coloc_ap_list);
849
850 if (request->n_channels) {
851 struct cfg80211_scan_request *old = rdev->int_scan_req;
852 rdev->int_scan_req = request;
853
854 /*
855 * Add the ssids from the parent scan request to the new scan
856 * request, so the driver would be able to use them in its
857 * probe requests to discover hidden APs on PSC channels.
858 */
859 request->ssids = (void *)&request->channels[request->n_channels];
860 request->n_ssids = rdev_req->n_ssids;
861 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
862 request->n_ssids);
863
864 /*
865 * If this scan follows a previous scan, save the scan start
866 * info from the first part of the scan
867 */
868 if (old)
869 rdev->int_scan_req->info = old->info;
870
871 err = rdev_scan(rdev, request);
872 if (err) {
873 rdev->int_scan_req = old;
874 kfree(request);
875 } else {
876 kfree(old);
877 }
878
879 return err;
880 }
881
882 kfree(request);
883 return -EINVAL;
884}
885
886int cfg80211_scan(struct cfg80211_registered_device *rdev)
887{
888 struct cfg80211_scan_request *request;
889 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
890 u32 n_channels = 0, idx, i;
891
892 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
893 return rdev_scan(rdev, rdev_req);
894
895 for (i = 0; i < rdev_req->n_channels; i++) {
896 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
897 n_channels++;
898 }
899
900 if (!n_channels)
901 return cfg80211_scan_6ghz(rdev);
902
903 request = kzalloc(struct_size(request, channels, n_channels),
904 GFP_KERNEL);
905 if (!request)
906 return -ENOMEM;
907
908 *request = *rdev_req;
909 request->n_channels = n_channels;
910
911 for (i = idx = 0; i < rdev_req->n_channels; i++) {
912 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
913 request->channels[idx++] = rdev_req->channels[i];
914 }
915
916 rdev_req->scan_6ghz = false;
917 rdev->int_scan_req = request;
918 return rdev_scan(rdev, request);
919}
920
921void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
922 bool send_message)
923{
924 struct cfg80211_scan_request *request, *rdev_req;
925 struct wireless_dev *wdev;
926 struct sk_buff *msg;
927#ifdef CONFIG_CFG80211_WEXT
928 union iwreq_data wrqu;
929#endif
930
931 lockdep_assert_held(&rdev->wiphy.mtx);
932
933 if (rdev->scan_msg) {
934 nl80211_send_scan_msg(rdev, rdev->scan_msg);
935 rdev->scan_msg = NULL;
936 return;
937 }
938
939 rdev_req = rdev->scan_req;
940 if (!rdev_req)
941 return;
942
943 wdev = rdev_req->wdev;
944 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
945
946 if (wdev_running(wdev) &&
947 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
948 !rdev_req->scan_6ghz && !request->info.aborted &&
949 !cfg80211_scan_6ghz(rdev))
950 return;
951
952 /*
953 * This must be before sending the other events!
954 * Otherwise, wpa_supplicant gets completely confused with
955 * wext events.
956 */
957 if (wdev->netdev)
958 cfg80211_sme_scan_done(wdev->netdev);
959
960 if (!request->info.aborted &&
961 request->flags & NL80211_SCAN_FLAG_FLUSH) {
962 /* flush entries from previous scans */
963 spin_lock_bh(&rdev->bss_lock);
964 __cfg80211_bss_expire(rdev, request->scan_start);
965 spin_unlock_bh(&rdev->bss_lock);
966 }
967
968 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
969
970#ifdef CONFIG_CFG80211_WEXT
971 if (wdev->netdev && !request->info.aborted) {
972 memset(&wrqu, 0, sizeof(wrqu));
973
974 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
975 }
976#endif
977
978 if (wdev->netdev)
979 dev_put(wdev->netdev);
980
981 kfree(rdev->int_scan_req);
982 rdev->int_scan_req = NULL;
983
984 kfree(rdev->scan_req);
985 rdev->scan_req = NULL;
986
987 if (!send_message)
988 rdev->scan_msg = msg;
989 else
990 nl80211_send_scan_msg(rdev, msg);
991}
992
993void __cfg80211_scan_done(struct work_struct *wk)
994{
995 struct cfg80211_registered_device *rdev;
996
997 rdev = container_of(wk, struct cfg80211_registered_device,
998 scan_done_wk);
999
1000 wiphy_lock(&rdev->wiphy);
1001 ___cfg80211_scan_done(rdev, true);
1002 wiphy_unlock(&rdev->wiphy);
1003}
1004
1005void cfg80211_scan_done(struct cfg80211_scan_request *request,
1006 struct cfg80211_scan_info *info)
1007{
1008 struct cfg80211_scan_info old_info = request->info;
1009
1010 trace_cfg80211_scan_done(request, info);
1011 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1012 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1013
1014 request->info = *info;
1015
1016 /*
1017 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1018 * be of the first part. In such a case old_info.scan_start_tsf should
1019 * be non zero.
1020 */
1021 if (request->scan_6ghz && old_info.scan_start_tsf) {
1022 request->info.scan_start_tsf = old_info.scan_start_tsf;
1023 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1024 sizeof(request->info.tsf_bssid));
1025 }
1026
1027 request->notified = true;
1028 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1029}
1030EXPORT_SYMBOL(cfg80211_scan_done);
1031
1032void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1033 struct cfg80211_sched_scan_request *req)
1034{
1035 lockdep_assert_held(&rdev->wiphy.mtx);
1036
1037 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1038}
1039
1040static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1041 struct cfg80211_sched_scan_request *req)
1042{
1043 lockdep_assert_held(&rdev->wiphy.mtx);
1044
1045 list_del_rcu(&req->list);
1046 kfree_rcu(req, rcu_head);
1047}
1048
1049static struct cfg80211_sched_scan_request *
1050cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1051{
1052 struct cfg80211_sched_scan_request *pos;
1053
1054 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1055 lockdep_is_held(&rdev->wiphy.mtx)) {
1056 if (pos->reqid == reqid)
1057 return pos;
1058 }
1059 return NULL;
1060}
1061
1062/*
1063 * Determines if a scheduled scan request can be handled. When a legacy
1064 * scheduled scan is running no other scheduled scan is allowed regardless
1065 * whether the request is for legacy or multi-support scan. When a multi-support
1066 * scheduled scan is running a request for legacy scan is not allowed. In this
1067 * case a request for multi-support scan can be handled if resources are
1068 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1069 */
1070int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1071 bool want_multi)
1072{
1073 struct cfg80211_sched_scan_request *pos;
1074 int i = 0;
1075
1076 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1077 /* request id zero means legacy in progress */
1078 if (!i && !pos->reqid)
1079 return -EINPROGRESS;
1080 i++;
1081 }
1082
1083 if (i) {
1084 /* no legacy allowed when multi request(s) are active */
1085 if (!want_multi)
1086 return -EINPROGRESS;
1087
1088 /* resource limit reached */
1089 if (i == rdev->wiphy.max_sched_scan_reqs)
1090 return -ENOSPC;
1091 }
1092 return 0;
1093}
1094
1095void cfg80211_sched_scan_results_wk(struct work_struct *work)
1096{
1097 struct cfg80211_registered_device *rdev;
1098 struct cfg80211_sched_scan_request *req, *tmp;
1099
1100 rdev = container_of(work, struct cfg80211_registered_device,
1101 sched_scan_res_wk);
1102
1103 wiphy_lock(&rdev->wiphy);
1104 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1105 if (req->report_results) {
1106 req->report_results = false;
1107 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1108 /* flush entries from previous scans */
1109 spin_lock_bh(&rdev->bss_lock);
1110 __cfg80211_bss_expire(rdev, req->scan_start);
1111 spin_unlock_bh(&rdev->bss_lock);
1112 req->scan_start = jiffies;
1113 }
1114 nl80211_send_sched_scan(req,
1115 NL80211_CMD_SCHED_SCAN_RESULTS);
1116 }
1117 }
1118 wiphy_unlock(&rdev->wiphy);
1119}
1120
1121void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1122{
1123 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1124 struct cfg80211_sched_scan_request *request;
1125
1126 trace_cfg80211_sched_scan_results(wiphy, reqid);
1127 /* ignore if we're not scanning */
1128
1129 rcu_read_lock();
1130 request = cfg80211_find_sched_scan_req(rdev, reqid);
1131 if (request) {
1132 request->report_results = true;
1133 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1134 }
1135 rcu_read_unlock();
1136}
1137EXPORT_SYMBOL(cfg80211_sched_scan_results);
1138
1139void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1140{
1141 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1142
1143 lockdep_assert_held(&wiphy->mtx);
1144
1145 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1146
1147 __cfg80211_stop_sched_scan(rdev, reqid, true);
1148}
1149EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1150
1151void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1152{
1153 wiphy_lock(wiphy);
1154 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1155 wiphy_unlock(wiphy);
1156}
1157EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1158
1159int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1160 struct cfg80211_sched_scan_request *req,
1161 bool driver_initiated)
1162{
1163 lockdep_assert_held(&rdev->wiphy.mtx);
1164
1165 if (!driver_initiated) {
1166 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1167 if (err)
1168 return err;
1169 }
1170
1171 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1172
1173 cfg80211_del_sched_scan_req(rdev, req);
1174
1175 return 0;
1176}
1177
1178int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1179 u64 reqid, bool driver_initiated)
1180{
1181 struct cfg80211_sched_scan_request *sched_scan_req;
1182
1183 lockdep_assert_held(&rdev->wiphy.mtx);
1184
1185 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1186 if (!sched_scan_req)
1187 return -ENOENT;
1188
1189 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1190 driver_initiated);
1191}
1192
1193void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1194 unsigned long age_secs)
1195{
1196 struct cfg80211_internal_bss *bss;
1197 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1198
1199 spin_lock_bh(&rdev->bss_lock);
1200 list_for_each_entry(bss, &rdev->bss_list, list)
1201 bss->ts -= age_jiffies;
1202 spin_unlock_bh(&rdev->bss_lock);
1203}
1204
1205void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1206{
1207 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1208}
1209
1210void cfg80211_bss_flush(struct wiphy *wiphy)
1211{
1212 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1213
1214 spin_lock_bh(&rdev->bss_lock);
1215 __cfg80211_bss_expire(rdev, jiffies);
1216 spin_unlock_bh(&rdev->bss_lock);
1217}
1218EXPORT_SYMBOL(cfg80211_bss_flush);
1219
1220const struct element *
1221cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1222 const u8 *match, unsigned int match_len,
1223 unsigned int match_offset)
1224{
1225 const struct element *elem;
1226
1227 for_each_element_id(elem, eid, ies, len) {
1228 if (elem->datalen >= match_offset + match_len &&
1229 !memcmp(elem->data + match_offset, match, match_len))
1230 return elem;
1231 }
1232
1233 return NULL;
1234}
1235EXPORT_SYMBOL(cfg80211_find_elem_match);
1236
1237const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1238 const u8 *ies,
1239 unsigned int len)
1240{
1241 const struct element *elem;
1242 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1243 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1244
1245 if (WARN_ON(oui_type > 0xff))
1246 return NULL;
1247
1248 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1249 match, match_len, 0);
1250
1251 if (!elem || elem->datalen < 4)
1252 return NULL;
1253
1254 return elem;
1255}
1256EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1257
1258/**
1259 * enum bss_compare_mode - BSS compare mode
1260 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1261 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1262 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1263 */
1264enum bss_compare_mode {
1265 BSS_CMP_REGULAR,
1266 BSS_CMP_HIDE_ZLEN,
1267 BSS_CMP_HIDE_NUL,
1268};
1269
1270static int cmp_bss(struct cfg80211_bss *a,
1271 struct cfg80211_bss *b,
1272 enum bss_compare_mode mode)
1273{
1274 const struct cfg80211_bss_ies *a_ies, *b_ies;
1275 const u8 *ie1 = NULL;
1276 const u8 *ie2 = NULL;
1277 int i, r;
1278
1279 if (a->channel != b->channel)
1280 return b->channel->center_freq - a->channel->center_freq;
1281
1282 a_ies = rcu_access_pointer(a->ies);
1283 if (!a_ies)
1284 return -1;
1285 b_ies = rcu_access_pointer(b->ies);
1286 if (!b_ies)
1287 return 1;
1288
1289 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1290 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1291 a_ies->data, a_ies->len);
1292 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1293 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1294 b_ies->data, b_ies->len);
1295 if (ie1 && ie2) {
1296 int mesh_id_cmp;
1297
1298 if (ie1[1] == ie2[1])
1299 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1300 else
1301 mesh_id_cmp = ie2[1] - ie1[1];
1302
1303 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1304 a_ies->data, a_ies->len);
1305 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1306 b_ies->data, b_ies->len);
1307 if (ie1 && ie2) {
1308 if (mesh_id_cmp)
1309 return mesh_id_cmp;
1310 if (ie1[1] != ie2[1])
1311 return ie2[1] - ie1[1];
1312 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1313 }
1314 }
1315
1316 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1317 if (r)
1318 return r;
1319
1320 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1321 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1322
1323 if (!ie1 && !ie2)
1324 return 0;
1325
1326 /*
1327 * Note that with "hide_ssid", the function returns a match if
1328 * the already-present BSS ("b") is a hidden SSID beacon for
1329 * the new BSS ("a").
1330 */
1331
1332 /* sort missing IE before (left of) present IE */
1333 if (!ie1)
1334 return -1;
1335 if (!ie2)
1336 return 1;
1337
1338 switch (mode) {
1339 case BSS_CMP_HIDE_ZLEN:
1340 /*
1341 * In ZLEN mode we assume the BSS entry we're
1342 * looking for has a zero-length SSID. So if
1343 * the one we're looking at right now has that,
1344 * return 0. Otherwise, return the difference
1345 * in length, but since we're looking for the
1346 * 0-length it's really equivalent to returning
1347 * the length of the one we're looking at.
1348 *
1349 * No content comparison is needed as we assume
1350 * the content length is zero.
1351 */
1352 return ie2[1];
1353 case BSS_CMP_REGULAR:
1354 default:
1355 /* sort by length first, then by contents */
1356 if (ie1[1] != ie2[1])
1357 return ie2[1] - ie1[1];
1358 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1359 case BSS_CMP_HIDE_NUL:
1360 if (ie1[1] != ie2[1])
1361 return ie2[1] - ie1[1];
1362 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1363 for (i = 0; i < ie2[1]; i++)
1364 if (ie2[i + 2])
1365 return -1;
1366 return 0;
1367 }
1368}
1369
1370static bool cfg80211_bss_type_match(u16 capability,
1371 enum nl80211_band band,
1372 enum ieee80211_bss_type bss_type)
1373{
1374 bool ret = true;
1375 u16 mask, val;
1376
1377 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1378 return ret;
1379
1380 if (band == NL80211_BAND_60GHZ) {
1381 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1382 switch (bss_type) {
1383 case IEEE80211_BSS_TYPE_ESS:
1384 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1385 break;
1386 case IEEE80211_BSS_TYPE_PBSS:
1387 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1388 break;
1389 case IEEE80211_BSS_TYPE_IBSS:
1390 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1391 break;
1392 default:
1393 return false;
1394 }
1395 } else {
1396 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1397 switch (bss_type) {
1398 case IEEE80211_BSS_TYPE_ESS:
1399 val = WLAN_CAPABILITY_ESS;
1400 break;
1401 case IEEE80211_BSS_TYPE_IBSS:
1402 val = WLAN_CAPABILITY_IBSS;
1403 break;
1404 case IEEE80211_BSS_TYPE_MBSS:
1405 val = 0;
1406 break;
1407 default:
1408 return false;
1409 }
1410 }
1411
1412 ret = ((capability & mask) == val);
1413 return ret;
1414}
1415
1416/* Returned bss is reference counted and must be cleaned up appropriately. */
1417struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1418 struct ieee80211_channel *channel,
1419 const u8 *bssid,
1420 const u8 *ssid, size_t ssid_len,
1421 enum ieee80211_bss_type bss_type,
1422 enum ieee80211_privacy privacy)
1423{
1424 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1425 struct cfg80211_internal_bss *bss, *res = NULL;
1426 unsigned long now = jiffies;
1427 int bss_privacy;
1428
1429 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1430 privacy);
1431
1432 spin_lock_bh(&rdev->bss_lock);
1433
1434 list_for_each_entry(bss, &rdev->bss_list, list) {
1435 if (!cfg80211_bss_type_match(bss->pub.capability,
1436 bss->pub.channel->band, bss_type))
1437 continue;
1438
1439 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1440 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1441 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1442 continue;
1443 if (channel && bss->pub.channel != channel)
1444 continue;
1445 if (!is_valid_ether_addr(bss->pub.bssid))
1446 continue;
1447 /* Don't get expired BSS structs */
1448 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1449 !atomic_read(&bss->hold))
1450 continue;
1451 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1452 res = bss;
1453 bss_ref_get(rdev, res);
1454 break;
1455 }
1456 }
1457
1458 spin_unlock_bh(&rdev->bss_lock);
1459 if (!res)
1460 return NULL;
1461 trace_cfg80211_return_bss(&res->pub);
1462 return &res->pub;
1463}
1464EXPORT_SYMBOL(cfg80211_get_bss);
1465
1466static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1467 struct cfg80211_internal_bss *bss)
1468{
1469 struct rb_node **p = &rdev->bss_tree.rb_node;
1470 struct rb_node *parent = NULL;
1471 struct cfg80211_internal_bss *tbss;
1472 int cmp;
1473
1474 while (*p) {
1475 parent = *p;
1476 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1477
1478 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1479
1480 if (WARN_ON(!cmp)) {
1481 /* will sort of leak this BSS */
1482 return;
1483 }
1484
1485 if (cmp < 0)
1486 p = &(*p)->rb_left;
1487 else
1488 p = &(*p)->rb_right;
1489 }
1490
1491 rb_link_node(&bss->rbn, parent, p);
1492 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1493}
1494
1495static struct cfg80211_internal_bss *
1496rb_find_bss(struct cfg80211_registered_device *rdev,
1497 struct cfg80211_internal_bss *res,
1498 enum bss_compare_mode mode)
1499{
1500 struct rb_node *n = rdev->bss_tree.rb_node;
1501 struct cfg80211_internal_bss *bss;
1502 int r;
1503
1504 while (n) {
1505 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1506 r = cmp_bss(&res->pub, &bss->pub, mode);
1507
1508 if (r == 0)
1509 return bss;
1510 else if (r < 0)
1511 n = n->rb_left;
1512 else
1513 n = n->rb_right;
1514 }
1515
1516 return NULL;
1517}
1518
1519static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1520 struct cfg80211_internal_bss *new)
1521{
1522 const struct cfg80211_bss_ies *ies;
1523 struct cfg80211_internal_bss *bss;
1524 const u8 *ie;
1525 int i, ssidlen;
1526 u8 fold = 0;
1527 u32 n_entries = 0;
1528
1529 ies = rcu_access_pointer(new->pub.beacon_ies);
1530 if (WARN_ON(!ies))
1531 return false;
1532
1533 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1534 if (!ie) {
1535 /* nothing to do */
1536 return true;
1537 }
1538
1539 ssidlen = ie[1];
1540 for (i = 0; i < ssidlen; i++)
1541 fold |= ie[2 + i];
1542
1543 if (fold) {
1544 /* not a hidden SSID */
1545 return true;
1546 }
1547
1548 /* This is the bad part ... */
1549
1550 list_for_each_entry(bss, &rdev->bss_list, list) {
1551 /*
1552 * we're iterating all the entries anyway, so take the
1553 * opportunity to validate the list length accounting
1554 */
1555 n_entries++;
1556
1557 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1558 continue;
1559 if (bss->pub.channel != new->pub.channel)
1560 continue;
1561 if (bss->pub.scan_width != new->pub.scan_width)
1562 continue;
1563 if (rcu_access_pointer(bss->pub.beacon_ies))
1564 continue;
1565 ies = rcu_access_pointer(bss->pub.ies);
1566 if (!ies)
1567 continue;
1568 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1569 if (!ie)
1570 continue;
1571 if (ssidlen && ie[1] != ssidlen)
1572 continue;
1573 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1574 continue;
1575 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1576 list_del(&bss->hidden_list);
1577 /* combine them */
1578 list_add(&bss->hidden_list, &new->hidden_list);
1579 bss->pub.hidden_beacon_bss = &new->pub;
1580 new->refcount += bss->refcount;
1581 rcu_assign_pointer(bss->pub.beacon_ies,
1582 new->pub.beacon_ies);
1583 }
1584
1585 WARN_ONCE(n_entries != rdev->bss_entries,
1586 "rdev bss entries[%d]/list[len:%d] corruption\n",
1587 rdev->bss_entries, n_entries);
1588
1589 return true;
1590}
1591
1592struct cfg80211_non_tx_bss {
1593 struct cfg80211_bss *tx_bss;
1594 u8 max_bssid_indicator;
1595 u8 bssid_index;
1596};
1597
1598static bool
1599cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1600 struct cfg80211_internal_bss *known,
1601 struct cfg80211_internal_bss *new,
1602 bool signal_valid)
1603{
1604 lockdep_assert_held(&rdev->bss_lock);
1605
1606 /* Update IEs */
1607 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1608 const struct cfg80211_bss_ies *old;
1609
1610 old = rcu_access_pointer(known->pub.proberesp_ies);
1611
1612 rcu_assign_pointer(known->pub.proberesp_ies,
1613 new->pub.proberesp_ies);
1614 /* Override possible earlier Beacon frame IEs */
1615 rcu_assign_pointer(known->pub.ies,
1616 new->pub.proberesp_ies);
1617 if (old)
1618 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1619 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1620 const struct cfg80211_bss_ies *old;
1621 struct cfg80211_internal_bss *bss;
1622
1623 if (known->pub.hidden_beacon_bss &&
1624 !list_empty(&known->hidden_list)) {
1625 const struct cfg80211_bss_ies *f;
1626
1627 /* The known BSS struct is one of the probe
1628 * response members of a group, but we're
1629 * receiving a beacon (beacon_ies in the new
1630 * bss is used). This can only mean that the
1631 * AP changed its beacon from not having an
1632 * SSID to showing it, which is confusing so
1633 * drop this information.
1634 */
1635
1636 f = rcu_access_pointer(new->pub.beacon_ies);
1637 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1638 return false;
1639 }
1640
1641 old = rcu_access_pointer(known->pub.beacon_ies);
1642
1643 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1644
1645 /* Override IEs if they were from a beacon before */
1646 if (old == rcu_access_pointer(known->pub.ies))
1647 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1648
1649 /* Assign beacon IEs to all sub entries */
1650 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1651 const struct cfg80211_bss_ies *ies;
1652
1653 ies = rcu_access_pointer(bss->pub.beacon_ies);
1654 WARN_ON(ies != old);
1655
1656 rcu_assign_pointer(bss->pub.beacon_ies,
1657 new->pub.beacon_ies);
1658 }
1659
1660 if (old)
1661 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1662 }
1663
1664 known->pub.beacon_interval = new->pub.beacon_interval;
1665
1666 /* don't update the signal if beacon was heard on
1667 * adjacent channel.
1668 */
1669 if (signal_valid)
1670 known->pub.signal = new->pub.signal;
1671 known->pub.capability = new->pub.capability;
1672 known->ts = new->ts;
1673 known->ts_boottime = new->ts_boottime;
1674 known->parent_tsf = new->parent_tsf;
1675 known->pub.chains = new->pub.chains;
1676 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1677 IEEE80211_MAX_CHAINS);
1678 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1679 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1680 known->pub.bssid_index = new->pub.bssid_index;
1681
1682 return true;
1683}
1684
1685/* Returned bss is reference counted and must be cleaned up appropriately. */
1686struct cfg80211_internal_bss *
1687cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1688 struct cfg80211_internal_bss *tmp,
1689 bool signal_valid, unsigned long ts)
1690{
1691 struct cfg80211_internal_bss *found = NULL;
1692
1693 if (WARN_ON(!tmp->pub.channel))
1694 return NULL;
1695
1696 tmp->ts = ts;
1697
1698 spin_lock_bh(&rdev->bss_lock);
1699
1700 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1701 spin_unlock_bh(&rdev->bss_lock);
1702 return NULL;
1703 }
1704
1705 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1706
1707 if (found) {
1708 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1709 goto drop;
1710 } else {
1711 struct cfg80211_internal_bss *new;
1712 struct cfg80211_internal_bss *hidden;
1713 struct cfg80211_bss_ies *ies;
1714
1715 /*
1716 * create a copy -- the "res" variable that is passed in
1717 * is allocated on the stack since it's not needed in the
1718 * more common case of an update
1719 */
1720 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1721 GFP_ATOMIC);
1722 if (!new) {
1723 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1724 if (ies)
1725 kfree_rcu(ies, rcu_head);
1726 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1727 if (ies)
1728 kfree_rcu(ies, rcu_head);
1729 goto drop;
1730 }
1731 memcpy(new, tmp, sizeof(*new));
1732 new->refcount = 1;
1733 INIT_LIST_HEAD(&new->hidden_list);
1734 INIT_LIST_HEAD(&new->pub.nontrans_list);
1735
1736 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1737 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1738 if (!hidden)
1739 hidden = rb_find_bss(rdev, tmp,
1740 BSS_CMP_HIDE_NUL);
1741 if (hidden) {
1742 new->pub.hidden_beacon_bss = &hidden->pub;
1743 list_add(&new->hidden_list,
1744 &hidden->hidden_list);
1745 hidden->refcount++;
1746 rcu_assign_pointer(new->pub.beacon_ies,
1747 hidden->pub.beacon_ies);
1748 }
1749 } else {
1750 /*
1751 * Ok so we found a beacon, and don't have an entry. If
1752 * it's a beacon with hidden SSID, we might be in for an
1753 * expensive search for any probe responses that should
1754 * be grouped with this beacon for updates ...
1755 */
1756 if (!cfg80211_combine_bsses(rdev, new)) {
1757 bss_ref_put(rdev, new);
1758 goto drop;
1759 }
1760 }
1761
1762 if (rdev->bss_entries >= bss_entries_limit &&
1763 !cfg80211_bss_expire_oldest(rdev)) {
1764 bss_ref_put(rdev, new);
1765 goto drop;
1766 }
1767
1768 /* This must be before the call to bss_ref_get */
1769 if (tmp->pub.transmitted_bss) {
1770 struct cfg80211_internal_bss *pbss =
1771 container_of(tmp->pub.transmitted_bss,
1772 struct cfg80211_internal_bss,
1773 pub);
1774
1775 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1776 bss_ref_get(rdev, pbss);
1777 }
1778
1779 list_add_tail(&new->list, &rdev->bss_list);
1780 rdev->bss_entries++;
1781 rb_insert_bss(rdev, new);
1782 found = new;
1783 }
1784
1785 rdev->bss_generation++;
1786 bss_ref_get(rdev, found);
1787 spin_unlock_bh(&rdev->bss_lock);
1788
1789 return found;
1790 drop:
1791 spin_unlock_bh(&rdev->bss_lock);
1792 return NULL;
1793}
1794
1795/*
1796 * Update RX channel information based on the available frame payload
1797 * information. This is mainly for the 2.4 GHz band where frames can be received
1798 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1799 * element to indicate the current (transmitting) channel, but this might also
1800 * be needed on other bands if RX frequency does not match with the actual
1801 * operating channel of a BSS.
1802 */
1803static struct ieee80211_channel *
1804cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1805 struct ieee80211_channel *channel,
1806 enum nl80211_bss_scan_width scan_width)
1807{
1808 const u8 *tmp;
1809 u32 freq;
1810 int channel_number = -1;
1811 struct ieee80211_channel *alt_channel;
1812
1813 if (channel->band == NL80211_BAND_S1GHZ) {
1814 tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1815 if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1816 struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1817
1818 channel_number = s1gop->primary_ch;
1819 }
1820 } else {
1821 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1822 if (tmp && tmp[1] == 1) {
1823 channel_number = tmp[2];
1824 } else {
1825 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1826 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1827 struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1828
1829 channel_number = htop->primary_chan;
1830 }
1831 }
1832 }
1833
1834 if (channel_number < 0) {
1835 /* No channel information in frame payload */
1836 return channel;
1837 }
1838
1839 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1840 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1841 if (!alt_channel) {
1842 if (channel->band == NL80211_BAND_2GHZ) {
1843 /*
1844 * Better not allow unexpected channels when that could
1845 * be going beyond the 1-11 range (e.g., discovering
1846 * BSS on channel 12 when radio is configured for
1847 * channel 11.
1848 */
1849 return NULL;
1850 }
1851
1852 /* No match for the payload channel number - ignore it */
1853 return channel;
1854 }
1855
1856 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1857 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1858 /*
1859 * Ignore channel number in 5 and 10 MHz channels where there
1860 * may not be an n:1 or 1:n mapping between frequencies and
1861 * channel numbers.
1862 */
1863 return channel;
1864 }
1865
1866 /*
1867 * Use the channel determined through the payload channel number
1868 * instead of the RX channel reported by the driver.
1869 */
1870 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1871 return NULL;
1872 return alt_channel;
1873}
1874
1875/* Returned bss is reference counted and must be cleaned up appropriately. */
1876static struct cfg80211_bss *
1877cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1878 struct cfg80211_inform_bss *data,
1879 enum cfg80211_bss_frame_type ftype,
1880 const u8 *bssid, u64 tsf, u16 capability,
1881 u16 beacon_interval, const u8 *ie, size_t ielen,
1882 struct cfg80211_non_tx_bss *non_tx_data,
1883 gfp_t gfp)
1884{
1885 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1886 struct cfg80211_bss_ies *ies;
1887 struct ieee80211_channel *channel;
1888 struct cfg80211_internal_bss tmp = {}, *res;
1889 int bss_type;
1890 bool signal_valid;
1891 unsigned long ts;
1892
1893 if (WARN_ON(!wiphy))
1894 return NULL;
1895
1896 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1897 (data->signal < 0 || data->signal > 100)))
1898 return NULL;
1899
1900 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1901 data->scan_width);
1902 if (!channel)
1903 return NULL;
1904
1905 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1906 tmp.pub.channel = channel;
1907 tmp.pub.scan_width = data->scan_width;
1908 tmp.pub.signal = data->signal;
1909 tmp.pub.beacon_interval = beacon_interval;
1910 tmp.pub.capability = capability;
1911 tmp.ts_boottime = data->boottime_ns;
1912 tmp.parent_tsf = data->parent_tsf;
1913 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1914
1915 if (non_tx_data) {
1916 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1917 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1918 tmp.pub.bssid_index = non_tx_data->bssid_index;
1919 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1920 } else {
1921 ts = jiffies;
1922 }
1923
1924 /*
1925 * If we do not know here whether the IEs are from a Beacon or Probe
1926 * Response frame, we need to pick one of the options and only use it
1927 * with the driver that does not provide the full Beacon/Probe Response
1928 * frame. Use Beacon frame pointer to avoid indicating that this should
1929 * override the IEs pointer should we have received an earlier
1930 * indication of Probe Response data.
1931 */
1932 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1933 if (!ies)
1934 return NULL;
1935 ies->len = ielen;
1936 ies->tsf = tsf;
1937 ies->from_beacon = false;
1938 memcpy(ies->data, ie, ielen);
1939
1940 switch (ftype) {
1941 case CFG80211_BSS_FTYPE_BEACON:
1942 ies->from_beacon = true;
1943 fallthrough;
1944 case CFG80211_BSS_FTYPE_UNKNOWN:
1945 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1946 break;
1947 case CFG80211_BSS_FTYPE_PRESP:
1948 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1949 break;
1950 }
1951 rcu_assign_pointer(tmp.pub.ies, ies);
1952
1953 signal_valid = data->chan == channel;
1954 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1955 if (!res)
1956 return NULL;
1957
1958 if (channel->band == NL80211_BAND_60GHZ) {
1959 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1960 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1961 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1962 regulatory_hint_found_beacon(wiphy, channel, gfp);
1963 } else {
1964 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1965 regulatory_hint_found_beacon(wiphy, channel, gfp);
1966 }
1967
1968 if (non_tx_data) {
1969 /* this is a nontransmitting bss, we need to add it to
1970 * transmitting bss' list if it is not there
1971 */
1972 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1973 &res->pub)) {
1974 if (__cfg80211_unlink_bss(rdev, res))
1975 rdev->bss_generation++;
1976 }
1977 }
1978
1979 trace_cfg80211_return_bss(&res->pub);
1980 /* cfg80211_bss_update gives us a referenced result */
1981 return &res->pub;
1982}
1983
1984static const struct element
1985*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1986 const struct element *mbssid_elem,
1987 const struct element *sub_elem)
1988{
1989 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1990 const struct element *next_mbssid;
1991 const struct element *next_sub;
1992
1993 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
1994 mbssid_end,
1995 ielen - (mbssid_end - ie));
1996
1997 /*
1998 * If it is not the last subelement in current MBSSID IE or there isn't
1999 * a next MBSSID IE - profile is complete.
2000 */
2001 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2002 !next_mbssid)
2003 return NULL;
2004
2005 /* For any length error, just return NULL */
2006
2007 if (next_mbssid->datalen < 4)
2008 return NULL;
2009
2010 next_sub = (void *)&next_mbssid->data[1];
2011
2012 if (next_mbssid->data + next_mbssid->datalen <
2013 next_sub->data + next_sub->datalen)
2014 return NULL;
2015
2016 if (next_sub->id != 0 || next_sub->datalen < 2)
2017 return NULL;
2018
2019 /*
2020 * Check if the first element in the next sub element is a start
2021 * of a new profile
2022 */
2023 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2024 NULL : next_mbssid;
2025}
2026
2027size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2028 const struct element *mbssid_elem,
2029 const struct element *sub_elem,
2030 u8 *merged_ie, size_t max_copy_len)
2031{
2032 size_t copied_len = sub_elem->datalen;
2033 const struct element *next_mbssid;
2034
2035 if (sub_elem->datalen > max_copy_len)
2036 return 0;
2037
2038 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2039
2040 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2041 mbssid_elem,
2042 sub_elem))) {
2043 const struct element *next_sub = (void *)&next_mbssid->data[1];
2044
2045 if (copied_len + next_sub->datalen > max_copy_len)
2046 break;
2047 memcpy(merged_ie + copied_len, next_sub->data,
2048 next_sub->datalen);
2049 copied_len += next_sub->datalen;
2050 }
2051
2052 return copied_len;
2053}
2054EXPORT_SYMBOL(cfg80211_merge_profile);
2055
2056static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2057 struct cfg80211_inform_bss *data,
2058 enum cfg80211_bss_frame_type ftype,
2059 const u8 *bssid, u64 tsf,
2060 u16 beacon_interval, const u8 *ie,
2061 size_t ielen,
2062 struct cfg80211_non_tx_bss *non_tx_data,
2063 gfp_t gfp)
2064{
2065 const u8 *mbssid_index_ie;
2066 const struct element *elem, *sub;
2067 size_t new_ie_len;
2068 u8 new_bssid[ETH_ALEN];
2069 u8 *new_ie, *profile;
2070 u64 seen_indices = 0;
2071 u16 capability;
2072 struct cfg80211_bss *bss;
2073
2074 if (!non_tx_data)
2075 return;
2076 if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2077 return;
2078 if (!wiphy->support_mbssid)
2079 return;
2080 if (wiphy->support_only_he_mbssid &&
2081 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2082 return;
2083
2084 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2085 if (!new_ie)
2086 return;
2087
2088 profile = kmalloc(ielen, gfp);
2089 if (!profile)
2090 goto out;
2091
2092 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2093 if (elem->datalen < 4)
2094 continue;
2095 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2096 u8 profile_len;
2097
2098 if (sub->id != 0 || sub->datalen < 4) {
2099 /* not a valid BSS profile */
2100 continue;
2101 }
2102
2103 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2104 sub->data[1] != 2) {
2105 /* The first element within the Nontransmitted
2106 * BSSID Profile is not the Nontransmitted
2107 * BSSID Capability element.
2108 */
2109 continue;
2110 }
2111
2112 memset(profile, 0, ielen);
2113 profile_len = cfg80211_merge_profile(ie, ielen,
2114 elem,
2115 sub,
2116 profile,
2117 ielen);
2118
2119 /* found a Nontransmitted BSSID Profile */
2120 mbssid_index_ie = cfg80211_find_ie
2121 (WLAN_EID_MULTI_BSSID_IDX,
2122 profile, profile_len);
2123 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2124 mbssid_index_ie[2] == 0 ||
2125 mbssid_index_ie[2] > 46) {
2126 /* No valid Multiple BSSID-Index element */
2127 continue;
2128 }
2129
2130 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2131 /* We don't support legacy split of a profile */
2132 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2133 mbssid_index_ie[2]);
2134
2135 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2136
2137 non_tx_data->bssid_index = mbssid_index_ie[2];
2138 non_tx_data->max_bssid_indicator = elem->data[0];
2139
2140 cfg80211_gen_new_bssid(bssid,
2141 non_tx_data->max_bssid_indicator,
2142 non_tx_data->bssid_index,
2143 new_bssid);
2144 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2145 new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2146 profile,
2147 profile_len, new_ie,
2148 gfp);
2149 if (!new_ie_len)
2150 continue;
2151
2152 capability = get_unaligned_le16(profile + 2);
2153 bss = cfg80211_inform_single_bss_data(wiphy, data,
2154 ftype,
2155 new_bssid, tsf,
2156 capability,
2157 beacon_interval,
2158 new_ie,
2159 new_ie_len,
2160 non_tx_data,
2161 gfp);
2162 if (!bss)
2163 break;
2164 cfg80211_put_bss(wiphy, bss);
2165 }
2166 }
2167
2168out:
2169 kfree(new_ie);
2170 kfree(profile);
2171}
2172
2173struct cfg80211_bss *
2174cfg80211_inform_bss_data(struct wiphy *wiphy,
2175 struct cfg80211_inform_bss *data,
2176 enum cfg80211_bss_frame_type ftype,
2177 const u8 *bssid, u64 tsf, u16 capability,
2178 u16 beacon_interval, const u8 *ie, size_t ielen,
2179 gfp_t gfp)
2180{
2181 struct cfg80211_bss *res;
2182 struct cfg80211_non_tx_bss non_tx_data;
2183
2184 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2185 capability, beacon_interval, ie,
2186 ielen, NULL, gfp);
2187 if (!res)
2188 return NULL;
2189 non_tx_data.tx_bss = res;
2190 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2191 beacon_interval, ie, ielen, &non_tx_data,
2192 gfp);
2193 return res;
2194}
2195EXPORT_SYMBOL(cfg80211_inform_bss_data);
2196
2197static void
2198cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2199 struct cfg80211_inform_bss *data,
2200 struct ieee80211_mgmt *mgmt, size_t len,
2201 struct cfg80211_non_tx_bss *non_tx_data,
2202 gfp_t gfp)
2203{
2204 enum cfg80211_bss_frame_type ftype;
2205 const u8 *ie = mgmt->u.probe_resp.variable;
2206 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2207 u.probe_resp.variable);
2208
2209 ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2210 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2211
2212 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2213 le64_to_cpu(mgmt->u.probe_resp.timestamp),
2214 le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2215 ie, ielen, non_tx_data, gfp);
2216}
2217
2218static void
2219cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2220 struct cfg80211_bss *nontrans_bss,
2221 struct ieee80211_mgmt *mgmt, size_t len)
2222{
2223 u8 *ie, *new_ie, *pos;
2224 const u8 *nontrans_ssid, *trans_ssid, *mbssid;
2225 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2226 u.probe_resp.variable);
2227 size_t new_ie_len;
2228 struct cfg80211_bss_ies *new_ies;
2229 const struct cfg80211_bss_ies *old;
2230 u8 cpy_len;
2231
2232 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2233
2234 ie = mgmt->u.probe_resp.variable;
2235
2236 new_ie_len = ielen;
2237 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2238 if (!trans_ssid)
2239 return;
2240 new_ie_len -= trans_ssid[1];
2241 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2242 /*
2243 * It's not valid to have the MBSSID element before SSID
2244 * ignore if that happens - the code below assumes it is
2245 * after (while copying things inbetween).
2246 */
2247 if (!mbssid || mbssid < trans_ssid)
2248 return;
2249 new_ie_len -= mbssid[1];
2250
2251 nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
2252 if (!nontrans_ssid)
2253 return;
2254
2255 new_ie_len += nontrans_ssid[1];
2256
2257 /* generate new ie for nontrans BSS
2258 * 1. replace SSID with nontrans BSS' SSID
2259 * 2. skip MBSSID IE
2260 */
2261 new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2262 if (!new_ie)
2263 return;
2264
2265 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2266 if (!new_ies)
2267 goto out_free;
2268
2269 pos = new_ie;
2270
2271 /* copy the nontransmitted SSID */
2272 cpy_len = nontrans_ssid[1] + 2;
2273 memcpy(pos, nontrans_ssid, cpy_len);
2274 pos += cpy_len;
2275 /* copy the IEs between SSID and MBSSID */
2276 cpy_len = trans_ssid[1] + 2;
2277 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2278 pos += (mbssid - (trans_ssid + cpy_len));
2279 /* copy the IEs after MBSSID */
2280 cpy_len = mbssid[1] + 2;
2281 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2282
2283 /* update ie */
2284 new_ies->len = new_ie_len;
2285 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2286 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2287 memcpy(new_ies->data, new_ie, new_ie_len);
2288 if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2289 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2290 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2291 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2292 if (old)
2293 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2294 } else {
2295 old = rcu_access_pointer(nontrans_bss->beacon_ies);
2296 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2297 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2298 if (old)
2299 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2300 }
2301
2302out_free:
2303 kfree(new_ie);
2304}
2305
2306/* cfg80211_inform_bss_width_frame helper */
2307static struct cfg80211_bss *
2308cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2309 struct cfg80211_inform_bss *data,
2310 struct ieee80211_mgmt *mgmt, size_t len,
2311 gfp_t gfp)
2312{
2313 struct cfg80211_internal_bss tmp = {}, *res;
2314 struct cfg80211_bss_ies *ies;
2315 struct ieee80211_channel *channel;
2316 bool signal_valid;
2317 struct ieee80211_ext *ext = NULL;
2318 u8 *bssid, *variable;
2319 u16 capability, beacon_int;
2320 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2321 u.probe_resp.variable);
2322 int bss_type;
2323
2324 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2325 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2326
2327 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2328
2329 if (WARN_ON(!mgmt))
2330 return NULL;
2331
2332 if (WARN_ON(!wiphy))
2333 return NULL;
2334
2335 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2336 (data->signal < 0 || data->signal > 100)))
2337 return NULL;
2338
2339 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2340 ext = (void *) mgmt;
2341 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2342 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2343 min_hdr_len = offsetof(struct ieee80211_ext,
2344 u.s1g_short_beacon.variable);
2345 }
2346
2347 if (WARN_ON(len < min_hdr_len))
2348 return NULL;
2349
2350 ielen = len - min_hdr_len;
2351 variable = mgmt->u.probe_resp.variable;
2352 if (ext) {
2353 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2354 variable = ext->u.s1g_short_beacon.variable;
2355 else
2356 variable = ext->u.s1g_beacon.variable;
2357 }
2358
2359 channel = cfg80211_get_bss_channel(wiphy, variable,
2360 ielen, data->chan, data->scan_width);
2361 if (!channel)
2362 return NULL;
2363
2364 if (ext) {
2365 const struct ieee80211_s1g_bcn_compat_ie *compat;
2366 const struct element *elem;
2367
2368 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2369 variable, ielen);
2370 if (!elem)
2371 return NULL;
2372 if (elem->datalen < sizeof(*compat))
2373 return NULL;
2374 compat = (void *)elem->data;
2375 bssid = ext->u.s1g_beacon.sa;
2376 capability = le16_to_cpu(compat->compat_info);
2377 beacon_int = le16_to_cpu(compat->beacon_int);
2378 } else {
2379 bssid = mgmt->bssid;
2380 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2381 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2382 }
2383
2384 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2385 if (!ies)
2386 return NULL;
2387 ies->len = ielen;
2388 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2389 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2390 ieee80211_is_s1g_beacon(mgmt->frame_control);
2391 memcpy(ies->data, variable, ielen);
2392
2393 if (ieee80211_is_probe_resp(mgmt->frame_control))
2394 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2395 else
2396 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2397 rcu_assign_pointer(tmp.pub.ies, ies);
2398
2399 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2400 tmp.pub.beacon_interval = beacon_int;
2401 tmp.pub.capability = capability;
2402 tmp.pub.channel = channel;
2403 tmp.pub.scan_width = data->scan_width;
2404 tmp.pub.signal = data->signal;
2405 tmp.ts_boottime = data->boottime_ns;
2406 tmp.parent_tsf = data->parent_tsf;
2407 tmp.pub.chains = data->chains;
2408 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2409 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2410
2411 signal_valid = data->chan == channel;
2412 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2413 jiffies);
2414 if (!res)
2415 return NULL;
2416
2417 if (channel->band == NL80211_BAND_60GHZ) {
2418 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2419 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2420 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2421 regulatory_hint_found_beacon(wiphy, channel, gfp);
2422 } else {
2423 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2424 regulatory_hint_found_beacon(wiphy, channel, gfp);
2425 }
2426
2427 trace_cfg80211_return_bss(&res->pub);
2428 /* cfg80211_bss_update gives us a referenced result */
2429 return &res->pub;
2430}
2431
2432struct cfg80211_bss *
2433cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2434 struct cfg80211_inform_bss *data,
2435 struct ieee80211_mgmt *mgmt, size_t len,
2436 gfp_t gfp)
2437{
2438 struct cfg80211_bss *res, *tmp_bss;
2439 const u8 *ie = mgmt->u.probe_resp.variable;
2440 const struct cfg80211_bss_ies *ies1, *ies2;
2441 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2442 u.probe_resp.variable);
2443 struct cfg80211_non_tx_bss non_tx_data;
2444
2445 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2446 len, gfp);
2447 if (!res || !wiphy->support_mbssid ||
2448 !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2449 return res;
2450 if (wiphy->support_only_he_mbssid &&
2451 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2452 return res;
2453
2454 non_tx_data.tx_bss = res;
2455 /* process each non-transmitting bss */
2456 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2457 &non_tx_data, gfp);
2458
2459 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2460
2461 /* check if the res has other nontransmitting bss which is not
2462 * in MBSSID IE
2463 */
2464 ies1 = rcu_access_pointer(res->ies);
2465
2466 /* go through nontrans_list, if the timestamp of the BSS is
2467 * earlier than the timestamp of the transmitting BSS then
2468 * update it
2469 */
2470 list_for_each_entry(tmp_bss, &res->nontrans_list,
2471 nontrans_list) {
2472 ies2 = rcu_access_pointer(tmp_bss->ies);
2473 if (ies2->tsf < ies1->tsf)
2474 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2475 mgmt, len);
2476 }
2477 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2478
2479 return res;
2480}
2481EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2482
2483void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2484{
2485 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2486 struct cfg80211_internal_bss *bss;
2487
2488 if (!pub)
2489 return;
2490
2491 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2492
2493 spin_lock_bh(&rdev->bss_lock);
2494 bss_ref_get(rdev, bss);
2495 spin_unlock_bh(&rdev->bss_lock);
2496}
2497EXPORT_SYMBOL(cfg80211_ref_bss);
2498
2499void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2500{
2501 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2502 struct cfg80211_internal_bss *bss;
2503
2504 if (!pub)
2505 return;
2506
2507 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2508
2509 spin_lock_bh(&rdev->bss_lock);
2510 bss_ref_put(rdev, bss);
2511 spin_unlock_bh(&rdev->bss_lock);
2512}
2513EXPORT_SYMBOL(cfg80211_put_bss);
2514
2515void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2516{
2517 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2518 struct cfg80211_internal_bss *bss, *tmp1;
2519 struct cfg80211_bss *nontrans_bss, *tmp;
2520
2521 if (WARN_ON(!pub))
2522 return;
2523
2524 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2525
2526 spin_lock_bh(&rdev->bss_lock);
2527 if (list_empty(&bss->list))
2528 goto out;
2529
2530 list_for_each_entry_safe(nontrans_bss, tmp,
2531 &pub->nontrans_list,
2532 nontrans_list) {
2533 tmp1 = container_of(nontrans_bss,
2534 struct cfg80211_internal_bss, pub);
2535 if (__cfg80211_unlink_bss(rdev, tmp1))
2536 rdev->bss_generation++;
2537 }
2538
2539 if (__cfg80211_unlink_bss(rdev, bss))
2540 rdev->bss_generation++;
2541out:
2542 spin_unlock_bh(&rdev->bss_lock);
2543}
2544EXPORT_SYMBOL(cfg80211_unlink_bss);
2545
2546void cfg80211_bss_iter(struct wiphy *wiphy,
2547 struct cfg80211_chan_def *chandef,
2548 void (*iter)(struct wiphy *wiphy,
2549 struct cfg80211_bss *bss,
2550 void *data),
2551 void *iter_data)
2552{
2553 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2554 struct cfg80211_internal_bss *bss;
2555
2556 spin_lock_bh(&rdev->bss_lock);
2557
2558 list_for_each_entry(bss, &rdev->bss_list, list) {
2559 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2560 iter(wiphy, &bss->pub, iter_data);
2561 }
2562
2563 spin_unlock_bh(&rdev->bss_lock);
2564}
2565EXPORT_SYMBOL(cfg80211_bss_iter);
2566
2567void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2568 struct ieee80211_channel *chan)
2569{
2570 struct wiphy *wiphy = wdev->wiphy;
2571 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2572 struct cfg80211_internal_bss *cbss = wdev->current_bss;
2573 struct cfg80211_internal_bss *new = NULL;
2574 struct cfg80211_internal_bss *bss;
2575 struct cfg80211_bss *nontrans_bss;
2576 struct cfg80211_bss *tmp;
2577
2578 spin_lock_bh(&rdev->bss_lock);
2579
2580 /*
2581 * Some APs use CSA also for bandwidth changes, i.e., without actually
2582 * changing the control channel, so no need to update in such a case.
2583 */
2584 if (cbss->pub.channel == chan)
2585 goto done;
2586
2587 /* use transmitting bss */
2588 if (cbss->pub.transmitted_bss)
2589 cbss = container_of(cbss->pub.transmitted_bss,
2590 struct cfg80211_internal_bss,
2591 pub);
2592
2593 cbss->pub.channel = chan;
2594
2595 list_for_each_entry(bss, &rdev->bss_list, list) {
2596 if (!cfg80211_bss_type_match(bss->pub.capability,
2597 bss->pub.channel->band,
2598 wdev->conn_bss_type))
2599 continue;
2600
2601 if (bss == cbss)
2602 continue;
2603
2604 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2605 new = bss;
2606 break;
2607 }
2608 }
2609
2610 if (new) {
2611 /* to save time, update IEs for transmitting bss only */
2612 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2613 new->pub.proberesp_ies = NULL;
2614 new->pub.beacon_ies = NULL;
2615 }
2616
2617 list_for_each_entry_safe(nontrans_bss, tmp,
2618 &new->pub.nontrans_list,
2619 nontrans_list) {
2620 bss = container_of(nontrans_bss,
2621 struct cfg80211_internal_bss, pub);
2622 if (__cfg80211_unlink_bss(rdev, bss))
2623 rdev->bss_generation++;
2624 }
2625
2626 WARN_ON(atomic_read(&new->hold));
2627 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2628 rdev->bss_generation++;
2629 }
2630
2631 rb_erase(&cbss->rbn, &rdev->bss_tree);
2632 rb_insert_bss(rdev, cbss);
2633 rdev->bss_generation++;
2634
2635 list_for_each_entry_safe(nontrans_bss, tmp,
2636 &cbss->pub.nontrans_list,
2637 nontrans_list) {
2638 bss = container_of(nontrans_bss,
2639 struct cfg80211_internal_bss, pub);
2640 bss->pub.channel = chan;
2641 rb_erase(&bss->rbn, &rdev->bss_tree);
2642 rb_insert_bss(rdev, bss);
2643 rdev->bss_generation++;
2644 }
2645
2646done:
2647 spin_unlock_bh(&rdev->bss_lock);
2648}
2649
2650#ifdef CONFIG_CFG80211_WEXT
2651static struct cfg80211_registered_device *
2652cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2653{
2654 struct cfg80211_registered_device *rdev;
2655 struct net_device *dev;
2656
2657 ASSERT_RTNL();
2658
2659 dev = dev_get_by_index(net, ifindex);
2660 if (!dev)
2661 return ERR_PTR(-ENODEV);
2662 if (dev->ieee80211_ptr)
2663 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2664 else
2665 rdev = ERR_PTR(-ENODEV);
2666 dev_put(dev);
2667 return rdev;
2668}
2669
2670int cfg80211_wext_siwscan(struct net_device *dev,
2671 struct iw_request_info *info,
2672 union iwreq_data *wrqu, char *extra)
2673{
2674 struct cfg80211_registered_device *rdev;
2675 struct wiphy *wiphy;
2676 struct iw_scan_req *wreq = NULL;
2677 struct cfg80211_scan_request *creq = NULL;
2678 int i, err, n_channels = 0;
2679 enum nl80211_band band;
2680
2681 if (!netif_running(dev))
2682 return -ENETDOWN;
2683
2684 if (wrqu->data.length == sizeof(struct iw_scan_req))
2685 wreq = (struct iw_scan_req *)extra;
2686
2687 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2688
2689 if (IS_ERR(rdev))
2690 return PTR_ERR(rdev);
2691
2692 if (rdev->scan_req || rdev->scan_msg) {
2693 err = -EBUSY;
2694 goto out;
2695 }
2696
2697 wiphy = &rdev->wiphy;
2698
2699 /* Determine number of channels, needed to allocate creq */
2700 if (wreq && wreq->num_channels)
2701 n_channels = wreq->num_channels;
2702 else
2703 n_channels = ieee80211_get_num_supported_channels(wiphy);
2704
2705 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2706 n_channels * sizeof(void *),
2707 GFP_ATOMIC);
2708 if (!creq) {
2709 err = -ENOMEM;
2710 goto out;
2711 }
2712
2713 creq->wiphy = wiphy;
2714 creq->wdev = dev->ieee80211_ptr;
2715 /* SSIDs come after channels */
2716 creq->ssids = (void *)&creq->channels[n_channels];
2717 creq->n_channels = n_channels;
2718 creq->n_ssids = 1;
2719 creq->scan_start = jiffies;
2720
2721 /* translate "Scan on frequencies" request */
2722 i = 0;
2723 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2724 int j;
2725
2726 if (!wiphy->bands[band])
2727 continue;
2728
2729 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2730 /* ignore disabled channels */
2731 if (wiphy->bands[band]->channels[j].flags &
2732 IEEE80211_CHAN_DISABLED)
2733 continue;
2734
2735 /* If we have a wireless request structure and the
2736 * wireless request specifies frequencies, then search
2737 * for the matching hardware channel.
2738 */
2739 if (wreq && wreq->num_channels) {
2740 int k;
2741 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2742 for (k = 0; k < wreq->num_channels; k++) {
2743 struct iw_freq *freq =
2744 &wreq->channel_list[k];
2745 int wext_freq =
2746 cfg80211_wext_freq(freq);
2747
2748 if (wext_freq == wiphy_freq)
2749 goto wext_freq_found;
2750 }
2751 goto wext_freq_not_found;
2752 }
2753
2754 wext_freq_found:
2755 creq->channels[i] = &wiphy->bands[band]->channels[j];
2756 i++;
2757 wext_freq_not_found: ;
2758 }
2759 }
2760 /* No channels found? */
2761 if (!i) {
2762 err = -EINVAL;
2763 goto out;
2764 }
2765
2766 /* Set real number of channels specified in creq->channels[] */
2767 creq->n_channels = i;
2768
2769 /* translate "Scan for SSID" request */
2770 if (wreq) {
2771 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2772 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2773 err = -EINVAL;
2774 goto out;
2775 }
2776 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2777 creq->ssids[0].ssid_len = wreq->essid_len;
2778 }
2779 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2780 creq->n_ssids = 0;
2781 }
2782
2783 for (i = 0; i < NUM_NL80211_BANDS; i++)
2784 if (wiphy->bands[i])
2785 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2786
2787 eth_broadcast_addr(creq->bssid);
2788
2789 wiphy_lock(&rdev->wiphy);
2790
2791 rdev->scan_req = creq;
2792 err = rdev_scan(rdev, creq);
2793 if (err) {
2794 rdev->scan_req = NULL;
2795 /* creq will be freed below */
2796 } else {
2797 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2798 /* creq now owned by driver */
2799 creq = NULL;
2800 dev_hold(dev);
2801 }
2802 wiphy_unlock(&rdev->wiphy);
2803 out:
2804 kfree(creq);
2805 return err;
2806}
2807EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2808
2809static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2810 const struct cfg80211_bss_ies *ies,
2811 char *current_ev, char *end_buf)
2812{
2813 const u8 *pos, *end, *next;
2814 struct iw_event iwe;
2815
2816 if (!ies)
2817 return current_ev;
2818
2819 /*
2820 * If needed, fragment the IEs buffer (at IE boundaries) into short
2821 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2822 */
2823 pos = ies->data;
2824 end = pos + ies->len;
2825
2826 while (end - pos > IW_GENERIC_IE_MAX) {
2827 next = pos + 2 + pos[1];
2828 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2829 next = next + 2 + next[1];
2830
2831 memset(&iwe, 0, sizeof(iwe));
2832 iwe.cmd = IWEVGENIE;
2833 iwe.u.data.length = next - pos;
2834 current_ev = iwe_stream_add_point_check(info, current_ev,
2835 end_buf, &iwe,
2836 (void *)pos);
2837 if (IS_ERR(current_ev))
2838 return current_ev;
2839 pos = next;
2840 }
2841
2842 if (end > pos) {
2843 memset(&iwe, 0, sizeof(iwe));
2844 iwe.cmd = IWEVGENIE;
2845 iwe.u.data.length = end - pos;
2846 current_ev = iwe_stream_add_point_check(info, current_ev,
2847 end_buf, &iwe,
2848 (void *)pos);
2849 if (IS_ERR(current_ev))
2850 return current_ev;
2851 }
2852
2853 return current_ev;
2854}
2855
2856static char *
2857ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2858 struct cfg80211_internal_bss *bss, char *current_ev,
2859 char *end_buf)
2860{
2861 const struct cfg80211_bss_ies *ies;
2862 struct iw_event iwe;
2863 const u8 *ie;
2864 u8 buf[50];
2865 u8 *cfg, *p, *tmp;
2866 int rem, i, sig;
2867 bool ismesh = false;
2868
2869 memset(&iwe, 0, sizeof(iwe));
2870 iwe.cmd = SIOCGIWAP;
2871 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2872 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2873 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2874 IW_EV_ADDR_LEN);
2875 if (IS_ERR(current_ev))
2876 return current_ev;
2877
2878 memset(&iwe, 0, sizeof(iwe));
2879 iwe.cmd = SIOCGIWFREQ;
2880 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2881 iwe.u.freq.e = 0;
2882 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2883 IW_EV_FREQ_LEN);
2884 if (IS_ERR(current_ev))
2885 return current_ev;
2886
2887 memset(&iwe, 0, sizeof(iwe));
2888 iwe.cmd = SIOCGIWFREQ;
2889 iwe.u.freq.m = bss->pub.channel->center_freq;
2890 iwe.u.freq.e = 6;
2891 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2892 IW_EV_FREQ_LEN);
2893 if (IS_ERR(current_ev))
2894 return current_ev;
2895
2896 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2897 memset(&iwe, 0, sizeof(iwe));
2898 iwe.cmd = IWEVQUAL;
2899 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2900 IW_QUAL_NOISE_INVALID |
2901 IW_QUAL_QUAL_UPDATED;
2902 switch (wiphy->signal_type) {
2903 case CFG80211_SIGNAL_TYPE_MBM:
2904 sig = bss->pub.signal / 100;
2905 iwe.u.qual.level = sig;
2906 iwe.u.qual.updated |= IW_QUAL_DBM;
2907 if (sig < -110) /* rather bad */
2908 sig = -110;
2909 else if (sig > -40) /* perfect */
2910 sig = -40;
2911 /* will give a range of 0 .. 70 */
2912 iwe.u.qual.qual = sig + 110;
2913 break;
2914 case CFG80211_SIGNAL_TYPE_UNSPEC:
2915 iwe.u.qual.level = bss->pub.signal;
2916 /* will give range 0 .. 100 */
2917 iwe.u.qual.qual = bss->pub.signal;
2918 break;
2919 default:
2920 /* not reached */
2921 break;
2922 }
2923 current_ev = iwe_stream_add_event_check(info, current_ev,
2924 end_buf, &iwe,
2925 IW_EV_QUAL_LEN);
2926 if (IS_ERR(current_ev))
2927 return current_ev;
2928 }
2929
2930 memset(&iwe, 0, sizeof(iwe));
2931 iwe.cmd = SIOCGIWENCODE;
2932 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2933 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2934 else
2935 iwe.u.data.flags = IW_ENCODE_DISABLED;
2936 iwe.u.data.length = 0;
2937 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2938 &iwe, "");
2939 if (IS_ERR(current_ev))
2940 return current_ev;
2941
2942 rcu_read_lock();
2943 ies = rcu_dereference(bss->pub.ies);
2944 rem = ies->len;
2945 ie = ies->data;
2946
2947 while (rem >= 2) {
2948 /* invalid data */
2949 if (ie[1] > rem - 2)
2950 break;
2951
2952 switch (ie[0]) {
2953 case WLAN_EID_SSID:
2954 memset(&iwe, 0, sizeof(iwe));
2955 iwe.cmd = SIOCGIWESSID;
2956 iwe.u.data.length = ie[1];
2957 iwe.u.data.flags = 1;
2958 current_ev = iwe_stream_add_point_check(info,
2959 current_ev,
2960 end_buf, &iwe,
2961 (u8 *)ie + 2);
2962 if (IS_ERR(current_ev))
2963 goto unlock;
2964 break;
2965 case WLAN_EID_MESH_ID:
2966 memset(&iwe, 0, sizeof(iwe));
2967 iwe.cmd = SIOCGIWESSID;
2968 iwe.u.data.length = ie[1];
2969 iwe.u.data.flags = 1;
2970 current_ev = iwe_stream_add_point_check(info,
2971 current_ev,
2972 end_buf, &iwe,
2973 (u8 *)ie + 2);
2974 if (IS_ERR(current_ev))
2975 goto unlock;
2976 break;
2977 case WLAN_EID_MESH_CONFIG:
2978 ismesh = true;
2979 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2980 break;
2981 cfg = (u8 *)ie + 2;
2982 memset(&iwe, 0, sizeof(iwe));
2983 iwe.cmd = IWEVCUSTOM;
2984 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2985 "0x%02X", cfg[0]);
2986 iwe.u.data.length = strlen(buf);
2987 current_ev = iwe_stream_add_point_check(info,
2988 current_ev,
2989 end_buf,
2990 &iwe, buf);
2991 if (IS_ERR(current_ev))
2992 goto unlock;
2993 sprintf(buf, "Path Selection Metric ID: 0x%02X",
2994 cfg[1]);
2995 iwe.u.data.length = strlen(buf);
2996 current_ev = iwe_stream_add_point_check(info,
2997 current_ev,
2998 end_buf,
2999 &iwe, buf);
3000 if (IS_ERR(current_ev))
3001 goto unlock;
3002 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3003 cfg[2]);
3004 iwe.u.data.length = strlen(buf);
3005 current_ev = iwe_stream_add_point_check(info,
3006 current_ev,
3007 end_buf,
3008 &iwe, buf);
3009 if (IS_ERR(current_ev))
3010 goto unlock;
3011 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3012 iwe.u.data.length = strlen(buf);
3013 current_ev = iwe_stream_add_point_check(info,
3014 current_ev,
3015 end_buf,
3016 &iwe, buf);
3017 if (IS_ERR(current_ev))
3018 goto unlock;
3019 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3020 iwe.u.data.length = strlen(buf);
3021 current_ev = iwe_stream_add_point_check(info,
3022 current_ev,
3023 end_buf,
3024 &iwe, buf);
3025 if (IS_ERR(current_ev))
3026 goto unlock;
3027 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3028 iwe.u.data.length = strlen(buf);
3029 current_ev = iwe_stream_add_point_check(info,
3030 current_ev,
3031 end_buf,
3032 &iwe, buf);
3033 if (IS_ERR(current_ev))
3034 goto unlock;
3035 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3036 iwe.u.data.length = strlen(buf);
3037 current_ev = iwe_stream_add_point_check(info,
3038 current_ev,
3039 end_buf,
3040 &iwe, buf);
3041 if (IS_ERR(current_ev))
3042 goto unlock;
3043 break;
3044 case WLAN_EID_SUPP_RATES:
3045 case WLAN_EID_EXT_SUPP_RATES:
3046 /* display all supported rates in readable format */
3047 p = current_ev + iwe_stream_lcp_len(info);
3048
3049 memset(&iwe, 0, sizeof(iwe));
3050 iwe.cmd = SIOCGIWRATE;
3051 /* Those two flags are ignored... */
3052 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3053
3054 for (i = 0; i < ie[1]; i++) {
3055 iwe.u.bitrate.value =
3056 ((ie[i + 2] & 0x7f) * 500000);
3057 tmp = p;
3058 p = iwe_stream_add_value(info, current_ev, p,
3059 end_buf, &iwe,
3060 IW_EV_PARAM_LEN);
3061 if (p == tmp) {
3062 current_ev = ERR_PTR(-E2BIG);
3063 goto unlock;
3064 }
3065 }
3066 current_ev = p;
3067 break;
3068 }
3069 rem -= ie[1] + 2;
3070 ie += ie[1] + 2;
3071 }
3072
3073 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3074 ismesh) {
3075 memset(&iwe, 0, sizeof(iwe));
3076 iwe.cmd = SIOCGIWMODE;
3077 if (ismesh)
3078 iwe.u.mode = IW_MODE_MESH;
3079 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3080 iwe.u.mode = IW_MODE_MASTER;
3081 else
3082 iwe.u.mode = IW_MODE_ADHOC;
3083 current_ev = iwe_stream_add_event_check(info, current_ev,
3084 end_buf, &iwe,
3085 IW_EV_UINT_LEN);
3086 if (IS_ERR(current_ev))
3087 goto unlock;
3088 }
3089
3090 memset(&iwe, 0, sizeof(iwe));
3091 iwe.cmd = IWEVCUSTOM;
3092 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3093 iwe.u.data.length = strlen(buf);
3094 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3095 &iwe, buf);
3096 if (IS_ERR(current_ev))
3097 goto unlock;
3098 memset(&iwe, 0, sizeof(iwe));
3099 iwe.cmd = IWEVCUSTOM;
3100 sprintf(buf, " Last beacon: %ums ago",
3101 elapsed_jiffies_msecs(bss->ts));
3102 iwe.u.data.length = strlen(buf);
3103 current_ev = iwe_stream_add_point_check(info, current_ev,
3104 end_buf, &iwe, buf);
3105 if (IS_ERR(current_ev))
3106 goto unlock;
3107
3108 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3109
3110 unlock:
3111 rcu_read_unlock();
3112 return current_ev;
3113}
3114
3115
3116static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3117 struct iw_request_info *info,
3118 char *buf, size_t len)
3119{
3120 char *current_ev = buf;
3121 char *end_buf = buf + len;
3122 struct cfg80211_internal_bss *bss;
3123 int err = 0;
3124
3125 spin_lock_bh(&rdev->bss_lock);
3126 cfg80211_bss_expire(rdev);
3127
3128 list_for_each_entry(bss, &rdev->bss_list, list) {
3129 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3130 err = -E2BIG;
3131 break;
3132 }
3133 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3134 current_ev, end_buf);
3135 if (IS_ERR(current_ev)) {
3136 err = PTR_ERR(current_ev);
3137 break;
3138 }
3139 }
3140 spin_unlock_bh(&rdev->bss_lock);
3141
3142 if (err)
3143 return err;
3144 return current_ev - buf;
3145}
3146
3147
3148int cfg80211_wext_giwscan(struct net_device *dev,
3149 struct iw_request_info *info,
3150 struct iw_point *data, char *extra)
3151{
3152 struct cfg80211_registered_device *rdev;
3153 int res;
3154
3155 if (!netif_running(dev))
3156 return -ENETDOWN;
3157
3158 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3159
3160 if (IS_ERR(rdev))
3161 return PTR_ERR(rdev);
3162
3163 if (rdev->scan_req || rdev->scan_msg)
3164 return -EAGAIN;
3165
3166 res = ieee80211_scan_results(rdev, info, extra, data->length);
3167 data->length = 0;
3168 if (res >= 0) {
3169 data->length = res;
3170 res = 0;
3171 }
3172
3173 return res;
3174}
3175EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3176#endif
1/*
2 * cfg80211 scan result handling
3 *
4 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2013-2014 Intel Mobile Communications GmbH
6 */
7#include <linux/kernel.h>
8#include <linux/slab.h>
9#include <linux/module.h>
10#include <linux/netdevice.h>
11#include <linux/wireless.h>
12#include <linux/nl80211.h>
13#include <linux/etherdevice.h>
14#include <net/arp.h>
15#include <net/cfg80211.h>
16#include <net/cfg80211-wext.h>
17#include <net/iw_handler.h>
18#include "core.h"
19#include "nl80211.h"
20#include "wext-compat.h"
21#include "rdev-ops.h"
22
23/**
24 * DOC: BSS tree/list structure
25 *
26 * At the top level, the BSS list is kept in both a list in each
27 * registered device (@bss_list) as well as an RB-tree for faster
28 * lookup. In the RB-tree, entries can be looked up using their
29 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
30 * for other BSSes.
31 *
32 * Due to the possibility of hidden SSIDs, there's a second level
33 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
34 * The hidden_list connects all BSSes belonging to a single AP
35 * that has a hidden SSID, and connects beacon and probe response
36 * entries. For a probe response entry for a hidden SSID, the
37 * hidden_beacon_bss pointer points to the BSS struct holding the
38 * beacon's information.
39 *
40 * Reference counting is done for all these references except for
41 * the hidden_list, so that a beacon BSS struct that is otherwise
42 * not referenced has one reference for being on the bss_list and
43 * one for each probe response entry that points to it using the
44 * hidden_beacon_bss pointer. When a BSS struct that has such a
45 * pointer is get/put, the refcount update is also propagated to
46 * the referenced struct, this ensure that it cannot get removed
47 * while somebody is using the probe response version.
48 *
49 * Note that the hidden_beacon_bss pointer never changes, due to
50 * the reference counting. Therefore, no locking is needed for
51 * it.
52 *
53 * Also note that the hidden_beacon_bss pointer is only relevant
54 * if the driver uses something other than the IEs, e.g. private
55 * data stored stored in the BSS struct, since the beacon IEs are
56 * also linked into the probe response struct.
57 */
58
59#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
60
61static void bss_free(struct cfg80211_internal_bss *bss)
62{
63 struct cfg80211_bss_ies *ies;
64
65 if (WARN_ON(atomic_read(&bss->hold)))
66 return;
67
68 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
69 if (ies && !bss->pub.hidden_beacon_bss)
70 kfree_rcu(ies, rcu_head);
71 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
72 if (ies)
73 kfree_rcu(ies, rcu_head);
74
75 /*
76 * This happens when the module is removed, it doesn't
77 * really matter any more save for completeness
78 */
79 if (!list_empty(&bss->hidden_list))
80 list_del(&bss->hidden_list);
81
82 kfree(bss);
83}
84
85static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
86 struct cfg80211_internal_bss *bss)
87{
88 lockdep_assert_held(&rdev->bss_lock);
89
90 bss->refcount++;
91 if (bss->pub.hidden_beacon_bss) {
92 bss = container_of(bss->pub.hidden_beacon_bss,
93 struct cfg80211_internal_bss,
94 pub);
95 bss->refcount++;
96 }
97}
98
99static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
100 struct cfg80211_internal_bss *bss)
101{
102 lockdep_assert_held(&rdev->bss_lock);
103
104 if (bss->pub.hidden_beacon_bss) {
105 struct cfg80211_internal_bss *hbss;
106 hbss = container_of(bss->pub.hidden_beacon_bss,
107 struct cfg80211_internal_bss,
108 pub);
109 hbss->refcount--;
110 if (hbss->refcount == 0)
111 bss_free(hbss);
112 }
113 bss->refcount--;
114 if (bss->refcount == 0)
115 bss_free(bss);
116}
117
118static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
119 struct cfg80211_internal_bss *bss)
120{
121 lockdep_assert_held(&rdev->bss_lock);
122
123 if (!list_empty(&bss->hidden_list)) {
124 /*
125 * don't remove the beacon entry if it has
126 * probe responses associated with it
127 */
128 if (!bss->pub.hidden_beacon_bss)
129 return false;
130 /*
131 * if it's a probe response entry break its
132 * link to the other entries in the group
133 */
134 list_del_init(&bss->hidden_list);
135 }
136
137 list_del_init(&bss->list);
138 rb_erase(&bss->rbn, &rdev->bss_tree);
139 bss_ref_put(rdev, bss);
140 return true;
141}
142
143static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
144 unsigned long expire_time)
145{
146 struct cfg80211_internal_bss *bss, *tmp;
147 bool expired = false;
148
149 lockdep_assert_held(&rdev->bss_lock);
150
151 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
152 if (atomic_read(&bss->hold))
153 continue;
154 if (!time_after(expire_time, bss->ts))
155 continue;
156
157 if (__cfg80211_unlink_bss(rdev, bss))
158 expired = true;
159 }
160
161 if (expired)
162 rdev->bss_generation++;
163}
164
165void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
166 bool send_message)
167{
168 struct cfg80211_scan_request *request;
169 struct wireless_dev *wdev;
170 struct sk_buff *msg;
171#ifdef CONFIG_CFG80211_WEXT
172 union iwreq_data wrqu;
173#endif
174
175 ASSERT_RTNL();
176
177 if (rdev->scan_msg) {
178 nl80211_send_scan_result(rdev, rdev->scan_msg);
179 rdev->scan_msg = NULL;
180 return;
181 }
182
183 request = rdev->scan_req;
184 if (!request)
185 return;
186
187 wdev = request->wdev;
188
189 /*
190 * This must be before sending the other events!
191 * Otherwise, wpa_supplicant gets completely confused with
192 * wext events.
193 */
194 if (wdev->netdev)
195 cfg80211_sme_scan_done(wdev->netdev);
196
197 if (!request->aborted &&
198 request->flags & NL80211_SCAN_FLAG_FLUSH) {
199 /* flush entries from previous scans */
200 spin_lock_bh(&rdev->bss_lock);
201 __cfg80211_bss_expire(rdev, request->scan_start);
202 spin_unlock_bh(&rdev->bss_lock);
203 }
204
205 msg = nl80211_build_scan_msg(rdev, wdev, request->aborted);
206
207#ifdef CONFIG_CFG80211_WEXT
208 if (wdev->netdev && !request->aborted) {
209 memset(&wrqu, 0, sizeof(wrqu));
210
211 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
212 }
213#endif
214
215 if (wdev->netdev)
216 dev_put(wdev->netdev);
217
218 rdev->scan_req = NULL;
219 kfree(request);
220
221 if (!send_message)
222 rdev->scan_msg = msg;
223 else
224 nl80211_send_scan_result(rdev, msg);
225}
226
227void __cfg80211_scan_done(struct work_struct *wk)
228{
229 struct cfg80211_registered_device *rdev;
230
231 rdev = container_of(wk, struct cfg80211_registered_device,
232 scan_done_wk);
233
234 rtnl_lock();
235 ___cfg80211_scan_done(rdev, true);
236 rtnl_unlock();
237}
238
239void cfg80211_scan_done(struct cfg80211_scan_request *request, bool aborted)
240{
241 trace_cfg80211_scan_done(request, aborted);
242 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req);
243
244 request->aborted = aborted;
245 request->notified = true;
246 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
247}
248EXPORT_SYMBOL(cfg80211_scan_done);
249
250void __cfg80211_sched_scan_results(struct work_struct *wk)
251{
252 struct cfg80211_registered_device *rdev;
253 struct cfg80211_sched_scan_request *request;
254
255 rdev = container_of(wk, struct cfg80211_registered_device,
256 sched_scan_results_wk);
257
258 rtnl_lock();
259
260 request = rtnl_dereference(rdev->sched_scan_req);
261
262 /* we don't have sched_scan_req anymore if the scan is stopping */
263 if (request) {
264 if (request->flags & NL80211_SCAN_FLAG_FLUSH) {
265 /* flush entries from previous scans */
266 spin_lock_bh(&rdev->bss_lock);
267 __cfg80211_bss_expire(rdev, request->scan_start);
268 spin_unlock_bh(&rdev->bss_lock);
269 request->scan_start = jiffies;
270 }
271 nl80211_send_sched_scan_results(rdev, request->dev);
272 }
273
274 rtnl_unlock();
275}
276
277void cfg80211_sched_scan_results(struct wiphy *wiphy)
278{
279 trace_cfg80211_sched_scan_results(wiphy);
280 /* ignore if we're not scanning */
281
282 if (rcu_access_pointer(wiphy_to_rdev(wiphy)->sched_scan_req))
283 queue_work(cfg80211_wq,
284 &wiphy_to_rdev(wiphy)->sched_scan_results_wk);
285}
286EXPORT_SYMBOL(cfg80211_sched_scan_results);
287
288void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy)
289{
290 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
291
292 ASSERT_RTNL();
293
294 trace_cfg80211_sched_scan_stopped(wiphy);
295
296 __cfg80211_stop_sched_scan(rdev, true);
297}
298EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
299
300void cfg80211_sched_scan_stopped(struct wiphy *wiphy)
301{
302 rtnl_lock();
303 cfg80211_sched_scan_stopped_rtnl(wiphy);
304 rtnl_unlock();
305}
306EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
307
308int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
309 bool driver_initiated)
310{
311 struct cfg80211_sched_scan_request *sched_scan_req;
312 struct net_device *dev;
313
314 ASSERT_RTNL();
315
316 if (!rdev->sched_scan_req)
317 return -ENOENT;
318
319 sched_scan_req = rtnl_dereference(rdev->sched_scan_req);
320 dev = sched_scan_req->dev;
321
322 if (!driver_initiated) {
323 int err = rdev_sched_scan_stop(rdev, dev);
324 if (err)
325 return err;
326 }
327
328 nl80211_send_sched_scan(rdev, dev, NL80211_CMD_SCHED_SCAN_STOPPED);
329
330 RCU_INIT_POINTER(rdev->sched_scan_req, NULL);
331 kfree_rcu(sched_scan_req, rcu_head);
332
333 return 0;
334}
335
336void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
337 unsigned long age_secs)
338{
339 struct cfg80211_internal_bss *bss;
340 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
341
342 spin_lock_bh(&rdev->bss_lock);
343 list_for_each_entry(bss, &rdev->bss_list, list)
344 bss->ts -= age_jiffies;
345 spin_unlock_bh(&rdev->bss_lock);
346}
347
348void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
349{
350 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
351}
352
353const u8 *cfg80211_find_ie(u8 eid, const u8 *ies, int len)
354{
355 while (len > 2 && ies[0] != eid) {
356 len -= ies[1] + 2;
357 ies += ies[1] + 2;
358 }
359 if (len < 2)
360 return NULL;
361 if (len < 2 + ies[1])
362 return NULL;
363 return ies;
364}
365EXPORT_SYMBOL(cfg80211_find_ie);
366
367const u8 *cfg80211_find_vendor_ie(unsigned int oui, u8 oui_type,
368 const u8 *ies, int len)
369{
370 struct ieee80211_vendor_ie *ie;
371 const u8 *pos = ies, *end = ies + len;
372 int ie_oui;
373
374 while (pos < end) {
375 pos = cfg80211_find_ie(WLAN_EID_VENDOR_SPECIFIC, pos,
376 end - pos);
377 if (!pos)
378 return NULL;
379
380 ie = (struct ieee80211_vendor_ie *)pos;
381
382 /* make sure we can access ie->len */
383 BUILD_BUG_ON(offsetof(struct ieee80211_vendor_ie, len) != 1);
384
385 if (ie->len < sizeof(*ie))
386 goto cont;
387
388 ie_oui = ie->oui[0] << 16 | ie->oui[1] << 8 | ie->oui[2];
389 if (ie_oui == oui && ie->oui_type == oui_type)
390 return pos;
391cont:
392 pos += 2 + ie->len;
393 }
394 return NULL;
395}
396EXPORT_SYMBOL(cfg80211_find_vendor_ie);
397
398static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
399 const u8 *ssid, size_t ssid_len)
400{
401 const struct cfg80211_bss_ies *ies;
402 const u8 *ssidie;
403
404 if (bssid && !ether_addr_equal(a->bssid, bssid))
405 return false;
406
407 if (!ssid)
408 return true;
409
410 ies = rcu_access_pointer(a->ies);
411 if (!ies)
412 return false;
413 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
414 if (!ssidie)
415 return false;
416 if (ssidie[1] != ssid_len)
417 return false;
418 return memcmp(ssidie + 2, ssid, ssid_len) == 0;
419}
420
421/**
422 * enum bss_compare_mode - BSS compare mode
423 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
424 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
425 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
426 */
427enum bss_compare_mode {
428 BSS_CMP_REGULAR,
429 BSS_CMP_HIDE_ZLEN,
430 BSS_CMP_HIDE_NUL,
431};
432
433static int cmp_bss(struct cfg80211_bss *a,
434 struct cfg80211_bss *b,
435 enum bss_compare_mode mode)
436{
437 const struct cfg80211_bss_ies *a_ies, *b_ies;
438 const u8 *ie1 = NULL;
439 const u8 *ie2 = NULL;
440 int i, r;
441
442 if (a->channel != b->channel)
443 return b->channel->center_freq - a->channel->center_freq;
444
445 a_ies = rcu_access_pointer(a->ies);
446 if (!a_ies)
447 return -1;
448 b_ies = rcu_access_pointer(b->ies);
449 if (!b_ies)
450 return 1;
451
452 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
453 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
454 a_ies->data, a_ies->len);
455 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
456 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
457 b_ies->data, b_ies->len);
458 if (ie1 && ie2) {
459 int mesh_id_cmp;
460
461 if (ie1[1] == ie2[1])
462 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
463 else
464 mesh_id_cmp = ie2[1] - ie1[1];
465
466 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
467 a_ies->data, a_ies->len);
468 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
469 b_ies->data, b_ies->len);
470 if (ie1 && ie2) {
471 if (mesh_id_cmp)
472 return mesh_id_cmp;
473 if (ie1[1] != ie2[1])
474 return ie2[1] - ie1[1];
475 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
476 }
477 }
478
479 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
480 if (r)
481 return r;
482
483 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
484 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
485
486 if (!ie1 && !ie2)
487 return 0;
488
489 /*
490 * Note that with "hide_ssid", the function returns a match if
491 * the already-present BSS ("b") is a hidden SSID beacon for
492 * the new BSS ("a").
493 */
494
495 /* sort missing IE before (left of) present IE */
496 if (!ie1)
497 return -1;
498 if (!ie2)
499 return 1;
500
501 switch (mode) {
502 case BSS_CMP_HIDE_ZLEN:
503 /*
504 * In ZLEN mode we assume the BSS entry we're
505 * looking for has a zero-length SSID. So if
506 * the one we're looking at right now has that,
507 * return 0. Otherwise, return the difference
508 * in length, but since we're looking for the
509 * 0-length it's really equivalent to returning
510 * the length of the one we're looking at.
511 *
512 * No content comparison is needed as we assume
513 * the content length is zero.
514 */
515 return ie2[1];
516 case BSS_CMP_REGULAR:
517 default:
518 /* sort by length first, then by contents */
519 if (ie1[1] != ie2[1])
520 return ie2[1] - ie1[1];
521 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
522 case BSS_CMP_HIDE_NUL:
523 if (ie1[1] != ie2[1])
524 return ie2[1] - ie1[1];
525 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
526 for (i = 0; i < ie2[1]; i++)
527 if (ie2[i + 2])
528 return -1;
529 return 0;
530 }
531}
532
533static bool cfg80211_bss_type_match(u16 capability,
534 enum ieee80211_band band,
535 enum ieee80211_bss_type bss_type)
536{
537 bool ret = true;
538 u16 mask, val;
539
540 if (bss_type == IEEE80211_BSS_TYPE_ANY)
541 return ret;
542
543 if (band == IEEE80211_BAND_60GHZ) {
544 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
545 switch (bss_type) {
546 case IEEE80211_BSS_TYPE_ESS:
547 val = WLAN_CAPABILITY_DMG_TYPE_AP;
548 break;
549 case IEEE80211_BSS_TYPE_PBSS:
550 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
551 break;
552 case IEEE80211_BSS_TYPE_IBSS:
553 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
554 break;
555 default:
556 return false;
557 }
558 } else {
559 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
560 switch (bss_type) {
561 case IEEE80211_BSS_TYPE_ESS:
562 val = WLAN_CAPABILITY_ESS;
563 break;
564 case IEEE80211_BSS_TYPE_IBSS:
565 val = WLAN_CAPABILITY_IBSS;
566 break;
567 case IEEE80211_BSS_TYPE_MBSS:
568 val = 0;
569 break;
570 default:
571 return false;
572 }
573 }
574
575 ret = ((capability & mask) == val);
576 return ret;
577}
578
579/* Returned bss is reference counted and must be cleaned up appropriately. */
580struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
581 struct ieee80211_channel *channel,
582 const u8 *bssid,
583 const u8 *ssid, size_t ssid_len,
584 enum ieee80211_bss_type bss_type,
585 enum ieee80211_privacy privacy)
586{
587 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
588 struct cfg80211_internal_bss *bss, *res = NULL;
589 unsigned long now = jiffies;
590 int bss_privacy;
591
592 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
593 privacy);
594
595 spin_lock_bh(&rdev->bss_lock);
596
597 list_for_each_entry(bss, &rdev->bss_list, list) {
598 if (!cfg80211_bss_type_match(bss->pub.capability,
599 bss->pub.channel->band, bss_type))
600 continue;
601
602 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
603 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
604 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
605 continue;
606 if (channel && bss->pub.channel != channel)
607 continue;
608 if (!is_valid_ether_addr(bss->pub.bssid))
609 continue;
610 /* Don't get expired BSS structs */
611 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
612 !atomic_read(&bss->hold))
613 continue;
614 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
615 res = bss;
616 bss_ref_get(rdev, res);
617 break;
618 }
619 }
620
621 spin_unlock_bh(&rdev->bss_lock);
622 if (!res)
623 return NULL;
624 trace_cfg80211_return_bss(&res->pub);
625 return &res->pub;
626}
627EXPORT_SYMBOL(cfg80211_get_bss);
628
629static void rb_insert_bss(struct cfg80211_registered_device *rdev,
630 struct cfg80211_internal_bss *bss)
631{
632 struct rb_node **p = &rdev->bss_tree.rb_node;
633 struct rb_node *parent = NULL;
634 struct cfg80211_internal_bss *tbss;
635 int cmp;
636
637 while (*p) {
638 parent = *p;
639 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
640
641 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
642
643 if (WARN_ON(!cmp)) {
644 /* will sort of leak this BSS */
645 return;
646 }
647
648 if (cmp < 0)
649 p = &(*p)->rb_left;
650 else
651 p = &(*p)->rb_right;
652 }
653
654 rb_link_node(&bss->rbn, parent, p);
655 rb_insert_color(&bss->rbn, &rdev->bss_tree);
656}
657
658static struct cfg80211_internal_bss *
659rb_find_bss(struct cfg80211_registered_device *rdev,
660 struct cfg80211_internal_bss *res,
661 enum bss_compare_mode mode)
662{
663 struct rb_node *n = rdev->bss_tree.rb_node;
664 struct cfg80211_internal_bss *bss;
665 int r;
666
667 while (n) {
668 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
669 r = cmp_bss(&res->pub, &bss->pub, mode);
670
671 if (r == 0)
672 return bss;
673 else if (r < 0)
674 n = n->rb_left;
675 else
676 n = n->rb_right;
677 }
678
679 return NULL;
680}
681
682static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
683 struct cfg80211_internal_bss *new)
684{
685 const struct cfg80211_bss_ies *ies;
686 struct cfg80211_internal_bss *bss;
687 const u8 *ie;
688 int i, ssidlen;
689 u8 fold = 0;
690
691 ies = rcu_access_pointer(new->pub.beacon_ies);
692 if (WARN_ON(!ies))
693 return false;
694
695 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
696 if (!ie) {
697 /* nothing to do */
698 return true;
699 }
700
701 ssidlen = ie[1];
702 for (i = 0; i < ssidlen; i++)
703 fold |= ie[2 + i];
704
705 if (fold) {
706 /* not a hidden SSID */
707 return true;
708 }
709
710 /* This is the bad part ... */
711
712 list_for_each_entry(bss, &rdev->bss_list, list) {
713 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
714 continue;
715 if (bss->pub.channel != new->pub.channel)
716 continue;
717 if (bss->pub.scan_width != new->pub.scan_width)
718 continue;
719 if (rcu_access_pointer(bss->pub.beacon_ies))
720 continue;
721 ies = rcu_access_pointer(bss->pub.ies);
722 if (!ies)
723 continue;
724 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
725 if (!ie)
726 continue;
727 if (ssidlen && ie[1] != ssidlen)
728 continue;
729 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
730 continue;
731 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
732 list_del(&bss->hidden_list);
733 /* combine them */
734 list_add(&bss->hidden_list, &new->hidden_list);
735 bss->pub.hidden_beacon_bss = &new->pub;
736 new->refcount += bss->refcount;
737 rcu_assign_pointer(bss->pub.beacon_ies,
738 new->pub.beacon_ies);
739 }
740
741 return true;
742}
743
744/* Returned bss is reference counted and must be cleaned up appropriately. */
745static struct cfg80211_internal_bss *
746cfg80211_bss_update(struct cfg80211_registered_device *rdev,
747 struct cfg80211_internal_bss *tmp,
748 bool signal_valid)
749{
750 struct cfg80211_internal_bss *found = NULL;
751
752 if (WARN_ON(!tmp->pub.channel))
753 return NULL;
754
755 tmp->ts = jiffies;
756
757 spin_lock_bh(&rdev->bss_lock);
758
759 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
760 spin_unlock_bh(&rdev->bss_lock);
761 return NULL;
762 }
763
764 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
765
766 if (found) {
767 /* Update IEs */
768 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
769 const struct cfg80211_bss_ies *old;
770
771 old = rcu_access_pointer(found->pub.proberesp_ies);
772
773 rcu_assign_pointer(found->pub.proberesp_ies,
774 tmp->pub.proberesp_ies);
775 /* Override possible earlier Beacon frame IEs */
776 rcu_assign_pointer(found->pub.ies,
777 tmp->pub.proberesp_ies);
778 if (old)
779 kfree_rcu((struct cfg80211_bss_ies *)old,
780 rcu_head);
781 } else if (rcu_access_pointer(tmp->pub.beacon_ies)) {
782 const struct cfg80211_bss_ies *old;
783 struct cfg80211_internal_bss *bss;
784
785 if (found->pub.hidden_beacon_bss &&
786 !list_empty(&found->hidden_list)) {
787 const struct cfg80211_bss_ies *f;
788
789 /*
790 * The found BSS struct is one of the probe
791 * response members of a group, but we're
792 * receiving a beacon (beacon_ies in the tmp
793 * bss is used). This can only mean that the
794 * AP changed its beacon from not having an
795 * SSID to showing it, which is confusing so
796 * drop this information.
797 */
798
799 f = rcu_access_pointer(tmp->pub.beacon_ies);
800 kfree_rcu((struct cfg80211_bss_ies *)f,
801 rcu_head);
802 goto drop;
803 }
804
805 old = rcu_access_pointer(found->pub.beacon_ies);
806
807 rcu_assign_pointer(found->pub.beacon_ies,
808 tmp->pub.beacon_ies);
809
810 /* Override IEs if they were from a beacon before */
811 if (old == rcu_access_pointer(found->pub.ies))
812 rcu_assign_pointer(found->pub.ies,
813 tmp->pub.beacon_ies);
814
815 /* Assign beacon IEs to all sub entries */
816 list_for_each_entry(bss, &found->hidden_list,
817 hidden_list) {
818 const struct cfg80211_bss_ies *ies;
819
820 ies = rcu_access_pointer(bss->pub.beacon_ies);
821 WARN_ON(ies != old);
822
823 rcu_assign_pointer(bss->pub.beacon_ies,
824 tmp->pub.beacon_ies);
825 }
826
827 if (old)
828 kfree_rcu((struct cfg80211_bss_ies *)old,
829 rcu_head);
830 }
831
832 found->pub.beacon_interval = tmp->pub.beacon_interval;
833 /*
834 * don't update the signal if beacon was heard on
835 * adjacent channel.
836 */
837 if (signal_valid)
838 found->pub.signal = tmp->pub.signal;
839 found->pub.capability = tmp->pub.capability;
840 found->ts = tmp->ts;
841 found->ts_boottime = tmp->ts_boottime;
842 } else {
843 struct cfg80211_internal_bss *new;
844 struct cfg80211_internal_bss *hidden;
845 struct cfg80211_bss_ies *ies;
846
847 /*
848 * create a copy -- the "res" variable that is passed in
849 * is allocated on the stack since it's not needed in the
850 * more common case of an update
851 */
852 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
853 GFP_ATOMIC);
854 if (!new) {
855 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
856 if (ies)
857 kfree_rcu(ies, rcu_head);
858 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
859 if (ies)
860 kfree_rcu(ies, rcu_head);
861 goto drop;
862 }
863 memcpy(new, tmp, sizeof(*new));
864 new->refcount = 1;
865 INIT_LIST_HEAD(&new->hidden_list);
866
867 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
868 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
869 if (!hidden)
870 hidden = rb_find_bss(rdev, tmp,
871 BSS_CMP_HIDE_NUL);
872 if (hidden) {
873 new->pub.hidden_beacon_bss = &hidden->pub;
874 list_add(&new->hidden_list,
875 &hidden->hidden_list);
876 hidden->refcount++;
877 rcu_assign_pointer(new->pub.beacon_ies,
878 hidden->pub.beacon_ies);
879 }
880 } else {
881 /*
882 * Ok so we found a beacon, and don't have an entry. If
883 * it's a beacon with hidden SSID, we might be in for an
884 * expensive search for any probe responses that should
885 * be grouped with this beacon for updates ...
886 */
887 if (!cfg80211_combine_bsses(rdev, new)) {
888 kfree(new);
889 goto drop;
890 }
891 }
892
893 list_add_tail(&new->list, &rdev->bss_list);
894 rb_insert_bss(rdev, new);
895 found = new;
896 }
897
898 rdev->bss_generation++;
899 bss_ref_get(rdev, found);
900 spin_unlock_bh(&rdev->bss_lock);
901
902 return found;
903 drop:
904 spin_unlock_bh(&rdev->bss_lock);
905 return NULL;
906}
907
908static struct ieee80211_channel *
909cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
910 struct ieee80211_channel *channel)
911{
912 const u8 *tmp;
913 u32 freq;
914 int channel_number = -1;
915
916 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
917 if (tmp && tmp[1] == 1) {
918 channel_number = tmp[2];
919 } else {
920 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
921 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
922 struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
923
924 channel_number = htop->primary_chan;
925 }
926 }
927
928 if (channel_number < 0)
929 return channel;
930
931 freq = ieee80211_channel_to_frequency(channel_number, channel->band);
932 channel = ieee80211_get_channel(wiphy, freq);
933 if (!channel)
934 return NULL;
935 if (channel->flags & IEEE80211_CHAN_DISABLED)
936 return NULL;
937 return channel;
938}
939
940/* Returned bss is reference counted and must be cleaned up appropriately. */
941struct cfg80211_bss *
942cfg80211_inform_bss_data(struct wiphy *wiphy,
943 struct cfg80211_inform_bss *data,
944 enum cfg80211_bss_frame_type ftype,
945 const u8 *bssid, u64 tsf, u16 capability,
946 u16 beacon_interval, const u8 *ie, size_t ielen,
947 gfp_t gfp)
948{
949 struct cfg80211_bss_ies *ies;
950 struct ieee80211_channel *channel;
951 struct cfg80211_internal_bss tmp = {}, *res;
952 int bss_type;
953 bool signal_valid;
954
955 if (WARN_ON(!wiphy))
956 return NULL;
957
958 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
959 (data->signal < 0 || data->signal > 100)))
960 return NULL;
961
962 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan);
963 if (!channel)
964 return NULL;
965
966 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
967 tmp.pub.channel = channel;
968 tmp.pub.scan_width = data->scan_width;
969 tmp.pub.signal = data->signal;
970 tmp.pub.beacon_interval = beacon_interval;
971 tmp.pub.capability = capability;
972 tmp.ts_boottime = data->boottime_ns;
973
974 /*
975 * If we do not know here whether the IEs are from a Beacon or Probe
976 * Response frame, we need to pick one of the options and only use it
977 * with the driver that does not provide the full Beacon/Probe Response
978 * frame. Use Beacon frame pointer to avoid indicating that this should
979 * override the IEs pointer should we have received an earlier
980 * indication of Probe Response data.
981 */
982 ies = kzalloc(sizeof(*ies) + ielen, gfp);
983 if (!ies)
984 return NULL;
985 ies->len = ielen;
986 ies->tsf = tsf;
987 ies->from_beacon = false;
988 memcpy(ies->data, ie, ielen);
989
990 switch (ftype) {
991 case CFG80211_BSS_FTYPE_BEACON:
992 ies->from_beacon = true;
993 /* fall through to assign */
994 case CFG80211_BSS_FTYPE_UNKNOWN:
995 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
996 break;
997 case CFG80211_BSS_FTYPE_PRESP:
998 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
999 break;
1000 }
1001 rcu_assign_pointer(tmp.pub.ies, ies);
1002
1003 signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1004 wiphy->max_adj_channel_rssi_comp;
1005 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid);
1006 if (!res)
1007 return NULL;
1008
1009 if (channel->band == IEEE80211_BAND_60GHZ) {
1010 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1011 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1012 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1013 regulatory_hint_found_beacon(wiphy, channel, gfp);
1014 } else {
1015 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1016 regulatory_hint_found_beacon(wiphy, channel, gfp);
1017 }
1018
1019 trace_cfg80211_return_bss(&res->pub);
1020 /* cfg80211_bss_update gives us a referenced result */
1021 return &res->pub;
1022}
1023EXPORT_SYMBOL(cfg80211_inform_bss_data);
1024
1025/* cfg80211_inform_bss_width_frame helper */
1026struct cfg80211_bss *
1027cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
1028 struct cfg80211_inform_bss *data,
1029 struct ieee80211_mgmt *mgmt, size_t len,
1030 gfp_t gfp)
1031
1032{
1033 struct cfg80211_internal_bss tmp = {}, *res;
1034 struct cfg80211_bss_ies *ies;
1035 struct ieee80211_channel *channel;
1036 bool signal_valid;
1037 size_t ielen = len - offsetof(struct ieee80211_mgmt,
1038 u.probe_resp.variable);
1039 int bss_type;
1040
1041 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
1042 offsetof(struct ieee80211_mgmt, u.beacon.variable));
1043
1044 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
1045
1046 if (WARN_ON(!mgmt))
1047 return NULL;
1048
1049 if (WARN_ON(!wiphy))
1050 return NULL;
1051
1052 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1053 (data->signal < 0 || data->signal > 100)))
1054 return NULL;
1055
1056 if (WARN_ON(len < offsetof(struct ieee80211_mgmt, u.probe_resp.variable)))
1057 return NULL;
1058
1059 channel = cfg80211_get_bss_channel(wiphy, mgmt->u.beacon.variable,
1060 ielen, data->chan);
1061 if (!channel)
1062 return NULL;
1063
1064 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1065 if (!ies)
1066 return NULL;
1067 ies->len = ielen;
1068 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1069 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1070 memcpy(ies->data, mgmt->u.probe_resp.variable, ielen);
1071
1072 if (ieee80211_is_probe_resp(mgmt->frame_control))
1073 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1074 else
1075 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1076 rcu_assign_pointer(tmp.pub.ies, ies);
1077
1078 memcpy(tmp.pub.bssid, mgmt->bssid, ETH_ALEN);
1079 tmp.pub.channel = channel;
1080 tmp.pub.scan_width = data->scan_width;
1081 tmp.pub.signal = data->signal;
1082 tmp.pub.beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
1083 tmp.pub.capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
1084 tmp.ts_boottime = data->boottime_ns;
1085
1086 signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1087 wiphy->max_adj_channel_rssi_comp;
1088 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid);
1089 if (!res)
1090 return NULL;
1091
1092 if (channel->band == IEEE80211_BAND_60GHZ) {
1093 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1094 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1095 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1096 regulatory_hint_found_beacon(wiphy, channel, gfp);
1097 } else {
1098 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1099 regulatory_hint_found_beacon(wiphy, channel, gfp);
1100 }
1101
1102 trace_cfg80211_return_bss(&res->pub);
1103 /* cfg80211_bss_update gives us a referenced result */
1104 return &res->pub;
1105}
1106EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
1107
1108void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1109{
1110 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1111 struct cfg80211_internal_bss *bss;
1112
1113 if (!pub)
1114 return;
1115
1116 bss = container_of(pub, struct cfg80211_internal_bss, pub);
1117
1118 spin_lock_bh(&rdev->bss_lock);
1119 bss_ref_get(rdev, bss);
1120 spin_unlock_bh(&rdev->bss_lock);
1121}
1122EXPORT_SYMBOL(cfg80211_ref_bss);
1123
1124void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1125{
1126 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1127 struct cfg80211_internal_bss *bss;
1128
1129 if (!pub)
1130 return;
1131
1132 bss = container_of(pub, struct cfg80211_internal_bss, pub);
1133
1134 spin_lock_bh(&rdev->bss_lock);
1135 bss_ref_put(rdev, bss);
1136 spin_unlock_bh(&rdev->bss_lock);
1137}
1138EXPORT_SYMBOL(cfg80211_put_bss);
1139
1140void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1141{
1142 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1143 struct cfg80211_internal_bss *bss;
1144
1145 if (WARN_ON(!pub))
1146 return;
1147
1148 bss = container_of(pub, struct cfg80211_internal_bss, pub);
1149
1150 spin_lock_bh(&rdev->bss_lock);
1151 if (!list_empty(&bss->list)) {
1152 if (__cfg80211_unlink_bss(rdev, bss))
1153 rdev->bss_generation++;
1154 }
1155 spin_unlock_bh(&rdev->bss_lock);
1156}
1157EXPORT_SYMBOL(cfg80211_unlink_bss);
1158
1159#ifdef CONFIG_CFG80211_WEXT
1160static struct cfg80211_registered_device *
1161cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
1162{
1163 struct cfg80211_registered_device *rdev;
1164 struct net_device *dev;
1165
1166 ASSERT_RTNL();
1167
1168 dev = dev_get_by_index(net, ifindex);
1169 if (!dev)
1170 return ERR_PTR(-ENODEV);
1171 if (dev->ieee80211_ptr)
1172 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
1173 else
1174 rdev = ERR_PTR(-ENODEV);
1175 dev_put(dev);
1176 return rdev;
1177}
1178
1179int cfg80211_wext_siwscan(struct net_device *dev,
1180 struct iw_request_info *info,
1181 union iwreq_data *wrqu, char *extra)
1182{
1183 struct cfg80211_registered_device *rdev;
1184 struct wiphy *wiphy;
1185 struct iw_scan_req *wreq = NULL;
1186 struct cfg80211_scan_request *creq = NULL;
1187 int i, err, n_channels = 0;
1188 enum ieee80211_band band;
1189
1190 if (!netif_running(dev))
1191 return -ENETDOWN;
1192
1193 if (wrqu->data.length == sizeof(struct iw_scan_req))
1194 wreq = (struct iw_scan_req *)extra;
1195
1196 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
1197
1198 if (IS_ERR(rdev))
1199 return PTR_ERR(rdev);
1200
1201 if (rdev->scan_req || rdev->scan_msg) {
1202 err = -EBUSY;
1203 goto out;
1204 }
1205
1206 wiphy = &rdev->wiphy;
1207
1208 /* Determine number of channels, needed to allocate creq */
1209 if (wreq && wreq->num_channels)
1210 n_channels = wreq->num_channels;
1211 else
1212 n_channels = ieee80211_get_num_supported_channels(wiphy);
1213
1214 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
1215 n_channels * sizeof(void *),
1216 GFP_ATOMIC);
1217 if (!creq) {
1218 err = -ENOMEM;
1219 goto out;
1220 }
1221
1222 creq->wiphy = wiphy;
1223 creq->wdev = dev->ieee80211_ptr;
1224 /* SSIDs come after channels */
1225 creq->ssids = (void *)&creq->channels[n_channels];
1226 creq->n_channels = n_channels;
1227 creq->n_ssids = 1;
1228 creq->scan_start = jiffies;
1229
1230 /* translate "Scan on frequencies" request */
1231 i = 0;
1232 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1233 int j;
1234
1235 if (!wiphy->bands[band])
1236 continue;
1237
1238 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
1239 /* ignore disabled channels */
1240 if (wiphy->bands[band]->channels[j].flags &
1241 IEEE80211_CHAN_DISABLED)
1242 continue;
1243
1244 /* If we have a wireless request structure and the
1245 * wireless request specifies frequencies, then search
1246 * for the matching hardware channel.
1247 */
1248 if (wreq && wreq->num_channels) {
1249 int k;
1250 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
1251 for (k = 0; k < wreq->num_channels; k++) {
1252 struct iw_freq *freq =
1253 &wreq->channel_list[k];
1254 int wext_freq =
1255 cfg80211_wext_freq(freq);
1256
1257 if (wext_freq == wiphy_freq)
1258 goto wext_freq_found;
1259 }
1260 goto wext_freq_not_found;
1261 }
1262
1263 wext_freq_found:
1264 creq->channels[i] = &wiphy->bands[band]->channels[j];
1265 i++;
1266 wext_freq_not_found: ;
1267 }
1268 }
1269 /* No channels found? */
1270 if (!i) {
1271 err = -EINVAL;
1272 goto out;
1273 }
1274
1275 /* Set real number of channels specified in creq->channels[] */
1276 creq->n_channels = i;
1277
1278 /* translate "Scan for SSID" request */
1279 if (wreq) {
1280 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
1281 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
1282 err = -EINVAL;
1283 goto out;
1284 }
1285 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
1286 creq->ssids[0].ssid_len = wreq->essid_len;
1287 }
1288 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
1289 creq->n_ssids = 0;
1290 }
1291
1292 for (i = 0; i < IEEE80211_NUM_BANDS; i++)
1293 if (wiphy->bands[i])
1294 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
1295
1296 rdev->scan_req = creq;
1297 err = rdev_scan(rdev, creq);
1298 if (err) {
1299 rdev->scan_req = NULL;
1300 /* creq will be freed below */
1301 } else {
1302 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
1303 /* creq now owned by driver */
1304 creq = NULL;
1305 dev_hold(dev);
1306 }
1307 out:
1308 kfree(creq);
1309 return err;
1310}
1311EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
1312
1313static char *ieee80211_scan_add_ies(struct iw_request_info *info,
1314 const struct cfg80211_bss_ies *ies,
1315 char *current_ev, char *end_buf)
1316{
1317 const u8 *pos, *end, *next;
1318 struct iw_event iwe;
1319
1320 if (!ies)
1321 return current_ev;
1322
1323 /*
1324 * If needed, fragment the IEs buffer (at IE boundaries) into short
1325 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
1326 */
1327 pos = ies->data;
1328 end = pos + ies->len;
1329
1330 while (end - pos > IW_GENERIC_IE_MAX) {
1331 next = pos + 2 + pos[1];
1332 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
1333 next = next + 2 + next[1];
1334
1335 memset(&iwe, 0, sizeof(iwe));
1336 iwe.cmd = IWEVGENIE;
1337 iwe.u.data.length = next - pos;
1338 current_ev = iwe_stream_add_point_check(info, current_ev,
1339 end_buf, &iwe,
1340 (void *)pos);
1341 if (IS_ERR(current_ev))
1342 return current_ev;
1343 pos = next;
1344 }
1345
1346 if (end > pos) {
1347 memset(&iwe, 0, sizeof(iwe));
1348 iwe.cmd = IWEVGENIE;
1349 iwe.u.data.length = end - pos;
1350 current_ev = iwe_stream_add_point_check(info, current_ev,
1351 end_buf, &iwe,
1352 (void *)pos);
1353 if (IS_ERR(current_ev))
1354 return current_ev;
1355 }
1356
1357 return current_ev;
1358}
1359
1360static char *
1361ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
1362 struct cfg80211_internal_bss *bss, char *current_ev,
1363 char *end_buf)
1364{
1365 const struct cfg80211_bss_ies *ies;
1366 struct iw_event iwe;
1367 const u8 *ie;
1368 u8 buf[50];
1369 u8 *cfg, *p, *tmp;
1370 int rem, i, sig;
1371 bool ismesh = false;
1372
1373 memset(&iwe, 0, sizeof(iwe));
1374 iwe.cmd = SIOCGIWAP;
1375 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
1376 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
1377 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
1378 IW_EV_ADDR_LEN);
1379 if (IS_ERR(current_ev))
1380 return current_ev;
1381
1382 memset(&iwe, 0, sizeof(iwe));
1383 iwe.cmd = SIOCGIWFREQ;
1384 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
1385 iwe.u.freq.e = 0;
1386 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
1387 IW_EV_FREQ_LEN);
1388 if (IS_ERR(current_ev))
1389 return current_ev;
1390
1391 memset(&iwe, 0, sizeof(iwe));
1392 iwe.cmd = SIOCGIWFREQ;
1393 iwe.u.freq.m = bss->pub.channel->center_freq;
1394 iwe.u.freq.e = 6;
1395 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
1396 IW_EV_FREQ_LEN);
1397 if (IS_ERR(current_ev))
1398 return current_ev;
1399
1400 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
1401 memset(&iwe, 0, sizeof(iwe));
1402 iwe.cmd = IWEVQUAL;
1403 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
1404 IW_QUAL_NOISE_INVALID |
1405 IW_QUAL_QUAL_UPDATED;
1406 switch (wiphy->signal_type) {
1407 case CFG80211_SIGNAL_TYPE_MBM:
1408 sig = bss->pub.signal / 100;
1409 iwe.u.qual.level = sig;
1410 iwe.u.qual.updated |= IW_QUAL_DBM;
1411 if (sig < -110) /* rather bad */
1412 sig = -110;
1413 else if (sig > -40) /* perfect */
1414 sig = -40;
1415 /* will give a range of 0 .. 70 */
1416 iwe.u.qual.qual = sig + 110;
1417 break;
1418 case CFG80211_SIGNAL_TYPE_UNSPEC:
1419 iwe.u.qual.level = bss->pub.signal;
1420 /* will give range 0 .. 100 */
1421 iwe.u.qual.qual = bss->pub.signal;
1422 break;
1423 default:
1424 /* not reached */
1425 break;
1426 }
1427 current_ev = iwe_stream_add_event_check(info, current_ev,
1428 end_buf, &iwe,
1429 IW_EV_QUAL_LEN);
1430 if (IS_ERR(current_ev))
1431 return current_ev;
1432 }
1433
1434 memset(&iwe, 0, sizeof(iwe));
1435 iwe.cmd = SIOCGIWENCODE;
1436 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
1437 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
1438 else
1439 iwe.u.data.flags = IW_ENCODE_DISABLED;
1440 iwe.u.data.length = 0;
1441 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
1442 &iwe, "");
1443 if (IS_ERR(current_ev))
1444 return current_ev;
1445
1446 rcu_read_lock();
1447 ies = rcu_dereference(bss->pub.ies);
1448 rem = ies->len;
1449 ie = ies->data;
1450
1451 while (rem >= 2) {
1452 /* invalid data */
1453 if (ie[1] > rem - 2)
1454 break;
1455
1456 switch (ie[0]) {
1457 case WLAN_EID_SSID:
1458 memset(&iwe, 0, sizeof(iwe));
1459 iwe.cmd = SIOCGIWESSID;
1460 iwe.u.data.length = ie[1];
1461 iwe.u.data.flags = 1;
1462 current_ev = iwe_stream_add_point_check(info,
1463 current_ev,
1464 end_buf, &iwe,
1465 (u8 *)ie + 2);
1466 if (IS_ERR(current_ev))
1467 goto unlock;
1468 break;
1469 case WLAN_EID_MESH_ID:
1470 memset(&iwe, 0, sizeof(iwe));
1471 iwe.cmd = SIOCGIWESSID;
1472 iwe.u.data.length = ie[1];
1473 iwe.u.data.flags = 1;
1474 current_ev = iwe_stream_add_point_check(info,
1475 current_ev,
1476 end_buf, &iwe,
1477 (u8 *)ie + 2);
1478 if (IS_ERR(current_ev))
1479 goto unlock;
1480 break;
1481 case WLAN_EID_MESH_CONFIG:
1482 ismesh = true;
1483 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
1484 break;
1485 cfg = (u8 *)ie + 2;
1486 memset(&iwe, 0, sizeof(iwe));
1487 iwe.cmd = IWEVCUSTOM;
1488 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
1489 "0x%02X", cfg[0]);
1490 iwe.u.data.length = strlen(buf);
1491 current_ev = iwe_stream_add_point_check(info,
1492 current_ev,
1493 end_buf,
1494 &iwe, buf);
1495 if (IS_ERR(current_ev))
1496 goto unlock;
1497 sprintf(buf, "Path Selection Metric ID: 0x%02X",
1498 cfg[1]);
1499 iwe.u.data.length = strlen(buf);
1500 current_ev = iwe_stream_add_point_check(info,
1501 current_ev,
1502 end_buf,
1503 &iwe, buf);
1504 if (IS_ERR(current_ev))
1505 goto unlock;
1506 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
1507 cfg[2]);
1508 iwe.u.data.length = strlen(buf);
1509 current_ev = iwe_stream_add_point_check(info,
1510 current_ev,
1511 end_buf,
1512 &iwe, buf);
1513 if (IS_ERR(current_ev))
1514 goto unlock;
1515 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
1516 iwe.u.data.length = strlen(buf);
1517 current_ev = iwe_stream_add_point_check(info,
1518 current_ev,
1519 end_buf,
1520 &iwe, buf);
1521 if (IS_ERR(current_ev))
1522 goto unlock;
1523 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
1524 iwe.u.data.length = strlen(buf);
1525 current_ev = iwe_stream_add_point_check(info,
1526 current_ev,
1527 end_buf,
1528 &iwe, buf);
1529 if (IS_ERR(current_ev))
1530 goto unlock;
1531 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
1532 iwe.u.data.length = strlen(buf);
1533 current_ev = iwe_stream_add_point_check(info,
1534 current_ev,
1535 end_buf,
1536 &iwe, buf);
1537 if (IS_ERR(current_ev))
1538 goto unlock;
1539 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
1540 iwe.u.data.length = strlen(buf);
1541 current_ev = iwe_stream_add_point_check(info,
1542 current_ev,
1543 end_buf,
1544 &iwe, buf);
1545 if (IS_ERR(current_ev))
1546 goto unlock;
1547 break;
1548 case WLAN_EID_SUPP_RATES:
1549 case WLAN_EID_EXT_SUPP_RATES:
1550 /* display all supported rates in readable format */
1551 p = current_ev + iwe_stream_lcp_len(info);
1552
1553 memset(&iwe, 0, sizeof(iwe));
1554 iwe.cmd = SIOCGIWRATE;
1555 /* Those two flags are ignored... */
1556 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
1557
1558 for (i = 0; i < ie[1]; i++) {
1559 iwe.u.bitrate.value =
1560 ((ie[i + 2] & 0x7f) * 500000);
1561 tmp = p;
1562 p = iwe_stream_add_value(info, current_ev, p,
1563 end_buf, &iwe,
1564 IW_EV_PARAM_LEN);
1565 if (p == tmp) {
1566 current_ev = ERR_PTR(-E2BIG);
1567 goto unlock;
1568 }
1569 }
1570 current_ev = p;
1571 break;
1572 }
1573 rem -= ie[1] + 2;
1574 ie += ie[1] + 2;
1575 }
1576
1577 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
1578 ismesh) {
1579 memset(&iwe, 0, sizeof(iwe));
1580 iwe.cmd = SIOCGIWMODE;
1581 if (ismesh)
1582 iwe.u.mode = IW_MODE_MESH;
1583 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
1584 iwe.u.mode = IW_MODE_MASTER;
1585 else
1586 iwe.u.mode = IW_MODE_ADHOC;
1587 current_ev = iwe_stream_add_event_check(info, current_ev,
1588 end_buf, &iwe,
1589 IW_EV_UINT_LEN);
1590 if (IS_ERR(current_ev))
1591 goto unlock;
1592 }
1593
1594 memset(&iwe, 0, sizeof(iwe));
1595 iwe.cmd = IWEVCUSTOM;
1596 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
1597 iwe.u.data.length = strlen(buf);
1598 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
1599 &iwe, buf);
1600 if (IS_ERR(current_ev))
1601 goto unlock;
1602 memset(&iwe, 0, sizeof(iwe));
1603 iwe.cmd = IWEVCUSTOM;
1604 sprintf(buf, " Last beacon: %ums ago",
1605 elapsed_jiffies_msecs(bss->ts));
1606 iwe.u.data.length = strlen(buf);
1607 current_ev = iwe_stream_add_point_check(info, current_ev,
1608 end_buf, &iwe, buf);
1609 if (IS_ERR(current_ev))
1610 goto unlock;
1611
1612 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
1613
1614 unlock:
1615 rcu_read_unlock();
1616 return current_ev;
1617}
1618
1619
1620static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
1621 struct iw_request_info *info,
1622 char *buf, size_t len)
1623{
1624 char *current_ev = buf;
1625 char *end_buf = buf + len;
1626 struct cfg80211_internal_bss *bss;
1627 int err = 0;
1628
1629 spin_lock_bh(&rdev->bss_lock);
1630 cfg80211_bss_expire(rdev);
1631
1632 list_for_each_entry(bss, &rdev->bss_list, list) {
1633 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
1634 err = -E2BIG;
1635 break;
1636 }
1637 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
1638 current_ev, end_buf);
1639 if (IS_ERR(current_ev)) {
1640 err = PTR_ERR(current_ev);
1641 break;
1642 }
1643 }
1644 spin_unlock_bh(&rdev->bss_lock);
1645
1646 if (err)
1647 return err;
1648 return current_ev - buf;
1649}
1650
1651
1652int cfg80211_wext_giwscan(struct net_device *dev,
1653 struct iw_request_info *info,
1654 struct iw_point *data, char *extra)
1655{
1656 struct cfg80211_registered_device *rdev;
1657 int res;
1658
1659 if (!netif_running(dev))
1660 return -ENETDOWN;
1661
1662 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
1663
1664 if (IS_ERR(rdev))
1665 return PTR_ERR(rdev);
1666
1667 if (rdev->scan_req || rdev->scan_msg)
1668 return -EAGAIN;
1669
1670 res = ieee80211_scan_results(rdev, info, extra, data->length);
1671 data->length = 0;
1672 if (res >= 0) {
1673 data->length = res;
1674 res = 0;
1675 }
1676
1677 return res;
1678}
1679EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
1680#endif