Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <crypto/hash.h>
   3#include <linux/export.h>
   4#include <linux/bvec.h>
   5#include <linux/fault-inject-usercopy.h>
   6#include <linux/uio.h>
   7#include <linux/pagemap.h>
   8#include <linux/highmem.h>
   9#include <linux/slab.h>
  10#include <linux/vmalloc.h>
  11#include <linux/splice.h>
  12#include <linux/compat.h>
  13#include <net/checksum.h>
  14#include <linux/scatterlist.h>
  15#include <linux/instrumented.h>
  16
  17#define PIPE_PARANOIA /* for now */
  18
  19/* covers iovec and kvec alike */
  20#define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
  21	size_t off = 0;						\
  22	size_t skip = i->iov_offset;				\
  23	do {							\
  24		len = min(n, __p->iov_len - skip);		\
  25		if (likely(len)) {				\
  26			base = __p->iov_base + skip;		\
  27			len -= (STEP);				\
  28			off += len;				\
  29			skip += len;				\
  30			n -= len;				\
  31			if (skip < __p->iov_len)		\
  32				break;				\
  33		}						\
  34		__p++;						\
  35		skip = 0;					\
  36	} while (n);						\
  37	i->iov_offset = skip;					\
  38	n = off;						\
  39}
  40
  41#define iterate_bvec(i, n, base, len, off, p, STEP) {		\
  42	size_t off = 0;						\
  43	unsigned skip = i->iov_offset;				\
  44	while (n) {						\
  45		unsigned offset = p->bv_offset + skip;		\
  46		unsigned left;					\
  47		void *kaddr = kmap_local_page(p->bv_page +	\
  48					offset / PAGE_SIZE);	\
  49		base = kaddr + offset % PAGE_SIZE;		\
  50		len = min(min(n, (size_t)(p->bv_len - skip)),	\
  51		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
  52		left = (STEP);					\
  53		kunmap_local(kaddr);				\
  54		len -= left;					\
  55		off += len;					\
  56		skip += len;					\
  57		if (skip == p->bv_len) {			\
  58			skip = 0;				\
  59			p++;					\
  60		}						\
  61		n -= len;					\
  62		if (left)					\
  63			break;					\
  64	}							\
  65	i->iov_offset = skip;					\
  66	n = off;						\
 
 
 
 
 
 
 
 
 
 
 
 
 
  67}
  68
  69#define iterate_xarray(i, n, base, len, __off, STEP) {		\
  70	__label__ __out;					\
  71	size_t __off = 0;					\
  72	struct page *head = NULL;				\
  73	loff_t start = i->xarray_start + i->iov_offset;		\
  74	unsigned offset = start % PAGE_SIZE;			\
  75	pgoff_t index = start / PAGE_SIZE;			\
  76	int j;							\
  77								\
  78	XA_STATE(xas, i->xarray, index);			\
  79								\
  80	rcu_read_lock();					\
  81	xas_for_each(&xas, head, ULONG_MAX) {			\
  82		unsigned left;					\
  83		if (xas_retry(&xas, head))			\
  84			continue;				\
  85		if (WARN_ON(xa_is_value(head)))			\
  86			break;					\
  87		if (WARN_ON(PageHuge(head)))			\
  88			break;					\
  89		for (j = (head->index < index) ? index - head->index : 0; \
  90		     j < thp_nr_pages(head); j++) {		\
  91			void *kaddr = kmap_local_page(head + j);	\
  92			base = kaddr + offset;			\
  93			len = PAGE_SIZE - offset;		\
  94			len = min(n, len);			\
  95			left = (STEP);				\
  96			kunmap_local(kaddr);			\
  97			len -= left;				\
  98			__off += len;				\
  99			n -= len;				\
 100			if (left || n == 0)			\
 101				goto __out;			\
 102			offset = 0;				\
 103		}						\
 104	}							\
 105__out:								\
 106	rcu_read_unlock();					\
 107	i->iov_offset += __off;						\
 108	n = __off;						\
 109}
 110
 111#define __iterate_and_advance(i, n, base, len, off, I, K) {	\
 112	if (unlikely(i->count < n))				\
 113		n = i->count;					\
 114	if (likely(n)) {					\
 115		if (likely(iter_is_iovec(i))) {			\
 116			const struct iovec *iov = i->iov;	\
 117			void __user *base;			\
 118			size_t len;				\
 119			iterate_iovec(i, n, base, len, off,	\
 120						iov, (I))	\
 121			i->nr_segs -= iov - i->iov;		\
 122			i->iov = iov;				\
 123		} else if (iov_iter_is_bvec(i)) {		\
 124			const struct bio_vec *bvec = i->bvec;	\
 125			void *base;				\
 126			size_t len;				\
 127			iterate_bvec(i, n, base, len, off,	\
 128						bvec, (K))	\
 129			i->nr_segs -= bvec - i->bvec;		\
 130			i->bvec = bvec;				\
 131		} else if (iov_iter_is_kvec(i)) {		\
 132			const struct kvec *kvec = i->kvec;	\
 133			void *base;				\
 134			size_t len;				\
 135			iterate_iovec(i, n, base, len, off,	\
 136						kvec, (K))	\
 
 
 137			i->nr_segs -= kvec - i->kvec;		\
 138			i->kvec = kvec;				\
 139		} else if (iov_iter_is_xarray(i)) {		\
 140			void *base;				\
 141			size_t len;				\
 142			iterate_xarray(i, n, base, len, off,	\
 143							(K))	\
 
 
 
 
 
 
 
 144		}						\
 145		i->count -= n;					\
 
 146	}							\
 147}
 148#define iterate_and_advance(i, n, base, len, off, I, K) \
 149	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
 150
 151static int copyout(void __user *to, const void *from, size_t n)
 152{
 153	if (should_fail_usercopy())
 154		return n;
 155	if (access_ok(to, n)) {
 156		instrument_copy_to_user(to, from, n);
 157		n = raw_copy_to_user(to, from, n);
 158	}
 159	return n;
 160}
 161
 162static int copyin(void *to, const void __user *from, size_t n)
 163{
 164	if (should_fail_usercopy())
 165		return n;
 166	if (access_ok(from, n)) {
 167		instrument_copy_from_user(to, from, n);
 168		n = raw_copy_from_user(to, from, n);
 169	}
 170	return n;
 171}
 172
 173static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
 174			 struct iov_iter *i)
 175{
 176	size_t skip, copy, left, wanted;
 177	const struct iovec *iov;
 178	char __user *buf;
 179	void *kaddr, *from;
 180
 181	if (unlikely(bytes > i->count))
 182		bytes = i->count;
 183
 184	if (unlikely(!bytes))
 185		return 0;
 186
 187	might_fault();
 188	wanted = bytes;
 189	iov = i->iov;
 190	skip = i->iov_offset;
 191	buf = iov->iov_base + skip;
 192	copy = min(bytes, iov->iov_len - skip);
 193
 194	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
 195		kaddr = kmap_atomic(page);
 196		from = kaddr + offset;
 197
 198		/* first chunk, usually the only one */
 199		left = copyout(buf, from, copy);
 200		copy -= left;
 201		skip += copy;
 202		from += copy;
 203		bytes -= copy;
 204
 205		while (unlikely(!left && bytes)) {
 206			iov++;
 207			buf = iov->iov_base;
 208			copy = min(bytes, iov->iov_len);
 209			left = copyout(buf, from, copy);
 210			copy -= left;
 211			skip = copy;
 212			from += copy;
 213			bytes -= copy;
 214		}
 215		if (likely(!bytes)) {
 216			kunmap_atomic(kaddr);
 217			goto done;
 218		}
 219		offset = from - kaddr;
 220		buf += copy;
 221		kunmap_atomic(kaddr);
 222		copy = min(bytes, iov->iov_len - skip);
 223	}
 224	/* Too bad - revert to non-atomic kmap */
 225
 226	kaddr = kmap(page);
 227	from = kaddr + offset;
 228	left = copyout(buf, from, copy);
 229	copy -= left;
 230	skip += copy;
 231	from += copy;
 232	bytes -= copy;
 233	while (unlikely(!left && bytes)) {
 234		iov++;
 235		buf = iov->iov_base;
 236		copy = min(bytes, iov->iov_len);
 237		left = copyout(buf, from, copy);
 238		copy -= left;
 239		skip = copy;
 240		from += copy;
 241		bytes -= copy;
 242	}
 243	kunmap(page);
 244
 245done:
 246	if (skip == iov->iov_len) {
 247		iov++;
 248		skip = 0;
 249	}
 250	i->count -= wanted - bytes;
 251	i->nr_segs -= iov - i->iov;
 252	i->iov = iov;
 253	i->iov_offset = skip;
 254	return wanted - bytes;
 255}
 256
 257static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
 258			 struct iov_iter *i)
 259{
 260	size_t skip, copy, left, wanted;
 261	const struct iovec *iov;
 262	char __user *buf;
 263	void *kaddr, *to;
 264
 265	if (unlikely(bytes > i->count))
 266		bytes = i->count;
 267
 268	if (unlikely(!bytes))
 269		return 0;
 270
 271	might_fault();
 272	wanted = bytes;
 273	iov = i->iov;
 274	skip = i->iov_offset;
 275	buf = iov->iov_base + skip;
 276	copy = min(bytes, iov->iov_len - skip);
 277
 278	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
 279		kaddr = kmap_atomic(page);
 280		to = kaddr + offset;
 281
 282		/* first chunk, usually the only one */
 283		left = copyin(to, buf, copy);
 284		copy -= left;
 285		skip += copy;
 286		to += copy;
 287		bytes -= copy;
 288
 289		while (unlikely(!left && bytes)) {
 290			iov++;
 291			buf = iov->iov_base;
 292			copy = min(bytes, iov->iov_len);
 293			left = copyin(to, buf, copy);
 294			copy -= left;
 295			skip = copy;
 296			to += copy;
 297			bytes -= copy;
 298		}
 299		if (likely(!bytes)) {
 300			kunmap_atomic(kaddr);
 301			goto done;
 302		}
 303		offset = to - kaddr;
 304		buf += copy;
 305		kunmap_atomic(kaddr);
 306		copy = min(bytes, iov->iov_len - skip);
 307	}
 308	/* Too bad - revert to non-atomic kmap */
 309
 310	kaddr = kmap(page);
 311	to = kaddr + offset;
 312	left = copyin(to, buf, copy);
 313	copy -= left;
 314	skip += copy;
 315	to += copy;
 316	bytes -= copy;
 317	while (unlikely(!left && bytes)) {
 318		iov++;
 319		buf = iov->iov_base;
 320		copy = min(bytes, iov->iov_len);
 321		left = copyin(to, buf, copy);
 322		copy -= left;
 323		skip = copy;
 324		to += copy;
 325		bytes -= copy;
 326	}
 327	kunmap(page);
 328
 329done:
 330	if (skip == iov->iov_len) {
 331		iov++;
 332		skip = 0;
 333	}
 334	i->count -= wanted - bytes;
 335	i->nr_segs -= iov - i->iov;
 336	i->iov = iov;
 337	i->iov_offset = skip;
 338	return wanted - bytes;
 339}
 340
 341#ifdef PIPE_PARANOIA
 342static bool sanity(const struct iov_iter *i)
 343{
 344	struct pipe_inode_info *pipe = i->pipe;
 345	unsigned int p_head = pipe->head;
 346	unsigned int p_tail = pipe->tail;
 347	unsigned int p_mask = pipe->ring_size - 1;
 348	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
 349	unsigned int i_head = i->head;
 350	unsigned int idx;
 351
 352	if (i->iov_offset) {
 353		struct pipe_buffer *p;
 354		if (unlikely(p_occupancy == 0))
 355			goto Bad;	// pipe must be non-empty
 356		if (unlikely(i_head != p_head - 1))
 357			goto Bad;	// must be at the last buffer...
 358
 359		p = &pipe->bufs[i_head & p_mask];
 360		if (unlikely(p->offset + p->len != i->iov_offset))
 361			goto Bad;	// ... at the end of segment
 362	} else {
 363		if (i_head != p_head)
 364			goto Bad;	// must be right after the last buffer
 365	}
 366	return true;
 367Bad:
 368	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
 369	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
 370			p_head, p_tail, pipe->ring_size);
 371	for (idx = 0; idx < pipe->ring_size; idx++)
 372		printk(KERN_ERR "[%p %p %d %d]\n",
 373			pipe->bufs[idx].ops,
 374			pipe->bufs[idx].page,
 375			pipe->bufs[idx].offset,
 376			pipe->bufs[idx].len);
 377	WARN_ON(1);
 378	return false;
 379}
 380#else
 381#define sanity(i) true
 382#endif
 383
 384static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
 385			 struct iov_iter *i)
 386{
 387	struct pipe_inode_info *pipe = i->pipe;
 388	struct pipe_buffer *buf;
 389	unsigned int p_tail = pipe->tail;
 390	unsigned int p_mask = pipe->ring_size - 1;
 391	unsigned int i_head = i->head;
 392	size_t off;
 393
 394	if (unlikely(bytes > i->count))
 395		bytes = i->count;
 396
 397	if (unlikely(!bytes))
 398		return 0;
 399
 400	if (!sanity(i))
 401		return 0;
 402
 403	off = i->iov_offset;
 404	buf = &pipe->bufs[i_head & p_mask];
 405	if (off) {
 406		if (offset == off && buf->page == page) {
 407			/* merge with the last one */
 408			buf->len += bytes;
 409			i->iov_offset += bytes;
 410			goto out;
 411		}
 412		i_head++;
 413		buf = &pipe->bufs[i_head & p_mask];
 414	}
 415	if (pipe_full(i_head, p_tail, pipe->max_usage))
 416		return 0;
 417
 418	buf->ops = &page_cache_pipe_buf_ops;
 419	get_page(page);
 420	buf->page = page;
 421	buf->offset = offset;
 422	buf->len = bytes;
 423
 424	pipe->head = i_head + 1;
 425	i->iov_offset = offset + bytes;
 426	i->head = i_head;
 427out:
 428	i->count -= bytes;
 429	return bytes;
 430}
 431
 432/*
 433 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
 434 * bytes.  For each iovec, fault in each page that constitutes the iovec.
 435 *
 436 * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
 437 * because it is an invalid address).
 438 */
 439int iov_iter_fault_in_readable(const struct iov_iter *i, size_t bytes)
 440{
 441	if (iter_is_iovec(i)) {
 442		const struct iovec *p;
 443		size_t skip;
 444
 445		if (bytes > i->count)
 446			bytes = i->count;
 447		for (p = i->iov, skip = i->iov_offset; bytes; p++, skip = 0) {
 448			size_t len = min(bytes, p->iov_len - skip);
 449			int err;
 450
 451			if (unlikely(!len))
 452				continue;
 453			err = fault_in_pages_readable(p->iov_base + skip, len);
 454			if (unlikely(err))
 455				return err;
 456			bytes -= len;
 457		}
 458	}
 459	return 0;
 460}
 461EXPORT_SYMBOL(iov_iter_fault_in_readable);
 462
 463void iov_iter_init(struct iov_iter *i, unsigned int direction,
 464			const struct iovec *iov, unsigned long nr_segs,
 465			size_t count)
 466{
 467	WARN_ON(direction & ~(READ | WRITE));
 468	*i = (struct iov_iter) {
 469		.iter_type = ITER_IOVEC,
 470		.data_source = direction,
 471		.iov = iov,
 472		.nr_segs = nr_segs,
 473		.iov_offset = 0,
 474		.count = count
 475	};
 
 
 
 
 
 476}
 477EXPORT_SYMBOL(iov_iter_init);
 478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 479static inline bool allocated(struct pipe_buffer *buf)
 480{
 481	return buf->ops == &default_pipe_buf_ops;
 482}
 483
 484static inline void data_start(const struct iov_iter *i,
 485			      unsigned int *iter_headp, size_t *offp)
 486{
 487	unsigned int p_mask = i->pipe->ring_size - 1;
 488	unsigned int iter_head = i->head;
 489	size_t off = i->iov_offset;
 490
 491	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
 492		    off == PAGE_SIZE)) {
 493		iter_head++;
 494		off = 0;
 495	}
 496	*iter_headp = iter_head;
 497	*offp = off;
 498}
 499
 500static size_t push_pipe(struct iov_iter *i, size_t size,
 501			int *iter_headp, size_t *offp)
 502{
 503	struct pipe_inode_info *pipe = i->pipe;
 504	unsigned int p_tail = pipe->tail;
 505	unsigned int p_mask = pipe->ring_size - 1;
 506	unsigned int iter_head;
 507	size_t off;
 508	ssize_t left;
 509
 510	if (unlikely(size > i->count))
 511		size = i->count;
 512	if (unlikely(!size))
 513		return 0;
 514
 515	left = size;
 516	data_start(i, &iter_head, &off);
 517	*iter_headp = iter_head;
 518	*offp = off;
 519	if (off) {
 520		left -= PAGE_SIZE - off;
 521		if (left <= 0) {
 522			pipe->bufs[iter_head & p_mask].len += size;
 523			return size;
 524		}
 525		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
 526		iter_head++;
 527	}
 528	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
 529		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
 530		struct page *page = alloc_page(GFP_USER);
 531		if (!page)
 532			break;
 533
 534		buf->ops = &default_pipe_buf_ops;
 535		buf->page = page;
 536		buf->offset = 0;
 537		buf->len = min_t(ssize_t, left, PAGE_SIZE);
 538		left -= buf->len;
 539		iter_head++;
 540		pipe->head = iter_head;
 541
 542		if (left == 0)
 543			return size;
 544	}
 545	return size - left;
 546}
 547
 548static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
 549				struct iov_iter *i)
 550{
 551	struct pipe_inode_info *pipe = i->pipe;
 552	unsigned int p_mask = pipe->ring_size - 1;
 553	unsigned int i_head;
 554	size_t n, off;
 555
 556	if (!sanity(i))
 557		return 0;
 558
 559	bytes = n = push_pipe(i, bytes, &i_head, &off);
 560	if (unlikely(!n))
 561		return 0;
 562	do {
 563		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
 564		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
 565		i->head = i_head;
 566		i->iov_offset = off + chunk;
 567		n -= chunk;
 568		addr += chunk;
 569		off = 0;
 570		i_head++;
 571	} while (n);
 572	i->count -= bytes;
 573	return bytes;
 574}
 575
 576static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
 577			      __wsum sum, size_t off)
 578{
 579	__wsum next = csum_partial_copy_nocheck(from, to, len);
 580	return csum_block_add(sum, next, off);
 581}
 582
 583static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
 584					 struct iov_iter *i, __wsum *sump)
 585{
 586	struct pipe_inode_info *pipe = i->pipe;
 587	unsigned int p_mask = pipe->ring_size - 1;
 588	__wsum sum = *sump;
 589	size_t off = 0;
 590	unsigned int i_head;
 591	size_t r;
 
 
 592
 593	if (!sanity(i))
 594		return 0;
 595
 596	bytes = push_pipe(i, bytes, &i_head, &r);
 597	while (bytes) {
 598		size_t chunk = min_t(size_t, bytes, PAGE_SIZE - r);
 599		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
 600		sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
 601		kunmap_local(p);
 
 
 602		i->head = i_head;
 603		i->iov_offset = r + chunk;
 604		bytes -= chunk;
 605		off += chunk;
 
 606		r = 0;
 607		i_head++;
 608	}
 609	*sump = sum;
 610	i->count -= off;
 611	return off;
 612}
 613
 614size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
 615{
 
 616	if (unlikely(iov_iter_is_pipe(i)))
 617		return copy_pipe_to_iter(addr, bytes, i);
 618	if (iter_is_iovec(i))
 619		might_fault();
 620	iterate_and_advance(i, bytes, base, len, off,
 621		copyout(base, addr + off, len),
 622		memcpy(base, addr + off, len)
 
 
 623	)
 624
 625	return bytes;
 626}
 627EXPORT_SYMBOL(_copy_to_iter);
 628
 629#ifdef CONFIG_ARCH_HAS_COPY_MC
 630static int copyout_mc(void __user *to, const void *from, size_t n)
 631{
 632	if (access_ok(to, n)) {
 633		instrument_copy_to_user(to, from, n);
 634		n = copy_mc_to_user((__force void *) to, from, n);
 635	}
 636	return n;
 637}
 638
 639static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
 
 
 
 
 
 
 
 
 
 
 
 
 
 640				struct iov_iter *i)
 641{
 642	struct pipe_inode_info *pipe = i->pipe;
 643	unsigned int p_mask = pipe->ring_size - 1;
 644	unsigned int i_head;
 645	size_t n, off, xfer = 0;
 646
 647	if (!sanity(i))
 648		return 0;
 649
 650	n = push_pipe(i, bytes, &i_head, &off);
 651	while (n) {
 
 
 652		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
 653		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
 654		unsigned long rem;
 655		rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
 656		chunk -= rem;
 657		kunmap_local(p);
 658		i->head = i_head;
 659		i->iov_offset = off + chunk;
 660		xfer += chunk;
 661		if (rem)
 662			break;
 663		n -= chunk;
 
 664		off = 0;
 665		i_head++;
 666	}
 667	i->count -= xfer;
 668	return xfer;
 669}
 670
 671/**
 672 * _copy_mc_to_iter - copy to iter with source memory error exception handling
 673 * @addr: source kernel address
 674 * @bytes: total transfer length
 675 * @iter: destination iterator
 676 *
 677 * The pmem driver deploys this for the dax operation
 678 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
 679 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
 680 * successfully copied.
 
 681 *
 682 * The main differences between this and typical _copy_to_iter().
 683 *
 684 * * Typical tail/residue handling after a fault retries the copy
 685 *   byte-by-byte until the fault happens again. Re-triggering machine
 686 *   checks is potentially fatal so the implementation uses source
 687 *   alignment and poison alignment assumptions to avoid re-triggering
 688 *   hardware exceptions.
 689 *
 690 * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
 691 *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
 692 *   a short copy.
 
 
 693 */
 694size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
 695{
 
 
 
 696	if (unlikely(iov_iter_is_pipe(i)))
 697		return copy_mc_pipe_to_iter(addr, bytes, i);
 698	if (iter_is_iovec(i))
 699		might_fault();
 700	__iterate_and_advance(i, bytes, base, len, off,
 701		copyout_mc(base, addr + off, len),
 702		copy_mc_to_kernel(base, addr + off, len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 703	)
 704
 705	return bytes;
 706}
 707EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
 708#endif /* CONFIG_ARCH_HAS_COPY_MC */
 709
 710size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
 711{
 
 712	if (unlikely(iov_iter_is_pipe(i))) {
 713		WARN_ON(1);
 714		return 0;
 715	}
 716	if (iter_is_iovec(i))
 717		might_fault();
 718	iterate_and_advance(i, bytes, base, len, off,
 719		copyin(addr + off, base, len),
 720		memcpy(addr + off, base, len)
 
 
 721	)
 722
 723	return bytes;
 724}
 725EXPORT_SYMBOL(_copy_from_iter);
 726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 727size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
 728{
 
 729	if (unlikely(iov_iter_is_pipe(i))) {
 730		WARN_ON(1);
 731		return 0;
 732	}
 733	iterate_and_advance(i, bytes, base, len, off,
 734		__copy_from_user_inatomic_nocache(addr + off, base, len),
 735		memcpy(addr + off, base, len)
 
 
 
 736	)
 737
 738	return bytes;
 739}
 740EXPORT_SYMBOL(_copy_from_iter_nocache);
 741
 742#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
 743/**
 744 * _copy_from_iter_flushcache - write destination through cpu cache
 745 * @addr: destination kernel address
 746 * @bytes: total transfer length
 747 * @iter: source iterator
 748 *
 749 * The pmem driver arranges for filesystem-dax to use this facility via
 750 * dax_copy_from_iter() for ensuring that writes to persistent memory
 751 * are flushed through the CPU cache. It is differentiated from
 752 * _copy_from_iter_nocache() in that guarantees all data is flushed for
 753 * all iterator types. The _copy_from_iter_nocache() only attempts to
 754 * bypass the cache for the ITER_IOVEC case, and on some archs may use
 755 * instructions that strand dirty-data in the cache.
 756 */
 757size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
 758{
 
 759	if (unlikely(iov_iter_is_pipe(i))) {
 760		WARN_ON(1);
 761		return 0;
 762	}
 763	iterate_and_advance(i, bytes, base, len, off,
 764		__copy_from_user_flushcache(addr + off, base, len),
 765		memcpy_flushcache(addr + off, base, len)
 
 
 
 
 766	)
 767
 768	return bytes;
 769}
 770EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
 771#endif
 772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 773static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
 774{
 775	struct page *head;
 776	size_t v = n + offset;
 777
 778	/*
 779	 * The general case needs to access the page order in order
 780	 * to compute the page size.
 781	 * However, we mostly deal with order-0 pages and thus can
 782	 * avoid a possible cache line miss for requests that fit all
 783	 * page orders.
 784	 */
 785	if (n <= v && v <= PAGE_SIZE)
 786		return true;
 787
 788	head = compound_head(page);
 789	v += (page - head) << PAGE_SHIFT;
 790
 791	if (likely(n <= v && v <= (page_size(head))))
 792		return true;
 793	WARN_ON(1);
 794	return false;
 795}
 796
 797static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
 798			 struct iov_iter *i)
 799{
 800	if (likely(iter_is_iovec(i)))
 801		return copy_page_to_iter_iovec(page, offset, bytes, i);
 802	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
 803		void *kaddr = kmap_local_page(page);
 804		size_t wanted = _copy_to_iter(kaddr + offset, bytes, i);
 805		kunmap_local(kaddr);
 806		return wanted;
 807	}
 808	if (iov_iter_is_pipe(i))
 809		return copy_page_to_iter_pipe(page, offset, bytes, i);
 810	if (unlikely(iov_iter_is_discard(i))) {
 811		if (unlikely(i->count < bytes))
 812			bytes = i->count;
 813		i->count -= bytes;
 814		return bytes;
 815	}
 816	WARN_ON(1);
 817	return 0;
 818}
 819
 820size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
 821			 struct iov_iter *i)
 822{
 823	size_t res = 0;
 824	if (unlikely(!page_copy_sane(page, offset, bytes)))
 825		return 0;
 826	page += offset / PAGE_SIZE; // first subpage
 827	offset %= PAGE_SIZE;
 828	while (1) {
 829		size_t n = __copy_page_to_iter(page, offset,
 830				min(bytes, (size_t)PAGE_SIZE - offset), i);
 831		res += n;
 832		bytes -= n;
 833		if (!bytes || !n)
 834			break;
 835		offset += n;
 836		if (offset == PAGE_SIZE) {
 837			page++;
 838			offset = 0;
 839		}
 840	}
 841	return res;
 842}
 843EXPORT_SYMBOL(copy_page_to_iter);
 844
 845size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
 846			 struct iov_iter *i)
 847{
 848	if (unlikely(!page_copy_sane(page, offset, bytes)))
 849		return 0;
 850	if (likely(iter_is_iovec(i)))
 851		return copy_page_from_iter_iovec(page, offset, bytes, i);
 852	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
 853		void *kaddr = kmap_local_page(page);
 
 
 854		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
 855		kunmap_local(kaddr);
 856		return wanted;
 857	}
 858	WARN_ON(1);
 859	return 0;
 860}
 861EXPORT_SYMBOL(copy_page_from_iter);
 862
 863static size_t pipe_zero(size_t bytes, struct iov_iter *i)
 864{
 865	struct pipe_inode_info *pipe = i->pipe;
 866	unsigned int p_mask = pipe->ring_size - 1;
 867	unsigned int i_head;
 868	size_t n, off;
 869
 870	if (!sanity(i))
 871		return 0;
 872
 873	bytes = n = push_pipe(i, bytes, &i_head, &off);
 874	if (unlikely(!n))
 875		return 0;
 876
 877	do {
 878		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
 879		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
 880		memset(p + off, 0, chunk);
 881		kunmap_local(p);
 882		i->head = i_head;
 883		i->iov_offset = off + chunk;
 884		n -= chunk;
 885		off = 0;
 886		i_head++;
 887	} while (n);
 888	i->count -= bytes;
 889	return bytes;
 890}
 891
 892size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
 893{
 894	if (unlikely(iov_iter_is_pipe(i)))
 895		return pipe_zero(bytes, i);
 896	iterate_and_advance(i, bytes, base, len, count,
 897		clear_user(base, len),
 898		memset(base, 0, len)
 
 899	)
 900
 901	return bytes;
 902}
 903EXPORT_SYMBOL(iov_iter_zero);
 904
 905size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
 906				  struct iov_iter *i)
 907{
 908	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
 909	if (unlikely(!page_copy_sane(page, offset, bytes))) {
 910		kunmap_atomic(kaddr);
 911		return 0;
 912	}
 913	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
 914		kunmap_atomic(kaddr);
 915		WARN_ON(1);
 916		return 0;
 917	}
 918	iterate_and_advance(i, bytes, base, len, off,
 919		copyin(p + off, base, len),
 920		memcpy(p + off, base, len)
 
 
 921	)
 922	kunmap_atomic(kaddr);
 923	return bytes;
 924}
 925EXPORT_SYMBOL(copy_page_from_iter_atomic);
 926
 927static inline void pipe_truncate(struct iov_iter *i)
 928{
 929	struct pipe_inode_info *pipe = i->pipe;
 930	unsigned int p_tail = pipe->tail;
 931	unsigned int p_head = pipe->head;
 932	unsigned int p_mask = pipe->ring_size - 1;
 933
 934	if (!pipe_empty(p_head, p_tail)) {
 935		struct pipe_buffer *buf;
 936		unsigned int i_head = i->head;
 937		size_t off = i->iov_offset;
 938
 939		if (off) {
 940			buf = &pipe->bufs[i_head & p_mask];
 941			buf->len = off - buf->offset;
 942			i_head++;
 943		}
 944		while (p_head != i_head) {
 945			p_head--;
 946			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
 947		}
 948
 949		pipe->head = p_head;
 950	}
 951}
 952
 953static void pipe_advance(struct iov_iter *i, size_t size)
 954{
 955	struct pipe_inode_info *pipe = i->pipe;
 
 
 956	if (size) {
 957		struct pipe_buffer *buf;
 958		unsigned int p_mask = pipe->ring_size - 1;
 959		unsigned int i_head = i->head;
 960		size_t off = i->iov_offset, left = size;
 961
 962		if (off) /* make it relative to the beginning of buffer */
 963			left += off - pipe->bufs[i_head & p_mask].offset;
 964		while (1) {
 965			buf = &pipe->bufs[i_head & p_mask];
 966			if (left <= buf->len)
 967				break;
 968			left -= buf->len;
 969			i_head++;
 970		}
 971		i->head = i_head;
 972		i->iov_offset = buf->offset + left;
 973	}
 974	i->count -= size;
 975	/* ... and discard everything past that point */
 976	pipe_truncate(i);
 977}
 978
 979static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
 980{
 981	struct bvec_iter bi;
 982
 983	bi.bi_size = i->count;
 984	bi.bi_bvec_done = i->iov_offset;
 985	bi.bi_idx = 0;
 986	bvec_iter_advance(i->bvec, &bi, size);
 987
 988	i->bvec += bi.bi_idx;
 989	i->nr_segs -= bi.bi_idx;
 990	i->count = bi.bi_size;
 991	i->iov_offset = bi.bi_bvec_done;
 992}
 993
 994static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
 995{
 996	const struct iovec *iov, *end;
 997
 998	if (!i->count)
 999		return;
1000	i->count -= size;
1001
1002	size += i->iov_offset; // from beginning of current segment
1003	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
1004		if (likely(size < iov->iov_len))
1005			break;
1006		size -= iov->iov_len;
1007	}
1008	i->iov_offset = size;
1009	i->nr_segs -= iov - i->iov;
1010	i->iov = iov;
1011}
1012
1013void iov_iter_advance(struct iov_iter *i, size_t size)
1014{
1015	if (unlikely(i->count < size))
1016		size = i->count;
1017	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
1018		/* iovec and kvec have identical layouts */
1019		iov_iter_iovec_advance(i, size);
1020	} else if (iov_iter_is_bvec(i)) {
1021		iov_iter_bvec_advance(i, size);
1022	} else if (iov_iter_is_pipe(i)) {
1023		pipe_advance(i, size);
1024	} else if (unlikely(iov_iter_is_xarray(i))) {
1025		i->iov_offset += size;
1026		i->count -= size;
1027	} else if (iov_iter_is_discard(i)) {
1028		i->count -= size;
 
1029	}
 
1030}
1031EXPORT_SYMBOL(iov_iter_advance);
1032
1033void iov_iter_revert(struct iov_iter *i, size_t unroll)
1034{
1035	if (!unroll)
1036		return;
1037	if (WARN_ON(unroll > MAX_RW_COUNT))
1038		return;
1039	i->count += unroll;
1040	if (unlikely(iov_iter_is_pipe(i))) {
1041		struct pipe_inode_info *pipe = i->pipe;
1042		unsigned int p_mask = pipe->ring_size - 1;
1043		unsigned int i_head = i->head;
1044		size_t off = i->iov_offset;
1045		while (1) {
1046			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1047			size_t n = off - b->offset;
1048			if (unroll < n) {
1049				off -= unroll;
1050				break;
1051			}
1052			unroll -= n;
1053			if (!unroll && i_head == i->start_head) {
1054				off = 0;
1055				break;
1056			}
1057			i_head--;
1058			b = &pipe->bufs[i_head & p_mask];
1059			off = b->offset + b->len;
1060		}
1061		i->iov_offset = off;
1062		i->head = i_head;
1063		pipe_truncate(i);
1064		return;
1065	}
1066	if (unlikely(iov_iter_is_discard(i)))
1067		return;
1068	if (unroll <= i->iov_offset) {
1069		i->iov_offset -= unroll;
1070		return;
1071	}
1072	unroll -= i->iov_offset;
1073	if (iov_iter_is_xarray(i)) {
1074		BUG(); /* We should never go beyond the start of the specified
1075			* range since we might then be straying into pages that
1076			* aren't pinned.
1077			*/
1078	} else if (iov_iter_is_bvec(i)) {
1079		const struct bio_vec *bvec = i->bvec;
1080		while (1) {
1081			size_t n = (--bvec)->bv_len;
1082			i->nr_segs++;
1083			if (unroll <= n) {
1084				i->bvec = bvec;
1085				i->iov_offset = n - unroll;
1086				return;
1087			}
1088			unroll -= n;
1089		}
1090	} else { /* same logics for iovec and kvec */
1091		const struct iovec *iov = i->iov;
1092		while (1) {
1093			size_t n = (--iov)->iov_len;
1094			i->nr_segs++;
1095			if (unroll <= n) {
1096				i->iov = iov;
1097				i->iov_offset = n - unroll;
1098				return;
1099			}
1100			unroll -= n;
1101		}
1102	}
1103}
1104EXPORT_SYMBOL(iov_iter_revert);
1105
1106/*
1107 * Return the count of just the current iov_iter segment.
1108 */
1109size_t iov_iter_single_seg_count(const struct iov_iter *i)
1110{
1111	if (i->nr_segs > 1) {
1112		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1113			return min(i->count, i->iov->iov_len - i->iov_offset);
1114		if (iov_iter_is_bvec(i))
1115			return min(i->count, i->bvec->bv_len - i->iov_offset);
1116	}
1117	return i->count;
 
 
 
1118}
1119EXPORT_SYMBOL(iov_iter_single_seg_count);
1120
1121void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1122			const struct kvec *kvec, unsigned long nr_segs,
1123			size_t count)
1124{
1125	WARN_ON(direction & ~(READ | WRITE));
1126	*i = (struct iov_iter){
1127		.iter_type = ITER_KVEC,
1128		.data_source = direction,
1129		.kvec = kvec,
1130		.nr_segs = nr_segs,
1131		.iov_offset = 0,
1132		.count = count
1133	};
1134}
1135EXPORT_SYMBOL(iov_iter_kvec);
1136
1137void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1138			const struct bio_vec *bvec, unsigned long nr_segs,
1139			size_t count)
1140{
1141	WARN_ON(direction & ~(READ | WRITE));
1142	*i = (struct iov_iter){
1143		.iter_type = ITER_BVEC,
1144		.data_source = direction,
1145		.bvec = bvec,
1146		.nr_segs = nr_segs,
1147		.iov_offset = 0,
1148		.count = count
1149	};
1150}
1151EXPORT_SYMBOL(iov_iter_bvec);
1152
1153void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1154			struct pipe_inode_info *pipe,
1155			size_t count)
1156{
1157	BUG_ON(direction != READ);
1158	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1159	*i = (struct iov_iter){
1160		.iter_type = ITER_PIPE,
1161		.data_source = false,
1162		.pipe = pipe,
1163		.head = pipe->head,
1164		.start_head = pipe->head,
1165		.iov_offset = 0,
1166		.count = count
1167	};
1168}
1169EXPORT_SYMBOL(iov_iter_pipe);
1170
1171/**
1172 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1173 * @i: The iterator to initialise.
1174 * @direction: The direction of the transfer.
1175 * @xarray: The xarray to access.
1176 * @start: The start file position.
1177 * @count: The size of the I/O buffer in bytes.
1178 *
1179 * Set up an I/O iterator to either draw data out of the pages attached to an
1180 * inode or to inject data into those pages.  The pages *must* be prevented
1181 * from evaporation, either by taking a ref on them or locking them by the
1182 * caller.
1183 */
1184void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1185		     struct xarray *xarray, loff_t start, size_t count)
1186{
1187	BUG_ON(direction & ~1);
1188	*i = (struct iov_iter) {
1189		.iter_type = ITER_XARRAY,
1190		.data_source = direction,
1191		.xarray = xarray,
1192		.xarray_start = start,
1193		.count = count,
1194		.iov_offset = 0
1195	};
1196}
1197EXPORT_SYMBOL(iov_iter_xarray);
1198
1199/**
1200 * iov_iter_discard - Initialise an I/O iterator that discards data
1201 * @i: The iterator to initialise.
1202 * @direction: The direction of the transfer.
1203 * @count: The size of the I/O buffer in bytes.
1204 *
1205 * Set up an I/O iterator that just discards everything that's written to it.
1206 * It's only available as a READ iterator.
1207 */
1208void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1209{
1210	BUG_ON(direction != READ);
1211	*i = (struct iov_iter){
1212		.iter_type = ITER_DISCARD,
1213		.data_source = false,
1214		.count = count,
1215		.iov_offset = 0
1216	};
1217}
1218EXPORT_SYMBOL(iov_iter_discard);
1219
1220static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1221{
1222	unsigned long res = 0;
1223	size_t size = i->count;
1224	size_t skip = i->iov_offset;
1225	unsigned k;
1226
1227	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1228		size_t len = i->iov[k].iov_len - skip;
1229		if (len) {
1230			res |= (unsigned long)i->iov[k].iov_base + skip;
1231			if (len > size)
1232				len = size;
1233			res |= len;
1234			size -= len;
1235			if (!size)
1236				break;
1237		}
1238	}
1239	return res;
1240}
1241
1242static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1243{
1244	unsigned res = 0;
1245	size_t size = i->count;
1246	unsigned skip = i->iov_offset;
1247	unsigned k;
1248
1249	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1250		size_t len = i->bvec[k].bv_len - skip;
1251		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1252		if (len > size)
1253			len = size;
1254		res |= len;
1255		size -= len;
1256		if (!size)
1257			break;
1258	}
1259	return res;
1260}
1261
1262unsigned long iov_iter_alignment(const struct iov_iter *i)
1263{
1264	/* iovec and kvec have identical layouts */
1265	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1266		return iov_iter_alignment_iovec(i);
1267
1268	if (iov_iter_is_bvec(i))
1269		return iov_iter_alignment_bvec(i);
1270
1271	if (iov_iter_is_pipe(i)) {
1272		unsigned int p_mask = i->pipe->ring_size - 1;
1273		size_t size = i->count;
1274
1275		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1276			return size | i->iov_offset;
1277		return size;
1278	}
1279
1280	if (iov_iter_is_xarray(i))
1281		return (i->xarray_start + i->iov_offset) | i->count;
1282
1283	return 0;
 
1284}
1285EXPORT_SYMBOL(iov_iter_alignment);
1286
1287unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1288{
1289	unsigned long res = 0;
1290	unsigned long v = 0;
1291	size_t size = i->count;
1292	unsigned k;
1293
1294	if (WARN_ON(!iter_is_iovec(i)))
 
1295		return ~0U;
1296
1297	for (k = 0; k < i->nr_segs; k++) {
1298		if (i->iov[k].iov_len) {
1299			unsigned long base = (unsigned long)i->iov[k].iov_base;
1300			if (v) // if not the first one
1301				res |= base | v; // this start | previous end
1302			v = base + i->iov[k].iov_len;
1303			if (size <= i->iov[k].iov_len)
1304				break;
1305			size -= i->iov[k].iov_len;
1306		}
1307	}
 
 
 
 
 
 
 
 
 
1308	return res;
1309}
1310EXPORT_SYMBOL(iov_iter_gap_alignment);
1311
1312static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1313				size_t maxsize,
1314				struct page **pages,
1315				int iter_head,
1316				size_t *start)
1317{
1318	struct pipe_inode_info *pipe = i->pipe;
1319	unsigned int p_mask = pipe->ring_size - 1;
1320	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1321	if (!n)
1322		return -EFAULT;
1323
1324	maxsize = n;
1325	n += *start;
1326	while (n > 0) {
1327		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1328		iter_head++;
1329		n -= PAGE_SIZE;
1330	}
1331
1332	return maxsize;
1333}
1334
1335static ssize_t pipe_get_pages(struct iov_iter *i,
1336		   struct page **pages, size_t maxsize, unsigned maxpages,
1337		   size_t *start)
1338{
1339	unsigned int iter_head, npages;
1340	size_t capacity;
1341
 
 
 
1342	if (!sanity(i))
1343		return -EFAULT;
1344
1345	data_start(i, &iter_head, start);
1346	/* Amount of free space: some of this one + all after this one */
1347	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1348	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1349
1350	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1351}
1352
1353static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1354					  pgoff_t index, unsigned int nr_pages)
1355{
1356	XA_STATE(xas, xa, index);
1357	struct page *page;
1358	unsigned int ret = 0;
1359
1360	rcu_read_lock();
1361	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1362		if (xas_retry(&xas, page))
1363			continue;
1364
1365		/* Has the page moved or been split? */
1366		if (unlikely(page != xas_reload(&xas))) {
1367			xas_reset(&xas);
1368			continue;
1369		}
1370
1371		pages[ret] = find_subpage(page, xas.xa_index);
1372		get_page(pages[ret]);
1373		if (++ret == nr_pages)
1374			break;
1375	}
1376	rcu_read_unlock();
1377	return ret;
1378}
1379
1380static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1381				     struct page **pages, size_t maxsize,
1382				     unsigned maxpages, size_t *_start_offset)
1383{
1384	unsigned nr, offset;
1385	pgoff_t index, count;
1386	size_t size = maxsize, actual;
1387	loff_t pos;
1388
1389	if (!size || !maxpages)
1390		return 0;
1391
1392	pos = i->xarray_start + i->iov_offset;
1393	index = pos >> PAGE_SHIFT;
1394	offset = pos & ~PAGE_MASK;
1395	*_start_offset = offset;
1396
1397	count = 1;
1398	if (size > PAGE_SIZE - offset) {
1399		size -= PAGE_SIZE - offset;
1400		count += size >> PAGE_SHIFT;
1401		size &= ~PAGE_MASK;
1402		if (size)
1403			count++;
1404	}
1405
1406	if (count > maxpages)
1407		count = maxpages;
1408
1409	nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1410	if (nr == 0)
1411		return 0;
1412
1413	actual = PAGE_SIZE * nr;
1414	actual -= offset;
1415	if (nr == count && size > 0) {
1416		unsigned last_offset = (nr > 1) ? 0 : offset;
1417		actual -= PAGE_SIZE - (last_offset + size);
1418	}
1419	return actual;
1420}
1421
1422/* must be done on non-empty ITER_IOVEC one */
1423static unsigned long first_iovec_segment(const struct iov_iter *i,
1424					 size_t *size, size_t *start,
1425					 size_t maxsize, unsigned maxpages)
1426{
1427	size_t skip;
1428	long k;
1429
1430	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1431		unsigned long addr = (unsigned long)i->iov[k].iov_base + skip;
1432		size_t len = i->iov[k].iov_len - skip;
1433
1434		if (unlikely(!len))
1435			continue;
1436		if (len > maxsize)
1437			len = maxsize;
1438		len += (*start = addr % PAGE_SIZE);
1439		if (len > maxpages * PAGE_SIZE)
1440			len = maxpages * PAGE_SIZE;
1441		*size = len;
1442		return addr & PAGE_MASK;
1443	}
1444	BUG(); // if it had been empty, we wouldn't get called
1445}
1446
1447/* must be done on non-empty ITER_BVEC one */
1448static struct page *first_bvec_segment(const struct iov_iter *i,
1449				       size_t *size, size_t *start,
1450				       size_t maxsize, unsigned maxpages)
1451{
1452	struct page *page;
1453	size_t skip = i->iov_offset, len;
1454
1455	len = i->bvec->bv_len - skip;
1456	if (len > maxsize)
1457		len = maxsize;
1458	skip += i->bvec->bv_offset;
1459	page = i->bvec->bv_page + skip / PAGE_SIZE;
1460	len += (*start = skip % PAGE_SIZE);
1461	if (len > maxpages * PAGE_SIZE)
1462		len = maxpages * PAGE_SIZE;
1463	*size = len;
1464	return page;
1465}
1466
1467ssize_t iov_iter_get_pages(struct iov_iter *i,
1468		   struct page **pages, size_t maxsize, unsigned maxpages,
1469		   size_t *start)
1470{
1471	size_t len;
1472	int n, res;
1473
1474	if (maxsize > i->count)
1475		maxsize = i->count;
1476	if (!maxsize)
1477		return 0;
1478
1479	if (likely(iter_is_iovec(i))) {
1480		unsigned long addr;
 
 
 
 
 
 
 
 
1481
1482		addr = first_iovec_segment(i, &len, start, maxsize, maxpages);
 
 
1483		n = DIV_ROUND_UP(len, PAGE_SIZE);
1484		res = get_user_pages_fast(addr, n,
1485				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1486				pages);
1487		if (unlikely(res < 0))
1488			return res;
1489		return (res == n ? len : res * PAGE_SIZE) - *start;
1490	}
1491	if (iov_iter_is_bvec(i)) {
1492		struct page *page;
1493
1494		page = first_bvec_segment(i, &len, start, maxsize, maxpages);
1495		n = DIV_ROUND_UP(len, PAGE_SIZE);
1496		while (n--)
1497			get_page(*pages++ = page++);
1498		return len - *start;
1499	}
1500	if (iov_iter_is_pipe(i))
1501		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1502	if (iov_iter_is_xarray(i))
1503		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1504	return -EFAULT;
1505}
1506EXPORT_SYMBOL(iov_iter_get_pages);
1507
1508static struct page **get_pages_array(size_t n)
1509{
1510	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1511}
1512
1513static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1514		   struct page ***pages, size_t maxsize,
1515		   size_t *start)
1516{
1517	struct page **p;
1518	unsigned int iter_head, npages;
1519	ssize_t n;
1520
 
 
 
1521	if (!sanity(i))
1522		return -EFAULT;
1523
1524	data_start(i, &iter_head, start);
1525	/* Amount of free space: some of this one + all after this one */
1526	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1527	n = npages * PAGE_SIZE - *start;
1528	if (maxsize > n)
1529		maxsize = n;
1530	else
1531		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1532	p = get_pages_array(npages);
1533	if (!p)
1534		return -ENOMEM;
1535	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1536	if (n > 0)
1537		*pages = p;
1538	else
1539		kvfree(p);
1540	return n;
1541}
1542
1543static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1544					   struct page ***pages, size_t maxsize,
1545					   size_t *_start_offset)
1546{
1547	struct page **p;
1548	unsigned nr, offset;
1549	pgoff_t index, count;
1550	size_t size = maxsize, actual;
1551	loff_t pos;
1552
1553	if (!size)
1554		return 0;
1555
1556	pos = i->xarray_start + i->iov_offset;
1557	index = pos >> PAGE_SHIFT;
1558	offset = pos & ~PAGE_MASK;
1559	*_start_offset = offset;
1560
1561	count = 1;
1562	if (size > PAGE_SIZE - offset) {
1563		size -= PAGE_SIZE - offset;
1564		count += size >> PAGE_SHIFT;
1565		size &= ~PAGE_MASK;
1566		if (size)
1567			count++;
1568	}
1569
1570	p = get_pages_array(count);
1571	if (!p)
1572		return -ENOMEM;
1573	*pages = p;
1574
1575	nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1576	if (nr == 0)
1577		return 0;
1578
1579	actual = PAGE_SIZE * nr;
1580	actual -= offset;
1581	if (nr == count && size > 0) {
1582		unsigned last_offset = (nr > 1) ? 0 : offset;
1583		actual -= PAGE_SIZE - (last_offset + size);
1584	}
1585	return actual;
1586}
1587
1588ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1589		   struct page ***pages, size_t maxsize,
1590		   size_t *start)
1591{
1592	struct page **p;
1593	size_t len;
1594	int n, res;
1595
1596	if (maxsize > i->count)
1597		maxsize = i->count;
1598	if (!maxsize)
1599		return 0;
1600
1601	if (likely(iter_is_iovec(i))) {
1602		unsigned long addr;
 
 
 
 
 
 
 
 
1603
1604		addr = first_iovec_segment(i, &len, start, maxsize, ~0U);
1605		n = DIV_ROUND_UP(len, PAGE_SIZE);
1606		p = get_pages_array(n);
1607		if (!p)
1608			return -ENOMEM;
1609		res = get_user_pages_fast(addr, n,
1610				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1611		if (unlikely(res < 0)) {
1612			kvfree(p);
1613			return res;
1614		}
1615		*pages = p;
1616		return (res == n ? len : res * PAGE_SIZE) - *start;
1617	}
1618	if (iov_iter_is_bvec(i)) {
1619		struct page *page;
1620
1621		page = first_bvec_segment(i, &len, start, maxsize, ~0U);
1622		n = DIV_ROUND_UP(len, PAGE_SIZE);
1623		*pages = p = get_pages_array(n);
1624		if (!p)
1625			return -ENOMEM;
1626		while (n--)
1627			get_page(*p++ = page++);
1628		return len - *start;
1629	}
1630	if (iov_iter_is_pipe(i))
1631		return pipe_get_pages_alloc(i, pages, maxsize, start);
1632	if (iov_iter_is_xarray(i))
1633		return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1634	return -EFAULT;
1635}
1636EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1637
1638size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1639			       struct iov_iter *i)
1640{
 
1641	__wsum sum, next;
 
1642	sum = *csum;
1643	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1644		WARN_ON(1);
1645		return 0;
1646	}
1647	iterate_and_advance(i, bytes, base, len, off, ({
1648		next = csum_and_copy_from_user(base, addr + off, len);
1649		sum = csum_block_add(sum, next, off);
1650		next ? 0 : len;
 
 
 
 
 
 
1651	}), ({
1652		sum = csum_and_memcpy(addr + off, base, len, sum, off);
 
 
 
 
 
 
 
 
 
 
1653	})
1654	)
1655	*csum = sum;
1656	return bytes;
1657}
1658EXPORT_SYMBOL(csum_and_copy_from_iter);
1659
1660size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1661			     struct iov_iter *i)
1662{
1663	struct csum_state *csstate = _csstate;
 
1664	__wsum sum, next;
 
1665
 
 
 
 
1666	if (unlikely(iov_iter_is_discard(i))) {
1667		WARN_ON(1);	/* for now */
1668		return 0;
1669	}
1670
1671	sum = csum_shift(csstate->csum, csstate->off);
1672	if (unlikely(iov_iter_is_pipe(i)))
1673		bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1674	else iterate_and_advance(i, bytes, base, len, off, ({
1675		next = csum_and_copy_to_user(addr + off, base, len);
1676		sum = csum_block_add(sum, next, off);
1677		next ? 0 : len;
 
 
1678	}), ({
1679		sum = csum_and_memcpy(base, addr + off, len, sum, off);
 
 
 
 
 
 
 
 
 
 
1680	})
1681	)
1682	csstate->csum = csum_shift(sum, csstate->off);
1683	csstate->off += bytes;
1684	return bytes;
1685}
1686EXPORT_SYMBOL(csum_and_copy_to_iter);
1687
1688size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1689		struct iov_iter *i)
1690{
1691#ifdef CONFIG_CRYPTO_HASH
1692	struct ahash_request *hash = hashp;
1693	struct scatterlist sg;
1694	size_t copied;
1695
1696	copied = copy_to_iter(addr, bytes, i);
1697	sg_init_one(&sg, addr, copied);
1698	ahash_request_set_crypt(hash, &sg, NULL, copied);
1699	crypto_ahash_update(hash);
1700	return copied;
1701#else
1702	return 0;
1703#endif
1704}
1705EXPORT_SYMBOL(hash_and_copy_to_iter);
1706
1707static int iov_npages(const struct iov_iter *i, int maxpages)
1708{
1709	size_t skip = i->iov_offset, size = i->count;
1710	const struct iovec *p;
1711	int npages = 0;
1712
1713	for (p = i->iov; size; skip = 0, p++) {
1714		unsigned offs = offset_in_page(p->iov_base + skip);
1715		size_t len = min(p->iov_len - skip, size);
1716
1717		if (len) {
1718			size -= len;
1719			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1720			if (unlikely(npages > maxpages))
1721				return maxpages;
1722		}
1723	}
1724	return npages;
1725}
1726
1727static int bvec_npages(const struct iov_iter *i, int maxpages)
1728{
1729	size_t skip = i->iov_offset, size = i->count;
1730	const struct bio_vec *p;
1731	int npages = 0;
1732
1733	for (p = i->bvec; size; skip = 0, p++) {
1734		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1735		size_t len = min(p->bv_len - skip, size);
1736
1737		size -= len;
1738		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1739		if (unlikely(npages > maxpages))
1740			return maxpages;
1741	}
1742	return npages;
1743}
1744
1745int iov_iter_npages(const struct iov_iter *i, int maxpages)
1746{
1747	if (unlikely(!i->count))
1748		return 0;
1749	/* iovec and kvec have identical layouts */
1750	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1751		return iov_npages(i, maxpages);
1752	if (iov_iter_is_bvec(i))
1753		return bvec_npages(i, maxpages);
1754	if (iov_iter_is_pipe(i)) {
1755		unsigned int iter_head;
1756		int npages;
1757		size_t off;
1758
1759		if (!sanity(i))
1760			return 0;
1761
1762		data_start(i, &iter_head, &off);
1763		/* some of this one + all after this one */
1764		npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1765		return min(npages, maxpages);
1766	}
1767	if (iov_iter_is_xarray(i)) {
1768		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1769		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1770		return min(npages, maxpages);
1771	}
1772	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1773}
1774EXPORT_SYMBOL(iov_iter_npages);
1775
1776const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1777{
1778	*new = *old;
1779	if (unlikely(iov_iter_is_pipe(new))) {
1780		WARN_ON(1);
1781		return NULL;
1782	}
1783	if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new)))
1784		return NULL;
1785	if (iov_iter_is_bvec(new))
1786		return new->bvec = kmemdup(new->bvec,
1787				    new->nr_segs * sizeof(struct bio_vec),
1788				    flags);
1789	else
1790		/* iovec and kvec have identical layout */
1791		return new->iov = kmemdup(new->iov,
1792				   new->nr_segs * sizeof(struct iovec),
1793				   flags);
1794}
1795EXPORT_SYMBOL(dup_iter);
1796
1797static int copy_compat_iovec_from_user(struct iovec *iov,
1798		const struct iovec __user *uvec, unsigned long nr_segs)
1799{
1800	const struct compat_iovec __user *uiov =
1801		(const struct compat_iovec __user *)uvec;
1802	int ret = -EFAULT, i;
1803
1804	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1805		return -EFAULT;
1806
1807	for (i = 0; i < nr_segs; i++) {
1808		compat_uptr_t buf;
1809		compat_ssize_t len;
1810
1811		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1812		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1813
1814		/* check for compat_size_t not fitting in compat_ssize_t .. */
1815		if (len < 0) {
1816			ret = -EINVAL;
1817			goto uaccess_end;
1818		}
1819		iov[i].iov_base = compat_ptr(buf);
1820		iov[i].iov_len = len;
1821	}
1822
1823	ret = 0;
1824uaccess_end:
1825	user_access_end();
1826	return ret;
1827}
1828
1829static int copy_iovec_from_user(struct iovec *iov,
1830		const struct iovec __user *uvec, unsigned long nr_segs)
1831{
1832	unsigned long seg;
1833
1834	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1835		return -EFAULT;
1836	for (seg = 0; seg < nr_segs; seg++) {
1837		if ((ssize_t)iov[seg].iov_len < 0)
1838			return -EINVAL;
1839	}
1840
1841	return 0;
1842}
1843
1844struct iovec *iovec_from_user(const struct iovec __user *uvec,
1845		unsigned long nr_segs, unsigned long fast_segs,
1846		struct iovec *fast_iov, bool compat)
1847{
1848	struct iovec *iov = fast_iov;
1849	int ret;
1850
1851	/*
1852	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1853	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1854	 * traditionally returned zero for zero segments, so...
1855	 */
1856	if (nr_segs == 0)
1857		return iov;
1858	if (nr_segs > UIO_MAXIOV)
1859		return ERR_PTR(-EINVAL);
1860	if (nr_segs > fast_segs) {
1861		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1862		if (!iov)
1863			return ERR_PTR(-ENOMEM);
1864	}
1865
1866	if (compat)
1867		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1868	else
1869		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1870	if (ret) {
1871		if (iov != fast_iov)
1872			kfree(iov);
1873		return ERR_PTR(ret);
1874	}
1875
1876	return iov;
1877}
1878
1879ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1880		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1881		 struct iov_iter *i, bool compat)
1882{
1883	ssize_t total_len = 0;
1884	unsigned long seg;
1885	struct iovec *iov;
1886
1887	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1888	if (IS_ERR(iov)) {
1889		*iovp = NULL;
1890		return PTR_ERR(iov);
1891	}
1892
1893	/*
1894	 * According to the Single Unix Specification we should return EINVAL if
1895	 * an element length is < 0 when cast to ssize_t or if the total length
1896	 * would overflow the ssize_t return value of the system call.
1897	 *
1898	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1899	 * overflow case.
1900	 */
1901	for (seg = 0; seg < nr_segs; seg++) {
1902		ssize_t len = (ssize_t)iov[seg].iov_len;
1903
1904		if (!access_ok(iov[seg].iov_base, len)) {
1905			if (iov != *iovp)
1906				kfree(iov);
1907			*iovp = NULL;
1908			return -EFAULT;
1909		}
1910
1911		if (len > MAX_RW_COUNT - total_len) {
1912			len = MAX_RW_COUNT - total_len;
1913			iov[seg].iov_len = len;
1914		}
1915		total_len += len;
1916	}
1917
1918	iov_iter_init(i, type, iov, nr_segs, total_len);
1919	if (iov == *iovp)
1920		*iovp = NULL;
1921	else
1922		*iovp = iov;
1923	return total_len;
1924}
1925
1926/**
1927 * import_iovec() - Copy an array of &struct iovec from userspace
1928 *     into the kernel, check that it is valid, and initialize a new
1929 *     &struct iov_iter iterator to access it.
1930 *
1931 * @type: One of %READ or %WRITE.
1932 * @uvec: Pointer to the userspace array.
1933 * @nr_segs: Number of elements in userspace array.
1934 * @fast_segs: Number of elements in @iov.
1935 * @iovp: (input and output parameter) Pointer to pointer to (usually small
1936 *     on-stack) kernel array.
1937 * @i: Pointer to iterator that will be initialized on success.
1938 *
1939 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1940 * then this function places %NULL in *@iov on return. Otherwise, a new
1941 * array will be allocated and the result placed in *@iov. This means that
1942 * the caller may call kfree() on *@iov regardless of whether the small
1943 * on-stack array was used or not (and regardless of whether this function
1944 * returns an error or not).
1945 *
1946 * Return: Negative error code on error, bytes imported on success
1947 */
1948ssize_t import_iovec(int type, const struct iovec __user *uvec,
1949		 unsigned nr_segs, unsigned fast_segs,
1950		 struct iovec **iovp, struct iov_iter *i)
1951{
1952	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1953			      in_compat_syscall());
 
 
 
 
 
 
 
 
 
 
 
1954}
1955EXPORT_SYMBOL(import_iovec);
1956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1957int import_single_range(int rw, void __user *buf, size_t len,
1958		 struct iovec *iov, struct iov_iter *i)
1959{
1960	if (len > MAX_RW_COUNT)
1961		len = MAX_RW_COUNT;
1962	if (unlikely(!access_ok(buf, len)))
1963		return -EFAULT;
1964
1965	iov->iov_base = buf;
1966	iov->iov_len = len;
1967	iov_iter_init(i, rw, iov, 1, len);
1968	return 0;
1969}
1970EXPORT_SYMBOL(import_single_range);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <crypto/hash.h>
   3#include <linux/export.h>
   4#include <linux/bvec.h>
 
   5#include <linux/uio.h>
   6#include <linux/pagemap.h>
 
   7#include <linux/slab.h>
   8#include <linux/vmalloc.h>
   9#include <linux/splice.h>
 
  10#include <net/checksum.h>
  11#include <linux/scatterlist.h>
  12#include <linux/instrumented.h>
  13
  14#define PIPE_PARANOIA /* for now */
  15
  16#define iterate_iovec(i, n, __v, __p, skip, STEP) {	\
  17	size_t left;					\
  18	size_t wanted = n;				\
  19	__p = i->iov;					\
  20	__v.iov_len = min(n, __p->iov_len - skip);	\
  21	if (likely(__v.iov_len)) {			\
  22		__v.iov_base = __p->iov_base + skip;	\
  23		left = (STEP);				\
  24		__v.iov_len -= left;			\
  25		skip += __v.iov_len;			\
  26		n -= __v.iov_len;			\
  27	} else {					\
  28		left = 0;				\
  29	}						\
  30	while (unlikely(!left && n)) {			\
  31		__p++;					\
  32		__v.iov_len = min(n, __p->iov_len);	\
  33		if (unlikely(!__v.iov_len))		\
  34			continue;			\
  35		__v.iov_base = __p->iov_base;		\
  36		left = (STEP);				\
  37		__v.iov_len -= left;			\
  38		skip = __v.iov_len;			\
  39		n -= __v.iov_len;			\
  40	}						\
  41	n = wanted - n;					\
  42}
  43
  44#define iterate_kvec(i, n, __v, __p, skip, STEP) {	\
  45	size_t wanted = n;				\
  46	__p = i->kvec;					\
  47	__v.iov_len = min(n, __p->iov_len - skip);	\
  48	if (likely(__v.iov_len)) {			\
  49		__v.iov_base = __p->iov_base + skip;	\
  50		(void)(STEP);				\
  51		skip += __v.iov_len;			\
  52		n -= __v.iov_len;			\
  53	}						\
  54	while (unlikely(n)) {				\
  55		__p++;					\
  56		__v.iov_len = min(n, __p->iov_len);	\
  57		if (unlikely(!__v.iov_len))		\
  58			continue;			\
  59		__v.iov_base = __p->iov_base;		\
  60		(void)(STEP);				\
  61		skip = __v.iov_len;			\
  62		n -= __v.iov_len;			\
  63	}						\
  64	n = wanted;					\
  65}
  66
  67#define iterate_bvec(i, n, __v, __bi, skip, STEP) {	\
  68	struct bvec_iter __start;			\
  69	__start.bi_size = n;				\
  70	__start.bi_bvec_done = skip;			\
  71	__start.bi_idx = 0;				\
  72	for_each_bvec(__v, i->bvec, __bi, __start) {	\
  73		if (!__v.bv_len)			\
  74			continue;			\
  75		(void)(STEP);				\
  76	}						\
  77}
  78
  79#define iterate_all_kinds(i, n, v, I, B, K) {			\
  80	if (likely(n)) {					\
  81		size_t skip = i->iov_offset;			\
  82		if (unlikely(i->type & ITER_BVEC)) {		\
  83			struct bio_vec v;			\
  84			struct bvec_iter __bi;			\
  85			iterate_bvec(i, n, v, __bi, skip, (B))	\
  86		} else if (unlikely(i->type & ITER_KVEC)) {	\
  87			const struct kvec *kvec;		\
  88			struct kvec v;				\
  89			iterate_kvec(i, n, v, kvec, skip, (K))	\
  90		} else if (unlikely(i->type & ITER_DISCARD)) {	\
  91		} else {					\
  92			const struct iovec *iov;		\
  93			struct iovec v;				\
  94			iterate_iovec(i, n, v, iov, skip, (I))	\
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  95		}						\
  96	}							\
 
 
 
 
  97}
  98
  99#define iterate_and_advance(i, n, v, I, B, K) {			\
 100	if (unlikely(i->count < n))				\
 101		n = i->count;					\
 102	if (i->count) {						\
 103		size_t skip = i->iov_offset;			\
 104		if (unlikely(i->type & ITER_BVEC)) {		\
 
 
 
 
 
 
 
 105			const struct bio_vec *bvec = i->bvec;	\
 106			struct bio_vec v;			\
 107			struct bvec_iter __bi;			\
 108			iterate_bvec(i, n, v, __bi, skip, (B))	\
 109			i->bvec = __bvec_iter_bvec(i->bvec, __bi);	\
 110			i->nr_segs -= i->bvec - bvec;		\
 111			skip = __bi.bi_bvec_done;		\
 112		} else if (unlikely(i->type & ITER_KVEC)) {	\
 113			const struct kvec *kvec;		\
 114			struct kvec v;				\
 115			iterate_kvec(i, n, v, kvec, skip, (K))	\
 116			if (skip == kvec->iov_len) {		\
 117				kvec++;				\
 118				skip = 0;			\
 119			}					\
 120			i->nr_segs -= kvec - i->kvec;		\
 121			i->kvec = kvec;				\
 122		} else if (unlikely(i->type & ITER_DISCARD)) {	\
 123			skip += n;				\
 124		} else {					\
 125			const struct iovec *iov;		\
 126			struct iovec v;				\
 127			iterate_iovec(i, n, v, iov, skip, (I))	\
 128			if (skip == iov->iov_len) {		\
 129				iov++;				\
 130				skip = 0;			\
 131			}					\
 132			i->nr_segs -= iov - i->iov;		\
 133			i->iov = iov;				\
 134		}						\
 135		i->count -= n;					\
 136		i->iov_offset = skip;				\
 137	}							\
 138}
 
 
 139
 140static int copyout(void __user *to, const void *from, size_t n)
 141{
 
 
 142	if (access_ok(to, n)) {
 143		instrument_copy_to_user(to, from, n);
 144		n = raw_copy_to_user(to, from, n);
 145	}
 146	return n;
 147}
 148
 149static int copyin(void *to, const void __user *from, size_t n)
 150{
 
 
 151	if (access_ok(from, n)) {
 152		instrument_copy_from_user(to, from, n);
 153		n = raw_copy_from_user(to, from, n);
 154	}
 155	return n;
 156}
 157
 158static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
 159			 struct iov_iter *i)
 160{
 161	size_t skip, copy, left, wanted;
 162	const struct iovec *iov;
 163	char __user *buf;
 164	void *kaddr, *from;
 165
 166	if (unlikely(bytes > i->count))
 167		bytes = i->count;
 168
 169	if (unlikely(!bytes))
 170		return 0;
 171
 172	might_fault();
 173	wanted = bytes;
 174	iov = i->iov;
 175	skip = i->iov_offset;
 176	buf = iov->iov_base + skip;
 177	copy = min(bytes, iov->iov_len - skip);
 178
 179	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
 180		kaddr = kmap_atomic(page);
 181		from = kaddr + offset;
 182
 183		/* first chunk, usually the only one */
 184		left = copyout(buf, from, copy);
 185		copy -= left;
 186		skip += copy;
 187		from += copy;
 188		bytes -= copy;
 189
 190		while (unlikely(!left && bytes)) {
 191			iov++;
 192			buf = iov->iov_base;
 193			copy = min(bytes, iov->iov_len);
 194			left = copyout(buf, from, copy);
 195			copy -= left;
 196			skip = copy;
 197			from += copy;
 198			bytes -= copy;
 199		}
 200		if (likely(!bytes)) {
 201			kunmap_atomic(kaddr);
 202			goto done;
 203		}
 204		offset = from - kaddr;
 205		buf += copy;
 206		kunmap_atomic(kaddr);
 207		copy = min(bytes, iov->iov_len - skip);
 208	}
 209	/* Too bad - revert to non-atomic kmap */
 210
 211	kaddr = kmap(page);
 212	from = kaddr + offset;
 213	left = copyout(buf, from, copy);
 214	copy -= left;
 215	skip += copy;
 216	from += copy;
 217	bytes -= copy;
 218	while (unlikely(!left && bytes)) {
 219		iov++;
 220		buf = iov->iov_base;
 221		copy = min(bytes, iov->iov_len);
 222		left = copyout(buf, from, copy);
 223		copy -= left;
 224		skip = copy;
 225		from += copy;
 226		bytes -= copy;
 227	}
 228	kunmap(page);
 229
 230done:
 231	if (skip == iov->iov_len) {
 232		iov++;
 233		skip = 0;
 234	}
 235	i->count -= wanted - bytes;
 236	i->nr_segs -= iov - i->iov;
 237	i->iov = iov;
 238	i->iov_offset = skip;
 239	return wanted - bytes;
 240}
 241
 242static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
 243			 struct iov_iter *i)
 244{
 245	size_t skip, copy, left, wanted;
 246	const struct iovec *iov;
 247	char __user *buf;
 248	void *kaddr, *to;
 249
 250	if (unlikely(bytes > i->count))
 251		bytes = i->count;
 252
 253	if (unlikely(!bytes))
 254		return 0;
 255
 256	might_fault();
 257	wanted = bytes;
 258	iov = i->iov;
 259	skip = i->iov_offset;
 260	buf = iov->iov_base + skip;
 261	copy = min(bytes, iov->iov_len - skip);
 262
 263	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
 264		kaddr = kmap_atomic(page);
 265		to = kaddr + offset;
 266
 267		/* first chunk, usually the only one */
 268		left = copyin(to, buf, copy);
 269		copy -= left;
 270		skip += copy;
 271		to += copy;
 272		bytes -= copy;
 273
 274		while (unlikely(!left && bytes)) {
 275			iov++;
 276			buf = iov->iov_base;
 277			copy = min(bytes, iov->iov_len);
 278			left = copyin(to, buf, copy);
 279			copy -= left;
 280			skip = copy;
 281			to += copy;
 282			bytes -= copy;
 283		}
 284		if (likely(!bytes)) {
 285			kunmap_atomic(kaddr);
 286			goto done;
 287		}
 288		offset = to - kaddr;
 289		buf += copy;
 290		kunmap_atomic(kaddr);
 291		copy = min(bytes, iov->iov_len - skip);
 292	}
 293	/* Too bad - revert to non-atomic kmap */
 294
 295	kaddr = kmap(page);
 296	to = kaddr + offset;
 297	left = copyin(to, buf, copy);
 298	copy -= left;
 299	skip += copy;
 300	to += copy;
 301	bytes -= copy;
 302	while (unlikely(!left && bytes)) {
 303		iov++;
 304		buf = iov->iov_base;
 305		copy = min(bytes, iov->iov_len);
 306		left = copyin(to, buf, copy);
 307		copy -= left;
 308		skip = copy;
 309		to += copy;
 310		bytes -= copy;
 311	}
 312	kunmap(page);
 313
 314done:
 315	if (skip == iov->iov_len) {
 316		iov++;
 317		skip = 0;
 318	}
 319	i->count -= wanted - bytes;
 320	i->nr_segs -= iov - i->iov;
 321	i->iov = iov;
 322	i->iov_offset = skip;
 323	return wanted - bytes;
 324}
 325
 326#ifdef PIPE_PARANOIA
 327static bool sanity(const struct iov_iter *i)
 328{
 329	struct pipe_inode_info *pipe = i->pipe;
 330	unsigned int p_head = pipe->head;
 331	unsigned int p_tail = pipe->tail;
 332	unsigned int p_mask = pipe->ring_size - 1;
 333	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
 334	unsigned int i_head = i->head;
 335	unsigned int idx;
 336
 337	if (i->iov_offset) {
 338		struct pipe_buffer *p;
 339		if (unlikely(p_occupancy == 0))
 340			goto Bad;	// pipe must be non-empty
 341		if (unlikely(i_head != p_head - 1))
 342			goto Bad;	// must be at the last buffer...
 343
 344		p = &pipe->bufs[i_head & p_mask];
 345		if (unlikely(p->offset + p->len != i->iov_offset))
 346			goto Bad;	// ... at the end of segment
 347	} else {
 348		if (i_head != p_head)
 349			goto Bad;	// must be right after the last buffer
 350	}
 351	return true;
 352Bad:
 353	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
 354	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
 355			p_head, p_tail, pipe->ring_size);
 356	for (idx = 0; idx < pipe->ring_size; idx++)
 357		printk(KERN_ERR "[%p %p %d %d]\n",
 358			pipe->bufs[idx].ops,
 359			pipe->bufs[idx].page,
 360			pipe->bufs[idx].offset,
 361			pipe->bufs[idx].len);
 362	WARN_ON(1);
 363	return false;
 364}
 365#else
 366#define sanity(i) true
 367#endif
 368
 369static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
 370			 struct iov_iter *i)
 371{
 372	struct pipe_inode_info *pipe = i->pipe;
 373	struct pipe_buffer *buf;
 374	unsigned int p_tail = pipe->tail;
 375	unsigned int p_mask = pipe->ring_size - 1;
 376	unsigned int i_head = i->head;
 377	size_t off;
 378
 379	if (unlikely(bytes > i->count))
 380		bytes = i->count;
 381
 382	if (unlikely(!bytes))
 383		return 0;
 384
 385	if (!sanity(i))
 386		return 0;
 387
 388	off = i->iov_offset;
 389	buf = &pipe->bufs[i_head & p_mask];
 390	if (off) {
 391		if (offset == off && buf->page == page) {
 392			/* merge with the last one */
 393			buf->len += bytes;
 394			i->iov_offset += bytes;
 395			goto out;
 396		}
 397		i_head++;
 398		buf = &pipe->bufs[i_head & p_mask];
 399	}
 400	if (pipe_full(i_head, p_tail, pipe->max_usage))
 401		return 0;
 402
 403	buf->ops = &page_cache_pipe_buf_ops;
 404	get_page(page);
 405	buf->page = page;
 406	buf->offset = offset;
 407	buf->len = bytes;
 408
 409	pipe->head = i_head + 1;
 410	i->iov_offset = offset + bytes;
 411	i->head = i_head;
 412out:
 413	i->count -= bytes;
 414	return bytes;
 415}
 416
 417/*
 418 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
 419 * bytes.  For each iovec, fault in each page that constitutes the iovec.
 420 *
 421 * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
 422 * because it is an invalid address).
 423 */
 424int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
 425{
 426	size_t skip = i->iov_offset;
 427	const struct iovec *iov;
 428	int err;
 429	struct iovec v;
 430
 431	if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
 432		iterate_iovec(i, bytes, v, iov, skip, ({
 433			err = fault_in_pages_readable(v.iov_base, v.iov_len);
 
 
 
 
 
 434			if (unlikely(err))
 435			return err;
 436		0;}))
 
 437	}
 438	return 0;
 439}
 440EXPORT_SYMBOL(iov_iter_fault_in_readable);
 441
 442void iov_iter_init(struct iov_iter *i, unsigned int direction,
 443			const struct iovec *iov, unsigned long nr_segs,
 444			size_t count)
 445{
 446	WARN_ON(direction & ~(READ | WRITE));
 447	direction &= READ | WRITE;
 448
 449	/* It will get better.  Eventually... */
 450	if (uaccess_kernel()) {
 451		i->type = ITER_KVEC | direction;
 452		i->kvec = (struct kvec *)iov;
 453	} else {
 454		i->type = ITER_IOVEC | direction;
 455		i->iov = iov;
 456	}
 457	i->nr_segs = nr_segs;
 458	i->iov_offset = 0;
 459	i->count = count;
 460}
 461EXPORT_SYMBOL(iov_iter_init);
 462
 463static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
 464{
 465	char *from = kmap_atomic(page);
 466	memcpy(to, from + offset, len);
 467	kunmap_atomic(from);
 468}
 469
 470static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
 471{
 472	char *to = kmap_atomic(page);
 473	memcpy(to + offset, from, len);
 474	kunmap_atomic(to);
 475}
 476
 477static void memzero_page(struct page *page, size_t offset, size_t len)
 478{
 479	char *addr = kmap_atomic(page);
 480	memset(addr + offset, 0, len);
 481	kunmap_atomic(addr);
 482}
 483
 484static inline bool allocated(struct pipe_buffer *buf)
 485{
 486	return buf->ops == &default_pipe_buf_ops;
 487}
 488
 489static inline void data_start(const struct iov_iter *i,
 490			      unsigned int *iter_headp, size_t *offp)
 491{
 492	unsigned int p_mask = i->pipe->ring_size - 1;
 493	unsigned int iter_head = i->head;
 494	size_t off = i->iov_offset;
 495
 496	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
 497		    off == PAGE_SIZE)) {
 498		iter_head++;
 499		off = 0;
 500	}
 501	*iter_headp = iter_head;
 502	*offp = off;
 503}
 504
 505static size_t push_pipe(struct iov_iter *i, size_t size,
 506			int *iter_headp, size_t *offp)
 507{
 508	struct pipe_inode_info *pipe = i->pipe;
 509	unsigned int p_tail = pipe->tail;
 510	unsigned int p_mask = pipe->ring_size - 1;
 511	unsigned int iter_head;
 512	size_t off;
 513	ssize_t left;
 514
 515	if (unlikely(size > i->count))
 516		size = i->count;
 517	if (unlikely(!size))
 518		return 0;
 519
 520	left = size;
 521	data_start(i, &iter_head, &off);
 522	*iter_headp = iter_head;
 523	*offp = off;
 524	if (off) {
 525		left -= PAGE_SIZE - off;
 526		if (left <= 0) {
 527			pipe->bufs[iter_head & p_mask].len += size;
 528			return size;
 529		}
 530		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
 531		iter_head++;
 532	}
 533	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
 534		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
 535		struct page *page = alloc_page(GFP_USER);
 536		if (!page)
 537			break;
 538
 539		buf->ops = &default_pipe_buf_ops;
 540		buf->page = page;
 541		buf->offset = 0;
 542		buf->len = min_t(ssize_t, left, PAGE_SIZE);
 543		left -= buf->len;
 544		iter_head++;
 545		pipe->head = iter_head;
 546
 547		if (left == 0)
 548			return size;
 549	}
 550	return size - left;
 551}
 552
 553static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
 554				struct iov_iter *i)
 555{
 556	struct pipe_inode_info *pipe = i->pipe;
 557	unsigned int p_mask = pipe->ring_size - 1;
 558	unsigned int i_head;
 559	size_t n, off;
 560
 561	if (!sanity(i))
 562		return 0;
 563
 564	bytes = n = push_pipe(i, bytes, &i_head, &off);
 565	if (unlikely(!n))
 566		return 0;
 567	do {
 568		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
 569		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
 570		i->head = i_head;
 571		i->iov_offset = off + chunk;
 572		n -= chunk;
 573		addr += chunk;
 574		off = 0;
 575		i_head++;
 576	} while (n);
 577	i->count -= bytes;
 578	return bytes;
 579}
 580
 581static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
 582			      __wsum sum, size_t off)
 583{
 584	__wsum next = csum_partial_copy_nocheck(from, to, len, 0);
 585	return csum_block_add(sum, next, off);
 586}
 587
 588static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
 589				__wsum *csum, struct iov_iter *i)
 590{
 591	struct pipe_inode_info *pipe = i->pipe;
 592	unsigned int p_mask = pipe->ring_size - 1;
 
 
 593	unsigned int i_head;
 594	size_t n, r;
 595	size_t off = 0;
 596	__wsum sum = *csum;
 597
 598	if (!sanity(i))
 599		return 0;
 600
 601	bytes = n = push_pipe(i, bytes, &i_head, &r);
 602	if (unlikely(!n))
 603		return 0;
 604	do {
 605		size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
 606		char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
 607		sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
 608		kunmap_atomic(p);
 609		i->head = i_head;
 610		i->iov_offset = r + chunk;
 611		n -= chunk;
 612		off += chunk;
 613		addr += chunk;
 614		r = 0;
 615		i_head++;
 616	} while (n);
 617	i->count -= bytes;
 618	*csum = sum;
 619	return bytes;
 620}
 621
 622size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
 623{
 624	const char *from = addr;
 625	if (unlikely(iov_iter_is_pipe(i)))
 626		return copy_pipe_to_iter(addr, bytes, i);
 627	if (iter_is_iovec(i))
 628		might_fault();
 629	iterate_and_advance(i, bytes, v,
 630		copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
 631		memcpy_to_page(v.bv_page, v.bv_offset,
 632			       (from += v.bv_len) - v.bv_len, v.bv_len),
 633		memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
 634	)
 635
 636	return bytes;
 637}
 638EXPORT_SYMBOL(_copy_to_iter);
 639
 640#ifdef CONFIG_ARCH_HAS_UACCESS_MCSAFE
 641static int copyout_mcsafe(void __user *to, const void *from, size_t n)
 642{
 643	if (access_ok(to, n)) {
 644		instrument_copy_to_user(to, from, n);
 645		n = copy_to_user_mcsafe((__force void *) to, from, n);
 646	}
 647	return n;
 648}
 649
 650static unsigned long memcpy_mcsafe_to_page(struct page *page, size_t offset,
 651		const char *from, size_t len)
 652{
 653	unsigned long ret;
 654	char *to;
 655
 656	to = kmap_atomic(page);
 657	ret = memcpy_mcsafe(to + offset, from, len);
 658	kunmap_atomic(to);
 659
 660	return ret;
 661}
 662
 663static size_t copy_pipe_to_iter_mcsafe(const void *addr, size_t bytes,
 664				struct iov_iter *i)
 665{
 666	struct pipe_inode_info *pipe = i->pipe;
 667	unsigned int p_mask = pipe->ring_size - 1;
 668	unsigned int i_head;
 669	size_t n, off, xfer = 0;
 670
 671	if (!sanity(i))
 672		return 0;
 673
 674	bytes = n = push_pipe(i, bytes, &i_head, &off);
 675	if (unlikely(!n))
 676		return 0;
 677	do {
 678		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
 
 679		unsigned long rem;
 680
 681		rem = memcpy_mcsafe_to_page(pipe->bufs[i_head & p_mask].page,
 682					    off, addr, chunk);
 683		i->head = i_head;
 684		i->iov_offset = off + chunk - rem;
 685		xfer += chunk - rem;
 686		if (rem)
 687			break;
 688		n -= chunk;
 689		addr += chunk;
 690		off = 0;
 691		i_head++;
 692	} while (n);
 693	i->count -= xfer;
 694	return xfer;
 695}
 696
 697/**
 698 * _copy_to_iter_mcsafe - copy to user with source-read error exception handling
 699 * @addr: source kernel address
 700 * @bytes: total transfer length
 701 * @iter: destination iterator
 702 *
 703 * The pmem driver arranges for filesystem-dax to use this facility via
 704 * dax_copy_to_iter() for protecting read/write to persistent memory.
 705 * Unless / until an architecture can guarantee identical performance
 706 * between _copy_to_iter_mcsafe() and _copy_to_iter() it would be a
 707 * performance regression to switch more users to the mcsafe version.
 708 *
 709 * Otherwise, the main differences between this and typical _copy_to_iter().
 710 *
 711 * * Typical tail/residue handling after a fault retries the copy
 712 *   byte-by-byte until the fault happens again. Re-triggering machine
 713 *   checks is potentially fatal so the implementation uses source
 714 *   alignment and poison alignment assumptions to avoid re-triggering
 715 *   hardware exceptions.
 716 *
 717 * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
 718 *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
 719 *   a short copy.
 720 *
 721 * See MCSAFE_TEST for self-test.
 722 */
 723size_t _copy_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i)
 724{
 725	const char *from = addr;
 726	unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
 727
 728	if (unlikely(iov_iter_is_pipe(i)))
 729		return copy_pipe_to_iter_mcsafe(addr, bytes, i);
 730	if (iter_is_iovec(i))
 731		might_fault();
 732	iterate_and_advance(i, bytes, v,
 733		copyout_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
 734		({
 735		rem = memcpy_mcsafe_to_page(v.bv_page, v.bv_offset,
 736                               (from += v.bv_len) - v.bv_len, v.bv_len);
 737		if (rem) {
 738			curr_addr = (unsigned long) from;
 739			bytes = curr_addr - s_addr - rem;
 740			return bytes;
 741		}
 742		}),
 743		({
 744		rem = memcpy_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len,
 745				v.iov_len);
 746		if (rem) {
 747			curr_addr = (unsigned long) from;
 748			bytes = curr_addr - s_addr - rem;
 749			return bytes;
 750		}
 751		})
 752	)
 753
 754	return bytes;
 755}
 756EXPORT_SYMBOL_GPL(_copy_to_iter_mcsafe);
 757#endif /* CONFIG_ARCH_HAS_UACCESS_MCSAFE */
 758
 759size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
 760{
 761	char *to = addr;
 762	if (unlikely(iov_iter_is_pipe(i))) {
 763		WARN_ON(1);
 764		return 0;
 765	}
 766	if (iter_is_iovec(i))
 767		might_fault();
 768	iterate_and_advance(i, bytes, v,
 769		copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
 770		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
 771				 v.bv_offset, v.bv_len),
 772		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
 773	)
 774
 775	return bytes;
 776}
 777EXPORT_SYMBOL(_copy_from_iter);
 778
 779bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
 780{
 781	char *to = addr;
 782	if (unlikely(iov_iter_is_pipe(i))) {
 783		WARN_ON(1);
 784		return false;
 785	}
 786	if (unlikely(i->count < bytes))
 787		return false;
 788
 789	if (iter_is_iovec(i))
 790		might_fault();
 791	iterate_all_kinds(i, bytes, v, ({
 792		if (copyin((to += v.iov_len) - v.iov_len,
 793				      v.iov_base, v.iov_len))
 794			return false;
 795		0;}),
 796		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
 797				 v.bv_offset, v.bv_len),
 798		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
 799	)
 800
 801	iov_iter_advance(i, bytes);
 802	return true;
 803}
 804EXPORT_SYMBOL(_copy_from_iter_full);
 805
 806size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
 807{
 808	char *to = addr;
 809	if (unlikely(iov_iter_is_pipe(i))) {
 810		WARN_ON(1);
 811		return 0;
 812	}
 813	iterate_and_advance(i, bytes, v,
 814		__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
 815					 v.iov_base, v.iov_len),
 816		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
 817				 v.bv_offset, v.bv_len),
 818		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
 819	)
 820
 821	return bytes;
 822}
 823EXPORT_SYMBOL(_copy_from_iter_nocache);
 824
 825#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
 826/**
 827 * _copy_from_iter_flushcache - write destination through cpu cache
 828 * @addr: destination kernel address
 829 * @bytes: total transfer length
 830 * @iter: source iterator
 831 *
 832 * The pmem driver arranges for filesystem-dax to use this facility via
 833 * dax_copy_from_iter() for ensuring that writes to persistent memory
 834 * are flushed through the CPU cache. It is differentiated from
 835 * _copy_from_iter_nocache() in that guarantees all data is flushed for
 836 * all iterator types. The _copy_from_iter_nocache() only attempts to
 837 * bypass the cache for the ITER_IOVEC case, and on some archs may use
 838 * instructions that strand dirty-data in the cache.
 839 */
 840size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
 841{
 842	char *to = addr;
 843	if (unlikely(iov_iter_is_pipe(i))) {
 844		WARN_ON(1);
 845		return 0;
 846	}
 847	iterate_and_advance(i, bytes, v,
 848		__copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
 849					 v.iov_base, v.iov_len),
 850		memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
 851				 v.bv_offset, v.bv_len),
 852		memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
 853			v.iov_len)
 854	)
 855
 856	return bytes;
 857}
 858EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
 859#endif
 860
 861bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
 862{
 863	char *to = addr;
 864	if (unlikely(iov_iter_is_pipe(i))) {
 865		WARN_ON(1);
 866		return false;
 867	}
 868	if (unlikely(i->count < bytes))
 869		return false;
 870	iterate_all_kinds(i, bytes, v, ({
 871		if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
 872					     v.iov_base, v.iov_len))
 873			return false;
 874		0;}),
 875		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
 876				 v.bv_offset, v.bv_len),
 877		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
 878	)
 879
 880	iov_iter_advance(i, bytes);
 881	return true;
 882}
 883EXPORT_SYMBOL(_copy_from_iter_full_nocache);
 884
 885static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
 886{
 887	struct page *head;
 888	size_t v = n + offset;
 889
 890	/*
 891	 * The general case needs to access the page order in order
 892	 * to compute the page size.
 893	 * However, we mostly deal with order-0 pages and thus can
 894	 * avoid a possible cache line miss for requests that fit all
 895	 * page orders.
 896	 */
 897	if (n <= v && v <= PAGE_SIZE)
 898		return true;
 899
 900	head = compound_head(page);
 901	v += (page - head) << PAGE_SHIFT;
 902
 903	if (likely(n <= v && v <= (page_size(head))))
 904		return true;
 905	WARN_ON(1);
 906	return false;
 907}
 908
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
 910			 struct iov_iter *i)
 911{
 
 912	if (unlikely(!page_copy_sane(page, offset, bytes)))
 913		return 0;
 914	if (i->type & (ITER_BVEC|ITER_KVEC)) {
 915		void *kaddr = kmap_atomic(page);
 916		size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
 917		kunmap_atomic(kaddr);
 918		return wanted;
 919	} else if (unlikely(iov_iter_is_discard(i)))
 920		return bytes;
 921	else if (likely(!iov_iter_is_pipe(i)))
 922		return copy_page_to_iter_iovec(page, offset, bytes, i);
 923	else
 924		return copy_page_to_iter_pipe(page, offset, bytes, i);
 
 
 
 
 
 925}
 926EXPORT_SYMBOL(copy_page_to_iter);
 927
 928size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
 929			 struct iov_iter *i)
 930{
 931	if (unlikely(!page_copy_sane(page, offset, bytes)))
 932		return 0;
 933	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
 934		WARN_ON(1);
 935		return 0;
 936	}
 937	if (i->type & (ITER_BVEC|ITER_KVEC)) {
 938		void *kaddr = kmap_atomic(page);
 939		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
 940		kunmap_atomic(kaddr);
 941		return wanted;
 942	} else
 943		return copy_page_from_iter_iovec(page, offset, bytes, i);
 
 944}
 945EXPORT_SYMBOL(copy_page_from_iter);
 946
 947static size_t pipe_zero(size_t bytes, struct iov_iter *i)
 948{
 949	struct pipe_inode_info *pipe = i->pipe;
 950	unsigned int p_mask = pipe->ring_size - 1;
 951	unsigned int i_head;
 952	size_t n, off;
 953
 954	if (!sanity(i))
 955		return 0;
 956
 957	bytes = n = push_pipe(i, bytes, &i_head, &off);
 958	if (unlikely(!n))
 959		return 0;
 960
 961	do {
 962		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
 963		memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
 
 
 964		i->head = i_head;
 965		i->iov_offset = off + chunk;
 966		n -= chunk;
 967		off = 0;
 968		i_head++;
 969	} while (n);
 970	i->count -= bytes;
 971	return bytes;
 972}
 973
 974size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
 975{
 976	if (unlikely(iov_iter_is_pipe(i)))
 977		return pipe_zero(bytes, i);
 978	iterate_and_advance(i, bytes, v,
 979		clear_user(v.iov_base, v.iov_len),
 980		memzero_page(v.bv_page, v.bv_offset, v.bv_len),
 981		memset(v.iov_base, 0, v.iov_len)
 982	)
 983
 984	return bytes;
 985}
 986EXPORT_SYMBOL(iov_iter_zero);
 987
 988size_t iov_iter_copy_from_user_atomic(struct page *page,
 989		struct iov_iter *i, unsigned long offset, size_t bytes)
 990{
 991	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
 992	if (unlikely(!page_copy_sane(page, offset, bytes))) {
 993		kunmap_atomic(kaddr);
 994		return 0;
 995	}
 996	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
 997		kunmap_atomic(kaddr);
 998		WARN_ON(1);
 999		return 0;
1000	}
1001	iterate_all_kinds(i, bytes, v,
1002		copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
1003		memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
1004				 v.bv_offset, v.bv_len),
1005		memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
1006	)
1007	kunmap_atomic(kaddr);
1008	return bytes;
1009}
1010EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1011
1012static inline void pipe_truncate(struct iov_iter *i)
1013{
1014	struct pipe_inode_info *pipe = i->pipe;
1015	unsigned int p_tail = pipe->tail;
1016	unsigned int p_head = pipe->head;
1017	unsigned int p_mask = pipe->ring_size - 1;
1018
1019	if (!pipe_empty(p_head, p_tail)) {
1020		struct pipe_buffer *buf;
1021		unsigned int i_head = i->head;
1022		size_t off = i->iov_offset;
1023
1024		if (off) {
1025			buf = &pipe->bufs[i_head & p_mask];
1026			buf->len = off - buf->offset;
1027			i_head++;
1028		}
1029		while (p_head != i_head) {
1030			p_head--;
1031			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
1032		}
1033
1034		pipe->head = p_head;
1035	}
1036}
1037
1038static void pipe_advance(struct iov_iter *i, size_t size)
1039{
1040	struct pipe_inode_info *pipe = i->pipe;
1041	if (unlikely(i->count < size))
1042		size = i->count;
1043	if (size) {
1044		struct pipe_buffer *buf;
1045		unsigned int p_mask = pipe->ring_size - 1;
1046		unsigned int i_head = i->head;
1047		size_t off = i->iov_offset, left = size;
1048
1049		if (off) /* make it relative to the beginning of buffer */
1050			left += off - pipe->bufs[i_head & p_mask].offset;
1051		while (1) {
1052			buf = &pipe->bufs[i_head & p_mask];
1053			if (left <= buf->len)
1054				break;
1055			left -= buf->len;
1056			i_head++;
1057		}
1058		i->head = i_head;
1059		i->iov_offset = buf->offset + left;
1060	}
1061	i->count -= size;
1062	/* ... and discard everything past that point */
1063	pipe_truncate(i);
1064}
1065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1066void iov_iter_advance(struct iov_iter *i, size_t size)
1067{
1068	if (unlikely(iov_iter_is_pipe(i))) {
 
 
 
 
 
 
 
1069		pipe_advance(i, size);
1070		return;
1071	}
1072	if (unlikely(iov_iter_is_discard(i))) {
 
1073		i->count -= size;
1074		return;
1075	}
1076	iterate_and_advance(i, size, v, 0, 0, 0)
1077}
1078EXPORT_SYMBOL(iov_iter_advance);
1079
1080void iov_iter_revert(struct iov_iter *i, size_t unroll)
1081{
1082	if (!unroll)
1083		return;
1084	if (WARN_ON(unroll > MAX_RW_COUNT))
1085		return;
1086	i->count += unroll;
1087	if (unlikely(iov_iter_is_pipe(i))) {
1088		struct pipe_inode_info *pipe = i->pipe;
1089		unsigned int p_mask = pipe->ring_size - 1;
1090		unsigned int i_head = i->head;
1091		size_t off = i->iov_offset;
1092		while (1) {
1093			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1094			size_t n = off - b->offset;
1095			if (unroll < n) {
1096				off -= unroll;
1097				break;
1098			}
1099			unroll -= n;
1100			if (!unroll && i_head == i->start_head) {
1101				off = 0;
1102				break;
1103			}
1104			i_head--;
1105			b = &pipe->bufs[i_head & p_mask];
1106			off = b->offset + b->len;
1107		}
1108		i->iov_offset = off;
1109		i->head = i_head;
1110		pipe_truncate(i);
1111		return;
1112	}
1113	if (unlikely(iov_iter_is_discard(i)))
1114		return;
1115	if (unroll <= i->iov_offset) {
1116		i->iov_offset -= unroll;
1117		return;
1118	}
1119	unroll -= i->iov_offset;
1120	if (iov_iter_is_bvec(i)) {
 
 
 
 
 
1121		const struct bio_vec *bvec = i->bvec;
1122		while (1) {
1123			size_t n = (--bvec)->bv_len;
1124			i->nr_segs++;
1125			if (unroll <= n) {
1126				i->bvec = bvec;
1127				i->iov_offset = n - unroll;
1128				return;
1129			}
1130			unroll -= n;
1131		}
1132	} else { /* same logics for iovec and kvec */
1133		const struct iovec *iov = i->iov;
1134		while (1) {
1135			size_t n = (--iov)->iov_len;
1136			i->nr_segs++;
1137			if (unroll <= n) {
1138				i->iov = iov;
1139				i->iov_offset = n - unroll;
1140				return;
1141			}
1142			unroll -= n;
1143		}
1144	}
1145}
1146EXPORT_SYMBOL(iov_iter_revert);
1147
1148/*
1149 * Return the count of just the current iov_iter segment.
1150 */
1151size_t iov_iter_single_seg_count(const struct iov_iter *i)
1152{
1153	if (unlikely(iov_iter_is_pipe(i)))
1154		return i->count;	// it is a silly place, anyway
1155	if (i->nr_segs == 1)
1156		return i->count;
1157	if (unlikely(iov_iter_is_discard(i)))
1158		return i->count;
1159	else if (iov_iter_is_bvec(i))
1160		return min(i->count, i->bvec->bv_len - i->iov_offset);
1161	else
1162		return min(i->count, i->iov->iov_len - i->iov_offset);
1163}
1164EXPORT_SYMBOL(iov_iter_single_seg_count);
1165
1166void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1167			const struct kvec *kvec, unsigned long nr_segs,
1168			size_t count)
1169{
1170	WARN_ON(direction & ~(READ | WRITE));
1171	i->type = ITER_KVEC | (direction & (READ | WRITE));
1172	i->kvec = kvec;
1173	i->nr_segs = nr_segs;
1174	i->iov_offset = 0;
1175	i->count = count;
 
 
 
1176}
1177EXPORT_SYMBOL(iov_iter_kvec);
1178
1179void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1180			const struct bio_vec *bvec, unsigned long nr_segs,
1181			size_t count)
1182{
1183	WARN_ON(direction & ~(READ | WRITE));
1184	i->type = ITER_BVEC | (direction & (READ | WRITE));
1185	i->bvec = bvec;
1186	i->nr_segs = nr_segs;
1187	i->iov_offset = 0;
1188	i->count = count;
 
 
 
1189}
1190EXPORT_SYMBOL(iov_iter_bvec);
1191
1192void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1193			struct pipe_inode_info *pipe,
1194			size_t count)
1195{
1196	BUG_ON(direction != READ);
1197	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1198	i->type = ITER_PIPE | READ;
1199	i->pipe = pipe;
1200	i->head = pipe->head;
1201	i->iov_offset = 0;
1202	i->count = count;
1203	i->start_head = i->head;
 
 
 
1204}
1205EXPORT_SYMBOL(iov_iter_pipe);
1206
1207/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1208 * iov_iter_discard - Initialise an I/O iterator that discards data
1209 * @i: The iterator to initialise.
1210 * @direction: The direction of the transfer.
1211 * @count: The size of the I/O buffer in bytes.
1212 *
1213 * Set up an I/O iterator that just discards everything that's written to it.
1214 * It's only available as a READ iterator.
1215 */
1216void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1217{
1218	BUG_ON(direction != READ);
1219	i->type = ITER_DISCARD | READ;
1220	i->count = count;
1221	i->iov_offset = 0;
 
 
 
1222}
1223EXPORT_SYMBOL(iov_iter_discard);
1224
1225unsigned long iov_iter_alignment(const struct iov_iter *i)
1226{
1227	unsigned long res = 0;
1228	size_t size = i->count;
 
 
1229
1230	if (unlikely(iov_iter_is_pipe(i))) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1231		unsigned int p_mask = i->pipe->ring_size - 1;
 
1232
1233		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1234			return size | i->iov_offset;
1235		return size;
1236	}
1237	iterate_all_kinds(i, size, v,
1238		(res |= (unsigned long)v.iov_base | v.iov_len, 0),
1239		res |= v.bv_offset | v.bv_len,
1240		res |= (unsigned long)v.iov_base | v.iov_len
1241	)
1242	return res;
1243}
1244EXPORT_SYMBOL(iov_iter_alignment);
1245
1246unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1247{
1248	unsigned long res = 0;
 
1249	size_t size = i->count;
 
1250
1251	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1252		WARN_ON(1);
1253		return ~0U;
 
 
 
 
 
 
 
 
 
 
 
1254	}
1255
1256	iterate_all_kinds(i, size, v,
1257		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1258			(size != v.iov_len ? size : 0), 0),
1259		(res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1260			(size != v.bv_len ? size : 0)),
1261		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1262			(size != v.iov_len ? size : 0))
1263		);
1264	return res;
1265}
1266EXPORT_SYMBOL(iov_iter_gap_alignment);
1267
1268static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1269				size_t maxsize,
1270				struct page **pages,
1271				int iter_head,
1272				size_t *start)
1273{
1274	struct pipe_inode_info *pipe = i->pipe;
1275	unsigned int p_mask = pipe->ring_size - 1;
1276	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1277	if (!n)
1278		return -EFAULT;
1279
1280	maxsize = n;
1281	n += *start;
1282	while (n > 0) {
1283		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1284		iter_head++;
1285		n -= PAGE_SIZE;
1286	}
1287
1288	return maxsize;
1289}
1290
1291static ssize_t pipe_get_pages(struct iov_iter *i,
1292		   struct page **pages, size_t maxsize, unsigned maxpages,
1293		   size_t *start)
1294{
1295	unsigned int iter_head, npages;
1296	size_t capacity;
1297
1298	if (!maxsize)
1299		return 0;
1300
1301	if (!sanity(i))
1302		return -EFAULT;
1303
1304	data_start(i, &iter_head, start);
1305	/* Amount of free space: some of this one + all after this one */
1306	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1307	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1308
1309	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1310}
1311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312ssize_t iov_iter_get_pages(struct iov_iter *i,
1313		   struct page **pages, size_t maxsize, unsigned maxpages,
1314		   size_t *start)
1315{
 
 
 
1316	if (maxsize > i->count)
1317		maxsize = i->count;
 
 
1318
1319	if (unlikely(iov_iter_is_pipe(i)))
1320		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1321	if (unlikely(iov_iter_is_discard(i)))
1322		return -EFAULT;
1323
1324	iterate_all_kinds(i, maxsize, v, ({
1325		unsigned long addr = (unsigned long)v.iov_base;
1326		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1327		int n;
1328		int res;
1329
1330		if (len > maxpages * PAGE_SIZE)
1331			len = maxpages * PAGE_SIZE;
1332		addr &= ~(PAGE_SIZE - 1);
1333		n = DIV_ROUND_UP(len, PAGE_SIZE);
1334		res = get_user_pages_fast(addr, n,
1335				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1336				pages);
1337		if (unlikely(res < 0))
1338			return res;
1339		return (res == n ? len : res * PAGE_SIZE) - *start;
1340	0;}),({
1341		/* can't be more than PAGE_SIZE */
1342		*start = v.bv_offset;
1343		get_page(*pages = v.bv_page);
1344		return v.bv_len;
1345	}),({
1346		return -EFAULT;
1347	})
1348	)
1349	return 0;
 
 
 
 
 
1350}
1351EXPORT_SYMBOL(iov_iter_get_pages);
1352
1353static struct page **get_pages_array(size_t n)
1354{
1355	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1356}
1357
1358static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1359		   struct page ***pages, size_t maxsize,
1360		   size_t *start)
1361{
1362	struct page **p;
1363	unsigned int iter_head, npages;
1364	ssize_t n;
1365
1366	if (!maxsize)
1367		return 0;
1368
1369	if (!sanity(i))
1370		return -EFAULT;
1371
1372	data_start(i, &iter_head, start);
1373	/* Amount of free space: some of this one + all after this one */
1374	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1375	n = npages * PAGE_SIZE - *start;
1376	if (maxsize > n)
1377		maxsize = n;
1378	else
1379		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1380	p = get_pages_array(npages);
1381	if (!p)
1382		return -ENOMEM;
1383	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1384	if (n > 0)
1385		*pages = p;
1386	else
1387		kvfree(p);
1388	return n;
1389}
1390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1391ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1392		   struct page ***pages, size_t maxsize,
1393		   size_t *start)
1394{
1395	struct page **p;
 
 
1396
1397	if (maxsize > i->count)
1398		maxsize = i->count;
 
 
1399
1400	if (unlikely(iov_iter_is_pipe(i)))
1401		return pipe_get_pages_alloc(i, pages, maxsize, start);
1402	if (unlikely(iov_iter_is_discard(i)))
1403		return -EFAULT;
1404
1405	iterate_all_kinds(i, maxsize, v, ({
1406		unsigned long addr = (unsigned long)v.iov_base;
1407		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1408		int n;
1409		int res;
1410
1411		addr &= ~(PAGE_SIZE - 1);
1412		n = DIV_ROUND_UP(len, PAGE_SIZE);
1413		p = get_pages_array(n);
1414		if (!p)
1415			return -ENOMEM;
1416		res = get_user_pages_fast(addr, n,
1417				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1418		if (unlikely(res < 0)) {
1419			kvfree(p);
1420			return res;
1421		}
1422		*pages = p;
1423		return (res == n ? len : res * PAGE_SIZE) - *start;
1424	0;}),({
1425		/* can't be more than PAGE_SIZE */
1426		*start = v.bv_offset;
1427		*pages = p = get_pages_array(1);
 
 
 
1428		if (!p)
1429			return -ENOMEM;
1430		get_page(*p = v.bv_page);
1431		return v.bv_len;
1432	}),({
1433		return -EFAULT;
1434	})
1435	)
1436	return 0;
 
 
1437}
1438EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1439
1440size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1441			       struct iov_iter *i)
1442{
1443	char *to = addr;
1444	__wsum sum, next;
1445	size_t off = 0;
1446	sum = *csum;
1447	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1448		WARN_ON(1);
1449		return 0;
1450	}
1451	iterate_and_advance(i, bytes, v, ({
1452		int err = 0;
1453		next = csum_and_copy_from_user(v.iov_base,
1454					       (to += v.iov_len) - v.iov_len,
1455					       v.iov_len, 0, &err);
1456		if (!err) {
1457			sum = csum_block_add(sum, next, off);
1458			off += v.iov_len;
1459		}
1460		err ? v.iov_len : 0;
1461	}), ({
1462		char *p = kmap_atomic(v.bv_page);
1463		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1464				      p + v.bv_offset, v.bv_len,
1465				      sum, off);
1466		kunmap_atomic(p);
1467		off += v.bv_len;
1468	}),({
1469		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1470				      v.iov_base, v.iov_len,
1471				      sum, off);
1472		off += v.iov_len;
1473	})
1474	)
1475	*csum = sum;
1476	return bytes;
1477}
1478EXPORT_SYMBOL(csum_and_copy_from_iter);
1479
1480bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1481			       struct iov_iter *i)
1482{
1483	char *to = addr;
1484	__wsum sum, next;
1485	size_t off = 0;
1486	sum = *csum;
1487	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1488		WARN_ON(1);
1489		return false;
1490	}
1491	if (unlikely(i->count < bytes))
1492		return false;
1493	iterate_all_kinds(i, bytes, v, ({
1494		int err = 0;
1495		next = csum_and_copy_from_user(v.iov_base,
1496					       (to += v.iov_len) - v.iov_len,
1497					       v.iov_len, 0, &err);
1498		if (err)
1499			return false;
1500		sum = csum_block_add(sum, next, off);
1501		off += v.iov_len;
1502		0;
1503	}), ({
1504		char *p = kmap_atomic(v.bv_page);
1505		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1506				      p + v.bv_offset, v.bv_len,
1507				      sum, off);
1508		kunmap_atomic(p);
1509		off += v.bv_len;
1510	}),({
1511		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1512				      v.iov_base, v.iov_len,
1513				      sum, off);
1514		off += v.iov_len;
1515	})
1516	)
1517	*csum = sum;
1518	iov_iter_advance(i, bytes);
1519	return true;
1520}
1521EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1522
1523size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csump,
1524			     struct iov_iter *i)
1525{
1526	const char *from = addr;
1527	__wsum *csum = csump;
1528	__wsum sum, next;
1529	size_t off = 0;
1530
1531	if (unlikely(iov_iter_is_pipe(i)))
1532		return csum_and_copy_to_pipe_iter(addr, bytes, csum, i);
1533
1534	sum = *csum;
1535	if (unlikely(iov_iter_is_discard(i))) {
1536		WARN_ON(1);	/* for now */
1537		return 0;
1538	}
1539	iterate_and_advance(i, bytes, v, ({
1540		int err = 0;
1541		next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1542					     v.iov_base,
1543					     v.iov_len, 0, &err);
1544		if (!err) {
1545			sum = csum_block_add(sum, next, off);
1546			off += v.iov_len;
1547		}
1548		err ? v.iov_len : 0;
1549	}), ({
1550		char *p = kmap_atomic(v.bv_page);
1551		sum = csum_and_memcpy(p + v.bv_offset,
1552				      (from += v.bv_len) - v.bv_len,
1553				      v.bv_len, sum, off);
1554		kunmap_atomic(p);
1555		off += v.bv_len;
1556	}),({
1557		sum = csum_and_memcpy(v.iov_base,
1558				     (from += v.iov_len) - v.iov_len,
1559				     v.iov_len, sum, off);
1560		off += v.iov_len;
1561	})
1562	)
1563	*csum = sum;
 
1564	return bytes;
1565}
1566EXPORT_SYMBOL(csum_and_copy_to_iter);
1567
1568size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1569		struct iov_iter *i)
1570{
1571#ifdef CONFIG_CRYPTO_HASH
1572	struct ahash_request *hash = hashp;
1573	struct scatterlist sg;
1574	size_t copied;
1575
1576	copied = copy_to_iter(addr, bytes, i);
1577	sg_init_one(&sg, addr, copied);
1578	ahash_request_set_crypt(hash, &sg, NULL, copied);
1579	crypto_ahash_update(hash);
1580	return copied;
1581#else
1582	return 0;
1583#endif
1584}
1585EXPORT_SYMBOL(hash_and_copy_to_iter);
1586
1587int iov_iter_npages(const struct iov_iter *i, int maxpages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1588{
1589	size_t size = i->count;
 
1590	int npages = 0;
1591
1592	if (!size)
1593		return 0;
1594	if (unlikely(iov_iter_is_discard(i)))
 
 
 
 
 
 
 
 
 
 
 
 
1595		return 0;
1596
1597	if (unlikely(iov_iter_is_pipe(i))) {
1598		struct pipe_inode_info *pipe = i->pipe;
 
 
 
1599		unsigned int iter_head;
 
1600		size_t off;
1601
1602		if (!sanity(i))
1603			return 0;
1604
1605		data_start(i, &iter_head, &off);
1606		/* some of this one + all after this one */
1607		npages = pipe_space_for_user(iter_head, pipe->tail, pipe);
1608		if (npages >= maxpages)
1609			return maxpages;
1610	} else iterate_all_kinds(i, size, v, ({
1611		unsigned long p = (unsigned long)v.iov_base;
1612		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1613			- p / PAGE_SIZE;
1614		if (npages >= maxpages)
1615			return maxpages;
1616	0;}),({
1617		npages++;
1618		if (npages >= maxpages)
1619			return maxpages;
1620	}),({
1621		unsigned long p = (unsigned long)v.iov_base;
1622		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1623			- p / PAGE_SIZE;
1624		if (npages >= maxpages)
1625			return maxpages;
1626	})
1627	)
1628	return npages;
1629}
1630EXPORT_SYMBOL(iov_iter_npages);
1631
1632const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1633{
1634	*new = *old;
1635	if (unlikely(iov_iter_is_pipe(new))) {
1636		WARN_ON(1);
1637		return NULL;
1638	}
1639	if (unlikely(iov_iter_is_discard(new)))
1640		return NULL;
1641	if (iov_iter_is_bvec(new))
1642		return new->bvec = kmemdup(new->bvec,
1643				    new->nr_segs * sizeof(struct bio_vec),
1644				    flags);
1645	else
1646		/* iovec and kvec have identical layout */
1647		return new->iov = kmemdup(new->iov,
1648				   new->nr_segs * sizeof(struct iovec),
1649				   flags);
1650}
1651EXPORT_SYMBOL(dup_iter);
1652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1653/**
1654 * import_iovec() - Copy an array of &struct iovec from userspace
1655 *     into the kernel, check that it is valid, and initialize a new
1656 *     &struct iov_iter iterator to access it.
1657 *
1658 * @type: One of %READ or %WRITE.
1659 * @uvector: Pointer to the userspace array.
1660 * @nr_segs: Number of elements in userspace array.
1661 * @fast_segs: Number of elements in @iov.
1662 * @iov: (input and output parameter) Pointer to pointer to (usually small
1663 *     on-stack) kernel array.
1664 * @i: Pointer to iterator that will be initialized on success.
1665 *
1666 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1667 * then this function places %NULL in *@iov on return. Otherwise, a new
1668 * array will be allocated and the result placed in *@iov. This means that
1669 * the caller may call kfree() on *@iov regardless of whether the small
1670 * on-stack array was used or not (and regardless of whether this function
1671 * returns an error or not).
1672 *
1673 * Return: Negative error code on error, bytes imported on success
1674 */
1675ssize_t import_iovec(int type, const struct iovec __user * uvector,
1676		 unsigned nr_segs, unsigned fast_segs,
1677		 struct iovec **iov, struct iov_iter *i)
1678{
1679	ssize_t n;
1680	struct iovec *p;
1681	n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1682				  *iov, &p);
1683	if (n < 0) {
1684		if (p != *iov)
1685			kfree(p);
1686		*iov = NULL;
1687		return n;
1688	}
1689	iov_iter_init(i, type, p, nr_segs, n);
1690	*iov = p == *iov ? NULL : p;
1691	return n;
1692}
1693EXPORT_SYMBOL(import_iovec);
1694
1695#ifdef CONFIG_COMPAT
1696#include <linux/compat.h>
1697
1698ssize_t compat_import_iovec(int type,
1699		const struct compat_iovec __user * uvector,
1700		unsigned nr_segs, unsigned fast_segs,
1701		struct iovec **iov, struct iov_iter *i)
1702{
1703	ssize_t n;
1704	struct iovec *p;
1705	n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1706				  *iov, &p);
1707	if (n < 0) {
1708		if (p != *iov)
1709			kfree(p);
1710		*iov = NULL;
1711		return n;
1712	}
1713	iov_iter_init(i, type, p, nr_segs, n);
1714	*iov = p == *iov ? NULL : p;
1715	return n;
1716}
1717EXPORT_SYMBOL(compat_import_iovec);
1718#endif
1719
1720int import_single_range(int rw, void __user *buf, size_t len,
1721		 struct iovec *iov, struct iov_iter *i)
1722{
1723	if (len > MAX_RW_COUNT)
1724		len = MAX_RW_COUNT;
1725	if (unlikely(!access_ok(buf, len)))
1726		return -EFAULT;
1727
1728	iov->iov_base = buf;
1729	iov->iov_len = len;
1730	iov_iter_init(i, rw, iov, 1, len);
1731	return 0;
1732}
1733EXPORT_SYMBOL(import_single_range);
1734
1735int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1736			    int (*f)(struct kvec *vec, void *context),
1737			    void *context)
1738{
1739	struct kvec w;
1740	int err = -EINVAL;
1741	if (!bytes)
1742		return 0;
1743
1744	iterate_all_kinds(i, bytes, v, -EINVAL, ({
1745		w.iov_base = kmap(v.bv_page) + v.bv_offset;
1746		w.iov_len = v.bv_len;
1747		err = f(&w, context);
1748		kunmap(v.bv_page);
1749		err;}), ({
1750		w = v;
1751		err = f(&w, context);})
1752	)
1753	return err;
1754}
1755EXPORT_SYMBOL(iov_iter_for_each_range);