Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2#include <crypto/hash.h>
3#include <linux/export.h>
4#include <linux/bvec.h>
5#include <linux/fault-inject-usercopy.h>
6#include <linux/uio.h>
7#include <linux/pagemap.h>
8#include <linux/highmem.h>
9#include <linux/slab.h>
10#include <linux/vmalloc.h>
11#include <linux/splice.h>
12#include <linux/compat.h>
13#include <net/checksum.h>
14#include <linux/scatterlist.h>
15#include <linux/instrumented.h>
16
17#define PIPE_PARANOIA /* for now */
18
19/* covers iovec and kvec alike */
20#define iterate_iovec(i, n, base, len, off, __p, STEP) { \
21 size_t off = 0; \
22 size_t skip = i->iov_offset; \
23 do { \
24 len = min(n, __p->iov_len - skip); \
25 if (likely(len)) { \
26 base = __p->iov_base + skip; \
27 len -= (STEP); \
28 off += len; \
29 skip += len; \
30 n -= len; \
31 if (skip < __p->iov_len) \
32 break; \
33 } \
34 __p++; \
35 skip = 0; \
36 } while (n); \
37 i->iov_offset = skip; \
38 n = off; \
39}
40
41#define iterate_bvec(i, n, base, len, off, p, STEP) { \
42 size_t off = 0; \
43 unsigned skip = i->iov_offset; \
44 while (n) { \
45 unsigned offset = p->bv_offset + skip; \
46 unsigned left; \
47 void *kaddr = kmap_local_page(p->bv_page + \
48 offset / PAGE_SIZE); \
49 base = kaddr + offset % PAGE_SIZE; \
50 len = min(min(n, (size_t)(p->bv_len - skip)), \
51 (size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \
52 left = (STEP); \
53 kunmap_local(kaddr); \
54 len -= left; \
55 off += len; \
56 skip += len; \
57 if (skip == p->bv_len) { \
58 skip = 0; \
59 p++; \
60 } \
61 n -= len; \
62 if (left) \
63 break; \
64 } \
65 i->iov_offset = skip; \
66 n = off; \
67}
68
69#define iterate_xarray(i, n, base, len, __off, STEP) { \
70 __label__ __out; \
71 size_t __off = 0; \
72 struct page *head = NULL; \
73 loff_t start = i->xarray_start + i->iov_offset; \
74 unsigned offset = start % PAGE_SIZE; \
75 pgoff_t index = start / PAGE_SIZE; \
76 int j; \
77 \
78 XA_STATE(xas, i->xarray, index); \
79 \
80 rcu_read_lock(); \
81 xas_for_each(&xas, head, ULONG_MAX) { \
82 unsigned left; \
83 if (xas_retry(&xas, head)) \
84 continue; \
85 if (WARN_ON(xa_is_value(head))) \
86 break; \
87 if (WARN_ON(PageHuge(head))) \
88 break; \
89 for (j = (head->index < index) ? index - head->index : 0; \
90 j < thp_nr_pages(head); j++) { \
91 void *kaddr = kmap_local_page(head + j); \
92 base = kaddr + offset; \
93 len = PAGE_SIZE - offset; \
94 len = min(n, len); \
95 left = (STEP); \
96 kunmap_local(kaddr); \
97 len -= left; \
98 __off += len; \
99 n -= len; \
100 if (left || n == 0) \
101 goto __out; \
102 offset = 0; \
103 } \
104 } \
105__out: \
106 rcu_read_unlock(); \
107 i->iov_offset += __off; \
108 n = __off; \
109}
110
111#define __iterate_and_advance(i, n, base, len, off, I, K) { \
112 if (unlikely(i->count < n)) \
113 n = i->count; \
114 if (likely(n)) { \
115 if (likely(iter_is_iovec(i))) { \
116 const struct iovec *iov = i->iov; \
117 void __user *base; \
118 size_t len; \
119 iterate_iovec(i, n, base, len, off, \
120 iov, (I)) \
121 i->nr_segs -= iov - i->iov; \
122 i->iov = iov; \
123 } else if (iov_iter_is_bvec(i)) { \
124 const struct bio_vec *bvec = i->bvec; \
125 void *base; \
126 size_t len; \
127 iterate_bvec(i, n, base, len, off, \
128 bvec, (K)) \
129 i->nr_segs -= bvec - i->bvec; \
130 i->bvec = bvec; \
131 } else if (iov_iter_is_kvec(i)) { \
132 const struct kvec *kvec = i->kvec; \
133 void *base; \
134 size_t len; \
135 iterate_iovec(i, n, base, len, off, \
136 kvec, (K)) \
137 i->nr_segs -= kvec - i->kvec; \
138 i->kvec = kvec; \
139 } else if (iov_iter_is_xarray(i)) { \
140 void *base; \
141 size_t len; \
142 iterate_xarray(i, n, base, len, off, \
143 (K)) \
144 } \
145 i->count -= n; \
146 } \
147}
148#define iterate_and_advance(i, n, base, len, off, I, K) \
149 __iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
150
151static int copyout(void __user *to, const void *from, size_t n)
152{
153 if (should_fail_usercopy())
154 return n;
155 if (access_ok(to, n)) {
156 instrument_copy_to_user(to, from, n);
157 n = raw_copy_to_user(to, from, n);
158 }
159 return n;
160}
161
162static int copyin(void *to, const void __user *from, size_t n)
163{
164 if (should_fail_usercopy())
165 return n;
166 if (access_ok(from, n)) {
167 instrument_copy_from_user(to, from, n);
168 n = raw_copy_from_user(to, from, n);
169 }
170 return n;
171}
172
173static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
174 struct iov_iter *i)
175{
176 size_t skip, copy, left, wanted;
177 const struct iovec *iov;
178 char __user *buf;
179 void *kaddr, *from;
180
181 if (unlikely(bytes > i->count))
182 bytes = i->count;
183
184 if (unlikely(!bytes))
185 return 0;
186
187 might_fault();
188 wanted = bytes;
189 iov = i->iov;
190 skip = i->iov_offset;
191 buf = iov->iov_base + skip;
192 copy = min(bytes, iov->iov_len - skip);
193
194 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
195 kaddr = kmap_atomic(page);
196 from = kaddr + offset;
197
198 /* first chunk, usually the only one */
199 left = copyout(buf, from, copy);
200 copy -= left;
201 skip += copy;
202 from += copy;
203 bytes -= copy;
204
205 while (unlikely(!left && bytes)) {
206 iov++;
207 buf = iov->iov_base;
208 copy = min(bytes, iov->iov_len);
209 left = copyout(buf, from, copy);
210 copy -= left;
211 skip = copy;
212 from += copy;
213 bytes -= copy;
214 }
215 if (likely(!bytes)) {
216 kunmap_atomic(kaddr);
217 goto done;
218 }
219 offset = from - kaddr;
220 buf += copy;
221 kunmap_atomic(kaddr);
222 copy = min(bytes, iov->iov_len - skip);
223 }
224 /* Too bad - revert to non-atomic kmap */
225
226 kaddr = kmap(page);
227 from = kaddr + offset;
228 left = copyout(buf, from, copy);
229 copy -= left;
230 skip += copy;
231 from += copy;
232 bytes -= copy;
233 while (unlikely(!left && bytes)) {
234 iov++;
235 buf = iov->iov_base;
236 copy = min(bytes, iov->iov_len);
237 left = copyout(buf, from, copy);
238 copy -= left;
239 skip = copy;
240 from += copy;
241 bytes -= copy;
242 }
243 kunmap(page);
244
245done:
246 if (skip == iov->iov_len) {
247 iov++;
248 skip = 0;
249 }
250 i->count -= wanted - bytes;
251 i->nr_segs -= iov - i->iov;
252 i->iov = iov;
253 i->iov_offset = skip;
254 return wanted - bytes;
255}
256
257static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
258 struct iov_iter *i)
259{
260 size_t skip, copy, left, wanted;
261 const struct iovec *iov;
262 char __user *buf;
263 void *kaddr, *to;
264
265 if (unlikely(bytes > i->count))
266 bytes = i->count;
267
268 if (unlikely(!bytes))
269 return 0;
270
271 might_fault();
272 wanted = bytes;
273 iov = i->iov;
274 skip = i->iov_offset;
275 buf = iov->iov_base + skip;
276 copy = min(bytes, iov->iov_len - skip);
277
278 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
279 kaddr = kmap_atomic(page);
280 to = kaddr + offset;
281
282 /* first chunk, usually the only one */
283 left = copyin(to, buf, copy);
284 copy -= left;
285 skip += copy;
286 to += copy;
287 bytes -= copy;
288
289 while (unlikely(!left && bytes)) {
290 iov++;
291 buf = iov->iov_base;
292 copy = min(bytes, iov->iov_len);
293 left = copyin(to, buf, copy);
294 copy -= left;
295 skip = copy;
296 to += copy;
297 bytes -= copy;
298 }
299 if (likely(!bytes)) {
300 kunmap_atomic(kaddr);
301 goto done;
302 }
303 offset = to - kaddr;
304 buf += copy;
305 kunmap_atomic(kaddr);
306 copy = min(bytes, iov->iov_len - skip);
307 }
308 /* Too bad - revert to non-atomic kmap */
309
310 kaddr = kmap(page);
311 to = kaddr + offset;
312 left = copyin(to, buf, copy);
313 copy -= left;
314 skip += copy;
315 to += copy;
316 bytes -= copy;
317 while (unlikely(!left && bytes)) {
318 iov++;
319 buf = iov->iov_base;
320 copy = min(bytes, iov->iov_len);
321 left = copyin(to, buf, copy);
322 copy -= left;
323 skip = copy;
324 to += copy;
325 bytes -= copy;
326 }
327 kunmap(page);
328
329done:
330 if (skip == iov->iov_len) {
331 iov++;
332 skip = 0;
333 }
334 i->count -= wanted - bytes;
335 i->nr_segs -= iov - i->iov;
336 i->iov = iov;
337 i->iov_offset = skip;
338 return wanted - bytes;
339}
340
341#ifdef PIPE_PARANOIA
342static bool sanity(const struct iov_iter *i)
343{
344 struct pipe_inode_info *pipe = i->pipe;
345 unsigned int p_head = pipe->head;
346 unsigned int p_tail = pipe->tail;
347 unsigned int p_mask = pipe->ring_size - 1;
348 unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
349 unsigned int i_head = i->head;
350 unsigned int idx;
351
352 if (i->iov_offset) {
353 struct pipe_buffer *p;
354 if (unlikely(p_occupancy == 0))
355 goto Bad; // pipe must be non-empty
356 if (unlikely(i_head != p_head - 1))
357 goto Bad; // must be at the last buffer...
358
359 p = &pipe->bufs[i_head & p_mask];
360 if (unlikely(p->offset + p->len != i->iov_offset))
361 goto Bad; // ... at the end of segment
362 } else {
363 if (i_head != p_head)
364 goto Bad; // must be right after the last buffer
365 }
366 return true;
367Bad:
368 printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
369 printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
370 p_head, p_tail, pipe->ring_size);
371 for (idx = 0; idx < pipe->ring_size; idx++)
372 printk(KERN_ERR "[%p %p %d %d]\n",
373 pipe->bufs[idx].ops,
374 pipe->bufs[idx].page,
375 pipe->bufs[idx].offset,
376 pipe->bufs[idx].len);
377 WARN_ON(1);
378 return false;
379}
380#else
381#define sanity(i) true
382#endif
383
384static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
385 struct iov_iter *i)
386{
387 struct pipe_inode_info *pipe = i->pipe;
388 struct pipe_buffer *buf;
389 unsigned int p_tail = pipe->tail;
390 unsigned int p_mask = pipe->ring_size - 1;
391 unsigned int i_head = i->head;
392 size_t off;
393
394 if (unlikely(bytes > i->count))
395 bytes = i->count;
396
397 if (unlikely(!bytes))
398 return 0;
399
400 if (!sanity(i))
401 return 0;
402
403 off = i->iov_offset;
404 buf = &pipe->bufs[i_head & p_mask];
405 if (off) {
406 if (offset == off && buf->page == page) {
407 /* merge with the last one */
408 buf->len += bytes;
409 i->iov_offset += bytes;
410 goto out;
411 }
412 i_head++;
413 buf = &pipe->bufs[i_head & p_mask];
414 }
415 if (pipe_full(i_head, p_tail, pipe->max_usage))
416 return 0;
417
418 buf->ops = &page_cache_pipe_buf_ops;
419 get_page(page);
420 buf->page = page;
421 buf->offset = offset;
422 buf->len = bytes;
423
424 pipe->head = i_head + 1;
425 i->iov_offset = offset + bytes;
426 i->head = i_head;
427out:
428 i->count -= bytes;
429 return bytes;
430}
431
432/*
433 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
434 * bytes. For each iovec, fault in each page that constitutes the iovec.
435 *
436 * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
437 * because it is an invalid address).
438 */
439int iov_iter_fault_in_readable(const struct iov_iter *i, size_t bytes)
440{
441 if (iter_is_iovec(i)) {
442 const struct iovec *p;
443 size_t skip;
444
445 if (bytes > i->count)
446 bytes = i->count;
447 for (p = i->iov, skip = i->iov_offset; bytes; p++, skip = 0) {
448 size_t len = min(bytes, p->iov_len - skip);
449 int err;
450
451 if (unlikely(!len))
452 continue;
453 err = fault_in_pages_readable(p->iov_base + skip, len);
454 if (unlikely(err))
455 return err;
456 bytes -= len;
457 }
458 }
459 return 0;
460}
461EXPORT_SYMBOL(iov_iter_fault_in_readable);
462
463void iov_iter_init(struct iov_iter *i, unsigned int direction,
464 const struct iovec *iov, unsigned long nr_segs,
465 size_t count)
466{
467 WARN_ON(direction & ~(READ | WRITE));
468 *i = (struct iov_iter) {
469 .iter_type = ITER_IOVEC,
470 .data_source = direction,
471 .iov = iov,
472 .nr_segs = nr_segs,
473 .iov_offset = 0,
474 .count = count
475 };
476}
477EXPORT_SYMBOL(iov_iter_init);
478
479static inline bool allocated(struct pipe_buffer *buf)
480{
481 return buf->ops == &default_pipe_buf_ops;
482}
483
484static inline void data_start(const struct iov_iter *i,
485 unsigned int *iter_headp, size_t *offp)
486{
487 unsigned int p_mask = i->pipe->ring_size - 1;
488 unsigned int iter_head = i->head;
489 size_t off = i->iov_offset;
490
491 if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
492 off == PAGE_SIZE)) {
493 iter_head++;
494 off = 0;
495 }
496 *iter_headp = iter_head;
497 *offp = off;
498}
499
500static size_t push_pipe(struct iov_iter *i, size_t size,
501 int *iter_headp, size_t *offp)
502{
503 struct pipe_inode_info *pipe = i->pipe;
504 unsigned int p_tail = pipe->tail;
505 unsigned int p_mask = pipe->ring_size - 1;
506 unsigned int iter_head;
507 size_t off;
508 ssize_t left;
509
510 if (unlikely(size > i->count))
511 size = i->count;
512 if (unlikely(!size))
513 return 0;
514
515 left = size;
516 data_start(i, &iter_head, &off);
517 *iter_headp = iter_head;
518 *offp = off;
519 if (off) {
520 left -= PAGE_SIZE - off;
521 if (left <= 0) {
522 pipe->bufs[iter_head & p_mask].len += size;
523 return size;
524 }
525 pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
526 iter_head++;
527 }
528 while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
529 struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
530 struct page *page = alloc_page(GFP_USER);
531 if (!page)
532 break;
533
534 buf->ops = &default_pipe_buf_ops;
535 buf->page = page;
536 buf->offset = 0;
537 buf->len = min_t(ssize_t, left, PAGE_SIZE);
538 left -= buf->len;
539 iter_head++;
540 pipe->head = iter_head;
541
542 if (left == 0)
543 return size;
544 }
545 return size - left;
546}
547
548static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
549 struct iov_iter *i)
550{
551 struct pipe_inode_info *pipe = i->pipe;
552 unsigned int p_mask = pipe->ring_size - 1;
553 unsigned int i_head;
554 size_t n, off;
555
556 if (!sanity(i))
557 return 0;
558
559 bytes = n = push_pipe(i, bytes, &i_head, &off);
560 if (unlikely(!n))
561 return 0;
562 do {
563 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
564 memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
565 i->head = i_head;
566 i->iov_offset = off + chunk;
567 n -= chunk;
568 addr += chunk;
569 off = 0;
570 i_head++;
571 } while (n);
572 i->count -= bytes;
573 return bytes;
574}
575
576static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
577 __wsum sum, size_t off)
578{
579 __wsum next = csum_partial_copy_nocheck(from, to, len);
580 return csum_block_add(sum, next, off);
581}
582
583static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
584 struct iov_iter *i, __wsum *sump)
585{
586 struct pipe_inode_info *pipe = i->pipe;
587 unsigned int p_mask = pipe->ring_size - 1;
588 __wsum sum = *sump;
589 size_t off = 0;
590 unsigned int i_head;
591 size_t r;
592
593 if (!sanity(i))
594 return 0;
595
596 bytes = push_pipe(i, bytes, &i_head, &r);
597 while (bytes) {
598 size_t chunk = min_t(size_t, bytes, PAGE_SIZE - r);
599 char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
600 sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
601 kunmap_local(p);
602 i->head = i_head;
603 i->iov_offset = r + chunk;
604 bytes -= chunk;
605 off += chunk;
606 r = 0;
607 i_head++;
608 }
609 *sump = sum;
610 i->count -= off;
611 return off;
612}
613
614size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
615{
616 if (unlikely(iov_iter_is_pipe(i)))
617 return copy_pipe_to_iter(addr, bytes, i);
618 if (iter_is_iovec(i))
619 might_fault();
620 iterate_and_advance(i, bytes, base, len, off,
621 copyout(base, addr + off, len),
622 memcpy(base, addr + off, len)
623 )
624
625 return bytes;
626}
627EXPORT_SYMBOL(_copy_to_iter);
628
629#ifdef CONFIG_ARCH_HAS_COPY_MC
630static int copyout_mc(void __user *to, const void *from, size_t n)
631{
632 if (access_ok(to, n)) {
633 instrument_copy_to_user(to, from, n);
634 n = copy_mc_to_user((__force void *) to, from, n);
635 }
636 return n;
637}
638
639static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
640 struct iov_iter *i)
641{
642 struct pipe_inode_info *pipe = i->pipe;
643 unsigned int p_mask = pipe->ring_size - 1;
644 unsigned int i_head;
645 size_t n, off, xfer = 0;
646
647 if (!sanity(i))
648 return 0;
649
650 n = push_pipe(i, bytes, &i_head, &off);
651 while (n) {
652 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
653 char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
654 unsigned long rem;
655 rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
656 chunk -= rem;
657 kunmap_local(p);
658 i->head = i_head;
659 i->iov_offset = off + chunk;
660 xfer += chunk;
661 if (rem)
662 break;
663 n -= chunk;
664 off = 0;
665 i_head++;
666 }
667 i->count -= xfer;
668 return xfer;
669}
670
671/**
672 * _copy_mc_to_iter - copy to iter with source memory error exception handling
673 * @addr: source kernel address
674 * @bytes: total transfer length
675 * @iter: destination iterator
676 *
677 * The pmem driver deploys this for the dax operation
678 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
679 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
680 * successfully copied.
681 *
682 * The main differences between this and typical _copy_to_iter().
683 *
684 * * Typical tail/residue handling after a fault retries the copy
685 * byte-by-byte until the fault happens again. Re-triggering machine
686 * checks is potentially fatal so the implementation uses source
687 * alignment and poison alignment assumptions to avoid re-triggering
688 * hardware exceptions.
689 *
690 * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
691 * Compare to copy_to_iter() where only ITER_IOVEC attempts might return
692 * a short copy.
693 */
694size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
695{
696 if (unlikely(iov_iter_is_pipe(i)))
697 return copy_mc_pipe_to_iter(addr, bytes, i);
698 if (iter_is_iovec(i))
699 might_fault();
700 __iterate_and_advance(i, bytes, base, len, off,
701 copyout_mc(base, addr + off, len),
702 copy_mc_to_kernel(base, addr + off, len)
703 )
704
705 return bytes;
706}
707EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
708#endif /* CONFIG_ARCH_HAS_COPY_MC */
709
710size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
711{
712 if (unlikely(iov_iter_is_pipe(i))) {
713 WARN_ON(1);
714 return 0;
715 }
716 if (iter_is_iovec(i))
717 might_fault();
718 iterate_and_advance(i, bytes, base, len, off,
719 copyin(addr + off, base, len),
720 memcpy(addr + off, base, len)
721 )
722
723 return bytes;
724}
725EXPORT_SYMBOL(_copy_from_iter);
726
727size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
728{
729 if (unlikely(iov_iter_is_pipe(i))) {
730 WARN_ON(1);
731 return 0;
732 }
733 iterate_and_advance(i, bytes, base, len, off,
734 __copy_from_user_inatomic_nocache(addr + off, base, len),
735 memcpy(addr + off, base, len)
736 )
737
738 return bytes;
739}
740EXPORT_SYMBOL(_copy_from_iter_nocache);
741
742#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
743/**
744 * _copy_from_iter_flushcache - write destination through cpu cache
745 * @addr: destination kernel address
746 * @bytes: total transfer length
747 * @iter: source iterator
748 *
749 * The pmem driver arranges for filesystem-dax to use this facility via
750 * dax_copy_from_iter() for ensuring that writes to persistent memory
751 * are flushed through the CPU cache. It is differentiated from
752 * _copy_from_iter_nocache() in that guarantees all data is flushed for
753 * all iterator types. The _copy_from_iter_nocache() only attempts to
754 * bypass the cache for the ITER_IOVEC case, and on some archs may use
755 * instructions that strand dirty-data in the cache.
756 */
757size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
758{
759 if (unlikely(iov_iter_is_pipe(i))) {
760 WARN_ON(1);
761 return 0;
762 }
763 iterate_and_advance(i, bytes, base, len, off,
764 __copy_from_user_flushcache(addr + off, base, len),
765 memcpy_flushcache(addr + off, base, len)
766 )
767
768 return bytes;
769}
770EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
771#endif
772
773static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
774{
775 struct page *head;
776 size_t v = n + offset;
777
778 /*
779 * The general case needs to access the page order in order
780 * to compute the page size.
781 * However, we mostly deal with order-0 pages and thus can
782 * avoid a possible cache line miss for requests that fit all
783 * page orders.
784 */
785 if (n <= v && v <= PAGE_SIZE)
786 return true;
787
788 head = compound_head(page);
789 v += (page - head) << PAGE_SHIFT;
790
791 if (likely(n <= v && v <= (page_size(head))))
792 return true;
793 WARN_ON(1);
794 return false;
795}
796
797static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
798 struct iov_iter *i)
799{
800 if (likely(iter_is_iovec(i)))
801 return copy_page_to_iter_iovec(page, offset, bytes, i);
802 if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
803 void *kaddr = kmap_local_page(page);
804 size_t wanted = _copy_to_iter(kaddr + offset, bytes, i);
805 kunmap_local(kaddr);
806 return wanted;
807 }
808 if (iov_iter_is_pipe(i))
809 return copy_page_to_iter_pipe(page, offset, bytes, i);
810 if (unlikely(iov_iter_is_discard(i))) {
811 if (unlikely(i->count < bytes))
812 bytes = i->count;
813 i->count -= bytes;
814 return bytes;
815 }
816 WARN_ON(1);
817 return 0;
818}
819
820size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
821 struct iov_iter *i)
822{
823 size_t res = 0;
824 if (unlikely(!page_copy_sane(page, offset, bytes)))
825 return 0;
826 page += offset / PAGE_SIZE; // first subpage
827 offset %= PAGE_SIZE;
828 while (1) {
829 size_t n = __copy_page_to_iter(page, offset,
830 min(bytes, (size_t)PAGE_SIZE - offset), i);
831 res += n;
832 bytes -= n;
833 if (!bytes || !n)
834 break;
835 offset += n;
836 if (offset == PAGE_SIZE) {
837 page++;
838 offset = 0;
839 }
840 }
841 return res;
842}
843EXPORT_SYMBOL(copy_page_to_iter);
844
845size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
846 struct iov_iter *i)
847{
848 if (unlikely(!page_copy_sane(page, offset, bytes)))
849 return 0;
850 if (likely(iter_is_iovec(i)))
851 return copy_page_from_iter_iovec(page, offset, bytes, i);
852 if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
853 void *kaddr = kmap_local_page(page);
854 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
855 kunmap_local(kaddr);
856 return wanted;
857 }
858 WARN_ON(1);
859 return 0;
860}
861EXPORT_SYMBOL(copy_page_from_iter);
862
863static size_t pipe_zero(size_t bytes, struct iov_iter *i)
864{
865 struct pipe_inode_info *pipe = i->pipe;
866 unsigned int p_mask = pipe->ring_size - 1;
867 unsigned int i_head;
868 size_t n, off;
869
870 if (!sanity(i))
871 return 0;
872
873 bytes = n = push_pipe(i, bytes, &i_head, &off);
874 if (unlikely(!n))
875 return 0;
876
877 do {
878 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
879 char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
880 memset(p + off, 0, chunk);
881 kunmap_local(p);
882 i->head = i_head;
883 i->iov_offset = off + chunk;
884 n -= chunk;
885 off = 0;
886 i_head++;
887 } while (n);
888 i->count -= bytes;
889 return bytes;
890}
891
892size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
893{
894 if (unlikely(iov_iter_is_pipe(i)))
895 return pipe_zero(bytes, i);
896 iterate_and_advance(i, bytes, base, len, count,
897 clear_user(base, len),
898 memset(base, 0, len)
899 )
900
901 return bytes;
902}
903EXPORT_SYMBOL(iov_iter_zero);
904
905size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
906 struct iov_iter *i)
907{
908 char *kaddr = kmap_atomic(page), *p = kaddr + offset;
909 if (unlikely(!page_copy_sane(page, offset, bytes))) {
910 kunmap_atomic(kaddr);
911 return 0;
912 }
913 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
914 kunmap_atomic(kaddr);
915 WARN_ON(1);
916 return 0;
917 }
918 iterate_and_advance(i, bytes, base, len, off,
919 copyin(p + off, base, len),
920 memcpy(p + off, base, len)
921 )
922 kunmap_atomic(kaddr);
923 return bytes;
924}
925EXPORT_SYMBOL(copy_page_from_iter_atomic);
926
927static inline void pipe_truncate(struct iov_iter *i)
928{
929 struct pipe_inode_info *pipe = i->pipe;
930 unsigned int p_tail = pipe->tail;
931 unsigned int p_head = pipe->head;
932 unsigned int p_mask = pipe->ring_size - 1;
933
934 if (!pipe_empty(p_head, p_tail)) {
935 struct pipe_buffer *buf;
936 unsigned int i_head = i->head;
937 size_t off = i->iov_offset;
938
939 if (off) {
940 buf = &pipe->bufs[i_head & p_mask];
941 buf->len = off - buf->offset;
942 i_head++;
943 }
944 while (p_head != i_head) {
945 p_head--;
946 pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
947 }
948
949 pipe->head = p_head;
950 }
951}
952
953static void pipe_advance(struct iov_iter *i, size_t size)
954{
955 struct pipe_inode_info *pipe = i->pipe;
956 if (size) {
957 struct pipe_buffer *buf;
958 unsigned int p_mask = pipe->ring_size - 1;
959 unsigned int i_head = i->head;
960 size_t off = i->iov_offset, left = size;
961
962 if (off) /* make it relative to the beginning of buffer */
963 left += off - pipe->bufs[i_head & p_mask].offset;
964 while (1) {
965 buf = &pipe->bufs[i_head & p_mask];
966 if (left <= buf->len)
967 break;
968 left -= buf->len;
969 i_head++;
970 }
971 i->head = i_head;
972 i->iov_offset = buf->offset + left;
973 }
974 i->count -= size;
975 /* ... and discard everything past that point */
976 pipe_truncate(i);
977}
978
979static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
980{
981 struct bvec_iter bi;
982
983 bi.bi_size = i->count;
984 bi.bi_bvec_done = i->iov_offset;
985 bi.bi_idx = 0;
986 bvec_iter_advance(i->bvec, &bi, size);
987
988 i->bvec += bi.bi_idx;
989 i->nr_segs -= bi.bi_idx;
990 i->count = bi.bi_size;
991 i->iov_offset = bi.bi_bvec_done;
992}
993
994static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
995{
996 const struct iovec *iov, *end;
997
998 if (!i->count)
999 return;
1000 i->count -= size;
1001
1002 size += i->iov_offset; // from beginning of current segment
1003 for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
1004 if (likely(size < iov->iov_len))
1005 break;
1006 size -= iov->iov_len;
1007 }
1008 i->iov_offset = size;
1009 i->nr_segs -= iov - i->iov;
1010 i->iov = iov;
1011}
1012
1013void iov_iter_advance(struct iov_iter *i, size_t size)
1014{
1015 if (unlikely(i->count < size))
1016 size = i->count;
1017 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
1018 /* iovec and kvec have identical layouts */
1019 iov_iter_iovec_advance(i, size);
1020 } else if (iov_iter_is_bvec(i)) {
1021 iov_iter_bvec_advance(i, size);
1022 } else if (iov_iter_is_pipe(i)) {
1023 pipe_advance(i, size);
1024 } else if (unlikely(iov_iter_is_xarray(i))) {
1025 i->iov_offset += size;
1026 i->count -= size;
1027 } else if (iov_iter_is_discard(i)) {
1028 i->count -= size;
1029 }
1030}
1031EXPORT_SYMBOL(iov_iter_advance);
1032
1033void iov_iter_revert(struct iov_iter *i, size_t unroll)
1034{
1035 if (!unroll)
1036 return;
1037 if (WARN_ON(unroll > MAX_RW_COUNT))
1038 return;
1039 i->count += unroll;
1040 if (unlikely(iov_iter_is_pipe(i))) {
1041 struct pipe_inode_info *pipe = i->pipe;
1042 unsigned int p_mask = pipe->ring_size - 1;
1043 unsigned int i_head = i->head;
1044 size_t off = i->iov_offset;
1045 while (1) {
1046 struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1047 size_t n = off - b->offset;
1048 if (unroll < n) {
1049 off -= unroll;
1050 break;
1051 }
1052 unroll -= n;
1053 if (!unroll && i_head == i->start_head) {
1054 off = 0;
1055 break;
1056 }
1057 i_head--;
1058 b = &pipe->bufs[i_head & p_mask];
1059 off = b->offset + b->len;
1060 }
1061 i->iov_offset = off;
1062 i->head = i_head;
1063 pipe_truncate(i);
1064 return;
1065 }
1066 if (unlikely(iov_iter_is_discard(i)))
1067 return;
1068 if (unroll <= i->iov_offset) {
1069 i->iov_offset -= unroll;
1070 return;
1071 }
1072 unroll -= i->iov_offset;
1073 if (iov_iter_is_xarray(i)) {
1074 BUG(); /* We should never go beyond the start of the specified
1075 * range since we might then be straying into pages that
1076 * aren't pinned.
1077 */
1078 } else if (iov_iter_is_bvec(i)) {
1079 const struct bio_vec *bvec = i->bvec;
1080 while (1) {
1081 size_t n = (--bvec)->bv_len;
1082 i->nr_segs++;
1083 if (unroll <= n) {
1084 i->bvec = bvec;
1085 i->iov_offset = n - unroll;
1086 return;
1087 }
1088 unroll -= n;
1089 }
1090 } else { /* same logics for iovec and kvec */
1091 const struct iovec *iov = i->iov;
1092 while (1) {
1093 size_t n = (--iov)->iov_len;
1094 i->nr_segs++;
1095 if (unroll <= n) {
1096 i->iov = iov;
1097 i->iov_offset = n - unroll;
1098 return;
1099 }
1100 unroll -= n;
1101 }
1102 }
1103}
1104EXPORT_SYMBOL(iov_iter_revert);
1105
1106/*
1107 * Return the count of just the current iov_iter segment.
1108 */
1109size_t iov_iter_single_seg_count(const struct iov_iter *i)
1110{
1111 if (i->nr_segs > 1) {
1112 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1113 return min(i->count, i->iov->iov_len - i->iov_offset);
1114 if (iov_iter_is_bvec(i))
1115 return min(i->count, i->bvec->bv_len - i->iov_offset);
1116 }
1117 return i->count;
1118}
1119EXPORT_SYMBOL(iov_iter_single_seg_count);
1120
1121void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1122 const struct kvec *kvec, unsigned long nr_segs,
1123 size_t count)
1124{
1125 WARN_ON(direction & ~(READ | WRITE));
1126 *i = (struct iov_iter){
1127 .iter_type = ITER_KVEC,
1128 .data_source = direction,
1129 .kvec = kvec,
1130 .nr_segs = nr_segs,
1131 .iov_offset = 0,
1132 .count = count
1133 };
1134}
1135EXPORT_SYMBOL(iov_iter_kvec);
1136
1137void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1138 const struct bio_vec *bvec, unsigned long nr_segs,
1139 size_t count)
1140{
1141 WARN_ON(direction & ~(READ | WRITE));
1142 *i = (struct iov_iter){
1143 .iter_type = ITER_BVEC,
1144 .data_source = direction,
1145 .bvec = bvec,
1146 .nr_segs = nr_segs,
1147 .iov_offset = 0,
1148 .count = count
1149 };
1150}
1151EXPORT_SYMBOL(iov_iter_bvec);
1152
1153void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1154 struct pipe_inode_info *pipe,
1155 size_t count)
1156{
1157 BUG_ON(direction != READ);
1158 WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1159 *i = (struct iov_iter){
1160 .iter_type = ITER_PIPE,
1161 .data_source = false,
1162 .pipe = pipe,
1163 .head = pipe->head,
1164 .start_head = pipe->head,
1165 .iov_offset = 0,
1166 .count = count
1167 };
1168}
1169EXPORT_SYMBOL(iov_iter_pipe);
1170
1171/**
1172 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1173 * @i: The iterator to initialise.
1174 * @direction: The direction of the transfer.
1175 * @xarray: The xarray to access.
1176 * @start: The start file position.
1177 * @count: The size of the I/O buffer in bytes.
1178 *
1179 * Set up an I/O iterator to either draw data out of the pages attached to an
1180 * inode or to inject data into those pages. The pages *must* be prevented
1181 * from evaporation, either by taking a ref on them or locking them by the
1182 * caller.
1183 */
1184void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1185 struct xarray *xarray, loff_t start, size_t count)
1186{
1187 BUG_ON(direction & ~1);
1188 *i = (struct iov_iter) {
1189 .iter_type = ITER_XARRAY,
1190 .data_source = direction,
1191 .xarray = xarray,
1192 .xarray_start = start,
1193 .count = count,
1194 .iov_offset = 0
1195 };
1196}
1197EXPORT_SYMBOL(iov_iter_xarray);
1198
1199/**
1200 * iov_iter_discard - Initialise an I/O iterator that discards data
1201 * @i: The iterator to initialise.
1202 * @direction: The direction of the transfer.
1203 * @count: The size of the I/O buffer in bytes.
1204 *
1205 * Set up an I/O iterator that just discards everything that's written to it.
1206 * It's only available as a READ iterator.
1207 */
1208void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1209{
1210 BUG_ON(direction != READ);
1211 *i = (struct iov_iter){
1212 .iter_type = ITER_DISCARD,
1213 .data_source = false,
1214 .count = count,
1215 .iov_offset = 0
1216 };
1217}
1218EXPORT_SYMBOL(iov_iter_discard);
1219
1220static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1221{
1222 unsigned long res = 0;
1223 size_t size = i->count;
1224 size_t skip = i->iov_offset;
1225 unsigned k;
1226
1227 for (k = 0; k < i->nr_segs; k++, skip = 0) {
1228 size_t len = i->iov[k].iov_len - skip;
1229 if (len) {
1230 res |= (unsigned long)i->iov[k].iov_base + skip;
1231 if (len > size)
1232 len = size;
1233 res |= len;
1234 size -= len;
1235 if (!size)
1236 break;
1237 }
1238 }
1239 return res;
1240}
1241
1242static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1243{
1244 unsigned res = 0;
1245 size_t size = i->count;
1246 unsigned skip = i->iov_offset;
1247 unsigned k;
1248
1249 for (k = 0; k < i->nr_segs; k++, skip = 0) {
1250 size_t len = i->bvec[k].bv_len - skip;
1251 res |= (unsigned long)i->bvec[k].bv_offset + skip;
1252 if (len > size)
1253 len = size;
1254 res |= len;
1255 size -= len;
1256 if (!size)
1257 break;
1258 }
1259 return res;
1260}
1261
1262unsigned long iov_iter_alignment(const struct iov_iter *i)
1263{
1264 /* iovec and kvec have identical layouts */
1265 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1266 return iov_iter_alignment_iovec(i);
1267
1268 if (iov_iter_is_bvec(i))
1269 return iov_iter_alignment_bvec(i);
1270
1271 if (iov_iter_is_pipe(i)) {
1272 unsigned int p_mask = i->pipe->ring_size - 1;
1273 size_t size = i->count;
1274
1275 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1276 return size | i->iov_offset;
1277 return size;
1278 }
1279
1280 if (iov_iter_is_xarray(i))
1281 return (i->xarray_start + i->iov_offset) | i->count;
1282
1283 return 0;
1284}
1285EXPORT_SYMBOL(iov_iter_alignment);
1286
1287unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1288{
1289 unsigned long res = 0;
1290 unsigned long v = 0;
1291 size_t size = i->count;
1292 unsigned k;
1293
1294 if (WARN_ON(!iter_is_iovec(i)))
1295 return ~0U;
1296
1297 for (k = 0; k < i->nr_segs; k++) {
1298 if (i->iov[k].iov_len) {
1299 unsigned long base = (unsigned long)i->iov[k].iov_base;
1300 if (v) // if not the first one
1301 res |= base | v; // this start | previous end
1302 v = base + i->iov[k].iov_len;
1303 if (size <= i->iov[k].iov_len)
1304 break;
1305 size -= i->iov[k].iov_len;
1306 }
1307 }
1308 return res;
1309}
1310EXPORT_SYMBOL(iov_iter_gap_alignment);
1311
1312static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1313 size_t maxsize,
1314 struct page **pages,
1315 int iter_head,
1316 size_t *start)
1317{
1318 struct pipe_inode_info *pipe = i->pipe;
1319 unsigned int p_mask = pipe->ring_size - 1;
1320 ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1321 if (!n)
1322 return -EFAULT;
1323
1324 maxsize = n;
1325 n += *start;
1326 while (n > 0) {
1327 get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1328 iter_head++;
1329 n -= PAGE_SIZE;
1330 }
1331
1332 return maxsize;
1333}
1334
1335static ssize_t pipe_get_pages(struct iov_iter *i,
1336 struct page **pages, size_t maxsize, unsigned maxpages,
1337 size_t *start)
1338{
1339 unsigned int iter_head, npages;
1340 size_t capacity;
1341
1342 if (!sanity(i))
1343 return -EFAULT;
1344
1345 data_start(i, &iter_head, start);
1346 /* Amount of free space: some of this one + all after this one */
1347 npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1348 capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1349
1350 return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1351}
1352
1353static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1354 pgoff_t index, unsigned int nr_pages)
1355{
1356 XA_STATE(xas, xa, index);
1357 struct page *page;
1358 unsigned int ret = 0;
1359
1360 rcu_read_lock();
1361 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1362 if (xas_retry(&xas, page))
1363 continue;
1364
1365 /* Has the page moved or been split? */
1366 if (unlikely(page != xas_reload(&xas))) {
1367 xas_reset(&xas);
1368 continue;
1369 }
1370
1371 pages[ret] = find_subpage(page, xas.xa_index);
1372 get_page(pages[ret]);
1373 if (++ret == nr_pages)
1374 break;
1375 }
1376 rcu_read_unlock();
1377 return ret;
1378}
1379
1380static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1381 struct page **pages, size_t maxsize,
1382 unsigned maxpages, size_t *_start_offset)
1383{
1384 unsigned nr, offset;
1385 pgoff_t index, count;
1386 size_t size = maxsize, actual;
1387 loff_t pos;
1388
1389 if (!size || !maxpages)
1390 return 0;
1391
1392 pos = i->xarray_start + i->iov_offset;
1393 index = pos >> PAGE_SHIFT;
1394 offset = pos & ~PAGE_MASK;
1395 *_start_offset = offset;
1396
1397 count = 1;
1398 if (size > PAGE_SIZE - offset) {
1399 size -= PAGE_SIZE - offset;
1400 count += size >> PAGE_SHIFT;
1401 size &= ~PAGE_MASK;
1402 if (size)
1403 count++;
1404 }
1405
1406 if (count > maxpages)
1407 count = maxpages;
1408
1409 nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1410 if (nr == 0)
1411 return 0;
1412
1413 actual = PAGE_SIZE * nr;
1414 actual -= offset;
1415 if (nr == count && size > 0) {
1416 unsigned last_offset = (nr > 1) ? 0 : offset;
1417 actual -= PAGE_SIZE - (last_offset + size);
1418 }
1419 return actual;
1420}
1421
1422/* must be done on non-empty ITER_IOVEC one */
1423static unsigned long first_iovec_segment(const struct iov_iter *i,
1424 size_t *size, size_t *start,
1425 size_t maxsize, unsigned maxpages)
1426{
1427 size_t skip;
1428 long k;
1429
1430 for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1431 unsigned long addr = (unsigned long)i->iov[k].iov_base + skip;
1432 size_t len = i->iov[k].iov_len - skip;
1433
1434 if (unlikely(!len))
1435 continue;
1436 if (len > maxsize)
1437 len = maxsize;
1438 len += (*start = addr % PAGE_SIZE);
1439 if (len > maxpages * PAGE_SIZE)
1440 len = maxpages * PAGE_SIZE;
1441 *size = len;
1442 return addr & PAGE_MASK;
1443 }
1444 BUG(); // if it had been empty, we wouldn't get called
1445}
1446
1447/* must be done on non-empty ITER_BVEC one */
1448static struct page *first_bvec_segment(const struct iov_iter *i,
1449 size_t *size, size_t *start,
1450 size_t maxsize, unsigned maxpages)
1451{
1452 struct page *page;
1453 size_t skip = i->iov_offset, len;
1454
1455 len = i->bvec->bv_len - skip;
1456 if (len > maxsize)
1457 len = maxsize;
1458 skip += i->bvec->bv_offset;
1459 page = i->bvec->bv_page + skip / PAGE_SIZE;
1460 len += (*start = skip % PAGE_SIZE);
1461 if (len > maxpages * PAGE_SIZE)
1462 len = maxpages * PAGE_SIZE;
1463 *size = len;
1464 return page;
1465}
1466
1467ssize_t iov_iter_get_pages(struct iov_iter *i,
1468 struct page **pages, size_t maxsize, unsigned maxpages,
1469 size_t *start)
1470{
1471 size_t len;
1472 int n, res;
1473
1474 if (maxsize > i->count)
1475 maxsize = i->count;
1476 if (!maxsize)
1477 return 0;
1478
1479 if (likely(iter_is_iovec(i))) {
1480 unsigned long addr;
1481
1482 addr = first_iovec_segment(i, &len, start, maxsize, maxpages);
1483 n = DIV_ROUND_UP(len, PAGE_SIZE);
1484 res = get_user_pages_fast(addr, n,
1485 iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0,
1486 pages);
1487 if (unlikely(res < 0))
1488 return res;
1489 return (res == n ? len : res * PAGE_SIZE) - *start;
1490 }
1491 if (iov_iter_is_bvec(i)) {
1492 struct page *page;
1493
1494 page = first_bvec_segment(i, &len, start, maxsize, maxpages);
1495 n = DIV_ROUND_UP(len, PAGE_SIZE);
1496 while (n--)
1497 get_page(*pages++ = page++);
1498 return len - *start;
1499 }
1500 if (iov_iter_is_pipe(i))
1501 return pipe_get_pages(i, pages, maxsize, maxpages, start);
1502 if (iov_iter_is_xarray(i))
1503 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1504 return -EFAULT;
1505}
1506EXPORT_SYMBOL(iov_iter_get_pages);
1507
1508static struct page **get_pages_array(size_t n)
1509{
1510 return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1511}
1512
1513static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1514 struct page ***pages, size_t maxsize,
1515 size_t *start)
1516{
1517 struct page **p;
1518 unsigned int iter_head, npages;
1519 ssize_t n;
1520
1521 if (!sanity(i))
1522 return -EFAULT;
1523
1524 data_start(i, &iter_head, start);
1525 /* Amount of free space: some of this one + all after this one */
1526 npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1527 n = npages * PAGE_SIZE - *start;
1528 if (maxsize > n)
1529 maxsize = n;
1530 else
1531 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1532 p = get_pages_array(npages);
1533 if (!p)
1534 return -ENOMEM;
1535 n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1536 if (n > 0)
1537 *pages = p;
1538 else
1539 kvfree(p);
1540 return n;
1541}
1542
1543static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1544 struct page ***pages, size_t maxsize,
1545 size_t *_start_offset)
1546{
1547 struct page **p;
1548 unsigned nr, offset;
1549 pgoff_t index, count;
1550 size_t size = maxsize, actual;
1551 loff_t pos;
1552
1553 if (!size)
1554 return 0;
1555
1556 pos = i->xarray_start + i->iov_offset;
1557 index = pos >> PAGE_SHIFT;
1558 offset = pos & ~PAGE_MASK;
1559 *_start_offset = offset;
1560
1561 count = 1;
1562 if (size > PAGE_SIZE - offset) {
1563 size -= PAGE_SIZE - offset;
1564 count += size >> PAGE_SHIFT;
1565 size &= ~PAGE_MASK;
1566 if (size)
1567 count++;
1568 }
1569
1570 p = get_pages_array(count);
1571 if (!p)
1572 return -ENOMEM;
1573 *pages = p;
1574
1575 nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1576 if (nr == 0)
1577 return 0;
1578
1579 actual = PAGE_SIZE * nr;
1580 actual -= offset;
1581 if (nr == count && size > 0) {
1582 unsigned last_offset = (nr > 1) ? 0 : offset;
1583 actual -= PAGE_SIZE - (last_offset + size);
1584 }
1585 return actual;
1586}
1587
1588ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1589 struct page ***pages, size_t maxsize,
1590 size_t *start)
1591{
1592 struct page **p;
1593 size_t len;
1594 int n, res;
1595
1596 if (maxsize > i->count)
1597 maxsize = i->count;
1598 if (!maxsize)
1599 return 0;
1600
1601 if (likely(iter_is_iovec(i))) {
1602 unsigned long addr;
1603
1604 addr = first_iovec_segment(i, &len, start, maxsize, ~0U);
1605 n = DIV_ROUND_UP(len, PAGE_SIZE);
1606 p = get_pages_array(n);
1607 if (!p)
1608 return -ENOMEM;
1609 res = get_user_pages_fast(addr, n,
1610 iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0, p);
1611 if (unlikely(res < 0)) {
1612 kvfree(p);
1613 return res;
1614 }
1615 *pages = p;
1616 return (res == n ? len : res * PAGE_SIZE) - *start;
1617 }
1618 if (iov_iter_is_bvec(i)) {
1619 struct page *page;
1620
1621 page = first_bvec_segment(i, &len, start, maxsize, ~0U);
1622 n = DIV_ROUND_UP(len, PAGE_SIZE);
1623 *pages = p = get_pages_array(n);
1624 if (!p)
1625 return -ENOMEM;
1626 while (n--)
1627 get_page(*p++ = page++);
1628 return len - *start;
1629 }
1630 if (iov_iter_is_pipe(i))
1631 return pipe_get_pages_alloc(i, pages, maxsize, start);
1632 if (iov_iter_is_xarray(i))
1633 return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1634 return -EFAULT;
1635}
1636EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1637
1638size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1639 struct iov_iter *i)
1640{
1641 __wsum sum, next;
1642 sum = *csum;
1643 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1644 WARN_ON(1);
1645 return 0;
1646 }
1647 iterate_and_advance(i, bytes, base, len, off, ({
1648 next = csum_and_copy_from_user(base, addr + off, len);
1649 sum = csum_block_add(sum, next, off);
1650 next ? 0 : len;
1651 }), ({
1652 sum = csum_and_memcpy(addr + off, base, len, sum, off);
1653 })
1654 )
1655 *csum = sum;
1656 return bytes;
1657}
1658EXPORT_SYMBOL(csum_and_copy_from_iter);
1659
1660size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1661 struct iov_iter *i)
1662{
1663 struct csum_state *csstate = _csstate;
1664 __wsum sum, next;
1665
1666 if (unlikely(iov_iter_is_discard(i))) {
1667 WARN_ON(1); /* for now */
1668 return 0;
1669 }
1670
1671 sum = csum_shift(csstate->csum, csstate->off);
1672 if (unlikely(iov_iter_is_pipe(i)))
1673 bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1674 else iterate_and_advance(i, bytes, base, len, off, ({
1675 next = csum_and_copy_to_user(addr + off, base, len);
1676 sum = csum_block_add(sum, next, off);
1677 next ? 0 : len;
1678 }), ({
1679 sum = csum_and_memcpy(base, addr + off, len, sum, off);
1680 })
1681 )
1682 csstate->csum = csum_shift(sum, csstate->off);
1683 csstate->off += bytes;
1684 return bytes;
1685}
1686EXPORT_SYMBOL(csum_and_copy_to_iter);
1687
1688size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1689 struct iov_iter *i)
1690{
1691#ifdef CONFIG_CRYPTO_HASH
1692 struct ahash_request *hash = hashp;
1693 struct scatterlist sg;
1694 size_t copied;
1695
1696 copied = copy_to_iter(addr, bytes, i);
1697 sg_init_one(&sg, addr, copied);
1698 ahash_request_set_crypt(hash, &sg, NULL, copied);
1699 crypto_ahash_update(hash);
1700 return copied;
1701#else
1702 return 0;
1703#endif
1704}
1705EXPORT_SYMBOL(hash_and_copy_to_iter);
1706
1707static int iov_npages(const struct iov_iter *i, int maxpages)
1708{
1709 size_t skip = i->iov_offset, size = i->count;
1710 const struct iovec *p;
1711 int npages = 0;
1712
1713 for (p = i->iov; size; skip = 0, p++) {
1714 unsigned offs = offset_in_page(p->iov_base + skip);
1715 size_t len = min(p->iov_len - skip, size);
1716
1717 if (len) {
1718 size -= len;
1719 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1720 if (unlikely(npages > maxpages))
1721 return maxpages;
1722 }
1723 }
1724 return npages;
1725}
1726
1727static int bvec_npages(const struct iov_iter *i, int maxpages)
1728{
1729 size_t skip = i->iov_offset, size = i->count;
1730 const struct bio_vec *p;
1731 int npages = 0;
1732
1733 for (p = i->bvec; size; skip = 0, p++) {
1734 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1735 size_t len = min(p->bv_len - skip, size);
1736
1737 size -= len;
1738 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1739 if (unlikely(npages > maxpages))
1740 return maxpages;
1741 }
1742 return npages;
1743}
1744
1745int iov_iter_npages(const struct iov_iter *i, int maxpages)
1746{
1747 if (unlikely(!i->count))
1748 return 0;
1749 /* iovec and kvec have identical layouts */
1750 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1751 return iov_npages(i, maxpages);
1752 if (iov_iter_is_bvec(i))
1753 return bvec_npages(i, maxpages);
1754 if (iov_iter_is_pipe(i)) {
1755 unsigned int iter_head;
1756 int npages;
1757 size_t off;
1758
1759 if (!sanity(i))
1760 return 0;
1761
1762 data_start(i, &iter_head, &off);
1763 /* some of this one + all after this one */
1764 npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1765 return min(npages, maxpages);
1766 }
1767 if (iov_iter_is_xarray(i)) {
1768 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1769 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1770 return min(npages, maxpages);
1771 }
1772 return 0;
1773}
1774EXPORT_SYMBOL(iov_iter_npages);
1775
1776const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1777{
1778 *new = *old;
1779 if (unlikely(iov_iter_is_pipe(new))) {
1780 WARN_ON(1);
1781 return NULL;
1782 }
1783 if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new)))
1784 return NULL;
1785 if (iov_iter_is_bvec(new))
1786 return new->bvec = kmemdup(new->bvec,
1787 new->nr_segs * sizeof(struct bio_vec),
1788 flags);
1789 else
1790 /* iovec and kvec have identical layout */
1791 return new->iov = kmemdup(new->iov,
1792 new->nr_segs * sizeof(struct iovec),
1793 flags);
1794}
1795EXPORT_SYMBOL(dup_iter);
1796
1797static int copy_compat_iovec_from_user(struct iovec *iov,
1798 const struct iovec __user *uvec, unsigned long nr_segs)
1799{
1800 const struct compat_iovec __user *uiov =
1801 (const struct compat_iovec __user *)uvec;
1802 int ret = -EFAULT, i;
1803
1804 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1805 return -EFAULT;
1806
1807 for (i = 0; i < nr_segs; i++) {
1808 compat_uptr_t buf;
1809 compat_ssize_t len;
1810
1811 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1812 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1813
1814 /* check for compat_size_t not fitting in compat_ssize_t .. */
1815 if (len < 0) {
1816 ret = -EINVAL;
1817 goto uaccess_end;
1818 }
1819 iov[i].iov_base = compat_ptr(buf);
1820 iov[i].iov_len = len;
1821 }
1822
1823 ret = 0;
1824uaccess_end:
1825 user_access_end();
1826 return ret;
1827}
1828
1829static int copy_iovec_from_user(struct iovec *iov,
1830 const struct iovec __user *uvec, unsigned long nr_segs)
1831{
1832 unsigned long seg;
1833
1834 if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1835 return -EFAULT;
1836 for (seg = 0; seg < nr_segs; seg++) {
1837 if ((ssize_t)iov[seg].iov_len < 0)
1838 return -EINVAL;
1839 }
1840
1841 return 0;
1842}
1843
1844struct iovec *iovec_from_user(const struct iovec __user *uvec,
1845 unsigned long nr_segs, unsigned long fast_segs,
1846 struct iovec *fast_iov, bool compat)
1847{
1848 struct iovec *iov = fast_iov;
1849 int ret;
1850
1851 /*
1852 * SuS says "The readv() function *may* fail if the iovcnt argument was
1853 * less than or equal to 0, or greater than {IOV_MAX}. Linux has
1854 * traditionally returned zero for zero segments, so...
1855 */
1856 if (nr_segs == 0)
1857 return iov;
1858 if (nr_segs > UIO_MAXIOV)
1859 return ERR_PTR(-EINVAL);
1860 if (nr_segs > fast_segs) {
1861 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1862 if (!iov)
1863 return ERR_PTR(-ENOMEM);
1864 }
1865
1866 if (compat)
1867 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1868 else
1869 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1870 if (ret) {
1871 if (iov != fast_iov)
1872 kfree(iov);
1873 return ERR_PTR(ret);
1874 }
1875
1876 return iov;
1877}
1878
1879ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1880 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1881 struct iov_iter *i, bool compat)
1882{
1883 ssize_t total_len = 0;
1884 unsigned long seg;
1885 struct iovec *iov;
1886
1887 iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1888 if (IS_ERR(iov)) {
1889 *iovp = NULL;
1890 return PTR_ERR(iov);
1891 }
1892
1893 /*
1894 * According to the Single Unix Specification we should return EINVAL if
1895 * an element length is < 0 when cast to ssize_t or if the total length
1896 * would overflow the ssize_t return value of the system call.
1897 *
1898 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1899 * overflow case.
1900 */
1901 for (seg = 0; seg < nr_segs; seg++) {
1902 ssize_t len = (ssize_t)iov[seg].iov_len;
1903
1904 if (!access_ok(iov[seg].iov_base, len)) {
1905 if (iov != *iovp)
1906 kfree(iov);
1907 *iovp = NULL;
1908 return -EFAULT;
1909 }
1910
1911 if (len > MAX_RW_COUNT - total_len) {
1912 len = MAX_RW_COUNT - total_len;
1913 iov[seg].iov_len = len;
1914 }
1915 total_len += len;
1916 }
1917
1918 iov_iter_init(i, type, iov, nr_segs, total_len);
1919 if (iov == *iovp)
1920 *iovp = NULL;
1921 else
1922 *iovp = iov;
1923 return total_len;
1924}
1925
1926/**
1927 * import_iovec() - Copy an array of &struct iovec from userspace
1928 * into the kernel, check that it is valid, and initialize a new
1929 * &struct iov_iter iterator to access it.
1930 *
1931 * @type: One of %READ or %WRITE.
1932 * @uvec: Pointer to the userspace array.
1933 * @nr_segs: Number of elements in userspace array.
1934 * @fast_segs: Number of elements in @iov.
1935 * @iovp: (input and output parameter) Pointer to pointer to (usually small
1936 * on-stack) kernel array.
1937 * @i: Pointer to iterator that will be initialized on success.
1938 *
1939 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1940 * then this function places %NULL in *@iov on return. Otherwise, a new
1941 * array will be allocated and the result placed in *@iov. This means that
1942 * the caller may call kfree() on *@iov regardless of whether the small
1943 * on-stack array was used or not (and regardless of whether this function
1944 * returns an error or not).
1945 *
1946 * Return: Negative error code on error, bytes imported on success
1947 */
1948ssize_t import_iovec(int type, const struct iovec __user *uvec,
1949 unsigned nr_segs, unsigned fast_segs,
1950 struct iovec **iovp, struct iov_iter *i)
1951{
1952 return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1953 in_compat_syscall());
1954}
1955EXPORT_SYMBOL(import_iovec);
1956
1957int import_single_range(int rw, void __user *buf, size_t len,
1958 struct iovec *iov, struct iov_iter *i)
1959{
1960 if (len > MAX_RW_COUNT)
1961 len = MAX_RW_COUNT;
1962 if (unlikely(!access_ok(buf, len)))
1963 return -EFAULT;
1964
1965 iov->iov_base = buf;
1966 iov->iov_len = len;
1967 iov_iter_init(i, rw, iov, 1, len);
1968 return 0;
1969}
1970EXPORT_SYMBOL(import_single_range);
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/export.h>
3#include <linux/bvec.h>
4#include <linux/fault-inject-usercopy.h>
5#include <linux/uio.h>
6#include <linux/pagemap.h>
7#include <linux/highmem.h>
8#include <linux/slab.h>
9#include <linux/vmalloc.h>
10#include <linux/splice.h>
11#include <linux/compat.h>
12#include <linux/scatterlist.h>
13#include <linux/instrumented.h>
14#include <linux/iov_iter.h>
15
16static __always_inline
17size_t copy_to_user_iter(void __user *iter_to, size_t progress,
18 size_t len, void *from, void *priv2)
19{
20 if (should_fail_usercopy())
21 return len;
22 if (access_ok(iter_to, len)) {
23 from += progress;
24 instrument_copy_to_user(iter_to, from, len);
25 len = raw_copy_to_user(iter_to, from, len);
26 }
27 return len;
28}
29
30static __always_inline
31size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress,
32 size_t len, void *from, void *priv2)
33{
34 ssize_t res;
35
36 if (should_fail_usercopy())
37 return len;
38
39 from += progress;
40 res = copy_to_user_nofault(iter_to, from, len);
41 return res < 0 ? len : res;
42}
43
44static __always_inline
45size_t copy_from_user_iter(void __user *iter_from, size_t progress,
46 size_t len, void *to, void *priv2)
47{
48 size_t res = len;
49
50 if (should_fail_usercopy())
51 return len;
52 if (access_ok(iter_from, len)) {
53 to += progress;
54 instrument_copy_from_user_before(to, iter_from, len);
55 res = raw_copy_from_user(to, iter_from, len);
56 instrument_copy_from_user_after(to, iter_from, len, res);
57 }
58 return res;
59}
60
61static __always_inline
62size_t memcpy_to_iter(void *iter_to, size_t progress,
63 size_t len, void *from, void *priv2)
64{
65 memcpy(iter_to, from + progress, len);
66 return 0;
67}
68
69static __always_inline
70size_t memcpy_from_iter(void *iter_from, size_t progress,
71 size_t len, void *to, void *priv2)
72{
73 memcpy(to + progress, iter_from, len);
74 return 0;
75}
76
77/*
78 * fault_in_iov_iter_readable - fault in iov iterator for reading
79 * @i: iterator
80 * @size: maximum length
81 *
82 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
83 * @size. For each iovec, fault in each page that constitutes the iovec.
84 *
85 * Returns the number of bytes not faulted in (like copy_to_user() and
86 * copy_from_user()).
87 *
88 * Always returns 0 for non-userspace iterators.
89 */
90size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
91{
92 if (iter_is_ubuf(i)) {
93 size_t n = min(size, iov_iter_count(i));
94 n -= fault_in_readable(i->ubuf + i->iov_offset, n);
95 return size - n;
96 } else if (iter_is_iovec(i)) {
97 size_t count = min(size, iov_iter_count(i));
98 const struct iovec *p;
99 size_t skip;
100
101 size -= count;
102 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
103 size_t len = min(count, p->iov_len - skip);
104 size_t ret;
105
106 if (unlikely(!len))
107 continue;
108 ret = fault_in_readable(p->iov_base + skip, len);
109 count -= len - ret;
110 if (ret)
111 break;
112 }
113 return count + size;
114 }
115 return 0;
116}
117EXPORT_SYMBOL(fault_in_iov_iter_readable);
118
119/*
120 * fault_in_iov_iter_writeable - fault in iov iterator for writing
121 * @i: iterator
122 * @size: maximum length
123 *
124 * Faults in the iterator using get_user_pages(), i.e., without triggering
125 * hardware page faults. This is primarily useful when we already know that
126 * some or all of the pages in @i aren't in memory.
127 *
128 * Returns the number of bytes not faulted in, like copy_to_user() and
129 * copy_from_user().
130 *
131 * Always returns 0 for non-user-space iterators.
132 */
133size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
134{
135 if (iter_is_ubuf(i)) {
136 size_t n = min(size, iov_iter_count(i));
137 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
138 return size - n;
139 } else if (iter_is_iovec(i)) {
140 size_t count = min(size, iov_iter_count(i));
141 const struct iovec *p;
142 size_t skip;
143
144 size -= count;
145 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
146 size_t len = min(count, p->iov_len - skip);
147 size_t ret;
148
149 if (unlikely(!len))
150 continue;
151 ret = fault_in_safe_writeable(p->iov_base + skip, len);
152 count -= len - ret;
153 if (ret)
154 break;
155 }
156 return count + size;
157 }
158 return 0;
159}
160EXPORT_SYMBOL(fault_in_iov_iter_writeable);
161
162void iov_iter_init(struct iov_iter *i, unsigned int direction,
163 const struct iovec *iov, unsigned long nr_segs,
164 size_t count)
165{
166 WARN_ON(direction & ~(READ | WRITE));
167 *i = (struct iov_iter) {
168 .iter_type = ITER_IOVEC,
169 .nofault = false,
170 .data_source = direction,
171 .__iov = iov,
172 .nr_segs = nr_segs,
173 .iov_offset = 0,
174 .count = count
175 };
176}
177EXPORT_SYMBOL(iov_iter_init);
178
179size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
180{
181 if (WARN_ON_ONCE(i->data_source))
182 return 0;
183 if (user_backed_iter(i))
184 might_fault();
185 return iterate_and_advance(i, bytes, (void *)addr,
186 copy_to_user_iter, memcpy_to_iter);
187}
188EXPORT_SYMBOL(_copy_to_iter);
189
190#ifdef CONFIG_ARCH_HAS_COPY_MC
191static __always_inline
192size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress,
193 size_t len, void *from, void *priv2)
194{
195 if (access_ok(iter_to, len)) {
196 from += progress;
197 instrument_copy_to_user(iter_to, from, len);
198 len = copy_mc_to_user(iter_to, from, len);
199 }
200 return len;
201}
202
203static __always_inline
204size_t memcpy_to_iter_mc(void *iter_to, size_t progress,
205 size_t len, void *from, void *priv2)
206{
207 return copy_mc_to_kernel(iter_to, from + progress, len);
208}
209
210/**
211 * _copy_mc_to_iter - copy to iter with source memory error exception handling
212 * @addr: source kernel address
213 * @bytes: total transfer length
214 * @i: destination iterator
215 *
216 * The pmem driver deploys this for the dax operation
217 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
218 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
219 * successfully copied.
220 *
221 * The main differences between this and typical _copy_to_iter().
222 *
223 * * Typical tail/residue handling after a fault retries the copy
224 * byte-by-byte until the fault happens again. Re-triggering machine
225 * checks is potentially fatal so the implementation uses source
226 * alignment and poison alignment assumptions to avoid re-triggering
227 * hardware exceptions.
228 *
229 * * ITER_KVEC and ITER_BVEC can return short copies. Compare to
230 * copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
231 *
232 * Return: number of bytes copied (may be %0)
233 */
234size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
235{
236 if (WARN_ON_ONCE(i->data_source))
237 return 0;
238 if (user_backed_iter(i))
239 might_fault();
240 return iterate_and_advance(i, bytes, (void *)addr,
241 copy_to_user_iter_mc, memcpy_to_iter_mc);
242}
243EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
244#endif /* CONFIG_ARCH_HAS_COPY_MC */
245
246static __always_inline
247size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
248{
249 return iterate_and_advance(i, bytes, addr,
250 copy_from_user_iter, memcpy_from_iter);
251}
252
253size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
254{
255 if (WARN_ON_ONCE(!i->data_source))
256 return 0;
257
258 if (user_backed_iter(i))
259 might_fault();
260 return __copy_from_iter(addr, bytes, i);
261}
262EXPORT_SYMBOL(_copy_from_iter);
263
264static __always_inline
265size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress,
266 size_t len, void *to, void *priv2)
267{
268 return __copy_from_user_inatomic_nocache(to + progress, iter_from, len);
269}
270
271size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
272{
273 if (WARN_ON_ONCE(!i->data_source))
274 return 0;
275
276 return iterate_and_advance(i, bytes, addr,
277 copy_from_user_iter_nocache,
278 memcpy_from_iter);
279}
280EXPORT_SYMBOL(_copy_from_iter_nocache);
281
282#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
283static __always_inline
284size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress,
285 size_t len, void *to, void *priv2)
286{
287 return __copy_from_user_flushcache(to + progress, iter_from, len);
288}
289
290static __always_inline
291size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress,
292 size_t len, void *to, void *priv2)
293{
294 memcpy_flushcache(to + progress, iter_from, len);
295 return 0;
296}
297
298/**
299 * _copy_from_iter_flushcache - write destination through cpu cache
300 * @addr: destination kernel address
301 * @bytes: total transfer length
302 * @i: source iterator
303 *
304 * The pmem driver arranges for filesystem-dax to use this facility via
305 * dax_copy_from_iter() for ensuring that writes to persistent memory
306 * are flushed through the CPU cache. It is differentiated from
307 * _copy_from_iter_nocache() in that guarantees all data is flushed for
308 * all iterator types. The _copy_from_iter_nocache() only attempts to
309 * bypass the cache for the ITER_IOVEC case, and on some archs may use
310 * instructions that strand dirty-data in the cache.
311 *
312 * Return: number of bytes copied (may be %0)
313 */
314size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
315{
316 if (WARN_ON_ONCE(!i->data_source))
317 return 0;
318
319 return iterate_and_advance(i, bytes, addr,
320 copy_from_user_iter_flushcache,
321 memcpy_from_iter_flushcache);
322}
323EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
324#endif
325
326static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
327{
328 struct page *head;
329 size_t v = n + offset;
330
331 /*
332 * The general case needs to access the page order in order
333 * to compute the page size.
334 * However, we mostly deal with order-0 pages and thus can
335 * avoid a possible cache line miss for requests that fit all
336 * page orders.
337 */
338 if (n <= v && v <= PAGE_SIZE)
339 return true;
340
341 head = compound_head(page);
342 v += (page - head) << PAGE_SHIFT;
343
344 if (WARN_ON(n > v || v > page_size(head)))
345 return false;
346 return true;
347}
348
349size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
350 struct iov_iter *i)
351{
352 size_t res = 0;
353 if (!page_copy_sane(page, offset, bytes))
354 return 0;
355 if (WARN_ON_ONCE(i->data_source))
356 return 0;
357 page += offset / PAGE_SIZE; // first subpage
358 offset %= PAGE_SIZE;
359 while (1) {
360 void *kaddr = kmap_local_page(page);
361 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
362 n = _copy_to_iter(kaddr + offset, n, i);
363 kunmap_local(kaddr);
364 res += n;
365 bytes -= n;
366 if (!bytes || !n)
367 break;
368 offset += n;
369 if (offset == PAGE_SIZE) {
370 page++;
371 offset = 0;
372 }
373 }
374 return res;
375}
376EXPORT_SYMBOL(copy_page_to_iter);
377
378size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
379 struct iov_iter *i)
380{
381 size_t res = 0;
382
383 if (!page_copy_sane(page, offset, bytes))
384 return 0;
385 if (WARN_ON_ONCE(i->data_source))
386 return 0;
387 page += offset / PAGE_SIZE; // first subpage
388 offset %= PAGE_SIZE;
389 while (1) {
390 void *kaddr = kmap_local_page(page);
391 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
392
393 n = iterate_and_advance(i, n, kaddr + offset,
394 copy_to_user_iter_nofault,
395 memcpy_to_iter);
396 kunmap_local(kaddr);
397 res += n;
398 bytes -= n;
399 if (!bytes || !n)
400 break;
401 offset += n;
402 if (offset == PAGE_SIZE) {
403 page++;
404 offset = 0;
405 }
406 }
407 return res;
408}
409EXPORT_SYMBOL(copy_page_to_iter_nofault);
410
411size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
412 struct iov_iter *i)
413{
414 size_t res = 0;
415 if (!page_copy_sane(page, offset, bytes))
416 return 0;
417 page += offset / PAGE_SIZE; // first subpage
418 offset %= PAGE_SIZE;
419 while (1) {
420 void *kaddr = kmap_local_page(page);
421 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
422 n = _copy_from_iter(kaddr + offset, n, i);
423 kunmap_local(kaddr);
424 res += n;
425 bytes -= n;
426 if (!bytes || !n)
427 break;
428 offset += n;
429 if (offset == PAGE_SIZE) {
430 page++;
431 offset = 0;
432 }
433 }
434 return res;
435}
436EXPORT_SYMBOL(copy_page_from_iter);
437
438static __always_inline
439size_t zero_to_user_iter(void __user *iter_to, size_t progress,
440 size_t len, void *priv, void *priv2)
441{
442 return clear_user(iter_to, len);
443}
444
445static __always_inline
446size_t zero_to_iter(void *iter_to, size_t progress,
447 size_t len, void *priv, void *priv2)
448{
449 memset(iter_to, 0, len);
450 return 0;
451}
452
453size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
454{
455 return iterate_and_advance(i, bytes, NULL,
456 zero_to_user_iter, zero_to_iter);
457}
458EXPORT_SYMBOL(iov_iter_zero);
459
460size_t copy_page_from_iter_atomic(struct page *page, size_t offset,
461 size_t bytes, struct iov_iter *i)
462{
463 size_t n, copied = 0;
464
465 if (!page_copy_sane(page, offset, bytes))
466 return 0;
467 if (WARN_ON_ONCE(!i->data_source))
468 return 0;
469
470 do {
471 char *p;
472
473 n = bytes - copied;
474 if (PageHighMem(page)) {
475 page += offset / PAGE_SIZE;
476 offset %= PAGE_SIZE;
477 n = min_t(size_t, n, PAGE_SIZE - offset);
478 }
479
480 p = kmap_atomic(page) + offset;
481 n = __copy_from_iter(p, n, i);
482 kunmap_atomic(p);
483 copied += n;
484 offset += n;
485 } while (PageHighMem(page) && copied != bytes && n > 0);
486
487 return copied;
488}
489EXPORT_SYMBOL(copy_page_from_iter_atomic);
490
491static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
492{
493 const struct bio_vec *bvec, *end;
494
495 if (!i->count)
496 return;
497 i->count -= size;
498
499 size += i->iov_offset;
500
501 for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
502 if (likely(size < bvec->bv_len))
503 break;
504 size -= bvec->bv_len;
505 }
506 i->iov_offset = size;
507 i->nr_segs -= bvec - i->bvec;
508 i->bvec = bvec;
509}
510
511static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
512{
513 const struct iovec *iov, *end;
514
515 if (!i->count)
516 return;
517 i->count -= size;
518
519 size += i->iov_offset; // from beginning of current segment
520 for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
521 if (likely(size < iov->iov_len))
522 break;
523 size -= iov->iov_len;
524 }
525 i->iov_offset = size;
526 i->nr_segs -= iov - iter_iov(i);
527 i->__iov = iov;
528}
529
530void iov_iter_advance(struct iov_iter *i, size_t size)
531{
532 if (unlikely(i->count < size))
533 size = i->count;
534 if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
535 i->iov_offset += size;
536 i->count -= size;
537 } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
538 /* iovec and kvec have identical layouts */
539 iov_iter_iovec_advance(i, size);
540 } else if (iov_iter_is_bvec(i)) {
541 iov_iter_bvec_advance(i, size);
542 } else if (iov_iter_is_discard(i)) {
543 i->count -= size;
544 }
545}
546EXPORT_SYMBOL(iov_iter_advance);
547
548void iov_iter_revert(struct iov_iter *i, size_t unroll)
549{
550 if (!unroll)
551 return;
552 if (WARN_ON(unroll > MAX_RW_COUNT))
553 return;
554 i->count += unroll;
555 if (unlikely(iov_iter_is_discard(i)))
556 return;
557 if (unroll <= i->iov_offset) {
558 i->iov_offset -= unroll;
559 return;
560 }
561 unroll -= i->iov_offset;
562 if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
563 BUG(); /* We should never go beyond the start of the specified
564 * range since we might then be straying into pages that
565 * aren't pinned.
566 */
567 } else if (iov_iter_is_bvec(i)) {
568 const struct bio_vec *bvec = i->bvec;
569 while (1) {
570 size_t n = (--bvec)->bv_len;
571 i->nr_segs++;
572 if (unroll <= n) {
573 i->bvec = bvec;
574 i->iov_offset = n - unroll;
575 return;
576 }
577 unroll -= n;
578 }
579 } else { /* same logics for iovec and kvec */
580 const struct iovec *iov = iter_iov(i);
581 while (1) {
582 size_t n = (--iov)->iov_len;
583 i->nr_segs++;
584 if (unroll <= n) {
585 i->__iov = iov;
586 i->iov_offset = n - unroll;
587 return;
588 }
589 unroll -= n;
590 }
591 }
592}
593EXPORT_SYMBOL(iov_iter_revert);
594
595/*
596 * Return the count of just the current iov_iter segment.
597 */
598size_t iov_iter_single_seg_count(const struct iov_iter *i)
599{
600 if (i->nr_segs > 1) {
601 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
602 return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
603 if (iov_iter_is_bvec(i))
604 return min(i->count, i->bvec->bv_len - i->iov_offset);
605 }
606 return i->count;
607}
608EXPORT_SYMBOL(iov_iter_single_seg_count);
609
610void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
611 const struct kvec *kvec, unsigned long nr_segs,
612 size_t count)
613{
614 WARN_ON(direction & ~(READ | WRITE));
615 *i = (struct iov_iter){
616 .iter_type = ITER_KVEC,
617 .data_source = direction,
618 .kvec = kvec,
619 .nr_segs = nr_segs,
620 .iov_offset = 0,
621 .count = count
622 };
623}
624EXPORT_SYMBOL(iov_iter_kvec);
625
626void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
627 const struct bio_vec *bvec, unsigned long nr_segs,
628 size_t count)
629{
630 WARN_ON(direction & ~(READ | WRITE));
631 *i = (struct iov_iter){
632 .iter_type = ITER_BVEC,
633 .data_source = direction,
634 .bvec = bvec,
635 .nr_segs = nr_segs,
636 .iov_offset = 0,
637 .count = count
638 };
639}
640EXPORT_SYMBOL(iov_iter_bvec);
641
642/**
643 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
644 * @i: The iterator to initialise.
645 * @direction: The direction of the transfer.
646 * @xarray: The xarray to access.
647 * @start: The start file position.
648 * @count: The size of the I/O buffer in bytes.
649 *
650 * Set up an I/O iterator to either draw data out of the pages attached to an
651 * inode or to inject data into those pages. The pages *must* be prevented
652 * from evaporation, either by taking a ref on them or locking them by the
653 * caller.
654 */
655void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
656 struct xarray *xarray, loff_t start, size_t count)
657{
658 BUG_ON(direction & ~1);
659 *i = (struct iov_iter) {
660 .iter_type = ITER_XARRAY,
661 .data_source = direction,
662 .xarray = xarray,
663 .xarray_start = start,
664 .count = count,
665 .iov_offset = 0
666 };
667}
668EXPORT_SYMBOL(iov_iter_xarray);
669
670/**
671 * iov_iter_discard - Initialise an I/O iterator that discards data
672 * @i: The iterator to initialise.
673 * @direction: The direction of the transfer.
674 * @count: The size of the I/O buffer in bytes.
675 *
676 * Set up an I/O iterator that just discards everything that's written to it.
677 * It's only available as a READ iterator.
678 */
679void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
680{
681 BUG_ON(direction != READ);
682 *i = (struct iov_iter){
683 .iter_type = ITER_DISCARD,
684 .data_source = false,
685 .count = count,
686 .iov_offset = 0
687 };
688}
689EXPORT_SYMBOL(iov_iter_discard);
690
691static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
692 unsigned len_mask)
693{
694 size_t size = i->count;
695 size_t skip = i->iov_offset;
696 unsigned k;
697
698 for (k = 0; k < i->nr_segs; k++, skip = 0) {
699 const struct iovec *iov = iter_iov(i) + k;
700 size_t len = iov->iov_len - skip;
701
702 if (len > size)
703 len = size;
704 if (len & len_mask)
705 return false;
706 if ((unsigned long)(iov->iov_base + skip) & addr_mask)
707 return false;
708
709 size -= len;
710 if (!size)
711 break;
712 }
713 return true;
714}
715
716static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
717 unsigned len_mask)
718{
719 size_t size = i->count;
720 unsigned skip = i->iov_offset;
721 unsigned k;
722
723 for (k = 0; k < i->nr_segs; k++, skip = 0) {
724 size_t len = i->bvec[k].bv_len - skip;
725
726 if (len > size)
727 len = size;
728 if (len & len_mask)
729 return false;
730 if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
731 return false;
732
733 size -= len;
734 if (!size)
735 break;
736 }
737 return true;
738}
739
740/**
741 * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
742 * are aligned to the parameters.
743 *
744 * @i: &struct iov_iter to restore
745 * @addr_mask: bit mask to check against the iov element's addresses
746 * @len_mask: bit mask to check against the iov element's lengths
747 *
748 * Return: false if any addresses or lengths intersect with the provided masks
749 */
750bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
751 unsigned len_mask)
752{
753 if (likely(iter_is_ubuf(i))) {
754 if (i->count & len_mask)
755 return false;
756 if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
757 return false;
758 return true;
759 }
760
761 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
762 return iov_iter_aligned_iovec(i, addr_mask, len_mask);
763
764 if (iov_iter_is_bvec(i))
765 return iov_iter_aligned_bvec(i, addr_mask, len_mask);
766
767 if (iov_iter_is_xarray(i)) {
768 if (i->count & len_mask)
769 return false;
770 if ((i->xarray_start + i->iov_offset) & addr_mask)
771 return false;
772 }
773
774 return true;
775}
776EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
777
778static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
779{
780 unsigned long res = 0;
781 size_t size = i->count;
782 size_t skip = i->iov_offset;
783 unsigned k;
784
785 for (k = 0; k < i->nr_segs; k++, skip = 0) {
786 const struct iovec *iov = iter_iov(i) + k;
787 size_t len = iov->iov_len - skip;
788 if (len) {
789 res |= (unsigned long)iov->iov_base + skip;
790 if (len > size)
791 len = size;
792 res |= len;
793 size -= len;
794 if (!size)
795 break;
796 }
797 }
798 return res;
799}
800
801static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
802{
803 unsigned res = 0;
804 size_t size = i->count;
805 unsigned skip = i->iov_offset;
806 unsigned k;
807
808 for (k = 0; k < i->nr_segs; k++, skip = 0) {
809 size_t len = i->bvec[k].bv_len - skip;
810 res |= (unsigned long)i->bvec[k].bv_offset + skip;
811 if (len > size)
812 len = size;
813 res |= len;
814 size -= len;
815 if (!size)
816 break;
817 }
818 return res;
819}
820
821unsigned long iov_iter_alignment(const struct iov_iter *i)
822{
823 if (likely(iter_is_ubuf(i))) {
824 size_t size = i->count;
825 if (size)
826 return ((unsigned long)i->ubuf + i->iov_offset) | size;
827 return 0;
828 }
829
830 /* iovec and kvec have identical layouts */
831 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
832 return iov_iter_alignment_iovec(i);
833
834 if (iov_iter_is_bvec(i))
835 return iov_iter_alignment_bvec(i);
836
837 if (iov_iter_is_xarray(i))
838 return (i->xarray_start + i->iov_offset) | i->count;
839
840 return 0;
841}
842EXPORT_SYMBOL(iov_iter_alignment);
843
844unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
845{
846 unsigned long res = 0;
847 unsigned long v = 0;
848 size_t size = i->count;
849 unsigned k;
850
851 if (iter_is_ubuf(i))
852 return 0;
853
854 if (WARN_ON(!iter_is_iovec(i)))
855 return ~0U;
856
857 for (k = 0; k < i->nr_segs; k++) {
858 const struct iovec *iov = iter_iov(i) + k;
859 if (iov->iov_len) {
860 unsigned long base = (unsigned long)iov->iov_base;
861 if (v) // if not the first one
862 res |= base | v; // this start | previous end
863 v = base + iov->iov_len;
864 if (size <= iov->iov_len)
865 break;
866 size -= iov->iov_len;
867 }
868 }
869 return res;
870}
871EXPORT_SYMBOL(iov_iter_gap_alignment);
872
873static int want_pages_array(struct page ***res, size_t size,
874 size_t start, unsigned int maxpages)
875{
876 unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
877
878 if (count > maxpages)
879 count = maxpages;
880 WARN_ON(!count); // caller should've prevented that
881 if (!*res) {
882 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
883 if (!*res)
884 return 0;
885 }
886 return count;
887}
888
889static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
890 pgoff_t index, unsigned int nr_pages)
891{
892 XA_STATE(xas, xa, index);
893 struct page *page;
894 unsigned int ret = 0;
895
896 rcu_read_lock();
897 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
898 if (xas_retry(&xas, page))
899 continue;
900
901 /* Has the page moved or been split? */
902 if (unlikely(page != xas_reload(&xas))) {
903 xas_reset(&xas);
904 continue;
905 }
906
907 pages[ret] = find_subpage(page, xas.xa_index);
908 get_page(pages[ret]);
909 if (++ret == nr_pages)
910 break;
911 }
912 rcu_read_unlock();
913 return ret;
914}
915
916static ssize_t iter_xarray_get_pages(struct iov_iter *i,
917 struct page ***pages, size_t maxsize,
918 unsigned maxpages, size_t *_start_offset)
919{
920 unsigned nr, offset, count;
921 pgoff_t index;
922 loff_t pos;
923
924 pos = i->xarray_start + i->iov_offset;
925 index = pos >> PAGE_SHIFT;
926 offset = pos & ~PAGE_MASK;
927 *_start_offset = offset;
928
929 count = want_pages_array(pages, maxsize, offset, maxpages);
930 if (!count)
931 return -ENOMEM;
932 nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
933 if (nr == 0)
934 return 0;
935
936 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
937 i->iov_offset += maxsize;
938 i->count -= maxsize;
939 return maxsize;
940}
941
942/* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
943static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
944{
945 size_t skip;
946 long k;
947
948 if (iter_is_ubuf(i))
949 return (unsigned long)i->ubuf + i->iov_offset;
950
951 for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
952 const struct iovec *iov = iter_iov(i) + k;
953 size_t len = iov->iov_len - skip;
954
955 if (unlikely(!len))
956 continue;
957 if (*size > len)
958 *size = len;
959 return (unsigned long)iov->iov_base + skip;
960 }
961 BUG(); // if it had been empty, we wouldn't get called
962}
963
964/* must be done on non-empty ITER_BVEC one */
965static struct page *first_bvec_segment(const struct iov_iter *i,
966 size_t *size, size_t *start)
967{
968 struct page *page;
969 size_t skip = i->iov_offset, len;
970
971 len = i->bvec->bv_len - skip;
972 if (*size > len)
973 *size = len;
974 skip += i->bvec->bv_offset;
975 page = i->bvec->bv_page + skip / PAGE_SIZE;
976 *start = skip % PAGE_SIZE;
977 return page;
978}
979
980static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
981 struct page ***pages, size_t maxsize,
982 unsigned int maxpages, size_t *start)
983{
984 unsigned int n, gup_flags = 0;
985
986 if (maxsize > i->count)
987 maxsize = i->count;
988 if (!maxsize)
989 return 0;
990 if (maxsize > MAX_RW_COUNT)
991 maxsize = MAX_RW_COUNT;
992
993 if (likely(user_backed_iter(i))) {
994 unsigned long addr;
995 int res;
996
997 if (iov_iter_rw(i) != WRITE)
998 gup_flags |= FOLL_WRITE;
999 if (i->nofault)
1000 gup_flags |= FOLL_NOFAULT;
1001
1002 addr = first_iovec_segment(i, &maxsize);
1003 *start = addr % PAGE_SIZE;
1004 addr &= PAGE_MASK;
1005 n = want_pages_array(pages, maxsize, *start, maxpages);
1006 if (!n)
1007 return -ENOMEM;
1008 res = get_user_pages_fast(addr, n, gup_flags, *pages);
1009 if (unlikely(res <= 0))
1010 return res;
1011 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1012 iov_iter_advance(i, maxsize);
1013 return maxsize;
1014 }
1015 if (iov_iter_is_bvec(i)) {
1016 struct page **p;
1017 struct page *page;
1018
1019 page = first_bvec_segment(i, &maxsize, start);
1020 n = want_pages_array(pages, maxsize, *start, maxpages);
1021 if (!n)
1022 return -ENOMEM;
1023 p = *pages;
1024 for (int k = 0; k < n; k++)
1025 get_page(p[k] = page + k);
1026 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1027 i->count -= maxsize;
1028 i->iov_offset += maxsize;
1029 if (i->iov_offset == i->bvec->bv_len) {
1030 i->iov_offset = 0;
1031 i->bvec++;
1032 i->nr_segs--;
1033 }
1034 return maxsize;
1035 }
1036 if (iov_iter_is_xarray(i))
1037 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1038 return -EFAULT;
1039}
1040
1041ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1042 size_t maxsize, unsigned maxpages, size_t *start)
1043{
1044 if (!maxpages)
1045 return 0;
1046 BUG_ON(!pages);
1047
1048 return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1049}
1050EXPORT_SYMBOL(iov_iter_get_pages2);
1051
1052ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1053 struct page ***pages, size_t maxsize, size_t *start)
1054{
1055 ssize_t len;
1056
1057 *pages = NULL;
1058
1059 len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1060 if (len <= 0) {
1061 kvfree(*pages);
1062 *pages = NULL;
1063 }
1064 return len;
1065}
1066EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1067
1068static int iov_npages(const struct iov_iter *i, int maxpages)
1069{
1070 size_t skip = i->iov_offset, size = i->count;
1071 const struct iovec *p;
1072 int npages = 0;
1073
1074 for (p = iter_iov(i); size; skip = 0, p++) {
1075 unsigned offs = offset_in_page(p->iov_base + skip);
1076 size_t len = min(p->iov_len - skip, size);
1077
1078 if (len) {
1079 size -= len;
1080 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1081 if (unlikely(npages > maxpages))
1082 return maxpages;
1083 }
1084 }
1085 return npages;
1086}
1087
1088static int bvec_npages(const struct iov_iter *i, int maxpages)
1089{
1090 size_t skip = i->iov_offset, size = i->count;
1091 const struct bio_vec *p;
1092 int npages = 0;
1093
1094 for (p = i->bvec; size; skip = 0, p++) {
1095 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1096 size_t len = min(p->bv_len - skip, size);
1097
1098 size -= len;
1099 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1100 if (unlikely(npages > maxpages))
1101 return maxpages;
1102 }
1103 return npages;
1104}
1105
1106int iov_iter_npages(const struct iov_iter *i, int maxpages)
1107{
1108 if (unlikely(!i->count))
1109 return 0;
1110 if (likely(iter_is_ubuf(i))) {
1111 unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1112 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1113 return min(npages, maxpages);
1114 }
1115 /* iovec and kvec have identical layouts */
1116 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1117 return iov_npages(i, maxpages);
1118 if (iov_iter_is_bvec(i))
1119 return bvec_npages(i, maxpages);
1120 if (iov_iter_is_xarray(i)) {
1121 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1122 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1123 return min(npages, maxpages);
1124 }
1125 return 0;
1126}
1127EXPORT_SYMBOL(iov_iter_npages);
1128
1129const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1130{
1131 *new = *old;
1132 if (iov_iter_is_bvec(new))
1133 return new->bvec = kmemdup(new->bvec,
1134 new->nr_segs * sizeof(struct bio_vec),
1135 flags);
1136 else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1137 /* iovec and kvec have identical layout */
1138 return new->__iov = kmemdup(new->__iov,
1139 new->nr_segs * sizeof(struct iovec),
1140 flags);
1141 return NULL;
1142}
1143EXPORT_SYMBOL(dup_iter);
1144
1145static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
1146 const struct iovec __user *uvec, unsigned long nr_segs)
1147{
1148 const struct compat_iovec __user *uiov =
1149 (const struct compat_iovec __user *)uvec;
1150 int ret = -EFAULT, i;
1151
1152 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1153 return -EFAULT;
1154
1155 for (i = 0; i < nr_segs; i++) {
1156 compat_uptr_t buf;
1157 compat_ssize_t len;
1158
1159 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1160 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1161
1162 /* check for compat_size_t not fitting in compat_ssize_t .. */
1163 if (len < 0) {
1164 ret = -EINVAL;
1165 goto uaccess_end;
1166 }
1167 iov[i].iov_base = compat_ptr(buf);
1168 iov[i].iov_len = len;
1169 }
1170
1171 ret = 0;
1172uaccess_end:
1173 user_access_end();
1174 return ret;
1175}
1176
1177static __noclone int copy_iovec_from_user(struct iovec *iov,
1178 const struct iovec __user *uiov, unsigned long nr_segs)
1179{
1180 int ret = -EFAULT;
1181
1182 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1183 return -EFAULT;
1184
1185 do {
1186 void __user *buf;
1187 ssize_t len;
1188
1189 unsafe_get_user(len, &uiov->iov_len, uaccess_end);
1190 unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
1191
1192 /* check for size_t not fitting in ssize_t .. */
1193 if (unlikely(len < 0)) {
1194 ret = -EINVAL;
1195 goto uaccess_end;
1196 }
1197 iov->iov_base = buf;
1198 iov->iov_len = len;
1199
1200 uiov++; iov++;
1201 } while (--nr_segs);
1202
1203 ret = 0;
1204uaccess_end:
1205 user_access_end();
1206 return ret;
1207}
1208
1209struct iovec *iovec_from_user(const struct iovec __user *uvec,
1210 unsigned long nr_segs, unsigned long fast_segs,
1211 struct iovec *fast_iov, bool compat)
1212{
1213 struct iovec *iov = fast_iov;
1214 int ret;
1215
1216 /*
1217 * SuS says "The readv() function *may* fail if the iovcnt argument was
1218 * less than or equal to 0, or greater than {IOV_MAX}. Linux has
1219 * traditionally returned zero for zero segments, so...
1220 */
1221 if (nr_segs == 0)
1222 return iov;
1223 if (nr_segs > UIO_MAXIOV)
1224 return ERR_PTR(-EINVAL);
1225 if (nr_segs > fast_segs) {
1226 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1227 if (!iov)
1228 return ERR_PTR(-ENOMEM);
1229 }
1230
1231 if (unlikely(compat))
1232 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1233 else
1234 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1235 if (ret) {
1236 if (iov != fast_iov)
1237 kfree(iov);
1238 return ERR_PTR(ret);
1239 }
1240
1241 return iov;
1242}
1243
1244/*
1245 * Single segment iovec supplied by the user, import it as ITER_UBUF.
1246 */
1247static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
1248 struct iovec **iovp, struct iov_iter *i,
1249 bool compat)
1250{
1251 struct iovec *iov = *iovp;
1252 ssize_t ret;
1253
1254 if (compat)
1255 ret = copy_compat_iovec_from_user(iov, uvec, 1);
1256 else
1257 ret = copy_iovec_from_user(iov, uvec, 1);
1258 if (unlikely(ret))
1259 return ret;
1260
1261 ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
1262 if (unlikely(ret))
1263 return ret;
1264 *iovp = NULL;
1265 return i->count;
1266}
1267
1268ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1269 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1270 struct iov_iter *i, bool compat)
1271{
1272 ssize_t total_len = 0;
1273 unsigned long seg;
1274 struct iovec *iov;
1275
1276 if (nr_segs == 1)
1277 return __import_iovec_ubuf(type, uvec, iovp, i, compat);
1278
1279 iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1280 if (IS_ERR(iov)) {
1281 *iovp = NULL;
1282 return PTR_ERR(iov);
1283 }
1284
1285 /*
1286 * According to the Single Unix Specification we should return EINVAL if
1287 * an element length is < 0 when cast to ssize_t or if the total length
1288 * would overflow the ssize_t return value of the system call.
1289 *
1290 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1291 * overflow case.
1292 */
1293 for (seg = 0; seg < nr_segs; seg++) {
1294 ssize_t len = (ssize_t)iov[seg].iov_len;
1295
1296 if (!access_ok(iov[seg].iov_base, len)) {
1297 if (iov != *iovp)
1298 kfree(iov);
1299 *iovp = NULL;
1300 return -EFAULT;
1301 }
1302
1303 if (len > MAX_RW_COUNT - total_len) {
1304 len = MAX_RW_COUNT - total_len;
1305 iov[seg].iov_len = len;
1306 }
1307 total_len += len;
1308 }
1309
1310 iov_iter_init(i, type, iov, nr_segs, total_len);
1311 if (iov == *iovp)
1312 *iovp = NULL;
1313 else
1314 *iovp = iov;
1315 return total_len;
1316}
1317
1318/**
1319 * import_iovec() - Copy an array of &struct iovec from userspace
1320 * into the kernel, check that it is valid, and initialize a new
1321 * &struct iov_iter iterator to access it.
1322 *
1323 * @type: One of %READ or %WRITE.
1324 * @uvec: Pointer to the userspace array.
1325 * @nr_segs: Number of elements in userspace array.
1326 * @fast_segs: Number of elements in @iov.
1327 * @iovp: (input and output parameter) Pointer to pointer to (usually small
1328 * on-stack) kernel array.
1329 * @i: Pointer to iterator that will be initialized on success.
1330 *
1331 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1332 * then this function places %NULL in *@iov on return. Otherwise, a new
1333 * array will be allocated and the result placed in *@iov. This means that
1334 * the caller may call kfree() on *@iov regardless of whether the small
1335 * on-stack array was used or not (and regardless of whether this function
1336 * returns an error or not).
1337 *
1338 * Return: Negative error code on error, bytes imported on success
1339 */
1340ssize_t import_iovec(int type, const struct iovec __user *uvec,
1341 unsigned nr_segs, unsigned fast_segs,
1342 struct iovec **iovp, struct iov_iter *i)
1343{
1344 return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1345 in_compat_syscall());
1346}
1347EXPORT_SYMBOL(import_iovec);
1348
1349int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1350{
1351 if (len > MAX_RW_COUNT)
1352 len = MAX_RW_COUNT;
1353 if (unlikely(!access_ok(buf, len)))
1354 return -EFAULT;
1355
1356 iov_iter_ubuf(i, rw, buf, len);
1357 return 0;
1358}
1359EXPORT_SYMBOL_GPL(import_ubuf);
1360
1361/**
1362 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1363 * iov_iter_save_state() was called.
1364 *
1365 * @i: &struct iov_iter to restore
1366 * @state: state to restore from
1367 *
1368 * Used after iov_iter_save_state() to bring restore @i, if operations may
1369 * have advanced it.
1370 *
1371 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1372 */
1373void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1374{
1375 if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
1376 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
1377 return;
1378 i->iov_offset = state->iov_offset;
1379 i->count = state->count;
1380 if (iter_is_ubuf(i))
1381 return;
1382 /*
1383 * For the *vec iters, nr_segs + iov is constant - if we increment
1384 * the vec, then we also decrement the nr_segs count. Hence we don't
1385 * need to track both of these, just one is enough and we can deduct
1386 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1387 * size, so we can just increment the iov pointer as they are unionzed.
1388 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1389 * not. Be safe and handle it separately.
1390 */
1391 BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1392 if (iov_iter_is_bvec(i))
1393 i->bvec -= state->nr_segs - i->nr_segs;
1394 else
1395 i->__iov -= state->nr_segs - i->nr_segs;
1396 i->nr_segs = state->nr_segs;
1397}
1398
1399/*
1400 * Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not
1401 * get references on the pages, nor does it get a pin on them.
1402 */
1403static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
1404 struct page ***pages, size_t maxsize,
1405 unsigned int maxpages,
1406 iov_iter_extraction_t extraction_flags,
1407 size_t *offset0)
1408{
1409 struct page *page, **p;
1410 unsigned int nr = 0, offset;
1411 loff_t pos = i->xarray_start + i->iov_offset;
1412 pgoff_t index = pos >> PAGE_SHIFT;
1413 XA_STATE(xas, i->xarray, index);
1414
1415 offset = pos & ~PAGE_MASK;
1416 *offset0 = offset;
1417
1418 maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1419 if (!maxpages)
1420 return -ENOMEM;
1421 p = *pages;
1422
1423 rcu_read_lock();
1424 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1425 if (xas_retry(&xas, page))
1426 continue;
1427
1428 /* Has the page moved or been split? */
1429 if (unlikely(page != xas_reload(&xas))) {
1430 xas_reset(&xas);
1431 continue;
1432 }
1433
1434 p[nr++] = find_subpage(page, xas.xa_index);
1435 if (nr == maxpages)
1436 break;
1437 }
1438 rcu_read_unlock();
1439
1440 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1441 iov_iter_advance(i, maxsize);
1442 return maxsize;
1443}
1444
1445/*
1446 * Extract a list of contiguous pages from an ITER_BVEC iterator. This does
1447 * not get references on the pages, nor does it get a pin on them.
1448 */
1449static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
1450 struct page ***pages, size_t maxsize,
1451 unsigned int maxpages,
1452 iov_iter_extraction_t extraction_flags,
1453 size_t *offset0)
1454{
1455 struct page **p, *page;
1456 size_t skip = i->iov_offset, offset, size;
1457 int k;
1458
1459 for (;;) {
1460 if (i->nr_segs == 0)
1461 return 0;
1462 size = min(maxsize, i->bvec->bv_len - skip);
1463 if (size)
1464 break;
1465 i->iov_offset = 0;
1466 i->nr_segs--;
1467 i->bvec++;
1468 skip = 0;
1469 }
1470
1471 skip += i->bvec->bv_offset;
1472 page = i->bvec->bv_page + skip / PAGE_SIZE;
1473 offset = skip % PAGE_SIZE;
1474 *offset0 = offset;
1475
1476 maxpages = want_pages_array(pages, size, offset, maxpages);
1477 if (!maxpages)
1478 return -ENOMEM;
1479 p = *pages;
1480 for (k = 0; k < maxpages; k++)
1481 p[k] = page + k;
1482
1483 size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1484 iov_iter_advance(i, size);
1485 return size;
1486}
1487
1488/*
1489 * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
1490 * This does not get references on the pages, nor does it get a pin on them.
1491 */
1492static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
1493 struct page ***pages, size_t maxsize,
1494 unsigned int maxpages,
1495 iov_iter_extraction_t extraction_flags,
1496 size_t *offset0)
1497{
1498 struct page **p, *page;
1499 const void *kaddr;
1500 size_t skip = i->iov_offset, offset, len, size;
1501 int k;
1502
1503 for (;;) {
1504 if (i->nr_segs == 0)
1505 return 0;
1506 size = min(maxsize, i->kvec->iov_len - skip);
1507 if (size)
1508 break;
1509 i->iov_offset = 0;
1510 i->nr_segs--;
1511 i->kvec++;
1512 skip = 0;
1513 }
1514
1515 kaddr = i->kvec->iov_base + skip;
1516 offset = (unsigned long)kaddr & ~PAGE_MASK;
1517 *offset0 = offset;
1518
1519 maxpages = want_pages_array(pages, size, offset, maxpages);
1520 if (!maxpages)
1521 return -ENOMEM;
1522 p = *pages;
1523
1524 kaddr -= offset;
1525 len = offset + size;
1526 for (k = 0; k < maxpages; k++) {
1527 size_t seg = min_t(size_t, len, PAGE_SIZE);
1528
1529 if (is_vmalloc_or_module_addr(kaddr))
1530 page = vmalloc_to_page(kaddr);
1531 else
1532 page = virt_to_page(kaddr);
1533
1534 p[k] = page;
1535 len -= seg;
1536 kaddr += PAGE_SIZE;
1537 }
1538
1539 size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1540 iov_iter_advance(i, size);
1541 return size;
1542}
1543
1544/*
1545 * Extract a list of contiguous pages from a user iterator and get a pin on
1546 * each of them. This should only be used if the iterator is user-backed
1547 * (IOBUF/UBUF).
1548 *
1549 * It does not get refs on the pages, but the pages must be unpinned by the
1550 * caller once the transfer is complete.
1551 *
1552 * This is safe to be used where background IO/DMA *is* going to be modifying
1553 * the buffer; using a pin rather than a ref makes forces fork() to give the
1554 * child a copy of the page.
1555 */
1556static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
1557 struct page ***pages,
1558 size_t maxsize,
1559 unsigned int maxpages,
1560 iov_iter_extraction_t extraction_flags,
1561 size_t *offset0)
1562{
1563 unsigned long addr;
1564 unsigned int gup_flags = 0;
1565 size_t offset;
1566 int res;
1567
1568 if (i->data_source == ITER_DEST)
1569 gup_flags |= FOLL_WRITE;
1570 if (extraction_flags & ITER_ALLOW_P2PDMA)
1571 gup_flags |= FOLL_PCI_P2PDMA;
1572 if (i->nofault)
1573 gup_flags |= FOLL_NOFAULT;
1574
1575 addr = first_iovec_segment(i, &maxsize);
1576 *offset0 = offset = addr % PAGE_SIZE;
1577 addr &= PAGE_MASK;
1578 maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1579 if (!maxpages)
1580 return -ENOMEM;
1581 res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
1582 if (unlikely(res <= 0))
1583 return res;
1584 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
1585 iov_iter_advance(i, maxsize);
1586 return maxsize;
1587}
1588
1589/**
1590 * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
1591 * @i: The iterator to extract from
1592 * @pages: Where to return the list of pages
1593 * @maxsize: The maximum amount of iterator to extract
1594 * @maxpages: The maximum size of the list of pages
1595 * @extraction_flags: Flags to qualify request
1596 * @offset0: Where to return the starting offset into (*@pages)[0]
1597 *
1598 * Extract a list of contiguous pages from the current point of the iterator,
1599 * advancing the iterator. The maximum number of pages and the maximum amount
1600 * of page contents can be set.
1601 *
1602 * If *@pages is NULL, a page list will be allocated to the required size and
1603 * *@pages will be set to its base. If *@pages is not NULL, it will be assumed
1604 * that the caller allocated a page list at least @maxpages in size and this
1605 * will be filled in.
1606 *
1607 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1608 * be allowed on the pages extracted.
1609 *
1610 * The iov_iter_extract_will_pin() function can be used to query how cleanup
1611 * should be performed.
1612 *
1613 * Extra refs or pins on the pages may be obtained as follows:
1614 *
1615 * (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
1616 * added to the pages, but refs will not be taken.
1617 * iov_iter_extract_will_pin() will return true.
1618 *
1619 * (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are
1620 * merely listed; no extra refs or pins are obtained.
1621 * iov_iter_extract_will_pin() will return 0.
1622 *
1623 * Note also:
1624 *
1625 * (*) Use with ITER_DISCARD is not supported as that has no content.
1626 *
1627 * On success, the function sets *@pages to the new pagelist, if allocated, and
1628 * sets *offset0 to the offset into the first page.
1629 *
1630 * It may also return -ENOMEM and -EFAULT.
1631 */
1632ssize_t iov_iter_extract_pages(struct iov_iter *i,
1633 struct page ***pages,
1634 size_t maxsize,
1635 unsigned int maxpages,
1636 iov_iter_extraction_t extraction_flags,
1637 size_t *offset0)
1638{
1639 maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
1640 if (!maxsize)
1641 return 0;
1642
1643 if (likely(user_backed_iter(i)))
1644 return iov_iter_extract_user_pages(i, pages, maxsize,
1645 maxpages, extraction_flags,
1646 offset0);
1647 if (iov_iter_is_kvec(i))
1648 return iov_iter_extract_kvec_pages(i, pages, maxsize,
1649 maxpages, extraction_flags,
1650 offset0);
1651 if (iov_iter_is_bvec(i))
1652 return iov_iter_extract_bvec_pages(i, pages, maxsize,
1653 maxpages, extraction_flags,
1654 offset0);
1655 if (iov_iter_is_xarray(i))
1656 return iov_iter_extract_xarray_pages(i, pages, maxsize,
1657 maxpages, extraction_flags,
1658 offset0);
1659 return -EFAULT;
1660}
1661EXPORT_SYMBOL_GPL(iov_iter_extract_pages);