Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2#include <crypto/hash.h>
3#include <linux/export.h>
4#include <linux/bvec.h>
5#include <linux/fault-inject-usercopy.h>
6#include <linux/uio.h>
7#include <linux/pagemap.h>
8#include <linux/highmem.h>
9#include <linux/slab.h>
10#include <linux/vmalloc.h>
11#include <linux/splice.h>
12#include <linux/compat.h>
13#include <net/checksum.h>
14#include <linux/scatterlist.h>
15#include <linux/instrumented.h>
16
17#define PIPE_PARANOIA /* for now */
18
19/* covers iovec and kvec alike */
20#define iterate_iovec(i, n, base, len, off, __p, STEP) { \
21 size_t off = 0; \
22 size_t skip = i->iov_offset; \
23 do { \
24 len = min(n, __p->iov_len - skip); \
25 if (likely(len)) { \
26 base = __p->iov_base + skip; \
27 len -= (STEP); \
28 off += len; \
29 skip += len; \
30 n -= len; \
31 if (skip < __p->iov_len) \
32 break; \
33 } \
34 __p++; \
35 skip = 0; \
36 } while (n); \
37 i->iov_offset = skip; \
38 n = off; \
39}
40
41#define iterate_bvec(i, n, base, len, off, p, STEP) { \
42 size_t off = 0; \
43 unsigned skip = i->iov_offset; \
44 while (n) { \
45 unsigned offset = p->bv_offset + skip; \
46 unsigned left; \
47 void *kaddr = kmap_local_page(p->bv_page + \
48 offset / PAGE_SIZE); \
49 base = kaddr + offset % PAGE_SIZE; \
50 len = min(min(n, (size_t)(p->bv_len - skip)), \
51 (size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \
52 left = (STEP); \
53 kunmap_local(kaddr); \
54 len -= left; \
55 off += len; \
56 skip += len; \
57 if (skip == p->bv_len) { \
58 skip = 0; \
59 p++; \
60 } \
61 n -= len; \
62 if (left) \
63 break; \
64 } \
65 i->iov_offset = skip; \
66 n = off; \
67}
68
69#define iterate_xarray(i, n, base, len, __off, STEP) { \
70 __label__ __out; \
71 size_t __off = 0; \
72 struct page *head = NULL; \
73 loff_t start = i->xarray_start + i->iov_offset; \
74 unsigned offset = start % PAGE_SIZE; \
75 pgoff_t index = start / PAGE_SIZE; \
76 int j; \
77 \
78 XA_STATE(xas, i->xarray, index); \
79 \
80 rcu_read_lock(); \
81 xas_for_each(&xas, head, ULONG_MAX) { \
82 unsigned left; \
83 if (xas_retry(&xas, head)) \
84 continue; \
85 if (WARN_ON(xa_is_value(head))) \
86 break; \
87 if (WARN_ON(PageHuge(head))) \
88 break; \
89 for (j = (head->index < index) ? index - head->index : 0; \
90 j < thp_nr_pages(head); j++) { \
91 void *kaddr = kmap_local_page(head + j); \
92 base = kaddr + offset; \
93 len = PAGE_SIZE - offset; \
94 len = min(n, len); \
95 left = (STEP); \
96 kunmap_local(kaddr); \
97 len -= left; \
98 __off += len; \
99 n -= len; \
100 if (left || n == 0) \
101 goto __out; \
102 offset = 0; \
103 } \
104 } \
105__out: \
106 rcu_read_unlock(); \
107 i->iov_offset += __off; \
108 n = __off; \
109}
110
111#define __iterate_and_advance(i, n, base, len, off, I, K) { \
112 if (unlikely(i->count < n)) \
113 n = i->count; \
114 if (likely(n)) { \
115 if (likely(iter_is_iovec(i))) { \
116 const struct iovec *iov = i->iov; \
117 void __user *base; \
118 size_t len; \
119 iterate_iovec(i, n, base, len, off, \
120 iov, (I)) \
121 i->nr_segs -= iov - i->iov; \
122 i->iov = iov; \
123 } else if (iov_iter_is_bvec(i)) { \
124 const struct bio_vec *bvec = i->bvec; \
125 void *base; \
126 size_t len; \
127 iterate_bvec(i, n, base, len, off, \
128 bvec, (K)) \
129 i->nr_segs -= bvec - i->bvec; \
130 i->bvec = bvec; \
131 } else if (iov_iter_is_kvec(i)) { \
132 const struct kvec *kvec = i->kvec; \
133 void *base; \
134 size_t len; \
135 iterate_iovec(i, n, base, len, off, \
136 kvec, (K)) \
137 i->nr_segs -= kvec - i->kvec; \
138 i->kvec = kvec; \
139 } else if (iov_iter_is_xarray(i)) { \
140 void *base; \
141 size_t len; \
142 iterate_xarray(i, n, base, len, off, \
143 (K)) \
144 } \
145 i->count -= n; \
146 } \
147}
148#define iterate_and_advance(i, n, base, len, off, I, K) \
149 __iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
150
151static int copyout(void __user *to, const void *from, size_t n)
152{
153 if (should_fail_usercopy())
154 return n;
155 if (access_ok(to, n)) {
156 instrument_copy_to_user(to, from, n);
157 n = raw_copy_to_user(to, from, n);
158 }
159 return n;
160}
161
162static int copyin(void *to, const void __user *from, size_t n)
163{
164 if (should_fail_usercopy())
165 return n;
166 if (access_ok(from, n)) {
167 instrument_copy_from_user(to, from, n);
168 n = raw_copy_from_user(to, from, n);
169 }
170 return n;
171}
172
173static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
174 struct iov_iter *i)
175{
176 size_t skip, copy, left, wanted;
177 const struct iovec *iov;
178 char __user *buf;
179 void *kaddr, *from;
180
181 if (unlikely(bytes > i->count))
182 bytes = i->count;
183
184 if (unlikely(!bytes))
185 return 0;
186
187 might_fault();
188 wanted = bytes;
189 iov = i->iov;
190 skip = i->iov_offset;
191 buf = iov->iov_base + skip;
192 copy = min(bytes, iov->iov_len - skip);
193
194 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
195 kaddr = kmap_atomic(page);
196 from = kaddr + offset;
197
198 /* first chunk, usually the only one */
199 left = copyout(buf, from, copy);
200 copy -= left;
201 skip += copy;
202 from += copy;
203 bytes -= copy;
204
205 while (unlikely(!left && bytes)) {
206 iov++;
207 buf = iov->iov_base;
208 copy = min(bytes, iov->iov_len);
209 left = copyout(buf, from, copy);
210 copy -= left;
211 skip = copy;
212 from += copy;
213 bytes -= copy;
214 }
215 if (likely(!bytes)) {
216 kunmap_atomic(kaddr);
217 goto done;
218 }
219 offset = from - kaddr;
220 buf += copy;
221 kunmap_atomic(kaddr);
222 copy = min(bytes, iov->iov_len - skip);
223 }
224 /* Too bad - revert to non-atomic kmap */
225
226 kaddr = kmap(page);
227 from = kaddr + offset;
228 left = copyout(buf, from, copy);
229 copy -= left;
230 skip += copy;
231 from += copy;
232 bytes -= copy;
233 while (unlikely(!left && bytes)) {
234 iov++;
235 buf = iov->iov_base;
236 copy = min(bytes, iov->iov_len);
237 left = copyout(buf, from, copy);
238 copy -= left;
239 skip = copy;
240 from += copy;
241 bytes -= copy;
242 }
243 kunmap(page);
244
245done:
246 if (skip == iov->iov_len) {
247 iov++;
248 skip = 0;
249 }
250 i->count -= wanted - bytes;
251 i->nr_segs -= iov - i->iov;
252 i->iov = iov;
253 i->iov_offset = skip;
254 return wanted - bytes;
255}
256
257static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
258 struct iov_iter *i)
259{
260 size_t skip, copy, left, wanted;
261 const struct iovec *iov;
262 char __user *buf;
263 void *kaddr, *to;
264
265 if (unlikely(bytes > i->count))
266 bytes = i->count;
267
268 if (unlikely(!bytes))
269 return 0;
270
271 might_fault();
272 wanted = bytes;
273 iov = i->iov;
274 skip = i->iov_offset;
275 buf = iov->iov_base + skip;
276 copy = min(bytes, iov->iov_len - skip);
277
278 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
279 kaddr = kmap_atomic(page);
280 to = kaddr + offset;
281
282 /* first chunk, usually the only one */
283 left = copyin(to, buf, copy);
284 copy -= left;
285 skip += copy;
286 to += copy;
287 bytes -= copy;
288
289 while (unlikely(!left && bytes)) {
290 iov++;
291 buf = iov->iov_base;
292 copy = min(bytes, iov->iov_len);
293 left = copyin(to, buf, copy);
294 copy -= left;
295 skip = copy;
296 to += copy;
297 bytes -= copy;
298 }
299 if (likely(!bytes)) {
300 kunmap_atomic(kaddr);
301 goto done;
302 }
303 offset = to - kaddr;
304 buf += copy;
305 kunmap_atomic(kaddr);
306 copy = min(bytes, iov->iov_len - skip);
307 }
308 /* Too bad - revert to non-atomic kmap */
309
310 kaddr = kmap(page);
311 to = kaddr + offset;
312 left = copyin(to, buf, copy);
313 copy -= left;
314 skip += copy;
315 to += copy;
316 bytes -= copy;
317 while (unlikely(!left && bytes)) {
318 iov++;
319 buf = iov->iov_base;
320 copy = min(bytes, iov->iov_len);
321 left = copyin(to, buf, copy);
322 copy -= left;
323 skip = copy;
324 to += copy;
325 bytes -= copy;
326 }
327 kunmap(page);
328
329done:
330 if (skip == iov->iov_len) {
331 iov++;
332 skip = 0;
333 }
334 i->count -= wanted - bytes;
335 i->nr_segs -= iov - i->iov;
336 i->iov = iov;
337 i->iov_offset = skip;
338 return wanted - bytes;
339}
340
341#ifdef PIPE_PARANOIA
342static bool sanity(const struct iov_iter *i)
343{
344 struct pipe_inode_info *pipe = i->pipe;
345 unsigned int p_head = pipe->head;
346 unsigned int p_tail = pipe->tail;
347 unsigned int p_mask = pipe->ring_size - 1;
348 unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
349 unsigned int i_head = i->head;
350 unsigned int idx;
351
352 if (i->iov_offset) {
353 struct pipe_buffer *p;
354 if (unlikely(p_occupancy == 0))
355 goto Bad; // pipe must be non-empty
356 if (unlikely(i_head != p_head - 1))
357 goto Bad; // must be at the last buffer...
358
359 p = &pipe->bufs[i_head & p_mask];
360 if (unlikely(p->offset + p->len != i->iov_offset))
361 goto Bad; // ... at the end of segment
362 } else {
363 if (i_head != p_head)
364 goto Bad; // must be right after the last buffer
365 }
366 return true;
367Bad:
368 printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
369 printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
370 p_head, p_tail, pipe->ring_size);
371 for (idx = 0; idx < pipe->ring_size; idx++)
372 printk(KERN_ERR "[%p %p %d %d]\n",
373 pipe->bufs[idx].ops,
374 pipe->bufs[idx].page,
375 pipe->bufs[idx].offset,
376 pipe->bufs[idx].len);
377 WARN_ON(1);
378 return false;
379}
380#else
381#define sanity(i) true
382#endif
383
384static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
385 struct iov_iter *i)
386{
387 struct pipe_inode_info *pipe = i->pipe;
388 struct pipe_buffer *buf;
389 unsigned int p_tail = pipe->tail;
390 unsigned int p_mask = pipe->ring_size - 1;
391 unsigned int i_head = i->head;
392 size_t off;
393
394 if (unlikely(bytes > i->count))
395 bytes = i->count;
396
397 if (unlikely(!bytes))
398 return 0;
399
400 if (!sanity(i))
401 return 0;
402
403 off = i->iov_offset;
404 buf = &pipe->bufs[i_head & p_mask];
405 if (off) {
406 if (offset == off && buf->page == page) {
407 /* merge with the last one */
408 buf->len += bytes;
409 i->iov_offset += bytes;
410 goto out;
411 }
412 i_head++;
413 buf = &pipe->bufs[i_head & p_mask];
414 }
415 if (pipe_full(i_head, p_tail, pipe->max_usage))
416 return 0;
417
418 buf->ops = &page_cache_pipe_buf_ops;
419 get_page(page);
420 buf->page = page;
421 buf->offset = offset;
422 buf->len = bytes;
423
424 pipe->head = i_head + 1;
425 i->iov_offset = offset + bytes;
426 i->head = i_head;
427out:
428 i->count -= bytes;
429 return bytes;
430}
431
432/*
433 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
434 * bytes. For each iovec, fault in each page that constitutes the iovec.
435 *
436 * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
437 * because it is an invalid address).
438 */
439int iov_iter_fault_in_readable(const struct iov_iter *i, size_t bytes)
440{
441 if (iter_is_iovec(i)) {
442 const struct iovec *p;
443 size_t skip;
444
445 if (bytes > i->count)
446 bytes = i->count;
447 for (p = i->iov, skip = i->iov_offset; bytes; p++, skip = 0) {
448 size_t len = min(bytes, p->iov_len - skip);
449 int err;
450
451 if (unlikely(!len))
452 continue;
453 err = fault_in_pages_readable(p->iov_base + skip, len);
454 if (unlikely(err))
455 return err;
456 bytes -= len;
457 }
458 }
459 return 0;
460}
461EXPORT_SYMBOL(iov_iter_fault_in_readable);
462
463void iov_iter_init(struct iov_iter *i, unsigned int direction,
464 const struct iovec *iov, unsigned long nr_segs,
465 size_t count)
466{
467 WARN_ON(direction & ~(READ | WRITE));
468 *i = (struct iov_iter) {
469 .iter_type = ITER_IOVEC,
470 .data_source = direction,
471 .iov = iov,
472 .nr_segs = nr_segs,
473 .iov_offset = 0,
474 .count = count
475 };
476}
477EXPORT_SYMBOL(iov_iter_init);
478
479static inline bool allocated(struct pipe_buffer *buf)
480{
481 return buf->ops == &default_pipe_buf_ops;
482}
483
484static inline void data_start(const struct iov_iter *i,
485 unsigned int *iter_headp, size_t *offp)
486{
487 unsigned int p_mask = i->pipe->ring_size - 1;
488 unsigned int iter_head = i->head;
489 size_t off = i->iov_offset;
490
491 if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
492 off == PAGE_SIZE)) {
493 iter_head++;
494 off = 0;
495 }
496 *iter_headp = iter_head;
497 *offp = off;
498}
499
500static size_t push_pipe(struct iov_iter *i, size_t size,
501 int *iter_headp, size_t *offp)
502{
503 struct pipe_inode_info *pipe = i->pipe;
504 unsigned int p_tail = pipe->tail;
505 unsigned int p_mask = pipe->ring_size - 1;
506 unsigned int iter_head;
507 size_t off;
508 ssize_t left;
509
510 if (unlikely(size > i->count))
511 size = i->count;
512 if (unlikely(!size))
513 return 0;
514
515 left = size;
516 data_start(i, &iter_head, &off);
517 *iter_headp = iter_head;
518 *offp = off;
519 if (off) {
520 left -= PAGE_SIZE - off;
521 if (left <= 0) {
522 pipe->bufs[iter_head & p_mask].len += size;
523 return size;
524 }
525 pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
526 iter_head++;
527 }
528 while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
529 struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
530 struct page *page = alloc_page(GFP_USER);
531 if (!page)
532 break;
533
534 buf->ops = &default_pipe_buf_ops;
535 buf->page = page;
536 buf->offset = 0;
537 buf->len = min_t(ssize_t, left, PAGE_SIZE);
538 left -= buf->len;
539 iter_head++;
540 pipe->head = iter_head;
541
542 if (left == 0)
543 return size;
544 }
545 return size - left;
546}
547
548static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
549 struct iov_iter *i)
550{
551 struct pipe_inode_info *pipe = i->pipe;
552 unsigned int p_mask = pipe->ring_size - 1;
553 unsigned int i_head;
554 size_t n, off;
555
556 if (!sanity(i))
557 return 0;
558
559 bytes = n = push_pipe(i, bytes, &i_head, &off);
560 if (unlikely(!n))
561 return 0;
562 do {
563 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
564 memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
565 i->head = i_head;
566 i->iov_offset = off + chunk;
567 n -= chunk;
568 addr += chunk;
569 off = 0;
570 i_head++;
571 } while (n);
572 i->count -= bytes;
573 return bytes;
574}
575
576static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
577 __wsum sum, size_t off)
578{
579 __wsum next = csum_partial_copy_nocheck(from, to, len);
580 return csum_block_add(sum, next, off);
581}
582
583static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
584 struct iov_iter *i, __wsum *sump)
585{
586 struct pipe_inode_info *pipe = i->pipe;
587 unsigned int p_mask = pipe->ring_size - 1;
588 __wsum sum = *sump;
589 size_t off = 0;
590 unsigned int i_head;
591 size_t r;
592
593 if (!sanity(i))
594 return 0;
595
596 bytes = push_pipe(i, bytes, &i_head, &r);
597 while (bytes) {
598 size_t chunk = min_t(size_t, bytes, PAGE_SIZE - r);
599 char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
600 sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
601 kunmap_local(p);
602 i->head = i_head;
603 i->iov_offset = r + chunk;
604 bytes -= chunk;
605 off += chunk;
606 r = 0;
607 i_head++;
608 }
609 *sump = sum;
610 i->count -= off;
611 return off;
612}
613
614size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
615{
616 if (unlikely(iov_iter_is_pipe(i)))
617 return copy_pipe_to_iter(addr, bytes, i);
618 if (iter_is_iovec(i))
619 might_fault();
620 iterate_and_advance(i, bytes, base, len, off,
621 copyout(base, addr + off, len),
622 memcpy(base, addr + off, len)
623 )
624
625 return bytes;
626}
627EXPORT_SYMBOL(_copy_to_iter);
628
629#ifdef CONFIG_ARCH_HAS_COPY_MC
630static int copyout_mc(void __user *to, const void *from, size_t n)
631{
632 if (access_ok(to, n)) {
633 instrument_copy_to_user(to, from, n);
634 n = copy_mc_to_user((__force void *) to, from, n);
635 }
636 return n;
637}
638
639static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
640 struct iov_iter *i)
641{
642 struct pipe_inode_info *pipe = i->pipe;
643 unsigned int p_mask = pipe->ring_size - 1;
644 unsigned int i_head;
645 size_t n, off, xfer = 0;
646
647 if (!sanity(i))
648 return 0;
649
650 n = push_pipe(i, bytes, &i_head, &off);
651 while (n) {
652 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
653 char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
654 unsigned long rem;
655 rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
656 chunk -= rem;
657 kunmap_local(p);
658 i->head = i_head;
659 i->iov_offset = off + chunk;
660 xfer += chunk;
661 if (rem)
662 break;
663 n -= chunk;
664 off = 0;
665 i_head++;
666 }
667 i->count -= xfer;
668 return xfer;
669}
670
671/**
672 * _copy_mc_to_iter - copy to iter with source memory error exception handling
673 * @addr: source kernel address
674 * @bytes: total transfer length
675 * @iter: destination iterator
676 *
677 * The pmem driver deploys this for the dax operation
678 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
679 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
680 * successfully copied.
681 *
682 * The main differences between this and typical _copy_to_iter().
683 *
684 * * Typical tail/residue handling after a fault retries the copy
685 * byte-by-byte until the fault happens again. Re-triggering machine
686 * checks is potentially fatal so the implementation uses source
687 * alignment and poison alignment assumptions to avoid re-triggering
688 * hardware exceptions.
689 *
690 * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
691 * Compare to copy_to_iter() where only ITER_IOVEC attempts might return
692 * a short copy.
693 */
694size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
695{
696 if (unlikely(iov_iter_is_pipe(i)))
697 return copy_mc_pipe_to_iter(addr, bytes, i);
698 if (iter_is_iovec(i))
699 might_fault();
700 __iterate_and_advance(i, bytes, base, len, off,
701 copyout_mc(base, addr + off, len),
702 copy_mc_to_kernel(base, addr + off, len)
703 )
704
705 return bytes;
706}
707EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
708#endif /* CONFIG_ARCH_HAS_COPY_MC */
709
710size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
711{
712 if (unlikely(iov_iter_is_pipe(i))) {
713 WARN_ON(1);
714 return 0;
715 }
716 if (iter_is_iovec(i))
717 might_fault();
718 iterate_and_advance(i, bytes, base, len, off,
719 copyin(addr + off, base, len),
720 memcpy(addr + off, base, len)
721 )
722
723 return bytes;
724}
725EXPORT_SYMBOL(_copy_from_iter);
726
727size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
728{
729 if (unlikely(iov_iter_is_pipe(i))) {
730 WARN_ON(1);
731 return 0;
732 }
733 iterate_and_advance(i, bytes, base, len, off,
734 __copy_from_user_inatomic_nocache(addr + off, base, len),
735 memcpy(addr + off, base, len)
736 )
737
738 return bytes;
739}
740EXPORT_SYMBOL(_copy_from_iter_nocache);
741
742#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
743/**
744 * _copy_from_iter_flushcache - write destination through cpu cache
745 * @addr: destination kernel address
746 * @bytes: total transfer length
747 * @iter: source iterator
748 *
749 * The pmem driver arranges for filesystem-dax to use this facility via
750 * dax_copy_from_iter() for ensuring that writes to persistent memory
751 * are flushed through the CPU cache. It is differentiated from
752 * _copy_from_iter_nocache() in that guarantees all data is flushed for
753 * all iterator types. The _copy_from_iter_nocache() only attempts to
754 * bypass the cache for the ITER_IOVEC case, and on some archs may use
755 * instructions that strand dirty-data in the cache.
756 */
757size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
758{
759 if (unlikely(iov_iter_is_pipe(i))) {
760 WARN_ON(1);
761 return 0;
762 }
763 iterate_and_advance(i, bytes, base, len, off,
764 __copy_from_user_flushcache(addr + off, base, len),
765 memcpy_flushcache(addr + off, base, len)
766 )
767
768 return bytes;
769}
770EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
771#endif
772
773static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
774{
775 struct page *head;
776 size_t v = n + offset;
777
778 /*
779 * The general case needs to access the page order in order
780 * to compute the page size.
781 * However, we mostly deal with order-0 pages and thus can
782 * avoid a possible cache line miss for requests that fit all
783 * page orders.
784 */
785 if (n <= v && v <= PAGE_SIZE)
786 return true;
787
788 head = compound_head(page);
789 v += (page - head) << PAGE_SHIFT;
790
791 if (likely(n <= v && v <= (page_size(head))))
792 return true;
793 WARN_ON(1);
794 return false;
795}
796
797static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
798 struct iov_iter *i)
799{
800 if (likely(iter_is_iovec(i)))
801 return copy_page_to_iter_iovec(page, offset, bytes, i);
802 if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
803 void *kaddr = kmap_local_page(page);
804 size_t wanted = _copy_to_iter(kaddr + offset, bytes, i);
805 kunmap_local(kaddr);
806 return wanted;
807 }
808 if (iov_iter_is_pipe(i))
809 return copy_page_to_iter_pipe(page, offset, bytes, i);
810 if (unlikely(iov_iter_is_discard(i))) {
811 if (unlikely(i->count < bytes))
812 bytes = i->count;
813 i->count -= bytes;
814 return bytes;
815 }
816 WARN_ON(1);
817 return 0;
818}
819
820size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
821 struct iov_iter *i)
822{
823 size_t res = 0;
824 if (unlikely(!page_copy_sane(page, offset, bytes)))
825 return 0;
826 page += offset / PAGE_SIZE; // first subpage
827 offset %= PAGE_SIZE;
828 while (1) {
829 size_t n = __copy_page_to_iter(page, offset,
830 min(bytes, (size_t)PAGE_SIZE - offset), i);
831 res += n;
832 bytes -= n;
833 if (!bytes || !n)
834 break;
835 offset += n;
836 if (offset == PAGE_SIZE) {
837 page++;
838 offset = 0;
839 }
840 }
841 return res;
842}
843EXPORT_SYMBOL(copy_page_to_iter);
844
845size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
846 struct iov_iter *i)
847{
848 if (unlikely(!page_copy_sane(page, offset, bytes)))
849 return 0;
850 if (likely(iter_is_iovec(i)))
851 return copy_page_from_iter_iovec(page, offset, bytes, i);
852 if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
853 void *kaddr = kmap_local_page(page);
854 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
855 kunmap_local(kaddr);
856 return wanted;
857 }
858 WARN_ON(1);
859 return 0;
860}
861EXPORT_SYMBOL(copy_page_from_iter);
862
863static size_t pipe_zero(size_t bytes, struct iov_iter *i)
864{
865 struct pipe_inode_info *pipe = i->pipe;
866 unsigned int p_mask = pipe->ring_size - 1;
867 unsigned int i_head;
868 size_t n, off;
869
870 if (!sanity(i))
871 return 0;
872
873 bytes = n = push_pipe(i, bytes, &i_head, &off);
874 if (unlikely(!n))
875 return 0;
876
877 do {
878 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
879 char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
880 memset(p + off, 0, chunk);
881 kunmap_local(p);
882 i->head = i_head;
883 i->iov_offset = off + chunk;
884 n -= chunk;
885 off = 0;
886 i_head++;
887 } while (n);
888 i->count -= bytes;
889 return bytes;
890}
891
892size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
893{
894 if (unlikely(iov_iter_is_pipe(i)))
895 return pipe_zero(bytes, i);
896 iterate_and_advance(i, bytes, base, len, count,
897 clear_user(base, len),
898 memset(base, 0, len)
899 )
900
901 return bytes;
902}
903EXPORT_SYMBOL(iov_iter_zero);
904
905size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
906 struct iov_iter *i)
907{
908 char *kaddr = kmap_atomic(page), *p = kaddr + offset;
909 if (unlikely(!page_copy_sane(page, offset, bytes))) {
910 kunmap_atomic(kaddr);
911 return 0;
912 }
913 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
914 kunmap_atomic(kaddr);
915 WARN_ON(1);
916 return 0;
917 }
918 iterate_and_advance(i, bytes, base, len, off,
919 copyin(p + off, base, len),
920 memcpy(p + off, base, len)
921 )
922 kunmap_atomic(kaddr);
923 return bytes;
924}
925EXPORT_SYMBOL(copy_page_from_iter_atomic);
926
927static inline void pipe_truncate(struct iov_iter *i)
928{
929 struct pipe_inode_info *pipe = i->pipe;
930 unsigned int p_tail = pipe->tail;
931 unsigned int p_head = pipe->head;
932 unsigned int p_mask = pipe->ring_size - 1;
933
934 if (!pipe_empty(p_head, p_tail)) {
935 struct pipe_buffer *buf;
936 unsigned int i_head = i->head;
937 size_t off = i->iov_offset;
938
939 if (off) {
940 buf = &pipe->bufs[i_head & p_mask];
941 buf->len = off - buf->offset;
942 i_head++;
943 }
944 while (p_head != i_head) {
945 p_head--;
946 pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
947 }
948
949 pipe->head = p_head;
950 }
951}
952
953static void pipe_advance(struct iov_iter *i, size_t size)
954{
955 struct pipe_inode_info *pipe = i->pipe;
956 if (size) {
957 struct pipe_buffer *buf;
958 unsigned int p_mask = pipe->ring_size - 1;
959 unsigned int i_head = i->head;
960 size_t off = i->iov_offset, left = size;
961
962 if (off) /* make it relative to the beginning of buffer */
963 left += off - pipe->bufs[i_head & p_mask].offset;
964 while (1) {
965 buf = &pipe->bufs[i_head & p_mask];
966 if (left <= buf->len)
967 break;
968 left -= buf->len;
969 i_head++;
970 }
971 i->head = i_head;
972 i->iov_offset = buf->offset + left;
973 }
974 i->count -= size;
975 /* ... and discard everything past that point */
976 pipe_truncate(i);
977}
978
979static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
980{
981 struct bvec_iter bi;
982
983 bi.bi_size = i->count;
984 bi.bi_bvec_done = i->iov_offset;
985 bi.bi_idx = 0;
986 bvec_iter_advance(i->bvec, &bi, size);
987
988 i->bvec += bi.bi_idx;
989 i->nr_segs -= bi.bi_idx;
990 i->count = bi.bi_size;
991 i->iov_offset = bi.bi_bvec_done;
992}
993
994static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
995{
996 const struct iovec *iov, *end;
997
998 if (!i->count)
999 return;
1000 i->count -= size;
1001
1002 size += i->iov_offset; // from beginning of current segment
1003 for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
1004 if (likely(size < iov->iov_len))
1005 break;
1006 size -= iov->iov_len;
1007 }
1008 i->iov_offset = size;
1009 i->nr_segs -= iov - i->iov;
1010 i->iov = iov;
1011}
1012
1013void iov_iter_advance(struct iov_iter *i, size_t size)
1014{
1015 if (unlikely(i->count < size))
1016 size = i->count;
1017 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
1018 /* iovec and kvec have identical layouts */
1019 iov_iter_iovec_advance(i, size);
1020 } else if (iov_iter_is_bvec(i)) {
1021 iov_iter_bvec_advance(i, size);
1022 } else if (iov_iter_is_pipe(i)) {
1023 pipe_advance(i, size);
1024 } else if (unlikely(iov_iter_is_xarray(i))) {
1025 i->iov_offset += size;
1026 i->count -= size;
1027 } else if (iov_iter_is_discard(i)) {
1028 i->count -= size;
1029 }
1030}
1031EXPORT_SYMBOL(iov_iter_advance);
1032
1033void iov_iter_revert(struct iov_iter *i, size_t unroll)
1034{
1035 if (!unroll)
1036 return;
1037 if (WARN_ON(unroll > MAX_RW_COUNT))
1038 return;
1039 i->count += unroll;
1040 if (unlikely(iov_iter_is_pipe(i))) {
1041 struct pipe_inode_info *pipe = i->pipe;
1042 unsigned int p_mask = pipe->ring_size - 1;
1043 unsigned int i_head = i->head;
1044 size_t off = i->iov_offset;
1045 while (1) {
1046 struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1047 size_t n = off - b->offset;
1048 if (unroll < n) {
1049 off -= unroll;
1050 break;
1051 }
1052 unroll -= n;
1053 if (!unroll && i_head == i->start_head) {
1054 off = 0;
1055 break;
1056 }
1057 i_head--;
1058 b = &pipe->bufs[i_head & p_mask];
1059 off = b->offset + b->len;
1060 }
1061 i->iov_offset = off;
1062 i->head = i_head;
1063 pipe_truncate(i);
1064 return;
1065 }
1066 if (unlikely(iov_iter_is_discard(i)))
1067 return;
1068 if (unroll <= i->iov_offset) {
1069 i->iov_offset -= unroll;
1070 return;
1071 }
1072 unroll -= i->iov_offset;
1073 if (iov_iter_is_xarray(i)) {
1074 BUG(); /* We should never go beyond the start of the specified
1075 * range since we might then be straying into pages that
1076 * aren't pinned.
1077 */
1078 } else if (iov_iter_is_bvec(i)) {
1079 const struct bio_vec *bvec = i->bvec;
1080 while (1) {
1081 size_t n = (--bvec)->bv_len;
1082 i->nr_segs++;
1083 if (unroll <= n) {
1084 i->bvec = bvec;
1085 i->iov_offset = n - unroll;
1086 return;
1087 }
1088 unroll -= n;
1089 }
1090 } else { /* same logics for iovec and kvec */
1091 const struct iovec *iov = i->iov;
1092 while (1) {
1093 size_t n = (--iov)->iov_len;
1094 i->nr_segs++;
1095 if (unroll <= n) {
1096 i->iov = iov;
1097 i->iov_offset = n - unroll;
1098 return;
1099 }
1100 unroll -= n;
1101 }
1102 }
1103}
1104EXPORT_SYMBOL(iov_iter_revert);
1105
1106/*
1107 * Return the count of just the current iov_iter segment.
1108 */
1109size_t iov_iter_single_seg_count(const struct iov_iter *i)
1110{
1111 if (i->nr_segs > 1) {
1112 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1113 return min(i->count, i->iov->iov_len - i->iov_offset);
1114 if (iov_iter_is_bvec(i))
1115 return min(i->count, i->bvec->bv_len - i->iov_offset);
1116 }
1117 return i->count;
1118}
1119EXPORT_SYMBOL(iov_iter_single_seg_count);
1120
1121void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1122 const struct kvec *kvec, unsigned long nr_segs,
1123 size_t count)
1124{
1125 WARN_ON(direction & ~(READ | WRITE));
1126 *i = (struct iov_iter){
1127 .iter_type = ITER_KVEC,
1128 .data_source = direction,
1129 .kvec = kvec,
1130 .nr_segs = nr_segs,
1131 .iov_offset = 0,
1132 .count = count
1133 };
1134}
1135EXPORT_SYMBOL(iov_iter_kvec);
1136
1137void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1138 const struct bio_vec *bvec, unsigned long nr_segs,
1139 size_t count)
1140{
1141 WARN_ON(direction & ~(READ | WRITE));
1142 *i = (struct iov_iter){
1143 .iter_type = ITER_BVEC,
1144 .data_source = direction,
1145 .bvec = bvec,
1146 .nr_segs = nr_segs,
1147 .iov_offset = 0,
1148 .count = count
1149 };
1150}
1151EXPORT_SYMBOL(iov_iter_bvec);
1152
1153void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1154 struct pipe_inode_info *pipe,
1155 size_t count)
1156{
1157 BUG_ON(direction != READ);
1158 WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1159 *i = (struct iov_iter){
1160 .iter_type = ITER_PIPE,
1161 .data_source = false,
1162 .pipe = pipe,
1163 .head = pipe->head,
1164 .start_head = pipe->head,
1165 .iov_offset = 0,
1166 .count = count
1167 };
1168}
1169EXPORT_SYMBOL(iov_iter_pipe);
1170
1171/**
1172 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1173 * @i: The iterator to initialise.
1174 * @direction: The direction of the transfer.
1175 * @xarray: The xarray to access.
1176 * @start: The start file position.
1177 * @count: The size of the I/O buffer in bytes.
1178 *
1179 * Set up an I/O iterator to either draw data out of the pages attached to an
1180 * inode or to inject data into those pages. The pages *must* be prevented
1181 * from evaporation, either by taking a ref on them or locking them by the
1182 * caller.
1183 */
1184void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1185 struct xarray *xarray, loff_t start, size_t count)
1186{
1187 BUG_ON(direction & ~1);
1188 *i = (struct iov_iter) {
1189 .iter_type = ITER_XARRAY,
1190 .data_source = direction,
1191 .xarray = xarray,
1192 .xarray_start = start,
1193 .count = count,
1194 .iov_offset = 0
1195 };
1196}
1197EXPORT_SYMBOL(iov_iter_xarray);
1198
1199/**
1200 * iov_iter_discard - Initialise an I/O iterator that discards data
1201 * @i: The iterator to initialise.
1202 * @direction: The direction of the transfer.
1203 * @count: The size of the I/O buffer in bytes.
1204 *
1205 * Set up an I/O iterator that just discards everything that's written to it.
1206 * It's only available as a READ iterator.
1207 */
1208void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1209{
1210 BUG_ON(direction != READ);
1211 *i = (struct iov_iter){
1212 .iter_type = ITER_DISCARD,
1213 .data_source = false,
1214 .count = count,
1215 .iov_offset = 0
1216 };
1217}
1218EXPORT_SYMBOL(iov_iter_discard);
1219
1220static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1221{
1222 unsigned long res = 0;
1223 size_t size = i->count;
1224 size_t skip = i->iov_offset;
1225 unsigned k;
1226
1227 for (k = 0; k < i->nr_segs; k++, skip = 0) {
1228 size_t len = i->iov[k].iov_len - skip;
1229 if (len) {
1230 res |= (unsigned long)i->iov[k].iov_base + skip;
1231 if (len > size)
1232 len = size;
1233 res |= len;
1234 size -= len;
1235 if (!size)
1236 break;
1237 }
1238 }
1239 return res;
1240}
1241
1242static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1243{
1244 unsigned res = 0;
1245 size_t size = i->count;
1246 unsigned skip = i->iov_offset;
1247 unsigned k;
1248
1249 for (k = 0; k < i->nr_segs; k++, skip = 0) {
1250 size_t len = i->bvec[k].bv_len - skip;
1251 res |= (unsigned long)i->bvec[k].bv_offset + skip;
1252 if (len > size)
1253 len = size;
1254 res |= len;
1255 size -= len;
1256 if (!size)
1257 break;
1258 }
1259 return res;
1260}
1261
1262unsigned long iov_iter_alignment(const struct iov_iter *i)
1263{
1264 /* iovec and kvec have identical layouts */
1265 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1266 return iov_iter_alignment_iovec(i);
1267
1268 if (iov_iter_is_bvec(i))
1269 return iov_iter_alignment_bvec(i);
1270
1271 if (iov_iter_is_pipe(i)) {
1272 unsigned int p_mask = i->pipe->ring_size - 1;
1273 size_t size = i->count;
1274
1275 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1276 return size | i->iov_offset;
1277 return size;
1278 }
1279
1280 if (iov_iter_is_xarray(i))
1281 return (i->xarray_start + i->iov_offset) | i->count;
1282
1283 return 0;
1284}
1285EXPORT_SYMBOL(iov_iter_alignment);
1286
1287unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1288{
1289 unsigned long res = 0;
1290 unsigned long v = 0;
1291 size_t size = i->count;
1292 unsigned k;
1293
1294 if (WARN_ON(!iter_is_iovec(i)))
1295 return ~0U;
1296
1297 for (k = 0; k < i->nr_segs; k++) {
1298 if (i->iov[k].iov_len) {
1299 unsigned long base = (unsigned long)i->iov[k].iov_base;
1300 if (v) // if not the first one
1301 res |= base | v; // this start | previous end
1302 v = base + i->iov[k].iov_len;
1303 if (size <= i->iov[k].iov_len)
1304 break;
1305 size -= i->iov[k].iov_len;
1306 }
1307 }
1308 return res;
1309}
1310EXPORT_SYMBOL(iov_iter_gap_alignment);
1311
1312static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1313 size_t maxsize,
1314 struct page **pages,
1315 int iter_head,
1316 size_t *start)
1317{
1318 struct pipe_inode_info *pipe = i->pipe;
1319 unsigned int p_mask = pipe->ring_size - 1;
1320 ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1321 if (!n)
1322 return -EFAULT;
1323
1324 maxsize = n;
1325 n += *start;
1326 while (n > 0) {
1327 get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1328 iter_head++;
1329 n -= PAGE_SIZE;
1330 }
1331
1332 return maxsize;
1333}
1334
1335static ssize_t pipe_get_pages(struct iov_iter *i,
1336 struct page **pages, size_t maxsize, unsigned maxpages,
1337 size_t *start)
1338{
1339 unsigned int iter_head, npages;
1340 size_t capacity;
1341
1342 if (!sanity(i))
1343 return -EFAULT;
1344
1345 data_start(i, &iter_head, start);
1346 /* Amount of free space: some of this one + all after this one */
1347 npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1348 capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1349
1350 return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1351}
1352
1353static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1354 pgoff_t index, unsigned int nr_pages)
1355{
1356 XA_STATE(xas, xa, index);
1357 struct page *page;
1358 unsigned int ret = 0;
1359
1360 rcu_read_lock();
1361 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1362 if (xas_retry(&xas, page))
1363 continue;
1364
1365 /* Has the page moved or been split? */
1366 if (unlikely(page != xas_reload(&xas))) {
1367 xas_reset(&xas);
1368 continue;
1369 }
1370
1371 pages[ret] = find_subpage(page, xas.xa_index);
1372 get_page(pages[ret]);
1373 if (++ret == nr_pages)
1374 break;
1375 }
1376 rcu_read_unlock();
1377 return ret;
1378}
1379
1380static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1381 struct page **pages, size_t maxsize,
1382 unsigned maxpages, size_t *_start_offset)
1383{
1384 unsigned nr, offset;
1385 pgoff_t index, count;
1386 size_t size = maxsize, actual;
1387 loff_t pos;
1388
1389 if (!size || !maxpages)
1390 return 0;
1391
1392 pos = i->xarray_start + i->iov_offset;
1393 index = pos >> PAGE_SHIFT;
1394 offset = pos & ~PAGE_MASK;
1395 *_start_offset = offset;
1396
1397 count = 1;
1398 if (size > PAGE_SIZE - offset) {
1399 size -= PAGE_SIZE - offset;
1400 count += size >> PAGE_SHIFT;
1401 size &= ~PAGE_MASK;
1402 if (size)
1403 count++;
1404 }
1405
1406 if (count > maxpages)
1407 count = maxpages;
1408
1409 nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1410 if (nr == 0)
1411 return 0;
1412
1413 actual = PAGE_SIZE * nr;
1414 actual -= offset;
1415 if (nr == count && size > 0) {
1416 unsigned last_offset = (nr > 1) ? 0 : offset;
1417 actual -= PAGE_SIZE - (last_offset + size);
1418 }
1419 return actual;
1420}
1421
1422/* must be done on non-empty ITER_IOVEC one */
1423static unsigned long first_iovec_segment(const struct iov_iter *i,
1424 size_t *size, size_t *start,
1425 size_t maxsize, unsigned maxpages)
1426{
1427 size_t skip;
1428 long k;
1429
1430 for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1431 unsigned long addr = (unsigned long)i->iov[k].iov_base + skip;
1432 size_t len = i->iov[k].iov_len - skip;
1433
1434 if (unlikely(!len))
1435 continue;
1436 if (len > maxsize)
1437 len = maxsize;
1438 len += (*start = addr % PAGE_SIZE);
1439 if (len > maxpages * PAGE_SIZE)
1440 len = maxpages * PAGE_SIZE;
1441 *size = len;
1442 return addr & PAGE_MASK;
1443 }
1444 BUG(); // if it had been empty, we wouldn't get called
1445}
1446
1447/* must be done on non-empty ITER_BVEC one */
1448static struct page *first_bvec_segment(const struct iov_iter *i,
1449 size_t *size, size_t *start,
1450 size_t maxsize, unsigned maxpages)
1451{
1452 struct page *page;
1453 size_t skip = i->iov_offset, len;
1454
1455 len = i->bvec->bv_len - skip;
1456 if (len > maxsize)
1457 len = maxsize;
1458 skip += i->bvec->bv_offset;
1459 page = i->bvec->bv_page + skip / PAGE_SIZE;
1460 len += (*start = skip % PAGE_SIZE);
1461 if (len > maxpages * PAGE_SIZE)
1462 len = maxpages * PAGE_SIZE;
1463 *size = len;
1464 return page;
1465}
1466
1467ssize_t iov_iter_get_pages(struct iov_iter *i,
1468 struct page **pages, size_t maxsize, unsigned maxpages,
1469 size_t *start)
1470{
1471 size_t len;
1472 int n, res;
1473
1474 if (maxsize > i->count)
1475 maxsize = i->count;
1476 if (!maxsize)
1477 return 0;
1478
1479 if (likely(iter_is_iovec(i))) {
1480 unsigned long addr;
1481
1482 addr = first_iovec_segment(i, &len, start, maxsize, maxpages);
1483 n = DIV_ROUND_UP(len, PAGE_SIZE);
1484 res = get_user_pages_fast(addr, n,
1485 iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0,
1486 pages);
1487 if (unlikely(res < 0))
1488 return res;
1489 return (res == n ? len : res * PAGE_SIZE) - *start;
1490 }
1491 if (iov_iter_is_bvec(i)) {
1492 struct page *page;
1493
1494 page = first_bvec_segment(i, &len, start, maxsize, maxpages);
1495 n = DIV_ROUND_UP(len, PAGE_SIZE);
1496 while (n--)
1497 get_page(*pages++ = page++);
1498 return len - *start;
1499 }
1500 if (iov_iter_is_pipe(i))
1501 return pipe_get_pages(i, pages, maxsize, maxpages, start);
1502 if (iov_iter_is_xarray(i))
1503 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1504 return -EFAULT;
1505}
1506EXPORT_SYMBOL(iov_iter_get_pages);
1507
1508static struct page **get_pages_array(size_t n)
1509{
1510 return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1511}
1512
1513static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1514 struct page ***pages, size_t maxsize,
1515 size_t *start)
1516{
1517 struct page **p;
1518 unsigned int iter_head, npages;
1519 ssize_t n;
1520
1521 if (!sanity(i))
1522 return -EFAULT;
1523
1524 data_start(i, &iter_head, start);
1525 /* Amount of free space: some of this one + all after this one */
1526 npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1527 n = npages * PAGE_SIZE - *start;
1528 if (maxsize > n)
1529 maxsize = n;
1530 else
1531 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1532 p = get_pages_array(npages);
1533 if (!p)
1534 return -ENOMEM;
1535 n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1536 if (n > 0)
1537 *pages = p;
1538 else
1539 kvfree(p);
1540 return n;
1541}
1542
1543static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1544 struct page ***pages, size_t maxsize,
1545 size_t *_start_offset)
1546{
1547 struct page **p;
1548 unsigned nr, offset;
1549 pgoff_t index, count;
1550 size_t size = maxsize, actual;
1551 loff_t pos;
1552
1553 if (!size)
1554 return 0;
1555
1556 pos = i->xarray_start + i->iov_offset;
1557 index = pos >> PAGE_SHIFT;
1558 offset = pos & ~PAGE_MASK;
1559 *_start_offset = offset;
1560
1561 count = 1;
1562 if (size > PAGE_SIZE - offset) {
1563 size -= PAGE_SIZE - offset;
1564 count += size >> PAGE_SHIFT;
1565 size &= ~PAGE_MASK;
1566 if (size)
1567 count++;
1568 }
1569
1570 p = get_pages_array(count);
1571 if (!p)
1572 return -ENOMEM;
1573 *pages = p;
1574
1575 nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1576 if (nr == 0)
1577 return 0;
1578
1579 actual = PAGE_SIZE * nr;
1580 actual -= offset;
1581 if (nr == count && size > 0) {
1582 unsigned last_offset = (nr > 1) ? 0 : offset;
1583 actual -= PAGE_SIZE - (last_offset + size);
1584 }
1585 return actual;
1586}
1587
1588ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1589 struct page ***pages, size_t maxsize,
1590 size_t *start)
1591{
1592 struct page **p;
1593 size_t len;
1594 int n, res;
1595
1596 if (maxsize > i->count)
1597 maxsize = i->count;
1598 if (!maxsize)
1599 return 0;
1600
1601 if (likely(iter_is_iovec(i))) {
1602 unsigned long addr;
1603
1604 addr = first_iovec_segment(i, &len, start, maxsize, ~0U);
1605 n = DIV_ROUND_UP(len, PAGE_SIZE);
1606 p = get_pages_array(n);
1607 if (!p)
1608 return -ENOMEM;
1609 res = get_user_pages_fast(addr, n,
1610 iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0, p);
1611 if (unlikely(res < 0)) {
1612 kvfree(p);
1613 return res;
1614 }
1615 *pages = p;
1616 return (res == n ? len : res * PAGE_SIZE) - *start;
1617 }
1618 if (iov_iter_is_bvec(i)) {
1619 struct page *page;
1620
1621 page = first_bvec_segment(i, &len, start, maxsize, ~0U);
1622 n = DIV_ROUND_UP(len, PAGE_SIZE);
1623 *pages = p = get_pages_array(n);
1624 if (!p)
1625 return -ENOMEM;
1626 while (n--)
1627 get_page(*p++ = page++);
1628 return len - *start;
1629 }
1630 if (iov_iter_is_pipe(i))
1631 return pipe_get_pages_alloc(i, pages, maxsize, start);
1632 if (iov_iter_is_xarray(i))
1633 return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1634 return -EFAULT;
1635}
1636EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1637
1638size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1639 struct iov_iter *i)
1640{
1641 __wsum sum, next;
1642 sum = *csum;
1643 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1644 WARN_ON(1);
1645 return 0;
1646 }
1647 iterate_and_advance(i, bytes, base, len, off, ({
1648 next = csum_and_copy_from_user(base, addr + off, len);
1649 sum = csum_block_add(sum, next, off);
1650 next ? 0 : len;
1651 }), ({
1652 sum = csum_and_memcpy(addr + off, base, len, sum, off);
1653 })
1654 )
1655 *csum = sum;
1656 return bytes;
1657}
1658EXPORT_SYMBOL(csum_and_copy_from_iter);
1659
1660size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1661 struct iov_iter *i)
1662{
1663 struct csum_state *csstate = _csstate;
1664 __wsum sum, next;
1665
1666 if (unlikely(iov_iter_is_discard(i))) {
1667 WARN_ON(1); /* for now */
1668 return 0;
1669 }
1670
1671 sum = csum_shift(csstate->csum, csstate->off);
1672 if (unlikely(iov_iter_is_pipe(i)))
1673 bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1674 else iterate_and_advance(i, bytes, base, len, off, ({
1675 next = csum_and_copy_to_user(addr + off, base, len);
1676 sum = csum_block_add(sum, next, off);
1677 next ? 0 : len;
1678 }), ({
1679 sum = csum_and_memcpy(base, addr + off, len, sum, off);
1680 })
1681 )
1682 csstate->csum = csum_shift(sum, csstate->off);
1683 csstate->off += bytes;
1684 return bytes;
1685}
1686EXPORT_SYMBOL(csum_and_copy_to_iter);
1687
1688size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1689 struct iov_iter *i)
1690{
1691#ifdef CONFIG_CRYPTO_HASH
1692 struct ahash_request *hash = hashp;
1693 struct scatterlist sg;
1694 size_t copied;
1695
1696 copied = copy_to_iter(addr, bytes, i);
1697 sg_init_one(&sg, addr, copied);
1698 ahash_request_set_crypt(hash, &sg, NULL, copied);
1699 crypto_ahash_update(hash);
1700 return copied;
1701#else
1702 return 0;
1703#endif
1704}
1705EXPORT_SYMBOL(hash_and_copy_to_iter);
1706
1707static int iov_npages(const struct iov_iter *i, int maxpages)
1708{
1709 size_t skip = i->iov_offset, size = i->count;
1710 const struct iovec *p;
1711 int npages = 0;
1712
1713 for (p = i->iov; size; skip = 0, p++) {
1714 unsigned offs = offset_in_page(p->iov_base + skip);
1715 size_t len = min(p->iov_len - skip, size);
1716
1717 if (len) {
1718 size -= len;
1719 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1720 if (unlikely(npages > maxpages))
1721 return maxpages;
1722 }
1723 }
1724 return npages;
1725}
1726
1727static int bvec_npages(const struct iov_iter *i, int maxpages)
1728{
1729 size_t skip = i->iov_offset, size = i->count;
1730 const struct bio_vec *p;
1731 int npages = 0;
1732
1733 for (p = i->bvec; size; skip = 0, p++) {
1734 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1735 size_t len = min(p->bv_len - skip, size);
1736
1737 size -= len;
1738 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1739 if (unlikely(npages > maxpages))
1740 return maxpages;
1741 }
1742 return npages;
1743}
1744
1745int iov_iter_npages(const struct iov_iter *i, int maxpages)
1746{
1747 if (unlikely(!i->count))
1748 return 0;
1749 /* iovec and kvec have identical layouts */
1750 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1751 return iov_npages(i, maxpages);
1752 if (iov_iter_is_bvec(i))
1753 return bvec_npages(i, maxpages);
1754 if (iov_iter_is_pipe(i)) {
1755 unsigned int iter_head;
1756 int npages;
1757 size_t off;
1758
1759 if (!sanity(i))
1760 return 0;
1761
1762 data_start(i, &iter_head, &off);
1763 /* some of this one + all after this one */
1764 npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1765 return min(npages, maxpages);
1766 }
1767 if (iov_iter_is_xarray(i)) {
1768 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1769 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1770 return min(npages, maxpages);
1771 }
1772 return 0;
1773}
1774EXPORT_SYMBOL(iov_iter_npages);
1775
1776const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1777{
1778 *new = *old;
1779 if (unlikely(iov_iter_is_pipe(new))) {
1780 WARN_ON(1);
1781 return NULL;
1782 }
1783 if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new)))
1784 return NULL;
1785 if (iov_iter_is_bvec(new))
1786 return new->bvec = kmemdup(new->bvec,
1787 new->nr_segs * sizeof(struct bio_vec),
1788 flags);
1789 else
1790 /* iovec and kvec have identical layout */
1791 return new->iov = kmemdup(new->iov,
1792 new->nr_segs * sizeof(struct iovec),
1793 flags);
1794}
1795EXPORT_SYMBOL(dup_iter);
1796
1797static int copy_compat_iovec_from_user(struct iovec *iov,
1798 const struct iovec __user *uvec, unsigned long nr_segs)
1799{
1800 const struct compat_iovec __user *uiov =
1801 (const struct compat_iovec __user *)uvec;
1802 int ret = -EFAULT, i;
1803
1804 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1805 return -EFAULT;
1806
1807 for (i = 0; i < nr_segs; i++) {
1808 compat_uptr_t buf;
1809 compat_ssize_t len;
1810
1811 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1812 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1813
1814 /* check for compat_size_t not fitting in compat_ssize_t .. */
1815 if (len < 0) {
1816 ret = -EINVAL;
1817 goto uaccess_end;
1818 }
1819 iov[i].iov_base = compat_ptr(buf);
1820 iov[i].iov_len = len;
1821 }
1822
1823 ret = 0;
1824uaccess_end:
1825 user_access_end();
1826 return ret;
1827}
1828
1829static int copy_iovec_from_user(struct iovec *iov,
1830 const struct iovec __user *uvec, unsigned long nr_segs)
1831{
1832 unsigned long seg;
1833
1834 if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1835 return -EFAULT;
1836 for (seg = 0; seg < nr_segs; seg++) {
1837 if ((ssize_t)iov[seg].iov_len < 0)
1838 return -EINVAL;
1839 }
1840
1841 return 0;
1842}
1843
1844struct iovec *iovec_from_user(const struct iovec __user *uvec,
1845 unsigned long nr_segs, unsigned long fast_segs,
1846 struct iovec *fast_iov, bool compat)
1847{
1848 struct iovec *iov = fast_iov;
1849 int ret;
1850
1851 /*
1852 * SuS says "The readv() function *may* fail if the iovcnt argument was
1853 * less than or equal to 0, or greater than {IOV_MAX}. Linux has
1854 * traditionally returned zero for zero segments, so...
1855 */
1856 if (nr_segs == 0)
1857 return iov;
1858 if (nr_segs > UIO_MAXIOV)
1859 return ERR_PTR(-EINVAL);
1860 if (nr_segs > fast_segs) {
1861 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1862 if (!iov)
1863 return ERR_PTR(-ENOMEM);
1864 }
1865
1866 if (compat)
1867 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1868 else
1869 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1870 if (ret) {
1871 if (iov != fast_iov)
1872 kfree(iov);
1873 return ERR_PTR(ret);
1874 }
1875
1876 return iov;
1877}
1878
1879ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1880 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1881 struct iov_iter *i, bool compat)
1882{
1883 ssize_t total_len = 0;
1884 unsigned long seg;
1885 struct iovec *iov;
1886
1887 iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1888 if (IS_ERR(iov)) {
1889 *iovp = NULL;
1890 return PTR_ERR(iov);
1891 }
1892
1893 /*
1894 * According to the Single Unix Specification we should return EINVAL if
1895 * an element length is < 0 when cast to ssize_t or if the total length
1896 * would overflow the ssize_t return value of the system call.
1897 *
1898 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1899 * overflow case.
1900 */
1901 for (seg = 0; seg < nr_segs; seg++) {
1902 ssize_t len = (ssize_t)iov[seg].iov_len;
1903
1904 if (!access_ok(iov[seg].iov_base, len)) {
1905 if (iov != *iovp)
1906 kfree(iov);
1907 *iovp = NULL;
1908 return -EFAULT;
1909 }
1910
1911 if (len > MAX_RW_COUNT - total_len) {
1912 len = MAX_RW_COUNT - total_len;
1913 iov[seg].iov_len = len;
1914 }
1915 total_len += len;
1916 }
1917
1918 iov_iter_init(i, type, iov, nr_segs, total_len);
1919 if (iov == *iovp)
1920 *iovp = NULL;
1921 else
1922 *iovp = iov;
1923 return total_len;
1924}
1925
1926/**
1927 * import_iovec() - Copy an array of &struct iovec from userspace
1928 * into the kernel, check that it is valid, and initialize a new
1929 * &struct iov_iter iterator to access it.
1930 *
1931 * @type: One of %READ or %WRITE.
1932 * @uvec: Pointer to the userspace array.
1933 * @nr_segs: Number of elements in userspace array.
1934 * @fast_segs: Number of elements in @iov.
1935 * @iovp: (input and output parameter) Pointer to pointer to (usually small
1936 * on-stack) kernel array.
1937 * @i: Pointer to iterator that will be initialized on success.
1938 *
1939 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1940 * then this function places %NULL in *@iov on return. Otherwise, a new
1941 * array will be allocated and the result placed in *@iov. This means that
1942 * the caller may call kfree() on *@iov regardless of whether the small
1943 * on-stack array was used or not (and regardless of whether this function
1944 * returns an error or not).
1945 *
1946 * Return: Negative error code on error, bytes imported on success
1947 */
1948ssize_t import_iovec(int type, const struct iovec __user *uvec,
1949 unsigned nr_segs, unsigned fast_segs,
1950 struct iovec **iovp, struct iov_iter *i)
1951{
1952 return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1953 in_compat_syscall());
1954}
1955EXPORT_SYMBOL(import_iovec);
1956
1957int import_single_range(int rw, void __user *buf, size_t len,
1958 struct iovec *iov, struct iov_iter *i)
1959{
1960 if (len > MAX_RW_COUNT)
1961 len = MAX_RW_COUNT;
1962 if (unlikely(!access_ok(buf, len)))
1963 return -EFAULT;
1964
1965 iov->iov_base = buf;
1966 iov->iov_len = len;
1967 iov_iter_init(i, rw, iov, 1, len);
1968 return 0;
1969}
1970EXPORT_SYMBOL(import_single_range);
1// SPDX-License-Identifier: GPL-2.0-only
2#include <crypto/hash.h>
3#include <linux/export.h>
4#include <linux/bvec.h>
5#include <linux/fault-inject-usercopy.h>
6#include <linux/uio.h>
7#include <linux/pagemap.h>
8#include <linux/highmem.h>
9#include <linux/slab.h>
10#include <linux/vmalloc.h>
11#include <linux/splice.h>
12#include <linux/compat.h>
13#include <net/checksum.h>
14#include <linux/scatterlist.h>
15#include <linux/instrumented.h>
16
17#define PIPE_PARANOIA /* for now */
18
19/* covers ubuf and kbuf alike */
20#define iterate_buf(i, n, base, len, off, __p, STEP) { \
21 size_t __maybe_unused off = 0; \
22 len = n; \
23 base = __p + i->iov_offset; \
24 len -= (STEP); \
25 i->iov_offset += len; \
26 n = len; \
27}
28
29/* covers iovec and kvec alike */
30#define iterate_iovec(i, n, base, len, off, __p, STEP) { \
31 size_t off = 0; \
32 size_t skip = i->iov_offset; \
33 do { \
34 len = min(n, __p->iov_len - skip); \
35 if (likely(len)) { \
36 base = __p->iov_base + skip; \
37 len -= (STEP); \
38 off += len; \
39 skip += len; \
40 n -= len; \
41 if (skip < __p->iov_len) \
42 break; \
43 } \
44 __p++; \
45 skip = 0; \
46 } while (n); \
47 i->iov_offset = skip; \
48 n = off; \
49}
50
51#define iterate_bvec(i, n, base, len, off, p, STEP) { \
52 size_t off = 0; \
53 unsigned skip = i->iov_offset; \
54 while (n) { \
55 unsigned offset = p->bv_offset + skip; \
56 unsigned left; \
57 void *kaddr = kmap_local_page(p->bv_page + \
58 offset / PAGE_SIZE); \
59 base = kaddr + offset % PAGE_SIZE; \
60 len = min(min(n, (size_t)(p->bv_len - skip)), \
61 (size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \
62 left = (STEP); \
63 kunmap_local(kaddr); \
64 len -= left; \
65 off += len; \
66 skip += len; \
67 if (skip == p->bv_len) { \
68 skip = 0; \
69 p++; \
70 } \
71 n -= len; \
72 if (left) \
73 break; \
74 } \
75 i->iov_offset = skip; \
76 n = off; \
77}
78
79#define iterate_xarray(i, n, base, len, __off, STEP) { \
80 __label__ __out; \
81 size_t __off = 0; \
82 struct folio *folio; \
83 loff_t start = i->xarray_start + i->iov_offset; \
84 pgoff_t index = start / PAGE_SIZE; \
85 XA_STATE(xas, i->xarray, index); \
86 \
87 len = PAGE_SIZE - offset_in_page(start); \
88 rcu_read_lock(); \
89 xas_for_each(&xas, folio, ULONG_MAX) { \
90 unsigned left; \
91 size_t offset; \
92 if (xas_retry(&xas, folio)) \
93 continue; \
94 if (WARN_ON(xa_is_value(folio))) \
95 break; \
96 if (WARN_ON(folio_test_hugetlb(folio))) \
97 break; \
98 offset = offset_in_folio(folio, start + __off); \
99 while (offset < folio_size(folio)) { \
100 base = kmap_local_folio(folio, offset); \
101 len = min(n, len); \
102 left = (STEP); \
103 kunmap_local(base); \
104 len -= left; \
105 __off += len; \
106 n -= len; \
107 if (left || n == 0) \
108 goto __out; \
109 offset += len; \
110 len = PAGE_SIZE; \
111 } \
112 } \
113__out: \
114 rcu_read_unlock(); \
115 i->iov_offset += __off; \
116 n = __off; \
117}
118
119#define __iterate_and_advance(i, n, base, len, off, I, K) { \
120 if (unlikely(i->count < n)) \
121 n = i->count; \
122 if (likely(n)) { \
123 if (likely(iter_is_ubuf(i))) { \
124 void __user *base; \
125 size_t len; \
126 iterate_buf(i, n, base, len, off, \
127 i->ubuf, (I)) \
128 } else if (likely(iter_is_iovec(i))) { \
129 const struct iovec *iov = i->iov; \
130 void __user *base; \
131 size_t len; \
132 iterate_iovec(i, n, base, len, off, \
133 iov, (I)) \
134 i->nr_segs -= iov - i->iov; \
135 i->iov = iov; \
136 } else if (iov_iter_is_bvec(i)) { \
137 const struct bio_vec *bvec = i->bvec; \
138 void *base; \
139 size_t len; \
140 iterate_bvec(i, n, base, len, off, \
141 bvec, (K)) \
142 i->nr_segs -= bvec - i->bvec; \
143 i->bvec = bvec; \
144 } else if (iov_iter_is_kvec(i)) { \
145 const struct kvec *kvec = i->kvec; \
146 void *base; \
147 size_t len; \
148 iterate_iovec(i, n, base, len, off, \
149 kvec, (K)) \
150 i->nr_segs -= kvec - i->kvec; \
151 i->kvec = kvec; \
152 } else if (iov_iter_is_xarray(i)) { \
153 void *base; \
154 size_t len; \
155 iterate_xarray(i, n, base, len, off, \
156 (K)) \
157 } \
158 i->count -= n; \
159 } \
160}
161#define iterate_and_advance(i, n, base, len, off, I, K) \
162 __iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
163
164static int copyout(void __user *to, const void *from, size_t n)
165{
166 if (should_fail_usercopy())
167 return n;
168 if (access_ok(to, n)) {
169 instrument_copy_to_user(to, from, n);
170 n = raw_copy_to_user(to, from, n);
171 }
172 return n;
173}
174
175static int copyin(void *to, const void __user *from, size_t n)
176{
177 size_t res = n;
178
179 if (should_fail_usercopy())
180 return n;
181 if (access_ok(from, n)) {
182 instrument_copy_from_user_before(to, from, n);
183 res = raw_copy_from_user(to, from, n);
184 instrument_copy_from_user_after(to, from, n, res);
185 }
186 return res;
187}
188
189static inline struct pipe_buffer *pipe_buf(const struct pipe_inode_info *pipe,
190 unsigned int slot)
191{
192 return &pipe->bufs[slot & (pipe->ring_size - 1)];
193}
194
195#ifdef PIPE_PARANOIA
196static bool sanity(const struct iov_iter *i)
197{
198 struct pipe_inode_info *pipe = i->pipe;
199 unsigned int p_head = pipe->head;
200 unsigned int p_tail = pipe->tail;
201 unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
202 unsigned int i_head = i->head;
203 unsigned int idx;
204
205 if (i->last_offset) {
206 struct pipe_buffer *p;
207 if (unlikely(p_occupancy == 0))
208 goto Bad; // pipe must be non-empty
209 if (unlikely(i_head != p_head - 1))
210 goto Bad; // must be at the last buffer...
211
212 p = pipe_buf(pipe, i_head);
213 if (unlikely(p->offset + p->len != abs(i->last_offset)))
214 goto Bad; // ... at the end of segment
215 } else {
216 if (i_head != p_head)
217 goto Bad; // must be right after the last buffer
218 }
219 return true;
220Bad:
221 printk(KERN_ERR "idx = %d, offset = %d\n", i_head, i->last_offset);
222 printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
223 p_head, p_tail, pipe->ring_size);
224 for (idx = 0; idx < pipe->ring_size; idx++)
225 printk(KERN_ERR "[%p %p %d %d]\n",
226 pipe->bufs[idx].ops,
227 pipe->bufs[idx].page,
228 pipe->bufs[idx].offset,
229 pipe->bufs[idx].len);
230 WARN_ON(1);
231 return false;
232}
233#else
234#define sanity(i) true
235#endif
236
237static struct page *push_anon(struct pipe_inode_info *pipe, unsigned size)
238{
239 struct page *page = alloc_page(GFP_USER);
240 if (page) {
241 struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
242 *buf = (struct pipe_buffer) {
243 .ops = &default_pipe_buf_ops,
244 .page = page,
245 .offset = 0,
246 .len = size
247 };
248 }
249 return page;
250}
251
252static void push_page(struct pipe_inode_info *pipe, struct page *page,
253 unsigned int offset, unsigned int size)
254{
255 struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
256 *buf = (struct pipe_buffer) {
257 .ops = &page_cache_pipe_buf_ops,
258 .page = page,
259 .offset = offset,
260 .len = size
261 };
262 get_page(page);
263}
264
265static inline int last_offset(const struct pipe_buffer *buf)
266{
267 if (buf->ops == &default_pipe_buf_ops)
268 return buf->len; // buf->offset is 0 for those
269 else
270 return -(buf->offset + buf->len);
271}
272
273static struct page *append_pipe(struct iov_iter *i, size_t size,
274 unsigned int *off)
275{
276 struct pipe_inode_info *pipe = i->pipe;
277 int offset = i->last_offset;
278 struct pipe_buffer *buf;
279 struct page *page;
280
281 if (offset > 0 && offset < PAGE_SIZE) {
282 // some space in the last buffer; add to it
283 buf = pipe_buf(pipe, pipe->head - 1);
284 size = min_t(size_t, size, PAGE_SIZE - offset);
285 buf->len += size;
286 i->last_offset += size;
287 i->count -= size;
288 *off = offset;
289 return buf->page;
290 }
291 // OK, we need a new buffer
292 *off = 0;
293 size = min_t(size_t, size, PAGE_SIZE);
294 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
295 return NULL;
296 page = push_anon(pipe, size);
297 if (!page)
298 return NULL;
299 i->head = pipe->head - 1;
300 i->last_offset = size;
301 i->count -= size;
302 return page;
303}
304
305static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
306 struct iov_iter *i)
307{
308 struct pipe_inode_info *pipe = i->pipe;
309 unsigned int head = pipe->head;
310
311 if (unlikely(bytes > i->count))
312 bytes = i->count;
313
314 if (unlikely(!bytes))
315 return 0;
316
317 if (!sanity(i))
318 return 0;
319
320 if (offset && i->last_offset == -offset) { // could we merge it?
321 struct pipe_buffer *buf = pipe_buf(pipe, head - 1);
322 if (buf->page == page) {
323 buf->len += bytes;
324 i->last_offset -= bytes;
325 i->count -= bytes;
326 return bytes;
327 }
328 }
329 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
330 return 0;
331
332 push_page(pipe, page, offset, bytes);
333 i->last_offset = -(offset + bytes);
334 i->head = head;
335 i->count -= bytes;
336 return bytes;
337}
338
339/*
340 * fault_in_iov_iter_readable - fault in iov iterator for reading
341 * @i: iterator
342 * @size: maximum length
343 *
344 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
345 * @size. For each iovec, fault in each page that constitutes the iovec.
346 *
347 * Returns the number of bytes not faulted in (like copy_to_user() and
348 * copy_from_user()).
349 *
350 * Always returns 0 for non-userspace iterators.
351 */
352size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
353{
354 if (iter_is_ubuf(i)) {
355 size_t n = min(size, iov_iter_count(i));
356 n -= fault_in_readable(i->ubuf + i->iov_offset, n);
357 return size - n;
358 } else if (iter_is_iovec(i)) {
359 size_t count = min(size, iov_iter_count(i));
360 const struct iovec *p;
361 size_t skip;
362
363 size -= count;
364 for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
365 size_t len = min(count, p->iov_len - skip);
366 size_t ret;
367
368 if (unlikely(!len))
369 continue;
370 ret = fault_in_readable(p->iov_base + skip, len);
371 count -= len - ret;
372 if (ret)
373 break;
374 }
375 return count + size;
376 }
377 return 0;
378}
379EXPORT_SYMBOL(fault_in_iov_iter_readable);
380
381/*
382 * fault_in_iov_iter_writeable - fault in iov iterator for writing
383 * @i: iterator
384 * @size: maximum length
385 *
386 * Faults in the iterator using get_user_pages(), i.e., without triggering
387 * hardware page faults. This is primarily useful when we already know that
388 * some or all of the pages in @i aren't in memory.
389 *
390 * Returns the number of bytes not faulted in, like copy_to_user() and
391 * copy_from_user().
392 *
393 * Always returns 0 for non-user-space iterators.
394 */
395size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
396{
397 if (iter_is_ubuf(i)) {
398 size_t n = min(size, iov_iter_count(i));
399 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
400 return size - n;
401 } else if (iter_is_iovec(i)) {
402 size_t count = min(size, iov_iter_count(i));
403 const struct iovec *p;
404 size_t skip;
405
406 size -= count;
407 for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
408 size_t len = min(count, p->iov_len - skip);
409 size_t ret;
410
411 if (unlikely(!len))
412 continue;
413 ret = fault_in_safe_writeable(p->iov_base + skip, len);
414 count -= len - ret;
415 if (ret)
416 break;
417 }
418 return count + size;
419 }
420 return 0;
421}
422EXPORT_SYMBOL(fault_in_iov_iter_writeable);
423
424void iov_iter_init(struct iov_iter *i, unsigned int direction,
425 const struct iovec *iov, unsigned long nr_segs,
426 size_t count)
427{
428 WARN_ON(direction & ~(READ | WRITE));
429 *i = (struct iov_iter) {
430 .iter_type = ITER_IOVEC,
431 .nofault = false,
432 .user_backed = true,
433 .data_source = direction,
434 .iov = iov,
435 .nr_segs = nr_segs,
436 .iov_offset = 0,
437 .count = count
438 };
439}
440EXPORT_SYMBOL(iov_iter_init);
441
442// returns the offset in partial buffer (if any)
443static inline unsigned int pipe_npages(const struct iov_iter *i, int *npages)
444{
445 struct pipe_inode_info *pipe = i->pipe;
446 int used = pipe->head - pipe->tail;
447 int off = i->last_offset;
448
449 *npages = max((int)pipe->max_usage - used, 0);
450
451 if (off > 0 && off < PAGE_SIZE) { // anon and not full
452 (*npages)++;
453 return off;
454 }
455 return 0;
456}
457
458static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
459 struct iov_iter *i)
460{
461 unsigned int off, chunk;
462
463 if (unlikely(bytes > i->count))
464 bytes = i->count;
465 if (unlikely(!bytes))
466 return 0;
467
468 if (!sanity(i))
469 return 0;
470
471 for (size_t n = bytes; n; n -= chunk) {
472 struct page *page = append_pipe(i, n, &off);
473 chunk = min_t(size_t, n, PAGE_SIZE - off);
474 if (!page)
475 return bytes - n;
476 memcpy_to_page(page, off, addr, chunk);
477 addr += chunk;
478 }
479 return bytes;
480}
481
482static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
483 __wsum sum, size_t off)
484{
485 __wsum next = csum_partial_copy_nocheck(from, to, len);
486 return csum_block_add(sum, next, off);
487}
488
489static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
490 struct iov_iter *i, __wsum *sump)
491{
492 __wsum sum = *sump;
493 size_t off = 0;
494 unsigned int chunk, r;
495
496 if (unlikely(bytes > i->count))
497 bytes = i->count;
498 if (unlikely(!bytes))
499 return 0;
500
501 if (!sanity(i))
502 return 0;
503
504 while (bytes) {
505 struct page *page = append_pipe(i, bytes, &r);
506 char *p;
507
508 if (!page)
509 break;
510 chunk = min_t(size_t, bytes, PAGE_SIZE - r);
511 p = kmap_local_page(page);
512 sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
513 kunmap_local(p);
514 off += chunk;
515 bytes -= chunk;
516 }
517 *sump = sum;
518 return off;
519}
520
521size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
522{
523 if (WARN_ON_ONCE(i->data_source))
524 return 0;
525 if (unlikely(iov_iter_is_pipe(i)))
526 return copy_pipe_to_iter(addr, bytes, i);
527 if (user_backed_iter(i))
528 might_fault();
529 iterate_and_advance(i, bytes, base, len, off,
530 copyout(base, addr + off, len),
531 memcpy(base, addr + off, len)
532 )
533
534 return bytes;
535}
536EXPORT_SYMBOL(_copy_to_iter);
537
538#ifdef CONFIG_ARCH_HAS_COPY_MC
539static int copyout_mc(void __user *to, const void *from, size_t n)
540{
541 if (access_ok(to, n)) {
542 instrument_copy_to_user(to, from, n);
543 n = copy_mc_to_user((__force void *) to, from, n);
544 }
545 return n;
546}
547
548static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
549 struct iov_iter *i)
550{
551 size_t xfer = 0;
552 unsigned int off, chunk;
553
554 if (unlikely(bytes > i->count))
555 bytes = i->count;
556 if (unlikely(!bytes))
557 return 0;
558
559 if (!sanity(i))
560 return 0;
561
562 while (bytes) {
563 struct page *page = append_pipe(i, bytes, &off);
564 unsigned long rem;
565 char *p;
566
567 if (!page)
568 break;
569 chunk = min_t(size_t, bytes, PAGE_SIZE - off);
570 p = kmap_local_page(page);
571 rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
572 chunk -= rem;
573 kunmap_local(p);
574 xfer += chunk;
575 bytes -= chunk;
576 if (rem) {
577 iov_iter_revert(i, rem);
578 break;
579 }
580 }
581 return xfer;
582}
583
584/**
585 * _copy_mc_to_iter - copy to iter with source memory error exception handling
586 * @addr: source kernel address
587 * @bytes: total transfer length
588 * @i: destination iterator
589 *
590 * The pmem driver deploys this for the dax operation
591 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
592 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
593 * successfully copied.
594 *
595 * The main differences between this and typical _copy_to_iter().
596 *
597 * * Typical tail/residue handling after a fault retries the copy
598 * byte-by-byte until the fault happens again. Re-triggering machine
599 * checks is potentially fatal so the implementation uses source
600 * alignment and poison alignment assumptions to avoid re-triggering
601 * hardware exceptions.
602 *
603 * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
604 * Compare to copy_to_iter() where only ITER_IOVEC attempts might return
605 * a short copy.
606 *
607 * Return: number of bytes copied (may be %0)
608 */
609size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
610{
611 if (WARN_ON_ONCE(i->data_source))
612 return 0;
613 if (unlikely(iov_iter_is_pipe(i)))
614 return copy_mc_pipe_to_iter(addr, bytes, i);
615 if (user_backed_iter(i))
616 might_fault();
617 __iterate_and_advance(i, bytes, base, len, off,
618 copyout_mc(base, addr + off, len),
619 copy_mc_to_kernel(base, addr + off, len)
620 )
621
622 return bytes;
623}
624EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
625#endif /* CONFIG_ARCH_HAS_COPY_MC */
626
627size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
628{
629 if (WARN_ON_ONCE(!i->data_source))
630 return 0;
631
632 if (user_backed_iter(i))
633 might_fault();
634 iterate_and_advance(i, bytes, base, len, off,
635 copyin(addr + off, base, len),
636 memcpy(addr + off, base, len)
637 )
638
639 return bytes;
640}
641EXPORT_SYMBOL(_copy_from_iter);
642
643size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
644{
645 if (WARN_ON_ONCE(!i->data_source))
646 return 0;
647
648 iterate_and_advance(i, bytes, base, len, off,
649 __copy_from_user_inatomic_nocache(addr + off, base, len),
650 memcpy(addr + off, base, len)
651 )
652
653 return bytes;
654}
655EXPORT_SYMBOL(_copy_from_iter_nocache);
656
657#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
658/**
659 * _copy_from_iter_flushcache - write destination through cpu cache
660 * @addr: destination kernel address
661 * @bytes: total transfer length
662 * @i: source iterator
663 *
664 * The pmem driver arranges for filesystem-dax to use this facility via
665 * dax_copy_from_iter() for ensuring that writes to persistent memory
666 * are flushed through the CPU cache. It is differentiated from
667 * _copy_from_iter_nocache() in that guarantees all data is flushed for
668 * all iterator types. The _copy_from_iter_nocache() only attempts to
669 * bypass the cache for the ITER_IOVEC case, and on some archs may use
670 * instructions that strand dirty-data in the cache.
671 *
672 * Return: number of bytes copied (may be %0)
673 */
674size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
675{
676 if (WARN_ON_ONCE(!i->data_source))
677 return 0;
678
679 iterate_and_advance(i, bytes, base, len, off,
680 __copy_from_user_flushcache(addr + off, base, len),
681 memcpy_flushcache(addr + off, base, len)
682 )
683
684 return bytes;
685}
686EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
687#endif
688
689static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
690{
691 struct page *head;
692 size_t v = n + offset;
693
694 /*
695 * The general case needs to access the page order in order
696 * to compute the page size.
697 * However, we mostly deal with order-0 pages and thus can
698 * avoid a possible cache line miss for requests that fit all
699 * page orders.
700 */
701 if (n <= v && v <= PAGE_SIZE)
702 return true;
703
704 head = compound_head(page);
705 v += (page - head) << PAGE_SHIFT;
706
707 if (WARN_ON(n > v || v > page_size(head)))
708 return false;
709 return true;
710}
711
712size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
713 struct iov_iter *i)
714{
715 size_t res = 0;
716 if (!page_copy_sane(page, offset, bytes))
717 return 0;
718 if (WARN_ON_ONCE(i->data_source))
719 return 0;
720 if (unlikely(iov_iter_is_pipe(i)))
721 return copy_page_to_iter_pipe(page, offset, bytes, i);
722 page += offset / PAGE_SIZE; // first subpage
723 offset %= PAGE_SIZE;
724 while (1) {
725 void *kaddr = kmap_local_page(page);
726 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
727 n = _copy_to_iter(kaddr + offset, n, i);
728 kunmap_local(kaddr);
729 res += n;
730 bytes -= n;
731 if (!bytes || !n)
732 break;
733 offset += n;
734 if (offset == PAGE_SIZE) {
735 page++;
736 offset = 0;
737 }
738 }
739 return res;
740}
741EXPORT_SYMBOL(copy_page_to_iter);
742
743size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
744 struct iov_iter *i)
745{
746 size_t res = 0;
747 if (!page_copy_sane(page, offset, bytes))
748 return 0;
749 page += offset / PAGE_SIZE; // first subpage
750 offset %= PAGE_SIZE;
751 while (1) {
752 void *kaddr = kmap_local_page(page);
753 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
754 n = _copy_from_iter(kaddr + offset, n, i);
755 kunmap_local(kaddr);
756 res += n;
757 bytes -= n;
758 if (!bytes || !n)
759 break;
760 offset += n;
761 if (offset == PAGE_SIZE) {
762 page++;
763 offset = 0;
764 }
765 }
766 return res;
767}
768EXPORT_SYMBOL(copy_page_from_iter);
769
770static size_t pipe_zero(size_t bytes, struct iov_iter *i)
771{
772 unsigned int chunk, off;
773
774 if (unlikely(bytes > i->count))
775 bytes = i->count;
776 if (unlikely(!bytes))
777 return 0;
778
779 if (!sanity(i))
780 return 0;
781
782 for (size_t n = bytes; n; n -= chunk) {
783 struct page *page = append_pipe(i, n, &off);
784 char *p;
785
786 if (!page)
787 return bytes - n;
788 chunk = min_t(size_t, n, PAGE_SIZE - off);
789 p = kmap_local_page(page);
790 memset(p + off, 0, chunk);
791 kunmap_local(p);
792 }
793 return bytes;
794}
795
796size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
797{
798 if (unlikely(iov_iter_is_pipe(i)))
799 return pipe_zero(bytes, i);
800 iterate_and_advance(i, bytes, base, len, count,
801 clear_user(base, len),
802 memset(base, 0, len)
803 )
804
805 return bytes;
806}
807EXPORT_SYMBOL(iov_iter_zero);
808
809size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
810 struct iov_iter *i)
811{
812 char *kaddr = kmap_atomic(page), *p = kaddr + offset;
813 if (!page_copy_sane(page, offset, bytes)) {
814 kunmap_atomic(kaddr);
815 return 0;
816 }
817 if (WARN_ON_ONCE(!i->data_source)) {
818 kunmap_atomic(kaddr);
819 return 0;
820 }
821 iterate_and_advance(i, bytes, base, len, off,
822 copyin(p + off, base, len),
823 memcpy(p + off, base, len)
824 )
825 kunmap_atomic(kaddr);
826 return bytes;
827}
828EXPORT_SYMBOL(copy_page_from_iter_atomic);
829
830static void pipe_advance(struct iov_iter *i, size_t size)
831{
832 struct pipe_inode_info *pipe = i->pipe;
833 int off = i->last_offset;
834
835 if (!off && !size) {
836 pipe_discard_from(pipe, i->start_head); // discard everything
837 return;
838 }
839 i->count -= size;
840 while (1) {
841 struct pipe_buffer *buf = pipe_buf(pipe, i->head);
842 if (off) /* make it relative to the beginning of buffer */
843 size += abs(off) - buf->offset;
844 if (size <= buf->len) {
845 buf->len = size;
846 i->last_offset = last_offset(buf);
847 break;
848 }
849 size -= buf->len;
850 i->head++;
851 off = 0;
852 }
853 pipe_discard_from(pipe, i->head + 1); // discard everything past this one
854}
855
856static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
857{
858 const struct bio_vec *bvec, *end;
859
860 if (!i->count)
861 return;
862 i->count -= size;
863
864 size += i->iov_offset;
865
866 for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
867 if (likely(size < bvec->bv_len))
868 break;
869 size -= bvec->bv_len;
870 }
871 i->iov_offset = size;
872 i->nr_segs -= bvec - i->bvec;
873 i->bvec = bvec;
874}
875
876static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
877{
878 const struct iovec *iov, *end;
879
880 if (!i->count)
881 return;
882 i->count -= size;
883
884 size += i->iov_offset; // from beginning of current segment
885 for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
886 if (likely(size < iov->iov_len))
887 break;
888 size -= iov->iov_len;
889 }
890 i->iov_offset = size;
891 i->nr_segs -= iov - i->iov;
892 i->iov = iov;
893}
894
895void iov_iter_advance(struct iov_iter *i, size_t size)
896{
897 if (unlikely(i->count < size))
898 size = i->count;
899 if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
900 i->iov_offset += size;
901 i->count -= size;
902 } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
903 /* iovec and kvec have identical layouts */
904 iov_iter_iovec_advance(i, size);
905 } else if (iov_iter_is_bvec(i)) {
906 iov_iter_bvec_advance(i, size);
907 } else if (iov_iter_is_pipe(i)) {
908 pipe_advance(i, size);
909 } else if (iov_iter_is_discard(i)) {
910 i->count -= size;
911 }
912}
913EXPORT_SYMBOL(iov_iter_advance);
914
915void iov_iter_revert(struct iov_iter *i, size_t unroll)
916{
917 if (!unroll)
918 return;
919 if (WARN_ON(unroll > MAX_RW_COUNT))
920 return;
921 i->count += unroll;
922 if (unlikely(iov_iter_is_pipe(i))) {
923 struct pipe_inode_info *pipe = i->pipe;
924 unsigned int head = pipe->head;
925
926 while (head > i->start_head) {
927 struct pipe_buffer *b = pipe_buf(pipe, --head);
928 if (unroll < b->len) {
929 b->len -= unroll;
930 i->last_offset = last_offset(b);
931 i->head = head;
932 return;
933 }
934 unroll -= b->len;
935 pipe_buf_release(pipe, b);
936 pipe->head--;
937 }
938 i->last_offset = 0;
939 i->head = head;
940 return;
941 }
942 if (unlikely(iov_iter_is_discard(i)))
943 return;
944 if (unroll <= i->iov_offset) {
945 i->iov_offset -= unroll;
946 return;
947 }
948 unroll -= i->iov_offset;
949 if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
950 BUG(); /* We should never go beyond the start of the specified
951 * range since we might then be straying into pages that
952 * aren't pinned.
953 */
954 } else if (iov_iter_is_bvec(i)) {
955 const struct bio_vec *bvec = i->bvec;
956 while (1) {
957 size_t n = (--bvec)->bv_len;
958 i->nr_segs++;
959 if (unroll <= n) {
960 i->bvec = bvec;
961 i->iov_offset = n - unroll;
962 return;
963 }
964 unroll -= n;
965 }
966 } else { /* same logics for iovec and kvec */
967 const struct iovec *iov = i->iov;
968 while (1) {
969 size_t n = (--iov)->iov_len;
970 i->nr_segs++;
971 if (unroll <= n) {
972 i->iov = iov;
973 i->iov_offset = n - unroll;
974 return;
975 }
976 unroll -= n;
977 }
978 }
979}
980EXPORT_SYMBOL(iov_iter_revert);
981
982/*
983 * Return the count of just the current iov_iter segment.
984 */
985size_t iov_iter_single_seg_count(const struct iov_iter *i)
986{
987 if (i->nr_segs > 1) {
988 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
989 return min(i->count, i->iov->iov_len - i->iov_offset);
990 if (iov_iter_is_bvec(i))
991 return min(i->count, i->bvec->bv_len - i->iov_offset);
992 }
993 return i->count;
994}
995EXPORT_SYMBOL(iov_iter_single_seg_count);
996
997void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
998 const struct kvec *kvec, unsigned long nr_segs,
999 size_t count)
1000{
1001 WARN_ON(direction & ~(READ | WRITE));
1002 *i = (struct iov_iter){
1003 .iter_type = ITER_KVEC,
1004 .data_source = direction,
1005 .kvec = kvec,
1006 .nr_segs = nr_segs,
1007 .iov_offset = 0,
1008 .count = count
1009 };
1010}
1011EXPORT_SYMBOL(iov_iter_kvec);
1012
1013void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1014 const struct bio_vec *bvec, unsigned long nr_segs,
1015 size_t count)
1016{
1017 WARN_ON(direction & ~(READ | WRITE));
1018 *i = (struct iov_iter){
1019 .iter_type = ITER_BVEC,
1020 .data_source = direction,
1021 .bvec = bvec,
1022 .nr_segs = nr_segs,
1023 .iov_offset = 0,
1024 .count = count
1025 };
1026}
1027EXPORT_SYMBOL(iov_iter_bvec);
1028
1029void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1030 struct pipe_inode_info *pipe,
1031 size_t count)
1032{
1033 BUG_ON(direction != READ);
1034 WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1035 *i = (struct iov_iter){
1036 .iter_type = ITER_PIPE,
1037 .data_source = false,
1038 .pipe = pipe,
1039 .head = pipe->head,
1040 .start_head = pipe->head,
1041 .last_offset = 0,
1042 .count = count
1043 };
1044}
1045EXPORT_SYMBOL(iov_iter_pipe);
1046
1047/**
1048 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1049 * @i: The iterator to initialise.
1050 * @direction: The direction of the transfer.
1051 * @xarray: The xarray to access.
1052 * @start: The start file position.
1053 * @count: The size of the I/O buffer in bytes.
1054 *
1055 * Set up an I/O iterator to either draw data out of the pages attached to an
1056 * inode or to inject data into those pages. The pages *must* be prevented
1057 * from evaporation, either by taking a ref on them or locking them by the
1058 * caller.
1059 */
1060void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1061 struct xarray *xarray, loff_t start, size_t count)
1062{
1063 BUG_ON(direction & ~1);
1064 *i = (struct iov_iter) {
1065 .iter_type = ITER_XARRAY,
1066 .data_source = direction,
1067 .xarray = xarray,
1068 .xarray_start = start,
1069 .count = count,
1070 .iov_offset = 0
1071 };
1072}
1073EXPORT_SYMBOL(iov_iter_xarray);
1074
1075/**
1076 * iov_iter_discard - Initialise an I/O iterator that discards data
1077 * @i: The iterator to initialise.
1078 * @direction: The direction of the transfer.
1079 * @count: The size of the I/O buffer in bytes.
1080 *
1081 * Set up an I/O iterator that just discards everything that's written to it.
1082 * It's only available as a READ iterator.
1083 */
1084void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1085{
1086 BUG_ON(direction != READ);
1087 *i = (struct iov_iter){
1088 .iter_type = ITER_DISCARD,
1089 .data_source = false,
1090 .count = count,
1091 .iov_offset = 0
1092 };
1093}
1094EXPORT_SYMBOL(iov_iter_discard);
1095
1096static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
1097 unsigned len_mask)
1098{
1099 size_t size = i->count;
1100 size_t skip = i->iov_offset;
1101 unsigned k;
1102
1103 for (k = 0; k < i->nr_segs; k++, skip = 0) {
1104 size_t len = i->iov[k].iov_len - skip;
1105
1106 if (len > size)
1107 len = size;
1108 if (len & len_mask)
1109 return false;
1110 if ((unsigned long)(i->iov[k].iov_base + skip) & addr_mask)
1111 return false;
1112
1113 size -= len;
1114 if (!size)
1115 break;
1116 }
1117 return true;
1118}
1119
1120static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
1121 unsigned len_mask)
1122{
1123 size_t size = i->count;
1124 unsigned skip = i->iov_offset;
1125 unsigned k;
1126
1127 for (k = 0; k < i->nr_segs; k++, skip = 0) {
1128 size_t len = i->bvec[k].bv_len - skip;
1129
1130 if (len > size)
1131 len = size;
1132 if (len & len_mask)
1133 return false;
1134 if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
1135 return false;
1136
1137 size -= len;
1138 if (!size)
1139 break;
1140 }
1141 return true;
1142}
1143
1144/**
1145 * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
1146 * are aligned to the parameters.
1147 *
1148 * @i: &struct iov_iter to restore
1149 * @addr_mask: bit mask to check against the iov element's addresses
1150 * @len_mask: bit mask to check against the iov element's lengths
1151 *
1152 * Return: false if any addresses or lengths intersect with the provided masks
1153 */
1154bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
1155 unsigned len_mask)
1156{
1157 if (likely(iter_is_ubuf(i))) {
1158 if (i->count & len_mask)
1159 return false;
1160 if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
1161 return false;
1162 return true;
1163 }
1164
1165 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1166 return iov_iter_aligned_iovec(i, addr_mask, len_mask);
1167
1168 if (iov_iter_is_bvec(i))
1169 return iov_iter_aligned_bvec(i, addr_mask, len_mask);
1170
1171 if (iov_iter_is_pipe(i)) {
1172 size_t size = i->count;
1173
1174 if (size & len_mask)
1175 return false;
1176 if (size && i->last_offset > 0) {
1177 if (i->last_offset & addr_mask)
1178 return false;
1179 }
1180
1181 return true;
1182 }
1183
1184 if (iov_iter_is_xarray(i)) {
1185 if (i->count & len_mask)
1186 return false;
1187 if ((i->xarray_start + i->iov_offset) & addr_mask)
1188 return false;
1189 }
1190
1191 return true;
1192}
1193EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
1194
1195static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1196{
1197 unsigned long res = 0;
1198 size_t size = i->count;
1199 size_t skip = i->iov_offset;
1200 unsigned k;
1201
1202 for (k = 0; k < i->nr_segs; k++, skip = 0) {
1203 size_t len = i->iov[k].iov_len - skip;
1204 if (len) {
1205 res |= (unsigned long)i->iov[k].iov_base + skip;
1206 if (len > size)
1207 len = size;
1208 res |= len;
1209 size -= len;
1210 if (!size)
1211 break;
1212 }
1213 }
1214 return res;
1215}
1216
1217static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1218{
1219 unsigned res = 0;
1220 size_t size = i->count;
1221 unsigned skip = i->iov_offset;
1222 unsigned k;
1223
1224 for (k = 0; k < i->nr_segs; k++, skip = 0) {
1225 size_t len = i->bvec[k].bv_len - skip;
1226 res |= (unsigned long)i->bvec[k].bv_offset + skip;
1227 if (len > size)
1228 len = size;
1229 res |= len;
1230 size -= len;
1231 if (!size)
1232 break;
1233 }
1234 return res;
1235}
1236
1237unsigned long iov_iter_alignment(const struct iov_iter *i)
1238{
1239 if (likely(iter_is_ubuf(i))) {
1240 size_t size = i->count;
1241 if (size)
1242 return ((unsigned long)i->ubuf + i->iov_offset) | size;
1243 return 0;
1244 }
1245
1246 /* iovec and kvec have identical layouts */
1247 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1248 return iov_iter_alignment_iovec(i);
1249
1250 if (iov_iter_is_bvec(i))
1251 return iov_iter_alignment_bvec(i);
1252
1253 if (iov_iter_is_pipe(i)) {
1254 size_t size = i->count;
1255
1256 if (size && i->last_offset > 0)
1257 return size | i->last_offset;
1258 return size;
1259 }
1260
1261 if (iov_iter_is_xarray(i))
1262 return (i->xarray_start + i->iov_offset) | i->count;
1263
1264 return 0;
1265}
1266EXPORT_SYMBOL(iov_iter_alignment);
1267
1268unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1269{
1270 unsigned long res = 0;
1271 unsigned long v = 0;
1272 size_t size = i->count;
1273 unsigned k;
1274
1275 if (iter_is_ubuf(i))
1276 return 0;
1277
1278 if (WARN_ON(!iter_is_iovec(i)))
1279 return ~0U;
1280
1281 for (k = 0; k < i->nr_segs; k++) {
1282 if (i->iov[k].iov_len) {
1283 unsigned long base = (unsigned long)i->iov[k].iov_base;
1284 if (v) // if not the first one
1285 res |= base | v; // this start | previous end
1286 v = base + i->iov[k].iov_len;
1287 if (size <= i->iov[k].iov_len)
1288 break;
1289 size -= i->iov[k].iov_len;
1290 }
1291 }
1292 return res;
1293}
1294EXPORT_SYMBOL(iov_iter_gap_alignment);
1295
1296static int want_pages_array(struct page ***res, size_t size,
1297 size_t start, unsigned int maxpages)
1298{
1299 unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
1300
1301 if (count > maxpages)
1302 count = maxpages;
1303 WARN_ON(!count); // caller should've prevented that
1304 if (!*res) {
1305 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
1306 if (!*res)
1307 return 0;
1308 }
1309 return count;
1310}
1311
1312static ssize_t pipe_get_pages(struct iov_iter *i,
1313 struct page ***pages, size_t maxsize, unsigned maxpages,
1314 size_t *start)
1315{
1316 unsigned int npages, count, off, chunk;
1317 struct page **p;
1318 size_t left;
1319
1320 if (!sanity(i))
1321 return -EFAULT;
1322
1323 *start = off = pipe_npages(i, &npages);
1324 if (!npages)
1325 return -EFAULT;
1326 count = want_pages_array(pages, maxsize, off, min(npages, maxpages));
1327 if (!count)
1328 return -ENOMEM;
1329 p = *pages;
1330 for (npages = 0, left = maxsize ; npages < count; npages++, left -= chunk) {
1331 struct page *page = append_pipe(i, left, &off);
1332 if (!page)
1333 break;
1334 chunk = min_t(size_t, left, PAGE_SIZE - off);
1335 get_page(*p++ = page);
1336 }
1337 if (!npages)
1338 return -EFAULT;
1339 return maxsize - left;
1340}
1341
1342static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1343 pgoff_t index, unsigned int nr_pages)
1344{
1345 XA_STATE(xas, xa, index);
1346 struct page *page;
1347 unsigned int ret = 0;
1348
1349 rcu_read_lock();
1350 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1351 if (xas_retry(&xas, page))
1352 continue;
1353
1354 /* Has the page moved or been split? */
1355 if (unlikely(page != xas_reload(&xas))) {
1356 xas_reset(&xas);
1357 continue;
1358 }
1359
1360 pages[ret] = find_subpage(page, xas.xa_index);
1361 get_page(pages[ret]);
1362 if (++ret == nr_pages)
1363 break;
1364 }
1365 rcu_read_unlock();
1366 return ret;
1367}
1368
1369static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1370 struct page ***pages, size_t maxsize,
1371 unsigned maxpages, size_t *_start_offset)
1372{
1373 unsigned nr, offset, count;
1374 pgoff_t index;
1375 loff_t pos;
1376
1377 pos = i->xarray_start + i->iov_offset;
1378 index = pos >> PAGE_SHIFT;
1379 offset = pos & ~PAGE_MASK;
1380 *_start_offset = offset;
1381
1382 count = want_pages_array(pages, maxsize, offset, maxpages);
1383 if (!count)
1384 return -ENOMEM;
1385 nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1386 if (nr == 0)
1387 return 0;
1388
1389 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1390 i->iov_offset += maxsize;
1391 i->count -= maxsize;
1392 return maxsize;
1393}
1394
1395/* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1396static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1397{
1398 size_t skip;
1399 long k;
1400
1401 if (iter_is_ubuf(i))
1402 return (unsigned long)i->ubuf + i->iov_offset;
1403
1404 for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1405 size_t len = i->iov[k].iov_len - skip;
1406
1407 if (unlikely(!len))
1408 continue;
1409 if (*size > len)
1410 *size = len;
1411 return (unsigned long)i->iov[k].iov_base + skip;
1412 }
1413 BUG(); // if it had been empty, we wouldn't get called
1414}
1415
1416/* must be done on non-empty ITER_BVEC one */
1417static struct page *first_bvec_segment(const struct iov_iter *i,
1418 size_t *size, size_t *start)
1419{
1420 struct page *page;
1421 size_t skip = i->iov_offset, len;
1422
1423 len = i->bvec->bv_len - skip;
1424 if (*size > len)
1425 *size = len;
1426 skip += i->bvec->bv_offset;
1427 page = i->bvec->bv_page + skip / PAGE_SIZE;
1428 *start = skip % PAGE_SIZE;
1429 return page;
1430}
1431
1432static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1433 struct page ***pages, size_t maxsize,
1434 unsigned int maxpages, size_t *start,
1435 unsigned int gup_flags)
1436{
1437 unsigned int n;
1438
1439 if (maxsize > i->count)
1440 maxsize = i->count;
1441 if (!maxsize)
1442 return 0;
1443 if (maxsize > MAX_RW_COUNT)
1444 maxsize = MAX_RW_COUNT;
1445
1446 if (likely(user_backed_iter(i))) {
1447 unsigned long addr;
1448 int res;
1449
1450 if (iov_iter_rw(i) != WRITE)
1451 gup_flags |= FOLL_WRITE;
1452 if (i->nofault)
1453 gup_flags |= FOLL_NOFAULT;
1454
1455 addr = first_iovec_segment(i, &maxsize);
1456 *start = addr % PAGE_SIZE;
1457 addr &= PAGE_MASK;
1458 n = want_pages_array(pages, maxsize, *start, maxpages);
1459 if (!n)
1460 return -ENOMEM;
1461 res = get_user_pages_fast(addr, n, gup_flags, *pages);
1462 if (unlikely(res <= 0))
1463 return res;
1464 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1465 iov_iter_advance(i, maxsize);
1466 return maxsize;
1467 }
1468 if (iov_iter_is_bvec(i)) {
1469 struct page **p;
1470 struct page *page;
1471
1472 page = first_bvec_segment(i, &maxsize, start);
1473 n = want_pages_array(pages, maxsize, *start, maxpages);
1474 if (!n)
1475 return -ENOMEM;
1476 p = *pages;
1477 for (int k = 0; k < n; k++)
1478 get_page(p[k] = page + k);
1479 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1480 i->count -= maxsize;
1481 i->iov_offset += maxsize;
1482 if (i->iov_offset == i->bvec->bv_len) {
1483 i->iov_offset = 0;
1484 i->bvec++;
1485 i->nr_segs--;
1486 }
1487 return maxsize;
1488 }
1489 if (iov_iter_is_pipe(i))
1490 return pipe_get_pages(i, pages, maxsize, maxpages, start);
1491 if (iov_iter_is_xarray(i))
1492 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1493 return -EFAULT;
1494}
1495
1496ssize_t iov_iter_get_pages(struct iov_iter *i,
1497 struct page **pages, size_t maxsize, unsigned maxpages,
1498 size_t *start, unsigned gup_flags)
1499{
1500 if (!maxpages)
1501 return 0;
1502 BUG_ON(!pages);
1503
1504 return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages,
1505 start, gup_flags);
1506}
1507EXPORT_SYMBOL_GPL(iov_iter_get_pages);
1508
1509ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1510 size_t maxsize, unsigned maxpages, size_t *start)
1511{
1512 return iov_iter_get_pages(i, pages, maxsize, maxpages, start, 0);
1513}
1514EXPORT_SYMBOL(iov_iter_get_pages2);
1515
1516ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1517 struct page ***pages, size_t maxsize,
1518 size_t *start, unsigned gup_flags)
1519{
1520 ssize_t len;
1521
1522 *pages = NULL;
1523
1524 len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start,
1525 gup_flags);
1526 if (len <= 0) {
1527 kvfree(*pages);
1528 *pages = NULL;
1529 }
1530 return len;
1531}
1532EXPORT_SYMBOL_GPL(iov_iter_get_pages_alloc);
1533
1534ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1535 struct page ***pages, size_t maxsize, size_t *start)
1536{
1537 return iov_iter_get_pages_alloc(i, pages, maxsize, start, 0);
1538}
1539EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1540
1541size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1542 struct iov_iter *i)
1543{
1544 __wsum sum, next;
1545 sum = *csum;
1546 if (WARN_ON_ONCE(!i->data_source))
1547 return 0;
1548
1549 iterate_and_advance(i, bytes, base, len, off, ({
1550 next = csum_and_copy_from_user(base, addr + off, len);
1551 sum = csum_block_add(sum, next, off);
1552 next ? 0 : len;
1553 }), ({
1554 sum = csum_and_memcpy(addr + off, base, len, sum, off);
1555 })
1556 )
1557 *csum = sum;
1558 return bytes;
1559}
1560EXPORT_SYMBOL(csum_and_copy_from_iter);
1561
1562size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1563 struct iov_iter *i)
1564{
1565 struct csum_state *csstate = _csstate;
1566 __wsum sum, next;
1567
1568 if (WARN_ON_ONCE(i->data_source))
1569 return 0;
1570 if (unlikely(iov_iter_is_discard(i))) {
1571 // can't use csum_memcpy() for that one - data is not copied
1572 csstate->csum = csum_block_add(csstate->csum,
1573 csum_partial(addr, bytes, 0),
1574 csstate->off);
1575 csstate->off += bytes;
1576 return bytes;
1577 }
1578
1579 sum = csum_shift(csstate->csum, csstate->off);
1580 if (unlikely(iov_iter_is_pipe(i)))
1581 bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1582 else iterate_and_advance(i, bytes, base, len, off, ({
1583 next = csum_and_copy_to_user(addr + off, base, len);
1584 sum = csum_block_add(sum, next, off);
1585 next ? 0 : len;
1586 }), ({
1587 sum = csum_and_memcpy(base, addr + off, len, sum, off);
1588 })
1589 )
1590 csstate->csum = csum_shift(sum, csstate->off);
1591 csstate->off += bytes;
1592 return bytes;
1593}
1594EXPORT_SYMBOL(csum_and_copy_to_iter);
1595
1596size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1597 struct iov_iter *i)
1598{
1599#ifdef CONFIG_CRYPTO_HASH
1600 struct ahash_request *hash = hashp;
1601 struct scatterlist sg;
1602 size_t copied;
1603
1604 copied = copy_to_iter(addr, bytes, i);
1605 sg_init_one(&sg, addr, copied);
1606 ahash_request_set_crypt(hash, &sg, NULL, copied);
1607 crypto_ahash_update(hash);
1608 return copied;
1609#else
1610 return 0;
1611#endif
1612}
1613EXPORT_SYMBOL(hash_and_copy_to_iter);
1614
1615static int iov_npages(const struct iov_iter *i, int maxpages)
1616{
1617 size_t skip = i->iov_offset, size = i->count;
1618 const struct iovec *p;
1619 int npages = 0;
1620
1621 for (p = i->iov; size; skip = 0, p++) {
1622 unsigned offs = offset_in_page(p->iov_base + skip);
1623 size_t len = min(p->iov_len - skip, size);
1624
1625 if (len) {
1626 size -= len;
1627 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1628 if (unlikely(npages > maxpages))
1629 return maxpages;
1630 }
1631 }
1632 return npages;
1633}
1634
1635static int bvec_npages(const struct iov_iter *i, int maxpages)
1636{
1637 size_t skip = i->iov_offset, size = i->count;
1638 const struct bio_vec *p;
1639 int npages = 0;
1640
1641 for (p = i->bvec; size; skip = 0, p++) {
1642 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1643 size_t len = min(p->bv_len - skip, size);
1644
1645 size -= len;
1646 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1647 if (unlikely(npages > maxpages))
1648 return maxpages;
1649 }
1650 return npages;
1651}
1652
1653int iov_iter_npages(const struct iov_iter *i, int maxpages)
1654{
1655 if (unlikely(!i->count))
1656 return 0;
1657 if (likely(iter_is_ubuf(i))) {
1658 unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1659 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1660 return min(npages, maxpages);
1661 }
1662 /* iovec and kvec have identical layouts */
1663 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1664 return iov_npages(i, maxpages);
1665 if (iov_iter_is_bvec(i))
1666 return bvec_npages(i, maxpages);
1667 if (iov_iter_is_pipe(i)) {
1668 int npages;
1669
1670 if (!sanity(i))
1671 return 0;
1672
1673 pipe_npages(i, &npages);
1674 return min(npages, maxpages);
1675 }
1676 if (iov_iter_is_xarray(i)) {
1677 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1678 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1679 return min(npages, maxpages);
1680 }
1681 return 0;
1682}
1683EXPORT_SYMBOL(iov_iter_npages);
1684
1685const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1686{
1687 *new = *old;
1688 if (unlikely(iov_iter_is_pipe(new))) {
1689 WARN_ON(1);
1690 return NULL;
1691 }
1692 if (iov_iter_is_bvec(new))
1693 return new->bvec = kmemdup(new->bvec,
1694 new->nr_segs * sizeof(struct bio_vec),
1695 flags);
1696 else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1697 /* iovec and kvec have identical layout */
1698 return new->iov = kmemdup(new->iov,
1699 new->nr_segs * sizeof(struct iovec),
1700 flags);
1701 return NULL;
1702}
1703EXPORT_SYMBOL(dup_iter);
1704
1705static int copy_compat_iovec_from_user(struct iovec *iov,
1706 const struct iovec __user *uvec, unsigned long nr_segs)
1707{
1708 const struct compat_iovec __user *uiov =
1709 (const struct compat_iovec __user *)uvec;
1710 int ret = -EFAULT, i;
1711
1712 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1713 return -EFAULT;
1714
1715 for (i = 0; i < nr_segs; i++) {
1716 compat_uptr_t buf;
1717 compat_ssize_t len;
1718
1719 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1720 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1721
1722 /* check for compat_size_t not fitting in compat_ssize_t .. */
1723 if (len < 0) {
1724 ret = -EINVAL;
1725 goto uaccess_end;
1726 }
1727 iov[i].iov_base = compat_ptr(buf);
1728 iov[i].iov_len = len;
1729 }
1730
1731 ret = 0;
1732uaccess_end:
1733 user_access_end();
1734 return ret;
1735}
1736
1737static int copy_iovec_from_user(struct iovec *iov,
1738 const struct iovec __user *uvec, unsigned long nr_segs)
1739{
1740 unsigned long seg;
1741
1742 if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1743 return -EFAULT;
1744 for (seg = 0; seg < nr_segs; seg++) {
1745 if ((ssize_t)iov[seg].iov_len < 0)
1746 return -EINVAL;
1747 }
1748
1749 return 0;
1750}
1751
1752struct iovec *iovec_from_user(const struct iovec __user *uvec,
1753 unsigned long nr_segs, unsigned long fast_segs,
1754 struct iovec *fast_iov, bool compat)
1755{
1756 struct iovec *iov = fast_iov;
1757 int ret;
1758
1759 /*
1760 * SuS says "The readv() function *may* fail if the iovcnt argument was
1761 * less than or equal to 0, or greater than {IOV_MAX}. Linux has
1762 * traditionally returned zero for zero segments, so...
1763 */
1764 if (nr_segs == 0)
1765 return iov;
1766 if (nr_segs > UIO_MAXIOV)
1767 return ERR_PTR(-EINVAL);
1768 if (nr_segs > fast_segs) {
1769 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1770 if (!iov)
1771 return ERR_PTR(-ENOMEM);
1772 }
1773
1774 if (compat)
1775 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1776 else
1777 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1778 if (ret) {
1779 if (iov != fast_iov)
1780 kfree(iov);
1781 return ERR_PTR(ret);
1782 }
1783
1784 return iov;
1785}
1786
1787ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1788 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1789 struct iov_iter *i, bool compat)
1790{
1791 ssize_t total_len = 0;
1792 unsigned long seg;
1793 struct iovec *iov;
1794
1795 iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1796 if (IS_ERR(iov)) {
1797 *iovp = NULL;
1798 return PTR_ERR(iov);
1799 }
1800
1801 /*
1802 * According to the Single Unix Specification we should return EINVAL if
1803 * an element length is < 0 when cast to ssize_t or if the total length
1804 * would overflow the ssize_t return value of the system call.
1805 *
1806 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1807 * overflow case.
1808 */
1809 for (seg = 0; seg < nr_segs; seg++) {
1810 ssize_t len = (ssize_t)iov[seg].iov_len;
1811
1812 if (!access_ok(iov[seg].iov_base, len)) {
1813 if (iov != *iovp)
1814 kfree(iov);
1815 *iovp = NULL;
1816 return -EFAULT;
1817 }
1818
1819 if (len > MAX_RW_COUNT - total_len) {
1820 len = MAX_RW_COUNT - total_len;
1821 iov[seg].iov_len = len;
1822 }
1823 total_len += len;
1824 }
1825
1826 iov_iter_init(i, type, iov, nr_segs, total_len);
1827 if (iov == *iovp)
1828 *iovp = NULL;
1829 else
1830 *iovp = iov;
1831 return total_len;
1832}
1833
1834/**
1835 * import_iovec() - Copy an array of &struct iovec from userspace
1836 * into the kernel, check that it is valid, and initialize a new
1837 * &struct iov_iter iterator to access it.
1838 *
1839 * @type: One of %READ or %WRITE.
1840 * @uvec: Pointer to the userspace array.
1841 * @nr_segs: Number of elements in userspace array.
1842 * @fast_segs: Number of elements in @iov.
1843 * @iovp: (input and output parameter) Pointer to pointer to (usually small
1844 * on-stack) kernel array.
1845 * @i: Pointer to iterator that will be initialized on success.
1846 *
1847 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1848 * then this function places %NULL in *@iov on return. Otherwise, a new
1849 * array will be allocated and the result placed in *@iov. This means that
1850 * the caller may call kfree() on *@iov regardless of whether the small
1851 * on-stack array was used or not (and regardless of whether this function
1852 * returns an error or not).
1853 *
1854 * Return: Negative error code on error, bytes imported on success
1855 */
1856ssize_t import_iovec(int type, const struct iovec __user *uvec,
1857 unsigned nr_segs, unsigned fast_segs,
1858 struct iovec **iovp, struct iov_iter *i)
1859{
1860 return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1861 in_compat_syscall());
1862}
1863EXPORT_SYMBOL(import_iovec);
1864
1865int import_single_range(int rw, void __user *buf, size_t len,
1866 struct iovec *iov, struct iov_iter *i)
1867{
1868 if (len > MAX_RW_COUNT)
1869 len = MAX_RW_COUNT;
1870 if (unlikely(!access_ok(buf, len)))
1871 return -EFAULT;
1872
1873 iov->iov_base = buf;
1874 iov->iov_len = len;
1875 iov_iter_init(i, rw, iov, 1, len);
1876 return 0;
1877}
1878EXPORT_SYMBOL(import_single_range);
1879
1880/**
1881 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1882 * iov_iter_save_state() was called.
1883 *
1884 * @i: &struct iov_iter to restore
1885 * @state: state to restore from
1886 *
1887 * Used after iov_iter_save_state() to bring restore @i, if operations may
1888 * have advanced it.
1889 *
1890 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1891 */
1892void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1893{
1894 if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
1895 !iov_iter_is_kvec(i) && !iter_is_ubuf(i))
1896 return;
1897 i->iov_offset = state->iov_offset;
1898 i->count = state->count;
1899 if (iter_is_ubuf(i))
1900 return;
1901 /*
1902 * For the *vec iters, nr_segs + iov is constant - if we increment
1903 * the vec, then we also decrement the nr_segs count. Hence we don't
1904 * need to track both of these, just one is enough and we can deduct
1905 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1906 * size, so we can just increment the iov pointer as they are unionzed.
1907 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1908 * not. Be safe and handle it separately.
1909 */
1910 BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1911 if (iov_iter_is_bvec(i))
1912 i->bvec -= state->nr_segs - i->nr_segs;
1913 else
1914 i->iov -= state->nr_segs - i->nr_segs;
1915 i->nr_segs = state->nr_segs;
1916}