Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 *		IPv4 specific functions
  10 *
  11 *		code split from:
  12 *		linux/ipv4/tcp.c
  13 *		linux/ipv4/tcp_input.c
  14 *		linux/ipv4/tcp_output.c
  15 *
  16 *		See tcp.c for author information
  17 */
  18
  19/*
  20 * Changes:
  21 *		David S. Miller	:	New socket lookup architecture.
  22 *					This code is dedicated to John Dyson.
  23 *		David S. Miller :	Change semantics of established hash,
  24 *					half is devoted to TIME_WAIT sockets
  25 *					and the rest go in the other half.
  26 *		Andi Kleen :		Add support for syncookies and fixed
  27 *					some bugs: ip options weren't passed to
  28 *					the TCP layer, missed a check for an
  29 *					ACK bit.
  30 *		Andi Kleen :		Implemented fast path mtu discovery.
  31 *	     				Fixed many serious bugs in the
  32 *					request_sock handling and moved
  33 *					most of it into the af independent code.
  34 *					Added tail drop and some other bugfixes.
  35 *					Added new listen semantics.
  36 *		Mike McLagan	:	Routing by source
  37 *	Juan Jose Ciarlante:		ip_dynaddr bits
  38 *		Andi Kleen:		various fixes.
  39 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
  40 *					coma.
  41 *	Andi Kleen		:	Fix new listen.
  42 *	Andi Kleen		:	Fix accept error reporting.
  43 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  44 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
  45 *					a single port at the same time.
  46 */
  47
  48#define pr_fmt(fmt) "TCP: " fmt
  49
  50#include <linux/bottom_half.h>
  51#include <linux/types.h>
  52#include <linux/fcntl.h>
  53#include <linux/module.h>
  54#include <linux/random.h>
  55#include <linux/cache.h>
  56#include <linux/jhash.h>
  57#include <linux/init.h>
  58#include <linux/times.h>
  59#include <linux/slab.h>
 
  60
  61#include <net/net_namespace.h>
  62#include <net/icmp.h>
  63#include <net/inet_hashtables.h>
  64#include <net/tcp.h>
  65#include <net/transp_v6.h>
  66#include <net/ipv6.h>
  67#include <net/inet_common.h>
  68#include <net/timewait_sock.h>
  69#include <net/xfrm.h>
  70#include <net/secure_seq.h>
  71#include <net/busy_poll.h>
 
  72
  73#include <linux/inet.h>
  74#include <linux/ipv6.h>
  75#include <linux/stddef.h>
  76#include <linux/proc_fs.h>
  77#include <linux/seq_file.h>
  78#include <linux/inetdevice.h>
  79#include <linux/btf_ids.h>
 
  80
  81#include <crypto/hash.h>
  82#include <linux/scatterlist.h>
  83
  84#include <trace/events/tcp.h>
  85
  86#ifdef CONFIG_TCP_MD5SIG
  87static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
  88			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
  89#endif
  90
  91struct inet_hashinfo tcp_hashinfo;
  92EXPORT_SYMBOL(tcp_hashinfo);
  93
 
 
 
 
 
 
  94static u32 tcp_v4_init_seq(const struct sk_buff *skb)
  95{
  96	return secure_tcp_seq(ip_hdr(skb)->daddr,
  97			      ip_hdr(skb)->saddr,
  98			      tcp_hdr(skb)->dest,
  99			      tcp_hdr(skb)->source);
 100}
 101
 102static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
 103{
 104	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
 105}
 106
 107int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
 108{
 
 109	const struct inet_timewait_sock *tw = inet_twsk(sktw);
 110	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
 111	struct tcp_sock *tp = tcp_sk(sk);
 112	int reuse = sock_net(sk)->ipv4.sysctl_tcp_tw_reuse;
 
 
 
 113
 114	if (reuse == 2) {
 115		/* Still does not detect *everything* that goes through
 116		 * lo, since we require a loopback src or dst address
 117		 * or direct binding to 'lo' interface.
 118		 */
 119		bool loopback = false;
 120		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
 121			loopback = true;
 122#if IS_ENABLED(CONFIG_IPV6)
 123		if (tw->tw_family == AF_INET6) {
 124			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
 125			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
 126			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
 127			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
 128				loopback = true;
 129		} else
 130#endif
 131		{
 132			if (ipv4_is_loopback(tw->tw_daddr) ||
 133			    ipv4_is_loopback(tw->tw_rcv_saddr))
 134				loopback = true;
 135		}
 136		if (!loopback)
 137			reuse = 0;
 138	}
 139
 140	/* With PAWS, it is safe from the viewpoint
 141	   of data integrity. Even without PAWS it is safe provided sequence
 142	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
 143
 144	   Actually, the idea is close to VJ's one, only timestamp cache is
 145	   held not per host, but per port pair and TW bucket is used as state
 146	   holder.
 147
 148	   If TW bucket has been already destroyed we fall back to VJ's scheme
 149	   and use initial timestamp retrieved from peer table.
 150	 */
 151	if (tcptw->tw_ts_recent_stamp &&
 
 152	    (!twp || (reuse && time_after32(ktime_get_seconds(),
 153					    tcptw->tw_ts_recent_stamp)))) {
 
 
 
 
 
 
 154		/* In case of repair and re-using TIME-WAIT sockets we still
 155		 * want to be sure that it is safe as above but honor the
 156		 * sequence numbers and time stamps set as part of the repair
 157		 * process.
 158		 *
 159		 * Without this check re-using a TIME-WAIT socket with TCP
 160		 * repair would accumulate a -1 on the repair assigned
 161		 * sequence number. The first time it is reused the sequence
 162		 * is -1, the second time -2, etc. This fixes that issue
 163		 * without appearing to create any others.
 164		 */
 165		if (likely(!tp->repair)) {
 166			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
 167
 168			if (!seq)
 169				seq = 1;
 170			WRITE_ONCE(tp->write_seq, seq);
 171			tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
 172			tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
 173		}
 174		sock_hold(sktw);
 175		return 1;
 176	}
 177
 178	return 0;
 179}
 180EXPORT_SYMBOL_GPL(tcp_twsk_unique);
 181
 182static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
 183			      int addr_len)
 184{
 185	/* This check is replicated from tcp_v4_connect() and intended to
 186	 * prevent BPF program called below from accessing bytes that are out
 187	 * of the bound specified by user in addr_len.
 188	 */
 189	if (addr_len < sizeof(struct sockaddr_in))
 190		return -EINVAL;
 191
 192	sock_owned_by_me(sk);
 193
 194	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr);
 195}
 196
 197/* This will initiate an outgoing connection. */
 198int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
 199{
 200	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
 
 201	struct inet_sock *inet = inet_sk(sk);
 202	struct tcp_sock *tp = tcp_sk(sk);
 
 
 203	__be16 orig_sport, orig_dport;
 204	__be32 daddr, nexthop;
 205	struct flowi4 *fl4;
 206	struct rtable *rt;
 207	int err;
 208	struct ip_options_rcu *inet_opt;
 209	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
 210
 211	if (addr_len < sizeof(struct sockaddr_in))
 212		return -EINVAL;
 213
 214	if (usin->sin_family != AF_INET)
 215		return -EAFNOSUPPORT;
 216
 217	nexthop = daddr = usin->sin_addr.s_addr;
 218	inet_opt = rcu_dereference_protected(inet->inet_opt,
 219					     lockdep_sock_is_held(sk));
 220	if (inet_opt && inet_opt->opt.srr) {
 221		if (!daddr)
 222			return -EINVAL;
 223		nexthop = inet_opt->opt.faddr;
 224	}
 225
 226	orig_sport = inet->inet_sport;
 227	orig_dport = usin->sin_port;
 228	fl4 = &inet->cork.fl.u.ip4;
 229	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
 230			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
 231			      IPPROTO_TCP,
 232			      orig_sport, orig_dport, sk);
 233	if (IS_ERR(rt)) {
 234		err = PTR_ERR(rt);
 235		if (err == -ENETUNREACH)
 236			IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
 237		return err;
 238	}
 239
 240	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
 241		ip_rt_put(rt);
 242		return -ENETUNREACH;
 243	}
 244
 245	if (!inet_opt || !inet_opt->opt.srr)
 246		daddr = fl4->daddr;
 247
 248	if (!inet->inet_saddr)
 249		inet->inet_saddr = fl4->saddr;
 250	sk_rcv_saddr_set(sk, inet->inet_saddr);
 
 
 
 
 
 
 
 
 251
 252	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
 253		/* Reset inherited state */
 254		tp->rx_opt.ts_recent	   = 0;
 255		tp->rx_opt.ts_recent_stamp = 0;
 256		if (likely(!tp->repair))
 257			WRITE_ONCE(tp->write_seq, 0);
 258	}
 259
 260	inet->inet_dport = usin->sin_port;
 261	sk_daddr_set(sk, daddr);
 262
 263	inet_csk(sk)->icsk_ext_hdr_len = 0;
 264	if (inet_opt)
 265		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
 266
 267	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
 268
 269	/* Socket identity is still unknown (sport may be zero).
 270	 * However we set state to SYN-SENT and not releasing socket
 271	 * lock select source port, enter ourselves into the hash tables and
 272	 * complete initialization after this.
 273	 */
 274	tcp_set_state(sk, TCP_SYN_SENT);
 275	err = inet_hash_connect(tcp_death_row, sk);
 276	if (err)
 277		goto failure;
 278
 279	sk_set_txhash(sk);
 280
 281	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
 282			       inet->inet_sport, inet->inet_dport, sk);
 283	if (IS_ERR(rt)) {
 284		err = PTR_ERR(rt);
 285		rt = NULL;
 286		goto failure;
 287	}
 
 288	/* OK, now commit destination to socket.  */
 289	sk->sk_gso_type = SKB_GSO_TCPV4;
 290	sk_setup_caps(sk, &rt->dst);
 291	rt = NULL;
 292
 293	if (likely(!tp->repair)) {
 294		if (!tp->write_seq)
 295			WRITE_ONCE(tp->write_seq,
 296				   secure_tcp_seq(inet->inet_saddr,
 297						  inet->inet_daddr,
 298						  inet->inet_sport,
 299						  usin->sin_port));
 300		tp->tsoffset = secure_tcp_ts_off(sock_net(sk),
 301						 inet->inet_saddr,
 302						 inet->inet_daddr);
 303	}
 304
 305	inet->inet_id = prandom_u32();
 306
 307	if (tcp_fastopen_defer_connect(sk, &err))
 308		return err;
 309	if (err)
 310		goto failure;
 311
 312	err = tcp_connect(sk);
 313
 314	if (err)
 315		goto failure;
 316
 317	return 0;
 318
 319failure:
 320	/*
 321	 * This unhashes the socket and releases the local port,
 322	 * if necessary.
 323	 */
 324	tcp_set_state(sk, TCP_CLOSE);
 
 325	ip_rt_put(rt);
 326	sk->sk_route_caps = 0;
 327	inet->inet_dport = 0;
 328	return err;
 329}
 330EXPORT_SYMBOL(tcp_v4_connect);
 331
 332/*
 333 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
 334 * It can be called through tcp_release_cb() if socket was owned by user
 335 * at the time tcp_v4_err() was called to handle ICMP message.
 336 */
 337void tcp_v4_mtu_reduced(struct sock *sk)
 338{
 339	struct inet_sock *inet = inet_sk(sk);
 340	struct dst_entry *dst;
 341	u32 mtu;
 342
 343	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
 344		return;
 345	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
 346	dst = inet_csk_update_pmtu(sk, mtu);
 347	if (!dst)
 348		return;
 349
 350	/* Something is about to be wrong... Remember soft error
 351	 * for the case, if this connection will not able to recover.
 352	 */
 353	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
 354		sk->sk_err_soft = EMSGSIZE;
 355
 356	mtu = dst_mtu(dst);
 357
 358	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
 359	    ip_sk_accept_pmtu(sk) &&
 360	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
 361		tcp_sync_mss(sk, mtu);
 362
 363		/* Resend the TCP packet because it's
 364		 * clear that the old packet has been
 365		 * dropped. This is the new "fast" path mtu
 366		 * discovery.
 367		 */
 368		tcp_simple_retransmit(sk);
 369	} /* else let the usual retransmit timer handle it */
 370}
 371EXPORT_SYMBOL(tcp_v4_mtu_reduced);
 372
 373static void do_redirect(struct sk_buff *skb, struct sock *sk)
 374{
 375	struct dst_entry *dst = __sk_dst_check(sk, 0);
 376
 377	if (dst)
 378		dst->ops->redirect(dst, sk, skb);
 379}
 380
 381
 382/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
 383void tcp_req_err(struct sock *sk, u32 seq, bool abort)
 384{
 385	struct request_sock *req = inet_reqsk(sk);
 386	struct net *net = sock_net(sk);
 387
 388	/* ICMPs are not backlogged, hence we cannot get
 389	 * an established socket here.
 390	 */
 391	if (seq != tcp_rsk(req)->snt_isn) {
 392		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
 393	} else if (abort) {
 394		/*
 395		 * Still in SYN_RECV, just remove it silently.
 396		 * There is no good way to pass the error to the newly
 397		 * created socket, and POSIX does not want network
 398		 * errors returned from accept().
 399		 */
 400		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
 401		tcp_listendrop(req->rsk_listener);
 402	}
 403	reqsk_put(req);
 404}
 405EXPORT_SYMBOL(tcp_req_err);
 406
 407/* TCP-LD (RFC 6069) logic */
 408void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
 409{
 410	struct inet_connection_sock *icsk = inet_csk(sk);
 411	struct tcp_sock *tp = tcp_sk(sk);
 412	struct sk_buff *skb;
 413	s32 remaining;
 414	u32 delta_us;
 415
 416	if (sock_owned_by_user(sk))
 417		return;
 418
 419	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
 420	    !icsk->icsk_backoff)
 421		return;
 422
 423	skb = tcp_rtx_queue_head(sk);
 424	if (WARN_ON_ONCE(!skb))
 425		return;
 426
 427	icsk->icsk_backoff--;
 428	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
 429	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
 430
 431	tcp_mstamp_refresh(tp);
 432	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
 433	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
 434
 435	if (remaining > 0) {
 436		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 437					  remaining, TCP_RTO_MAX);
 438	} else {
 439		/* RTO revert clocked out retransmission.
 440		 * Will retransmit now.
 441		 */
 442		tcp_retransmit_timer(sk);
 443	}
 444}
 445EXPORT_SYMBOL(tcp_ld_RTO_revert);
 446
 447/*
 448 * This routine is called by the ICMP module when it gets some
 449 * sort of error condition.  If err < 0 then the socket should
 450 * be closed and the error returned to the user.  If err > 0
 451 * it's just the icmp type << 8 | icmp code.  After adjustment
 452 * header points to the first 8 bytes of the tcp header.  We need
 453 * to find the appropriate port.
 454 *
 455 * The locking strategy used here is very "optimistic". When
 456 * someone else accesses the socket the ICMP is just dropped
 457 * and for some paths there is no check at all.
 458 * A more general error queue to queue errors for later handling
 459 * is probably better.
 460 *
 461 */
 462
 463int tcp_v4_err(struct sk_buff *skb, u32 info)
 464{
 465	const struct iphdr *iph = (const struct iphdr *)skb->data;
 466	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
 467	struct tcp_sock *tp;
 468	struct inet_sock *inet;
 469	const int type = icmp_hdr(skb)->type;
 470	const int code = icmp_hdr(skb)->code;
 471	struct sock *sk;
 472	struct request_sock *fastopen;
 473	u32 seq, snd_una;
 474	int err;
 475	struct net *net = dev_net(skb->dev);
 476
 477	sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
 478				       th->dest, iph->saddr, ntohs(th->source),
 479				       inet_iif(skb), 0);
 480	if (!sk) {
 481		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 482		return -ENOENT;
 483	}
 484	if (sk->sk_state == TCP_TIME_WAIT) {
 
 
 485		inet_twsk_put(inet_twsk(sk));
 486		return 0;
 487	}
 488	seq = ntohl(th->seq);
 489	if (sk->sk_state == TCP_NEW_SYN_RECV) {
 490		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
 491				     type == ICMP_TIME_EXCEEDED ||
 492				     (type == ICMP_DEST_UNREACH &&
 493				      (code == ICMP_NET_UNREACH ||
 494				       code == ICMP_HOST_UNREACH)));
 495		return 0;
 496	}
 497
 
 
 
 
 
 498	bh_lock_sock(sk);
 499	/* If too many ICMPs get dropped on busy
 500	 * servers this needs to be solved differently.
 501	 * We do take care of PMTU discovery (RFC1191) special case :
 502	 * we can receive locally generated ICMP messages while socket is held.
 503	 */
 504	if (sock_owned_by_user(sk)) {
 505		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
 506			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
 507	}
 508	if (sk->sk_state == TCP_CLOSE)
 509		goto out;
 510
 511	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
 512		__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
 513		goto out;
 
 
 
 514	}
 515
 516	tp = tcp_sk(sk);
 517	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
 518	fastopen = rcu_dereference(tp->fastopen_rsk);
 519	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
 520	if (sk->sk_state != TCP_LISTEN &&
 521	    !between(seq, snd_una, tp->snd_nxt)) {
 522		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
 523		goto out;
 524	}
 525
 526	switch (type) {
 527	case ICMP_REDIRECT:
 528		if (!sock_owned_by_user(sk))
 529			do_redirect(skb, sk);
 530		goto out;
 531	case ICMP_SOURCE_QUENCH:
 532		/* Just silently ignore these. */
 533		goto out;
 534	case ICMP_PARAMETERPROB:
 535		err = EPROTO;
 536		break;
 537	case ICMP_DEST_UNREACH:
 538		if (code > NR_ICMP_UNREACH)
 539			goto out;
 540
 541		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
 542			/* We are not interested in TCP_LISTEN and open_requests
 543			 * (SYN-ACKs send out by Linux are always <576bytes so
 544			 * they should go through unfragmented).
 545			 */
 546			if (sk->sk_state == TCP_LISTEN)
 547				goto out;
 548
 549			WRITE_ONCE(tp->mtu_info, info);
 550			if (!sock_owned_by_user(sk)) {
 551				tcp_v4_mtu_reduced(sk);
 552			} else {
 553				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
 554					sock_hold(sk);
 555			}
 556			goto out;
 557		}
 558
 559		err = icmp_err_convert[code].errno;
 560		/* check if this ICMP message allows revert of backoff.
 561		 * (see RFC 6069)
 562		 */
 563		if (!fastopen &&
 564		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
 565			tcp_ld_RTO_revert(sk, seq);
 566		break;
 567	case ICMP_TIME_EXCEEDED:
 568		err = EHOSTUNREACH;
 569		break;
 570	default:
 571		goto out;
 572	}
 573
 574	switch (sk->sk_state) {
 575	case TCP_SYN_SENT:
 576	case TCP_SYN_RECV:
 577		/* Only in fast or simultaneous open. If a fast open socket is
 578		 * already accepted it is treated as a connected one below.
 579		 */
 580		if (fastopen && !fastopen->sk)
 581			break;
 582
 583		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
 584
 585		if (!sock_owned_by_user(sk)) {
 586			sk->sk_err = err;
 587
 588			sk_error_report(sk);
 589
 590			tcp_done(sk);
 591		} else {
 592			sk->sk_err_soft = err;
 593		}
 594		goto out;
 595	}
 596
 597	/* If we've already connected we will keep trying
 598	 * until we time out, or the user gives up.
 599	 *
 600	 * rfc1122 4.2.3.9 allows to consider as hard errors
 601	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
 602	 * but it is obsoleted by pmtu discovery).
 603	 *
 604	 * Note, that in modern internet, where routing is unreliable
 605	 * and in each dark corner broken firewalls sit, sending random
 606	 * errors ordered by their masters even this two messages finally lose
 607	 * their original sense (even Linux sends invalid PORT_UNREACHs)
 608	 *
 609	 * Now we are in compliance with RFCs.
 610	 *							--ANK (980905)
 611	 */
 612
 613	inet = inet_sk(sk);
 614	if (!sock_owned_by_user(sk) && inet->recverr) {
 615		sk->sk_err = err;
 616		sk_error_report(sk);
 617	} else	{ /* Only an error on timeout */
 618		sk->sk_err_soft = err;
 619	}
 620
 621out:
 622	bh_unlock_sock(sk);
 623	sock_put(sk);
 624	return 0;
 625}
 626
 627void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
 628{
 629	struct tcphdr *th = tcp_hdr(skb);
 630
 631	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
 632	skb->csum_start = skb_transport_header(skb) - skb->head;
 633	skb->csum_offset = offsetof(struct tcphdr, check);
 634}
 635
 636/* This routine computes an IPv4 TCP checksum. */
 637void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
 638{
 639	const struct inet_sock *inet = inet_sk(sk);
 640
 641	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
 642}
 643EXPORT_SYMBOL(tcp_v4_send_check);
 644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645/*
 646 *	This routine will send an RST to the other tcp.
 647 *
 648 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
 649 *		      for reset.
 650 *	Answer: if a packet caused RST, it is not for a socket
 651 *		existing in our system, if it is matched to a socket,
 652 *		it is just duplicate segment or bug in other side's TCP.
 653 *		So that we build reply only basing on parameters
 654 *		arrived with segment.
 655 *	Exception: precedence violation. We do not implement it in any case.
 656 */
 657
 658#ifdef CONFIG_TCP_MD5SIG
 659#define OPTION_BYTES TCPOLEN_MD5SIG_ALIGNED
 660#else
 661#define OPTION_BYTES sizeof(__be32)
 662#endif
 663
 664static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
 665{
 666	const struct tcphdr *th = tcp_hdr(skb);
 667	struct {
 668		struct tcphdr th;
 669		__be32 opt[OPTION_BYTES / sizeof(__be32)];
 670	} rep;
 
 
 671	struct ip_reply_arg arg;
 672#ifdef CONFIG_TCP_MD5SIG
 673	struct tcp_md5sig_key *key = NULL;
 674	const __u8 *hash_location = NULL;
 675	unsigned char newhash[16];
 676	int genhash;
 677	struct sock *sk1 = NULL;
 
 678#endif
 679	u64 transmit_time = 0;
 680	struct sock *ctl_sk;
 681	struct net *net;
 
 682
 683	/* Never send a reset in response to a reset. */
 684	if (th->rst)
 685		return;
 686
 687	/* If sk not NULL, it means we did a successful lookup and incoming
 688	 * route had to be correct. prequeue might have dropped our dst.
 689	 */
 690	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
 691		return;
 692
 693	/* Swap the send and the receive. */
 694	memset(&rep, 0, sizeof(rep));
 695	rep.th.dest   = th->source;
 696	rep.th.source = th->dest;
 697	rep.th.doff   = sizeof(struct tcphdr) / 4;
 698	rep.th.rst    = 1;
 699
 700	if (th->ack) {
 701		rep.th.seq = th->ack_seq;
 702	} else {
 703		rep.th.ack = 1;
 704		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
 705				       skb->len - (th->doff << 2));
 706	}
 707
 708	memset(&arg, 0, sizeof(arg));
 709	arg.iov[0].iov_base = (unsigned char *)&rep;
 710	arg.iov[0].iov_len  = sizeof(rep.th);
 711
 712	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
 
 
 
 
 
 
 
 
 713#ifdef CONFIG_TCP_MD5SIG
 714	rcu_read_lock();
 715	hash_location = tcp_parse_md5sig_option(th);
 716	if (sk && sk_fullsock(sk)) {
 717		const union tcp_md5_addr *addr;
 718		int l3index;
 719
 720		/* sdif set, means packet ingressed via a device
 721		 * in an L3 domain and inet_iif is set to it.
 722		 */
 723		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
 724		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
 725		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
 726	} else if (hash_location) {
 727		const union tcp_md5_addr *addr;
 728		int sdif = tcp_v4_sdif(skb);
 729		int dif = inet_iif(skb);
 730		int l3index;
 731
 732		/*
 733		 * active side is lost. Try to find listening socket through
 734		 * source port, and then find md5 key through listening socket.
 735		 * we are not loose security here:
 736		 * Incoming packet is checked with md5 hash with finding key,
 737		 * no RST generated if md5 hash doesn't match.
 738		 */
 739		sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0,
 740					     ip_hdr(skb)->saddr,
 741					     th->source, ip_hdr(skb)->daddr,
 742					     ntohs(th->source), dif, sdif);
 743		/* don't send rst if it can't find key */
 744		if (!sk1)
 745			goto out;
 746
 747		/* sdif set, means packet ingressed via a device
 748		 * in an L3 domain and dif is set to it.
 749		 */
 750		l3index = sdif ? dif : 0;
 751		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
 752		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
 753		if (!key)
 754			goto out;
 755
 756
 757		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
 758		if (genhash || memcmp(hash_location, newhash, 16) != 0)
 759			goto out;
 760
 761	}
 762
 763	if (key) {
 764		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
 765				   (TCPOPT_NOP << 16) |
 766				   (TCPOPT_MD5SIG << 8) |
 767				   TCPOLEN_MD5SIG);
 768		/* Update length and the length the header thinks exists */
 769		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 770		rep.th.doff = arg.iov[0].iov_len / 4;
 771
 772		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
 773				     key, ip_hdr(skb)->saddr,
 774				     ip_hdr(skb)->daddr, &rep.th);
 775	}
 776#endif
 777	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
 778	if (rep.opt[0] == 0) {
 779		__be32 mrst = mptcp_reset_option(skb);
 780
 781		if (mrst) {
 782			rep.opt[0] = mrst;
 783			arg.iov[0].iov_len += sizeof(mrst);
 784			rep.th.doff = arg.iov[0].iov_len / 4;
 785		}
 786	}
 787
 788	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 789				      ip_hdr(skb)->saddr, /* XXX */
 790				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 791	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 792	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
 793
 794	/* When socket is gone, all binding information is lost.
 795	 * routing might fail in this case. No choice here, if we choose to force
 796	 * input interface, we will misroute in case of asymmetric route.
 797	 */
 798	if (sk) {
 799		arg.bound_dev_if = sk->sk_bound_dev_if;
 800		if (sk_fullsock(sk))
 801			trace_tcp_send_reset(sk, skb);
 802	}
 803
 804	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
 805		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
 806
 807	arg.tos = ip_hdr(skb)->tos;
 808	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
 809	local_bh_disable();
 810	ctl_sk = this_cpu_read(*net->ipv4.tcp_sk);
 
 
 
 811	if (sk) {
 812		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
 813				   inet_twsk(sk)->tw_mark : sk->sk_mark;
 814		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
 815				   inet_twsk(sk)->tw_priority : sk->sk_priority;
 816		transmit_time = tcp_transmit_time(sk);
 
 
 
 
 
 
 817	}
 818	ip_send_unicast_reply(ctl_sk,
 819			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
 820			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
 821			      &arg, arg.iov[0].iov_len,
 822			      transmit_time);
 823
 824	ctl_sk->sk_mark = 0;
 
 825	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
 826	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
 
 827	local_bh_enable();
 828
 829#ifdef CONFIG_TCP_MD5SIG
 830out:
 831	rcu_read_unlock();
 832#endif
 833}
 834
 835/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
 836   outside socket context is ugly, certainly. What can I do?
 837 */
 838
 839static void tcp_v4_send_ack(const struct sock *sk,
 840			    struct sk_buff *skb, u32 seq, u32 ack,
 841			    u32 win, u32 tsval, u32 tsecr, int oif,
 842			    struct tcp_md5sig_key *key,
 843			    int reply_flags, u8 tos)
 844{
 845	const struct tcphdr *th = tcp_hdr(skb);
 846	struct {
 847		struct tcphdr th;
 848		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
 849#ifdef CONFIG_TCP_MD5SIG
 850			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
 851#endif
 852			];
 853	} rep;
 854	struct net *net = sock_net(sk);
 855	struct ip_reply_arg arg;
 856	struct sock *ctl_sk;
 857	u64 transmit_time;
 858
 859	memset(&rep.th, 0, sizeof(struct tcphdr));
 860	memset(&arg, 0, sizeof(arg));
 861
 862	arg.iov[0].iov_base = (unsigned char *)&rep;
 863	arg.iov[0].iov_len  = sizeof(rep.th);
 864	if (tsecr) {
 865		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 866				   (TCPOPT_TIMESTAMP << 8) |
 867				   TCPOLEN_TIMESTAMP);
 868		rep.opt[1] = htonl(tsval);
 869		rep.opt[2] = htonl(tsecr);
 870		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
 871	}
 872
 873	/* Swap the send and the receive. */
 874	rep.th.dest    = th->source;
 875	rep.th.source  = th->dest;
 876	rep.th.doff    = arg.iov[0].iov_len / 4;
 877	rep.th.seq     = htonl(seq);
 878	rep.th.ack_seq = htonl(ack);
 879	rep.th.ack     = 1;
 880	rep.th.window  = htons(win);
 881
 882#ifdef CONFIG_TCP_MD5SIG
 883	if (key) {
 884		int offset = (tsecr) ? 3 : 0;
 885
 886		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
 887					  (TCPOPT_NOP << 16) |
 888					  (TCPOPT_MD5SIG << 8) |
 889					  TCPOLEN_MD5SIG);
 890		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 891		rep.th.doff = arg.iov[0].iov_len/4;
 892
 893		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
 894				    key, ip_hdr(skb)->saddr,
 895				    ip_hdr(skb)->daddr, &rep.th);
 896	}
 897#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 898	arg.flags = reply_flags;
 899	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 900				      ip_hdr(skb)->saddr, /* XXX */
 901				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 902	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 903	if (oif)
 904		arg.bound_dev_if = oif;
 905	arg.tos = tos;
 906	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
 907	local_bh_disable();
 908	ctl_sk = this_cpu_read(*net->ipv4.tcp_sk);
 
 
 909	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
 910			   inet_twsk(sk)->tw_mark : sk->sk_mark;
 911	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
 912			   inet_twsk(sk)->tw_priority : sk->sk_priority;
 913	transmit_time = tcp_transmit_time(sk);
 914	ip_send_unicast_reply(ctl_sk,
 915			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
 916			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
 917			      &arg, arg.iov[0].iov_len,
 918			      transmit_time);
 919
 920	ctl_sk->sk_mark = 0;
 921	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
 
 922	local_bh_enable();
 923}
 924
 925static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
 926{
 927	struct inet_timewait_sock *tw = inet_twsk(sk);
 928	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 929
 930	tcp_v4_send_ack(sk, skb,
 931			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
 932			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
 933			tcp_time_stamp_raw() + tcptw->tw_ts_offset,
 934			tcptw->tw_ts_recent,
 935			tw->tw_bound_dev_if,
 936			tcp_twsk_md5_key(tcptw),
 937			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
 938			tw->tw_tos
 939			);
 940
 941	inet_twsk_put(tw);
 942}
 943
 944static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
 945				  struct request_sock *req)
 946{
 947	const union tcp_md5_addr *addr;
 948	int l3index;
 949
 950	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
 951	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
 952	 */
 953	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
 954					     tcp_sk(sk)->snd_nxt;
 955
 956	/* RFC 7323 2.3
 957	 * The window field (SEG.WND) of every outgoing segment, with the
 958	 * exception of <SYN> segments, MUST be right-shifted by
 959	 * Rcv.Wind.Shift bits:
 960	 */
 961	addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
 962	l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 963	tcp_v4_send_ack(sk, skb, seq,
 964			tcp_rsk(req)->rcv_nxt,
 965			req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
 966			tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
 967			req->ts_recent,
 968			0,
 969			tcp_md5_do_lookup(sk, l3index, addr, AF_INET),
 970			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
 971			ip_hdr(skb)->tos);
 
 
 
 972}
 973
 974/*
 975 *	Send a SYN-ACK after having received a SYN.
 976 *	This still operates on a request_sock only, not on a big
 977 *	socket.
 978 */
 979static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
 980			      struct flowi *fl,
 981			      struct request_sock *req,
 982			      struct tcp_fastopen_cookie *foc,
 983			      enum tcp_synack_type synack_type,
 984			      struct sk_buff *syn_skb)
 985{
 986	const struct inet_request_sock *ireq = inet_rsk(req);
 987	struct flowi4 fl4;
 988	int err = -1;
 989	struct sk_buff *skb;
 990	u8 tos;
 991
 992	/* First, grab a route. */
 993	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
 994		return -1;
 995
 996	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
 997
 998	if (skb) {
 999		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1000
1001		tos = sock_net(sk)->ipv4.sysctl_tcp_reflect_tos ?
1002				(tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1003				(inet_sk(sk)->tos & INET_ECN_MASK) :
1004				inet_sk(sk)->tos;
 
1005
1006		if (!INET_ECN_is_capable(tos) &&
1007		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1008			tos |= INET_ECN_ECT_0;
1009
1010		rcu_read_lock();
1011		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1012					    ireq->ir_rmt_addr,
1013					    rcu_dereference(ireq->ireq_opt),
1014					    tos);
1015		rcu_read_unlock();
1016		err = net_xmit_eval(err);
1017	}
1018
1019	return err;
1020}
1021
1022/*
1023 *	IPv4 request_sock destructor.
1024 */
1025static void tcp_v4_reqsk_destructor(struct request_sock *req)
1026{
1027	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1028}
1029
1030#ifdef CONFIG_TCP_MD5SIG
1031/*
1032 * RFC2385 MD5 checksumming requires a mapping of
1033 * IP address->MD5 Key.
1034 * We need to maintain these in the sk structure.
1035 */
1036
1037DEFINE_STATIC_KEY_FALSE(tcp_md5_needed);
1038EXPORT_SYMBOL(tcp_md5_needed);
1039
1040static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1041{
1042	if (!old)
1043		return true;
1044
1045	/* l3index always overrides non-l3index */
1046	if (old->l3index && new->l3index == 0)
1047		return false;
1048	if (old->l3index == 0 && new->l3index)
1049		return true;
1050
1051	return old->prefixlen < new->prefixlen;
1052}
1053
1054/* Find the Key structure for an address.  */
1055struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1056					   const union tcp_md5_addr *addr,
1057					   int family)
1058{
1059	const struct tcp_sock *tp = tcp_sk(sk);
1060	struct tcp_md5sig_key *key;
1061	const struct tcp_md5sig_info *md5sig;
1062	__be32 mask;
1063	struct tcp_md5sig_key *best_match = NULL;
1064	bool match;
1065
1066	/* caller either holds rcu_read_lock() or socket lock */
1067	md5sig = rcu_dereference_check(tp->md5sig_info,
1068				       lockdep_sock_is_held(sk));
1069	if (!md5sig)
1070		return NULL;
1071
1072	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1073				 lockdep_sock_is_held(sk)) {
1074		if (key->family != family)
1075			continue;
1076		if (key->l3index && key->l3index != l3index)
 
1077			continue;
1078		if (family == AF_INET) {
1079			mask = inet_make_mask(key->prefixlen);
1080			match = (key->addr.a4.s_addr & mask) ==
1081				(addr->a4.s_addr & mask);
1082#if IS_ENABLED(CONFIG_IPV6)
1083		} else if (family == AF_INET6) {
1084			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1085						  key->prefixlen);
1086#endif
1087		} else {
1088			match = false;
1089		}
1090
1091		if (match && better_md5_match(best_match, key))
1092			best_match = key;
1093	}
1094	return best_match;
1095}
1096EXPORT_SYMBOL(__tcp_md5_do_lookup);
1097
1098static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1099						      const union tcp_md5_addr *addr,
1100						      int family, u8 prefixlen,
1101						      int l3index)
1102{
1103	const struct tcp_sock *tp = tcp_sk(sk);
1104	struct tcp_md5sig_key *key;
1105	unsigned int size = sizeof(struct in_addr);
1106	const struct tcp_md5sig_info *md5sig;
1107
1108	/* caller either holds rcu_read_lock() or socket lock */
1109	md5sig = rcu_dereference_check(tp->md5sig_info,
1110				       lockdep_sock_is_held(sk));
1111	if (!md5sig)
1112		return NULL;
1113#if IS_ENABLED(CONFIG_IPV6)
1114	if (family == AF_INET6)
1115		size = sizeof(struct in6_addr);
1116#endif
1117	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1118				 lockdep_sock_is_held(sk)) {
1119		if (key->family != family)
1120			continue;
 
 
1121		if (key->l3index != l3index)
1122			continue;
1123		if (!memcmp(&key->addr, addr, size) &&
1124		    key->prefixlen == prefixlen)
1125			return key;
1126	}
1127	return NULL;
1128}
1129
1130struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1131					 const struct sock *addr_sk)
1132{
1133	const union tcp_md5_addr *addr;
1134	int l3index;
1135
1136	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1137						 addr_sk->sk_bound_dev_if);
1138	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1139	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1140}
1141EXPORT_SYMBOL(tcp_v4_md5_lookup);
1142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1143/* This can be called on a newly created socket, from other files */
1144int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1145		   int family, u8 prefixlen, int l3index,
1146		   const u8 *newkey, u8 newkeylen, gfp_t gfp)
1147{
1148	/* Add Key to the list */
1149	struct tcp_md5sig_key *key;
1150	struct tcp_sock *tp = tcp_sk(sk);
1151	struct tcp_md5sig_info *md5sig;
1152
1153	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index);
1154	if (key) {
1155		/* Pre-existing entry - just update that one.
1156		 * Note that the key might be used concurrently.
1157		 * data_race() is telling kcsan that we do not care of
1158		 * key mismatches, since changing MD5 key on live flows
1159		 * can lead to packet drops.
1160		 */
1161		data_race(memcpy(key->key, newkey, newkeylen));
1162
1163		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1164		 * Also note that a reader could catch new key->keylen value
1165		 * but old key->key[], this is the reason we use __GFP_ZERO
1166		 * at sock_kmalloc() time below these lines.
1167		 */
1168		WRITE_ONCE(key->keylen, newkeylen);
1169
1170		return 0;
1171	}
1172
1173	md5sig = rcu_dereference_protected(tp->md5sig_info,
1174					   lockdep_sock_is_held(sk));
1175	if (!md5sig) {
1176		md5sig = kmalloc(sizeof(*md5sig), gfp);
1177		if (!md5sig)
1178			return -ENOMEM;
1179
1180		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1181		INIT_HLIST_HEAD(&md5sig->head);
1182		rcu_assign_pointer(tp->md5sig_info, md5sig);
1183	}
1184
1185	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1186	if (!key)
1187		return -ENOMEM;
1188	if (!tcp_alloc_md5sig_pool()) {
1189		sock_kfree_s(sk, key, sizeof(*key));
1190		return -ENOMEM;
1191	}
1192
1193	memcpy(key->key, newkey, newkeylen);
1194	key->keylen = newkeylen;
1195	key->family = family;
1196	key->prefixlen = prefixlen;
1197	key->l3index = l3index;
 
1198	memcpy(&key->addr, addr,
1199	       (family == AF_INET6) ? sizeof(struct in6_addr) :
1200				      sizeof(struct in_addr));
1201	hlist_add_head_rcu(&key->node, &md5sig->head);
1202	return 0;
1203}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1204EXPORT_SYMBOL(tcp_md5_do_add);
1205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1206int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1207		   u8 prefixlen, int l3index)
1208{
1209	struct tcp_md5sig_key *key;
1210
1211	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index);
1212	if (!key)
1213		return -ENOENT;
1214	hlist_del_rcu(&key->node);
1215	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1216	kfree_rcu(key, rcu);
1217	return 0;
1218}
1219EXPORT_SYMBOL(tcp_md5_do_del);
1220
1221static void tcp_clear_md5_list(struct sock *sk)
1222{
1223	struct tcp_sock *tp = tcp_sk(sk);
1224	struct tcp_md5sig_key *key;
1225	struct hlist_node *n;
1226	struct tcp_md5sig_info *md5sig;
1227
1228	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1229
1230	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1231		hlist_del_rcu(&key->node);
1232		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1233		kfree_rcu(key, rcu);
1234	}
1235}
1236
1237static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1238				 sockptr_t optval, int optlen)
1239{
1240	struct tcp_md5sig cmd;
1241	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1242	const union tcp_md5_addr *addr;
1243	u8 prefixlen = 32;
1244	int l3index = 0;
 
 
1245
1246	if (optlen < sizeof(cmd))
1247		return -EINVAL;
1248
1249	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1250		return -EFAULT;
1251
1252	if (sin->sin_family != AF_INET)
1253		return -EINVAL;
1254
 
 
 
1255	if (optname == TCP_MD5SIG_EXT &&
1256	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1257		prefixlen = cmd.tcpm_prefixlen;
1258		if (prefixlen > 32)
1259			return -EINVAL;
1260	}
1261
1262	if (optname == TCP_MD5SIG_EXT &&
1263	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1264		struct net_device *dev;
1265
1266		rcu_read_lock();
1267		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1268		if (dev && netif_is_l3_master(dev))
1269			l3index = dev->ifindex;
1270
1271		rcu_read_unlock();
1272
1273		/* ok to reference set/not set outside of rcu;
1274		 * right now device MUST be an L3 master
1275		 */
1276		if (!dev || !l3index)
1277			return -EINVAL;
1278	}
1279
1280	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1281
1282	if (!cmd.tcpm_keylen)
1283		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index);
1284
1285	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1286		return -EINVAL;
1287
1288	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index,
1289			      cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
 
 
 
 
 
 
1290}
1291
1292static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1293				   __be32 daddr, __be32 saddr,
1294				   const struct tcphdr *th, int nbytes)
1295{
1296	struct tcp4_pseudohdr *bp;
1297	struct scatterlist sg;
1298	struct tcphdr *_th;
1299
1300	bp = hp->scratch;
1301	bp->saddr = saddr;
1302	bp->daddr = daddr;
1303	bp->pad = 0;
1304	bp->protocol = IPPROTO_TCP;
1305	bp->len = cpu_to_be16(nbytes);
1306
1307	_th = (struct tcphdr *)(bp + 1);
1308	memcpy(_th, th, sizeof(*th));
1309	_th->check = 0;
1310
1311	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1312	ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1313				sizeof(*bp) + sizeof(*th));
1314	return crypto_ahash_update(hp->md5_req);
1315}
1316
1317static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1318			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1319{
1320	struct tcp_md5sig_pool *hp;
1321	struct ahash_request *req;
1322
1323	hp = tcp_get_md5sig_pool();
1324	if (!hp)
1325		goto clear_hash_noput;
1326	req = hp->md5_req;
1327
1328	if (crypto_ahash_init(req))
1329		goto clear_hash;
1330	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1331		goto clear_hash;
1332	if (tcp_md5_hash_key(hp, key))
1333		goto clear_hash;
1334	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1335	if (crypto_ahash_final(req))
1336		goto clear_hash;
1337
1338	tcp_put_md5sig_pool();
1339	return 0;
1340
1341clear_hash:
1342	tcp_put_md5sig_pool();
1343clear_hash_noput:
1344	memset(md5_hash, 0, 16);
1345	return 1;
1346}
1347
1348int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1349			const struct sock *sk,
1350			const struct sk_buff *skb)
1351{
1352	struct tcp_md5sig_pool *hp;
1353	struct ahash_request *req;
1354	const struct tcphdr *th = tcp_hdr(skb);
 
1355	__be32 saddr, daddr;
1356
1357	if (sk) { /* valid for establish/request sockets */
1358		saddr = sk->sk_rcv_saddr;
1359		daddr = sk->sk_daddr;
1360	} else {
1361		const struct iphdr *iph = ip_hdr(skb);
1362		saddr = iph->saddr;
1363		daddr = iph->daddr;
1364	}
1365
1366	hp = tcp_get_md5sig_pool();
1367	if (!hp)
1368		goto clear_hash_noput;
1369	req = hp->md5_req;
1370
1371	if (crypto_ahash_init(req))
1372		goto clear_hash;
1373
1374	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1375		goto clear_hash;
1376	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1377		goto clear_hash;
1378	if (tcp_md5_hash_key(hp, key))
1379		goto clear_hash;
1380	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1381	if (crypto_ahash_final(req))
1382		goto clear_hash;
1383
1384	tcp_put_md5sig_pool();
1385	return 0;
1386
1387clear_hash:
1388	tcp_put_md5sig_pool();
1389clear_hash_noput:
1390	memset(md5_hash, 0, 16);
1391	return 1;
1392}
1393EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1394
1395#endif
1396
1397/* Called with rcu_read_lock() */
1398static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1399				    const struct sk_buff *skb,
1400				    int dif, int sdif)
1401{
1402#ifdef CONFIG_TCP_MD5SIG
1403	/*
1404	 * This gets called for each TCP segment that arrives
1405	 * so we want to be efficient.
1406	 * We have 3 drop cases:
1407	 * o No MD5 hash and one expected.
1408	 * o MD5 hash and we're not expecting one.
1409	 * o MD5 hash and its wrong.
1410	 */
1411	const __u8 *hash_location = NULL;
1412	struct tcp_md5sig_key *hash_expected;
1413	const struct iphdr *iph = ip_hdr(skb);
1414	const struct tcphdr *th = tcp_hdr(skb);
1415	const union tcp_md5_addr *addr;
1416	unsigned char newhash[16];
1417	int genhash, l3index;
1418
1419	/* sdif set, means packet ingressed via a device
1420	 * in an L3 domain and dif is set to the l3mdev
1421	 */
1422	l3index = sdif ? dif : 0;
1423
1424	addr = (union tcp_md5_addr *)&iph->saddr;
1425	hash_expected = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1426	hash_location = tcp_parse_md5sig_option(th);
1427
1428	/* We've parsed the options - do we have a hash? */
1429	if (!hash_expected && !hash_location)
1430		return false;
1431
1432	if (hash_expected && !hash_location) {
1433		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1434		return true;
1435	}
1436
1437	if (!hash_expected && hash_location) {
1438		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1439		return true;
1440	}
1441
1442	/* Okay, so this is hash_expected and hash_location -
1443	 * so we need to calculate the checksum.
1444	 */
1445	genhash = tcp_v4_md5_hash_skb(newhash,
1446				      hash_expected,
1447				      NULL, skb);
1448
1449	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1450		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
1451		net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
1452				     &iph->saddr, ntohs(th->source),
1453				     &iph->daddr, ntohs(th->dest),
1454				     genhash ? " tcp_v4_calc_md5_hash failed"
1455				     : "", l3index);
1456		return true;
1457	}
1458	return false;
1459#endif
1460	return false;
1461}
1462
1463static void tcp_v4_init_req(struct request_sock *req,
1464			    const struct sock *sk_listener,
1465			    struct sk_buff *skb)
1466{
1467	struct inet_request_sock *ireq = inet_rsk(req);
1468	struct net *net = sock_net(sk_listener);
1469
1470	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1471	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1472	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1473}
1474
1475static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1476					  struct sk_buff *skb,
1477					  struct flowi *fl,
1478					  struct request_sock *req)
 
1479{
1480	tcp_v4_init_req(req, sk, skb);
1481
1482	if (security_inet_conn_request(sk, skb, req))
1483		return NULL;
1484
1485	return inet_csk_route_req(sk, &fl->u.ip4, req);
1486}
1487
1488struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1489	.family		=	PF_INET,
1490	.obj_size	=	sizeof(struct tcp_request_sock),
1491	.rtx_syn_ack	=	tcp_rtx_synack,
1492	.send_ack	=	tcp_v4_reqsk_send_ack,
1493	.destructor	=	tcp_v4_reqsk_destructor,
1494	.send_reset	=	tcp_v4_send_reset,
1495	.syn_ack_timeout =	tcp_syn_ack_timeout,
1496};
1497
1498const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1499	.mss_clamp	=	TCP_MSS_DEFAULT,
1500#ifdef CONFIG_TCP_MD5SIG
1501	.req_md5_lookup	=	tcp_v4_md5_lookup,
1502	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1503#endif
 
 
 
 
 
1504#ifdef CONFIG_SYN_COOKIES
1505	.cookie_init_seq =	cookie_v4_init_sequence,
1506#endif
1507	.route_req	=	tcp_v4_route_req,
1508	.init_seq	=	tcp_v4_init_seq,
1509	.init_ts_off	=	tcp_v4_init_ts_off,
1510	.send_synack	=	tcp_v4_send_synack,
1511};
1512
1513int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1514{
1515	/* Never answer to SYNs send to broadcast or multicast */
1516	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1517		goto drop;
1518
1519	return tcp_conn_request(&tcp_request_sock_ops,
1520				&tcp_request_sock_ipv4_ops, sk, skb);
1521
1522drop:
1523	tcp_listendrop(sk);
1524	return 0;
1525}
1526EXPORT_SYMBOL(tcp_v4_conn_request);
1527
1528
1529/*
1530 * The three way handshake has completed - we got a valid synack -
1531 * now create the new socket.
1532 */
1533struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1534				  struct request_sock *req,
1535				  struct dst_entry *dst,
1536				  struct request_sock *req_unhash,
1537				  bool *own_req)
1538{
1539	struct inet_request_sock *ireq;
1540	bool found_dup_sk = false;
1541	struct inet_sock *newinet;
1542	struct tcp_sock *newtp;
1543	struct sock *newsk;
1544#ifdef CONFIG_TCP_MD5SIG
1545	const union tcp_md5_addr *addr;
1546	struct tcp_md5sig_key *key;
1547	int l3index;
1548#endif
1549	struct ip_options_rcu *inet_opt;
1550
1551	if (sk_acceptq_is_full(sk))
1552		goto exit_overflow;
1553
1554	newsk = tcp_create_openreq_child(sk, req, skb);
1555	if (!newsk)
1556		goto exit_nonewsk;
1557
1558	newsk->sk_gso_type = SKB_GSO_TCPV4;
1559	inet_sk_rx_dst_set(newsk, skb);
1560
1561	newtp		      = tcp_sk(newsk);
1562	newinet		      = inet_sk(newsk);
1563	ireq		      = inet_rsk(req);
1564	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1565	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1566	newsk->sk_bound_dev_if = ireq->ir_iif;
1567	newinet->inet_saddr   = ireq->ir_loc_addr;
1568	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1569	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1570	newinet->mc_index     = inet_iif(skb);
1571	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1572	newinet->rcv_tos      = ip_hdr(skb)->tos;
1573	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1574	if (inet_opt)
1575		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1576	newinet->inet_id = prandom_u32();
1577
1578	/* Set ToS of the new socket based upon the value of incoming SYN.
1579	 * ECT bits are set later in tcp_init_transfer().
1580	 */
1581	if (sock_net(sk)->ipv4.sysctl_tcp_reflect_tos)
1582		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1583
1584	if (!dst) {
1585		dst = inet_csk_route_child_sock(sk, newsk, req);
1586		if (!dst)
1587			goto put_and_exit;
1588	} else {
1589		/* syncookie case : see end of cookie_v4_check() */
1590	}
1591	sk_setup_caps(newsk, dst);
1592
1593	tcp_ca_openreq_child(newsk, dst);
1594
1595	tcp_sync_mss(newsk, dst_mtu(dst));
1596	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1597
1598	tcp_initialize_rcv_mss(newsk);
1599
1600#ifdef CONFIG_TCP_MD5SIG
1601	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1602	/* Copy over the MD5 key from the original socket */
1603	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1604	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1605	if (key) {
1606		/*
1607		 * We're using one, so create a matching key
1608		 * on the newsk structure. If we fail to get
1609		 * memory, then we end up not copying the key
1610		 * across. Shucks.
1611		 */
1612		tcp_md5_do_add(newsk, addr, AF_INET, 32, l3index,
1613			       key->key, key->keylen, GFP_ATOMIC);
1614		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1615	}
1616#endif
 
 
 
 
1617
1618	if (__inet_inherit_port(sk, newsk) < 0)
1619		goto put_and_exit;
1620	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1621				       &found_dup_sk);
1622	if (likely(*own_req)) {
1623		tcp_move_syn(newtp, req);
1624		ireq->ireq_opt = NULL;
1625	} else {
1626		newinet->inet_opt = NULL;
1627
1628		if (!req_unhash && found_dup_sk) {
1629			/* This code path should only be executed in the
1630			 * syncookie case only
1631			 */
1632			bh_unlock_sock(newsk);
1633			sock_put(newsk);
1634			newsk = NULL;
1635		}
1636	}
1637	return newsk;
1638
1639exit_overflow:
1640	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1641exit_nonewsk:
1642	dst_release(dst);
1643exit:
1644	tcp_listendrop(sk);
1645	return NULL;
1646put_and_exit:
1647	newinet->inet_opt = NULL;
1648	inet_csk_prepare_forced_close(newsk);
1649	tcp_done(newsk);
1650	goto exit;
1651}
1652EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1653
1654static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1655{
1656#ifdef CONFIG_SYN_COOKIES
1657	const struct tcphdr *th = tcp_hdr(skb);
1658
1659	if (!th->syn)
1660		sk = cookie_v4_check(sk, skb);
1661#endif
1662	return sk;
1663}
1664
1665u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1666			 struct tcphdr *th, u32 *cookie)
1667{
1668	u16 mss = 0;
1669#ifdef CONFIG_SYN_COOKIES
1670	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1671				    &tcp_request_sock_ipv4_ops, sk, th);
1672	if (mss) {
1673		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1674		tcp_synq_overflow(sk);
1675	}
1676#endif
1677	return mss;
1678}
1679
1680INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1681							   u32));
1682/* The socket must have it's spinlock held when we get
1683 * here, unless it is a TCP_LISTEN socket.
1684 *
1685 * We have a potential double-lock case here, so even when
1686 * doing backlog processing we use the BH locking scheme.
1687 * This is because we cannot sleep with the original spinlock
1688 * held.
1689 */
1690int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1691{
 
1692	struct sock *rsk;
1693
1694	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1695		struct dst_entry *dst = sk->sk_rx_dst;
 
 
 
1696
1697		sock_rps_save_rxhash(sk, skb);
1698		sk_mark_napi_id(sk, skb);
1699		if (dst) {
1700			if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1701			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1702					     dst, 0)) {
 
1703				dst_release(dst);
1704				sk->sk_rx_dst = NULL;
1705			}
1706		}
1707		tcp_rcv_established(sk, skb);
1708		return 0;
1709	}
1710
1711	if (tcp_checksum_complete(skb))
1712		goto csum_err;
1713
1714	if (sk->sk_state == TCP_LISTEN) {
1715		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1716
1717		if (!nsk)
1718			goto discard;
1719		if (nsk != sk) {
1720			if (tcp_child_process(sk, nsk, skb)) {
 
1721				rsk = nsk;
1722				goto reset;
1723			}
1724			return 0;
1725		}
1726	} else
1727		sock_rps_save_rxhash(sk, skb);
1728
1729	if (tcp_rcv_state_process(sk, skb)) {
 
1730		rsk = sk;
1731		goto reset;
1732	}
1733	return 0;
1734
1735reset:
1736	tcp_v4_send_reset(rsk, skb);
1737discard:
1738	kfree_skb(skb);
1739	/* Be careful here. If this function gets more complicated and
1740	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1741	 * might be destroyed here. This current version compiles correctly,
1742	 * but you have been warned.
1743	 */
1744	return 0;
1745
1746csum_err:
 
1747	trace_tcp_bad_csum(skb);
1748	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1749	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1750	goto discard;
1751}
1752EXPORT_SYMBOL(tcp_v4_do_rcv);
1753
1754int tcp_v4_early_demux(struct sk_buff *skb)
1755{
 
1756	const struct iphdr *iph;
1757	const struct tcphdr *th;
1758	struct sock *sk;
1759
1760	if (skb->pkt_type != PACKET_HOST)
1761		return 0;
1762
1763	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1764		return 0;
1765
1766	iph = ip_hdr(skb);
1767	th = tcp_hdr(skb);
1768
1769	if (th->doff < sizeof(struct tcphdr) / 4)
1770		return 0;
1771
1772	sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1773				       iph->saddr, th->source,
1774				       iph->daddr, ntohs(th->dest),
1775				       skb->skb_iif, inet_sdif(skb));
1776	if (sk) {
1777		skb->sk = sk;
1778		skb->destructor = sock_edemux;
1779		if (sk_fullsock(sk)) {
1780			struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1781
1782			if (dst)
1783				dst = dst_check(dst, 0);
1784			if (dst &&
1785			    inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1786				skb_dst_set_noref(skb, dst);
1787		}
1788	}
1789	return 0;
1790}
1791
1792bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb)
 
1793{
1794	u32 limit = READ_ONCE(sk->sk_rcvbuf) + READ_ONCE(sk->sk_sndbuf);
1795	u32 tail_gso_size, tail_gso_segs;
1796	struct skb_shared_info *shinfo;
1797	const struct tcphdr *th;
1798	struct tcphdr *thtail;
1799	struct sk_buff *tail;
1800	unsigned int hdrlen;
1801	bool fragstolen;
1802	u32 gso_segs;
1803	u32 gso_size;
 
1804	int delta;
1805
1806	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1807	 * we can fix skb->truesize to its real value to avoid future drops.
1808	 * This is valid because skb is not yet charged to the socket.
1809	 * It has been noticed pure SACK packets were sometimes dropped
1810	 * (if cooked by drivers without copybreak feature).
1811	 */
1812	skb_condense(skb);
1813
1814	skb_dst_drop(skb);
1815
1816	if (unlikely(tcp_checksum_complete(skb))) {
1817		bh_unlock_sock(sk);
1818		trace_tcp_bad_csum(skb);
 
1819		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1820		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1821		return true;
1822	}
1823
1824	/* Attempt coalescing to last skb in backlog, even if we are
1825	 * above the limits.
1826	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
1827	 */
1828	th = (const struct tcphdr *)skb->data;
1829	hdrlen = th->doff * 4;
1830
1831	tail = sk->sk_backlog.tail;
1832	if (!tail)
1833		goto no_coalesce;
1834	thtail = (struct tcphdr *)tail->data;
1835
1836	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
1837	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
1838	    ((TCP_SKB_CB(tail)->tcp_flags |
1839	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
1840	    !((TCP_SKB_CB(tail)->tcp_flags &
1841	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
1842	    ((TCP_SKB_CB(tail)->tcp_flags ^
1843	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
1844#ifdef CONFIG_TLS_DEVICE
1845	    tail->decrypted != skb->decrypted ||
1846#endif
1847	    thtail->doff != th->doff ||
1848	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
1849		goto no_coalesce;
1850
1851	__skb_pull(skb, hdrlen);
1852
1853	shinfo = skb_shinfo(skb);
1854	gso_size = shinfo->gso_size ?: skb->len;
1855	gso_segs = shinfo->gso_segs ?: 1;
1856
1857	shinfo = skb_shinfo(tail);
1858	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
1859	tail_gso_segs = shinfo->gso_segs ?: 1;
1860
1861	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
1862		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
1863
1864		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
1865			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
1866			thtail->window = th->window;
1867		}
1868
1869		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
1870		 * thtail->fin, so that the fast path in tcp_rcv_established()
1871		 * is not entered if we append a packet with a FIN.
1872		 * SYN, RST, URG are not present.
1873		 * ACK is set on both packets.
1874		 * PSH : we do not really care in TCP stack,
1875		 *       at least for 'GRO' packets.
1876		 */
1877		thtail->fin |= th->fin;
1878		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1879
1880		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1881			TCP_SKB_CB(tail)->has_rxtstamp = true;
1882			tail->tstamp = skb->tstamp;
1883			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
1884		}
1885
1886		/* Not as strict as GRO. We only need to carry mss max value */
1887		shinfo->gso_size = max(gso_size, tail_gso_size);
1888		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
1889
1890		sk->sk_backlog.len += delta;
1891		__NET_INC_STATS(sock_net(sk),
1892				LINUX_MIB_TCPBACKLOGCOALESCE);
1893		kfree_skb_partial(skb, fragstolen);
1894		return false;
1895	}
1896	__skb_push(skb, hdrlen);
1897
1898no_coalesce:
 
 
 
 
 
 
 
 
1899	/* Only socket owner can try to collapse/prune rx queues
1900	 * to reduce memory overhead, so add a little headroom here.
1901	 * Few sockets backlog are possibly concurrently non empty.
1902	 */
1903	limit += 64*1024;
 
 
1904
1905	if (unlikely(sk_add_backlog(sk, skb, limit))) {
1906		bh_unlock_sock(sk);
 
1907		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1908		return true;
1909	}
1910	return false;
1911}
1912EXPORT_SYMBOL(tcp_add_backlog);
1913
1914int tcp_filter(struct sock *sk, struct sk_buff *skb)
1915{
1916	struct tcphdr *th = (struct tcphdr *)skb->data;
1917
1918	return sk_filter_trim_cap(sk, skb, th->doff * 4);
1919}
1920EXPORT_SYMBOL(tcp_filter);
1921
1922static void tcp_v4_restore_cb(struct sk_buff *skb)
1923{
1924	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1925		sizeof(struct inet_skb_parm));
1926}
1927
1928static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1929			   const struct tcphdr *th)
1930{
1931	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1932	 * barrier() makes sure compiler wont play fool^Waliasing games.
1933	 */
1934	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1935		sizeof(struct inet_skb_parm));
1936	barrier();
1937
1938	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1939	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1940				    skb->len - th->doff * 4);
1941	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1942	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1943	TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1944	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1945	TCP_SKB_CB(skb)->sacked	 = 0;
1946	TCP_SKB_CB(skb)->has_rxtstamp =
1947			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1948}
1949
1950/*
1951 *	From tcp_input.c
1952 */
1953
1954int tcp_v4_rcv(struct sk_buff *skb)
1955{
1956	struct net *net = dev_net(skb->dev);
1957	struct sk_buff *skb_to_free;
1958	int sdif = inet_sdif(skb);
1959	int dif = inet_iif(skb);
1960	const struct iphdr *iph;
1961	const struct tcphdr *th;
 
1962	bool refcounted;
1963	struct sock *sk;
1964	int ret;
 
1965
 
1966	if (skb->pkt_type != PACKET_HOST)
1967		goto discard_it;
1968
1969	/* Count it even if it's bad */
1970	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
1971
1972	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1973		goto discard_it;
1974
1975	th = (const struct tcphdr *)skb->data;
1976
1977	if (unlikely(th->doff < sizeof(struct tcphdr) / 4))
 
1978		goto bad_packet;
 
1979	if (!pskb_may_pull(skb, th->doff * 4))
1980		goto discard_it;
1981
1982	/* An explanation is required here, I think.
1983	 * Packet length and doff are validated by header prediction,
1984	 * provided case of th->doff==0 is eliminated.
1985	 * So, we defer the checks. */
1986
1987	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1988		goto csum_error;
1989
1990	th = (const struct tcphdr *)skb->data;
1991	iph = ip_hdr(skb);
1992lookup:
1993	sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
 
1994			       th->dest, sdif, &refcounted);
1995	if (!sk)
1996		goto no_tcp_socket;
1997
1998process:
1999	if (sk->sk_state == TCP_TIME_WAIT)
2000		goto do_time_wait;
2001
2002	if (sk->sk_state == TCP_NEW_SYN_RECV) {
2003		struct request_sock *req = inet_reqsk(sk);
2004		bool req_stolen = false;
2005		struct sock *nsk;
2006
2007		sk = req->rsk_listener;
2008		if (unlikely(tcp_v4_inbound_md5_hash(sk, skb, dif, sdif))) {
 
 
 
 
 
 
2009			sk_drops_add(sk, skb);
2010			reqsk_put(req);
2011			goto discard_it;
2012		}
2013		if (tcp_checksum_complete(skb)) {
2014			reqsk_put(req);
2015			goto csum_error;
2016		}
2017		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2018			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2019			if (!nsk) {
2020				inet_csk_reqsk_queue_drop_and_put(sk, req);
2021				goto lookup;
2022			}
2023			sk = nsk;
2024			/* reuseport_migrate_sock() has already held one sk_refcnt
2025			 * before returning.
2026			 */
2027		} else {
2028			/* We own a reference on the listener, increase it again
2029			 * as we might lose it too soon.
2030			 */
2031			sock_hold(sk);
2032		}
2033		refcounted = true;
2034		nsk = NULL;
2035		if (!tcp_filter(sk, skb)) {
2036			th = (const struct tcphdr *)skb->data;
2037			iph = ip_hdr(skb);
2038			tcp_v4_fill_cb(skb, iph, th);
2039			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
 
 
2040		}
2041		if (!nsk) {
2042			reqsk_put(req);
2043			if (req_stolen) {
2044				/* Another cpu got exclusive access to req
2045				 * and created a full blown socket.
2046				 * Try to feed this packet to this socket
2047				 * instead of discarding it.
2048				 */
2049				tcp_v4_restore_cb(skb);
2050				sock_put(sk);
2051				goto lookup;
2052			}
2053			goto discard_and_relse;
2054		}
 
2055		if (nsk == sk) {
2056			reqsk_put(req);
2057			tcp_v4_restore_cb(skb);
2058		} else if (tcp_child_process(sk, nsk, skb)) {
2059			tcp_v4_send_reset(nsk, skb);
2060			goto discard_and_relse;
2061		} else {
 
 
 
 
 
 
 
 
2062			sock_put(sk);
2063			return 0;
2064		}
2065	}
2066	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2067		__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2068		goto discard_and_relse;
 
 
 
 
 
 
2069	}
2070
2071	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
 
2072		goto discard_and_relse;
 
2073
2074	if (tcp_v4_inbound_md5_hash(sk, skb, dif, sdif))
 
 
2075		goto discard_and_relse;
2076
2077	nf_reset_ct(skb);
2078
2079	if (tcp_filter(sk, skb))
 
2080		goto discard_and_relse;
 
2081	th = (const struct tcphdr *)skb->data;
2082	iph = ip_hdr(skb);
2083	tcp_v4_fill_cb(skb, iph, th);
2084
2085	skb->dev = NULL;
2086
2087	if (sk->sk_state == TCP_LISTEN) {
2088		ret = tcp_v4_do_rcv(sk, skb);
2089		goto put_and_return;
2090	}
2091
2092	sk_incoming_cpu_update(sk);
2093
2094	bh_lock_sock_nested(sk);
2095	tcp_segs_in(tcp_sk(sk), skb);
2096	ret = 0;
2097	if (!sock_owned_by_user(sk)) {
2098		skb_to_free = sk->sk_rx_skb_cache;
2099		sk->sk_rx_skb_cache = NULL;
2100		ret = tcp_v4_do_rcv(sk, skb);
2101	} else {
2102		if (tcp_add_backlog(sk, skb))
2103			goto discard_and_relse;
2104		skb_to_free = NULL;
2105	}
2106	bh_unlock_sock(sk);
2107	if (skb_to_free)
2108		__kfree_skb(skb_to_free);
2109
2110put_and_return:
2111	if (refcounted)
2112		sock_put(sk);
2113
2114	return ret;
2115
2116no_tcp_socket:
 
2117	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2118		goto discard_it;
2119
2120	tcp_v4_fill_cb(skb, iph, th);
2121
2122	if (tcp_checksum_complete(skb)) {
2123csum_error:
 
2124		trace_tcp_bad_csum(skb);
2125		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2126bad_packet:
2127		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2128	} else {
2129		tcp_v4_send_reset(NULL, skb);
2130	}
2131
2132discard_it:
 
2133	/* Discard frame. */
2134	kfree_skb(skb);
2135	return 0;
2136
2137discard_and_relse:
2138	sk_drops_add(sk, skb);
2139	if (refcounted)
2140		sock_put(sk);
2141	goto discard_it;
2142
2143do_time_wait:
2144	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
 
2145		inet_twsk_put(inet_twsk(sk));
2146		goto discard_it;
2147	}
2148
2149	tcp_v4_fill_cb(skb, iph, th);
2150
2151	if (tcp_checksum_complete(skb)) {
2152		inet_twsk_put(inet_twsk(sk));
2153		goto csum_error;
2154	}
2155	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2156	case TCP_TW_SYN: {
2157		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2158							&tcp_hashinfo, skb,
2159							__tcp_hdrlen(th),
2160							iph->saddr, th->source,
2161							iph->daddr, th->dest,
2162							inet_iif(skb),
2163							sdif);
2164		if (sk2) {
2165			inet_twsk_deschedule_put(inet_twsk(sk));
2166			sk = sk2;
2167			tcp_v4_restore_cb(skb);
2168			refcounted = false;
 
2169			goto process;
2170		}
2171	}
2172		/* to ACK */
2173		fallthrough;
2174	case TCP_TW_ACK:
2175		tcp_v4_timewait_ack(sk, skb);
2176		break;
2177	case TCP_TW_RST:
2178		tcp_v4_send_reset(sk, skb);
2179		inet_twsk_deschedule_put(inet_twsk(sk));
2180		goto discard_it;
2181	case TCP_TW_SUCCESS:;
2182	}
2183	goto discard_it;
2184}
2185
2186static struct timewait_sock_ops tcp_timewait_sock_ops = {
2187	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2188	.twsk_unique	= tcp_twsk_unique,
2189	.twsk_destructor= tcp_twsk_destructor,
2190};
2191
2192void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2193{
2194	struct dst_entry *dst = skb_dst(skb);
2195
2196	if (dst && dst_hold_safe(dst)) {
2197		sk->sk_rx_dst = dst;
2198		inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2199	}
2200}
2201EXPORT_SYMBOL(inet_sk_rx_dst_set);
2202
2203const struct inet_connection_sock_af_ops ipv4_specific = {
2204	.queue_xmit	   = ip_queue_xmit,
2205	.send_check	   = tcp_v4_send_check,
2206	.rebuild_header	   = inet_sk_rebuild_header,
2207	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2208	.conn_request	   = tcp_v4_conn_request,
2209	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2210	.net_header_len	   = sizeof(struct iphdr),
2211	.setsockopt	   = ip_setsockopt,
2212	.getsockopt	   = ip_getsockopt,
2213	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2214	.sockaddr_len	   = sizeof(struct sockaddr_in),
2215	.mtu_reduced	   = tcp_v4_mtu_reduced,
2216};
2217EXPORT_SYMBOL(ipv4_specific);
2218
2219#ifdef CONFIG_TCP_MD5SIG
2220static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
 
2221	.md5_lookup		= tcp_v4_md5_lookup,
2222	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2223	.md5_parse		= tcp_v4_parse_md5_keys,
 
 
 
 
 
 
 
2224};
2225#endif
2226
2227/* NOTE: A lot of things set to zero explicitly by call to
2228 *       sk_alloc() so need not be done here.
2229 */
2230static int tcp_v4_init_sock(struct sock *sk)
2231{
2232	struct inet_connection_sock *icsk = inet_csk(sk);
2233
2234	tcp_init_sock(sk);
2235
2236	icsk->icsk_af_ops = &ipv4_specific;
2237
2238#ifdef CONFIG_TCP_MD5SIG
2239	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2240#endif
2241
2242	return 0;
2243}
2244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2245void tcp_v4_destroy_sock(struct sock *sk)
2246{
2247	struct tcp_sock *tp = tcp_sk(sk);
2248
 
 
 
 
2249	trace_tcp_destroy_sock(sk);
2250
2251	tcp_clear_xmit_timers(sk);
2252
2253	tcp_cleanup_congestion_control(sk);
2254
2255	tcp_cleanup_ulp(sk);
2256
2257	/* Cleanup up the write buffer. */
2258	tcp_write_queue_purge(sk);
2259
2260	/* Check if we want to disable active TFO */
2261	tcp_fastopen_active_disable_ofo_check(sk);
2262
2263	/* Cleans up our, hopefully empty, out_of_order_queue. */
2264	skb_rbtree_purge(&tp->out_of_order_queue);
2265
2266#ifdef CONFIG_TCP_MD5SIG
2267	/* Clean up the MD5 key list, if any */
2268	if (tp->md5sig_info) {
 
 
 
2269		tcp_clear_md5_list(sk);
2270		kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu);
2271		tp->md5sig_info = NULL;
2272	}
2273#endif
 
2274
2275	/* Clean up a referenced TCP bind bucket. */
2276	if (inet_csk(sk)->icsk_bind_hash)
2277		inet_put_port(sk);
2278
2279	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2280
2281	/* If socket is aborted during connect operation */
2282	tcp_free_fastopen_req(tp);
2283	tcp_fastopen_destroy_cipher(sk);
2284	tcp_saved_syn_free(tp);
2285
2286	sk_sockets_allocated_dec(sk);
2287}
2288EXPORT_SYMBOL(tcp_v4_destroy_sock);
2289
2290#ifdef CONFIG_PROC_FS
2291/* Proc filesystem TCP sock list dumping. */
2292
2293/*
2294 * Get next listener socket follow cur.  If cur is NULL, get first socket
2295 * starting from bucket given in st->bucket; when st->bucket is zero the
2296 * very first socket in the hash table is returned.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2297 */
2298static void *listening_get_next(struct seq_file *seq, void *cur)
2299{
2300	struct tcp_seq_afinfo *afinfo;
2301	struct tcp_iter_state *st = seq->private;
2302	struct net *net = seq_file_net(seq);
2303	struct inet_listen_hashbucket *ilb;
2304	struct hlist_nulls_node *node;
 
2305	struct sock *sk = cur;
2306
2307	if (st->bpf_seq_afinfo)
2308		afinfo = st->bpf_seq_afinfo;
2309	else
2310		afinfo = PDE_DATA(file_inode(seq->file));
2311
2312	if (!sk) {
2313get_head:
2314		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2315		spin_lock(&ilb->lock);
2316		sk = sk_nulls_head(&ilb->nulls_head);
2317		st->offset = 0;
2318		goto get_sk;
2319	}
2320	ilb = &tcp_hashinfo.listening_hash[st->bucket];
2321	++st->num;
2322	++st->offset;
2323
2324	sk = sk_nulls_next(sk);
2325get_sk:
2326	sk_nulls_for_each_from(sk, node) {
2327		if (!net_eq(sock_net(sk), net))
2328			continue;
2329		if (afinfo->family == AF_UNSPEC ||
2330		    sk->sk_family == afinfo->family)
2331			return sk;
2332	}
2333	spin_unlock(&ilb->lock);
2334	st->offset = 0;
2335	if (++st->bucket < INET_LHTABLE_SIZE)
2336		goto get_head;
2337	return NULL;
 
2338}
2339
2340static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2341{
2342	struct tcp_iter_state *st = seq->private;
2343	void *rc;
2344
2345	st->bucket = 0;
2346	st->offset = 0;
2347	rc = listening_get_next(seq, NULL);
2348
2349	while (rc && *pos) {
2350		rc = listening_get_next(seq, rc);
2351		--*pos;
2352	}
2353	return rc;
2354}
2355
2356static inline bool empty_bucket(const struct tcp_iter_state *st)
 
2357{
2358	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
2359}
2360
2361/*
2362 * Get first established socket starting from bucket given in st->bucket.
2363 * If st->bucket is zero, the very first socket in the hash is returned.
2364 */
2365static void *established_get_first(struct seq_file *seq)
2366{
2367	struct tcp_seq_afinfo *afinfo;
2368	struct tcp_iter_state *st = seq->private;
2369	struct net *net = seq_file_net(seq);
2370	void *rc = NULL;
2371
2372	if (st->bpf_seq_afinfo)
2373		afinfo = st->bpf_seq_afinfo;
2374	else
2375		afinfo = PDE_DATA(file_inode(seq->file));
2376
2377	st->offset = 0;
2378	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2379		struct sock *sk;
2380		struct hlist_nulls_node *node;
2381		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
 
 
2382
2383		/* Lockless fast path for the common case of empty buckets */
2384		if (empty_bucket(st))
2385			continue;
2386
2387		spin_lock_bh(lock);
2388		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2389			if ((afinfo->family != AF_UNSPEC &&
2390			     sk->sk_family != afinfo->family) ||
2391			    !net_eq(sock_net(sk), net)) {
2392				continue;
2393			}
2394			rc = sk;
2395			goto out;
2396		}
2397		spin_unlock_bh(lock);
2398	}
2399out:
2400	return rc;
2401}
2402
2403static void *established_get_next(struct seq_file *seq, void *cur)
2404{
2405	struct tcp_seq_afinfo *afinfo;
2406	struct sock *sk = cur;
2407	struct hlist_nulls_node *node;
2408	struct tcp_iter_state *st = seq->private;
2409	struct net *net = seq_file_net(seq);
2410
2411	if (st->bpf_seq_afinfo)
2412		afinfo = st->bpf_seq_afinfo;
2413	else
2414		afinfo = PDE_DATA(file_inode(seq->file));
2415
2416	++st->num;
2417	++st->offset;
2418
2419	sk = sk_nulls_next(sk);
2420
2421	sk_nulls_for_each_from(sk, node) {
2422		if ((afinfo->family == AF_UNSPEC ||
2423		     sk->sk_family == afinfo->family) &&
2424		    net_eq(sock_net(sk), net))
2425			return sk;
2426	}
2427
2428	spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2429	++st->bucket;
2430	return established_get_first(seq);
2431}
2432
2433static void *established_get_idx(struct seq_file *seq, loff_t pos)
2434{
2435	struct tcp_iter_state *st = seq->private;
2436	void *rc;
2437
2438	st->bucket = 0;
2439	rc = established_get_first(seq);
2440
2441	while (rc && pos) {
2442		rc = established_get_next(seq, rc);
2443		--pos;
2444	}
2445	return rc;
2446}
2447
2448static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2449{
2450	void *rc;
2451	struct tcp_iter_state *st = seq->private;
2452
2453	st->state = TCP_SEQ_STATE_LISTENING;
2454	rc	  = listening_get_idx(seq, &pos);
2455
2456	if (!rc) {
2457		st->state = TCP_SEQ_STATE_ESTABLISHED;
2458		rc	  = established_get_idx(seq, pos);
2459	}
2460
2461	return rc;
2462}
2463
2464static void *tcp_seek_last_pos(struct seq_file *seq)
2465{
 
2466	struct tcp_iter_state *st = seq->private;
2467	int bucket = st->bucket;
2468	int offset = st->offset;
2469	int orig_num = st->num;
2470	void *rc = NULL;
2471
2472	switch (st->state) {
2473	case TCP_SEQ_STATE_LISTENING:
2474		if (st->bucket >= INET_LHTABLE_SIZE)
2475			break;
2476		st->state = TCP_SEQ_STATE_LISTENING;
2477		rc = listening_get_next(seq, NULL);
2478		while (offset-- && rc && bucket == st->bucket)
2479			rc = listening_get_next(seq, rc);
2480		if (rc)
2481			break;
2482		st->bucket = 0;
2483		st->state = TCP_SEQ_STATE_ESTABLISHED;
2484		fallthrough;
2485	case TCP_SEQ_STATE_ESTABLISHED:
2486		if (st->bucket > tcp_hashinfo.ehash_mask)
2487			break;
2488		rc = established_get_first(seq);
2489		while (offset-- && rc && bucket == st->bucket)
2490			rc = established_get_next(seq, rc);
2491	}
2492
2493	st->num = orig_num;
2494
2495	return rc;
2496}
2497
2498void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2499{
2500	struct tcp_iter_state *st = seq->private;
2501	void *rc;
2502
2503	if (*pos && *pos == st->last_pos) {
2504		rc = tcp_seek_last_pos(seq);
2505		if (rc)
2506			goto out;
2507	}
2508
2509	st->state = TCP_SEQ_STATE_LISTENING;
2510	st->num = 0;
2511	st->bucket = 0;
2512	st->offset = 0;
2513	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2514
2515out:
2516	st->last_pos = *pos;
2517	return rc;
2518}
2519EXPORT_SYMBOL(tcp_seq_start);
2520
2521void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2522{
2523	struct tcp_iter_state *st = seq->private;
2524	void *rc = NULL;
2525
2526	if (v == SEQ_START_TOKEN) {
2527		rc = tcp_get_idx(seq, 0);
2528		goto out;
2529	}
2530
2531	switch (st->state) {
2532	case TCP_SEQ_STATE_LISTENING:
2533		rc = listening_get_next(seq, v);
2534		if (!rc) {
2535			st->state = TCP_SEQ_STATE_ESTABLISHED;
2536			st->bucket = 0;
2537			st->offset = 0;
2538			rc	  = established_get_first(seq);
2539		}
2540		break;
2541	case TCP_SEQ_STATE_ESTABLISHED:
2542		rc = established_get_next(seq, v);
2543		break;
2544	}
2545out:
2546	++*pos;
2547	st->last_pos = *pos;
2548	return rc;
2549}
2550EXPORT_SYMBOL(tcp_seq_next);
2551
2552void tcp_seq_stop(struct seq_file *seq, void *v)
2553{
 
2554	struct tcp_iter_state *st = seq->private;
2555
2556	switch (st->state) {
2557	case TCP_SEQ_STATE_LISTENING:
2558		if (v != SEQ_START_TOKEN)
2559			spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock);
2560		break;
2561	case TCP_SEQ_STATE_ESTABLISHED:
2562		if (v)
2563			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2564		break;
2565	}
2566}
2567EXPORT_SYMBOL(tcp_seq_stop);
2568
2569static void get_openreq4(const struct request_sock *req,
2570			 struct seq_file *f, int i)
2571{
2572	const struct inet_request_sock *ireq = inet_rsk(req);
2573	long delta = req->rsk_timer.expires - jiffies;
2574
2575	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2576		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2577		i,
2578		ireq->ir_loc_addr,
2579		ireq->ir_num,
2580		ireq->ir_rmt_addr,
2581		ntohs(ireq->ir_rmt_port),
2582		TCP_SYN_RECV,
2583		0, 0, /* could print option size, but that is af dependent. */
2584		1,    /* timers active (only the expire timer) */
2585		jiffies_delta_to_clock_t(delta),
2586		req->num_timeout,
2587		from_kuid_munged(seq_user_ns(f),
2588				 sock_i_uid(req->rsk_listener)),
2589		0,  /* non standard timer */
2590		0, /* open_requests have no inode */
2591		0,
2592		req);
2593}
2594
2595static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2596{
2597	int timer_active;
2598	unsigned long timer_expires;
2599	const struct tcp_sock *tp = tcp_sk(sk);
2600	const struct inet_connection_sock *icsk = inet_csk(sk);
2601	const struct inet_sock *inet = inet_sk(sk);
2602	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2603	__be32 dest = inet->inet_daddr;
2604	__be32 src = inet->inet_rcv_saddr;
2605	__u16 destp = ntohs(inet->inet_dport);
2606	__u16 srcp = ntohs(inet->inet_sport);
 
2607	int rx_queue;
2608	int state;
2609
2610	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2611	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2612	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
 
2613		timer_active	= 1;
2614		timer_expires	= icsk->icsk_timeout;
2615	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2616		timer_active	= 4;
2617		timer_expires	= icsk->icsk_timeout;
2618	} else if (timer_pending(&sk->sk_timer)) {
2619		timer_active	= 2;
2620		timer_expires	= sk->sk_timer.expires;
2621	} else {
2622		timer_active	= 0;
2623		timer_expires = jiffies;
2624	}
2625
2626	state = inet_sk_state_load(sk);
2627	if (state == TCP_LISTEN)
2628		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2629	else
2630		/* Because we don't lock the socket,
2631		 * we might find a transient negative value.
2632		 */
2633		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2634				      READ_ONCE(tp->copied_seq), 0);
2635
2636	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2637			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2638		i, src, srcp, dest, destp, state,
2639		READ_ONCE(tp->write_seq) - tp->snd_una,
2640		rx_queue,
2641		timer_active,
2642		jiffies_delta_to_clock_t(timer_expires - jiffies),
2643		icsk->icsk_retransmits,
2644		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2645		icsk->icsk_probes_out,
2646		sock_i_ino(sk),
2647		refcount_read(&sk->sk_refcnt), sk,
2648		jiffies_to_clock_t(icsk->icsk_rto),
2649		jiffies_to_clock_t(icsk->icsk_ack.ato),
2650		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2651		tp->snd_cwnd,
2652		state == TCP_LISTEN ?
2653		    fastopenq->max_qlen :
2654		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2655}
2656
2657static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2658			       struct seq_file *f, int i)
2659{
2660	long delta = tw->tw_timer.expires - jiffies;
2661	__be32 dest, src;
2662	__u16 destp, srcp;
2663
2664	dest  = tw->tw_daddr;
2665	src   = tw->tw_rcv_saddr;
2666	destp = ntohs(tw->tw_dport);
2667	srcp  = ntohs(tw->tw_sport);
2668
2669	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2670		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2671		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2672		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2673		refcount_read(&tw->tw_refcnt), tw);
2674}
2675
2676#define TMPSZ 150
2677
2678static int tcp4_seq_show(struct seq_file *seq, void *v)
2679{
2680	struct tcp_iter_state *st;
2681	struct sock *sk = v;
2682
2683	seq_setwidth(seq, TMPSZ - 1);
2684	if (v == SEQ_START_TOKEN) {
2685		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2686			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2687			   "inode");
2688		goto out;
2689	}
2690	st = seq->private;
2691
2692	if (sk->sk_state == TCP_TIME_WAIT)
2693		get_timewait4_sock(v, seq, st->num);
2694	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2695		get_openreq4(v, seq, st->num);
2696	else
2697		get_tcp4_sock(v, seq, st->num);
2698out:
2699	seq_pad(seq, '\n');
2700	return 0;
2701}
2702
2703#ifdef CONFIG_BPF_SYSCALL
 
 
 
 
 
 
 
 
 
2704struct bpf_iter__tcp {
2705	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2706	__bpf_md_ptr(struct sock_common *, sk_common);
2707	uid_t uid __aligned(8);
2708};
2709
2710static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2711			     struct sock_common *sk_common, uid_t uid)
2712{
2713	struct bpf_iter__tcp ctx;
2714
2715	meta->seq_num--;  /* skip SEQ_START_TOKEN */
2716	ctx.meta = meta;
2717	ctx.sk_common = sk_common;
2718	ctx.uid = uid;
2719	return bpf_iter_run_prog(prog, &ctx);
2720}
2721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2722static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
2723{
2724	struct bpf_iter_meta meta;
2725	struct bpf_prog *prog;
2726	struct sock *sk = v;
2727	uid_t uid;
 
2728
2729	if (v == SEQ_START_TOKEN)
2730		return 0;
2731
 
 
 
 
 
 
 
 
2732	if (sk->sk_state == TCP_TIME_WAIT) {
2733		uid = 0;
2734	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
2735		const struct request_sock *req = v;
2736
2737		uid = from_kuid_munged(seq_user_ns(seq),
2738				       sock_i_uid(req->rsk_listener));
2739	} else {
2740		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
2741	}
2742
2743	meta.seq = seq;
2744	prog = bpf_iter_get_info(&meta, false);
2745	return tcp_prog_seq_show(prog, &meta, v, uid);
 
 
 
 
 
 
2746}
2747
2748static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
2749{
 
2750	struct bpf_iter_meta meta;
2751	struct bpf_prog *prog;
2752
2753	if (!v) {
2754		meta.seq = seq;
2755		prog = bpf_iter_get_info(&meta, true);
2756		if (prog)
2757			(void)tcp_prog_seq_show(prog, &meta, v, 0);
2758	}
2759
2760	tcp_seq_stop(seq, v);
 
 
 
2761}
2762
2763static const struct seq_operations bpf_iter_tcp_seq_ops = {
2764	.show		= bpf_iter_tcp_seq_show,
2765	.start		= tcp_seq_start,
2766	.next		= tcp_seq_next,
2767	.stop		= bpf_iter_tcp_seq_stop,
2768};
2769#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2770
2771static const struct seq_operations tcp4_seq_ops = {
2772	.show		= tcp4_seq_show,
2773	.start		= tcp_seq_start,
2774	.next		= tcp_seq_next,
2775	.stop		= tcp_seq_stop,
2776};
2777
2778static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2779	.family		= AF_INET,
2780};
2781
2782static int __net_init tcp4_proc_init_net(struct net *net)
2783{
2784	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
2785			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
2786		return -ENOMEM;
2787	return 0;
2788}
2789
2790static void __net_exit tcp4_proc_exit_net(struct net *net)
2791{
2792	remove_proc_entry("tcp", net->proc_net);
2793}
2794
2795static struct pernet_operations tcp4_net_ops = {
2796	.init = tcp4_proc_init_net,
2797	.exit = tcp4_proc_exit_net,
2798};
2799
2800int __init tcp4_proc_init(void)
2801{
2802	return register_pernet_subsys(&tcp4_net_ops);
2803}
2804
2805void tcp4_proc_exit(void)
2806{
2807	unregister_pernet_subsys(&tcp4_net_ops);
2808}
2809#endif /* CONFIG_PROC_FS */
2810
2811/* @wake is one when sk_stream_write_space() calls us.
2812 * This sends EPOLLOUT only if notsent_bytes is half the limit.
2813 * This mimics the strategy used in sock_def_write_space().
2814 */
2815bool tcp_stream_memory_free(const struct sock *sk, int wake)
2816{
2817	const struct tcp_sock *tp = tcp_sk(sk);
2818	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
2819			    READ_ONCE(tp->snd_nxt);
2820
2821	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
2822}
2823EXPORT_SYMBOL(tcp_stream_memory_free);
2824
2825struct proto tcp_prot = {
2826	.name			= "TCP",
2827	.owner			= THIS_MODULE,
2828	.close			= tcp_close,
2829	.pre_connect		= tcp_v4_pre_connect,
2830	.connect		= tcp_v4_connect,
2831	.disconnect		= tcp_disconnect,
2832	.accept			= inet_csk_accept,
2833	.ioctl			= tcp_ioctl,
2834	.init			= tcp_v4_init_sock,
2835	.destroy		= tcp_v4_destroy_sock,
2836	.shutdown		= tcp_shutdown,
2837	.setsockopt		= tcp_setsockopt,
2838	.getsockopt		= tcp_getsockopt,
2839	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
2840	.keepalive		= tcp_set_keepalive,
2841	.recvmsg		= tcp_recvmsg,
2842	.sendmsg		= tcp_sendmsg,
2843	.sendpage		= tcp_sendpage,
2844	.backlog_rcv		= tcp_v4_do_rcv,
2845	.release_cb		= tcp_release_cb,
2846	.hash			= inet_hash,
2847	.unhash			= inet_unhash,
2848	.get_port		= inet_csk_get_port,
 
2849#ifdef CONFIG_BPF_SYSCALL
2850	.psock_update_sk_prot	= tcp_bpf_update_proto,
2851#endif
2852	.enter_memory_pressure	= tcp_enter_memory_pressure,
2853	.leave_memory_pressure	= tcp_leave_memory_pressure,
2854	.stream_memory_free	= tcp_stream_memory_free,
2855	.sockets_allocated	= &tcp_sockets_allocated,
2856	.orphan_count		= &tcp_orphan_count,
 
2857	.memory_allocated	= &tcp_memory_allocated,
 
 
2858	.memory_pressure	= &tcp_memory_pressure,
2859	.sysctl_mem		= sysctl_tcp_mem,
2860	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
2861	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
2862	.max_header		= MAX_TCP_HEADER,
2863	.obj_size		= sizeof(struct tcp_sock),
2864	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
2865	.twsk_prot		= &tcp_timewait_sock_ops,
2866	.rsk_prot		= &tcp_request_sock_ops,
2867	.h.hashinfo		= &tcp_hashinfo,
2868	.no_autobind		= true,
2869	.diag_destroy		= tcp_abort,
2870};
2871EXPORT_SYMBOL(tcp_prot);
2872
2873static void __net_exit tcp_sk_exit(struct net *net)
2874{
2875	int cpu;
2876
2877	if (net->ipv4.tcp_congestion_control)
2878		bpf_module_put(net->ipv4.tcp_congestion_control,
2879			       net->ipv4.tcp_congestion_control->owner);
 
2880
2881	for_each_possible_cpu(cpu)
2882		inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2883	free_percpu(net->ipv4.tcp_sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2884}
2885
2886static int __net_init tcp_sk_init(struct net *net)
2887{
2888	int res, cpu, cnt;
2889
2890	net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2891	if (!net->ipv4.tcp_sk)
2892		return -ENOMEM;
2893
2894	for_each_possible_cpu(cpu) {
2895		struct sock *sk;
2896
2897		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2898					   IPPROTO_TCP, net);
2899		if (res)
2900			goto fail;
2901		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
2902
2903		/* Please enforce IP_DF and IPID==0 for RST and
2904		 * ACK sent in SYN-RECV and TIME-WAIT state.
2905		 */
2906		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
2907
2908		*per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2909	}
2910
2911	net->ipv4.sysctl_tcp_ecn = 2;
2912	net->ipv4.sysctl_tcp_ecn_fallback = 1;
2913
2914	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2915	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
2916	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2917	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2918	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
2919
2920	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2921	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2922	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2923
2924	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
2925	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
2926	net->ipv4.sysctl_tcp_syncookies = 1;
2927	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
2928	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
2929	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
2930	net->ipv4.sysctl_tcp_orphan_retries = 0;
2931	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
2932	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
2933	net->ipv4.sysctl_tcp_tw_reuse = 2;
2934	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
2935
2936	cnt = tcp_hashinfo.ehash_mask + 1;
2937	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
2938	net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo;
2939
2940	net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 128);
2941	net->ipv4.sysctl_tcp_sack = 1;
2942	net->ipv4.sysctl_tcp_window_scaling = 1;
2943	net->ipv4.sysctl_tcp_timestamps = 1;
2944	net->ipv4.sysctl_tcp_early_retrans = 3;
2945	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
2946	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
2947	net->ipv4.sysctl_tcp_retrans_collapse = 1;
2948	net->ipv4.sysctl_tcp_max_reordering = 300;
2949	net->ipv4.sysctl_tcp_dsack = 1;
2950	net->ipv4.sysctl_tcp_app_win = 31;
2951	net->ipv4.sysctl_tcp_adv_win_scale = 1;
2952	net->ipv4.sysctl_tcp_frto = 2;
2953	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
2954	/* This limits the percentage of the congestion window which we
2955	 * will allow a single TSO frame to consume.  Building TSO frames
2956	 * which are too large can cause TCP streams to be bursty.
2957	 */
2958	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
2959	/* Default TSQ limit of 16 TSO segments */
2960	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
2961	/* rfc5961 challenge ack rate limiting */
2962	net->ipv4.sysctl_tcp_challenge_ack_limit = 1000;
 
 
2963	net->ipv4.sysctl_tcp_min_tso_segs = 2;
 
2964	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
2965	net->ipv4.sysctl_tcp_autocorking = 1;
2966	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
2967	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
2968	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
2969	if (net != &init_net) {
2970		memcpy(net->ipv4.sysctl_tcp_rmem,
2971		       init_net.ipv4.sysctl_tcp_rmem,
2972		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
2973		memcpy(net->ipv4.sysctl_tcp_wmem,
2974		       init_net.ipv4.sysctl_tcp_wmem,
2975		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
2976	}
2977	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
2978	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
2979	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
 
2980	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
2981	spin_lock_init(&net->ipv4.tcp_fastopen_ctx_lock);
2982	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
2983	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
2984
 
 
 
 
 
 
 
 
2985	/* Reno is always built in */
2986	if (!net_eq(net, &init_net) &&
2987	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
2988			       init_net.ipv4.tcp_congestion_control->owner))
2989		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
2990	else
2991		net->ipv4.tcp_congestion_control = &tcp_reno;
2992
2993	return 0;
2994fail:
2995	tcp_sk_exit(net);
2996
2997	return res;
 
 
 
2998}
2999
3000static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3001{
3002	struct net *net;
3003
3004	inet_twsk_purge(&tcp_hashinfo, AF_INET);
3005
3006	list_for_each_entry(net, net_exit_list, exit_list)
 
 
 
 
 
 
 
 
 
 
 
 
3007		tcp_fastopen_ctx_destroy(net);
 
 
 
3008}
3009
3010static struct pernet_operations __net_initdata tcp_sk_ops = {
3011       .init	   = tcp_sk_init,
3012       .exit	   = tcp_sk_exit,
3013       .exit_batch = tcp_sk_exit_batch,
3014};
3015
3016#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3017DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3018		     struct sock_common *sk_common, uid_t uid)
3019
 
 
3020static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3021{
3022	struct tcp_iter_state *st = priv_data;
3023	struct tcp_seq_afinfo *afinfo;
3024	int ret;
3025
3026	afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3027	if (!afinfo)
3028		return -ENOMEM;
3029
3030	afinfo->family = AF_UNSPEC;
3031	st->bpf_seq_afinfo = afinfo;
3032	ret = bpf_iter_init_seq_net(priv_data, aux);
3033	if (ret)
3034		kfree(afinfo);
3035	return ret;
 
3036}
3037
3038static void bpf_iter_fini_tcp(void *priv_data)
3039{
3040	struct tcp_iter_state *st = priv_data;
3041
3042	kfree(st->bpf_seq_afinfo);
3043	bpf_iter_fini_seq_net(priv_data);
 
3044}
3045
3046static const struct bpf_iter_seq_info tcp_seq_info = {
3047	.seq_ops		= &bpf_iter_tcp_seq_ops,
3048	.init_seq_private	= bpf_iter_init_tcp,
3049	.fini_seq_private	= bpf_iter_fini_tcp,
3050	.seq_priv_size		= sizeof(struct tcp_iter_state),
3051};
3052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3053static struct bpf_iter_reg tcp_reg_info = {
3054	.target			= "tcp",
3055	.ctx_arg_info_size	= 1,
3056	.ctx_arg_info		= {
3057		{ offsetof(struct bpf_iter__tcp, sk_common),
3058		  PTR_TO_BTF_ID_OR_NULL },
3059	},
 
3060	.seq_info		= &tcp_seq_info,
3061};
3062
3063static void __init bpf_iter_register(void)
3064{
3065	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3066	if (bpf_iter_reg_target(&tcp_reg_info))
3067		pr_warn("Warning: could not register bpf iterator tcp\n");
3068}
3069
3070#endif
3071
3072void __init tcp_v4_init(void)
3073{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3074	if (register_pernet_subsys(&tcp_sk_ops))
3075		panic("Failed to create the TCP control socket.\n");
3076
3077#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3078	bpf_iter_register();
3079#endif
3080}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 *		IPv4 specific functions
  10 *
  11 *		code split from:
  12 *		linux/ipv4/tcp.c
  13 *		linux/ipv4/tcp_input.c
  14 *		linux/ipv4/tcp_output.c
  15 *
  16 *		See tcp.c for author information
  17 */
  18
  19/*
  20 * Changes:
  21 *		David S. Miller	:	New socket lookup architecture.
  22 *					This code is dedicated to John Dyson.
  23 *		David S. Miller :	Change semantics of established hash,
  24 *					half is devoted to TIME_WAIT sockets
  25 *					and the rest go in the other half.
  26 *		Andi Kleen :		Add support for syncookies and fixed
  27 *					some bugs: ip options weren't passed to
  28 *					the TCP layer, missed a check for an
  29 *					ACK bit.
  30 *		Andi Kleen :		Implemented fast path mtu discovery.
  31 *	     				Fixed many serious bugs in the
  32 *					request_sock handling and moved
  33 *					most of it into the af independent code.
  34 *					Added tail drop and some other bugfixes.
  35 *					Added new listen semantics.
  36 *		Mike McLagan	:	Routing by source
  37 *	Juan Jose Ciarlante:		ip_dynaddr bits
  38 *		Andi Kleen:		various fixes.
  39 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
  40 *					coma.
  41 *	Andi Kleen		:	Fix new listen.
  42 *	Andi Kleen		:	Fix accept error reporting.
  43 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  44 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
  45 *					a single port at the same time.
  46 */
  47
  48#define pr_fmt(fmt) "TCP: " fmt
  49
  50#include <linux/bottom_half.h>
  51#include <linux/types.h>
  52#include <linux/fcntl.h>
  53#include <linux/module.h>
  54#include <linux/random.h>
  55#include <linux/cache.h>
  56#include <linux/jhash.h>
  57#include <linux/init.h>
  58#include <linux/times.h>
  59#include <linux/slab.h>
  60#include <linux/sched.h>
  61
  62#include <net/net_namespace.h>
  63#include <net/icmp.h>
  64#include <net/inet_hashtables.h>
  65#include <net/tcp.h>
  66#include <net/transp_v6.h>
  67#include <net/ipv6.h>
  68#include <net/inet_common.h>
  69#include <net/timewait_sock.h>
  70#include <net/xfrm.h>
  71#include <net/secure_seq.h>
  72#include <net/busy_poll.h>
  73#include <net/rstreason.h>
  74
  75#include <linux/inet.h>
  76#include <linux/ipv6.h>
  77#include <linux/stddef.h>
  78#include <linux/proc_fs.h>
  79#include <linux/seq_file.h>
  80#include <linux/inetdevice.h>
  81#include <linux/btf_ids.h>
  82#include <linux/skbuff_ref.h>
  83
  84#include <crypto/hash.h>
  85#include <linux/scatterlist.h>
  86
  87#include <trace/events/tcp.h>
  88
  89#ifdef CONFIG_TCP_MD5SIG
  90static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
  91			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
  92#endif
  93
  94struct inet_hashinfo tcp_hashinfo;
  95EXPORT_SYMBOL(tcp_hashinfo);
  96
  97static DEFINE_PER_CPU(struct sock_bh_locked, ipv4_tcp_sk) = {
  98	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
  99};
 100
 101static DEFINE_MUTEX(tcp_exit_batch_mutex);
 102
 103static u32 tcp_v4_init_seq(const struct sk_buff *skb)
 104{
 105	return secure_tcp_seq(ip_hdr(skb)->daddr,
 106			      ip_hdr(skb)->saddr,
 107			      tcp_hdr(skb)->dest,
 108			      tcp_hdr(skb)->source);
 109}
 110
 111static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
 112{
 113	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
 114}
 115
 116int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
 117{
 118	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
 119	const struct inet_timewait_sock *tw = inet_twsk(sktw);
 120	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
 121	struct tcp_sock *tp = tcp_sk(sk);
 122	int ts_recent_stamp;
 123
 124	if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2)
 125		reuse = 0;
 126
 127	if (reuse == 2) {
 128		/* Still does not detect *everything* that goes through
 129		 * lo, since we require a loopback src or dst address
 130		 * or direct binding to 'lo' interface.
 131		 */
 132		bool loopback = false;
 133		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
 134			loopback = true;
 135#if IS_ENABLED(CONFIG_IPV6)
 136		if (tw->tw_family == AF_INET6) {
 137			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
 138			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
 139			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
 140			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
 141				loopback = true;
 142		} else
 143#endif
 144		{
 145			if (ipv4_is_loopback(tw->tw_daddr) ||
 146			    ipv4_is_loopback(tw->tw_rcv_saddr))
 147				loopback = true;
 148		}
 149		if (!loopback)
 150			reuse = 0;
 151	}
 152
 153	/* With PAWS, it is safe from the viewpoint
 154	   of data integrity. Even without PAWS it is safe provided sequence
 155	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
 156
 157	   Actually, the idea is close to VJ's one, only timestamp cache is
 158	   held not per host, but per port pair and TW bucket is used as state
 159	   holder.
 160
 161	   If TW bucket has been already destroyed we fall back to VJ's scheme
 162	   and use initial timestamp retrieved from peer table.
 163	 */
 164	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
 165	if (ts_recent_stamp &&
 166	    (!twp || (reuse && time_after32(ktime_get_seconds(),
 167					    ts_recent_stamp)))) {
 168		/* inet_twsk_hashdance_schedule() sets sk_refcnt after putting twsk
 169		 * and releasing the bucket lock.
 170		 */
 171		if (unlikely(!refcount_inc_not_zero(&sktw->sk_refcnt)))
 172			return 0;
 173
 174		/* In case of repair and re-using TIME-WAIT sockets we still
 175		 * want to be sure that it is safe as above but honor the
 176		 * sequence numbers and time stamps set as part of the repair
 177		 * process.
 178		 *
 179		 * Without this check re-using a TIME-WAIT socket with TCP
 180		 * repair would accumulate a -1 on the repair assigned
 181		 * sequence number. The first time it is reused the sequence
 182		 * is -1, the second time -2, etc. This fixes that issue
 183		 * without appearing to create any others.
 184		 */
 185		if (likely(!tp->repair)) {
 186			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
 187
 188			if (!seq)
 189				seq = 1;
 190			WRITE_ONCE(tp->write_seq, seq);
 191			tp->rx_opt.ts_recent	   = READ_ONCE(tcptw->tw_ts_recent);
 192			tp->rx_opt.ts_recent_stamp = ts_recent_stamp;
 193		}
 194
 195		return 1;
 196	}
 197
 198	return 0;
 199}
 200EXPORT_SYMBOL_GPL(tcp_twsk_unique);
 201
 202static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
 203			      int addr_len)
 204{
 205	/* This check is replicated from tcp_v4_connect() and intended to
 206	 * prevent BPF program called below from accessing bytes that are out
 207	 * of the bound specified by user in addr_len.
 208	 */
 209	if (addr_len < sizeof(struct sockaddr_in))
 210		return -EINVAL;
 211
 212	sock_owned_by_me(sk);
 213
 214	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len);
 215}
 216
 217/* This will initiate an outgoing connection. */
 218int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
 219{
 220	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
 221	struct inet_timewait_death_row *tcp_death_row;
 222	struct inet_sock *inet = inet_sk(sk);
 223	struct tcp_sock *tp = tcp_sk(sk);
 224	struct ip_options_rcu *inet_opt;
 225	struct net *net = sock_net(sk);
 226	__be16 orig_sport, orig_dport;
 227	__be32 daddr, nexthop;
 228	struct flowi4 *fl4;
 229	struct rtable *rt;
 230	int err;
 
 
 231
 232	if (addr_len < sizeof(struct sockaddr_in))
 233		return -EINVAL;
 234
 235	if (usin->sin_family != AF_INET)
 236		return -EAFNOSUPPORT;
 237
 238	nexthop = daddr = usin->sin_addr.s_addr;
 239	inet_opt = rcu_dereference_protected(inet->inet_opt,
 240					     lockdep_sock_is_held(sk));
 241	if (inet_opt && inet_opt->opt.srr) {
 242		if (!daddr)
 243			return -EINVAL;
 244		nexthop = inet_opt->opt.faddr;
 245	}
 246
 247	orig_sport = inet->inet_sport;
 248	orig_dport = usin->sin_port;
 249	fl4 = &inet->cork.fl.u.ip4;
 250	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
 251			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
 252			      orig_dport, sk);
 
 253	if (IS_ERR(rt)) {
 254		err = PTR_ERR(rt);
 255		if (err == -ENETUNREACH)
 256			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
 257		return err;
 258	}
 259
 260	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
 261		ip_rt_put(rt);
 262		return -ENETUNREACH;
 263	}
 264
 265	if (!inet_opt || !inet_opt->opt.srr)
 266		daddr = fl4->daddr;
 267
 268	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
 269
 270	if (!inet->inet_saddr) {
 271		err = inet_bhash2_update_saddr(sk,  &fl4->saddr, AF_INET);
 272		if (err) {
 273			ip_rt_put(rt);
 274			return err;
 275		}
 276	} else {
 277		sk_rcv_saddr_set(sk, inet->inet_saddr);
 278	}
 279
 280	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
 281		/* Reset inherited state */
 282		tp->rx_opt.ts_recent	   = 0;
 283		tp->rx_opt.ts_recent_stamp = 0;
 284		if (likely(!tp->repair))
 285			WRITE_ONCE(tp->write_seq, 0);
 286	}
 287
 288	inet->inet_dport = usin->sin_port;
 289	sk_daddr_set(sk, daddr);
 290
 291	inet_csk(sk)->icsk_ext_hdr_len = 0;
 292	if (inet_opt)
 293		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
 294
 295	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
 296
 297	/* Socket identity is still unknown (sport may be zero).
 298	 * However we set state to SYN-SENT and not releasing socket
 299	 * lock select source port, enter ourselves into the hash tables and
 300	 * complete initialization after this.
 301	 */
 302	tcp_set_state(sk, TCP_SYN_SENT);
 303	err = inet_hash_connect(tcp_death_row, sk);
 304	if (err)
 305		goto failure;
 306
 307	sk_set_txhash(sk);
 308
 309	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
 310			       inet->inet_sport, inet->inet_dport, sk);
 311	if (IS_ERR(rt)) {
 312		err = PTR_ERR(rt);
 313		rt = NULL;
 314		goto failure;
 315	}
 316	tp->tcp_usec_ts = dst_tcp_usec_ts(&rt->dst);
 317	/* OK, now commit destination to socket.  */
 318	sk->sk_gso_type = SKB_GSO_TCPV4;
 319	sk_setup_caps(sk, &rt->dst);
 320	rt = NULL;
 321
 322	if (likely(!tp->repair)) {
 323		if (!tp->write_seq)
 324			WRITE_ONCE(tp->write_seq,
 325				   secure_tcp_seq(inet->inet_saddr,
 326						  inet->inet_daddr,
 327						  inet->inet_sport,
 328						  usin->sin_port));
 329		WRITE_ONCE(tp->tsoffset,
 330			   secure_tcp_ts_off(net, inet->inet_saddr,
 331					     inet->inet_daddr));
 332	}
 333
 334	atomic_set(&inet->inet_id, get_random_u16());
 335
 336	if (tcp_fastopen_defer_connect(sk, &err))
 337		return err;
 338	if (err)
 339		goto failure;
 340
 341	err = tcp_connect(sk);
 342
 343	if (err)
 344		goto failure;
 345
 346	return 0;
 347
 348failure:
 349	/*
 350	 * This unhashes the socket and releases the local port,
 351	 * if necessary.
 352	 */
 353	tcp_set_state(sk, TCP_CLOSE);
 354	inet_bhash2_reset_saddr(sk);
 355	ip_rt_put(rt);
 356	sk->sk_route_caps = 0;
 357	inet->inet_dport = 0;
 358	return err;
 359}
 360EXPORT_SYMBOL(tcp_v4_connect);
 361
 362/*
 363 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
 364 * It can be called through tcp_release_cb() if socket was owned by user
 365 * at the time tcp_v4_err() was called to handle ICMP message.
 366 */
 367void tcp_v4_mtu_reduced(struct sock *sk)
 368{
 369	struct inet_sock *inet = inet_sk(sk);
 370	struct dst_entry *dst;
 371	u32 mtu;
 372
 373	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
 374		return;
 375	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
 376	dst = inet_csk_update_pmtu(sk, mtu);
 377	if (!dst)
 378		return;
 379
 380	/* Something is about to be wrong... Remember soft error
 381	 * for the case, if this connection will not able to recover.
 382	 */
 383	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
 384		WRITE_ONCE(sk->sk_err_soft, EMSGSIZE);
 385
 386	mtu = dst_mtu(dst);
 387
 388	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
 389	    ip_sk_accept_pmtu(sk) &&
 390	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
 391		tcp_sync_mss(sk, mtu);
 392
 393		/* Resend the TCP packet because it's
 394		 * clear that the old packet has been
 395		 * dropped. This is the new "fast" path mtu
 396		 * discovery.
 397		 */
 398		tcp_simple_retransmit(sk);
 399	} /* else let the usual retransmit timer handle it */
 400}
 401EXPORT_SYMBOL(tcp_v4_mtu_reduced);
 402
 403static void do_redirect(struct sk_buff *skb, struct sock *sk)
 404{
 405	struct dst_entry *dst = __sk_dst_check(sk, 0);
 406
 407	if (dst)
 408		dst->ops->redirect(dst, sk, skb);
 409}
 410
 411
 412/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
 413void tcp_req_err(struct sock *sk, u32 seq, bool abort)
 414{
 415	struct request_sock *req = inet_reqsk(sk);
 416	struct net *net = sock_net(sk);
 417
 418	/* ICMPs are not backlogged, hence we cannot get
 419	 * an established socket here.
 420	 */
 421	if (seq != tcp_rsk(req)->snt_isn) {
 422		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
 423	} else if (abort) {
 424		/*
 425		 * Still in SYN_RECV, just remove it silently.
 426		 * There is no good way to pass the error to the newly
 427		 * created socket, and POSIX does not want network
 428		 * errors returned from accept().
 429		 */
 430		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
 431		tcp_listendrop(req->rsk_listener);
 432	}
 433	reqsk_put(req);
 434}
 435EXPORT_SYMBOL(tcp_req_err);
 436
 437/* TCP-LD (RFC 6069) logic */
 438void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
 439{
 440	struct inet_connection_sock *icsk = inet_csk(sk);
 441	struct tcp_sock *tp = tcp_sk(sk);
 442	struct sk_buff *skb;
 443	s32 remaining;
 444	u32 delta_us;
 445
 446	if (sock_owned_by_user(sk))
 447		return;
 448
 449	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
 450	    !icsk->icsk_backoff)
 451		return;
 452
 453	skb = tcp_rtx_queue_head(sk);
 454	if (WARN_ON_ONCE(!skb))
 455		return;
 456
 457	icsk->icsk_backoff--;
 458	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
 459	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
 460
 461	tcp_mstamp_refresh(tp);
 462	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
 463	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
 464
 465	if (remaining > 0) {
 466		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 467					  remaining, TCP_RTO_MAX);
 468	} else {
 469		/* RTO revert clocked out retransmission.
 470		 * Will retransmit now.
 471		 */
 472		tcp_retransmit_timer(sk);
 473	}
 474}
 475EXPORT_SYMBOL(tcp_ld_RTO_revert);
 476
 477/*
 478 * This routine is called by the ICMP module when it gets some
 479 * sort of error condition.  If err < 0 then the socket should
 480 * be closed and the error returned to the user.  If err > 0
 481 * it's just the icmp type << 8 | icmp code.  After adjustment
 482 * header points to the first 8 bytes of the tcp header.  We need
 483 * to find the appropriate port.
 484 *
 485 * The locking strategy used here is very "optimistic". When
 486 * someone else accesses the socket the ICMP is just dropped
 487 * and for some paths there is no check at all.
 488 * A more general error queue to queue errors for later handling
 489 * is probably better.
 490 *
 491 */
 492
 493int tcp_v4_err(struct sk_buff *skb, u32 info)
 494{
 495	const struct iphdr *iph = (const struct iphdr *)skb->data;
 496	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
 497	struct tcp_sock *tp;
 
 498	const int type = icmp_hdr(skb)->type;
 499	const int code = icmp_hdr(skb)->code;
 500	struct sock *sk;
 501	struct request_sock *fastopen;
 502	u32 seq, snd_una;
 503	int err;
 504	struct net *net = dev_net(skb->dev);
 505
 506	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
 507				       iph->daddr, th->dest, iph->saddr,
 508				       ntohs(th->source), inet_iif(skb), 0);
 509	if (!sk) {
 510		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 511		return -ENOENT;
 512	}
 513	if (sk->sk_state == TCP_TIME_WAIT) {
 514		/* To increase the counter of ignored icmps for TCP-AO */
 515		tcp_ao_ignore_icmp(sk, AF_INET, type, code);
 516		inet_twsk_put(inet_twsk(sk));
 517		return 0;
 518	}
 519	seq = ntohl(th->seq);
 520	if (sk->sk_state == TCP_NEW_SYN_RECV) {
 521		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
 522				     type == ICMP_TIME_EXCEEDED ||
 523				     (type == ICMP_DEST_UNREACH &&
 524				      (code == ICMP_NET_UNREACH ||
 525				       code == ICMP_HOST_UNREACH)));
 526		return 0;
 527	}
 528
 529	if (tcp_ao_ignore_icmp(sk, AF_INET, type, code)) {
 530		sock_put(sk);
 531		return 0;
 532	}
 533
 534	bh_lock_sock(sk);
 535	/* If too many ICMPs get dropped on busy
 536	 * servers this needs to be solved differently.
 537	 * We do take care of PMTU discovery (RFC1191) special case :
 538	 * we can receive locally generated ICMP messages while socket is held.
 539	 */
 540	if (sock_owned_by_user(sk)) {
 541		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
 542			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
 543	}
 544	if (sk->sk_state == TCP_CLOSE)
 545		goto out;
 546
 547	if (static_branch_unlikely(&ip4_min_ttl)) {
 548		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
 549		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
 550			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
 551			goto out;
 552		}
 553	}
 554
 555	tp = tcp_sk(sk);
 556	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
 557	fastopen = rcu_dereference(tp->fastopen_rsk);
 558	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
 559	if (sk->sk_state != TCP_LISTEN &&
 560	    !between(seq, snd_una, tp->snd_nxt)) {
 561		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
 562		goto out;
 563	}
 564
 565	switch (type) {
 566	case ICMP_REDIRECT:
 567		if (!sock_owned_by_user(sk))
 568			do_redirect(skb, sk);
 569		goto out;
 570	case ICMP_SOURCE_QUENCH:
 571		/* Just silently ignore these. */
 572		goto out;
 573	case ICMP_PARAMETERPROB:
 574		err = EPROTO;
 575		break;
 576	case ICMP_DEST_UNREACH:
 577		if (code > NR_ICMP_UNREACH)
 578			goto out;
 579
 580		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
 581			/* We are not interested in TCP_LISTEN and open_requests
 582			 * (SYN-ACKs send out by Linux are always <576bytes so
 583			 * they should go through unfragmented).
 584			 */
 585			if (sk->sk_state == TCP_LISTEN)
 586				goto out;
 587
 588			WRITE_ONCE(tp->mtu_info, info);
 589			if (!sock_owned_by_user(sk)) {
 590				tcp_v4_mtu_reduced(sk);
 591			} else {
 592				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
 593					sock_hold(sk);
 594			}
 595			goto out;
 596		}
 597
 598		err = icmp_err_convert[code].errno;
 599		/* check if this ICMP message allows revert of backoff.
 600		 * (see RFC 6069)
 601		 */
 602		if (!fastopen &&
 603		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
 604			tcp_ld_RTO_revert(sk, seq);
 605		break;
 606	case ICMP_TIME_EXCEEDED:
 607		err = EHOSTUNREACH;
 608		break;
 609	default:
 610		goto out;
 611	}
 612
 613	switch (sk->sk_state) {
 614	case TCP_SYN_SENT:
 615	case TCP_SYN_RECV:
 616		/* Only in fast or simultaneous open. If a fast open socket is
 617		 * already accepted it is treated as a connected one below.
 618		 */
 619		if (fastopen && !fastopen->sk)
 620			break;
 621
 622		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
 623
 624		if (!sock_owned_by_user(sk))
 625			tcp_done_with_error(sk, err);
 626		else
 627			WRITE_ONCE(sk->sk_err_soft, err);
 
 
 
 
 
 628		goto out;
 629	}
 630
 631	/* If we've already connected we will keep trying
 632	 * until we time out, or the user gives up.
 633	 *
 634	 * rfc1122 4.2.3.9 allows to consider as hard errors
 635	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
 636	 * but it is obsoleted by pmtu discovery).
 637	 *
 638	 * Note, that in modern internet, where routing is unreliable
 639	 * and in each dark corner broken firewalls sit, sending random
 640	 * errors ordered by their masters even this two messages finally lose
 641	 * their original sense (even Linux sends invalid PORT_UNREACHs)
 642	 *
 643	 * Now we are in compliance with RFCs.
 644	 *							--ANK (980905)
 645	 */
 646
 647	if (!sock_owned_by_user(sk) &&
 648	    inet_test_bit(RECVERR, sk)) {
 649		WRITE_ONCE(sk->sk_err, err);
 650		sk_error_report(sk);
 651	} else	{ /* Only an error on timeout */
 652		WRITE_ONCE(sk->sk_err_soft, err);
 653	}
 654
 655out:
 656	bh_unlock_sock(sk);
 657	sock_put(sk);
 658	return 0;
 659}
 660
 661void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
 662{
 663	struct tcphdr *th = tcp_hdr(skb);
 664
 665	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
 666	skb->csum_start = skb_transport_header(skb) - skb->head;
 667	skb->csum_offset = offsetof(struct tcphdr, check);
 668}
 669
 670/* This routine computes an IPv4 TCP checksum. */
 671void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
 672{
 673	const struct inet_sock *inet = inet_sk(sk);
 674
 675	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
 676}
 677EXPORT_SYMBOL(tcp_v4_send_check);
 678
 679#define REPLY_OPTIONS_LEN      (MAX_TCP_OPTION_SPACE / sizeof(__be32))
 680
 681static bool tcp_v4_ao_sign_reset(const struct sock *sk, struct sk_buff *skb,
 682				 const struct tcp_ao_hdr *aoh,
 683				 struct ip_reply_arg *arg, struct tcphdr *reply,
 684				 __be32 reply_options[REPLY_OPTIONS_LEN])
 685{
 686#ifdef CONFIG_TCP_AO
 687	int sdif = tcp_v4_sdif(skb);
 688	int dif = inet_iif(skb);
 689	int l3index = sdif ? dif : 0;
 690	bool allocated_traffic_key;
 691	struct tcp_ao_key *key;
 692	char *traffic_key;
 693	bool drop = true;
 694	u32 ao_sne = 0;
 695	u8 keyid;
 696
 697	rcu_read_lock();
 698	if (tcp_ao_prepare_reset(sk, skb, aoh, l3index, ntohl(reply->seq),
 699				 &key, &traffic_key, &allocated_traffic_key,
 700				 &keyid, &ao_sne))
 701		goto out;
 702
 703	reply_options[0] = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key) << 16) |
 704				 (aoh->rnext_keyid << 8) | keyid);
 705	arg->iov[0].iov_len += tcp_ao_len_aligned(key);
 706	reply->doff = arg->iov[0].iov_len / 4;
 707
 708	if (tcp_ao_hash_hdr(AF_INET, (char *)&reply_options[1],
 709			    key, traffic_key,
 710			    (union tcp_ao_addr *)&ip_hdr(skb)->saddr,
 711			    (union tcp_ao_addr *)&ip_hdr(skb)->daddr,
 712			    reply, ao_sne))
 713		goto out;
 714	drop = false;
 715out:
 716	rcu_read_unlock();
 717	if (allocated_traffic_key)
 718		kfree(traffic_key);
 719	return drop;
 720#else
 721	return true;
 722#endif
 723}
 724
 725/*
 726 *	This routine will send an RST to the other tcp.
 727 *
 728 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
 729 *		      for reset.
 730 *	Answer: if a packet caused RST, it is not for a socket
 731 *		existing in our system, if it is matched to a socket,
 732 *		it is just duplicate segment or bug in other side's TCP.
 733 *		So that we build reply only basing on parameters
 734 *		arrived with segment.
 735 *	Exception: precedence violation. We do not implement it in any case.
 736 */
 737
 738static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb,
 739			      enum sk_rst_reason reason)
 
 
 
 
 
 740{
 741	const struct tcphdr *th = tcp_hdr(skb);
 742	struct {
 743		struct tcphdr th;
 744		__be32 opt[REPLY_OPTIONS_LEN];
 745	} rep;
 746	const __u8 *md5_hash_location = NULL;
 747	const struct tcp_ao_hdr *aoh;
 748	struct ip_reply_arg arg;
 749#ifdef CONFIG_TCP_MD5SIG
 750	struct tcp_md5sig_key *key = NULL;
 
 751	unsigned char newhash[16];
 
 752	struct sock *sk1 = NULL;
 753	int genhash;
 754#endif
 755	u64 transmit_time = 0;
 756	struct sock *ctl_sk;
 757	struct net *net;
 758	u32 txhash = 0;
 759
 760	/* Never send a reset in response to a reset. */
 761	if (th->rst)
 762		return;
 763
 764	/* If sk not NULL, it means we did a successful lookup and incoming
 765	 * route had to be correct. prequeue might have dropped our dst.
 766	 */
 767	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
 768		return;
 769
 770	/* Swap the send and the receive. */
 771	memset(&rep, 0, sizeof(rep));
 772	rep.th.dest   = th->source;
 773	rep.th.source = th->dest;
 774	rep.th.doff   = sizeof(struct tcphdr) / 4;
 775	rep.th.rst    = 1;
 776
 777	if (th->ack) {
 778		rep.th.seq = th->ack_seq;
 779	} else {
 780		rep.th.ack = 1;
 781		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
 782				       skb->len - (th->doff << 2));
 783	}
 784
 785	memset(&arg, 0, sizeof(arg));
 786	arg.iov[0].iov_base = (unsigned char *)&rep;
 787	arg.iov[0].iov_len  = sizeof(rep.th);
 788
 789	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
 790
 791	/* Invalid TCP option size or twice included auth */
 792	if (tcp_parse_auth_options(tcp_hdr(skb), &md5_hash_location, &aoh))
 793		return;
 794
 795	if (aoh && tcp_v4_ao_sign_reset(sk, skb, aoh, &arg, &rep.th, rep.opt))
 796		return;
 797
 798#ifdef CONFIG_TCP_MD5SIG
 799	rcu_read_lock();
 
 800	if (sk && sk_fullsock(sk)) {
 801		const union tcp_md5_addr *addr;
 802		int l3index;
 803
 804		/* sdif set, means packet ingressed via a device
 805		 * in an L3 domain and inet_iif is set to it.
 806		 */
 807		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
 808		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
 809		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
 810	} else if (md5_hash_location) {
 811		const union tcp_md5_addr *addr;
 812		int sdif = tcp_v4_sdif(skb);
 813		int dif = inet_iif(skb);
 814		int l3index;
 815
 816		/*
 817		 * active side is lost. Try to find listening socket through
 818		 * source port, and then find md5 key through listening socket.
 819		 * we are not loose security here:
 820		 * Incoming packet is checked with md5 hash with finding key,
 821		 * no RST generated if md5 hash doesn't match.
 822		 */
 823		sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
 824					     NULL, 0, ip_hdr(skb)->saddr,
 825					     th->source, ip_hdr(skb)->daddr,
 826					     ntohs(th->source), dif, sdif);
 827		/* don't send rst if it can't find key */
 828		if (!sk1)
 829			goto out;
 830
 831		/* sdif set, means packet ingressed via a device
 832		 * in an L3 domain and dif is set to it.
 833		 */
 834		l3index = sdif ? dif : 0;
 835		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
 836		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
 837		if (!key)
 838			goto out;
 839
 840
 841		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
 842		if (genhash || memcmp(md5_hash_location, newhash, 16) != 0)
 843			goto out;
 844
 845	}
 846
 847	if (key) {
 848		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
 849				   (TCPOPT_NOP << 16) |
 850				   (TCPOPT_MD5SIG << 8) |
 851				   TCPOLEN_MD5SIG);
 852		/* Update length and the length the header thinks exists */
 853		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 854		rep.th.doff = arg.iov[0].iov_len / 4;
 855
 856		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
 857				     key, ip_hdr(skb)->saddr,
 858				     ip_hdr(skb)->daddr, &rep.th);
 859	}
 860#endif
 861	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
 862	if (rep.opt[0] == 0) {
 863		__be32 mrst = mptcp_reset_option(skb);
 864
 865		if (mrst) {
 866			rep.opt[0] = mrst;
 867			arg.iov[0].iov_len += sizeof(mrst);
 868			rep.th.doff = arg.iov[0].iov_len / 4;
 869		}
 870	}
 871
 872	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 873				      ip_hdr(skb)->saddr, /* XXX */
 874				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 875	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 876	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
 877
 878	/* When socket is gone, all binding information is lost.
 879	 * routing might fail in this case. No choice here, if we choose to force
 880	 * input interface, we will misroute in case of asymmetric route.
 881	 */
 882	if (sk)
 883		arg.bound_dev_if = sk->sk_bound_dev_if;
 884
 885	trace_tcp_send_reset(sk, skb, reason);
 
 886
 887	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
 888		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
 889
 890	arg.tos = ip_hdr(skb)->tos;
 891	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
 892	local_bh_disable();
 893	local_lock_nested_bh(&ipv4_tcp_sk.bh_lock);
 894	ctl_sk = this_cpu_read(ipv4_tcp_sk.sock);
 895
 896	sock_net_set(ctl_sk, net);
 897	if (sk) {
 898		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
 899				   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
 900		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
 901				   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
 902		transmit_time = tcp_transmit_time(sk);
 903		xfrm_sk_clone_policy(ctl_sk, sk);
 904		txhash = (sk->sk_state == TCP_TIME_WAIT) ?
 905			 inet_twsk(sk)->tw_txhash : sk->sk_txhash;
 906	} else {
 907		ctl_sk->sk_mark = 0;
 908		ctl_sk->sk_priority = 0;
 909	}
 910	ip_send_unicast_reply(ctl_sk, sk,
 911			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
 912			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
 913			      &arg, arg.iov[0].iov_len,
 914			      transmit_time, txhash);
 915
 916	xfrm_sk_free_policy(ctl_sk);
 917	sock_net_set(ctl_sk, &init_net);
 918	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
 919	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
 920	local_unlock_nested_bh(&ipv4_tcp_sk.bh_lock);
 921	local_bh_enable();
 922
 923#ifdef CONFIG_TCP_MD5SIG
 924out:
 925	rcu_read_unlock();
 926#endif
 927}
 928
 929/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
 930   outside socket context is ugly, certainly. What can I do?
 931 */
 932
 933static void tcp_v4_send_ack(const struct sock *sk,
 934			    struct sk_buff *skb, u32 seq, u32 ack,
 935			    u32 win, u32 tsval, u32 tsecr, int oif,
 936			    struct tcp_key *key,
 937			    int reply_flags, u8 tos, u32 txhash)
 938{
 939	const struct tcphdr *th = tcp_hdr(skb);
 940	struct {
 941		struct tcphdr th;
 942		__be32 opt[(MAX_TCP_OPTION_SPACE  >> 2)];
 
 
 
 
 943	} rep;
 944	struct net *net = sock_net(sk);
 945	struct ip_reply_arg arg;
 946	struct sock *ctl_sk;
 947	u64 transmit_time;
 948
 949	memset(&rep.th, 0, sizeof(struct tcphdr));
 950	memset(&arg, 0, sizeof(arg));
 951
 952	arg.iov[0].iov_base = (unsigned char *)&rep;
 953	arg.iov[0].iov_len  = sizeof(rep.th);
 954	if (tsecr) {
 955		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 956				   (TCPOPT_TIMESTAMP << 8) |
 957				   TCPOLEN_TIMESTAMP);
 958		rep.opt[1] = htonl(tsval);
 959		rep.opt[2] = htonl(tsecr);
 960		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
 961	}
 962
 963	/* Swap the send and the receive. */
 964	rep.th.dest    = th->source;
 965	rep.th.source  = th->dest;
 966	rep.th.doff    = arg.iov[0].iov_len / 4;
 967	rep.th.seq     = htonl(seq);
 968	rep.th.ack_seq = htonl(ack);
 969	rep.th.ack     = 1;
 970	rep.th.window  = htons(win);
 971
 972#ifdef CONFIG_TCP_MD5SIG
 973	if (tcp_key_is_md5(key)) {
 974		int offset = (tsecr) ? 3 : 0;
 975
 976		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
 977					  (TCPOPT_NOP << 16) |
 978					  (TCPOPT_MD5SIG << 8) |
 979					  TCPOLEN_MD5SIG);
 980		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 981		rep.th.doff = arg.iov[0].iov_len/4;
 982
 983		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
 984				    key->md5_key, ip_hdr(skb)->saddr,
 985				    ip_hdr(skb)->daddr, &rep.th);
 986	}
 987#endif
 988#ifdef CONFIG_TCP_AO
 989	if (tcp_key_is_ao(key)) {
 990		int offset = (tsecr) ? 3 : 0;
 991
 992		rep.opt[offset++] = htonl((TCPOPT_AO << 24) |
 993					  (tcp_ao_len(key->ao_key) << 16) |
 994					  (key->ao_key->sndid << 8) |
 995					  key->rcv_next);
 996		arg.iov[0].iov_len += tcp_ao_len_aligned(key->ao_key);
 997		rep.th.doff = arg.iov[0].iov_len / 4;
 998
 999		tcp_ao_hash_hdr(AF_INET, (char *)&rep.opt[offset],
1000				key->ao_key, key->traffic_key,
1001				(union tcp_ao_addr *)&ip_hdr(skb)->saddr,
1002				(union tcp_ao_addr *)&ip_hdr(skb)->daddr,
1003				&rep.th, key->sne);
1004	}
1005#endif
1006	arg.flags = reply_flags;
1007	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
1008				      ip_hdr(skb)->saddr, /* XXX */
1009				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
1010	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
1011	if (oif)
1012		arg.bound_dev_if = oif;
1013	arg.tos = tos;
1014	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
1015	local_bh_disable();
1016	local_lock_nested_bh(&ipv4_tcp_sk.bh_lock);
1017	ctl_sk = this_cpu_read(ipv4_tcp_sk.sock);
1018	sock_net_set(ctl_sk, net);
1019	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
1020			   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
1021	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
1022			   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
1023	transmit_time = tcp_transmit_time(sk);
1024	ip_send_unicast_reply(ctl_sk, sk,
1025			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
1026			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
1027			      &arg, arg.iov[0].iov_len,
1028			      transmit_time, txhash);
1029
1030	sock_net_set(ctl_sk, &init_net);
1031	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
1032	local_unlock_nested_bh(&ipv4_tcp_sk.bh_lock);
1033	local_bh_enable();
1034}
1035
1036static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
1037{
1038	struct inet_timewait_sock *tw = inet_twsk(sk);
1039	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
1040	struct tcp_key key = {};
1041#ifdef CONFIG_TCP_AO
1042	struct tcp_ao_info *ao_info;
1043
1044	if (static_branch_unlikely(&tcp_ao_needed.key)) {
1045		/* FIXME: the segment to-be-acked is not verified yet */
1046		ao_info = rcu_dereference(tcptw->ao_info);
1047		if (ao_info) {
1048			const struct tcp_ao_hdr *aoh;
1049
1050			if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) {
1051				inet_twsk_put(tw);
1052				return;
1053			}
1054
1055			if (aoh)
1056				key.ao_key = tcp_ao_established_key(sk, ao_info,
1057								    aoh->rnext_keyid, -1);
1058		}
1059	}
1060	if (key.ao_key) {
1061		struct tcp_ao_key *rnext_key;
1062
1063		key.traffic_key = snd_other_key(key.ao_key);
1064		key.sne = READ_ONCE(ao_info->snd_sne);
1065		rnext_key = READ_ONCE(ao_info->rnext_key);
1066		key.rcv_next = rnext_key->rcvid;
1067		key.type = TCP_KEY_AO;
1068#else
1069	if (0) {
1070#endif
1071	} else if (static_branch_tcp_md5()) {
1072		key.md5_key = tcp_twsk_md5_key(tcptw);
1073		if (key.md5_key)
1074			key.type = TCP_KEY_MD5;
1075	}
1076
1077	tcp_v4_send_ack(sk, skb,
1078			tcptw->tw_snd_nxt, READ_ONCE(tcptw->tw_rcv_nxt),
1079			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
1080			tcp_tw_tsval(tcptw),
1081			READ_ONCE(tcptw->tw_ts_recent),
1082			tw->tw_bound_dev_if, &key,
 
1083			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
1084			tw->tw_tos,
1085			tw->tw_txhash);
1086
1087	inet_twsk_put(tw);
1088}
1089
1090static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
1091				  struct request_sock *req)
1092{
1093	struct tcp_key key = {};
 
1094
1095	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
1096	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
1097	 */
1098	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
1099					     tcp_sk(sk)->snd_nxt;
1100
1101#ifdef CONFIG_TCP_AO
1102	if (static_branch_unlikely(&tcp_ao_needed.key) &&
1103	    tcp_rsk_used_ao(req)) {
1104		const union tcp_md5_addr *addr;
1105		const struct tcp_ao_hdr *aoh;
1106		int l3index;
1107
1108		/* Invalid TCP option size or twice included auth */
1109		if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
1110			return;
1111		if (!aoh)
1112			return;
1113
1114		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1115		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1116		key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET,
1117					      aoh->rnext_keyid, -1);
1118		if (unlikely(!key.ao_key)) {
1119			/* Send ACK with any matching MKT for the peer */
1120			key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, -1, -1);
1121			/* Matching key disappeared (user removed the key?)
1122			 * let the handshake timeout.
1123			 */
1124			if (!key.ao_key) {
1125				net_info_ratelimited("TCP-AO key for (%pI4, %d)->(%pI4, %d) suddenly disappeared, won't ACK new connection\n",
1126						     addr,
1127						     ntohs(tcp_hdr(skb)->source),
1128						     &ip_hdr(skb)->daddr,
1129						     ntohs(tcp_hdr(skb)->dest));
1130				return;
1131			}
1132		}
1133		key.traffic_key = kmalloc(tcp_ao_digest_size(key.ao_key), GFP_ATOMIC);
1134		if (!key.traffic_key)
1135			return;
1136
1137		key.type = TCP_KEY_AO;
1138		key.rcv_next = aoh->keyid;
1139		tcp_v4_ao_calc_key_rsk(key.ao_key, key.traffic_key, req);
1140#else
1141	if (0) {
1142#endif
1143	} else if (static_branch_tcp_md5()) {
1144		const union tcp_md5_addr *addr;
1145		int l3index;
1146
1147		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1148		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1149		key.md5_key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1150		if (key.md5_key)
1151			key.type = TCP_KEY_MD5;
1152	}
1153
1154	tcp_v4_send_ack(sk, skb, seq,
1155			tcp_rsk(req)->rcv_nxt,
1156			tcp_synack_window(req) >> inet_rsk(req)->rcv_wscale,
1157			tcp_rsk_tsval(tcp_rsk(req)),
1158			READ_ONCE(req->ts_recent),
1159			0, &key,
 
1160			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
1161			ip_hdr(skb)->tos,
1162			READ_ONCE(tcp_rsk(req)->txhash));
1163	if (tcp_key_is_ao(&key))
1164		kfree(key.traffic_key);
1165}
1166
1167/*
1168 *	Send a SYN-ACK after having received a SYN.
1169 *	This still operates on a request_sock only, not on a big
1170 *	socket.
1171 */
1172static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
1173			      struct flowi *fl,
1174			      struct request_sock *req,
1175			      struct tcp_fastopen_cookie *foc,
1176			      enum tcp_synack_type synack_type,
1177			      struct sk_buff *syn_skb)
1178{
1179	const struct inet_request_sock *ireq = inet_rsk(req);
1180	struct flowi4 fl4;
1181	int err = -1;
1182	struct sk_buff *skb;
1183	u8 tos;
1184
1185	/* First, grab a route. */
1186	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1187		return -1;
1188
1189	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1190
1191	if (skb) {
1192		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1193
1194		tos = READ_ONCE(inet_sk(sk)->tos);
1195
1196		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1197			tos = (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1198			      (tos & INET_ECN_MASK);
1199
1200		if (!INET_ECN_is_capable(tos) &&
1201		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1202			tos |= INET_ECN_ECT_0;
1203
1204		rcu_read_lock();
1205		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1206					    ireq->ir_rmt_addr,
1207					    rcu_dereference(ireq->ireq_opt),
1208					    tos);
1209		rcu_read_unlock();
1210		err = net_xmit_eval(err);
1211	}
1212
1213	return err;
1214}
1215
1216/*
1217 *	IPv4 request_sock destructor.
1218 */
1219static void tcp_v4_reqsk_destructor(struct request_sock *req)
1220{
1221	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1222}
1223
1224#ifdef CONFIG_TCP_MD5SIG
1225/*
1226 * RFC2385 MD5 checksumming requires a mapping of
1227 * IP address->MD5 Key.
1228 * We need to maintain these in the sk structure.
1229 */
1230
1231DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1232EXPORT_SYMBOL(tcp_md5_needed);
1233
1234static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1235{
1236	if (!old)
1237		return true;
1238
1239	/* l3index always overrides non-l3index */
1240	if (old->l3index && new->l3index == 0)
1241		return false;
1242	if (old->l3index == 0 && new->l3index)
1243		return true;
1244
1245	return old->prefixlen < new->prefixlen;
1246}
1247
1248/* Find the Key structure for an address.  */
1249struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1250					   const union tcp_md5_addr *addr,
1251					   int family, bool any_l3index)
1252{
1253	const struct tcp_sock *tp = tcp_sk(sk);
1254	struct tcp_md5sig_key *key;
1255	const struct tcp_md5sig_info *md5sig;
1256	__be32 mask;
1257	struct tcp_md5sig_key *best_match = NULL;
1258	bool match;
1259
1260	/* caller either holds rcu_read_lock() or socket lock */
1261	md5sig = rcu_dereference_check(tp->md5sig_info,
1262				       lockdep_sock_is_held(sk));
1263	if (!md5sig)
1264		return NULL;
1265
1266	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1267				 lockdep_sock_is_held(sk)) {
1268		if (key->family != family)
1269			continue;
1270		if (!any_l3index && key->flags & TCP_MD5SIG_FLAG_IFINDEX &&
1271		    key->l3index != l3index)
1272			continue;
1273		if (family == AF_INET) {
1274			mask = inet_make_mask(key->prefixlen);
1275			match = (key->addr.a4.s_addr & mask) ==
1276				(addr->a4.s_addr & mask);
1277#if IS_ENABLED(CONFIG_IPV6)
1278		} else if (family == AF_INET6) {
1279			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1280						  key->prefixlen);
1281#endif
1282		} else {
1283			match = false;
1284		}
1285
1286		if (match && better_md5_match(best_match, key))
1287			best_match = key;
1288	}
1289	return best_match;
1290}
1291EXPORT_SYMBOL(__tcp_md5_do_lookup);
1292
1293static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1294						      const union tcp_md5_addr *addr,
1295						      int family, u8 prefixlen,
1296						      int l3index, u8 flags)
1297{
1298	const struct tcp_sock *tp = tcp_sk(sk);
1299	struct tcp_md5sig_key *key;
1300	unsigned int size = sizeof(struct in_addr);
1301	const struct tcp_md5sig_info *md5sig;
1302
1303	/* caller either holds rcu_read_lock() or socket lock */
1304	md5sig = rcu_dereference_check(tp->md5sig_info,
1305				       lockdep_sock_is_held(sk));
1306	if (!md5sig)
1307		return NULL;
1308#if IS_ENABLED(CONFIG_IPV6)
1309	if (family == AF_INET6)
1310		size = sizeof(struct in6_addr);
1311#endif
1312	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1313				 lockdep_sock_is_held(sk)) {
1314		if (key->family != family)
1315			continue;
1316		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1317			continue;
1318		if (key->l3index != l3index)
1319			continue;
1320		if (!memcmp(&key->addr, addr, size) &&
1321		    key->prefixlen == prefixlen)
1322			return key;
1323	}
1324	return NULL;
1325}
1326
1327struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1328					 const struct sock *addr_sk)
1329{
1330	const union tcp_md5_addr *addr;
1331	int l3index;
1332
1333	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1334						 addr_sk->sk_bound_dev_if);
1335	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1336	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1337}
1338EXPORT_SYMBOL(tcp_v4_md5_lookup);
1339
1340static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
1341{
1342	struct tcp_sock *tp = tcp_sk(sk);
1343	struct tcp_md5sig_info *md5sig;
1344
1345	md5sig = kmalloc(sizeof(*md5sig), gfp);
1346	if (!md5sig)
1347		return -ENOMEM;
1348
1349	sk_gso_disable(sk);
1350	INIT_HLIST_HEAD(&md5sig->head);
1351	rcu_assign_pointer(tp->md5sig_info, md5sig);
1352	return 0;
1353}
1354
1355/* This can be called on a newly created socket, from other files */
1356static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1357			    int family, u8 prefixlen, int l3index, u8 flags,
1358			    const u8 *newkey, u8 newkeylen, gfp_t gfp)
1359{
1360	/* Add Key to the list */
1361	struct tcp_md5sig_key *key;
1362	struct tcp_sock *tp = tcp_sk(sk);
1363	struct tcp_md5sig_info *md5sig;
1364
1365	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1366	if (key) {
1367		/* Pre-existing entry - just update that one.
1368		 * Note that the key might be used concurrently.
1369		 * data_race() is telling kcsan that we do not care of
1370		 * key mismatches, since changing MD5 key on live flows
1371		 * can lead to packet drops.
1372		 */
1373		data_race(memcpy(key->key, newkey, newkeylen));
1374
1375		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1376		 * Also note that a reader could catch new key->keylen value
1377		 * but old key->key[], this is the reason we use __GFP_ZERO
1378		 * at sock_kmalloc() time below these lines.
1379		 */
1380		WRITE_ONCE(key->keylen, newkeylen);
1381
1382		return 0;
1383	}
1384
1385	md5sig = rcu_dereference_protected(tp->md5sig_info,
1386					   lockdep_sock_is_held(sk));
 
 
 
 
 
 
 
 
 
1387
1388	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1389	if (!key)
1390		return -ENOMEM;
 
 
 
 
1391
1392	memcpy(key->key, newkey, newkeylen);
1393	key->keylen = newkeylen;
1394	key->family = family;
1395	key->prefixlen = prefixlen;
1396	key->l3index = l3index;
1397	key->flags = flags;
1398	memcpy(&key->addr, addr,
1399	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1400								 sizeof(struct in_addr));
1401	hlist_add_head_rcu(&key->node, &md5sig->head);
1402	return 0;
1403}
1404
1405int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1406		   int family, u8 prefixlen, int l3index, u8 flags,
1407		   const u8 *newkey, u8 newkeylen)
1408{
1409	struct tcp_sock *tp = tcp_sk(sk);
1410
1411	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1412		if (tcp_md5_alloc_sigpool())
1413			return -ENOMEM;
1414
1415		if (tcp_md5sig_info_add(sk, GFP_KERNEL)) {
1416			tcp_md5_release_sigpool();
1417			return -ENOMEM;
1418		}
1419
1420		if (!static_branch_inc(&tcp_md5_needed.key)) {
1421			struct tcp_md5sig_info *md5sig;
1422
1423			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1424			rcu_assign_pointer(tp->md5sig_info, NULL);
1425			kfree_rcu(md5sig, rcu);
1426			tcp_md5_release_sigpool();
1427			return -EUSERS;
1428		}
1429	}
1430
1431	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1432				newkey, newkeylen, GFP_KERNEL);
1433}
1434EXPORT_SYMBOL(tcp_md5_do_add);
1435
1436int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1437		     int family, u8 prefixlen, int l3index,
1438		     struct tcp_md5sig_key *key)
1439{
1440	struct tcp_sock *tp = tcp_sk(sk);
1441
1442	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1443		tcp_md5_add_sigpool();
1444
1445		if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC))) {
1446			tcp_md5_release_sigpool();
1447			return -ENOMEM;
1448		}
1449
1450		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1451			struct tcp_md5sig_info *md5sig;
1452
1453			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1454			net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1455			rcu_assign_pointer(tp->md5sig_info, NULL);
1456			kfree_rcu(md5sig, rcu);
1457			tcp_md5_release_sigpool();
1458			return -EUSERS;
1459		}
1460	}
1461
1462	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1463				key->flags, key->key, key->keylen,
1464				sk_gfp_mask(sk, GFP_ATOMIC));
1465}
1466EXPORT_SYMBOL(tcp_md5_key_copy);
1467
1468int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1469		   u8 prefixlen, int l3index, u8 flags)
1470{
1471	struct tcp_md5sig_key *key;
1472
1473	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1474	if (!key)
1475		return -ENOENT;
1476	hlist_del_rcu(&key->node);
1477	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1478	kfree_rcu(key, rcu);
1479	return 0;
1480}
1481EXPORT_SYMBOL(tcp_md5_do_del);
1482
1483void tcp_clear_md5_list(struct sock *sk)
1484{
1485	struct tcp_sock *tp = tcp_sk(sk);
1486	struct tcp_md5sig_key *key;
1487	struct hlist_node *n;
1488	struct tcp_md5sig_info *md5sig;
1489
1490	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1491
1492	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1493		hlist_del_rcu(&key->node);
1494		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1495		kfree_rcu(key, rcu);
1496	}
1497}
1498
1499static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1500				 sockptr_t optval, int optlen)
1501{
1502	struct tcp_md5sig cmd;
1503	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1504	const union tcp_md5_addr *addr;
1505	u8 prefixlen = 32;
1506	int l3index = 0;
1507	bool l3flag;
1508	u8 flags;
1509
1510	if (optlen < sizeof(cmd))
1511		return -EINVAL;
1512
1513	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1514		return -EFAULT;
1515
1516	if (sin->sin_family != AF_INET)
1517		return -EINVAL;
1518
1519	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1520	l3flag = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1521
1522	if (optname == TCP_MD5SIG_EXT &&
1523	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1524		prefixlen = cmd.tcpm_prefixlen;
1525		if (prefixlen > 32)
1526			return -EINVAL;
1527	}
1528
1529	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1530	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1531		struct net_device *dev;
1532
1533		rcu_read_lock();
1534		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1535		if (dev && netif_is_l3_master(dev))
1536			l3index = dev->ifindex;
1537
1538		rcu_read_unlock();
1539
1540		/* ok to reference set/not set outside of rcu;
1541		 * right now device MUST be an L3 master
1542		 */
1543		if (!dev || !l3index)
1544			return -EINVAL;
1545	}
1546
1547	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1548
1549	if (!cmd.tcpm_keylen)
1550		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1551
1552	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1553		return -EINVAL;
1554
1555	/* Don't allow keys for peers that have a matching TCP-AO key.
1556	 * See the comment in tcp_ao_add_cmd()
1557	 */
1558	if (tcp_ao_required(sk, addr, AF_INET, l3flag ? l3index : -1, false))
1559		return -EKEYREJECTED;
1560
1561	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1562			      cmd.tcpm_key, cmd.tcpm_keylen);
1563}
1564
1565static int tcp_v4_md5_hash_headers(struct tcp_sigpool *hp,
1566				   __be32 daddr, __be32 saddr,
1567				   const struct tcphdr *th, int nbytes)
1568{
1569	struct tcp4_pseudohdr *bp;
1570	struct scatterlist sg;
1571	struct tcphdr *_th;
1572
1573	bp = hp->scratch;
1574	bp->saddr = saddr;
1575	bp->daddr = daddr;
1576	bp->pad = 0;
1577	bp->protocol = IPPROTO_TCP;
1578	bp->len = cpu_to_be16(nbytes);
1579
1580	_th = (struct tcphdr *)(bp + 1);
1581	memcpy(_th, th, sizeof(*th));
1582	_th->check = 0;
1583
1584	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1585	ahash_request_set_crypt(hp->req, &sg, NULL,
1586				sizeof(*bp) + sizeof(*th));
1587	return crypto_ahash_update(hp->req);
1588}
1589
1590static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1591			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1592{
1593	struct tcp_sigpool hp;
 
1594
1595	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1596		goto clear_hash_nostart;
 
 
1597
1598	if (crypto_ahash_init(hp.req))
1599		goto clear_hash;
1600	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, th->doff << 2))
1601		goto clear_hash;
1602	if (tcp_md5_hash_key(&hp, key))
1603		goto clear_hash;
1604	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1605	if (crypto_ahash_final(hp.req))
1606		goto clear_hash;
1607
1608	tcp_sigpool_end(&hp);
1609	return 0;
1610
1611clear_hash:
1612	tcp_sigpool_end(&hp);
1613clear_hash_nostart:
1614	memset(md5_hash, 0, 16);
1615	return 1;
1616}
1617
1618int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1619			const struct sock *sk,
1620			const struct sk_buff *skb)
1621{
 
 
1622	const struct tcphdr *th = tcp_hdr(skb);
1623	struct tcp_sigpool hp;
1624	__be32 saddr, daddr;
1625
1626	if (sk) { /* valid for establish/request sockets */
1627		saddr = sk->sk_rcv_saddr;
1628		daddr = sk->sk_daddr;
1629	} else {
1630		const struct iphdr *iph = ip_hdr(skb);
1631		saddr = iph->saddr;
1632		daddr = iph->daddr;
1633	}
1634
1635	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1636		goto clear_hash_nostart;
 
 
1637
1638	if (crypto_ahash_init(hp.req))
1639		goto clear_hash;
1640
1641	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, skb->len))
1642		goto clear_hash;
1643	if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2))
1644		goto clear_hash;
1645	if (tcp_md5_hash_key(&hp, key))
1646		goto clear_hash;
1647	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1648	if (crypto_ahash_final(hp.req))
1649		goto clear_hash;
1650
1651	tcp_sigpool_end(&hp);
1652	return 0;
1653
1654clear_hash:
1655	tcp_sigpool_end(&hp);
1656clear_hash_nostart:
1657	memset(md5_hash, 0, 16);
1658	return 1;
1659}
1660EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1661
1662#endif
1663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664static void tcp_v4_init_req(struct request_sock *req,
1665			    const struct sock *sk_listener,
1666			    struct sk_buff *skb)
1667{
1668	struct inet_request_sock *ireq = inet_rsk(req);
1669	struct net *net = sock_net(sk_listener);
1670
1671	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1672	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1673	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1674}
1675
1676static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1677					  struct sk_buff *skb,
1678					  struct flowi *fl,
1679					  struct request_sock *req,
1680					  u32 tw_isn)
1681{
1682	tcp_v4_init_req(req, sk, skb);
1683
1684	if (security_inet_conn_request(sk, skb, req))
1685		return NULL;
1686
1687	return inet_csk_route_req(sk, &fl->u.ip4, req);
1688}
1689
1690struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1691	.family		=	PF_INET,
1692	.obj_size	=	sizeof(struct tcp_request_sock),
1693	.rtx_syn_ack	=	tcp_rtx_synack,
1694	.send_ack	=	tcp_v4_reqsk_send_ack,
1695	.destructor	=	tcp_v4_reqsk_destructor,
1696	.send_reset	=	tcp_v4_send_reset,
1697	.syn_ack_timeout =	tcp_syn_ack_timeout,
1698};
1699
1700const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1701	.mss_clamp	=	TCP_MSS_DEFAULT,
1702#ifdef CONFIG_TCP_MD5SIG
1703	.req_md5_lookup	=	tcp_v4_md5_lookup,
1704	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1705#endif
1706#ifdef CONFIG_TCP_AO
1707	.ao_lookup	=	tcp_v4_ao_lookup_rsk,
1708	.ao_calc_key	=	tcp_v4_ao_calc_key_rsk,
1709	.ao_synack_hash	=	tcp_v4_ao_synack_hash,
1710#endif
1711#ifdef CONFIG_SYN_COOKIES
1712	.cookie_init_seq =	cookie_v4_init_sequence,
1713#endif
1714	.route_req	=	tcp_v4_route_req,
1715	.init_seq	=	tcp_v4_init_seq,
1716	.init_ts_off	=	tcp_v4_init_ts_off,
1717	.send_synack	=	tcp_v4_send_synack,
1718};
1719
1720int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1721{
1722	/* Never answer to SYNs send to broadcast or multicast */
1723	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1724		goto drop;
1725
1726	return tcp_conn_request(&tcp_request_sock_ops,
1727				&tcp_request_sock_ipv4_ops, sk, skb);
1728
1729drop:
1730	tcp_listendrop(sk);
1731	return 0;
1732}
1733EXPORT_SYMBOL(tcp_v4_conn_request);
1734
1735
1736/*
1737 * The three way handshake has completed - we got a valid synack -
1738 * now create the new socket.
1739 */
1740struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1741				  struct request_sock *req,
1742				  struct dst_entry *dst,
1743				  struct request_sock *req_unhash,
1744				  bool *own_req)
1745{
1746	struct inet_request_sock *ireq;
1747	bool found_dup_sk = false;
1748	struct inet_sock *newinet;
1749	struct tcp_sock *newtp;
1750	struct sock *newsk;
1751#ifdef CONFIG_TCP_MD5SIG
1752	const union tcp_md5_addr *addr;
1753	struct tcp_md5sig_key *key;
1754	int l3index;
1755#endif
1756	struct ip_options_rcu *inet_opt;
1757
1758	if (sk_acceptq_is_full(sk))
1759		goto exit_overflow;
1760
1761	newsk = tcp_create_openreq_child(sk, req, skb);
1762	if (!newsk)
1763		goto exit_nonewsk;
1764
1765	newsk->sk_gso_type = SKB_GSO_TCPV4;
1766	inet_sk_rx_dst_set(newsk, skb);
1767
1768	newtp		      = tcp_sk(newsk);
1769	newinet		      = inet_sk(newsk);
1770	ireq		      = inet_rsk(req);
1771	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1772	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1773	newsk->sk_bound_dev_if = ireq->ir_iif;
1774	newinet->inet_saddr   = ireq->ir_loc_addr;
1775	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1776	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1777	newinet->mc_index     = inet_iif(skb);
1778	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1779	newinet->rcv_tos      = ip_hdr(skb)->tos;
1780	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1781	if (inet_opt)
1782		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1783	atomic_set(&newinet->inet_id, get_random_u16());
1784
1785	/* Set ToS of the new socket based upon the value of incoming SYN.
1786	 * ECT bits are set later in tcp_init_transfer().
1787	 */
1788	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1789		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1790
1791	if (!dst) {
1792		dst = inet_csk_route_child_sock(sk, newsk, req);
1793		if (!dst)
1794			goto put_and_exit;
1795	} else {
1796		/* syncookie case : see end of cookie_v4_check() */
1797	}
1798	sk_setup_caps(newsk, dst);
1799
1800	tcp_ca_openreq_child(newsk, dst);
1801
1802	tcp_sync_mss(newsk, dst_mtu(dst));
1803	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1804
1805	tcp_initialize_rcv_mss(newsk);
1806
1807#ifdef CONFIG_TCP_MD5SIG
1808	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1809	/* Copy over the MD5 key from the original socket */
1810	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1811	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1812	if (key && !tcp_rsk_used_ao(req)) {
1813		if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1814			goto put_and_exit;
1815		sk_gso_disable(newsk);
 
 
 
 
 
 
1816	}
1817#endif
1818#ifdef CONFIG_TCP_AO
1819	if (tcp_ao_copy_all_matching(sk, newsk, req, skb, AF_INET))
1820		goto put_and_exit; /* OOM, release back memory */
1821#endif
1822
1823	if (__inet_inherit_port(sk, newsk) < 0)
1824		goto put_and_exit;
1825	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1826				       &found_dup_sk);
1827	if (likely(*own_req)) {
1828		tcp_move_syn(newtp, req);
1829		ireq->ireq_opt = NULL;
1830	} else {
1831		newinet->inet_opt = NULL;
1832
1833		if (!req_unhash && found_dup_sk) {
1834			/* This code path should only be executed in the
1835			 * syncookie case only
1836			 */
1837			bh_unlock_sock(newsk);
1838			sock_put(newsk);
1839			newsk = NULL;
1840		}
1841	}
1842	return newsk;
1843
1844exit_overflow:
1845	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1846exit_nonewsk:
1847	dst_release(dst);
1848exit:
1849	tcp_listendrop(sk);
1850	return NULL;
1851put_and_exit:
1852	newinet->inet_opt = NULL;
1853	inet_csk_prepare_forced_close(newsk);
1854	tcp_done(newsk);
1855	goto exit;
1856}
1857EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1858
1859static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1860{
1861#ifdef CONFIG_SYN_COOKIES
1862	const struct tcphdr *th = tcp_hdr(skb);
1863
1864	if (!th->syn)
1865		sk = cookie_v4_check(sk, skb);
1866#endif
1867	return sk;
1868}
1869
1870u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1871			 struct tcphdr *th, u32 *cookie)
1872{
1873	u16 mss = 0;
1874#ifdef CONFIG_SYN_COOKIES
1875	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1876				    &tcp_request_sock_ipv4_ops, sk, th);
1877	if (mss) {
1878		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1879		tcp_synq_overflow(sk);
1880	}
1881#endif
1882	return mss;
1883}
1884
1885INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1886							   u32));
1887/* The socket must have it's spinlock held when we get
1888 * here, unless it is a TCP_LISTEN socket.
1889 *
1890 * We have a potential double-lock case here, so even when
1891 * doing backlog processing we use the BH locking scheme.
1892 * This is because we cannot sleep with the original spinlock
1893 * held.
1894 */
1895int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1896{
1897	enum skb_drop_reason reason;
1898	struct sock *rsk;
1899
1900	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1901		struct dst_entry *dst;
1902
1903		dst = rcu_dereference_protected(sk->sk_rx_dst,
1904						lockdep_sock_is_held(sk));
1905
1906		sock_rps_save_rxhash(sk, skb);
1907		sk_mark_napi_id(sk, skb);
1908		if (dst) {
1909			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1910			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1911					     dst, 0)) {
1912				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1913				dst_release(dst);
 
1914			}
1915		}
1916		tcp_rcv_established(sk, skb);
1917		return 0;
1918	}
1919
1920	if (tcp_checksum_complete(skb))
1921		goto csum_err;
1922
1923	if (sk->sk_state == TCP_LISTEN) {
1924		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1925
1926		if (!nsk)
1927			return 0;
1928		if (nsk != sk) {
1929			reason = tcp_child_process(sk, nsk, skb);
1930			if (reason) {
1931				rsk = nsk;
1932				goto reset;
1933			}
1934			return 0;
1935		}
1936	} else
1937		sock_rps_save_rxhash(sk, skb);
1938
1939	reason = tcp_rcv_state_process(sk, skb);
1940	if (reason) {
1941		rsk = sk;
1942		goto reset;
1943	}
1944	return 0;
1945
1946reset:
1947	tcp_v4_send_reset(rsk, skb, sk_rst_convert_drop_reason(reason));
1948discard:
1949	sk_skb_reason_drop(sk, skb, reason);
1950	/* Be careful here. If this function gets more complicated and
1951	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1952	 * might be destroyed here. This current version compiles correctly,
1953	 * but you have been warned.
1954	 */
1955	return 0;
1956
1957csum_err:
1958	reason = SKB_DROP_REASON_TCP_CSUM;
1959	trace_tcp_bad_csum(skb);
1960	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1961	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1962	goto discard;
1963}
1964EXPORT_SYMBOL(tcp_v4_do_rcv);
1965
1966int tcp_v4_early_demux(struct sk_buff *skb)
1967{
1968	struct net *net = dev_net(skb->dev);
1969	const struct iphdr *iph;
1970	const struct tcphdr *th;
1971	struct sock *sk;
1972
1973	if (skb->pkt_type != PACKET_HOST)
1974		return 0;
1975
1976	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1977		return 0;
1978
1979	iph = ip_hdr(skb);
1980	th = tcp_hdr(skb);
1981
1982	if (th->doff < sizeof(struct tcphdr) / 4)
1983		return 0;
1984
1985	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1986				       iph->saddr, th->source,
1987				       iph->daddr, ntohs(th->dest),
1988				       skb->skb_iif, inet_sdif(skb));
1989	if (sk) {
1990		skb->sk = sk;
1991		skb->destructor = sock_edemux;
1992		if (sk_fullsock(sk)) {
1993			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1994
1995			if (dst)
1996				dst = dst_check(dst, 0);
1997			if (dst &&
1998			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1999				skb_dst_set_noref(skb, dst);
2000		}
2001	}
2002	return 0;
2003}
2004
2005bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
2006		     enum skb_drop_reason *reason)
2007{
 
2008	u32 tail_gso_size, tail_gso_segs;
2009	struct skb_shared_info *shinfo;
2010	const struct tcphdr *th;
2011	struct tcphdr *thtail;
2012	struct sk_buff *tail;
2013	unsigned int hdrlen;
2014	bool fragstolen;
2015	u32 gso_segs;
2016	u32 gso_size;
2017	u64 limit;
2018	int delta;
2019
2020	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
2021	 * we can fix skb->truesize to its real value to avoid future drops.
2022	 * This is valid because skb is not yet charged to the socket.
2023	 * It has been noticed pure SACK packets were sometimes dropped
2024	 * (if cooked by drivers without copybreak feature).
2025	 */
2026	skb_condense(skb);
2027
2028	tcp_cleanup_skb(skb);
2029
2030	if (unlikely(tcp_checksum_complete(skb))) {
2031		bh_unlock_sock(sk);
2032		trace_tcp_bad_csum(skb);
2033		*reason = SKB_DROP_REASON_TCP_CSUM;
2034		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
2035		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
2036		return true;
2037	}
2038
2039	/* Attempt coalescing to last skb in backlog, even if we are
2040	 * above the limits.
2041	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
2042	 */
2043	th = (const struct tcphdr *)skb->data;
2044	hdrlen = th->doff * 4;
2045
2046	tail = sk->sk_backlog.tail;
2047	if (!tail)
2048		goto no_coalesce;
2049	thtail = (struct tcphdr *)tail->data;
2050
2051	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
2052	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
2053	    ((TCP_SKB_CB(tail)->tcp_flags |
2054	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
2055	    !((TCP_SKB_CB(tail)->tcp_flags &
2056	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
2057	    ((TCP_SKB_CB(tail)->tcp_flags ^
2058	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
2059	    !tcp_skb_can_collapse_rx(tail, skb) ||
 
 
2060	    thtail->doff != th->doff ||
2061	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
2062		goto no_coalesce;
2063
2064	__skb_pull(skb, hdrlen);
2065
2066	shinfo = skb_shinfo(skb);
2067	gso_size = shinfo->gso_size ?: skb->len;
2068	gso_segs = shinfo->gso_segs ?: 1;
2069
2070	shinfo = skb_shinfo(tail);
2071	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
2072	tail_gso_segs = shinfo->gso_segs ?: 1;
2073
2074	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
2075		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
2076
2077		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
2078			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
2079			thtail->window = th->window;
2080		}
2081
2082		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
2083		 * thtail->fin, so that the fast path in tcp_rcv_established()
2084		 * is not entered if we append a packet with a FIN.
2085		 * SYN, RST, URG are not present.
2086		 * ACK is set on both packets.
2087		 * PSH : we do not really care in TCP stack,
2088		 *       at least for 'GRO' packets.
2089		 */
2090		thtail->fin |= th->fin;
2091		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2092
2093		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2094			TCP_SKB_CB(tail)->has_rxtstamp = true;
2095			tail->tstamp = skb->tstamp;
2096			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
2097		}
2098
2099		/* Not as strict as GRO. We only need to carry mss max value */
2100		shinfo->gso_size = max(gso_size, tail_gso_size);
2101		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
2102
2103		sk->sk_backlog.len += delta;
2104		__NET_INC_STATS(sock_net(sk),
2105				LINUX_MIB_TCPBACKLOGCOALESCE);
2106		kfree_skb_partial(skb, fragstolen);
2107		return false;
2108	}
2109	__skb_push(skb, hdrlen);
2110
2111no_coalesce:
2112	/* sk->sk_backlog.len is reset only at the end of __release_sock().
2113	 * Both sk->sk_backlog.len and sk->sk_rmem_alloc could reach
2114	 * sk_rcvbuf in normal conditions.
2115	 */
2116	limit = ((u64)READ_ONCE(sk->sk_rcvbuf)) << 1;
2117
2118	limit += ((u32)READ_ONCE(sk->sk_sndbuf)) >> 1;
2119
2120	/* Only socket owner can try to collapse/prune rx queues
2121	 * to reduce memory overhead, so add a little headroom here.
2122	 * Few sockets backlog are possibly concurrently non empty.
2123	 */
2124	limit += 64 * 1024;
2125
2126	limit = min_t(u64, limit, UINT_MAX);
2127
2128	if (unlikely(sk_add_backlog(sk, skb, limit))) {
2129		bh_unlock_sock(sk);
2130		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
2131		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
2132		return true;
2133	}
2134	return false;
2135}
2136EXPORT_SYMBOL(tcp_add_backlog);
2137
2138int tcp_filter(struct sock *sk, struct sk_buff *skb)
2139{
2140	struct tcphdr *th = (struct tcphdr *)skb->data;
2141
2142	return sk_filter_trim_cap(sk, skb, th->doff * 4);
2143}
2144EXPORT_SYMBOL(tcp_filter);
2145
2146static void tcp_v4_restore_cb(struct sk_buff *skb)
2147{
2148	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
2149		sizeof(struct inet_skb_parm));
2150}
2151
2152static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
2153			   const struct tcphdr *th)
2154{
2155	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
2156	 * barrier() makes sure compiler wont play fool^Waliasing games.
2157	 */
2158	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
2159		sizeof(struct inet_skb_parm));
2160	barrier();
2161
2162	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
2163	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
2164				    skb->len - th->doff * 4);
2165	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
2166	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
 
2167	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2168	TCP_SKB_CB(skb)->sacked	 = 0;
2169	TCP_SKB_CB(skb)->has_rxtstamp =
2170			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
2171}
2172
2173/*
2174 *	From tcp_input.c
2175 */
2176
2177int tcp_v4_rcv(struct sk_buff *skb)
2178{
2179	struct net *net = dev_net(skb->dev);
2180	enum skb_drop_reason drop_reason;
2181	int sdif = inet_sdif(skb);
2182	int dif = inet_iif(skb);
2183	const struct iphdr *iph;
2184	const struct tcphdr *th;
2185	struct sock *sk = NULL;
2186	bool refcounted;
 
2187	int ret;
2188	u32 isn;
2189
2190	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2191	if (skb->pkt_type != PACKET_HOST)
2192		goto discard_it;
2193
2194	/* Count it even if it's bad */
2195	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
2196
2197	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
2198		goto discard_it;
2199
2200	th = (const struct tcphdr *)skb->data;
2201
2202	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2203		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2204		goto bad_packet;
2205	}
2206	if (!pskb_may_pull(skb, th->doff * 4))
2207		goto discard_it;
2208
2209	/* An explanation is required here, I think.
2210	 * Packet length and doff are validated by header prediction,
2211	 * provided case of th->doff==0 is eliminated.
2212	 * So, we defer the checks. */
2213
2214	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2215		goto csum_error;
2216
2217	th = (const struct tcphdr *)skb->data;
2218	iph = ip_hdr(skb);
2219lookup:
2220	sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
2221			       skb, __tcp_hdrlen(th), th->source,
2222			       th->dest, sdif, &refcounted);
2223	if (!sk)
2224		goto no_tcp_socket;
2225
 
2226	if (sk->sk_state == TCP_TIME_WAIT)
2227		goto do_time_wait;
2228
2229	if (sk->sk_state == TCP_NEW_SYN_RECV) {
2230		struct request_sock *req = inet_reqsk(sk);
2231		bool req_stolen = false;
2232		struct sock *nsk;
2233
2234		sk = req->rsk_listener;
2235		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2236			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2237		else
2238			drop_reason = tcp_inbound_hash(sk, req, skb,
2239						       &iph->saddr, &iph->daddr,
2240						       AF_INET, dif, sdif);
2241		if (unlikely(drop_reason)) {
2242			sk_drops_add(sk, skb);
2243			reqsk_put(req);
2244			goto discard_it;
2245		}
2246		if (tcp_checksum_complete(skb)) {
2247			reqsk_put(req);
2248			goto csum_error;
2249		}
2250		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2251			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2252			if (!nsk) {
2253				inet_csk_reqsk_queue_drop_and_put(sk, req);
2254				goto lookup;
2255			}
2256			sk = nsk;
2257			/* reuseport_migrate_sock() has already held one sk_refcnt
2258			 * before returning.
2259			 */
2260		} else {
2261			/* We own a reference on the listener, increase it again
2262			 * as we might lose it too soon.
2263			 */
2264			sock_hold(sk);
2265		}
2266		refcounted = true;
2267		nsk = NULL;
2268		if (!tcp_filter(sk, skb)) {
2269			th = (const struct tcphdr *)skb->data;
2270			iph = ip_hdr(skb);
2271			tcp_v4_fill_cb(skb, iph, th);
2272			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2273		} else {
2274			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2275		}
2276		if (!nsk) {
2277			reqsk_put(req);
2278			if (req_stolen) {
2279				/* Another cpu got exclusive access to req
2280				 * and created a full blown socket.
2281				 * Try to feed this packet to this socket
2282				 * instead of discarding it.
2283				 */
2284				tcp_v4_restore_cb(skb);
2285				sock_put(sk);
2286				goto lookup;
2287			}
2288			goto discard_and_relse;
2289		}
2290		nf_reset_ct(skb);
2291		if (nsk == sk) {
2292			reqsk_put(req);
2293			tcp_v4_restore_cb(skb);
 
 
 
2294		} else {
2295			drop_reason = tcp_child_process(sk, nsk, skb);
2296			if (drop_reason) {
2297				enum sk_rst_reason rst_reason;
2298
2299				rst_reason = sk_rst_convert_drop_reason(drop_reason);
2300				tcp_v4_send_reset(nsk, skb, rst_reason);
2301				goto discard_and_relse;
2302			}
2303			sock_put(sk);
2304			return 0;
2305		}
2306	}
2307
2308process:
2309	if (static_branch_unlikely(&ip4_min_ttl)) {
2310		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2311		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2312			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2313			drop_reason = SKB_DROP_REASON_TCP_MINTTL;
2314			goto discard_and_relse;
2315		}
2316	}
2317
2318	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2319		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2320		goto discard_and_relse;
2321	}
2322
2323	drop_reason = tcp_inbound_hash(sk, NULL, skb, &iph->saddr, &iph->daddr,
2324				       AF_INET, dif, sdif);
2325	if (drop_reason)
2326		goto discard_and_relse;
2327
2328	nf_reset_ct(skb);
2329
2330	if (tcp_filter(sk, skb)) {
2331		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2332		goto discard_and_relse;
2333	}
2334	th = (const struct tcphdr *)skb->data;
2335	iph = ip_hdr(skb);
2336	tcp_v4_fill_cb(skb, iph, th);
2337
2338	skb->dev = NULL;
2339
2340	if (sk->sk_state == TCP_LISTEN) {
2341		ret = tcp_v4_do_rcv(sk, skb);
2342		goto put_and_return;
2343	}
2344
2345	sk_incoming_cpu_update(sk);
2346
2347	bh_lock_sock_nested(sk);
2348	tcp_segs_in(tcp_sk(sk), skb);
2349	ret = 0;
2350	if (!sock_owned_by_user(sk)) {
 
 
2351		ret = tcp_v4_do_rcv(sk, skb);
2352	} else {
2353		if (tcp_add_backlog(sk, skb, &drop_reason))
2354			goto discard_and_relse;
 
2355	}
2356	bh_unlock_sock(sk);
 
 
2357
2358put_and_return:
2359	if (refcounted)
2360		sock_put(sk);
2361
2362	return ret;
2363
2364no_tcp_socket:
2365	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2366	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2367		goto discard_it;
2368
2369	tcp_v4_fill_cb(skb, iph, th);
2370
2371	if (tcp_checksum_complete(skb)) {
2372csum_error:
2373		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2374		trace_tcp_bad_csum(skb);
2375		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2376bad_packet:
2377		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2378	} else {
2379		tcp_v4_send_reset(NULL, skb, sk_rst_convert_drop_reason(drop_reason));
2380	}
2381
2382discard_it:
2383	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2384	/* Discard frame. */
2385	sk_skb_reason_drop(sk, skb, drop_reason);
2386	return 0;
2387
2388discard_and_relse:
2389	sk_drops_add(sk, skb);
2390	if (refcounted)
2391		sock_put(sk);
2392	goto discard_it;
2393
2394do_time_wait:
2395	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2396		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2397		inet_twsk_put(inet_twsk(sk));
2398		goto discard_it;
2399	}
2400
2401	tcp_v4_fill_cb(skb, iph, th);
2402
2403	if (tcp_checksum_complete(skb)) {
2404		inet_twsk_put(inet_twsk(sk));
2405		goto csum_error;
2406	}
2407	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th, &isn)) {
2408	case TCP_TW_SYN: {
2409		struct sock *sk2 = inet_lookup_listener(net,
2410							net->ipv4.tcp_death_row.hashinfo,
2411							skb, __tcp_hdrlen(th),
2412							iph->saddr, th->source,
2413							iph->daddr, th->dest,
2414							inet_iif(skb),
2415							sdif);
2416		if (sk2) {
2417			inet_twsk_deschedule_put(inet_twsk(sk));
2418			sk = sk2;
2419			tcp_v4_restore_cb(skb);
2420			refcounted = false;
2421			__this_cpu_write(tcp_tw_isn, isn);
2422			goto process;
2423		}
2424	}
2425		/* to ACK */
2426		fallthrough;
2427	case TCP_TW_ACK:
2428		tcp_v4_timewait_ack(sk, skb);
2429		break;
2430	case TCP_TW_RST:
2431		tcp_v4_send_reset(sk, skb, SK_RST_REASON_TCP_TIMEWAIT_SOCKET);
2432		inet_twsk_deschedule_put(inet_twsk(sk));
2433		goto discard_it;
2434	case TCP_TW_SUCCESS:;
2435	}
2436	goto discard_it;
2437}
2438
2439static struct timewait_sock_ops tcp_timewait_sock_ops = {
2440	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
 
2441	.twsk_destructor= tcp_twsk_destructor,
2442};
2443
2444void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2445{
2446	struct dst_entry *dst = skb_dst(skb);
2447
2448	if (dst && dst_hold_safe(dst)) {
2449		rcu_assign_pointer(sk->sk_rx_dst, dst);
2450		sk->sk_rx_dst_ifindex = skb->skb_iif;
2451	}
2452}
2453EXPORT_SYMBOL(inet_sk_rx_dst_set);
2454
2455const struct inet_connection_sock_af_ops ipv4_specific = {
2456	.queue_xmit	   = ip_queue_xmit,
2457	.send_check	   = tcp_v4_send_check,
2458	.rebuild_header	   = inet_sk_rebuild_header,
2459	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2460	.conn_request	   = tcp_v4_conn_request,
2461	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2462	.net_header_len	   = sizeof(struct iphdr),
2463	.setsockopt	   = ip_setsockopt,
2464	.getsockopt	   = ip_getsockopt,
2465	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2466	.sockaddr_len	   = sizeof(struct sockaddr_in),
2467	.mtu_reduced	   = tcp_v4_mtu_reduced,
2468};
2469EXPORT_SYMBOL(ipv4_specific);
2470
2471#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2472static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2473#ifdef CONFIG_TCP_MD5SIG
2474	.md5_lookup		= tcp_v4_md5_lookup,
2475	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2476	.md5_parse		= tcp_v4_parse_md5_keys,
2477#endif
2478#ifdef CONFIG_TCP_AO
2479	.ao_lookup		= tcp_v4_ao_lookup,
2480	.calc_ao_hash		= tcp_v4_ao_hash_skb,
2481	.ao_parse		= tcp_v4_parse_ao,
2482	.ao_calc_key_sk		= tcp_v4_ao_calc_key_sk,
2483#endif
2484};
2485#endif
2486
2487/* NOTE: A lot of things set to zero explicitly by call to
2488 *       sk_alloc() so need not be done here.
2489 */
2490static int tcp_v4_init_sock(struct sock *sk)
2491{
2492	struct inet_connection_sock *icsk = inet_csk(sk);
2493
2494	tcp_init_sock(sk);
2495
2496	icsk->icsk_af_ops = &ipv4_specific;
2497
2498#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2499	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2500#endif
2501
2502	return 0;
2503}
2504
2505#ifdef CONFIG_TCP_MD5SIG
2506static void tcp_md5sig_info_free_rcu(struct rcu_head *head)
2507{
2508	struct tcp_md5sig_info *md5sig;
2509
2510	md5sig = container_of(head, struct tcp_md5sig_info, rcu);
2511	kfree(md5sig);
2512	static_branch_slow_dec_deferred(&tcp_md5_needed);
2513	tcp_md5_release_sigpool();
2514}
2515#endif
2516
2517static void tcp_release_user_frags(struct sock *sk)
2518{
2519#ifdef CONFIG_PAGE_POOL
2520	unsigned long index;
2521	void *netmem;
2522
2523	xa_for_each(&sk->sk_user_frags, index, netmem)
2524		WARN_ON_ONCE(!napi_pp_put_page((__force netmem_ref)netmem));
2525#endif
2526}
2527
2528void tcp_v4_destroy_sock(struct sock *sk)
2529{
2530	struct tcp_sock *tp = tcp_sk(sk);
2531
2532	tcp_release_user_frags(sk);
2533
2534	xa_destroy(&sk->sk_user_frags);
2535
2536	trace_tcp_destroy_sock(sk);
2537
2538	tcp_clear_xmit_timers(sk);
2539
2540	tcp_cleanup_congestion_control(sk);
2541
2542	tcp_cleanup_ulp(sk);
2543
2544	/* Cleanup up the write buffer. */
2545	tcp_write_queue_purge(sk);
2546
2547	/* Check if we want to disable active TFO */
2548	tcp_fastopen_active_disable_ofo_check(sk);
2549
2550	/* Cleans up our, hopefully empty, out_of_order_queue. */
2551	skb_rbtree_purge(&tp->out_of_order_queue);
2552
2553#ifdef CONFIG_TCP_MD5SIG
2554	/* Clean up the MD5 key list, if any */
2555	if (tp->md5sig_info) {
2556		struct tcp_md5sig_info *md5sig;
2557
2558		md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
2559		tcp_clear_md5_list(sk);
2560		call_rcu(&md5sig->rcu, tcp_md5sig_info_free_rcu);
2561		rcu_assign_pointer(tp->md5sig_info, NULL);
2562	}
2563#endif
2564	tcp_ao_destroy_sock(sk, false);
2565
2566	/* Clean up a referenced TCP bind bucket. */
2567	if (inet_csk(sk)->icsk_bind_hash)
2568		inet_put_port(sk);
2569
2570	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2571
2572	/* If socket is aborted during connect operation */
2573	tcp_free_fastopen_req(tp);
2574	tcp_fastopen_destroy_cipher(sk);
2575	tcp_saved_syn_free(tp);
2576
2577	sk_sockets_allocated_dec(sk);
2578}
2579EXPORT_SYMBOL(tcp_v4_destroy_sock);
2580
2581#ifdef CONFIG_PROC_FS
2582/* Proc filesystem TCP sock list dumping. */
2583
2584static unsigned short seq_file_family(const struct seq_file *seq);
2585
2586static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2587{
2588	unsigned short family = seq_file_family(seq);
2589
2590	/* AF_UNSPEC is used as a match all */
2591	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2592		net_eq(sock_net(sk), seq_file_net(seq)));
2593}
2594
2595/* Find a non empty bucket (starting from st->bucket)
2596 * and return the first sk from it.
2597 */
2598static void *listening_get_first(struct seq_file *seq)
2599{
2600	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2601	struct tcp_iter_state *st = seq->private;
2602
2603	st->offset = 0;
2604	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2605		struct inet_listen_hashbucket *ilb2;
2606		struct hlist_nulls_node *node;
2607		struct sock *sk;
2608
2609		ilb2 = &hinfo->lhash2[st->bucket];
2610		if (hlist_nulls_empty(&ilb2->nulls_head))
2611			continue;
2612
2613		spin_lock(&ilb2->lock);
2614		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2615			if (seq_sk_match(seq, sk))
2616				return sk;
2617		}
2618		spin_unlock(&ilb2->lock);
2619	}
2620
2621	return NULL;
2622}
2623
2624/* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2625 * If "cur" is the last one in the st->bucket,
2626 * call listening_get_first() to return the first sk of the next
2627 * non empty bucket.
2628 */
2629static void *listening_get_next(struct seq_file *seq, void *cur)
2630{
 
2631	struct tcp_iter_state *st = seq->private;
2632	struct inet_listen_hashbucket *ilb2;
 
2633	struct hlist_nulls_node *node;
2634	struct inet_hashinfo *hinfo;
2635	struct sock *sk = cur;
2636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2637	++st->num;
2638	++st->offset;
2639
2640	sk = sk_nulls_next(sk);
 
2641	sk_nulls_for_each_from(sk, node) {
2642		if (seq_sk_match(seq, sk))
 
 
 
2643			return sk;
2644	}
2645
2646	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2647	ilb2 = &hinfo->lhash2[st->bucket];
2648	spin_unlock(&ilb2->lock);
2649	++st->bucket;
2650	return listening_get_first(seq);
2651}
2652
2653static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2654{
2655	struct tcp_iter_state *st = seq->private;
2656	void *rc;
2657
2658	st->bucket = 0;
2659	st->offset = 0;
2660	rc = listening_get_first(seq);
2661
2662	while (rc && *pos) {
2663		rc = listening_get_next(seq, rc);
2664		--*pos;
2665	}
2666	return rc;
2667}
2668
2669static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2670				const struct tcp_iter_state *st)
2671{
2672	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
2673}
2674
2675/*
2676 * Get first established socket starting from bucket given in st->bucket.
2677 * If st->bucket is zero, the very first socket in the hash is returned.
2678 */
2679static void *established_get_first(struct seq_file *seq)
2680{
2681	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2682	struct tcp_iter_state *st = seq->private;
 
 
 
 
 
 
 
2683
2684	st->offset = 0;
2685	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2686		struct sock *sk;
2687		struct hlist_nulls_node *node;
2688		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2689
2690		cond_resched();
2691
2692		/* Lockless fast path for the common case of empty buckets */
2693		if (empty_bucket(hinfo, st))
2694			continue;
2695
2696		spin_lock_bh(lock);
2697		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2698			if (seq_sk_match(seq, sk))
2699				return sk;
 
 
 
 
 
2700		}
2701		spin_unlock_bh(lock);
2702	}
2703
2704	return NULL;
2705}
2706
2707static void *established_get_next(struct seq_file *seq, void *cur)
2708{
2709	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
 
 
2710	struct tcp_iter_state *st = seq->private;
2711	struct hlist_nulls_node *node;
2712	struct sock *sk = cur;
 
 
 
 
2713
2714	++st->num;
2715	++st->offset;
2716
2717	sk = sk_nulls_next(sk);
2718
2719	sk_nulls_for_each_from(sk, node) {
2720		if (seq_sk_match(seq, sk))
 
 
2721			return sk;
2722	}
2723
2724	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2725	++st->bucket;
2726	return established_get_first(seq);
2727}
2728
2729static void *established_get_idx(struct seq_file *seq, loff_t pos)
2730{
2731	struct tcp_iter_state *st = seq->private;
2732	void *rc;
2733
2734	st->bucket = 0;
2735	rc = established_get_first(seq);
2736
2737	while (rc && pos) {
2738		rc = established_get_next(seq, rc);
2739		--pos;
2740	}
2741	return rc;
2742}
2743
2744static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2745{
2746	void *rc;
2747	struct tcp_iter_state *st = seq->private;
2748
2749	st->state = TCP_SEQ_STATE_LISTENING;
2750	rc	  = listening_get_idx(seq, &pos);
2751
2752	if (!rc) {
2753		st->state = TCP_SEQ_STATE_ESTABLISHED;
2754		rc	  = established_get_idx(seq, pos);
2755	}
2756
2757	return rc;
2758}
2759
2760static void *tcp_seek_last_pos(struct seq_file *seq)
2761{
2762	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2763	struct tcp_iter_state *st = seq->private;
2764	int bucket = st->bucket;
2765	int offset = st->offset;
2766	int orig_num = st->num;
2767	void *rc = NULL;
2768
2769	switch (st->state) {
2770	case TCP_SEQ_STATE_LISTENING:
2771		if (st->bucket > hinfo->lhash2_mask)
2772			break;
2773		rc = listening_get_first(seq);
 
2774		while (offset-- && rc && bucket == st->bucket)
2775			rc = listening_get_next(seq, rc);
2776		if (rc)
2777			break;
2778		st->bucket = 0;
2779		st->state = TCP_SEQ_STATE_ESTABLISHED;
2780		fallthrough;
2781	case TCP_SEQ_STATE_ESTABLISHED:
2782		if (st->bucket > hinfo->ehash_mask)
2783			break;
2784		rc = established_get_first(seq);
2785		while (offset-- && rc && bucket == st->bucket)
2786			rc = established_get_next(seq, rc);
2787	}
2788
2789	st->num = orig_num;
2790
2791	return rc;
2792}
2793
2794void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2795{
2796	struct tcp_iter_state *st = seq->private;
2797	void *rc;
2798
2799	if (*pos && *pos == st->last_pos) {
2800		rc = tcp_seek_last_pos(seq);
2801		if (rc)
2802			goto out;
2803	}
2804
2805	st->state = TCP_SEQ_STATE_LISTENING;
2806	st->num = 0;
2807	st->bucket = 0;
2808	st->offset = 0;
2809	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2810
2811out:
2812	st->last_pos = *pos;
2813	return rc;
2814}
2815EXPORT_SYMBOL(tcp_seq_start);
2816
2817void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2818{
2819	struct tcp_iter_state *st = seq->private;
2820	void *rc = NULL;
2821
2822	if (v == SEQ_START_TOKEN) {
2823		rc = tcp_get_idx(seq, 0);
2824		goto out;
2825	}
2826
2827	switch (st->state) {
2828	case TCP_SEQ_STATE_LISTENING:
2829		rc = listening_get_next(seq, v);
2830		if (!rc) {
2831			st->state = TCP_SEQ_STATE_ESTABLISHED;
2832			st->bucket = 0;
2833			st->offset = 0;
2834			rc	  = established_get_first(seq);
2835		}
2836		break;
2837	case TCP_SEQ_STATE_ESTABLISHED:
2838		rc = established_get_next(seq, v);
2839		break;
2840	}
2841out:
2842	++*pos;
2843	st->last_pos = *pos;
2844	return rc;
2845}
2846EXPORT_SYMBOL(tcp_seq_next);
2847
2848void tcp_seq_stop(struct seq_file *seq, void *v)
2849{
2850	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2851	struct tcp_iter_state *st = seq->private;
2852
2853	switch (st->state) {
2854	case TCP_SEQ_STATE_LISTENING:
2855		if (v != SEQ_START_TOKEN)
2856			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2857		break;
2858	case TCP_SEQ_STATE_ESTABLISHED:
2859		if (v)
2860			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2861		break;
2862	}
2863}
2864EXPORT_SYMBOL(tcp_seq_stop);
2865
2866static void get_openreq4(const struct request_sock *req,
2867			 struct seq_file *f, int i)
2868{
2869	const struct inet_request_sock *ireq = inet_rsk(req);
2870	long delta = req->rsk_timer.expires - jiffies;
2871
2872	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2873		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2874		i,
2875		ireq->ir_loc_addr,
2876		ireq->ir_num,
2877		ireq->ir_rmt_addr,
2878		ntohs(ireq->ir_rmt_port),
2879		TCP_SYN_RECV,
2880		0, 0, /* could print option size, but that is af dependent. */
2881		1,    /* timers active (only the expire timer) */
2882		jiffies_delta_to_clock_t(delta),
2883		req->num_timeout,
2884		from_kuid_munged(seq_user_ns(f),
2885				 sock_i_uid(req->rsk_listener)),
2886		0,  /* non standard timer */
2887		0, /* open_requests have no inode */
2888		0,
2889		req);
2890}
2891
2892static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2893{
2894	int timer_active;
2895	unsigned long timer_expires;
2896	const struct tcp_sock *tp = tcp_sk(sk);
2897	const struct inet_connection_sock *icsk = inet_csk(sk);
2898	const struct inet_sock *inet = inet_sk(sk);
2899	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2900	__be32 dest = inet->inet_daddr;
2901	__be32 src = inet->inet_rcv_saddr;
2902	__u16 destp = ntohs(inet->inet_dport);
2903	__u16 srcp = ntohs(inet->inet_sport);
2904	u8 icsk_pending;
2905	int rx_queue;
2906	int state;
2907
2908	icsk_pending = smp_load_acquire(&icsk->icsk_pending);
2909	if (icsk_pending == ICSK_TIME_RETRANS ||
2910	    icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2911	    icsk_pending == ICSK_TIME_LOSS_PROBE) {
2912		timer_active	= 1;
2913		timer_expires	= icsk->icsk_timeout;
2914	} else if (icsk_pending == ICSK_TIME_PROBE0) {
2915		timer_active	= 4;
2916		timer_expires	= icsk->icsk_timeout;
2917	} else if (timer_pending(&sk->sk_timer)) {
2918		timer_active	= 2;
2919		timer_expires	= sk->sk_timer.expires;
2920	} else {
2921		timer_active	= 0;
2922		timer_expires = jiffies;
2923	}
2924
2925	state = inet_sk_state_load(sk);
2926	if (state == TCP_LISTEN)
2927		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2928	else
2929		/* Because we don't lock the socket,
2930		 * we might find a transient negative value.
2931		 */
2932		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2933				      READ_ONCE(tp->copied_seq), 0);
2934
2935	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2936			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2937		i, src, srcp, dest, destp, state,
2938		READ_ONCE(tp->write_seq) - tp->snd_una,
2939		rx_queue,
2940		timer_active,
2941		jiffies_delta_to_clock_t(timer_expires - jiffies),
2942		icsk->icsk_retransmits,
2943		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2944		icsk->icsk_probes_out,
2945		sock_i_ino(sk),
2946		refcount_read(&sk->sk_refcnt), sk,
2947		jiffies_to_clock_t(icsk->icsk_rto),
2948		jiffies_to_clock_t(icsk->icsk_ack.ato),
2949		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2950		tcp_snd_cwnd(tp),
2951		state == TCP_LISTEN ?
2952		    fastopenq->max_qlen :
2953		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2954}
2955
2956static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2957			       struct seq_file *f, int i)
2958{
2959	long delta = tw->tw_timer.expires - jiffies;
2960	__be32 dest, src;
2961	__u16 destp, srcp;
2962
2963	dest  = tw->tw_daddr;
2964	src   = tw->tw_rcv_saddr;
2965	destp = ntohs(tw->tw_dport);
2966	srcp  = ntohs(tw->tw_sport);
2967
2968	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2969		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2970		i, src, srcp, dest, destp, READ_ONCE(tw->tw_substate), 0, 0,
2971		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2972		refcount_read(&tw->tw_refcnt), tw);
2973}
2974
2975#define TMPSZ 150
2976
2977static int tcp4_seq_show(struct seq_file *seq, void *v)
2978{
2979	struct tcp_iter_state *st;
2980	struct sock *sk = v;
2981
2982	seq_setwidth(seq, TMPSZ - 1);
2983	if (v == SEQ_START_TOKEN) {
2984		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2985			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2986			   "inode");
2987		goto out;
2988	}
2989	st = seq->private;
2990
2991	if (sk->sk_state == TCP_TIME_WAIT)
2992		get_timewait4_sock(v, seq, st->num);
2993	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2994		get_openreq4(v, seq, st->num);
2995	else
2996		get_tcp4_sock(v, seq, st->num);
2997out:
2998	seq_pad(seq, '\n');
2999	return 0;
3000}
3001
3002#ifdef CONFIG_BPF_SYSCALL
3003struct bpf_tcp_iter_state {
3004	struct tcp_iter_state state;
3005	unsigned int cur_sk;
3006	unsigned int end_sk;
3007	unsigned int max_sk;
3008	struct sock **batch;
3009	bool st_bucket_done;
3010};
3011
3012struct bpf_iter__tcp {
3013	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3014	__bpf_md_ptr(struct sock_common *, sk_common);
3015	uid_t uid __aligned(8);
3016};
3017
3018static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3019			     struct sock_common *sk_common, uid_t uid)
3020{
3021	struct bpf_iter__tcp ctx;
3022
3023	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3024	ctx.meta = meta;
3025	ctx.sk_common = sk_common;
3026	ctx.uid = uid;
3027	return bpf_iter_run_prog(prog, &ctx);
3028}
3029
3030static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
3031{
3032	while (iter->cur_sk < iter->end_sk)
3033		sock_gen_put(iter->batch[iter->cur_sk++]);
3034}
3035
3036static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
3037				      unsigned int new_batch_sz)
3038{
3039	struct sock **new_batch;
3040
3041	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
3042			     GFP_USER | __GFP_NOWARN);
3043	if (!new_batch)
3044		return -ENOMEM;
3045
3046	bpf_iter_tcp_put_batch(iter);
3047	kvfree(iter->batch);
3048	iter->batch = new_batch;
3049	iter->max_sk = new_batch_sz;
3050
3051	return 0;
3052}
3053
3054static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
3055						 struct sock *start_sk)
3056{
3057	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3058	struct bpf_tcp_iter_state *iter = seq->private;
3059	struct tcp_iter_state *st = &iter->state;
3060	struct hlist_nulls_node *node;
3061	unsigned int expected = 1;
3062	struct sock *sk;
3063
3064	sock_hold(start_sk);
3065	iter->batch[iter->end_sk++] = start_sk;
3066
3067	sk = sk_nulls_next(start_sk);
3068	sk_nulls_for_each_from(sk, node) {
3069		if (seq_sk_match(seq, sk)) {
3070			if (iter->end_sk < iter->max_sk) {
3071				sock_hold(sk);
3072				iter->batch[iter->end_sk++] = sk;
3073			}
3074			expected++;
3075		}
3076	}
3077	spin_unlock(&hinfo->lhash2[st->bucket].lock);
3078
3079	return expected;
3080}
3081
3082static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
3083						   struct sock *start_sk)
3084{
3085	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3086	struct bpf_tcp_iter_state *iter = seq->private;
3087	struct tcp_iter_state *st = &iter->state;
3088	struct hlist_nulls_node *node;
3089	unsigned int expected = 1;
3090	struct sock *sk;
3091
3092	sock_hold(start_sk);
3093	iter->batch[iter->end_sk++] = start_sk;
3094
3095	sk = sk_nulls_next(start_sk);
3096	sk_nulls_for_each_from(sk, node) {
3097		if (seq_sk_match(seq, sk)) {
3098			if (iter->end_sk < iter->max_sk) {
3099				sock_hold(sk);
3100				iter->batch[iter->end_sk++] = sk;
3101			}
3102			expected++;
3103		}
3104	}
3105	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
3106
3107	return expected;
3108}
3109
3110static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
3111{
3112	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3113	struct bpf_tcp_iter_state *iter = seq->private;
3114	struct tcp_iter_state *st = &iter->state;
3115	unsigned int expected;
3116	bool resized = false;
3117	struct sock *sk;
3118
3119	/* The st->bucket is done.  Directly advance to the next
3120	 * bucket instead of having the tcp_seek_last_pos() to skip
3121	 * one by one in the current bucket and eventually find out
3122	 * it has to advance to the next bucket.
3123	 */
3124	if (iter->st_bucket_done) {
3125		st->offset = 0;
3126		st->bucket++;
3127		if (st->state == TCP_SEQ_STATE_LISTENING &&
3128		    st->bucket > hinfo->lhash2_mask) {
3129			st->state = TCP_SEQ_STATE_ESTABLISHED;
3130			st->bucket = 0;
3131		}
3132	}
3133
3134again:
3135	/* Get a new batch */
3136	iter->cur_sk = 0;
3137	iter->end_sk = 0;
3138	iter->st_bucket_done = false;
3139
3140	sk = tcp_seek_last_pos(seq);
3141	if (!sk)
3142		return NULL; /* Done */
3143
3144	if (st->state == TCP_SEQ_STATE_LISTENING)
3145		expected = bpf_iter_tcp_listening_batch(seq, sk);
3146	else
3147		expected = bpf_iter_tcp_established_batch(seq, sk);
3148
3149	if (iter->end_sk == expected) {
3150		iter->st_bucket_done = true;
3151		return sk;
3152	}
3153
3154	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
3155		resized = true;
3156		goto again;
3157	}
3158
3159	return sk;
3160}
3161
3162static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
3163{
3164	/* bpf iter does not support lseek, so it always
3165	 * continue from where it was stop()-ped.
3166	 */
3167	if (*pos)
3168		return bpf_iter_tcp_batch(seq);
3169
3170	return SEQ_START_TOKEN;
3171}
3172
3173static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3174{
3175	struct bpf_tcp_iter_state *iter = seq->private;
3176	struct tcp_iter_state *st = &iter->state;
3177	struct sock *sk;
3178
3179	/* Whenever seq_next() is called, the iter->cur_sk is
3180	 * done with seq_show(), so advance to the next sk in
3181	 * the batch.
3182	 */
3183	if (iter->cur_sk < iter->end_sk) {
3184		/* Keeping st->num consistent in tcp_iter_state.
3185		 * bpf_iter_tcp does not use st->num.
3186		 * meta.seq_num is used instead.
3187		 */
3188		st->num++;
3189		/* Move st->offset to the next sk in the bucket such that
3190		 * the future start() will resume at st->offset in
3191		 * st->bucket.  See tcp_seek_last_pos().
3192		 */
3193		st->offset++;
3194		sock_gen_put(iter->batch[iter->cur_sk++]);
3195	}
3196
3197	if (iter->cur_sk < iter->end_sk)
3198		sk = iter->batch[iter->cur_sk];
3199	else
3200		sk = bpf_iter_tcp_batch(seq);
3201
3202	++*pos;
3203	/* Keeping st->last_pos consistent in tcp_iter_state.
3204	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
3205	 */
3206	st->last_pos = *pos;
3207	return sk;
3208}
3209
3210static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
3211{
3212	struct bpf_iter_meta meta;
3213	struct bpf_prog *prog;
3214	struct sock *sk = v;
3215	uid_t uid;
3216	int ret;
3217
3218	if (v == SEQ_START_TOKEN)
3219		return 0;
3220
3221	if (sk_fullsock(sk))
3222		lock_sock(sk);
3223
3224	if (unlikely(sk_unhashed(sk))) {
3225		ret = SEQ_SKIP;
3226		goto unlock;
3227	}
3228
3229	if (sk->sk_state == TCP_TIME_WAIT) {
3230		uid = 0;
3231	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
3232		const struct request_sock *req = v;
3233
3234		uid = from_kuid_munged(seq_user_ns(seq),
3235				       sock_i_uid(req->rsk_listener));
3236	} else {
3237		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3238	}
3239
3240	meta.seq = seq;
3241	prog = bpf_iter_get_info(&meta, false);
3242	ret = tcp_prog_seq_show(prog, &meta, v, uid);
3243
3244unlock:
3245	if (sk_fullsock(sk))
3246		release_sock(sk);
3247	return ret;
3248
3249}
3250
3251static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3252{
3253	struct bpf_tcp_iter_state *iter = seq->private;
3254	struct bpf_iter_meta meta;
3255	struct bpf_prog *prog;
3256
3257	if (!v) {
3258		meta.seq = seq;
3259		prog = bpf_iter_get_info(&meta, true);
3260		if (prog)
3261			(void)tcp_prog_seq_show(prog, &meta, v, 0);
3262	}
3263
3264	if (iter->cur_sk < iter->end_sk) {
3265		bpf_iter_tcp_put_batch(iter);
3266		iter->st_bucket_done = false;
3267	}
3268}
3269
3270static const struct seq_operations bpf_iter_tcp_seq_ops = {
3271	.show		= bpf_iter_tcp_seq_show,
3272	.start		= bpf_iter_tcp_seq_start,
3273	.next		= bpf_iter_tcp_seq_next,
3274	.stop		= bpf_iter_tcp_seq_stop,
3275};
3276#endif
3277static unsigned short seq_file_family(const struct seq_file *seq)
3278{
3279	const struct tcp_seq_afinfo *afinfo;
3280
3281#ifdef CONFIG_BPF_SYSCALL
3282	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
3283	if (seq->op == &bpf_iter_tcp_seq_ops)
3284		return AF_UNSPEC;
3285#endif
3286
3287	/* Iterated from proc fs */
3288	afinfo = pde_data(file_inode(seq->file));
3289	return afinfo->family;
3290}
3291
3292static const struct seq_operations tcp4_seq_ops = {
3293	.show		= tcp4_seq_show,
3294	.start		= tcp_seq_start,
3295	.next		= tcp_seq_next,
3296	.stop		= tcp_seq_stop,
3297};
3298
3299static struct tcp_seq_afinfo tcp4_seq_afinfo = {
3300	.family		= AF_INET,
3301};
3302
3303static int __net_init tcp4_proc_init_net(struct net *net)
3304{
3305	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3306			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3307		return -ENOMEM;
3308	return 0;
3309}
3310
3311static void __net_exit tcp4_proc_exit_net(struct net *net)
3312{
3313	remove_proc_entry("tcp", net->proc_net);
3314}
3315
3316static struct pernet_operations tcp4_net_ops = {
3317	.init = tcp4_proc_init_net,
3318	.exit = tcp4_proc_exit_net,
3319};
3320
3321int __init tcp4_proc_init(void)
3322{
3323	return register_pernet_subsys(&tcp4_net_ops);
3324}
3325
3326void tcp4_proc_exit(void)
3327{
3328	unregister_pernet_subsys(&tcp4_net_ops);
3329}
3330#endif /* CONFIG_PROC_FS */
3331
3332/* @wake is one when sk_stream_write_space() calls us.
3333 * This sends EPOLLOUT only if notsent_bytes is half the limit.
3334 * This mimics the strategy used in sock_def_write_space().
3335 */
3336bool tcp_stream_memory_free(const struct sock *sk, int wake)
3337{
3338	const struct tcp_sock *tp = tcp_sk(sk);
3339	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3340			    READ_ONCE(tp->snd_nxt);
3341
3342	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3343}
3344EXPORT_SYMBOL(tcp_stream_memory_free);
3345
3346struct proto tcp_prot = {
3347	.name			= "TCP",
3348	.owner			= THIS_MODULE,
3349	.close			= tcp_close,
3350	.pre_connect		= tcp_v4_pre_connect,
3351	.connect		= tcp_v4_connect,
3352	.disconnect		= tcp_disconnect,
3353	.accept			= inet_csk_accept,
3354	.ioctl			= tcp_ioctl,
3355	.init			= tcp_v4_init_sock,
3356	.destroy		= tcp_v4_destroy_sock,
3357	.shutdown		= tcp_shutdown,
3358	.setsockopt		= tcp_setsockopt,
3359	.getsockopt		= tcp_getsockopt,
3360	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3361	.keepalive		= tcp_set_keepalive,
3362	.recvmsg		= tcp_recvmsg,
3363	.sendmsg		= tcp_sendmsg,
3364	.splice_eof		= tcp_splice_eof,
3365	.backlog_rcv		= tcp_v4_do_rcv,
3366	.release_cb		= tcp_release_cb,
3367	.hash			= inet_hash,
3368	.unhash			= inet_unhash,
3369	.get_port		= inet_csk_get_port,
3370	.put_port		= inet_put_port,
3371#ifdef CONFIG_BPF_SYSCALL
3372	.psock_update_sk_prot	= tcp_bpf_update_proto,
3373#endif
3374	.enter_memory_pressure	= tcp_enter_memory_pressure,
3375	.leave_memory_pressure	= tcp_leave_memory_pressure,
3376	.stream_memory_free	= tcp_stream_memory_free,
3377	.sockets_allocated	= &tcp_sockets_allocated,
3378	.orphan_count		= &tcp_orphan_count,
3379
3380	.memory_allocated	= &tcp_memory_allocated,
3381	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3382
3383	.memory_pressure	= &tcp_memory_pressure,
3384	.sysctl_mem		= sysctl_tcp_mem,
3385	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3386	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3387	.max_header		= MAX_TCP_HEADER,
3388	.obj_size		= sizeof(struct tcp_sock),
3389	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3390	.twsk_prot		= &tcp_timewait_sock_ops,
3391	.rsk_prot		= &tcp_request_sock_ops,
3392	.h.hashinfo		= NULL,
3393	.no_autobind		= true,
3394	.diag_destroy		= tcp_abort,
3395};
3396EXPORT_SYMBOL(tcp_prot);
3397
3398static void __net_exit tcp_sk_exit(struct net *net)
3399{
 
 
3400	if (net->ipv4.tcp_congestion_control)
3401		bpf_module_put(net->ipv4.tcp_congestion_control,
3402			       net->ipv4.tcp_congestion_control->owner);
3403}
3404
3405static void __net_init tcp_set_hashinfo(struct net *net)
3406{
3407	struct inet_hashinfo *hinfo;
3408	unsigned int ehash_entries;
3409	struct net *old_net;
3410
3411	if (net_eq(net, &init_net))
3412		goto fallback;
3413
3414	old_net = current->nsproxy->net_ns;
3415	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3416	if (!ehash_entries)
3417		goto fallback;
3418
3419	ehash_entries = roundup_pow_of_two(ehash_entries);
3420	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3421	if (!hinfo) {
3422		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3423			"for a netns, fallback to the global one\n",
3424			ehash_entries);
3425fallback:
3426		hinfo = &tcp_hashinfo;
3427		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3428	}
3429
3430	net->ipv4.tcp_death_row.hashinfo = hinfo;
3431	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3432	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3433}
3434
3435static int __net_init tcp_sk_init(struct net *net)
3436{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3437	net->ipv4.sysctl_tcp_ecn = 2;
3438	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3439
3440	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3441	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3442	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3443	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3444	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3445
3446	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3447	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3448	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3449
3450	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3451	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3452	net->ipv4.sysctl_tcp_syncookies = 1;
3453	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3454	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3455	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3456	net->ipv4.sysctl_tcp_orphan_retries = 0;
3457	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3458	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3459	net->ipv4.sysctl_tcp_tw_reuse = 2;
3460	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3461
3462	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3463	tcp_set_hashinfo(net);
 
3464
 
3465	net->ipv4.sysctl_tcp_sack = 1;
3466	net->ipv4.sysctl_tcp_window_scaling = 1;
3467	net->ipv4.sysctl_tcp_timestamps = 1;
3468	net->ipv4.sysctl_tcp_early_retrans = 3;
3469	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3470	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3471	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3472	net->ipv4.sysctl_tcp_max_reordering = 300;
3473	net->ipv4.sysctl_tcp_dsack = 1;
3474	net->ipv4.sysctl_tcp_app_win = 31;
3475	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3476	net->ipv4.sysctl_tcp_frto = 2;
3477	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3478	/* This limits the percentage of the congestion window which we
3479	 * will allow a single TSO frame to consume.  Building TSO frames
3480	 * which are too large can cause TCP streams to be bursty.
3481	 */
3482	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3483	/* Default TSQ limit of 16 TSO segments */
3484	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3485
3486	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3487	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3488
3489	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3490	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3491	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3492	net->ipv4.sysctl_tcp_autocorking = 1;
3493	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3494	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3495	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3496	if (net != &init_net) {
3497		memcpy(net->ipv4.sysctl_tcp_rmem,
3498		       init_net.ipv4.sysctl_tcp_rmem,
3499		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3500		memcpy(net->ipv4.sysctl_tcp_wmem,
3501		       init_net.ipv4.sysctl_tcp_wmem,
3502		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3503	}
3504	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3505	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3506	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3507	net->ipv4.sysctl_tcp_backlog_ack_defer = 1;
3508	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
 
3509	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3510	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3511
3512	/* Set default values for PLB */
3513	net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3514	net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3515	net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3516	net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3517	/* Default congestion threshold for PLB to mark a round is 50% */
3518	net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3519
3520	/* Reno is always built in */
3521	if (!net_eq(net, &init_net) &&
3522	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3523			       init_net.ipv4.tcp_congestion_control->owner))
3524		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3525	else
3526		net->ipv4.tcp_congestion_control = &tcp_reno;
3527
3528	net->ipv4.sysctl_tcp_syn_linear_timeouts = 4;
3529	net->ipv4.sysctl_tcp_shrink_window = 0;
 
3530
3531	net->ipv4.sysctl_tcp_pingpong_thresh = 1;
3532	net->ipv4.sysctl_tcp_rto_min_us = jiffies_to_usecs(TCP_RTO_MIN);
3533
3534	return 0;
3535}
3536
3537static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3538{
3539	struct net *net;
3540
3541	/* make sure concurrent calls to tcp_sk_exit_batch from net_cleanup_work
3542	 * and failed setup_net error unwinding path are serialized.
3543	 *
3544	 * tcp_twsk_purge() handles twsk in any dead netns, not just those in
3545	 * net_exit_list, the thread that dismantles a particular twsk must
3546	 * do so without other thread progressing to refcount_dec_and_test() of
3547	 * tcp_death_row.tw_refcount.
3548	 */
3549	mutex_lock(&tcp_exit_batch_mutex);
3550
3551	tcp_twsk_purge(net_exit_list);
3552
3553	list_for_each_entry(net, net_exit_list, exit_list) {
3554		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3555		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3556		tcp_fastopen_ctx_destroy(net);
3557	}
3558
3559	mutex_unlock(&tcp_exit_batch_mutex);
3560}
3561
3562static struct pernet_operations __net_initdata tcp_sk_ops = {
3563       .init	   = tcp_sk_init,
3564       .exit	   = tcp_sk_exit,
3565       .exit_batch = tcp_sk_exit_batch,
3566};
3567
3568#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3569DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3570		     struct sock_common *sk_common, uid_t uid)
3571
3572#define INIT_BATCH_SZ 16
3573
3574static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3575{
3576	struct bpf_tcp_iter_state *iter = priv_data;
3577	int err;
 
3578
3579	err = bpf_iter_init_seq_net(priv_data, aux);
3580	if (err)
3581		return err;
3582
3583	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3584	if (err) {
3585		bpf_iter_fini_seq_net(priv_data);
3586		return err;
3587	}
3588
3589	return 0;
3590}
3591
3592static void bpf_iter_fini_tcp(void *priv_data)
3593{
3594	struct bpf_tcp_iter_state *iter = priv_data;
3595
 
3596	bpf_iter_fini_seq_net(priv_data);
3597	kvfree(iter->batch);
3598}
3599
3600static const struct bpf_iter_seq_info tcp_seq_info = {
3601	.seq_ops		= &bpf_iter_tcp_seq_ops,
3602	.init_seq_private	= bpf_iter_init_tcp,
3603	.fini_seq_private	= bpf_iter_fini_tcp,
3604	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3605};
3606
3607static const struct bpf_func_proto *
3608bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3609			    const struct bpf_prog *prog)
3610{
3611	switch (func_id) {
3612	case BPF_FUNC_setsockopt:
3613		return &bpf_sk_setsockopt_proto;
3614	case BPF_FUNC_getsockopt:
3615		return &bpf_sk_getsockopt_proto;
3616	default:
3617		return NULL;
3618	}
3619}
3620
3621static struct bpf_iter_reg tcp_reg_info = {
3622	.target			= "tcp",
3623	.ctx_arg_info_size	= 1,
3624	.ctx_arg_info		= {
3625		{ offsetof(struct bpf_iter__tcp, sk_common),
3626		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3627	},
3628	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3629	.seq_info		= &tcp_seq_info,
3630};
3631
3632static void __init bpf_iter_register(void)
3633{
3634	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3635	if (bpf_iter_reg_target(&tcp_reg_info))
3636		pr_warn("Warning: could not register bpf iterator tcp\n");
3637}
3638
3639#endif
3640
3641void __init tcp_v4_init(void)
3642{
3643	int cpu, res;
3644
3645	for_each_possible_cpu(cpu) {
3646		struct sock *sk;
3647
3648		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3649					   IPPROTO_TCP, &init_net);
3650		if (res)
3651			panic("Failed to create the TCP control socket.\n");
3652		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3653
3654		/* Please enforce IP_DF and IPID==0 for RST and
3655		 * ACK sent in SYN-RECV and TIME-WAIT state.
3656		 */
3657		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3658
3659		sk->sk_clockid = CLOCK_MONOTONIC;
3660
3661		per_cpu(ipv4_tcp_sk.sock, cpu) = sk;
3662	}
3663	if (register_pernet_subsys(&tcp_sk_ops))
3664		panic("Failed to create the TCP control socket.\n");
3665
3666#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3667	bpf_iter_register();
3668#endif
3669}