Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * IPv4 specific functions
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 */
18
19/*
20 * Changes:
21 * David S. Miller : New socket lookup architecture.
22 * This code is dedicated to John Dyson.
23 * David S. Miller : Change semantics of established hash,
24 * half is devoted to TIME_WAIT sockets
25 * and the rest go in the other half.
26 * Andi Kleen : Add support for syncookies and fixed
27 * some bugs: ip options weren't passed to
28 * the TCP layer, missed a check for an
29 * ACK bit.
30 * Andi Kleen : Implemented fast path mtu discovery.
31 * Fixed many serious bugs in the
32 * request_sock handling and moved
33 * most of it into the af independent code.
34 * Added tail drop and some other bugfixes.
35 * Added new listen semantics.
36 * Mike McLagan : Routing by source
37 * Juan Jose Ciarlante: ip_dynaddr bits
38 * Andi Kleen: various fixes.
39 * Vitaly E. Lavrov : Transparent proxy revived after year
40 * coma.
41 * Andi Kleen : Fix new listen.
42 * Andi Kleen : Fix accept error reporting.
43 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
44 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
45 * a single port at the same time.
46 */
47
48#define pr_fmt(fmt) "TCP: " fmt
49
50#include <linux/bottom_half.h>
51#include <linux/types.h>
52#include <linux/fcntl.h>
53#include <linux/module.h>
54#include <linux/random.h>
55#include <linux/cache.h>
56#include <linux/jhash.h>
57#include <linux/init.h>
58#include <linux/times.h>
59#include <linux/slab.h>
60
61#include <net/net_namespace.h>
62#include <net/icmp.h>
63#include <net/inet_hashtables.h>
64#include <net/tcp.h>
65#include <net/transp_v6.h>
66#include <net/ipv6.h>
67#include <net/inet_common.h>
68#include <net/timewait_sock.h>
69#include <net/xfrm.h>
70#include <net/secure_seq.h>
71#include <net/busy_poll.h>
72
73#include <linux/inet.h>
74#include <linux/ipv6.h>
75#include <linux/stddef.h>
76#include <linux/proc_fs.h>
77#include <linux/seq_file.h>
78#include <linux/inetdevice.h>
79#include <linux/btf_ids.h>
80
81#include <crypto/hash.h>
82#include <linux/scatterlist.h>
83
84#include <trace/events/tcp.h>
85
86#ifdef CONFIG_TCP_MD5SIG
87static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
88 __be32 daddr, __be32 saddr, const struct tcphdr *th);
89#endif
90
91struct inet_hashinfo tcp_hashinfo;
92EXPORT_SYMBOL(tcp_hashinfo);
93
94static u32 tcp_v4_init_seq(const struct sk_buff *skb)
95{
96 return secure_tcp_seq(ip_hdr(skb)->daddr,
97 ip_hdr(skb)->saddr,
98 tcp_hdr(skb)->dest,
99 tcp_hdr(skb)->source);
100}
101
102static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
103{
104 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
105}
106
107int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
108{
109 const struct inet_timewait_sock *tw = inet_twsk(sktw);
110 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
111 struct tcp_sock *tp = tcp_sk(sk);
112 int reuse = sock_net(sk)->ipv4.sysctl_tcp_tw_reuse;
113
114 if (reuse == 2) {
115 /* Still does not detect *everything* that goes through
116 * lo, since we require a loopback src or dst address
117 * or direct binding to 'lo' interface.
118 */
119 bool loopback = false;
120 if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
121 loopback = true;
122#if IS_ENABLED(CONFIG_IPV6)
123 if (tw->tw_family == AF_INET6) {
124 if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
125 ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
126 ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
127 ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
128 loopback = true;
129 } else
130#endif
131 {
132 if (ipv4_is_loopback(tw->tw_daddr) ||
133 ipv4_is_loopback(tw->tw_rcv_saddr))
134 loopback = true;
135 }
136 if (!loopback)
137 reuse = 0;
138 }
139
140 /* With PAWS, it is safe from the viewpoint
141 of data integrity. Even without PAWS it is safe provided sequence
142 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
143
144 Actually, the idea is close to VJ's one, only timestamp cache is
145 held not per host, but per port pair and TW bucket is used as state
146 holder.
147
148 If TW bucket has been already destroyed we fall back to VJ's scheme
149 and use initial timestamp retrieved from peer table.
150 */
151 if (tcptw->tw_ts_recent_stamp &&
152 (!twp || (reuse && time_after32(ktime_get_seconds(),
153 tcptw->tw_ts_recent_stamp)))) {
154 /* In case of repair and re-using TIME-WAIT sockets we still
155 * want to be sure that it is safe as above but honor the
156 * sequence numbers and time stamps set as part of the repair
157 * process.
158 *
159 * Without this check re-using a TIME-WAIT socket with TCP
160 * repair would accumulate a -1 on the repair assigned
161 * sequence number. The first time it is reused the sequence
162 * is -1, the second time -2, etc. This fixes that issue
163 * without appearing to create any others.
164 */
165 if (likely(!tp->repair)) {
166 u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
167
168 if (!seq)
169 seq = 1;
170 WRITE_ONCE(tp->write_seq, seq);
171 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
172 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
173 }
174 sock_hold(sktw);
175 return 1;
176 }
177
178 return 0;
179}
180EXPORT_SYMBOL_GPL(tcp_twsk_unique);
181
182static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
183 int addr_len)
184{
185 /* This check is replicated from tcp_v4_connect() and intended to
186 * prevent BPF program called below from accessing bytes that are out
187 * of the bound specified by user in addr_len.
188 */
189 if (addr_len < sizeof(struct sockaddr_in))
190 return -EINVAL;
191
192 sock_owned_by_me(sk);
193
194 return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr);
195}
196
197/* This will initiate an outgoing connection. */
198int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
199{
200 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
201 struct inet_sock *inet = inet_sk(sk);
202 struct tcp_sock *tp = tcp_sk(sk);
203 __be16 orig_sport, orig_dport;
204 __be32 daddr, nexthop;
205 struct flowi4 *fl4;
206 struct rtable *rt;
207 int err;
208 struct ip_options_rcu *inet_opt;
209 struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
210
211 if (addr_len < sizeof(struct sockaddr_in))
212 return -EINVAL;
213
214 if (usin->sin_family != AF_INET)
215 return -EAFNOSUPPORT;
216
217 nexthop = daddr = usin->sin_addr.s_addr;
218 inet_opt = rcu_dereference_protected(inet->inet_opt,
219 lockdep_sock_is_held(sk));
220 if (inet_opt && inet_opt->opt.srr) {
221 if (!daddr)
222 return -EINVAL;
223 nexthop = inet_opt->opt.faddr;
224 }
225
226 orig_sport = inet->inet_sport;
227 orig_dport = usin->sin_port;
228 fl4 = &inet->cork.fl.u.ip4;
229 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
230 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
231 IPPROTO_TCP,
232 orig_sport, orig_dport, sk);
233 if (IS_ERR(rt)) {
234 err = PTR_ERR(rt);
235 if (err == -ENETUNREACH)
236 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
237 return err;
238 }
239
240 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
241 ip_rt_put(rt);
242 return -ENETUNREACH;
243 }
244
245 if (!inet_opt || !inet_opt->opt.srr)
246 daddr = fl4->daddr;
247
248 if (!inet->inet_saddr)
249 inet->inet_saddr = fl4->saddr;
250 sk_rcv_saddr_set(sk, inet->inet_saddr);
251
252 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
253 /* Reset inherited state */
254 tp->rx_opt.ts_recent = 0;
255 tp->rx_opt.ts_recent_stamp = 0;
256 if (likely(!tp->repair))
257 WRITE_ONCE(tp->write_seq, 0);
258 }
259
260 inet->inet_dport = usin->sin_port;
261 sk_daddr_set(sk, daddr);
262
263 inet_csk(sk)->icsk_ext_hdr_len = 0;
264 if (inet_opt)
265 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
266
267 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
268
269 /* Socket identity is still unknown (sport may be zero).
270 * However we set state to SYN-SENT and not releasing socket
271 * lock select source port, enter ourselves into the hash tables and
272 * complete initialization after this.
273 */
274 tcp_set_state(sk, TCP_SYN_SENT);
275 err = inet_hash_connect(tcp_death_row, sk);
276 if (err)
277 goto failure;
278
279 sk_set_txhash(sk);
280
281 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
282 inet->inet_sport, inet->inet_dport, sk);
283 if (IS_ERR(rt)) {
284 err = PTR_ERR(rt);
285 rt = NULL;
286 goto failure;
287 }
288 /* OK, now commit destination to socket. */
289 sk->sk_gso_type = SKB_GSO_TCPV4;
290 sk_setup_caps(sk, &rt->dst);
291 rt = NULL;
292
293 if (likely(!tp->repair)) {
294 if (!tp->write_seq)
295 WRITE_ONCE(tp->write_seq,
296 secure_tcp_seq(inet->inet_saddr,
297 inet->inet_daddr,
298 inet->inet_sport,
299 usin->sin_port));
300 tp->tsoffset = secure_tcp_ts_off(sock_net(sk),
301 inet->inet_saddr,
302 inet->inet_daddr);
303 }
304
305 inet->inet_id = prandom_u32();
306
307 if (tcp_fastopen_defer_connect(sk, &err))
308 return err;
309 if (err)
310 goto failure;
311
312 err = tcp_connect(sk);
313
314 if (err)
315 goto failure;
316
317 return 0;
318
319failure:
320 /*
321 * This unhashes the socket and releases the local port,
322 * if necessary.
323 */
324 tcp_set_state(sk, TCP_CLOSE);
325 ip_rt_put(rt);
326 sk->sk_route_caps = 0;
327 inet->inet_dport = 0;
328 return err;
329}
330EXPORT_SYMBOL(tcp_v4_connect);
331
332/*
333 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
334 * It can be called through tcp_release_cb() if socket was owned by user
335 * at the time tcp_v4_err() was called to handle ICMP message.
336 */
337void tcp_v4_mtu_reduced(struct sock *sk)
338{
339 struct inet_sock *inet = inet_sk(sk);
340 struct dst_entry *dst;
341 u32 mtu;
342
343 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
344 return;
345 mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
346 dst = inet_csk_update_pmtu(sk, mtu);
347 if (!dst)
348 return;
349
350 /* Something is about to be wrong... Remember soft error
351 * for the case, if this connection will not able to recover.
352 */
353 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
354 sk->sk_err_soft = EMSGSIZE;
355
356 mtu = dst_mtu(dst);
357
358 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
359 ip_sk_accept_pmtu(sk) &&
360 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
361 tcp_sync_mss(sk, mtu);
362
363 /* Resend the TCP packet because it's
364 * clear that the old packet has been
365 * dropped. This is the new "fast" path mtu
366 * discovery.
367 */
368 tcp_simple_retransmit(sk);
369 } /* else let the usual retransmit timer handle it */
370}
371EXPORT_SYMBOL(tcp_v4_mtu_reduced);
372
373static void do_redirect(struct sk_buff *skb, struct sock *sk)
374{
375 struct dst_entry *dst = __sk_dst_check(sk, 0);
376
377 if (dst)
378 dst->ops->redirect(dst, sk, skb);
379}
380
381
382/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
383void tcp_req_err(struct sock *sk, u32 seq, bool abort)
384{
385 struct request_sock *req = inet_reqsk(sk);
386 struct net *net = sock_net(sk);
387
388 /* ICMPs are not backlogged, hence we cannot get
389 * an established socket here.
390 */
391 if (seq != tcp_rsk(req)->snt_isn) {
392 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
393 } else if (abort) {
394 /*
395 * Still in SYN_RECV, just remove it silently.
396 * There is no good way to pass the error to the newly
397 * created socket, and POSIX does not want network
398 * errors returned from accept().
399 */
400 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
401 tcp_listendrop(req->rsk_listener);
402 }
403 reqsk_put(req);
404}
405EXPORT_SYMBOL(tcp_req_err);
406
407/* TCP-LD (RFC 6069) logic */
408void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
409{
410 struct inet_connection_sock *icsk = inet_csk(sk);
411 struct tcp_sock *tp = tcp_sk(sk);
412 struct sk_buff *skb;
413 s32 remaining;
414 u32 delta_us;
415
416 if (sock_owned_by_user(sk))
417 return;
418
419 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
420 !icsk->icsk_backoff)
421 return;
422
423 skb = tcp_rtx_queue_head(sk);
424 if (WARN_ON_ONCE(!skb))
425 return;
426
427 icsk->icsk_backoff--;
428 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
429 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
430
431 tcp_mstamp_refresh(tp);
432 delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
433 remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
434
435 if (remaining > 0) {
436 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
437 remaining, TCP_RTO_MAX);
438 } else {
439 /* RTO revert clocked out retransmission.
440 * Will retransmit now.
441 */
442 tcp_retransmit_timer(sk);
443 }
444}
445EXPORT_SYMBOL(tcp_ld_RTO_revert);
446
447/*
448 * This routine is called by the ICMP module when it gets some
449 * sort of error condition. If err < 0 then the socket should
450 * be closed and the error returned to the user. If err > 0
451 * it's just the icmp type << 8 | icmp code. After adjustment
452 * header points to the first 8 bytes of the tcp header. We need
453 * to find the appropriate port.
454 *
455 * The locking strategy used here is very "optimistic". When
456 * someone else accesses the socket the ICMP is just dropped
457 * and for some paths there is no check at all.
458 * A more general error queue to queue errors for later handling
459 * is probably better.
460 *
461 */
462
463int tcp_v4_err(struct sk_buff *skb, u32 info)
464{
465 const struct iphdr *iph = (const struct iphdr *)skb->data;
466 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
467 struct tcp_sock *tp;
468 struct inet_sock *inet;
469 const int type = icmp_hdr(skb)->type;
470 const int code = icmp_hdr(skb)->code;
471 struct sock *sk;
472 struct request_sock *fastopen;
473 u32 seq, snd_una;
474 int err;
475 struct net *net = dev_net(skb->dev);
476
477 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
478 th->dest, iph->saddr, ntohs(th->source),
479 inet_iif(skb), 0);
480 if (!sk) {
481 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
482 return -ENOENT;
483 }
484 if (sk->sk_state == TCP_TIME_WAIT) {
485 inet_twsk_put(inet_twsk(sk));
486 return 0;
487 }
488 seq = ntohl(th->seq);
489 if (sk->sk_state == TCP_NEW_SYN_RECV) {
490 tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
491 type == ICMP_TIME_EXCEEDED ||
492 (type == ICMP_DEST_UNREACH &&
493 (code == ICMP_NET_UNREACH ||
494 code == ICMP_HOST_UNREACH)));
495 return 0;
496 }
497
498 bh_lock_sock(sk);
499 /* If too many ICMPs get dropped on busy
500 * servers this needs to be solved differently.
501 * We do take care of PMTU discovery (RFC1191) special case :
502 * we can receive locally generated ICMP messages while socket is held.
503 */
504 if (sock_owned_by_user(sk)) {
505 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
506 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
507 }
508 if (sk->sk_state == TCP_CLOSE)
509 goto out;
510
511 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
512 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
513 goto out;
514 }
515
516 tp = tcp_sk(sk);
517 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
518 fastopen = rcu_dereference(tp->fastopen_rsk);
519 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
520 if (sk->sk_state != TCP_LISTEN &&
521 !between(seq, snd_una, tp->snd_nxt)) {
522 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
523 goto out;
524 }
525
526 switch (type) {
527 case ICMP_REDIRECT:
528 if (!sock_owned_by_user(sk))
529 do_redirect(skb, sk);
530 goto out;
531 case ICMP_SOURCE_QUENCH:
532 /* Just silently ignore these. */
533 goto out;
534 case ICMP_PARAMETERPROB:
535 err = EPROTO;
536 break;
537 case ICMP_DEST_UNREACH:
538 if (code > NR_ICMP_UNREACH)
539 goto out;
540
541 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
542 /* We are not interested in TCP_LISTEN and open_requests
543 * (SYN-ACKs send out by Linux are always <576bytes so
544 * they should go through unfragmented).
545 */
546 if (sk->sk_state == TCP_LISTEN)
547 goto out;
548
549 WRITE_ONCE(tp->mtu_info, info);
550 if (!sock_owned_by_user(sk)) {
551 tcp_v4_mtu_reduced(sk);
552 } else {
553 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
554 sock_hold(sk);
555 }
556 goto out;
557 }
558
559 err = icmp_err_convert[code].errno;
560 /* check if this ICMP message allows revert of backoff.
561 * (see RFC 6069)
562 */
563 if (!fastopen &&
564 (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
565 tcp_ld_RTO_revert(sk, seq);
566 break;
567 case ICMP_TIME_EXCEEDED:
568 err = EHOSTUNREACH;
569 break;
570 default:
571 goto out;
572 }
573
574 switch (sk->sk_state) {
575 case TCP_SYN_SENT:
576 case TCP_SYN_RECV:
577 /* Only in fast or simultaneous open. If a fast open socket is
578 * already accepted it is treated as a connected one below.
579 */
580 if (fastopen && !fastopen->sk)
581 break;
582
583 ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
584
585 if (!sock_owned_by_user(sk)) {
586 sk->sk_err = err;
587
588 sk_error_report(sk);
589
590 tcp_done(sk);
591 } else {
592 sk->sk_err_soft = err;
593 }
594 goto out;
595 }
596
597 /* If we've already connected we will keep trying
598 * until we time out, or the user gives up.
599 *
600 * rfc1122 4.2.3.9 allows to consider as hard errors
601 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
602 * but it is obsoleted by pmtu discovery).
603 *
604 * Note, that in modern internet, where routing is unreliable
605 * and in each dark corner broken firewalls sit, sending random
606 * errors ordered by their masters even this two messages finally lose
607 * their original sense (even Linux sends invalid PORT_UNREACHs)
608 *
609 * Now we are in compliance with RFCs.
610 * --ANK (980905)
611 */
612
613 inet = inet_sk(sk);
614 if (!sock_owned_by_user(sk) && inet->recverr) {
615 sk->sk_err = err;
616 sk_error_report(sk);
617 } else { /* Only an error on timeout */
618 sk->sk_err_soft = err;
619 }
620
621out:
622 bh_unlock_sock(sk);
623 sock_put(sk);
624 return 0;
625}
626
627void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
628{
629 struct tcphdr *th = tcp_hdr(skb);
630
631 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
632 skb->csum_start = skb_transport_header(skb) - skb->head;
633 skb->csum_offset = offsetof(struct tcphdr, check);
634}
635
636/* This routine computes an IPv4 TCP checksum. */
637void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
638{
639 const struct inet_sock *inet = inet_sk(sk);
640
641 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
642}
643EXPORT_SYMBOL(tcp_v4_send_check);
644
645/*
646 * This routine will send an RST to the other tcp.
647 *
648 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
649 * for reset.
650 * Answer: if a packet caused RST, it is not for a socket
651 * existing in our system, if it is matched to a socket,
652 * it is just duplicate segment or bug in other side's TCP.
653 * So that we build reply only basing on parameters
654 * arrived with segment.
655 * Exception: precedence violation. We do not implement it in any case.
656 */
657
658#ifdef CONFIG_TCP_MD5SIG
659#define OPTION_BYTES TCPOLEN_MD5SIG_ALIGNED
660#else
661#define OPTION_BYTES sizeof(__be32)
662#endif
663
664static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
665{
666 const struct tcphdr *th = tcp_hdr(skb);
667 struct {
668 struct tcphdr th;
669 __be32 opt[OPTION_BYTES / sizeof(__be32)];
670 } rep;
671 struct ip_reply_arg arg;
672#ifdef CONFIG_TCP_MD5SIG
673 struct tcp_md5sig_key *key = NULL;
674 const __u8 *hash_location = NULL;
675 unsigned char newhash[16];
676 int genhash;
677 struct sock *sk1 = NULL;
678#endif
679 u64 transmit_time = 0;
680 struct sock *ctl_sk;
681 struct net *net;
682
683 /* Never send a reset in response to a reset. */
684 if (th->rst)
685 return;
686
687 /* If sk not NULL, it means we did a successful lookup and incoming
688 * route had to be correct. prequeue might have dropped our dst.
689 */
690 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
691 return;
692
693 /* Swap the send and the receive. */
694 memset(&rep, 0, sizeof(rep));
695 rep.th.dest = th->source;
696 rep.th.source = th->dest;
697 rep.th.doff = sizeof(struct tcphdr) / 4;
698 rep.th.rst = 1;
699
700 if (th->ack) {
701 rep.th.seq = th->ack_seq;
702 } else {
703 rep.th.ack = 1;
704 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
705 skb->len - (th->doff << 2));
706 }
707
708 memset(&arg, 0, sizeof(arg));
709 arg.iov[0].iov_base = (unsigned char *)&rep;
710 arg.iov[0].iov_len = sizeof(rep.th);
711
712 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
713#ifdef CONFIG_TCP_MD5SIG
714 rcu_read_lock();
715 hash_location = tcp_parse_md5sig_option(th);
716 if (sk && sk_fullsock(sk)) {
717 const union tcp_md5_addr *addr;
718 int l3index;
719
720 /* sdif set, means packet ingressed via a device
721 * in an L3 domain and inet_iif is set to it.
722 */
723 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
724 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
725 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
726 } else if (hash_location) {
727 const union tcp_md5_addr *addr;
728 int sdif = tcp_v4_sdif(skb);
729 int dif = inet_iif(skb);
730 int l3index;
731
732 /*
733 * active side is lost. Try to find listening socket through
734 * source port, and then find md5 key through listening socket.
735 * we are not loose security here:
736 * Incoming packet is checked with md5 hash with finding key,
737 * no RST generated if md5 hash doesn't match.
738 */
739 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0,
740 ip_hdr(skb)->saddr,
741 th->source, ip_hdr(skb)->daddr,
742 ntohs(th->source), dif, sdif);
743 /* don't send rst if it can't find key */
744 if (!sk1)
745 goto out;
746
747 /* sdif set, means packet ingressed via a device
748 * in an L3 domain and dif is set to it.
749 */
750 l3index = sdif ? dif : 0;
751 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
752 key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
753 if (!key)
754 goto out;
755
756
757 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
758 if (genhash || memcmp(hash_location, newhash, 16) != 0)
759 goto out;
760
761 }
762
763 if (key) {
764 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
765 (TCPOPT_NOP << 16) |
766 (TCPOPT_MD5SIG << 8) |
767 TCPOLEN_MD5SIG);
768 /* Update length and the length the header thinks exists */
769 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
770 rep.th.doff = arg.iov[0].iov_len / 4;
771
772 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
773 key, ip_hdr(skb)->saddr,
774 ip_hdr(skb)->daddr, &rep.th);
775 }
776#endif
777 /* Can't co-exist with TCPMD5, hence check rep.opt[0] */
778 if (rep.opt[0] == 0) {
779 __be32 mrst = mptcp_reset_option(skb);
780
781 if (mrst) {
782 rep.opt[0] = mrst;
783 arg.iov[0].iov_len += sizeof(mrst);
784 rep.th.doff = arg.iov[0].iov_len / 4;
785 }
786 }
787
788 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
789 ip_hdr(skb)->saddr, /* XXX */
790 arg.iov[0].iov_len, IPPROTO_TCP, 0);
791 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
792 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
793
794 /* When socket is gone, all binding information is lost.
795 * routing might fail in this case. No choice here, if we choose to force
796 * input interface, we will misroute in case of asymmetric route.
797 */
798 if (sk) {
799 arg.bound_dev_if = sk->sk_bound_dev_if;
800 if (sk_fullsock(sk))
801 trace_tcp_send_reset(sk, skb);
802 }
803
804 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
805 offsetof(struct inet_timewait_sock, tw_bound_dev_if));
806
807 arg.tos = ip_hdr(skb)->tos;
808 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
809 local_bh_disable();
810 ctl_sk = this_cpu_read(*net->ipv4.tcp_sk);
811 if (sk) {
812 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
813 inet_twsk(sk)->tw_mark : sk->sk_mark;
814 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
815 inet_twsk(sk)->tw_priority : sk->sk_priority;
816 transmit_time = tcp_transmit_time(sk);
817 }
818 ip_send_unicast_reply(ctl_sk,
819 skb, &TCP_SKB_CB(skb)->header.h4.opt,
820 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
821 &arg, arg.iov[0].iov_len,
822 transmit_time);
823
824 ctl_sk->sk_mark = 0;
825 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
826 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
827 local_bh_enable();
828
829#ifdef CONFIG_TCP_MD5SIG
830out:
831 rcu_read_unlock();
832#endif
833}
834
835/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
836 outside socket context is ugly, certainly. What can I do?
837 */
838
839static void tcp_v4_send_ack(const struct sock *sk,
840 struct sk_buff *skb, u32 seq, u32 ack,
841 u32 win, u32 tsval, u32 tsecr, int oif,
842 struct tcp_md5sig_key *key,
843 int reply_flags, u8 tos)
844{
845 const struct tcphdr *th = tcp_hdr(skb);
846 struct {
847 struct tcphdr th;
848 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
849#ifdef CONFIG_TCP_MD5SIG
850 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
851#endif
852 ];
853 } rep;
854 struct net *net = sock_net(sk);
855 struct ip_reply_arg arg;
856 struct sock *ctl_sk;
857 u64 transmit_time;
858
859 memset(&rep.th, 0, sizeof(struct tcphdr));
860 memset(&arg, 0, sizeof(arg));
861
862 arg.iov[0].iov_base = (unsigned char *)&rep;
863 arg.iov[0].iov_len = sizeof(rep.th);
864 if (tsecr) {
865 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
866 (TCPOPT_TIMESTAMP << 8) |
867 TCPOLEN_TIMESTAMP);
868 rep.opt[1] = htonl(tsval);
869 rep.opt[2] = htonl(tsecr);
870 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
871 }
872
873 /* Swap the send and the receive. */
874 rep.th.dest = th->source;
875 rep.th.source = th->dest;
876 rep.th.doff = arg.iov[0].iov_len / 4;
877 rep.th.seq = htonl(seq);
878 rep.th.ack_seq = htonl(ack);
879 rep.th.ack = 1;
880 rep.th.window = htons(win);
881
882#ifdef CONFIG_TCP_MD5SIG
883 if (key) {
884 int offset = (tsecr) ? 3 : 0;
885
886 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
887 (TCPOPT_NOP << 16) |
888 (TCPOPT_MD5SIG << 8) |
889 TCPOLEN_MD5SIG);
890 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
891 rep.th.doff = arg.iov[0].iov_len/4;
892
893 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
894 key, ip_hdr(skb)->saddr,
895 ip_hdr(skb)->daddr, &rep.th);
896 }
897#endif
898 arg.flags = reply_flags;
899 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
900 ip_hdr(skb)->saddr, /* XXX */
901 arg.iov[0].iov_len, IPPROTO_TCP, 0);
902 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
903 if (oif)
904 arg.bound_dev_if = oif;
905 arg.tos = tos;
906 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
907 local_bh_disable();
908 ctl_sk = this_cpu_read(*net->ipv4.tcp_sk);
909 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
910 inet_twsk(sk)->tw_mark : sk->sk_mark;
911 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
912 inet_twsk(sk)->tw_priority : sk->sk_priority;
913 transmit_time = tcp_transmit_time(sk);
914 ip_send_unicast_reply(ctl_sk,
915 skb, &TCP_SKB_CB(skb)->header.h4.opt,
916 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
917 &arg, arg.iov[0].iov_len,
918 transmit_time);
919
920 ctl_sk->sk_mark = 0;
921 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
922 local_bh_enable();
923}
924
925static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
926{
927 struct inet_timewait_sock *tw = inet_twsk(sk);
928 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
929
930 tcp_v4_send_ack(sk, skb,
931 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
932 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
933 tcp_time_stamp_raw() + tcptw->tw_ts_offset,
934 tcptw->tw_ts_recent,
935 tw->tw_bound_dev_if,
936 tcp_twsk_md5_key(tcptw),
937 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
938 tw->tw_tos
939 );
940
941 inet_twsk_put(tw);
942}
943
944static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
945 struct request_sock *req)
946{
947 const union tcp_md5_addr *addr;
948 int l3index;
949
950 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
951 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
952 */
953 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
954 tcp_sk(sk)->snd_nxt;
955
956 /* RFC 7323 2.3
957 * The window field (SEG.WND) of every outgoing segment, with the
958 * exception of <SYN> segments, MUST be right-shifted by
959 * Rcv.Wind.Shift bits:
960 */
961 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
962 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
963 tcp_v4_send_ack(sk, skb, seq,
964 tcp_rsk(req)->rcv_nxt,
965 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
966 tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
967 req->ts_recent,
968 0,
969 tcp_md5_do_lookup(sk, l3index, addr, AF_INET),
970 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
971 ip_hdr(skb)->tos);
972}
973
974/*
975 * Send a SYN-ACK after having received a SYN.
976 * This still operates on a request_sock only, not on a big
977 * socket.
978 */
979static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
980 struct flowi *fl,
981 struct request_sock *req,
982 struct tcp_fastopen_cookie *foc,
983 enum tcp_synack_type synack_type,
984 struct sk_buff *syn_skb)
985{
986 const struct inet_request_sock *ireq = inet_rsk(req);
987 struct flowi4 fl4;
988 int err = -1;
989 struct sk_buff *skb;
990 u8 tos;
991
992 /* First, grab a route. */
993 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
994 return -1;
995
996 skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
997
998 if (skb) {
999 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1000
1001 tos = sock_net(sk)->ipv4.sysctl_tcp_reflect_tos ?
1002 (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1003 (inet_sk(sk)->tos & INET_ECN_MASK) :
1004 inet_sk(sk)->tos;
1005
1006 if (!INET_ECN_is_capable(tos) &&
1007 tcp_bpf_ca_needs_ecn((struct sock *)req))
1008 tos |= INET_ECN_ECT_0;
1009
1010 rcu_read_lock();
1011 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1012 ireq->ir_rmt_addr,
1013 rcu_dereference(ireq->ireq_opt),
1014 tos);
1015 rcu_read_unlock();
1016 err = net_xmit_eval(err);
1017 }
1018
1019 return err;
1020}
1021
1022/*
1023 * IPv4 request_sock destructor.
1024 */
1025static void tcp_v4_reqsk_destructor(struct request_sock *req)
1026{
1027 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1028}
1029
1030#ifdef CONFIG_TCP_MD5SIG
1031/*
1032 * RFC2385 MD5 checksumming requires a mapping of
1033 * IP address->MD5 Key.
1034 * We need to maintain these in the sk structure.
1035 */
1036
1037DEFINE_STATIC_KEY_FALSE(tcp_md5_needed);
1038EXPORT_SYMBOL(tcp_md5_needed);
1039
1040static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1041{
1042 if (!old)
1043 return true;
1044
1045 /* l3index always overrides non-l3index */
1046 if (old->l3index && new->l3index == 0)
1047 return false;
1048 if (old->l3index == 0 && new->l3index)
1049 return true;
1050
1051 return old->prefixlen < new->prefixlen;
1052}
1053
1054/* Find the Key structure for an address. */
1055struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1056 const union tcp_md5_addr *addr,
1057 int family)
1058{
1059 const struct tcp_sock *tp = tcp_sk(sk);
1060 struct tcp_md5sig_key *key;
1061 const struct tcp_md5sig_info *md5sig;
1062 __be32 mask;
1063 struct tcp_md5sig_key *best_match = NULL;
1064 bool match;
1065
1066 /* caller either holds rcu_read_lock() or socket lock */
1067 md5sig = rcu_dereference_check(tp->md5sig_info,
1068 lockdep_sock_is_held(sk));
1069 if (!md5sig)
1070 return NULL;
1071
1072 hlist_for_each_entry_rcu(key, &md5sig->head, node,
1073 lockdep_sock_is_held(sk)) {
1074 if (key->family != family)
1075 continue;
1076 if (key->l3index && key->l3index != l3index)
1077 continue;
1078 if (family == AF_INET) {
1079 mask = inet_make_mask(key->prefixlen);
1080 match = (key->addr.a4.s_addr & mask) ==
1081 (addr->a4.s_addr & mask);
1082#if IS_ENABLED(CONFIG_IPV6)
1083 } else if (family == AF_INET6) {
1084 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1085 key->prefixlen);
1086#endif
1087 } else {
1088 match = false;
1089 }
1090
1091 if (match && better_md5_match(best_match, key))
1092 best_match = key;
1093 }
1094 return best_match;
1095}
1096EXPORT_SYMBOL(__tcp_md5_do_lookup);
1097
1098static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1099 const union tcp_md5_addr *addr,
1100 int family, u8 prefixlen,
1101 int l3index)
1102{
1103 const struct tcp_sock *tp = tcp_sk(sk);
1104 struct tcp_md5sig_key *key;
1105 unsigned int size = sizeof(struct in_addr);
1106 const struct tcp_md5sig_info *md5sig;
1107
1108 /* caller either holds rcu_read_lock() or socket lock */
1109 md5sig = rcu_dereference_check(tp->md5sig_info,
1110 lockdep_sock_is_held(sk));
1111 if (!md5sig)
1112 return NULL;
1113#if IS_ENABLED(CONFIG_IPV6)
1114 if (family == AF_INET6)
1115 size = sizeof(struct in6_addr);
1116#endif
1117 hlist_for_each_entry_rcu(key, &md5sig->head, node,
1118 lockdep_sock_is_held(sk)) {
1119 if (key->family != family)
1120 continue;
1121 if (key->l3index != l3index)
1122 continue;
1123 if (!memcmp(&key->addr, addr, size) &&
1124 key->prefixlen == prefixlen)
1125 return key;
1126 }
1127 return NULL;
1128}
1129
1130struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1131 const struct sock *addr_sk)
1132{
1133 const union tcp_md5_addr *addr;
1134 int l3index;
1135
1136 l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1137 addr_sk->sk_bound_dev_if);
1138 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1139 return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1140}
1141EXPORT_SYMBOL(tcp_v4_md5_lookup);
1142
1143/* This can be called on a newly created socket, from other files */
1144int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1145 int family, u8 prefixlen, int l3index,
1146 const u8 *newkey, u8 newkeylen, gfp_t gfp)
1147{
1148 /* Add Key to the list */
1149 struct tcp_md5sig_key *key;
1150 struct tcp_sock *tp = tcp_sk(sk);
1151 struct tcp_md5sig_info *md5sig;
1152
1153 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index);
1154 if (key) {
1155 /* Pre-existing entry - just update that one.
1156 * Note that the key might be used concurrently.
1157 * data_race() is telling kcsan that we do not care of
1158 * key mismatches, since changing MD5 key on live flows
1159 * can lead to packet drops.
1160 */
1161 data_race(memcpy(key->key, newkey, newkeylen));
1162
1163 /* Pairs with READ_ONCE() in tcp_md5_hash_key().
1164 * Also note that a reader could catch new key->keylen value
1165 * but old key->key[], this is the reason we use __GFP_ZERO
1166 * at sock_kmalloc() time below these lines.
1167 */
1168 WRITE_ONCE(key->keylen, newkeylen);
1169
1170 return 0;
1171 }
1172
1173 md5sig = rcu_dereference_protected(tp->md5sig_info,
1174 lockdep_sock_is_held(sk));
1175 if (!md5sig) {
1176 md5sig = kmalloc(sizeof(*md5sig), gfp);
1177 if (!md5sig)
1178 return -ENOMEM;
1179
1180 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1181 INIT_HLIST_HEAD(&md5sig->head);
1182 rcu_assign_pointer(tp->md5sig_info, md5sig);
1183 }
1184
1185 key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1186 if (!key)
1187 return -ENOMEM;
1188 if (!tcp_alloc_md5sig_pool()) {
1189 sock_kfree_s(sk, key, sizeof(*key));
1190 return -ENOMEM;
1191 }
1192
1193 memcpy(key->key, newkey, newkeylen);
1194 key->keylen = newkeylen;
1195 key->family = family;
1196 key->prefixlen = prefixlen;
1197 key->l3index = l3index;
1198 memcpy(&key->addr, addr,
1199 (family == AF_INET6) ? sizeof(struct in6_addr) :
1200 sizeof(struct in_addr));
1201 hlist_add_head_rcu(&key->node, &md5sig->head);
1202 return 0;
1203}
1204EXPORT_SYMBOL(tcp_md5_do_add);
1205
1206int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1207 u8 prefixlen, int l3index)
1208{
1209 struct tcp_md5sig_key *key;
1210
1211 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index);
1212 if (!key)
1213 return -ENOENT;
1214 hlist_del_rcu(&key->node);
1215 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1216 kfree_rcu(key, rcu);
1217 return 0;
1218}
1219EXPORT_SYMBOL(tcp_md5_do_del);
1220
1221static void tcp_clear_md5_list(struct sock *sk)
1222{
1223 struct tcp_sock *tp = tcp_sk(sk);
1224 struct tcp_md5sig_key *key;
1225 struct hlist_node *n;
1226 struct tcp_md5sig_info *md5sig;
1227
1228 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1229
1230 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1231 hlist_del_rcu(&key->node);
1232 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1233 kfree_rcu(key, rcu);
1234 }
1235}
1236
1237static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1238 sockptr_t optval, int optlen)
1239{
1240 struct tcp_md5sig cmd;
1241 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1242 const union tcp_md5_addr *addr;
1243 u8 prefixlen = 32;
1244 int l3index = 0;
1245
1246 if (optlen < sizeof(cmd))
1247 return -EINVAL;
1248
1249 if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1250 return -EFAULT;
1251
1252 if (sin->sin_family != AF_INET)
1253 return -EINVAL;
1254
1255 if (optname == TCP_MD5SIG_EXT &&
1256 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1257 prefixlen = cmd.tcpm_prefixlen;
1258 if (prefixlen > 32)
1259 return -EINVAL;
1260 }
1261
1262 if (optname == TCP_MD5SIG_EXT &&
1263 cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1264 struct net_device *dev;
1265
1266 rcu_read_lock();
1267 dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1268 if (dev && netif_is_l3_master(dev))
1269 l3index = dev->ifindex;
1270
1271 rcu_read_unlock();
1272
1273 /* ok to reference set/not set outside of rcu;
1274 * right now device MUST be an L3 master
1275 */
1276 if (!dev || !l3index)
1277 return -EINVAL;
1278 }
1279
1280 addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1281
1282 if (!cmd.tcpm_keylen)
1283 return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index);
1284
1285 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1286 return -EINVAL;
1287
1288 return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index,
1289 cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
1290}
1291
1292static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1293 __be32 daddr, __be32 saddr,
1294 const struct tcphdr *th, int nbytes)
1295{
1296 struct tcp4_pseudohdr *bp;
1297 struct scatterlist sg;
1298 struct tcphdr *_th;
1299
1300 bp = hp->scratch;
1301 bp->saddr = saddr;
1302 bp->daddr = daddr;
1303 bp->pad = 0;
1304 bp->protocol = IPPROTO_TCP;
1305 bp->len = cpu_to_be16(nbytes);
1306
1307 _th = (struct tcphdr *)(bp + 1);
1308 memcpy(_th, th, sizeof(*th));
1309 _th->check = 0;
1310
1311 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1312 ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1313 sizeof(*bp) + sizeof(*th));
1314 return crypto_ahash_update(hp->md5_req);
1315}
1316
1317static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1318 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1319{
1320 struct tcp_md5sig_pool *hp;
1321 struct ahash_request *req;
1322
1323 hp = tcp_get_md5sig_pool();
1324 if (!hp)
1325 goto clear_hash_noput;
1326 req = hp->md5_req;
1327
1328 if (crypto_ahash_init(req))
1329 goto clear_hash;
1330 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1331 goto clear_hash;
1332 if (tcp_md5_hash_key(hp, key))
1333 goto clear_hash;
1334 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1335 if (crypto_ahash_final(req))
1336 goto clear_hash;
1337
1338 tcp_put_md5sig_pool();
1339 return 0;
1340
1341clear_hash:
1342 tcp_put_md5sig_pool();
1343clear_hash_noput:
1344 memset(md5_hash, 0, 16);
1345 return 1;
1346}
1347
1348int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1349 const struct sock *sk,
1350 const struct sk_buff *skb)
1351{
1352 struct tcp_md5sig_pool *hp;
1353 struct ahash_request *req;
1354 const struct tcphdr *th = tcp_hdr(skb);
1355 __be32 saddr, daddr;
1356
1357 if (sk) { /* valid for establish/request sockets */
1358 saddr = sk->sk_rcv_saddr;
1359 daddr = sk->sk_daddr;
1360 } else {
1361 const struct iphdr *iph = ip_hdr(skb);
1362 saddr = iph->saddr;
1363 daddr = iph->daddr;
1364 }
1365
1366 hp = tcp_get_md5sig_pool();
1367 if (!hp)
1368 goto clear_hash_noput;
1369 req = hp->md5_req;
1370
1371 if (crypto_ahash_init(req))
1372 goto clear_hash;
1373
1374 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1375 goto clear_hash;
1376 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1377 goto clear_hash;
1378 if (tcp_md5_hash_key(hp, key))
1379 goto clear_hash;
1380 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1381 if (crypto_ahash_final(req))
1382 goto clear_hash;
1383
1384 tcp_put_md5sig_pool();
1385 return 0;
1386
1387clear_hash:
1388 tcp_put_md5sig_pool();
1389clear_hash_noput:
1390 memset(md5_hash, 0, 16);
1391 return 1;
1392}
1393EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1394
1395#endif
1396
1397/* Called with rcu_read_lock() */
1398static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1399 const struct sk_buff *skb,
1400 int dif, int sdif)
1401{
1402#ifdef CONFIG_TCP_MD5SIG
1403 /*
1404 * This gets called for each TCP segment that arrives
1405 * so we want to be efficient.
1406 * We have 3 drop cases:
1407 * o No MD5 hash and one expected.
1408 * o MD5 hash and we're not expecting one.
1409 * o MD5 hash and its wrong.
1410 */
1411 const __u8 *hash_location = NULL;
1412 struct tcp_md5sig_key *hash_expected;
1413 const struct iphdr *iph = ip_hdr(skb);
1414 const struct tcphdr *th = tcp_hdr(skb);
1415 const union tcp_md5_addr *addr;
1416 unsigned char newhash[16];
1417 int genhash, l3index;
1418
1419 /* sdif set, means packet ingressed via a device
1420 * in an L3 domain and dif is set to the l3mdev
1421 */
1422 l3index = sdif ? dif : 0;
1423
1424 addr = (union tcp_md5_addr *)&iph->saddr;
1425 hash_expected = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1426 hash_location = tcp_parse_md5sig_option(th);
1427
1428 /* We've parsed the options - do we have a hash? */
1429 if (!hash_expected && !hash_location)
1430 return false;
1431
1432 if (hash_expected && !hash_location) {
1433 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1434 return true;
1435 }
1436
1437 if (!hash_expected && hash_location) {
1438 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1439 return true;
1440 }
1441
1442 /* Okay, so this is hash_expected and hash_location -
1443 * so we need to calculate the checksum.
1444 */
1445 genhash = tcp_v4_md5_hash_skb(newhash,
1446 hash_expected,
1447 NULL, skb);
1448
1449 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1450 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
1451 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
1452 &iph->saddr, ntohs(th->source),
1453 &iph->daddr, ntohs(th->dest),
1454 genhash ? " tcp_v4_calc_md5_hash failed"
1455 : "", l3index);
1456 return true;
1457 }
1458 return false;
1459#endif
1460 return false;
1461}
1462
1463static void tcp_v4_init_req(struct request_sock *req,
1464 const struct sock *sk_listener,
1465 struct sk_buff *skb)
1466{
1467 struct inet_request_sock *ireq = inet_rsk(req);
1468 struct net *net = sock_net(sk_listener);
1469
1470 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1471 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1472 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1473}
1474
1475static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1476 struct sk_buff *skb,
1477 struct flowi *fl,
1478 struct request_sock *req)
1479{
1480 tcp_v4_init_req(req, sk, skb);
1481
1482 if (security_inet_conn_request(sk, skb, req))
1483 return NULL;
1484
1485 return inet_csk_route_req(sk, &fl->u.ip4, req);
1486}
1487
1488struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1489 .family = PF_INET,
1490 .obj_size = sizeof(struct tcp_request_sock),
1491 .rtx_syn_ack = tcp_rtx_synack,
1492 .send_ack = tcp_v4_reqsk_send_ack,
1493 .destructor = tcp_v4_reqsk_destructor,
1494 .send_reset = tcp_v4_send_reset,
1495 .syn_ack_timeout = tcp_syn_ack_timeout,
1496};
1497
1498const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1499 .mss_clamp = TCP_MSS_DEFAULT,
1500#ifdef CONFIG_TCP_MD5SIG
1501 .req_md5_lookup = tcp_v4_md5_lookup,
1502 .calc_md5_hash = tcp_v4_md5_hash_skb,
1503#endif
1504#ifdef CONFIG_SYN_COOKIES
1505 .cookie_init_seq = cookie_v4_init_sequence,
1506#endif
1507 .route_req = tcp_v4_route_req,
1508 .init_seq = tcp_v4_init_seq,
1509 .init_ts_off = tcp_v4_init_ts_off,
1510 .send_synack = tcp_v4_send_synack,
1511};
1512
1513int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1514{
1515 /* Never answer to SYNs send to broadcast or multicast */
1516 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1517 goto drop;
1518
1519 return tcp_conn_request(&tcp_request_sock_ops,
1520 &tcp_request_sock_ipv4_ops, sk, skb);
1521
1522drop:
1523 tcp_listendrop(sk);
1524 return 0;
1525}
1526EXPORT_SYMBOL(tcp_v4_conn_request);
1527
1528
1529/*
1530 * The three way handshake has completed - we got a valid synack -
1531 * now create the new socket.
1532 */
1533struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1534 struct request_sock *req,
1535 struct dst_entry *dst,
1536 struct request_sock *req_unhash,
1537 bool *own_req)
1538{
1539 struct inet_request_sock *ireq;
1540 bool found_dup_sk = false;
1541 struct inet_sock *newinet;
1542 struct tcp_sock *newtp;
1543 struct sock *newsk;
1544#ifdef CONFIG_TCP_MD5SIG
1545 const union tcp_md5_addr *addr;
1546 struct tcp_md5sig_key *key;
1547 int l3index;
1548#endif
1549 struct ip_options_rcu *inet_opt;
1550
1551 if (sk_acceptq_is_full(sk))
1552 goto exit_overflow;
1553
1554 newsk = tcp_create_openreq_child(sk, req, skb);
1555 if (!newsk)
1556 goto exit_nonewsk;
1557
1558 newsk->sk_gso_type = SKB_GSO_TCPV4;
1559 inet_sk_rx_dst_set(newsk, skb);
1560
1561 newtp = tcp_sk(newsk);
1562 newinet = inet_sk(newsk);
1563 ireq = inet_rsk(req);
1564 sk_daddr_set(newsk, ireq->ir_rmt_addr);
1565 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1566 newsk->sk_bound_dev_if = ireq->ir_iif;
1567 newinet->inet_saddr = ireq->ir_loc_addr;
1568 inet_opt = rcu_dereference(ireq->ireq_opt);
1569 RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1570 newinet->mc_index = inet_iif(skb);
1571 newinet->mc_ttl = ip_hdr(skb)->ttl;
1572 newinet->rcv_tos = ip_hdr(skb)->tos;
1573 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1574 if (inet_opt)
1575 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1576 newinet->inet_id = prandom_u32();
1577
1578 /* Set ToS of the new socket based upon the value of incoming SYN.
1579 * ECT bits are set later in tcp_init_transfer().
1580 */
1581 if (sock_net(sk)->ipv4.sysctl_tcp_reflect_tos)
1582 newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1583
1584 if (!dst) {
1585 dst = inet_csk_route_child_sock(sk, newsk, req);
1586 if (!dst)
1587 goto put_and_exit;
1588 } else {
1589 /* syncookie case : see end of cookie_v4_check() */
1590 }
1591 sk_setup_caps(newsk, dst);
1592
1593 tcp_ca_openreq_child(newsk, dst);
1594
1595 tcp_sync_mss(newsk, dst_mtu(dst));
1596 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1597
1598 tcp_initialize_rcv_mss(newsk);
1599
1600#ifdef CONFIG_TCP_MD5SIG
1601 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1602 /* Copy over the MD5 key from the original socket */
1603 addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1604 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1605 if (key) {
1606 /*
1607 * We're using one, so create a matching key
1608 * on the newsk structure. If we fail to get
1609 * memory, then we end up not copying the key
1610 * across. Shucks.
1611 */
1612 tcp_md5_do_add(newsk, addr, AF_INET, 32, l3index,
1613 key->key, key->keylen, GFP_ATOMIC);
1614 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1615 }
1616#endif
1617
1618 if (__inet_inherit_port(sk, newsk) < 0)
1619 goto put_and_exit;
1620 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1621 &found_dup_sk);
1622 if (likely(*own_req)) {
1623 tcp_move_syn(newtp, req);
1624 ireq->ireq_opt = NULL;
1625 } else {
1626 newinet->inet_opt = NULL;
1627
1628 if (!req_unhash && found_dup_sk) {
1629 /* This code path should only be executed in the
1630 * syncookie case only
1631 */
1632 bh_unlock_sock(newsk);
1633 sock_put(newsk);
1634 newsk = NULL;
1635 }
1636 }
1637 return newsk;
1638
1639exit_overflow:
1640 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1641exit_nonewsk:
1642 dst_release(dst);
1643exit:
1644 tcp_listendrop(sk);
1645 return NULL;
1646put_and_exit:
1647 newinet->inet_opt = NULL;
1648 inet_csk_prepare_forced_close(newsk);
1649 tcp_done(newsk);
1650 goto exit;
1651}
1652EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1653
1654static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1655{
1656#ifdef CONFIG_SYN_COOKIES
1657 const struct tcphdr *th = tcp_hdr(skb);
1658
1659 if (!th->syn)
1660 sk = cookie_v4_check(sk, skb);
1661#endif
1662 return sk;
1663}
1664
1665u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1666 struct tcphdr *th, u32 *cookie)
1667{
1668 u16 mss = 0;
1669#ifdef CONFIG_SYN_COOKIES
1670 mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1671 &tcp_request_sock_ipv4_ops, sk, th);
1672 if (mss) {
1673 *cookie = __cookie_v4_init_sequence(iph, th, &mss);
1674 tcp_synq_overflow(sk);
1675 }
1676#endif
1677 return mss;
1678}
1679
1680INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1681 u32));
1682/* The socket must have it's spinlock held when we get
1683 * here, unless it is a TCP_LISTEN socket.
1684 *
1685 * We have a potential double-lock case here, so even when
1686 * doing backlog processing we use the BH locking scheme.
1687 * This is because we cannot sleep with the original spinlock
1688 * held.
1689 */
1690int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1691{
1692 struct sock *rsk;
1693
1694 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1695 struct dst_entry *dst = sk->sk_rx_dst;
1696
1697 sock_rps_save_rxhash(sk, skb);
1698 sk_mark_napi_id(sk, skb);
1699 if (dst) {
1700 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1701 !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1702 dst, 0)) {
1703 dst_release(dst);
1704 sk->sk_rx_dst = NULL;
1705 }
1706 }
1707 tcp_rcv_established(sk, skb);
1708 return 0;
1709 }
1710
1711 if (tcp_checksum_complete(skb))
1712 goto csum_err;
1713
1714 if (sk->sk_state == TCP_LISTEN) {
1715 struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1716
1717 if (!nsk)
1718 goto discard;
1719 if (nsk != sk) {
1720 if (tcp_child_process(sk, nsk, skb)) {
1721 rsk = nsk;
1722 goto reset;
1723 }
1724 return 0;
1725 }
1726 } else
1727 sock_rps_save_rxhash(sk, skb);
1728
1729 if (tcp_rcv_state_process(sk, skb)) {
1730 rsk = sk;
1731 goto reset;
1732 }
1733 return 0;
1734
1735reset:
1736 tcp_v4_send_reset(rsk, skb);
1737discard:
1738 kfree_skb(skb);
1739 /* Be careful here. If this function gets more complicated and
1740 * gcc suffers from register pressure on the x86, sk (in %ebx)
1741 * might be destroyed here. This current version compiles correctly,
1742 * but you have been warned.
1743 */
1744 return 0;
1745
1746csum_err:
1747 trace_tcp_bad_csum(skb);
1748 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1749 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1750 goto discard;
1751}
1752EXPORT_SYMBOL(tcp_v4_do_rcv);
1753
1754int tcp_v4_early_demux(struct sk_buff *skb)
1755{
1756 const struct iphdr *iph;
1757 const struct tcphdr *th;
1758 struct sock *sk;
1759
1760 if (skb->pkt_type != PACKET_HOST)
1761 return 0;
1762
1763 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1764 return 0;
1765
1766 iph = ip_hdr(skb);
1767 th = tcp_hdr(skb);
1768
1769 if (th->doff < sizeof(struct tcphdr) / 4)
1770 return 0;
1771
1772 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1773 iph->saddr, th->source,
1774 iph->daddr, ntohs(th->dest),
1775 skb->skb_iif, inet_sdif(skb));
1776 if (sk) {
1777 skb->sk = sk;
1778 skb->destructor = sock_edemux;
1779 if (sk_fullsock(sk)) {
1780 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1781
1782 if (dst)
1783 dst = dst_check(dst, 0);
1784 if (dst &&
1785 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1786 skb_dst_set_noref(skb, dst);
1787 }
1788 }
1789 return 0;
1790}
1791
1792bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb)
1793{
1794 u32 limit = READ_ONCE(sk->sk_rcvbuf) + READ_ONCE(sk->sk_sndbuf);
1795 u32 tail_gso_size, tail_gso_segs;
1796 struct skb_shared_info *shinfo;
1797 const struct tcphdr *th;
1798 struct tcphdr *thtail;
1799 struct sk_buff *tail;
1800 unsigned int hdrlen;
1801 bool fragstolen;
1802 u32 gso_segs;
1803 u32 gso_size;
1804 int delta;
1805
1806 /* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1807 * we can fix skb->truesize to its real value to avoid future drops.
1808 * This is valid because skb is not yet charged to the socket.
1809 * It has been noticed pure SACK packets were sometimes dropped
1810 * (if cooked by drivers without copybreak feature).
1811 */
1812 skb_condense(skb);
1813
1814 skb_dst_drop(skb);
1815
1816 if (unlikely(tcp_checksum_complete(skb))) {
1817 bh_unlock_sock(sk);
1818 trace_tcp_bad_csum(skb);
1819 __TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1820 __TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1821 return true;
1822 }
1823
1824 /* Attempt coalescing to last skb in backlog, even if we are
1825 * above the limits.
1826 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
1827 */
1828 th = (const struct tcphdr *)skb->data;
1829 hdrlen = th->doff * 4;
1830
1831 tail = sk->sk_backlog.tail;
1832 if (!tail)
1833 goto no_coalesce;
1834 thtail = (struct tcphdr *)tail->data;
1835
1836 if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
1837 TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
1838 ((TCP_SKB_CB(tail)->tcp_flags |
1839 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
1840 !((TCP_SKB_CB(tail)->tcp_flags &
1841 TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
1842 ((TCP_SKB_CB(tail)->tcp_flags ^
1843 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
1844#ifdef CONFIG_TLS_DEVICE
1845 tail->decrypted != skb->decrypted ||
1846#endif
1847 thtail->doff != th->doff ||
1848 memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
1849 goto no_coalesce;
1850
1851 __skb_pull(skb, hdrlen);
1852
1853 shinfo = skb_shinfo(skb);
1854 gso_size = shinfo->gso_size ?: skb->len;
1855 gso_segs = shinfo->gso_segs ?: 1;
1856
1857 shinfo = skb_shinfo(tail);
1858 tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
1859 tail_gso_segs = shinfo->gso_segs ?: 1;
1860
1861 if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
1862 TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
1863
1864 if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
1865 TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
1866 thtail->window = th->window;
1867 }
1868
1869 /* We have to update both TCP_SKB_CB(tail)->tcp_flags and
1870 * thtail->fin, so that the fast path in tcp_rcv_established()
1871 * is not entered if we append a packet with a FIN.
1872 * SYN, RST, URG are not present.
1873 * ACK is set on both packets.
1874 * PSH : we do not really care in TCP stack,
1875 * at least for 'GRO' packets.
1876 */
1877 thtail->fin |= th->fin;
1878 TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1879
1880 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1881 TCP_SKB_CB(tail)->has_rxtstamp = true;
1882 tail->tstamp = skb->tstamp;
1883 skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
1884 }
1885
1886 /* Not as strict as GRO. We only need to carry mss max value */
1887 shinfo->gso_size = max(gso_size, tail_gso_size);
1888 shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
1889
1890 sk->sk_backlog.len += delta;
1891 __NET_INC_STATS(sock_net(sk),
1892 LINUX_MIB_TCPBACKLOGCOALESCE);
1893 kfree_skb_partial(skb, fragstolen);
1894 return false;
1895 }
1896 __skb_push(skb, hdrlen);
1897
1898no_coalesce:
1899 /* Only socket owner can try to collapse/prune rx queues
1900 * to reduce memory overhead, so add a little headroom here.
1901 * Few sockets backlog are possibly concurrently non empty.
1902 */
1903 limit += 64*1024;
1904
1905 if (unlikely(sk_add_backlog(sk, skb, limit))) {
1906 bh_unlock_sock(sk);
1907 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1908 return true;
1909 }
1910 return false;
1911}
1912EXPORT_SYMBOL(tcp_add_backlog);
1913
1914int tcp_filter(struct sock *sk, struct sk_buff *skb)
1915{
1916 struct tcphdr *th = (struct tcphdr *)skb->data;
1917
1918 return sk_filter_trim_cap(sk, skb, th->doff * 4);
1919}
1920EXPORT_SYMBOL(tcp_filter);
1921
1922static void tcp_v4_restore_cb(struct sk_buff *skb)
1923{
1924 memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1925 sizeof(struct inet_skb_parm));
1926}
1927
1928static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1929 const struct tcphdr *th)
1930{
1931 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1932 * barrier() makes sure compiler wont play fool^Waliasing games.
1933 */
1934 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1935 sizeof(struct inet_skb_parm));
1936 barrier();
1937
1938 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1939 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1940 skb->len - th->doff * 4);
1941 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1942 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1943 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1944 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1945 TCP_SKB_CB(skb)->sacked = 0;
1946 TCP_SKB_CB(skb)->has_rxtstamp =
1947 skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1948}
1949
1950/*
1951 * From tcp_input.c
1952 */
1953
1954int tcp_v4_rcv(struct sk_buff *skb)
1955{
1956 struct net *net = dev_net(skb->dev);
1957 struct sk_buff *skb_to_free;
1958 int sdif = inet_sdif(skb);
1959 int dif = inet_iif(skb);
1960 const struct iphdr *iph;
1961 const struct tcphdr *th;
1962 bool refcounted;
1963 struct sock *sk;
1964 int ret;
1965
1966 if (skb->pkt_type != PACKET_HOST)
1967 goto discard_it;
1968
1969 /* Count it even if it's bad */
1970 __TCP_INC_STATS(net, TCP_MIB_INSEGS);
1971
1972 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1973 goto discard_it;
1974
1975 th = (const struct tcphdr *)skb->data;
1976
1977 if (unlikely(th->doff < sizeof(struct tcphdr) / 4))
1978 goto bad_packet;
1979 if (!pskb_may_pull(skb, th->doff * 4))
1980 goto discard_it;
1981
1982 /* An explanation is required here, I think.
1983 * Packet length and doff are validated by header prediction,
1984 * provided case of th->doff==0 is eliminated.
1985 * So, we defer the checks. */
1986
1987 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1988 goto csum_error;
1989
1990 th = (const struct tcphdr *)skb->data;
1991 iph = ip_hdr(skb);
1992lookup:
1993 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
1994 th->dest, sdif, &refcounted);
1995 if (!sk)
1996 goto no_tcp_socket;
1997
1998process:
1999 if (sk->sk_state == TCP_TIME_WAIT)
2000 goto do_time_wait;
2001
2002 if (sk->sk_state == TCP_NEW_SYN_RECV) {
2003 struct request_sock *req = inet_reqsk(sk);
2004 bool req_stolen = false;
2005 struct sock *nsk;
2006
2007 sk = req->rsk_listener;
2008 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb, dif, sdif))) {
2009 sk_drops_add(sk, skb);
2010 reqsk_put(req);
2011 goto discard_it;
2012 }
2013 if (tcp_checksum_complete(skb)) {
2014 reqsk_put(req);
2015 goto csum_error;
2016 }
2017 if (unlikely(sk->sk_state != TCP_LISTEN)) {
2018 nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2019 if (!nsk) {
2020 inet_csk_reqsk_queue_drop_and_put(sk, req);
2021 goto lookup;
2022 }
2023 sk = nsk;
2024 /* reuseport_migrate_sock() has already held one sk_refcnt
2025 * before returning.
2026 */
2027 } else {
2028 /* We own a reference on the listener, increase it again
2029 * as we might lose it too soon.
2030 */
2031 sock_hold(sk);
2032 }
2033 refcounted = true;
2034 nsk = NULL;
2035 if (!tcp_filter(sk, skb)) {
2036 th = (const struct tcphdr *)skb->data;
2037 iph = ip_hdr(skb);
2038 tcp_v4_fill_cb(skb, iph, th);
2039 nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2040 }
2041 if (!nsk) {
2042 reqsk_put(req);
2043 if (req_stolen) {
2044 /* Another cpu got exclusive access to req
2045 * and created a full blown socket.
2046 * Try to feed this packet to this socket
2047 * instead of discarding it.
2048 */
2049 tcp_v4_restore_cb(skb);
2050 sock_put(sk);
2051 goto lookup;
2052 }
2053 goto discard_and_relse;
2054 }
2055 if (nsk == sk) {
2056 reqsk_put(req);
2057 tcp_v4_restore_cb(skb);
2058 } else if (tcp_child_process(sk, nsk, skb)) {
2059 tcp_v4_send_reset(nsk, skb);
2060 goto discard_and_relse;
2061 } else {
2062 sock_put(sk);
2063 return 0;
2064 }
2065 }
2066 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2067 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2068 goto discard_and_relse;
2069 }
2070
2071 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2072 goto discard_and_relse;
2073
2074 if (tcp_v4_inbound_md5_hash(sk, skb, dif, sdif))
2075 goto discard_and_relse;
2076
2077 nf_reset_ct(skb);
2078
2079 if (tcp_filter(sk, skb))
2080 goto discard_and_relse;
2081 th = (const struct tcphdr *)skb->data;
2082 iph = ip_hdr(skb);
2083 tcp_v4_fill_cb(skb, iph, th);
2084
2085 skb->dev = NULL;
2086
2087 if (sk->sk_state == TCP_LISTEN) {
2088 ret = tcp_v4_do_rcv(sk, skb);
2089 goto put_and_return;
2090 }
2091
2092 sk_incoming_cpu_update(sk);
2093
2094 bh_lock_sock_nested(sk);
2095 tcp_segs_in(tcp_sk(sk), skb);
2096 ret = 0;
2097 if (!sock_owned_by_user(sk)) {
2098 skb_to_free = sk->sk_rx_skb_cache;
2099 sk->sk_rx_skb_cache = NULL;
2100 ret = tcp_v4_do_rcv(sk, skb);
2101 } else {
2102 if (tcp_add_backlog(sk, skb))
2103 goto discard_and_relse;
2104 skb_to_free = NULL;
2105 }
2106 bh_unlock_sock(sk);
2107 if (skb_to_free)
2108 __kfree_skb(skb_to_free);
2109
2110put_and_return:
2111 if (refcounted)
2112 sock_put(sk);
2113
2114 return ret;
2115
2116no_tcp_socket:
2117 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2118 goto discard_it;
2119
2120 tcp_v4_fill_cb(skb, iph, th);
2121
2122 if (tcp_checksum_complete(skb)) {
2123csum_error:
2124 trace_tcp_bad_csum(skb);
2125 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2126bad_packet:
2127 __TCP_INC_STATS(net, TCP_MIB_INERRS);
2128 } else {
2129 tcp_v4_send_reset(NULL, skb);
2130 }
2131
2132discard_it:
2133 /* Discard frame. */
2134 kfree_skb(skb);
2135 return 0;
2136
2137discard_and_relse:
2138 sk_drops_add(sk, skb);
2139 if (refcounted)
2140 sock_put(sk);
2141 goto discard_it;
2142
2143do_time_wait:
2144 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2145 inet_twsk_put(inet_twsk(sk));
2146 goto discard_it;
2147 }
2148
2149 tcp_v4_fill_cb(skb, iph, th);
2150
2151 if (tcp_checksum_complete(skb)) {
2152 inet_twsk_put(inet_twsk(sk));
2153 goto csum_error;
2154 }
2155 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2156 case TCP_TW_SYN: {
2157 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2158 &tcp_hashinfo, skb,
2159 __tcp_hdrlen(th),
2160 iph->saddr, th->source,
2161 iph->daddr, th->dest,
2162 inet_iif(skb),
2163 sdif);
2164 if (sk2) {
2165 inet_twsk_deschedule_put(inet_twsk(sk));
2166 sk = sk2;
2167 tcp_v4_restore_cb(skb);
2168 refcounted = false;
2169 goto process;
2170 }
2171 }
2172 /* to ACK */
2173 fallthrough;
2174 case TCP_TW_ACK:
2175 tcp_v4_timewait_ack(sk, skb);
2176 break;
2177 case TCP_TW_RST:
2178 tcp_v4_send_reset(sk, skb);
2179 inet_twsk_deschedule_put(inet_twsk(sk));
2180 goto discard_it;
2181 case TCP_TW_SUCCESS:;
2182 }
2183 goto discard_it;
2184}
2185
2186static struct timewait_sock_ops tcp_timewait_sock_ops = {
2187 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
2188 .twsk_unique = tcp_twsk_unique,
2189 .twsk_destructor= tcp_twsk_destructor,
2190};
2191
2192void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2193{
2194 struct dst_entry *dst = skb_dst(skb);
2195
2196 if (dst && dst_hold_safe(dst)) {
2197 sk->sk_rx_dst = dst;
2198 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2199 }
2200}
2201EXPORT_SYMBOL(inet_sk_rx_dst_set);
2202
2203const struct inet_connection_sock_af_ops ipv4_specific = {
2204 .queue_xmit = ip_queue_xmit,
2205 .send_check = tcp_v4_send_check,
2206 .rebuild_header = inet_sk_rebuild_header,
2207 .sk_rx_dst_set = inet_sk_rx_dst_set,
2208 .conn_request = tcp_v4_conn_request,
2209 .syn_recv_sock = tcp_v4_syn_recv_sock,
2210 .net_header_len = sizeof(struct iphdr),
2211 .setsockopt = ip_setsockopt,
2212 .getsockopt = ip_getsockopt,
2213 .addr2sockaddr = inet_csk_addr2sockaddr,
2214 .sockaddr_len = sizeof(struct sockaddr_in),
2215 .mtu_reduced = tcp_v4_mtu_reduced,
2216};
2217EXPORT_SYMBOL(ipv4_specific);
2218
2219#ifdef CONFIG_TCP_MD5SIG
2220static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2221 .md5_lookup = tcp_v4_md5_lookup,
2222 .calc_md5_hash = tcp_v4_md5_hash_skb,
2223 .md5_parse = tcp_v4_parse_md5_keys,
2224};
2225#endif
2226
2227/* NOTE: A lot of things set to zero explicitly by call to
2228 * sk_alloc() so need not be done here.
2229 */
2230static int tcp_v4_init_sock(struct sock *sk)
2231{
2232 struct inet_connection_sock *icsk = inet_csk(sk);
2233
2234 tcp_init_sock(sk);
2235
2236 icsk->icsk_af_ops = &ipv4_specific;
2237
2238#ifdef CONFIG_TCP_MD5SIG
2239 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2240#endif
2241
2242 return 0;
2243}
2244
2245void tcp_v4_destroy_sock(struct sock *sk)
2246{
2247 struct tcp_sock *tp = tcp_sk(sk);
2248
2249 trace_tcp_destroy_sock(sk);
2250
2251 tcp_clear_xmit_timers(sk);
2252
2253 tcp_cleanup_congestion_control(sk);
2254
2255 tcp_cleanup_ulp(sk);
2256
2257 /* Cleanup up the write buffer. */
2258 tcp_write_queue_purge(sk);
2259
2260 /* Check if we want to disable active TFO */
2261 tcp_fastopen_active_disable_ofo_check(sk);
2262
2263 /* Cleans up our, hopefully empty, out_of_order_queue. */
2264 skb_rbtree_purge(&tp->out_of_order_queue);
2265
2266#ifdef CONFIG_TCP_MD5SIG
2267 /* Clean up the MD5 key list, if any */
2268 if (tp->md5sig_info) {
2269 tcp_clear_md5_list(sk);
2270 kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu);
2271 tp->md5sig_info = NULL;
2272 }
2273#endif
2274
2275 /* Clean up a referenced TCP bind bucket. */
2276 if (inet_csk(sk)->icsk_bind_hash)
2277 inet_put_port(sk);
2278
2279 BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2280
2281 /* If socket is aborted during connect operation */
2282 tcp_free_fastopen_req(tp);
2283 tcp_fastopen_destroy_cipher(sk);
2284 tcp_saved_syn_free(tp);
2285
2286 sk_sockets_allocated_dec(sk);
2287}
2288EXPORT_SYMBOL(tcp_v4_destroy_sock);
2289
2290#ifdef CONFIG_PROC_FS
2291/* Proc filesystem TCP sock list dumping. */
2292
2293/*
2294 * Get next listener socket follow cur. If cur is NULL, get first socket
2295 * starting from bucket given in st->bucket; when st->bucket is zero the
2296 * very first socket in the hash table is returned.
2297 */
2298static void *listening_get_next(struct seq_file *seq, void *cur)
2299{
2300 struct tcp_seq_afinfo *afinfo;
2301 struct tcp_iter_state *st = seq->private;
2302 struct net *net = seq_file_net(seq);
2303 struct inet_listen_hashbucket *ilb;
2304 struct hlist_nulls_node *node;
2305 struct sock *sk = cur;
2306
2307 if (st->bpf_seq_afinfo)
2308 afinfo = st->bpf_seq_afinfo;
2309 else
2310 afinfo = PDE_DATA(file_inode(seq->file));
2311
2312 if (!sk) {
2313get_head:
2314 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2315 spin_lock(&ilb->lock);
2316 sk = sk_nulls_head(&ilb->nulls_head);
2317 st->offset = 0;
2318 goto get_sk;
2319 }
2320 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2321 ++st->num;
2322 ++st->offset;
2323
2324 sk = sk_nulls_next(sk);
2325get_sk:
2326 sk_nulls_for_each_from(sk, node) {
2327 if (!net_eq(sock_net(sk), net))
2328 continue;
2329 if (afinfo->family == AF_UNSPEC ||
2330 sk->sk_family == afinfo->family)
2331 return sk;
2332 }
2333 spin_unlock(&ilb->lock);
2334 st->offset = 0;
2335 if (++st->bucket < INET_LHTABLE_SIZE)
2336 goto get_head;
2337 return NULL;
2338}
2339
2340static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2341{
2342 struct tcp_iter_state *st = seq->private;
2343 void *rc;
2344
2345 st->bucket = 0;
2346 st->offset = 0;
2347 rc = listening_get_next(seq, NULL);
2348
2349 while (rc && *pos) {
2350 rc = listening_get_next(seq, rc);
2351 --*pos;
2352 }
2353 return rc;
2354}
2355
2356static inline bool empty_bucket(const struct tcp_iter_state *st)
2357{
2358 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
2359}
2360
2361/*
2362 * Get first established socket starting from bucket given in st->bucket.
2363 * If st->bucket is zero, the very first socket in the hash is returned.
2364 */
2365static void *established_get_first(struct seq_file *seq)
2366{
2367 struct tcp_seq_afinfo *afinfo;
2368 struct tcp_iter_state *st = seq->private;
2369 struct net *net = seq_file_net(seq);
2370 void *rc = NULL;
2371
2372 if (st->bpf_seq_afinfo)
2373 afinfo = st->bpf_seq_afinfo;
2374 else
2375 afinfo = PDE_DATA(file_inode(seq->file));
2376
2377 st->offset = 0;
2378 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2379 struct sock *sk;
2380 struct hlist_nulls_node *node;
2381 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2382
2383 /* Lockless fast path for the common case of empty buckets */
2384 if (empty_bucket(st))
2385 continue;
2386
2387 spin_lock_bh(lock);
2388 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2389 if ((afinfo->family != AF_UNSPEC &&
2390 sk->sk_family != afinfo->family) ||
2391 !net_eq(sock_net(sk), net)) {
2392 continue;
2393 }
2394 rc = sk;
2395 goto out;
2396 }
2397 spin_unlock_bh(lock);
2398 }
2399out:
2400 return rc;
2401}
2402
2403static void *established_get_next(struct seq_file *seq, void *cur)
2404{
2405 struct tcp_seq_afinfo *afinfo;
2406 struct sock *sk = cur;
2407 struct hlist_nulls_node *node;
2408 struct tcp_iter_state *st = seq->private;
2409 struct net *net = seq_file_net(seq);
2410
2411 if (st->bpf_seq_afinfo)
2412 afinfo = st->bpf_seq_afinfo;
2413 else
2414 afinfo = PDE_DATA(file_inode(seq->file));
2415
2416 ++st->num;
2417 ++st->offset;
2418
2419 sk = sk_nulls_next(sk);
2420
2421 sk_nulls_for_each_from(sk, node) {
2422 if ((afinfo->family == AF_UNSPEC ||
2423 sk->sk_family == afinfo->family) &&
2424 net_eq(sock_net(sk), net))
2425 return sk;
2426 }
2427
2428 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2429 ++st->bucket;
2430 return established_get_first(seq);
2431}
2432
2433static void *established_get_idx(struct seq_file *seq, loff_t pos)
2434{
2435 struct tcp_iter_state *st = seq->private;
2436 void *rc;
2437
2438 st->bucket = 0;
2439 rc = established_get_first(seq);
2440
2441 while (rc && pos) {
2442 rc = established_get_next(seq, rc);
2443 --pos;
2444 }
2445 return rc;
2446}
2447
2448static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2449{
2450 void *rc;
2451 struct tcp_iter_state *st = seq->private;
2452
2453 st->state = TCP_SEQ_STATE_LISTENING;
2454 rc = listening_get_idx(seq, &pos);
2455
2456 if (!rc) {
2457 st->state = TCP_SEQ_STATE_ESTABLISHED;
2458 rc = established_get_idx(seq, pos);
2459 }
2460
2461 return rc;
2462}
2463
2464static void *tcp_seek_last_pos(struct seq_file *seq)
2465{
2466 struct tcp_iter_state *st = seq->private;
2467 int bucket = st->bucket;
2468 int offset = st->offset;
2469 int orig_num = st->num;
2470 void *rc = NULL;
2471
2472 switch (st->state) {
2473 case TCP_SEQ_STATE_LISTENING:
2474 if (st->bucket >= INET_LHTABLE_SIZE)
2475 break;
2476 st->state = TCP_SEQ_STATE_LISTENING;
2477 rc = listening_get_next(seq, NULL);
2478 while (offset-- && rc && bucket == st->bucket)
2479 rc = listening_get_next(seq, rc);
2480 if (rc)
2481 break;
2482 st->bucket = 0;
2483 st->state = TCP_SEQ_STATE_ESTABLISHED;
2484 fallthrough;
2485 case TCP_SEQ_STATE_ESTABLISHED:
2486 if (st->bucket > tcp_hashinfo.ehash_mask)
2487 break;
2488 rc = established_get_first(seq);
2489 while (offset-- && rc && bucket == st->bucket)
2490 rc = established_get_next(seq, rc);
2491 }
2492
2493 st->num = orig_num;
2494
2495 return rc;
2496}
2497
2498void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2499{
2500 struct tcp_iter_state *st = seq->private;
2501 void *rc;
2502
2503 if (*pos && *pos == st->last_pos) {
2504 rc = tcp_seek_last_pos(seq);
2505 if (rc)
2506 goto out;
2507 }
2508
2509 st->state = TCP_SEQ_STATE_LISTENING;
2510 st->num = 0;
2511 st->bucket = 0;
2512 st->offset = 0;
2513 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2514
2515out:
2516 st->last_pos = *pos;
2517 return rc;
2518}
2519EXPORT_SYMBOL(tcp_seq_start);
2520
2521void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2522{
2523 struct tcp_iter_state *st = seq->private;
2524 void *rc = NULL;
2525
2526 if (v == SEQ_START_TOKEN) {
2527 rc = tcp_get_idx(seq, 0);
2528 goto out;
2529 }
2530
2531 switch (st->state) {
2532 case TCP_SEQ_STATE_LISTENING:
2533 rc = listening_get_next(seq, v);
2534 if (!rc) {
2535 st->state = TCP_SEQ_STATE_ESTABLISHED;
2536 st->bucket = 0;
2537 st->offset = 0;
2538 rc = established_get_first(seq);
2539 }
2540 break;
2541 case TCP_SEQ_STATE_ESTABLISHED:
2542 rc = established_get_next(seq, v);
2543 break;
2544 }
2545out:
2546 ++*pos;
2547 st->last_pos = *pos;
2548 return rc;
2549}
2550EXPORT_SYMBOL(tcp_seq_next);
2551
2552void tcp_seq_stop(struct seq_file *seq, void *v)
2553{
2554 struct tcp_iter_state *st = seq->private;
2555
2556 switch (st->state) {
2557 case TCP_SEQ_STATE_LISTENING:
2558 if (v != SEQ_START_TOKEN)
2559 spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock);
2560 break;
2561 case TCP_SEQ_STATE_ESTABLISHED:
2562 if (v)
2563 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2564 break;
2565 }
2566}
2567EXPORT_SYMBOL(tcp_seq_stop);
2568
2569static void get_openreq4(const struct request_sock *req,
2570 struct seq_file *f, int i)
2571{
2572 const struct inet_request_sock *ireq = inet_rsk(req);
2573 long delta = req->rsk_timer.expires - jiffies;
2574
2575 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2576 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2577 i,
2578 ireq->ir_loc_addr,
2579 ireq->ir_num,
2580 ireq->ir_rmt_addr,
2581 ntohs(ireq->ir_rmt_port),
2582 TCP_SYN_RECV,
2583 0, 0, /* could print option size, but that is af dependent. */
2584 1, /* timers active (only the expire timer) */
2585 jiffies_delta_to_clock_t(delta),
2586 req->num_timeout,
2587 from_kuid_munged(seq_user_ns(f),
2588 sock_i_uid(req->rsk_listener)),
2589 0, /* non standard timer */
2590 0, /* open_requests have no inode */
2591 0,
2592 req);
2593}
2594
2595static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2596{
2597 int timer_active;
2598 unsigned long timer_expires;
2599 const struct tcp_sock *tp = tcp_sk(sk);
2600 const struct inet_connection_sock *icsk = inet_csk(sk);
2601 const struct inet_sock *inet = inet_sk(sk);
2602 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2603 __be32 dest = inet->inet_daddr;
2604 __be32 src = inet->inet_rcv_saddr;
2605 __u16 destp = ntohs(inet->inet_dport);
2606 __u16 srcp = ntohs(inet->inet_sport);
2607 int rx_queue;
2608 int state;
2609
2610 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2611 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2612 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2613 timer_active = 1;
2614 timer_expires = icsk->icsk_timeout;
2615 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2616 timer_active = 4;
2617 timer_expires = icsk->icsk_timeout;
2618 } else if (timer_pending(&sk->sk_timer)) {
2619 timer_active = 2;
2620 timer_expires = sk->sk_timer.expires;
2621 } else {
2622 timer_active = 0;
2623 timer_expires = jiffies;
2624 }
2625
2626 state = inet_sk_state_load(sk);
2627 if (state == TCP_LISTEN)
2628 rx_queue = READ_ONCE(sk->sk_ack_backlog);
2629 else
2630 /* Because we don't lock the socket,
2631 * we might find a transient negative value.
2632 */
2633 rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2634 READ_ONCE(tp->copied_seq), 0);
2635
2636 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2637 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2638 i, src, srcp, dest, destp, state,
2639 READ_ONCE(tp->write_seq) - tp->snd_una,
2640 rx_queue,
2641 timer_active,
2642 jiffies_delta_to_clock_t(timer_expires - jiffies),
2643 icsk->icsk_retransmits,
2644 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2645 icsk->icsk_probes_out,
2646 sock_i_ino(sk),
2647 refcount_read(&sk->sk_refcnt), sk,
2648 jiffies_to_clock_t(icsk->icsk_rto),
2649 jiffies_to_clock_t(icsk->icsk_ack.ato),
2650 (icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2651 tp->snd_cwnd,
2652 state == TCP_LISTEN ?
2653 fastopenq->max_qlen :
2654 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2655}
2656
2657static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2658 struct seq_file *f, int i)
2659{
2660 long delta = tw->tw_timer.expires - jiffies;
2661 __be32 dest, src;
2662 __u16 destp, srcp;
2663
2664 dest = tw->tw_daddr;
2665 src = tw->tw_rcv_saddr;
2666 destp = ntohs(tw->tw_dport);
2667 srcp = ntohs(tw->tw_sport);
2668
2669 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2670 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2671 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2672 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2673 refcount_read(&tw->tw_refcnt), tw);
2674}
2675
2676#define TMPSZ 150
2677
2678static int tcp4_seq_show(struct seq_file *seq, void *v)
2679{
2680 struct tcp_iter_state *st;
2681 struct sock *sk = v;
2682
2683 seq_setwidth(seq, TMPSZ - 1);
2684 if (v == SEQ_START_TOKEN) {
2685 seq_puts(seq, " sl local_address rem_address st tx_queue "
2686 "rx_queue tr tm->when retrnsmt uid timeout "
2687 "inode");
2688 goto out;
2689 }
2690 st = seq->private;
2691
2692 if (sk->sk_state == TCP_TIME_WAIT)
2693 get_timewait4_sock(v, seq, st->num);
2694 else if (sk->sk_state == TCP_NEW_SYN_RECV)
2695 get_openreq4(v, seq, st->num);
2696 else
2697 get_tcp4_sock(v, seq, st->num);
2698out:
2699 seq_pad(seq, '\n');
2700 return 0;
2701}
2702
2703#ifdef CONFIG_BPF_SYSCALL
2704struct bpf_iter__tcp {
2705 __bpf_md_ptr(struct bpf_iter_meta *, meta);
2706 __bpf_md_ptr(struct sock_common *, sk_common);
2707 uid_t uid __aligned(8);
2708};
2709
2710static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2711 struct sock_common *sk_common, uid_t uid)
2712{
2713 struct bpf_iter__tcp ctx;
2714
2715 meta->seq_num--; /* skip SEQ_START_TOKEN */
2716 ctx.meta = meta;
2717 ctx.sk_common = sk_common;
2718 ctx.uid = uid;
2719 return bpf_iter_run_prog(prog, &ctx);
2720}
2721
2722static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
2723{
2724 struct bpf_iter_meta meta;
2725 struct bpf_prog *prog;
2726 struct sock *sk = v;
2727 uid_t uid;
2728
2729 if (v == SEQ_START_TOKEN)
2730 return 0;
2731
2732 if (sk->sk_state == TCP_TIME_WAIT) {
2733 uid = 0;
2734 } else if (sk->sk_state == TCP_NEW_SYN_RECV) {
2735 const struct request_sock *req = v;
2736
2737 uid = from_kuid_munged(seq_user_ns(seq),
2738 sock_i_uid(req->rsk_listener));
2739 } else {
2740 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
2741 }
2742
2743 meta.seq = seq;
2744 prog = bpf_iter_get_info(&meta, false);
2745 return tcp_prog_seq_show(prog, &meta, v, uid);
2746}
2747
2748static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
2749{
2750 struct bpf_iter_meta meta;
2751 struct bpf_prog *prog;
2752
2753 if (!v) {
2754 meta.seq = seq;
2755 prog = bpf_iter_get_info(&meta, true);
2756 if (prog)
2757 (void)tcp_prog_seq_show(prog, &meta, v, 0);
2758 }
2759
2760 tcp_seq_stop(seq, v);
2761}
2762
2763static const struct seq_operations bpf_iter_tcp_seq_ops = {
2764 .show = bpf_iter_tcp_seq_show,
2765 .start = tcp_seq_start,
2766 .next = tcp_seq_next,
2767 .stop = bpf_iter_tcp_seq_stop,
2768};
2769#endif
2770
2771static const struct seq_operations tcp4_seq_ops = {
2772 .show = tcp4_seq_show,
2773 .start = tcp_seq_start,
2774 .next = tcp_seq_next,
2775 .stop = tcp_seq_stop,
2776};
2777
2778static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2779 .family = AF_INET,
2780};
2781
2782static int __net_init tcp4_proc_init_net(struct net *net)
2783{
2784 if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
2785 sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
2786 return -ENOMEM;
2787 return 0;
2788}
2789
2790static void __net_exit tcp4_proc_exit_net(struct net *net)
2791{
2792 remove_proc_entry("tcp", net->proc_net);
2793}
2794
2795static struct pernet_operations tcp4_net_ops = {
2796 .init = tcp4_proc_init_net,
2797 .exit = tcp4_proc_exit_net,
2798};
2799
2800int __init tcp4_proc_init(void)
2801{
2802 return register_pernet_subsys(&tcp4_net_ops);
2803}
2804
2805void tcp4_proc_exit(void)
2806{
2807 unregister_pernet_subsys(&tcp4_net_ops);
2808}
2809#endif /* CONFIG_PROC_FS */
2810
2811/* @wake is one when sk_stream_write_space() calls us.
2812 * This sends EPOLLOUT only if notsent_bytes is half the limit.
2813 * This mimics the strategy used in sock_def_write_space().
2814 */
2815bool tcp_stream_memory_free(const struct sock *sk, int wake)
2816{
2817 const struct tcp_sock *tp = tcp_sk(sk);
2818 u32 notsent_bytes = READ_ONCE(tp->write_seq) -
2819 READ_ONCE(tp->snd_nxt);
2820
2821 return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
2822}
2823EXPORT_SYMBOL(tcp_stream_memory_free);
2824
2825struct proto tcp_prot = {
2826 .name = "TCP",
2827 .owner = THIS_MODULE,
2828 .close = tcp_close,
2829 .pre_connect = tcp_v4_pre_connect,
2830 .connect = tcp_v4_connect,
2831 .disconnect = tcp_disconnect,
2832 .accept = inet_csk_accept,
2833 .ioctl = tcp_ioctl,
2834 .init = tcp_v4_init_sock,
2835 .destroy = tcp_v4_destroy_sock,
2836 .shutdown = tcp_shutdown,
2837 .setsockopt = tcp_setsockopt,
2838 .getsockopt = tcp_getsockopt,
2839 .bpf_bypass_getsockopt = tcp_bpf_bypass_getsockopt,
2840 .keepalive = tcp_set_keepalive,
2841 .recvmsg = tcp_recvmsg,
2842 .sendmsg = tcp_sendmsg,
2843 .sendpage = tcp_sendpage,
2844 .backlog_rcv = tcp_v4_do_rcv,
2845 .release_cb = tcp_release_cb,
2846 .hash = inet_hash,
2847 .unhash = inet_unhash,
2848 .get_port = inet_csk_get_port,
2849#ifdef CONFIG_BPF_SYSCALL
2850 .psock_update_sk_prot = tcp_bpf_update_proto,
2851#endif
2852 .enter_memory_pressure = tcp_enter_memory_pressure,
2853 .leave_memory_pressure = tcp_leave_memory_pressure,
2854 .stream_memory_free = tcp_stream_memory_free,
2855 .sockets_allocated = &tcp_sockets_allocated,
2856 .orphan_count = &tcp_orphan_count,
2857 .memory_allocated = &tcp_memory_allocated,
2858 .memory_pressure = &tcp_memory_pressure,
2859 .sysctl_mem = sysctl_tcp_mem,
2860 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
2861 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
2862 .max_header = MAX_TCP_HEADER,
2863 .obj_size = sizeof(struct tcp_sock),
2864 .slab_flags = SLAB_TYPESAFE_BY_RCU,
2865 .twsk_prot = &tcp_timewait_sock_ops,
2866 .rsk_prot = &tcp_request_sock_ops,
2867 .h.hashinfo = &tcp_hashinfo,
2868 .no_autobind = true,
2869 .diag_destroy = tcp_abort,
2870};
2871EXPORT_SYMBOL(tcp_prot);
2872
2873static void __net_exit tcp_sk_exit(struct net *net)
2874{
2875 int cpu;
2876
2877 if (net->ipv4.tcp_congestion_control)
2878 bpf_module_put(net->ipv4.tcp_congestion_control,
2879 net->ipv4.tcp_congestion_control->owner);
2880
2881 for_each_possible_cpu(cpu)
2882 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2883 free_percpu(net->ipv4.tcp_sk);
2884}
2885
2886static int __net_init tcp_sk_init(struct net *net)
2887{
2888 int res, cpu, cnt;
2889
2890 net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2891 if (!net->ipv4.tcp_sk)
2892 return -ENOMEM;
2893
2894 for_each_possible_cpu(cpu) {
2895 struct sock *sk;
2896
2897 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2898 IPPROTO_TCP, net);
2899 if (res)
2900 goto fail;
2901 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
2902
2903 /* Please enforce IP_DF and IPID==0 for RST and
2904 * ACK sent in SYN-RECV and TIME-WAIT state.
2905 */
2906 inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
2907
2908 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2909 }
2910
2911 net->ipv4.sysctl_tcp_ecn = 2;
2912 net->ipv4.sysctl_tcp_ecn_fallback = 1;
2913
2914 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2915 net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
2916 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2917 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2918 net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
2919
2920 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2921 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2922 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2923
2924 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
2925 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
2926 net->ipv4.sysctl_tcp_syncookies = 1;
2927 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
2928 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
2929 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
2930 net->ipv4.sysctl_tcp_orphan_retries = 0;
2931 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
2932 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
2933 net->ipv4.sysctl_tcp_tw_reuse = 2;
2934 net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
2935
2936 cnt = tcp_hashinfo.ehash_mask + 1;
2937 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
2938 net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo;
2939
2940 net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 128);
2941 net->ipv4.sysctl_tcp_sack = 1;
2942 net->ipv4.sysctl_tcp_window_scaling = 1;
2943 net->ipv4.sysctl_tcp_timestamps = 1;
2944 net->ipv4.sysctl_tcp_early_retrans = 3;
2945 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
2946 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */
2947 net->ipv4.sysctl_tcp_retrans_collapse = 1;
2948 net->ipv4.sysctl_tcp_max_reordering = 300;
2949 net->ipv4.sysctl_tcp_dsack = 1;
2950 net->ipv4.sysctl_tcp_app_win = 31;
2951 net->ipv4.sysctl_tcp_adv_win_scale = 1;
2952 net->ipv4.sysctl_tcp_frto = 2;
2953 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
2954 /* This limits the percentage of the congestion window which we
2955 * will allow a single TSO frame to consume. Building TSO frames
2956 * which are too large can cause TCP streams to be bursty.
2957 */
2958 net->ipv4.sysctl_tcp_tso_win_divisor = 3;
2959 /* Default TSQ limit of 16 TSO segments */
2960 net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
2961 /* rfc5961 challenge ack rate limiting */
2962 net->ipv4.sysctl_tcp_challenge_ack_limit = 1000;
2963 net->ipv4.sysctl_tcp_min_tso_segs = 2;
2964 net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
2965 net->ipv4.sysctl_tcp_autocorking = 1;
2966 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
2967 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
2968 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
2969 if (net != &init_net) {
2970 memcpy(net->ipv4.sysctl_tcp_rmem,
2971 init_net.ipv4.sysctl_tcp_rmem,
2972 sizeof(init_net.ipv4.sysctl_tcp_rmem));
2973 memcpy(net->ipv4.sysctl_tcp_wmem,
2974 init_net.ipv4.sysctl_tcp_wmem,
2975 sizeof(init_net.ipv4.sysctl_tcp_wmem));
2976 }
2977 net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
2978 net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
2979 net->ipv4.sysctl_tcp_comp_sack_nr = 44;
2980 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
2981 spin_lock_init(&net->ipv4.tcp_fastopen_ctx_lock);
2982 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
2983 atomic_set(&net->ipv4.tfo_active_disable_times, 0);
2984
2985 /* Reno is always built in */
2986 if (!net_eq(net, &init_net) &&
2987 bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
2988 init_net.ipv4.tcp_congestion_control->owner))
2989 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
2990 else
2991 net->ipv4.tcp_congestion_control = &tcp_reno;
2992
2993 return 0;
2994fail:
2995 tcp_sk_exit(net);
2996
2997 return res;
2998}
2999
3000static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3001{
3002 struct net *net;
3003
3004 inet_twsk_purge(&tcp_hashinfo, AF_INET);
3005
3006 list_for_each_entry(net, net_exit_list, exit_list)
3007 tcp_fastopen_ctx_destroy(net);
3008}
3009
3010static struct pernet_operations __net_initdata tcp_sk_ops = {
3011 .init = tcp_sk_init,
3012 .exit = tcp_sk_exit,
3013 .exit_batch = tcp_sk_exit_batch,
3014};
3015
3016#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3017DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3018 struct sock_common *sk_common, uid_t uid)
3019
3020static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3021{
3022 struct tcp_iter_state *st = priv_data;
3023 struct tcp_seq_afinfo *afinfo;
3024 int ret;
3025
3026 afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3027 if (!afinfo)
3028 return -ENOMEM;
3029
3030 afinfo->family = AF_UNSPEC;
3031 st->bpf_seq_afinfo = afinfo;
3032 ret = bpf_iter_init_seq_net(priv_data, aux);
3033 if (ret)
3034 kfree(afinfo);
3035 return ret;
3036}
3037
3038static void bpf_iter_fini_tcp(void *priv_data)
3039{
3040 struct tcp_iter_state *st = priv_data;
3041
3042 kfree(st->bpf_seq_afinfo);
3043 bpf_iter_fini_seq_net(priv_data);
3044}
3045
3046static const struct bpf_iter_seq_info tcp_seq_info = {
3047 .seq_ops = &bpf_iter_tcp_seq_ops,
3048 .init_seq_private = bpf_iter_init_tcp,
3049 .fini_seq_private = bpf_iter_fini_tcp,
3050 .seq_priv_size = sizeof(struct tcp_iter_state),
3051};
3052
3053static struct bpf_iter_reg tcp_reg_info = {
3054 .target = "tcp",
3055 .ctx_arg_info_size = 1,
3056 .ctx_arg_info = {
3057 { offsetof(struct bpf_iter__tcp, sk_common),
3058 PTR_TO_BTF_ID_OR_NULL },
3059 },
3060 .seq_info = &tcp_seq_info,
3061};
3062
3063static void __init bpf_iter_register(void)
3064{
3065 tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3066 if (bpf_iter_reg_target(&tcp_reg_info))
3067 pr_warn("Warning: could not register bpf iterator tcp\n");
3068}
3069
3070#endif
3071
3072void __init tcp_v4_init(void)
3073{
3074 if (register_pernet_subsys(&tcp_sk_ops))
3075 panic("Failed to create the TCP control socket.\n");
3076
3077#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3078 bpf_iter_register();
3079#endif
3080}
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24/*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53#define pr_fmt(fmt) "TCP: " fmt
54
55#include <linux/bottom_half.h>
56#include <linux/types.h>
57#include <linux/fcntl.h>
58#include <linux/module.h>
59#include <linux/random.h>
60#include <linux/cache.h>
61#include <linux/jhash.h>
62#include <linux/init.h>
63#include <linux/times.h>
64#include <linux/slab.h>
65
66#include <net/net_namespace.h>
67#include <net/icmp.h>
68#include <net/inet_hashtables.h>
69#include <net/tcp.h>
70#include <net/transp_v6.h>
71#include <net/ipv6.h>
72#include <net/inet_common.h>
73#include <net/timewait_sock.h>
74#include <net/xfrm.h>
75#include <net/netdma.h>
76#include <net/secure_seq.h>
77#include <net/tcp_memcontrol.h>
78#include <net/busy_poll.h>
79
80#include <linux/inet.h>
81#include <linux/ipv6.h>
82#include <linux/stddef.h>
83#include <linux/proc_fs.h>
84#include <linux/seq_file.h>
85
86#include <linux/crypto.h>
87#include <linux/scatterlist.h>
88
89int sysctl_tcp_tw_reuse __read_mostly;
90int sysctl_tcp_low_latency __read_mostly;
91EXPORT_SYMBOL(sysctl_tcp_low_latency);
92
93
94#ifdef CONFIG_TCP_MD5SIG
95static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
96 __be32 daddr, __be32 saddr, const struct tcphdr *th);
97#endif
98
99struct inet_hashinfo tcp_hashinfo;
100EXPORT_SYMBOL(tcp_hashinfo);
101
102static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
103{
104 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
105 ip_hdr(skb)->saddr,
106 tcp_hdr(skb)->dest,
107 tcp_hdr(skb)->source);
108}
109
110int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
111{
112 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
113 struct tcp_sock *tp = tcp_sk(sk);
114
115 /* With PAWS, it is safe from the viewpoint
116 of data integrity. Even without PAWS it is safe provided sequence
117 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
118
119 Actually, the idea is close to VJ's one, only timestamp cache is
120 held not per host, but per port pair and TW bucket is used as state
121 holder.
122
123 If TW bucket has been already destroyed we fall back to VJ's scheme
124 and use initial timestamp retrieved from peer table.
125 */
126 if (tcptw->tw_ts_recent_stamp &&
127 (twp == NULL || (sysctl_tcp_tw_reuse &&
128 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
129 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
130 if (tp->write_seq == 0)
131 tp->write_seq = 1;
132 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
133 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
134 sock_hold(sktw);
135 return 1;
136 }
137
138 return 0;
139}
140EXPORT_SYMBOL_GPL(tcp_twsk_unique);
141
142/* This will initiate an outgoing connection. */
143int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
144{
145 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
146 struct inet_sock *inet = inet_sk(sk);
147 struct tcp_sock *tp = tcp_sk(sk);
148 __be16 orig_sport, orig_dport;
149 __be32 daddr, nexthop;
150 struct flowi4 *fl4;
151 struct rtable *rt;
152 int err;
153 struct ip_options_rcu *inet_opt;
154
155 if (addr_len < sizeof(struct sockaddr_in))
156 return -EINVAL;
157
158 if (usin->sin_family != AF_INET)
159 return -EAFNOSUPPORT;
160
161 nexthop = daddr = usin->sin_addr.s_addr;
162 inet_opt = rcu_dereference_protected(inet->inet_opt,
163 sock_owned_by_user(sk));
164 if (inet_opt && inet_opt->opt.srr) {
165 if (!daddr)
166 return -EINVAL;
167 nexthop = inet_opt->opt.faddr;
168 }
169
170 orig_sport = inet->inet_sport;
171 orig_dport = usin->sin_port;
172 fl4 = &inet->cork.fl.u.ip4;
173 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
174 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
175 IPPROTO_TCP,
176 orig_sport, orig_dport, sk);
177 if (IS_ERR(rt)) {
178 err = PTR_ERR(rt);
179 if (err == -ENETUNREACH)
180 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
181 return err;
182 }
183
184 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
185 ip_rt_put(rt);
186 return -ENETUNREACH;
187 }
188
189 if (!inet_opt || !inet_opt->opt.srr)
190 daddr = fl4->daddr;
191
192 if (!inet->inet_saddr)
193 inet->inet_saddr = fl4->saddr;
194 inet->inet_rcv_saddr = inet->inet_saddr;
195
196 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
197 /* Reset inherited state */
198 tp->rx_opt.ts_recent = 0;
199 tp->rx_opt.ts_recent_stamp = 0;
200 if (likely(!tp->repair))
201 tp->write_seq = 0;
202 }
203
204 if (tcp_death_row.sysctl_tw_recycle &&
205 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
206 tcp_fetch_timewait_stamp(sk, &rt->dst);
207
208 inet->inet_dport = usin->sin_port;
209 inet->inet_daddr = daddr;
210
211 inet_csk(sk)->icsk_ext_hdr_len = 0;
212 if (inet_opt)
213 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
214
215 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
216
217 /* Socket identity is still unknown (sport may be zero).
218 * However we set state to SYN-SENT and not releasing socket
219 * lock select source port, enter ourselves into the hash tables and
220 * complete initialization after this.
221 */
222 tcp_set_state(sk, TCP_SYN_SENT);
223 err = inet_hash_connect(&tcp_death_row, sk);
224 if (err)
225 goto failure;
226
227 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
228 inet->inet_sport, inet->inet_dport, sk);
229 if (IS_ERR(rt)) {
230 err = PTR_ERR(rt);
231 rt = NULL;
232 goto failure;
233 }
234 /* OK, now commit destination to socket. */
235 sk->sk_gso_type = SKB_GSO_TCPV4;
236 sk_setup_caps(sk, &rt->dst);
237
238 if (!tp->write_seq && likely(!tp->repair))
239 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
240 inet->inet_daddr,
241 inet->inet_sport,
242 usin->sin_port);
243
244 inet->inet_id = tp->write_seq ^ jiffies;
245
246 err = tcp_connect(sk);
247
248 rt = NULL;
249 if (err)
250 goto failure;
251
252 return 0;
253
254failure:
255 /*
256 * This unhashes the socket and releases the local port,
257 * if necessary.
258 */
259 tcp_set_state(sk, TCP_CLOSE);
260 ip_rt_put(rt);
261 sk->sk_route_caps = 0;
262 inet->inet_dport = 0;
263 return err;
264}
265EXPORT_SYMBOL(tcp_v4_connect);
266
267/*
268 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
269 * It can be called through tcp_release_cb() if socket was owned by user
270 * at the time tcp_v4_err() was called to handle ICMP message.
271 */
272static void tcp_v4_mtu_reduced(struct sock *sk)
273{
274 struct dst_entry *dst;
275 struct inet_sock *inet = inet_sk(sk);
276 u32 mtu = tcp_sk(sk)->mtu_info;
277
278 dst = inet_csk_update_pmtu(sk, mtu);
279 if (!dst)
280 return;
281
282 /* Something is about to be wrong... Remember soft error
283 * for the case, if this connection will not able to recover.
284 */
285 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
286 sk->sk_err_soft = EMSGSIZE;
287
288 mtu = dst_mtu(dst);
289
290 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
291 ip_sk_accept_pmtu(sk) &&
292 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
293 tcp_sync_mss(sk, mtu);
294
295 /* Resend the TCP packet because it's
296 * clear that the old packet has been
297 * dropped. This is the new "fast" path mtu
298 * discovery.
299 */
300 tcp_simple_retransmit(sk);
301 } /* else let the usual retransmit timer handle it */
302}
303
304static void do_redirect(struct sk_buff *skb, struct sock *sk)
305{
306 struct dst_entry *dst = __sk_dst_check(sk, 0);
307
308 if (dst)
309 dst->ops->redirect(dst, sk, skb);
310}
311
312/*
313 * This routine is called by the ICMP module when it gets some
314 * sort of error condition. If err < 0 then the socket should
315 * be closed and the error returned to the user. If err > 0
316 * it's just the icmp type << 8 | icmp code. After adjustment
317 * header points to the first 8 bytes of the tcp header. We need
318 * to find the appropriate port.
319 *
320 * The locking strategy used here is very "optimistic". When
321 * someone else accesses the socket the ICMP is just dropped
322 * and for some paths there is no check at all.
323 * A more general error queue to queue errors for later handling
324 * is probably better.
325 *
326 */
327
328void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
329{
330 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
331 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
332 struct inet_connection_sock *icsk;
333 struct tcp_sock *tp;
334 struct inet_sock *inet;
335 const int type = icmp_hdr(icmp_skb)->type;
336 const int code = icmp_hdr(icmp_skb)->code;
337 struct sock *sk;
338 struct sk_buff *skb;
339 struct request_sock *req;
340 __u32 seq;
341 __u32 remaining;
342 int err;
343 struct net *net = dev_net(icmp_skb->dev);
344
345 if (icmp_skb->len < (iph->ihl << 2) + 8) {
346 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
347 return;
348 }
349
350 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
351 iph->saddr, th->source, inet_iif(icmp_skb));
352 if (!sk) {
353 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
354 return;
355 }
356 if (sk->sk_state == TCP_TIME_WAIT) {
357 inet_twsk_put(inet_twsk(sk));
358 return;
359 }
360
361 bh_lock_sock(sk);
362 /* If too many ICMPs get dropped on busy
363 * servers this needs to be solved differently.
364 * We do take care of PMTU discovery (RFC1191) special case :
365 * we can receive locally generated ICMP messages while socket is held.
366 */
367 if (sock_owned_by_user(sk)) {
368 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
369 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
370 }
371 if (sk->sk_state == TCP_CLOSE)
372 goto out;
373
374 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
375 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
376 goto out;
377 }
378
379 icsk = inet_csk(sk);
380 tp = tcp_sk(sk);
381 req = tp->fastopen_rsk;
382 seq = ntohl(th->seq);
383 if (sk->sk_state != TCP_LISTEN &&
384 !between(seq, tp->snd_una, tp->snd_nxt) &&
385 (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
386 /* For a Fast Open socket, allow seq to be snt_isn. */
387 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
388 goto out;
389 }
390
391 switch (type) {
392 case ICMP_REDIRECT:
393 do_redirect(icmp_skb, sk);
394 goto out;
395 case ICMP_SOURCE_QUENCH:
396 /* Just silently ignore these. */
397 goto out;
398 case ICMP_PARAMETERPROB:
399 err = EPROTO;
400 break;
401 case ICMP_DEST_UNREACH:
402 if (code > NR_ICMP_UNREACH)
403 goto out;
404
405 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
406 /* We are not interested in TCP_LISTEN and open_requests
407 * (SYN-ACKs send out by Linux are always <576bytes so
408 * they should go through unfragmented).
409 */
410 if (sk->sk_state == TCP_LISTEN)
411 goto out;
412
413 tp->mtu_info = info;
414 if (!sock_owned_by_user(sk)) {
415 tcp_v4_mtu_reduced(sk);
416 } else {
417 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
418 sock_hold(sk);
419 }
420 goto out;
421 }
422
423 err = icmp_err_convert[code].errno;
424 /* check if icmp_skb allows revert of backoff
425 * (see draft-zimmermann-tcp-lcd) */
426 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
427 break;
428 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
429 !icsk->icsk_backoff)
430 break;
431
432 /* XXX (TFO) - revisit the following logic for TFO */
433
434 if (sock_owned_by_user(sk))
435 break;
436
437 icsk->icsk_backoff--;
438 inet_csk(sk)->icsk_rto = (tp->srtt_us ? __tcp_set_rto(tp) :
439 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
440 tcp_bound_rto(sk);
441
442 skb = tcp_write_queue_head(sk);
443 BUG_ON(!skb);
444
445 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
446 tcp_time_stamp - TCP_SKB_CB(skb)->when);
447
448 if (remaining) {
449 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
450 remaining, TCP_RTO_MAX);
451 } else {
452 /* RTO revert clocked out retransmission.
453 * Will retransmit now */
454 tcp_retransmit_timer(sk);
455 }
456
457 break;
458 case ICMP_TIME_EXCEEDED:
459 err = EHOSTUNREACH;
460 break;
461 default:
462 goto out;
463 }
464
465 /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
466 * than following the TCP_SYN_RECV case and closing the socket,
467 * we ignore the ICMP error and keep trying like a fully established
468 * socket. Is this the right thing to do?
469 */
470 if (req && req->sk == NULL)
471 goto out;
472
473 switch (sk->sk_state) {
474 struct request_sock *req, **prev;
475 case TCP_LISTEN:
476 if (sock_owned_by_user(sk))
477 goto out;
478
479 req = inet_csk_search_req(sk, &prev, th->dest,
480 iph->daddr, iph->saddr);
481 if (!req)
482 goto out;
483
484 /* ICMPs are not backlogged, hence we cannot get
485 an established socket here.
486 */
487 WARN_ON(req->sk);
488
489 if (seq != tcp_rsk(req)->snt_isn) {
490 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
491 goto out;
492 }
493
494 /*
495 * Still in SYN_RECV, just remove it silently.
496 * There is no good way to pass the error to the newly
497 * created socket, and POSIX does not want network
498 * errors returned from accept().
499 */
500 inet_csk_reqsk_queue_drop(sk, req, prev);
501 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
502 goto out;
503
504 case TCP_SYN_SENT:
505 case TCP_SYN_RECV: /* Cannot happen.
506 It can f.e. if SYNs crossed,
507 or Fast Open.
508 */
509 if (!sock_owned_by_user(sk)) {
510 sk->sk_err = err;
511
512 sk->sk_error_report(sk);
513
514 tcp_done(sk);
515 } else {
516 sk->sk_err_soft = err;
517 }
518 goto out;
519 }
520
521 /* If we've already connected we will keep trying
522 * until we time out, or the user gives up.
523 *
524 * rfc1122 4.2.3.9 allows to consider as hard errors
525 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
526 * but it is obsoleted by pmtu discovery).
527 *
528 * Note, that in modern internet, where routing is unreliable
529 * and in each dark corner broken firewalls sit, sending random
530 * errors ordered by their masters even this two messages finally lose
531 * their original sense (even Linux sends invalid PORT_UNREACHs)
532 *
533 * Now we are in compliance with RFCs.
534 * --ANK (980905)
535 */
536
537 inet = inet_sk(sk);
538 if (!sock_owned_by_user(sk) && inet->recverr) {
539 sk->sk_err = err;
540 sk->sk_error_report(sk);
541 } else { /* Only an error on timeout */
542 sk->sk_err_soft = err;
543 }
544
545out:
546 bh_unlock_sock(sk);
547 sock_put(sk);
548}
549
550void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
551{
552 struct tcphdr *th = tcp_hdr(skb);
553
554 if (skb->ip_summed == CHECKSUM_PARTIAL) {
555 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
556 skb->csum_start = skb_transport_header(skb) - skb->head;
557 skb->csum_offset = offsetof(struct tcphdr, check);
558 } else {
559 th->check = tcp_v4_check(skb->len, saddr, daddr,
560 csum_partial(th,
561 th->doff << 2,
562 skb->csum));
563 }
564}
565
566/* This routine computes an IPv4 TCP checksum. */
567void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
568{
569 const struct inet_sock *inet = inet_sk(sk);
570
571 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
572}
573EXPORT_SYMBOL(tcp_v4_send_check);
574
575/*
576 * This routine will send an RST to the other tcp.
577 *
578 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
579 * for reset.
580 * Answer: if a packet caused RST, it is not for a socket
581 * existing in our system, if it is matched to a socket,
582 * it is just duplicate segment or bug in other side's TCP.
583 * So that we build reply only basing on parameters
584 * arrived with segment.
585 * Exception: precedence violation. We do not implement it in any case.
586 */
587
588static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
589{
590 const struct tcphdr *th = tcp_hdr(skb);
591 struct {
592 struct tcphdr th;
593#ifdef CONFIG_TCP_MD5SIG
594 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
595#endif
596 } rep;
597 struct ip_reply_arg arg;
598#ifdef CONFIG_TCP_MD5SIG
599 struct tcp_md5sig_key *key;
600 const __u8 *hash_location = NULL;
601 unsigned char newhash[16];
602 int genhash;
603 struct sock *sk1 = NULL;
604#endif
605 struct net *net;
606
607 /* Never send a reset in response to a reset. */
608 if (th->rst)
609 return;
610
611 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
612 return;
613
614 /* Swap the send and the receive. */
615 memset(&rep, 0, sizeof(rep));
616 rep.th.dest = th->source;
617 rep.th.source = th->dest;
618 rep.th.doff = sizeof(struct tcphdr) / 4;
619 rep.th.rst = 1;
620
621 if (th->ack) {
622 rep.th.seq = th->ack_seq;
623 } else {
624 rep.th.ack = 1;
625 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
626 skb->len - (th->doff << 2));
627 }
628
629 memset(&arg, 0, sizeof(arg));
630 arg.iov[0].iov_base = (unsigned char *)&rep;
631 arg.iov[0].iov_len = sizeof(rep.th);
632
633#ifdef CONFIG_TCP_MD5SIG
634 hash_location = tcp_parse_md5sig_option(th);
635 if (!sk && hash_location) {
636 /*
637 * active side is lost. Try to find listening socket through
638 * source port, and then find md5 key through listening socket.
639 * we are not loose security here:
640 * Incoming packet is checked with md5 hash with finding key,
641 * no RST generated if md5 hash doesn't match.
642 */
643 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
644 &tcp_hashinfo, ip_hdr(skb)->saddr,
645 th->source, ip_hdr(skb)->daddr,
646 ntohs(th->source), inet_iif(skb));
647 /* don't send rst if it can't find key */
648 if (!sk1)
649 return;
650 rcu_read_lock();
651 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
652 &ip_hdr(skb)->saddr, AF_INET);
653 if (!key)
654 goto release_sk1;
655
656 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
657 if (genhash || memcmp(hash_location, newhash, 16) != 0)
658 goto release_sk1;
659 } else {
660 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
661 &ip_hdr(skb)->saddr,
662 AF_INET) : NULL;
663 }
664
665 if (key) {
666 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
667 (TCPOPT_NOP << 16) |
668 (TCPOPT_MD5SIG << 8) |
669 TCPOLEN_MD5SIG);
670 /* Update length and the length the header thinks exists */
671 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
672 rep.th.doff = arg.iov[0].iov_len / 4;
673
674 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
675 key, ip_hdr(skb)->saddr,
676 ip_hdr(skb)->daddr, &rep.th);
677 }
678#endif
679 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
680 ip_hdr(skb)->saddr, /* XXX */
681 arg.iov[0].iov_len, IPPROTO_TCP, 0);
682 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
683 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
684 /* When socket is gone, all binding information is lost.
685 * routing might fail in this case. No choice here, if we choose to force
686 * input interface, we will misroute in case of asymmetric route.
687 */
688 if (sk)
689 arg.bound_dev_if = sk->sk_bound_dev_if;
690
691 net = dev_net(skb_dst(skb)->dev);
692 arg.tos = ip_hdr(skb)->tos;
693 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
694 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
695
696 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
697 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
698
699#ifdef CONFIG_TCP_MD5SIG
700release_sk1:
701 if (sk1) {
702 rcu_read_unlock();
703 sock_put(sk1);
704 }
705#endif
706}
707
708/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
709 outside socket context is ugly, certainly. What can I do?
710 */
711
712static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
713 u32 win, u32 tsval, u32 tsecr, int oif,
714 struct tcp_md5sig_key *key,
715 int reply_flags, u8 tos)
716{
717 const struct tcphdr *th = tcp_hdr(skb);
718 struct {
719 struct tcphdr th;
720 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
721#ifdef CONFIG_TCP_MD5SIG
722 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
723#endif
724 ];
725 } rep;
726 struct ip_reply_arg arg;
727 struct net *net = dev_net(skb_dst(skb)->dev);
728
729 memset(&rep.th, 0, sizeof(struct tcphdr));
730 memset(&arg, 0, sizeof(arg));
731
732 arg.iov[0].iov_base = (unsigned char *)&rep;
733 arg.iov[0].iov_len = sizeof(rep.th);
734 if (tsecr) {
735 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
736 (TCPOPT_TIMESTAMP << 8) |
737 TCPOLEN_TIMESTAMP);
738 rep.opt[1] = htonl(tsval);
739 rep.opt[2] = htonl(tsecr);
740 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
741 }
742
743 /* Swap the send and the receive. */
744 rep.th.dest = th->source;
745 rep.th.source = th->dest;
746 rep.th.doff = arg.iov[0].iov_len / 4;
747 rep.th.seq = htonl(seq);
748 rep.th.ack_seq = htonl(ack);
749 rep.th.ack = 1;
750 rep.th.window = htons(win);
751
752#ifdef CONFIG_TCP_MD5SIG
753 if (key) {
754 int offset = (tsecr) ? 3 : 0;
755
756 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
757 (TCPOPT_NOP << 16) |
758 (TCPOPT_MD5SIG << 8) |
759 TCPOLEN_MD5SIG);
760 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
761 rep.th.doff = arg.iov[0].iov_len/4;
762
763 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
764 key, ip_hdr(skb)->saddr,
765 ip_hdr(skb)->daddr, &rep.th);
766 }
767#endif
768 arg.flags = reply_flags;
769 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
770 ip_hdr(skb)->saddr, /* XXX */
771 arg.iov[0].iov_len, IPPROTO_TCP, 0);
772 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
773 if (oif)
774 arg.bound_dev_if = oif;
775 arg.tos = tos;
776 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
777 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
778
779 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
780}
781
782static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
783{
784 struct inet_timewait_sock *tw = inet_twsk(sk);
785 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
786
787 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
788 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
789 tcp_time_stamp + tcptw->tw_ts_offset,
790 tcptw->tw_ts_recent,
791 tw->tw_bound_dev_if,
792 tcp_twsk_md5_key(tcptw),
793 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
794 tw->tw_tos
795 );
796
797 inet_twsk_put(tw);
798}
799
800static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
801 struct request_sock *req)
802{
803 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
804 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
805 */
806 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
807 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
808 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
809 tcp_time_stamp,
810 req->ts_recent,
811 0,
812 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
813 AF_INET),
814 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
815 ip_hdr(skb)->tos);
816}
817
818/*
819 * Send a SYN-ACK after having received a SYN.
820 * This still operates on a request_sock only, not on a big
821 * socket.
822 */
823static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
824 struct request_sock *req,
825 u16 queue_mapping)
826{
827 const struct inet_request_sock *ireq = inet_rsk(req);
828 struct flowi4 fl4;
829 int err = -1;
830 struct sk_buff *skb;
831
832 /* First, grab a route. */
833 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
834 return -1;
835
836 skb = tcp_make_synack(sk, dst, req, NULL);
837
838 if (skb) {
839 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
840
841 skb_set_queue_mapping(skb, queue_mapping);
842 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
843 ireq->ir_rmt_addr,
844 ireq->opt);
845 err = net_xmit_eval(err);
846 if (!tcp_rsk(req)->snt_synack && !err)
847 tcp_rsk(req)->snt_synack = tcp_time_stamp;
848 }
849
850 return err;
851}
852
853static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req)
854{
855 int res = tcp_v4_send_synack(sk, NULL, req, 0);
856
857 if (!res) {
858 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
859 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
860 }
861 return res;
862}
863
864/*
865 * IPv4 request_sock destructor.
866 */
867static void tcp_v4_reqsk_destructor(struct request_sock *req)
868{
869 kfree(inet_rsk(req)->opt);
870}
871
872/*
873 * Return true if a syncookie should be sent
874 */
875bool tcp_syn_flood_action(struct sock *sk,
876 const struct sk_buff *skb,
877 const char *proto)
878{
879 const char *msg = "Dropping request";
880 bool want_cookie = false;
881 struct listen_sock *lopt;
882
883#ifdef CONFIG_SYN_COOKIES
884 if (sysctl_tcp_syncookies) {
885 msg = "Sending cookies";
886 want_cookie = true;
887 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
888 } else
889#endif
890 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
891
892 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
893 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
894 lopt->synflood_warned = 1;
895 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
896 proto, ntohs(tcp_hdr(skb)->dest), msg);
897 }
898 return want_cookie;
899}
900EXPORT_SYMBOL(tcp_syn_flood_action);
901
902/*
903 * Save and compile IPv4 options into the request_sock if needed.
904 */
905static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
906{
907 const struct ip_options *opt = &(IPCB(skb)->opt);
908 struct ip_options_rcu *dopt = NULL;
909
910 if (opt && opt->optlen) {
911 int opt_size = sizeof(*dopt) + opt->optlen;
912
913 dopt = kmalloc(opt_size, GFP_ATOMIC);
914 if (dopt) {
915 if (ip_options_echo(&dopt->opt, skb)) {
916 kfree(dopt);
917 dopt = NULL;
918 }
919 }
920 }
921 return dopt;
922}
923
924#ifdef CONFIG_TCP_MD5SIG
925/*
926 * RFC2385 MD5 checksumming requires a mapping of
927 * IP address->MD5 Key.
928 * We need to maintain these in the sk structure.
929 */
930
931/* Find the Key structure for an address. */
932struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
933 const union tcp_md5_addr *addr,
934 int family)
935{
936 struct tcp_sock *tp = tcp_sk(sk);
937 struct tcp_md5sig_key *key;
938 unsigned int size = sizeof(struct in_addr);
939 struct tcp_md5sig_info *md5sig;
940
941 /* caller either holds rcu_read_lock() or socket lock */
942 md5sig = rcu_dereference_check(tp->md5sig_info,
943 sock_owned_by_user(sk) ||
944 lockdep_is_held(&sk->sk_lock.slock));
945 if (!md5sig)
946 return NULL;
947#if IS_ENABLED(CONFIG_IPV6)
948 if (family == AF_INET6)
949 size = sizeof(struct in6_addr);
950#endif
951 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
952 if (key->family != family)
953 continue;
954 if (!memcmp(&key->addr, addr, size))
955 return key;
956 }
957 return NULL;
958}
959EXPORT_SYMBOL(tcp_md5_do_lookup);
960
961struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
962 struct sock *addr_sk)
963{
964 union tcp_md5_addr *addr;
965
966 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
967 return tcp_md5_do_lookup(sk, addr, AF_INET);
968}
969EXPORT_SYMBOL(tcp_v4_md5_lookup);
970
971static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
972 struct request_sock *req)
973{
974 union tcp_md5_addr *addr;
975
976 addr = (union tcp_md5_addr *)&inet_rsk(req)->ir_rmt_addr;
977 return tcp_md5_do_lookup(sk, addr, AF_INET);
978}
979
980/* This can be called on a newly created socket, from other files */
981int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
982 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
983{
984 /* Add Key to the list */
985 struct tcp_md5sig_key *key;
986 struct tcp_sock *tp = tcp_sk(sk);
987 struct tcp_md5sig_info *md5sig;
988
989 key = tcp_md5_do_lookup(sk, addr, family);
990 if (key) {
991 /* Pre-existing entry - just update that one. */
992 memcpy(key->key, newkey, newkeylen);
993 key->keylen = newkeylen;
994 return 0;
995 }
996
997 md5sig = rcu_dereference_protected(tp->md5sig_info,
998 sock_owned_by_user(sk));
999 if (!md5sig) {
1000 md5sig = kmalloc(sizeof(*md5sig), gfp);
1001 if (!md5sig)
1002 return -ENOMEM;
1003
1004 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1005 INIT_HLIST_HEAD(&md5sig->head);
1006 rcu_assign_pointer(tp->md5sig_info, md5sig);
1007 }
1008
1009 key = sock_kmalloc(sk, sizeof(*key), gfp);
1010 if (!key)
1011 return -ENOMEM;
1012 if (!tcp_alloc_md5sig_pool()) {
1013 sock_kfree_s(sk, key, sizeof(*key));
1014 return -ENOMEM;
1015 }
1016
1017 memcpy(key->key, newkey, newkeylen);
1018 key->keylen = newkeylen;
1019 key->family = family;
1020 memcpy(&key->addr, addr,
1021 (family == AF_INET6) ? sizeof(struct in6_addr) :
1022 sizeof(struct in_addr));
1023 hlist_add_head_rcu(&key->node, &md5sig->head);
1024 return 0;
1025}
1026EXPORT_SYMBOL(tcp_md5_do_add);
1027
1028int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1029{
1030 struct tcp_md5sig_key *key;
1031
1032 key = tcp_md5_do_lookup(sk, addr, family);
1033 if (!key)
1034 return -ENOENT;
1035 hlist_del_rcu(&key->node);
1036 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1037 kfree_rcu(key, rcu);
1038 return 0;
1039}
1040EXPORT_SYMBOL(tcp_md5_do_del);
1041
1042static void tcp_clear_md5_list(struct sock *sk)
1043{
1044 struct tcp_sock *tp = tcp_sk(sk);
1045 struct tcp_md5sig_key *key;
1046 struct hlist_node *n;
1047 struct tcp_md5sig_info *md5sig;
1048
1049 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1050
1051 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1052 hlist_del_rcu(&key->node);
1053 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1054 kfree_rcu(key, rcu);
1055 }
1056}
1057
1058static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1059 int optlen)
1060{
1061 struct tcp_md5sig cmd;
1062 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1063
1064 if (optlen < sizeof(cmd))
1065 return -EINVAL;
1066
1067 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1068 return -EFAULT;
1069
1070 if (sin->sin_family != AF_INET)
1071 return -EINVAL;
1072
1073 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1074 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1075 AF_INET);
1076
1077 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1078 return -EINVAL;
1079
1080 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1081 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1082 GFP_KERNEL);
1083}
1084
1085static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1086 __be32 daddr, __be32 saddr, int nbytes)
1087{
1088 struct tcp4_pseudohdr *bp;
1089 struct scatterlist sg;
1090
1091 bp = &hp->md5_blk.ip4;
1092
1093 /*
1094 * 1. the TCP pseudo-header (in the order: source IP address,
1095 * destination IP address, zero-padded protocol number, and
1096 * segment length)
1097 */
1098 bp->saddr = saddr;
1099 bp->daddr = daddr;
1100 bp->pad = 0;
1101 bp->protocol = IPPROTO_TCP;
1102 bp->len = cpu_to_be16(nbytes);
1103
1104 sg_init_one(&sg, bp, sizeof(*bp));
1105 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1106}
1107
1108static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1109 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1110{
1111 struct tcp_md5sig_pool *hp;
1112 struct hash_desc *desc;
1113
1114 hp = tcp_get_md5sig_pool();
1115 if (!hp)
1116 goto clear_hash_noput;
1117 desc = &hp->md5_desc;
1118
1119 if (crypto_hash_init(desc))
1120 goto clear_hash;
1121 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1122 goto clear_hash;
1123 if (tcp_md5_hash_header(hp, th))
1124 goto clear_hash;
1125 if (tcp_md5_hash_key(hp, key))
1126 goto clear_hash;
1127 if (crypto_hash_final(desc, md5_hash))
1128 goto clear_hash;
1129
1130 tcp_put_md5sig_pool();
1131 return 0;
1132
1133clear_hash:
1134 tcp_put_md5sig_pool();
1135clear_hash_noput:
1136 memset(md5_hash, 0, 16);
1137 return 1;
1138}
1139
1140int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1141 const struct sock *sk, const struct request_sock *req,
1142 const struct sk_buff *skb)
1143{
1144 struct tcp_md5sig_pool *hp;
1145 struct hash_desc *desc;
1146 const struct tcphdr *th = tcp_hdr(skb);
1147 __be32 saddr, daddr;
1148
1149 if (sk) {
1150 saddr = inet_sk(sk)->inet_saddr;
1151 daddr = inet_sk(sk)->inet_daddr;
1152 } else if (req) {
1153 saddr = inet_rsk(req)->ir_loc_addr;
1154 daddr = inet_rsk(req)->ir_rmt_addr;
1155 } else {
1156 const struct iphdr *iph = ip_hdr(skb);
1157 saddr = iph->saddr;
1158 daddr = iph->daddr;
1159 }
1160
1161 hp = tcp_get_md5sig_pool();
1162 if (!hp)
1163 goto clear_hash_noput;
1164 desc = &hp->md5_desc;
1165
1166 if (crypto_hash_init(desc))
1167 goto clear_hash;
1168
1169 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1170 goto clear_hash;
1171 if (tcp_md5_hash_header(hp, th))
1172 goto clear_hash;
1173 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1174 goto clear_hash;
1175 if (tcp_md5_hash_key(hp, key))
1176 goto clear_hash;
1177 if (crypto_hash_final(desc, md5_hash))
1178 goto clear_hash;
1179
1180 tcp_put_md5sig_pool();
1181 return 0;
1182
1183clear_hash:
1184 tcp_put_md5sig_pool();
1185clear_hash_noput:
1186 memset(md5_hash, 0, 16);
1187 return 1;
1188}
1189EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1190
1191static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1192{
1193 /*
1194 * This gets called for each TCP segment that arrives
1195 * so we want to be efficient.
1196 * We have 3 drop cases:
1197 * o No MD5 hash and one expected.
1198 * o MD5 hash and we're not expecting one.
1199 * o MD5 hash and its wrong.
1200 */
1201 const __u8 *hash_location = NULL;
1202 struct tcp_md5sig_key *hash_expected;
1203 const struct iphdr *iph = ip_hdr(skb);
1204 const struct tcphdr *th = tcp_hdr(skb);
1205 int genhash;
1206 unsigned char newhash[16];
1207
1208 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1209 AF_INET);
1210 hash_location = tcp_parse_md5sig_option(th);
1211
1212 /* We've parsed the options - do we have a hash? */
1213 if (!hash_expected && !hash_location)
1214 return false;
1215
1216 if (hash_expected && !hash_location) {
1217 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1218 return true;
1219 }
1220
1221 if (!hash_expected && hash_location) {
1222 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1223 return true;
1224 }
1225
1226 /* Okay, so this is hash_expected and hash_location -
1227 * so we need to calculate the checksum.
1228 */
1229 genhash = tcp_v4_md5_hash_skb(newhash,
1230 hash_expected,
1231 NULL, NULL, skb);
1232
1233 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1234 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1235 &iph->saddr, ntohs(th->source),
1236 &iph->daddr, ntohs(th->dest),
1237 genhash ? " tcp_v4_calc_md5_hash failed"
1238 : "");
1239 return true;
1240 }
1241 return false;
1242}
1243
1244#endif
1245
1246struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1247 .family = PF_INET,
1248 .obj_size = sizeof(struct tcp_request_sock),
1249 .rtx_syn_ack = tcp_v4_rtx_synack,
1250 .send_ack = tcp_v4_reqsk_send_ack,
1251 .destructor = tcp_v4_reqsk_destructor,
1252 .send_reset = tcp_v4_send_reset,
1253 .syn_ack_timeout = tcp_syn_ack_timeout,
1254};
1255
1256#ifdef CONFIG_TCP_MD5SIG
1257static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1258 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1259 .calc_md5_hash = tcp_v4_md5_hash_skb,
1260};
1261#endif
1262
1263static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1264 struct request_sock *req,
1265 struct tcp_fastopen_cookie *foc,
1266 struct tcp_fastopen_cookie *valid_foc)
1267{
1268 bool skip_cookie = false;
1269 struct fastopen_queue *fastopenq;
1270
1271 if (likely(!fastopen_cookie_present(foc))) {
1272 /* See include/net/tcp.h for the meaning of these knobs */
1273 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1274 ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1275 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1276 skip_cookie = true; /* no cookie to validate */
1277 else
1278 return false;
1279 }
1280 fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1281 /* A FO option is present; bump the counter. */
1282 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1283
1284 /* Make sure the listener has enabled fastopen, and we don't
1285 * exceed the max # of pending TFO requests allowed before trying
1286 * to validating the cookie in order to avoid burning CPU cycles
1287 * unnecessarily.
1288 *
1289 * XXX (TFO) - The implication of checking the max_qlen before
1290 * processing a cookie request is that clients can't differentiate
1291 * between qlen overflow causing Fast Open to be disabled
1292 * temporarily vs a server not supporting Fast Open at all.
1293 */
1294 if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1295 fastopenq == NULL || fastopenq->max_qlen == 0)
1296 return false;
1297
1298 if (fastopenq->qlen >= fastopenq->max_qlen) {
1299 struct request_sock *req1;
1300 spin_lock(&fastopenq->lock);
1301 req1 = fastopenq->rskq_rst_head;
1302 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1303 spin_unlock(&fastopenq->lock);
1304 NET_INC_STATS_BH(sock_net(sk),
1305 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1306 /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1307 foc->len = -1;
1308 return false;
1309 }
1310 fastopenq->rskq_rst_head = req1->dl_next;
1311 fastopenq->qlen--;
1312 spin_unlock(&fastopenq->lock);
1313 reqsk_free(req1);
1314 }
1315 if (skip_cookie) {
1316 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1317 return true;
1318 }
1319
1320 if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1321 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1322 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr,
1323 ip_hdr(skb)->daddr, valid_foc);
1324 if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1325 memcmp(&foc->val[0], &valid_foc->val[0],
1326 TCP_FASTOPEN_COOKIE_SIZE) != 0)
1327 return false;
1328 valid_foc->len = -1;
1329 }
1330 /* Acknowledge the data received from the peer. */
1331 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1332 return true;
1333 } else if (foc->len == 0) { /* Client requesting a cookie */
1334 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr,
1335 ip_hdr(skb)->daddr, valid_foc);
1336 NET_INC_STATS_BH(sock_net(sk),
1337 LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1338 } else {
1339 /* Client sent a cookie with wrong size. Treat it
1340 * the same as invalid and return a valid one.
1341 */
1342 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr,
1343 ip_hdr(skb)->daddr, valid_foc);
1344 }
1345 return false;
1346}
1347
1348static int tcp_v4_conn_req_fastopen(struct sock *sk,
1349 struct sk_buff *skb,
1350 struct sk_buff *skb_synack,
1351 struct request_sock *req)
1352{
1353 struct tcp_sock *tp = tcp_sk(sk);
1354 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1355 const struct inet_request_sock *ireq = inet_rsk(req);
1356 struct sock *child;
1357 int err;
1358
1359 req->num_retrans = 0;
1360 req->num_timeout = 0;
1361 req->sk = NULL;
1362
1363 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1364 if (child == NULL) {
1365 NET_INC_STATS_BH(sock_net(sk),
1366 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1367 kfree_skb(skb_synack);
1368 return -1;
1369 }
1370 err = ip_build_and_send_pkt(skb_synack, sk, ireq->ir_loc_addr,
1371 ireq->ir_rmt_addr, ireq->opt);
1372 err = net_xmit_eval(err);
1373 if (!err)
1374 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1375 /* XXX (TFO) - is it ok to ignore error and continue? */
1376
1377 spin_lock(&queue->fastopenq->lock);
1378 queue->fastopenq->qlen++;
1379 spin_unlock(&queue->fastopenq->lock);
1380
1381 /* Initialize the child socket. Have to fix some values to take
1382 * into account the child is a Fast Open socket and is created
1383 * only out of the bits carried in the SYN packet.
1384 */
1385 tp = tcp_sk(child);
1386
1387 tp->fastopen_rsk = req;
1388 /* Do a hold on the listner sk so that if the listener is being
1389 * closed, the child that has been accepted can live on and still
1390 * access listen_lock.
1391 */
1392 sock_hold(sk);
1393 tcp_rsk(req)->listener = sk;
1394
1395 /* RFC1323: The window in SYN & SYN/ACK segments is never
1396 * scaled. So correct it appropriately.
1397 */
1398 tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1399
1400 /* Activate the retrans timer so that SYNACK can be retransmitted.
1401 * The request socket is not added to the SYN table of the parent
1402 * because it's been added to the accept queue directly.
1403 */
1404 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1405 TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1406
1407 /* Add the child socket directly into the accept queue */
1408 inet_csk_reqsk_queue_add(sk, req, child);
1409
1410 /* Now finish processing the fastopen child socket. */
1411 inet_csk(child)->icsk_af_ops->rebuild_header(child);
1412 tcp_init_congestion_control(child);
1413 tcp_mtup_init(child);
1414 tcp_init_metrics(child);
1415 tcp_init_buffer_space(child);
1416
1417 /* Queue the data carried in the SYN packet. We need to first
1418 * bump skb's refcnt because the caller will attempt to free it.
1419 *
1420 * XXX (TFO) - we honor a zero-payload TFO request for now.
1421 * (Any reason not to?)
1422 */
1423 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1424 /* Don't queue the skb if there is no payload in SYN.
1425 * XXX (TFO) - How about SYN+FIN?
1426 */
1427 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1428 } else {
1429 skb = skb_get(skb);
1430 skb_dst_drop(skb);
1431 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1432 skb_set_owner_r(skb, child);
1433 __skb_queue_tail(&child->sk_receive_queue, skb);
1434 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1435 tp->syn_data_acked = 1;
1436 }
1437 sk->sk_data_ready(sk);
1438 bh_unlock_sock(child);
1439 sock_put(child);
1440 WARN_ON(req->sk == NULL);
1441 return 0;
1442}
1443
1444int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1445{
1446 struct tcp_options_received tmp_opt;
1447 struct request_sock *req;
1448 struct inet_request_sock *ireq;
1449 struct tcp_sock *tp = tcp_sk(sk);
1450 struct dst_entry *dst = NULL;
1451 __be32 saddr = ip_hdr(skb)->saddr;
1452 __be32 daddr = ip_hdr(skb)->daddr;
1453 __u32 isn = TCP_SKB_CB(skb)->when;
1454 bool want_cookie = false;
1455 struct flowi4 fl4;
1456 struct tcp_fastopen_cookie foc = { .len = -1 };
1457 struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1458 struct sk_buff *skb_synack;
1459 int do_fastopen;
1460
1461 /* Never answer to SYNs send to broadcast or multicast */
1462 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1463 goto drop;
1464
1465 /* TW buckets are converted to open requests without
1466 * limitations, they conserve resources and peer is
1467 * evidently real one.
1468 */
1469 if ((sysctl_tcp_syncookies == 2 ||
1470 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
1471 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1472 if (!want_cookie)
1473 goto drop;
1474 }
1475
1476 /* Accept backlog is full. If we have already queued enough
1477 * of warm entries in syn queue, drop request. It is better than
1478 * clogging syn queue with openreqs with exponentially increasing
1479 * timeout.
1480 */
1481 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
1482 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1483 goto drop;
1484 }
1485
1486 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1487 if (!req)
1488 goto drop;
1489
1490#ifdef CONFIG_TCP_MD5SIG
1491 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1492#endif
1493
1494 tcp_clear_options(&tmp_opt);
1495 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1496 tmp_opt.user_mss = tp->rx_opt.user_mss;
1497 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
1498
1499 if (want_cookie && !tmp_opt.saw_tstamp)
1500 tcp_clear_options(&tmp_opt);
1501
1502 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1503 tcp_openreq_init(req, &tmp_opt, skb);
1504
1505 ireq = inet_rsk(req);
1506 ireq->ir_loc_addr = daddr;
1507 ireq->ir_rmt_addr = saddr;
1508 ireq->no_srccheck = inet_sk(sk)->transparent;
1509 ireq->opt = tcp_v4_save_options(skb);
1510
1511 if (security_inet_conn_request(sk, skb, req))
1512 goto drop_and_free;
1513
1514 if (!want_cookie || tmp_opt.tstamp_ok)
1515 TCP_ECN_create_request(req, skb, sock_net(sk));
1516
1517 if (want_cookie) {
1518 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1519 req->cookie_ts = tmp_opt.tstamp_ok;
1520 } else if (!isn) {
1521 /* VJ's idea. We save last timestamp seen
1522 * from the destination in peer table, when entering
1523 * state TIME-WAIT, and check against it before
1524 * accepting new connection request.
1525 *
1526 * If "isn" is not zero, this request hit alive
1527 * timewait bucket, so that all the necessary checks
1528 * are made in the function processing timewait state.
1529 */
1530 if (tmp_opt.saw_tstamp &&
1531 tcp_death_row.sysctl_tw_recycle &&
1532 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1533 fl4.daddr == saddr) {
1534 if (!tcp_peer_is_proven(req, dst, true)) {
1535 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1536 goto drop_and_release;
1537 }
1538 }
1539 /* Kill the following clause, if you dislike this way. */
1540 else if (!sysctl_tcp_syncookies &&
1541 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1542 (sysctl_max_syn_backlog >> 2)) &&
1543 !tcp_peer_is_proven(req, dst, false)) {
1544 /* Without syncookies last quarter of
1545 * backlog is filled with destinations,
1546 * proven to be alive.
1547 * It means that we continue to communicate
1548 * to destinations, already remembered
1549 * to the moment of synflood.
1550 */
1551 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1552 &saddr, ntohs(tcp_hdr(skb)->source));
1553 goto drop_and_release;
1554 }
1555
1556 isn = tcp_v4_init_sequence(skb);
1557 }
1558 tcp_rsk(req)->snt_isn = isn;
1559
1560 if (dst == NULL) {
1561 dst = inet_csk_route_req(sk, &fl4, req);
1562 if (dst == NULL)
1563 goto drop_and_free;
1564 }
1565 do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1566
1567 /* We don't call tcp_v4_send_synack() directly because we need
1568 * to make sure a child socket can be created successfully before
1569 * sending back synack!
1570 *
1571 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1572 * (or better yet, call tcp_send_synack() in the child context
1573 * directly, but will have to fix bunch of other code first)
1574 * after syn_recv_sock() except one will need to first fix the
1575 * latter to remove its dependency on the current implementation
1576 * of tcp_v4_send_synack()->tcp_select_initial_window().
1577 */
1578 skb_synack = tcp_make_synack(sk, dst, req,
1579 fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1580
1581 if (skb_synack) {
1582 __tcp_v4_send_check(skb_synack, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1583 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1584 } else
1585 goto drop_and_free;
1586
1587 if (likely(!do_fastopen)) {
1588 int err;
1589 err = ip_build_and_send_pkt(skb_synack, sk, ireq->ir_loc_addr,
1590 ireq->ir_rmt_addr, ireq->opt);
1591 err = net_xmit_eval(err);
1592 if (err || want_cookie)
1593 goto drop_and_free;
1594
1595 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1596 tcp_rsk(req)->listener = NULL;
1597 /* Add the request_sock to the SYN table */
1598 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1599 if (fastopen_cookie_present(&foc) && foc.len != 0)
1600 NET_INC_STATS_BH(sock_net(sk),
1601 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1602 } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req))
1603 goto drop_and_free;
1604
1605 return 0;
1606
1607drop_and_release:
1608 dst_release(dst);
1609drop_and_free:
1610 reqsk_free(req);
1611drop:
1612 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1613 return 0;
1614}
1615EXPORT_SYMBOL(tcp_v4_conn_request);
1616
1617
1618/*
1619 * The three way handshake has completed - we got a valid synack -
1620 * now create the new socket.
1621 */
1622struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1623 struct request_sock *req,
1624 struct dst_entry *dst)
1625{
1626 struct inet_request_sock *ireq;
1627 struct inet_sock *newinet;
1628 struct tcp_sock *newtp;
1629 struct sock *newsk;
1630#ifdef CONFIG_TCP_MD5SIG
1631 struct tcp_md5sig_key *key;
1632#endif
1633 struct ip_options_rcu *inet_opt;
1634
1635 if (sk_acceptq_is_full(sk))
1636 goto exit_overflow;
1637
1638 newsk = tcp_create_openreq_child(sk, req, skb);
1639 if (!newsk)
1640 goto exit_nonewsk;
1641
1642 newsk->sk_gso_type = SKB_GSO_TCPV4;
1643 inet_sk_rx_dst_set(newsk, skb);
1644
1645 newtp = tcp_sk(newsk);
1646 newinet = inet_sk(newsk);
1647 ireq = inet_rsk(req);
1648 newinet->inet_daddr = ireq->ir_rmt_addr;
1649 newinet->inet_rcv_saddr = ireq->ir_loc_addr;
1650 newinet->inet_saddr = ireq->ir_loc_addr;
1651 inet_opt = ireq->opt;
1652 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1653 ireq->opt = NULL;
1654 newinet->mc_index = inet_iif(skb);
1655 newinet->mc_ttl = ip_hdr(skb)->ttl;
1656 newinet->rcv_tos = ip_hdr(skb)->tos;
1657 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1658 if (inet_opt)
1659 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1660 newinet->inet_id = newtp->write_seq ^ jiffies;
1661
1662 if (!dst) {
1663 dst = inet_csk_route_child_sock(sk, newsk, req);
1664 if (!dst)
1665 goto put_and_exit;
1666 } else {
1667 /* syncookie case : see end of cookie_v4_check() */
1668 }
1669 sk_setup_caps(newsk, dst);
1670
1671 tcp_sync_mss(newsk, dst_mtu(dst));
1672 newtp->advmss = dst_metric_advmss(dst);
1673 if (tcp_sk(sk)->rx_opt.user_mss &&
1674 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1675 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1676
1677 tcp_initialize_rcv_mss(newsk);
1678
1679#ifdef CONFIG_TCP_MD5SIG
1680 /* Copy over the MD5 key from the original socket */
1681 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1682 AF_INET);
1683 if (key != NULL) {
1684 /*
1685 * We're using one, so create a matching key
1686 * on the newsk structure. If we fail to get
1687 * memory, then we end up not copying the key
1688 * across. Shucks.
1689 */
1690 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1691 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1692 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1693 }
1694#endif
1695
1696 if (__inet_inherit_port(sk, newsk) < 0)
1697 goto put_and_exit;
1698 __inet_hash_nolisten(newsk, NULL);
1699
1700 return newsk;
1701
1702exit_overflow:
1703 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1704exit_nonewsk:
1705 dst_release(dst);
1706exit:
1707 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1708 return NULL;
1709put_and_exit:
1710 inet_csk_prepare_forced_close(newsk);
1711 tcp_done(newsk);
1712 goto exit;
1713}
1714EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1715
1716static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1717{
1718 struct tcphdr *th = tcp_hdr(skb);
1719 const struct iphdr *iph = ip_hdr(skb);
1720 struct sock *nsk;
1721 struct request_sock **prev;
1722 /* Find possible connection requests. */
1723 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1724 iph->saddr, iph->daddr);
1725 if (req)
1726 return tcp_check_req(sk, skb, req, prev, false);
1727
1728 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1729 th->source, iph->daddr, th->dest, inet_iif(skb));
1730
1731 if (nsk) {
1732 if (nsk->sk_state != TCP_TIME_WAIT) {
1733 bh_lock_sock(nsk);
1734 return nsk;
1735 }
1736 inet_twsk_put(inet_twsk(nsk));
1737 return NULL;
1738 }
1739
1740#ifdef CONFIG_SYN_COOKIES
1741 if (!th->syn)
1742 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1743#endif
1744 return sk;
1745}
1746
1747static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1748{
1749 const struct iphdr *iph = ip_hdr(skb);
1750
1751 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1752 if (!tcp_v4_check(skb->len, iph->saddr,
1753 iph->daddr, skb->csum)) {
1754 skb->ip_summed = CHECKSUM_UNNECESSARY;
1755 return 0;
1756 }
1757 }
1758
1759 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1760 skb->len, IPPROTO_TCP, 0);
1761
1762 if (skb->len <= 76) {
1763 return __skb_checksum_complete(skb);
1764 }
1765 return 0;
1766}
1767
1768
1769/* The socket must have it's spinlock held when we get
1770 * here.
1771 *
1772 * We have a potential double-lock case here, so even when
1773 * doing backlog processing we use the BH locking scheme.
1774 * This is because we cannot sleep with the original spinlock
1775 * held.
1776 */
1777int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1778{
1779 struct sock *rsk;
1780#ifdef CONFIG_TCP_MD5SIG
1781 /*
1782 * We really want to reject the packet as early as possible
1783 * if:
1784 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1785 * o There is an MD5 option and we're not expecting one
1786 */
1787 if (tcp_v4_inbound_md5_hash(sk, skb))
1788 goto discard;
1789#endif
1790
1791 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1792 struct dst_entry *dst = sk->sk_rx_dst;
1793
1794 sock_rps_save_rxhash(sk, skb);
1795 if (dst) {
1796 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1797 dst->ops->check(dst, 0) == NULL) {
1798 dst_release(dst);
1799 sk->sk_rx_dst = NULL;
1800 }
1801 }
1802 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1803 return 0;
1804 }
1805
1806 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1807 goto csum_err;
1808
1809 if (sk->sk_state == TCP_LISTEN) {
1810 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1811 if (!nsk)
1812 goto discard;
1813
1814 if (nsk != sk) {
1815 sock_rps_save_rxhash(nsk, skb);
1816 if (tcp_child_process(sk, nsk, skb)) {
1817 rsk = nsk;
1818 goto reset;
1819 }
1820 return 0;
1821 }
1822 } else
1823 sock_rps_save_rxhash(sk, skb);
1824
1825 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1826 rsk = sk;
1827 goto reset;
1828 }
1829 return 0;
1830
1831reset:
1832 tcp_v4_send_reset(rsk, skb);
1833discard:
1834 kfree_skb(skb);
1835 /* Be careful here. If this function gets more complicated and
1836 * gcc suffers from register pressure on the x86, sk (in %ebx)
1837 * might be destroyed here. This current version compiles correctly,
1838 * but you have been warned.
1839 */
1840 return 0;
1841
1842csum_err:
1843 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1844 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1845 goto discard;
1846}
1847EXPORT_SYMBOL(tcp_v4_do_rcv);
1848
1849void tcp_v4_early_demux(struct sk_buff *skb)
1850{
1851 const struct iphdr *iph;
1852 const struct tcphdr *th;
1853 struct sock *sk;
1854
1855 if (skb->pkt_type != PACKET_HOST)
1856 return;
1857
1858 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1859 return;
1860
1861 iph = ip_hdr(skb);
1862 th = tcp_hdr(skb);
1863
1864 if (th->doff < sizeof(struct tcphdr) / 4)
1865 return;
1866
1867 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1868 iph->saddr, th->source,
1869 iph->daddr, ntohs(th->dest),
1870 skb->skb_iif);
1871 if (sk) {
1872 skb->sk = sk;
1873 skb->destructor = sock_edemux;
1874 if (sk->sk_state != TCP_TIME_WAIT) {
1875 struct dst_entry *dst = sk->sk_rx_dst;
1876
1877 if (dst)
1878 dst = dst_check(dst, 0);
1879 if (dst &&
1880 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1881 skb_dst_set_noref(skb, dst);
1882 }
1883 }
1884}
1885
1886/* Packet is added to VJ-style prequeue for processing in process
1887 * context, if a reader task is waiting. Apparently, this exciting
1888 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1889 * failed somewhere. Latency? Burstiness? Well, at least now we will
1890 * see, why it failed. 8)8) --ANK
1891 *
1892 */
1893bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1894{
1895 struct tcp_sock *tp = tcp_sk(sk);
1896
1897 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1898 return false;
1899
1900 if (skb->len <= tcp_hdrlen(skb) &&
1901 skb_queue_len(&tp->ucopy.prequeue) == 0)
1902 return false;
1903
1904 skb_dst_force(skb);
1905 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1906 tp->ucopy.memory += skb->truesize;
1907 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1908 struct sk_buff *skb1;
1909
1910 BUG_ON(sock_owned_by_user(sk));
1911
1912 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1913 sk_backlog_rcv(sk, skb1);
1914 NET_INC_STATS_BH(sock_net(sk),
1915 LINUX_MIB_TCPPREQUEUEDROPPED);
1916 }
1917
1918 tp->ucopy.memory = 0;
1919 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1920 wake_up_interruptible_sync_poll(sk_sleep(sk),
1921 POLLIN | POLLRDNORM | POLLRDBAND);
1922 if (!inet_csk_ack_scheduled(sk))
1923 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1924 (3 * tcp_rto_min(sk)) / 4,
1925 TCP_RTO_MAX);
1926 }
1927 return true;
1928}
1929EXPORT_SYMBOL(tcp_prequeue);
1930
1931/*
1932 * From tcp_input.c
1933 */
1934
1935int tcp_v4_rcv(struct sk_buff *skb)
1936{
1937 const struct iphdr *iph;
1938 const struct tcphdr *th;
1939 struct sock *sk;
1940 int ret;
1941 struct net *net = dev_net(skb->dev);
1942
1943 if (skb->pkt_type != PACKET_HOST)
1944 goto discard_it;
1945
1946 /* Count it even if it's bad */
1947 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1948
1949 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1950 goto discard_it;
1951
1952 th = tcp_hdr(skb);
1953
1954 if (th->doff < sizeof(struct tcphdr) / 4)
1955 goto bad_packet;
1956 if (!pskb_may_pull(skb, th->doff * 4))
1957 goto discard_it;
1958
1959 /* An explanation is required here, I think.
1960 * Packet length and doff are validated by header prediction,
1961 * provided case of th->doff==0 is eliminated.
1962 * So, we defer the checks. */
1963 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1964 goto csum_error;
1965
1966 th = tcp_hdr(skb);
1967 iph = ip_hdr(skb);
1968 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1969 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1970 skb->len - th->doff * 4);
1971 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1972 TCP_SKB_CB(skb)->when = 0;
1973 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1974 TCP_SKB_CB(skb)->sacked = 0;
1975
1976 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1977 if (!sk)
1978 goto no_tcp_socket;
1979
1980process:
1981 if (sk->sk_state == TCP_TIME_WAIT)
1982 goto do_time_wait;
1983
1984 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1985 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1986 goto discard_and_relse;
1987 }
1988
1989 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1990 goto discard_and_relse;
1991 nf_reset(skb);
1992
1993 if (sk_filter(sk, skb))
1994 goto discard_and_relse;
1995
1996 sk_mark_napi_id(sk, skb);
1997 skb->dev = NULL;
1998
1999 bh_lock_sock_nested(sk);
2000 ret = 0;
2001 if (!sock_owned_by_user(sk)) {
2002#ifdef CONFIG_NET_DMA
2003 struct tcp_sock *tp = tcp_sk(sk);
2004 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2005 tp->ucopy.dma_chan = net_dma_find_channel();
2006 if (tp->ucopy.dma_chan)
2007 ret = tcp_v4_do_rcv(sk, skb);
2008 else
2009#endif
2010 {
2011 if (!tcp_prequeue(sk, skb))
2012 ret = tcp_v4_do_rcv(sk, skb);
2013 }
2014 } else if (unlikely(sk_add_backlog(sk, skb,
2015 sk->sk_rcvbuf + sk->sk_sndbuf))) {
2016 bh_unlock_sock(sk);
2017 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2018 goto discard_and_relse;
2019 }
2020 bh_unlock_sock(sk);
2021
2022 sock_put(sk);
2023
2024 return ret;
2025
2026no_tcp_socket:
2027 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2028 goto discard_it;
2029
2030 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2031csum_error:
2032 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
2033bad_packet:
2034 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2035 } else {
2036 tcp_v4_send_reset(NULL, skb);
2037 }
2038
2039discard_it:
2040 /* Discard frame. */
2041 kfree_skb(skb);
2042 return 0;
2043
2044discard_and_relse:
2045 sock_put(sk);
2046 goto discard_it;
2047
2048do_time_wait:
2049 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2050 inet_twsk_put(inet_twsk(sk));
2051 goto discard_it;
2052 }
2053
2054 if (skb->len < (th->doff << 2)) {
2055 inet_twsk_put(inet_twsk(sk));
2056 goto bad_packet;
2057 }
2058 if (tcp_checksum_complete(skb)) {
2059 inet_twsk_put(inet_twsk(sk));
2060 goto csum_error;
2061 }
2062 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2063 case TCP_TW_SYN: {
2064 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2065 &tcp_hashinfo,
2066 iph->saddr, th->source,
2067 iph->daddr, th->dest,
2068 inet_iif(skb));
2069 if (sk2) {
2070 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2071 inet_twsk_put(inet_twsk(sk));
2072 sk = sk2;
2073 goto process;
2074 }
2075 /* Fall through to ACK */
2076 }
2077 case TCP_TW_ACK:
2078 tcp_v4_timewait_ack(sk, skb);
2079 break;
2080 case TCP_TW_RST:
2081 goto no_tcp_socket;
2082 case TCP_TW_SUCCESS:;
2083 }
2084 goto discard_it;
2085}
2086
2087static struct timewait_sock_ops tcp_timewait_sock_ops = {
2088 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
2089 .twsk_unique = tcp_twsk_unique,
2090 .twsk_destructor= tcp_twsk_destructor,
2091};
2092
2093void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2094{
2095 struct dst_entry *dst = skb_dst(skb);
2096
2097 dst_hold(dst);
2098 sk->sk_rx_dst = dst;
2099 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2100}
2101EXPORT_SYMBOL(inet_sk_rx_dst_set);
2102
2103const struct inet_connection_sock_af_ops ipv4_specific = {
2104 .queue_xmit = ip_queue_xmit,
2105 .send_check = tcp_v4_send_check,
2106 .rebuild_header = inet_sk_rebuild_header,
2107 .sk_rx_dst_set = inet_sk_rx_dst_set,
2108 .conn_request = tcp_v4_conn_request,
2109 .syn_recv_sock = tcp_v4_syn_recv_sock,
2110 .net_header_len = sizeof(struct iphdr),
2111 .setsockopt = ip_setsockopt,
2112 .getsockopt = ip_getsockopt,
2113 .addr2sockaddr = inet_csk_addr2sockaddr,
2114 .sockaddr_len = sizeof(struct sockaddr_in),
2115 .bind_conflict = inet_csk_bind_conflict,
2116#ifdef CONFIG_COMPAT
2117 .compat_setsockopt = compat_ip_setsockopt,
2118 .compat_getsockopt = compat_ip_getsockopt,
2119#endif
2120};
2121EXPORT_SYMBOL(ipv4_specific);
2122
2123#ifdef CONFIG_TCP_MD5SIG
2124static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2125 .md5_lookup = tcp_v4_md5_lookup,
2126 .calc_md5_hash = tcp_v4_md5_hash_skb,
2127 .md5_parse = tcp_v4_parse_md5_keys,
2128};
2129#endif
2130
2131/* NOTE: A lot of things set to zero explicitly by call to
2132 * sk_alloc() so need not be done here.
2133 */
2134static int tcp_v4_init_sock(struct sock *sk)
2135{
2136 struct inet_connection_sock *icsk = inet_csk(sk);
2137
2138 tcp_init_sock(sk);
2139
2140 icsk->icsk_af_ops = &ipv4_specific;
2141
2142#ifdef CONFIG_TCP_MD5SIG
2143 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2144#endif
2145
2146 return 0;
2147}
2148
2149void tcp_v4_destroy_sock(struct sock *sk)
2150{
2151 struct tcp_sock *tp = tcp_sk(sk);
2152
2153 tcp_clear_xmit_timers(sk);
2154
2155 tcp_cleanup_congestion_control(sk);
2156
2157 /* Cleanup up the write buffer. */
2158 tcp_write_queue_purge(sk);
2159
2160 /* Cleans up our, hopefully empty, out_of_order_queue. */
2161 __skb_queue_purge(&tp->out_of_order_queue);
2162
2163#ifdef CONFIG_TCP_MD5SIG
2164 /* Clean up the MD5 key list, if any */
2165 if (tp->md5sig_info) {
2166 tcp_clear_md5_list(sk);
2167 kfree_rcu(tp->md5sig_info, rcu);
2168 tp->md5sig_info = NULL;
2169 }
2170#endif
2171
2172#ifdef CONFIG_NET_DMA
2173 /* Cleans up our sk_async_wait_queue */
2174 __skb_queue_purge(&sk->sk_async_wait_queue);
2175#endif
2176
2177 /* Clean prequeue, it must be empty really */
2178 __skb_queue_purge(&tp->ucopy.prequeue);
2179
2180 /* Clean up a referenced TCP bind bucket. */
2181 if (inet_csk(sk)->icsk_bind_hash)
2182 inet_put_port(sk);
2183
2184 BUG_ON(tp->fastopen_rsk != NULL);
2185
2186 /* If socket is aborted during connect operation */
2187 tcp_free_fastopen_req(tp);
2188
2189 sk_sockets_allocated_dec(sk);
2190 sock_release_memcg(sk);
2191}
2192EXPORT_SYMBOL(tcp_v4_destroy_sock);
2193
2194#ifdef CONFIG_PROC_FS
2195/* Proc filesystem TCP sock list dumping. */
2196
2197/*
2198 * Get next listener socket follow cur. If cur is NULL, get first socket
2199 * starting from bucket given in st->bucket; when st->bucket is zero the
2200 * very first socket in the hash table is returned.
2201 */
2202static void *listening_get_next(struct seq_file *seq, void *cur)
2203{
2204 struct inet_connection_sock *icsk;
2205 struct hlist_nulls_node *node;
2206 struct sock *sk = cur;
2207 struct inet_listen_hashbucket *ilb;
2208 struct tcp_iter_state *st = seq->private;
2209 struct net *net = seq_file_net(seq);
2210
2211 if (!sk) {
2212 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2213 spin_lock_bh(&ilb->lock);
2214 sk = sk_nulls_head(&ilb->head);
2215 st->offset = 0;
2216 goto get_sk;
2217 }
2218 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2219 ++st->num;
2220 ++st->offset;
2221
2222 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2223 struct request_sock *req = cur;
2224
2225 icsk = inet_csk(st->syn_wait_sk);
2226 req = req->dl_next;
2227 while (1) {
2228 while (req) {
2229 if (req->rsk_ops->family == st->family) {
2230 cur = req;
2231 goto out;
2232 }
2233 req = req->dl_next;
2234 }
2235 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2236 break;
2237get_req:
2238 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2239 }
2240 sk = sk_nulls_next(st->syn_wait_sk);
2241 st->state = TCP_SEQ_STATE_LISTENING;
2242 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2243 } else {
2244 icsk = inet_csk(sk);
2245 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2246 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2247 goto start_req;
2248 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2249 sk = sk_nulls_next(sk);
2250 }
2251get_sk:
2252 sk_nulls_for_each_from(sk, node) {
2253 if (!net_eq(sock_net(sk), net))
2254 continue;
2255 if (sk->sk_family == st->family) {
2256 cur = sk;
2257 goto out;
2258 }
2259 icsk = inet_csk(sk);
2260 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2261 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2262start_req:
2263 st->uid = sock_i_uid(sk);
2264 st->syn_wait_sk = sk;
2265 st->state = TCP_SEQ_STATE_OPENREQ;
2266 st->sbucket = 0;
2267 goto get_req;
2268 }
2269 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2270 }
2271 spin_unlock_bh(&ilb->lock);
2272 st->offset = 0;
2273 if (++st->bucket < INET_LHTABLE_SIZE) {
2274 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2275 spin_lock_bh(&ilb->lock);
2276 sk = sk_nulls_head(&ilb->head);
2277 goto get_sk;
2278 }
2279 cur = NULL;
2280out:
2281 return cur;
2282}
2283
2284static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2285{
2286 struct tcp_iter_state *st = seq->private;
2287 void *rc;
2288
2289 st->bucket = 0;
2290 st->offset = 0;
2291 rc = listening_get_next(seq, NULL);
2292
2293 while (rc && *pos) {
2294 rc = listening_get_next(seq, rc);
2295 --*pos;
2296 }
2297 return rc;
2298}
2299
2300static inline bool empty_bucket(const struct tcp_iter_state *st)
2301{
2302 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
2303}
2304
2305/*
2306 * Get first established socket starting from bucket given in st->bucket.
2307 * If st->bucket is zero, the very first socket in the hash is returned.
2308 */
2309static void *established_get_first(struct seq_file *seq)
2310{
2311 struct tcp_iter_state *st = seq->private;
2312 struct net *net = seq_file_net(seq);
2313 void *rc = NULL;
2314
2315 st->offset = 0;
2316 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2317 struct sock *sk;
2318 struct hlist_nulls_node *node;
2319 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2320
2321 /* Lockless fast path for the common case of empty buckets */
2322 if (empty_bucket(st))
2323 continue;
2324
2325 spin_lock_bh(lock);
2326 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2327 if (sk->sk_family != st->family ||
2328 !net_eq(sock_net(sk), net)) {
2329 continue;
2330 }
2331 rc = sk;
2332 goto out;
2333 }
2334 spin_unlock_bh(lock);
2335 }
2336out:
2337 return rc;
2338}
2339
2340static void *established_get_next(struct seq_file *seq, void *cur)
2341{
2342 struct sock *sk = cur;
2343 struct hlist_nulls_node *node;
2344 struct tcp_iter_state *st = seq->private;
2345 struct net *net = seq_file_net(seq);
2346
2347 ++st->num;
2348 ++st->offset;
2349
2350 sk = sk_nulls_next(sk);
2351
2352 sk_nulls_for_each_from(sk, node) {
2353 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2354 return sk;
2355 }
2356
2357 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2358 ++st->bucket;
2359 return established_get_first(seq);
2360}
2361
2362static void *established_get_idx(struct seq_file *seq, loff_t pos)
2363{
2364 struct tcp_iter_state *st = seq->private;
2365 void *rc;
2366
2367 st->bucket = 0;
2368 rc = established_get_first(seq);
2369
2370 while (rc && pos) {
2371 rc = established_get_next(seq, rc);
2372 --pos;
2373 }
2374 return rc;
2375}
2376
2377static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2378{
2379 void *rc;
2380 struct tcp_iter_state *st = seq->private;
2381
2382 st->state = TCP_SEQ_STATE_LISTENING;
2383 rc = listening_get_idx(seq, &pos);
2384
2385 if (!rc) {
2386 st->state = TCP_SEQ_STATE_ESTABLISHED;
2387 rc = established_get_idx(seq, pos);
2388 }
2389
2390 return rc;
2391}
2392
2393static void *tcp_seek_last_pos(struct seq_file *seq)
2394{
2395 struct tcp_iter_state *st = seq->private;
2396 int offset = st->offset;
2397 int orig_num = st->num;
2398 void *rc = NULL;
2399
2400 switch (st->state) {
2401 case TCP_SEQ_STATE_OPENREQ:
2402 case TCP_SEQ_STATE_LISTENING:
2403 if (st->bucket >= INET_LHTABLE_SIZE)
2404 break;
2405 st->state = TCP_SEQ_STATE_LISTENING;
2406 rc = listening_get_next(seq, NULL);
2407 while (offset-- && rc)
2408 rc = listening_get_next(seq, rc);
2409 if (rc)
2410 break;
2411 st->bucket = 0;
2412 st->state = TCP_SEQ_STATE_ESTABLISHED;
2413 /* Fallthrough */
2414 case TCP_SEQ_STATE_ESTABLISHED:
2415 if (st->bucket > tcp_hashinfo.ehash_mask)
2416 break;
2417 rc = established_get_first(seq);
2418 while (offset-- && rc)
2419 rc = established_get_next(seq, rc);
2420 }
2421
2422 st->num = orig_num;
2423
2424 return rc;
2425}
2426
2427static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2428{
2429 struct tcp_iter_state *st = seq->private;
2430 void *rc;
2431
2432 if (*pos && *pos == st->last_pos) {
2433 rc = tcp_seek_last_pos(seq);
2434 if (rc)
2435 goto out;
2436 }
2437
2438 st->state = TCP_SEQ_STATE_LISTENING;
2439 st->num = 0;
2440 st->bucket = 0;
2441 st->offset = 0;
2442 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2443
2444out:
2445 st->last_pos = *pos;
2446 return rc;
2447}
2448
2449static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2450{
2451 struct tcp_iter_state *st = seq->private;
2452 void *rc = NULL;
2453
2454 if (v == SEQ_START_TOKEN) {
2455 rc = tcp_get_idx(seq, 0);
2456 goto out;
2457 }
2458
2459 switch (st->state) {
2460 case TCP_SEQ_STATE_OPENREQ:
2461 case TCP_SEQ_STATE_LISTENING:
2462 rc = listening_get_next(seq, v);
2463 if (!rc) {
2464 st->state = TCP_SEQ_STATE_ESTABLISHED;
2465 st->bucket = 0;
2466 st->offset = 0;
2467 rc = established_get_first(seq);
2468 }
2469 break;
2470 case TCP_SEQ_STATE_ESTABLISHED:
2471 rc = established_get_next(seq, v);
2472 break;
2473 }
2474out:
2475 ++*pos;
2476 st->last_pos = *pos;
2477 return rc;
2478}
2479
2480static void tcp_seq_stop(struct seq_file *seq, void *v)
2481{
2482 struct tcp_iter_state *st = seq->private;
2483
2484 switch (st->state) {
2485 case TCP_SEQ_STATE_OPENREQ:
2486 if (v) {
2487 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2488 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2489 }
2490 case TCP_SEQ_STATE_LISTENING:
2491 if (v != SEQ_START_TOKEN)
2492 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2493 break;
2494 case TCP_SEQ_STATE_ESTABLISHED:
2495 if (v)
2496 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2497 break;
2498 }
2499}
2500
2501int tcp_seq_open(struct inode *inode, struct file *file)
2502{
2503 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2504 struct tcp_iter_state *s;
2505 int err;
2506
2507 err = seq_open_net(inode, file, &afinfo->seq_ops,
2508 sizeof(struct tcp_iter_state));
2509 if (err < 0)
2510 return err;
2511
2512 s = ((struct seq_file *)file->private_data)->private;
2513 s->family = afinfo->family;
2514 s->last_pos = 0;
2515 return 0;
2516}
2517EXPORT_SYMBOL(tcp_seq_open);
2518
2519int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2520{
2521 int rc = 0;
2522 struct proc_dir_entry *p;
2523
2524 afinfo->seq_ops.start = tcp_seq_start;
2525 afinfo->seq_ops.next = tcp_seq_next;
2526 afinfo->seq_ops.stop = tcp_seq_stop;
2527
2528 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2529 afinfo->seq_fops, afinfo);
2530 if (!p)
2531 rc = -ENOMEM;
2532 return rc;
2533}
2534EXPORT_SYMBOL(tcp_proc_register);
2535
2536void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2537{
2538 remove_proc_entry(afinfo->name, net->proc_net);
2539}
2540EXPORT_SYMBOL(tcp_proc_unregister);
2541
2542static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2543 struct seq_file *f, int i, kuid_t uid)
2544{
2545 const struct inet_request_sock *ireq = inet_rsk(req);
2546 long delta = req->expires - jiffies;
2547
2548 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2549 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2550 i,
2551 ireq->ir_loc_addr,
2552 ntohs(inet_sk(sk)->inet_sport),
2553 ireq->ir_rmt_addr,
2554 ntohs(ireq->ir_rmt_port),
2555 TCP_SYN_RECV,
2556 0, 0, /* could print option size, but that is af dependent. */
2557 1, /* timers active (only the expire timer) */
2558 jiffies_delta_to_clock_t(delta),
2559 req->num_timeout,
2560 from_kuid_munged(seq_user_ns(f), uid),
2561 0, /* non standard timer */
2562 0, /* open_requests have no inode */
2563 atomic_read(&sk->sk_refcnt),
2564 req);
2565}
2566
2567static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2568{
2569 int timer_active;
2570 unsigned long timer_expires;
2571 const struct tcp_sock *tp = tcp_sk(sk);
2572 const struct inet_connection_sock *icsk = inet_csk(sk);
2573 const struct inet_sock *inet = inet_sk(sk);
2574 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2575 __be32 dest = inet->inet_daddr;
2576 __be32 src = inet->inet_rcv_saddr;
2577 __u16 destp = ntohs(inet->inet_dport);
2578 __u16 srcp = ntohs(inet->inet_sport);
2579 int rx_queue;
2580
2581 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2582 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2583 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2584 timer_active = 1;
2585 timer_expires = icsk->icsk_timeout;
2586 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2587 timer_active = 4;
2588 timer_expires = icsk->icsk_timeout;
2589 } else if (timer_pending(&sk->sk_timer)) {
2590 timer_active = 2;
2591 timer_expires = sk->sk_timer.expires;
2592 } else {
2593 timer_active = 0;
2594 timer_expires = jiffies;
2595 }
2596
2597 if (sk->sk_state == TCP_LISTEN)
2598 rx_queue = sk->sk_ack_backlog;
2599 else
2600 /*
2601 * because we dont lock socket, we might find a transient negative value
2602 */
2603 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2604
2605 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2606 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2607 i, src, srcp, dest, destp, sk->sk_state,
2608 tp->write_seq - tp->snd_una,
2609 rx_queue,
2610 timer_active,
2611 jiffies_delta_to_clock_t(timer_expires - jiffies),
2612 icsk->icsk_retransmits,
2613 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2614 icsk->icsk_probes_out,
2615 sock_i_ino(sk),
2616 atomic_read(&sk->sk_refcnt), sk,
2617 jiffies_to_clock_t(icsk->icsk_rto),
2618 jiffies_to_clock_t(icsk->icsk_ack.ato),
2619 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2620 tp->snd_cwnd,
2621 sk->sk_state == TCP_LISTEN ?
2622 (fastopenq ? fastopenq->max_qlen : 0) :
2623 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2624}
2625
2626static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2627 struct seq_file *f, int i)
2628{
2629 __be32 dest, src;
2630 __u16 destp, srcp;
2631 s32 delta = tw->tw_ttd - inet_tw_time_stamp();
2632
2633 dest = tw->tw_daddr;
2634 src = tw->tw_rcv_saddr;
2635 destp = ntohs(tw->tw_dport);
2636 srcp = ntohs(tw->tw_sport);
2637
2638 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2639 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2640 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2641 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2642 atomic_read(&tw->tw_refcnt), tw);
2643}
2644
2645#define TMPSZ 150
2646
2647static int tcp4_seq_show(struct seq_file *seq, void *v)
2648{
2649 struct tcp_iter_state *st;
2650 struct sock *sk = v;
2651
2652 seq_setwidth(seq, TMPSZ - 1);
2653 if (v == SEQ_START_TOKEN) {
2654 seq_puts(seq, " sl local_address rem_address st tx_queue "
2655 "rx_queue tr tm->when retrnsmt uid timeout "
2656 "inode");
2657 goto out;
2658 }
2659 st = seq->private;
2660
2661 switch (st->state) {
2662 case TCP_SEQ_STATE_LISTENING:
2663 case TCP_SEQ_STATE_ESTABLISHED:
2664 if (sk->sk_state == TCP_TIME_WAIT)
2665 get_timewait4_sock(v, seq, st->num);
2666 else
2667 get_tcp4_sock(v, seq, st->num);
2668 break;
2669 case TCP_SEQ_STATE_OPENREQ:
2670 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid);
2671 break;
2672 }
2673out:
2674 seq_pad(seq, '\n');
2675 return 0;
2676}
2677
2678static const struct file_operations tcp_afinfo_seq_fops = {
2679 .owner = THIS_MODULE,
2680 .open = tcp_seq_open,
2681 .read = seq_read,
2682 .llseek = seq_lseek,
2683 .release = seq_release_net
2684};
2685
2686static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2687 .name = "tcp",
2688 .family = AF_INET,
2689 .seq_fops = &tcp_afinfo_seq_fops,
2690 .seq_ops = {
2691 .show = tcp4_seq_show,
2692 },
2693};
2694
2695static int __net_init tcp4_proc_init_net(struct net *net)
2696{
2697 return tcp_proc_register(net, &tcp4_seq_afinfo);
2698}
2699
2700static void __net_exit tcp4_proc_exit_net(struct net *net)
2701{
2702 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2703}
2704
2705static struct pernet_operations tcp4_net_ops = {
2706 .init = tcp4_proc_init_net,
2707 .exit = tcp4_proc_exit_net,
2708};
2709
2710int __init tcp4_proc_init(void)
2711{
2712 return register_pernet_subsys(&tcp4_net_ops);
2713}
2714
2715void tcp4_proc_exit(void)
2716{
2717 unregister_pernet_subsys(&tcp4_net_ops);
2718}
2719#endif /* CONFIG_PROC_FS */
2720
2721struct proto tcp_prot = {
2722 .name = "TCP",
2723 .owner = THIS_MODULE,
2724 .close = tcp_close,
2725 .connect = tcp_v4_connect,
2726 .disconnect = tcp_disconnect,
2727 .accept = inet_csk_accept,
2728 .ioctl = tcp_ioctl,
2729 .init = tcp_v4_init_sock,
2730 .destroy = tcp_v4_destroy_sock,
2731 .shutdown = tcp_shutdown,
2732 .setsockopt = tcp_setsockopt,
2733 .getsockopt = tcp_getsockopt,
2734 .recvmsg = tcp_recvmsg,
2735 .sendmsg = tcp_sendmsg,
2736 .sendpage = tcp_sendpage,
2737 .backlog_rcv = tcp_v4_do_rcv,
2738 .release_cb = tcp_release_cb,
2739 .mtu_reduced = tcp_v4_mtu_reduced,
2740 .hash = inet_hash,
2741 .unhash = inet_unhash,
2742 .get_port = inet_csk_get_port,
2743 .enter_memory_pressure = tcp_enter_memory_pressure,
2744 .stream_memory_free = tcp_stream_memory_free,
2745 .sockets_allocated = &tcp_sockets_allocated,
2746 .orphan_count = &tcp_orphan_count,
2747 .memory_allocated = &tcp_memory_allocated,
2748 .memory_pressure = &tcp_memory_pressure,
2749 .sysctl_mem = sysctl_tcp_mem,
2750 .sysctl_wmem = sysctl_tcp_wmem,
2751 .sysctl_rmem = sysctl_tcp_rmem,
2752 .max_header = MAX_TCP_HEADER,
2753 .obj_size = sizeof(struct tcp_sock),
2754 .slab_flags = SLAB_DESTROY_BY_RCU,
2755 .twsk_prot = &tcp_timewait_sock_ops,
2756 .rsk_prot = &tcp_request_sock_ops,
2757 .h.hashinfo = &tcp_hashinfo,
2758 .no_autobind = true,
2759#ifdef CONFIG_COMPAT
2760 .compat_setsockopt = compat_tcp_setsockopt,
2761 .compat_getsockopt = compat_tcp_getsockopt,
2762#endif
2763#ifdef CONFIG_MEMCG_KMEM
2764 .init_cgroup = tcp_init_cgroup,
2765 .destroy_cgroup = tcp_destroy_cgroup,
2766 .proto_cgroup = tcp_proto_cgroup,
2767#endif
2768};
2769EXPORT_SYMBOL(tcp_prot);
2770
2771static int __net_init tcp_sk_init(struct net *net)
2772{
2773 net->ipv4.sysctl_tcp_ecn = 2;
2774 return 0;
2775}
2776
2777static void __net_exit tcp_sk_exit(struct net *net)
2778{
2779}
2780
2781static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2782{
2783 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2784}
2785
2786static struct pernet_operations __net_initdata tcp_sk_ops = {
2787 .init = tcp_sk_init,
2788 .exit = tcp_sk_exit,
2789 .exit_batch = tcp_sk_exit_batch,
2790};
2791
2792void __init tcp_v4_init(void)
2793{
2794 inet_hashinfo_init(&tcp_hashinfo);
2795 if (register_pernet_subsys(&tcp_sk_ops))
2796 panic("Failed to create the TCP control socket.\n");
2797}