Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * IPv4 specific functions
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 */
18
19/*
20 * Changes:
21 * David S. Miller : New socket lookup architecture.
22 * This code is dedicated to John Dyson.
23 * David S. Miller : Change semantics of established hash,
24 * half is devoted to TIME_WAIT sockets
25 * and the rest go in the other half.
26 * Andi Kleen : Add support for syncookies and fixed
27 * some bugs: ip options weren't passed to
28 * the TCP layer, missed a check for an
29 * ACK bit.
30 * Andi Kleen : Implemented fast path mtu discovery.
31 * Fixed many serious bugs in the
32 * request_sock handling and moved
33 * most of it into the af independent code.
34 * Added tail drop and some other bugfixes.
35 * Added new listen semantics.
36 * Mike McLagan : Routing by source
37 * Juan Jose Ciarlante: ip_dynaddr bits
38 * Andi Kleen: various fixes.
39 * Vitaly E. Lavrov : Transparent proxy revived after year
40 * coma.
41 * Andi Kleen : Fix new listen.
42 * Andi Kleen : Fix accept error reporting.
43 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
44 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
45 * a single port at the same time.
46 */
47
48#define pr_fmt(fmt) "TCP: " fmt
49
50#include <linux/bottom_half.h>
51#include <linux/types.h>
52#include <linux/fcntl.h>
53#include <linux/module.h>
54#include <linux/random.h>
55#include <linux/cache.h>
56#include <linux/jhash.h>
57#include <linux/init.h>
58#include <linux/times.h>
59#include <linux/slab.h>
60
61#include <net/net_namespace.h>
62#include <net/icmp.h>
63#include <net/inet_hashtables.h>
64#include <net/tcp.h>
65#include <net/transp_v6.h>
66#include <net/ipv6.h>
67#include <net/inet_common.h>
68#include <net/timewait_sock.h>
69#include <net/xfrm.h>
70#include <net/secure_seq.h>
71#include <net/busy_poll.h>
72
73#include <linux/inet.h>
74#include <linux/ipv6.h>
75#include <linux/stddef.h>
76#include <linux/proc_fs.h>
77#include <linux/seq_file.h>
78#include <linux/inetdevice.h>
79#include <linux/btf_ids.h>
80
81#include <crypto/hash.h>
82#include <linux/scatterlist.h>
83
84#include <trace/events/tcp.h>
85
86#ifdef CONFIG_TCP_MD5SIG
87static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
88 __be32 daddr, __be32 saddr, const struct tcphdr *th);
89#endif
90
91struct inet_hashinfo tcp_hashinfo;
92EXPORT_SYMBOL(tcp_hashinfo);
93
94static u32 tcp_v4_init_seq(const struct sk_buff *skb)
95{
96 return secure_tcp_seq(ip_hdr(skb)->daddr,
97 ip_hdr(skb)->saddr,
98 tcp_hdr(skb)->dest,
99 tcp_hdr(skb)->source);
100}
101
102static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
103{
104 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
105}
106
107int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
108{
109 const struct inet_timewait_sock *tw = inet_twsk(sktw);
110 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
111 struct tcp_sock *tp = tcp_sk(sk);
112 int reuse = sock_net(sk)->ipv4.sysctl_tcp_tw_reuse;
113
114 if (reuse == 2) {
115 /* Still does not detect *everything* that goes through
116 * lo, since we require a loopback src or dst address
117 * or direct binding to 'lo' interface.
118 */
119 bool loopback = false;
120 if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
121 loopback = true;
122#if IS_ENABLED(CONFIG_IPV6)
123 if (tw->tw_family == AF_INET6) {
124 if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
125 ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
126 ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
127 ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
128 loopback = true;
129 } else
130#endif
131 {
132 if (ipv4_is_loopback(tw->tw_daddr) ||
133 ipv4_is_loopback(tw->tw_rcv_saddr))
134 loopback = true;
135 }
136 if (!loopback)
137 reuse = 0;
138 }
139
140 /* With PAWS, it is safe from the viewpoint
141 of data integrity. Even without PAWS it is safe provided sequence
142 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
143
144 Actually, the idea is close to VJ's one, only timestamp cache is
145 held not per host, but per port pair and TW bucket is used as state
146 holder.
147
148 If TW bucket has been already destroyed we fall back to VJ's scheme
149 and use initial timestamp retrieved from peer table.
150 */
151 if (tcptw->tw_ts_recent_stamp &&
152 (!twp || (reuse && time_after32(ktime_get_seconds(),
153 tcptw->tw_ts_recent_stamp)))) {
154 /* In case of repair and re-using TIME-WAIT sockets we still
155 * want to be sure that it is safe as above but honor the
156 * sequence numbers and time stamps set as part of the repair
157 * process.
158 *
159 * Without this check re-using a TIME-WAIT socket with TCP
160 * repair would accumulate a -1 on the repair assigned
161 * sequence number. The first time it is reused the sequence
162 * is -1, the second time -2, etc. This fixes that issue
163 * without appearing to create any others.
164 */
165 if (likely(!tp->repair)) {
166 u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
167
168 if (!seq)
169 seq = 1;
170 WRITE_ONCE(tp->write_seq, seq);
171 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
172 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
173 }
174 sock_hold(sktw);
175 return 1;
176 }
177
178 return 0;
179}
180EXPORT_SYMBOL_GPL(tcp_twsk_unique);
181
182static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
183 int addr_len)
184{
185 /* This check is replicated from tcp_v4_connect() and intended to
186 * prevent BPF program called below from accessing bytes that are out
187 * of the bound specified by user in addr_len.
188 */
189 if (addr_len < sizeof(struct sockaddr_in))
190 return -EINVAL;
191
192 sock_owned_by_me(sk);
193
194 return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr);
195}
196
197/* This will initiate an outgoing connection. */
198int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
199{
200 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
201 struct inet_sock *inet = inet_sk(sk);
202 struct tcp_sock *tp = tcp_sk(sk);
203 __be16 orig_sport, orig_dport;
204 __be32 daddr, nexthop;
205 struct flowi4 *fl4;
206 struct rtable *rt;
207 int err;
208 struct ip_options_rcu *inet_opt;
209 struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
210
211 if (addr_len < sizeof(struct sockaddr_in))
212 return -EINVAL;
213
214 if (usin->sin_family != AF_INET)
215 return -EAFNOSUPPORT;
216
217 nexthop = daddr = usin->sin_addr.s_addr;
218 inet_opt = rcu_dereference_protected(inet->inet_opt,
219 lockdep_sock_is_held(sk));
220 if (inet_opt && inet_opt->opt.srr) {
221 if (!daddr)
222 return -EINVAL;
223 nexthop = inet_opt->opt.faddr;
224 }
225
226 orig_sport = inet->inet_sport;
227 orig_dport = usin->sin_port;
228 fl4 = &inet->cork.fl.u.ip4;
229 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
230 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
231 IPPROTO_TCP,
232 orig_sport, orig_dport, sk);
233 if (IS_ERR(rt)) {
234 err = PTR_ERR(rt);
235 if (err == -ENETUNREACH)
236 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
237 return err;
238 }
239
240 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
241 ip_rt_put(rt);
242 return -ENETUNREACH;
243 }
244
245 if (!inet_opt || !inet_opt->opt.srr)
246 daddr = fl4->daddr;
247
248 if (!inet->inet_saddr)
249 inet->inet_saddr = fl4->saddr;
250 sk_rcv_saddr_set(sk, inet->inet_saddr);
251
252 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
253 /* Reset inherited state */
254 tp->rx_opt.ts_recent = 0;
255 tp->rx_opt.ts_recent_stamp = 0;
256 if (likely(!tp->repair))
257 WRITE_ONCE(tp->write_seq, 0);
258 }
259
260 inet->inet_dport = usin->sin_port;
261 sk_daddr_set(sk, daddr);
262
263 inet_csk(sk)->icsk_ext_hdr_len = 0;
264 if (inet_opt)
265 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
266
267 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
268
269 /* Socket identity is still unknown (sport may be zero).
270 * However we set state to SYN-SENT and not releasing socket
271 * lock select source port, enter ourselves into the hash tables and
272 * complete initialization after this.
273 */
274 tcp_set_state(sk, TCP_SYN_SENT);
275 err = inet_hash_connect(tcp_death_row, sk);
276 if (err)
277 goto failure;
278
279 sk_set_txhash(sk);
280
281 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
282 inet->inet_sport, inet->inet_dport, sk);
283 if (IS_ERR(rt)) {
284 err = PTR_ERR(rt);
285 rt = NULL;
286 goto failure;
287 }
288 /* OK, now commit destination to socket. */
289 sk->sk_gso_type = SKB_GSO_TCPV4;
290 sk_setup_caps(sk, &rt->dst);
291 rt = NULL;
292
293 if (likely(!tp->repair)) {
294 if (!tp->write_seq)
295 WRITE_ONCE(tp->write_seq,
296 secure_tcp_seq(inet->inet_saddr,
297 inet->inet_daddr,
298 inet->inet_sport,
299 usin->sin_port));
300 tp->tsoffset = secure_tcp_ts_off(sock_net(sk),
301 inet->inet_saddr,
302 inet->inet_daddr);
303 }
304
305 inet->inet_id = prandom_u32();
306
307 if (tcp_fastopen_defer_connect(sk, &err))
308 return err;
309 if (err)
310 goto failure;
311
312 err = tcp_connect(sk);
313
314 if (err)
315 goto failure;
316
317 return 0;
318
319failure:
320 /*
321 * This unhashes the socket and releases the local port,
322 * if necessary.
323 */
324 tcp_set_state(sk, TCP_CLOSE);
325 ip_rt_put(rt);
326 sk->sk_route_caps = 0;
327 inet->inet_dport = 0;
328 return err;
329}
330EXPORT_SYMBOL(tcp_v4_connect);
331
332/*
333 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
334 * It can be called through tcp_release_cb() if socket was owned by user
335 * at the time tcp_v4_err() was called to handle ICMP message.
336 */
337void tcp_v4_mtu_reduced(struct sock *sk)
338{
339 struct inet_sock *inet = inet_sk(sk);
340 struct dst_entry *dst;
341 u32 mtu;
342
343 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
344 return;
345 mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
346 dst = inet_csk_update_pmtu(sk, mtu);
347 if (!dst)
348 return;
349
350 /* Something is about to be wrong... Remember soft error
351 * for the case, if this connection will not able to recover.
352 */
353 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
354 sk->sk_err_soft = EMSGSIZE;
355
356 mtu = dst_mtu(dst);
357
358 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
359 ip_sk_accept_pmtu(sk) &&
360 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
361 tcp_sync_mss(sk, mtu);
362
363 /* Resend the TCP packet because it's
364 * clear that the old packet has been
365 * dropped. This is the new "fast" path mtu
366 * discovery.
367 */
368 tcp_simple_retransmit(sk);
369 } /* else let the usual retransmit timer handle it */
370}
371EXPORT_SYMBOL(tcp_v4_mtu_reduced);
372
373static void do_redirect(struct sk_buff *skb, struct sock *sk)
374{
375 struct dst_entry *dst = __sk_dst_check(sk, 0);
376
377 if (dst)
378 dst->ops->redirect(dst, sk, skb);
379}
380
381
382/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
383void tcp_req_err(struct sock *sk, u32 seq, bool abort)
384{
385 struct request_sock *req = inet_reqsk(sk);
386 struct net *net = sock_net(sk);
387
388 /* ICMPs are not backlogged, hence we cannot get
389 * an established socket here.
390 */
391 if (seq != tcp_rsk(req)->snt_isn) {
392 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
393 } else if (abort) {
394 /*
395 * Still in SYN_RECV, just remove it silently.
396 * There is no good way to pass the error to the newly
397 * created socket, and POSIX does not want network
398 * errors returned from accept().
399 */
400 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
401 tcp_listendrop(req->rsk_listener);
402 }
403 reqsk_put(req);
404}
405EXPORT_SYMBOL(tcp_req_err);
406
407/* TCP-LD (RFC 6069) logic */
408void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
409{
410 struct inet_connection_sock *icsk = inet_csk(sk);
411 struct tcp_sock *tp = tcp_sk(sk);
412 struct sk_buff *skb;
413 s32 remaining;
414 u32 delta_us;
415
416 if (sock_owned_by_user(sk))
417 return;
418
419 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
420 !icsk->icsk_backoff)
421 return;
422
423 skb = tcp_rtx_queue_head(sk);
424 if (WARN_ON_ONCE(!skb))
425 return;
426
427 icsk->icsk_backoff--;
428 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
429 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
430
431 tcp_mstamp_refresh(tp);
432 delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
433 remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
434
435 if (remaining > 0) {
436 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
437 remaining, TCP_RTO_MAX);
438 } else {
439 /* RTO revert clocked out retransmission.
440 * Will retransmit now.
441 */
442 tcp_retransmit_timer(sk);
443 }
444}
445EXPORT_SYMBOL(tcp_ld_RTO_revert);
446
447/*
448 * This routine is called by the ICMP module when it gets some
449 * sort of error condition. If err < 0 then the socket should
450 * be closed and the error returned to the user. If err > 0
451 * it's just the icmp type << 8 | icmp code. After adjustment
452 * header points to the first 8 bytes of the tcp header. We need
453 * to find the appropriate port.
454 *
455 * The locking strategy used here is very "optimistic". When
456 * someone else accesses the socket the ICMP is just dropped
457 * and for some paths there is no check at all.
458 * A more general error queue to queue errors for later handling
459 * is probably better.
460 *
461 */
462
463int tcp_v4_err(struct sk_buff *skb, u32 info)
464{
465 const struct iphdr *iph = (const struct iphdr *)skb->data;
466 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
467 struct tcp_sock *tp;
468 struct inet_sock *inet;
469 const int type = icmp_hdr(skb)->type;
470 const int code = icmp_hdr(skb)->code;
471 struct sock *sk;
472 struct request_sock *fastopen;
473 u32 seq, snd_una;
474 int err;
475 struct net *net = dev_net(skb->dev);
476
477 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
478 th->dest, iph->saddr, ntohs(th->source),
479 inet_iif(skb), 0);
480 if (!sk) {
481 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
482 return -ENOENT;
483 }
484 if (sk->sk_state == TCP_TIME_WAIT) {
485 inet_twsk_put(inet_twsk(sk));
486 return 0;
487 }
488 seq = ntohl(th->seq);
489 if (sk->sk_state == TCP_NEW_SYN_RECV) {
490 tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
491 type == ICMP_TIME_EXCEEDED ||
492 (type == ICMP_DEST_UNREACH &&
493 (code == ICMP_NET_UNREACH ||
494 code == ICMP_HOST_UNREACH)));
495 return 0;
496 }
497
498 bh_lock_sock(sk);
499 /* If too many ICMPs get dropped on busy
500 * servers this needs to be solved differently.
501 * We do take care of PMTU discovery (RFC1191) special case :
502 * we can receive locally generated ICMP messages while socket is held.
503 */
504 if (sock_owned_by_user(sk)) {
505 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
506 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
507 }
508 if (sk->sk_state == TCP_CLOSE)
509 goto out;
510
511 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
512 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
513 goto out;
514 }
515
516 tp = tcp_sk(sk);
517 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
518 fastopen = rcu_dereference(tp->fastopen_rsk);
519 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
520 if (sk->sk_state != TCP_LISTEN &&
521 !between(seq, snd_una, tp->snd_nxt)) {
522 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
523 goto out;
524 }
525
526 switch (type) {
527 case ICMP_REDIRECT:
528 if (!sock_owned_by_user(sk))
529 do_redirect(skb, sk);
530 goto out;
531 case ICMP_SOURCE_QUENCH:
532 /* Just silently ignore these. */
533 goto out;
534 case ICMP_PARAMETERPROB:
535 err = EPROTO;
536 break;
537 case ICMP_DEST_UNREACH:
538 if (code > NR_ICMP_UNREACH)
539 goto out;
540
541 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
542 /* We are not interested in TCP_LISTEN and open_requests
543 * (SYN-ACKs send out by Linux are always <576bytes so
544 * they should go through unfragmented).
545 */
546 if (sk->sk_state == TCP_LISTEN)
547 goto out;
548
549 WRITE_ONCE(tp->mtu_info, info);
550 if (!sock_owned_by_user(sk)) {
551 tcp_v4_mtu_reduced(sk);
552 } else {
553 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
554 sock_hold(sk);
555 }
556 goto out;
557 }
558
559 err = icmp_err_convert[code].errno;
560 /* check if this ICMP message allows revert of backoff.
561 * (see RFC 6069)
562 */
563 if (!fastopen &&
564 (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
565 tcp_ld_RTO_revert(sk, seq);
566 break;
567 case ICMP_TIME_EXCEEDED:
568 err = EHOSTUNREACH;
569 break;
570 default:
571 goto out;
572 }
573
574 switch (sk->sk_state) {
575 case TCP_SYN_SENT:
576 case TCP_SYN_RECV:
577 /* Only in fast or simultaneous open. If a fast open socket is
578 * already accepted it is treated as a connected one below.
579 */
580 if (fastopen && !fastopen->sk)
581 break;
582
583 ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
584
585 if (!sock_owned_by_user(sk)) {
586 sk->sk_err = err;
587
588 sk_error_report(sk);
589
590 tcp_done(sk);
591 } else {
592 sk->sk_err_soft = err;
593 }
594 goto out;
595 }
596
597 /* If we've already connected we will keep trying
598 * until we time out, or the user gives up.
599 *
600 * rfc1122 4.2.3.9 allows to consider as hard errors
601 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
602 * but it is obsoleted by pmtu discovery).
603 *
604 * Note, that in modern internet, where routing is unreliable
605 * and in each dark corner broken firewalls sit, sending random
606 * errors ordered by their masters even this two messages finally lose
607 * their original sense (even Linux sends invalid PORT_UNREACHs)
608 *
609 * Now we are in compliance with RFCs.
610 * --ANK (980905)
611 */
612
613 inet = inet_sk(sk);
614 if (!sock_owned_by_user(sk) && inet->recverr) {
615 sk->sk_err = err;
616 sk_error_report(sk);
617 } else { /* Only an error on timeout */
618 sk->sk_err_soft = err;
619 }
620
621out:
622 bh_unlock_sock(sk);
623 sock_put(sk);
624 return 0;
625}
626
627void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
628{
629 struct tcphdr *th = tcp_hdr(skb);
630
631 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
632 skb->csum_start = skb_transport_header(skb) - skb->head;
633 skb->csum_offset = offsetof(struct tcphdr, check);
634}
635
636/* This routine computes an IPv4 TCP checksum. */
637void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
638{
639 const struct inet_sock *inet = inet_sk(sk);
640
641 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
642}
643EXPORT_SYMBOL(tcp_v4_send_check);
644
645/*
646 * This routine will send an RST to the other tcp.
647 *
648 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
649 * for reset.
650 * Answer: if a packet caused RST, it is not for a socket
651 * existing in our system, if it is matched to a socket,
652 * it is just duplicate segment or bug in other side's TCP.
653 * So that we build reply only basing on parameters
654 * arrived with segment.
655 * Exception: precedence violation. We do not implement it in any case.
656 */
657
658#ifdef CONFIG_TCP_MD5SIG
659#define OPTION_BYTES TCPOLEN_MD5SIG_ALIGNED
660#else
661#define OPTION_BYTES sizeof(__be32)
662#endif
663
664static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
665{
666 const struct tcphdr *th = tcp_hdr(skb);
667 struct {
668 struct tcphdr th;
669 __be32 opt[OPTION_BYTES / sizeof(__be32)];
670 } rep;
671 struct ip_reply_arg arg;
672#ifdef CONFIG_TCP_MD5SIG
673 struct tcp_md5sig_key *key = NULL;
674 const __u8 *hash_location = NULL;
675 unsigned char newhash[16];
676 int genhash;
677 struct sock *sk1 = NULL;
678#endif
679 u64 transmit_time = 0;
680 struct sock *ctl_sk;
681 struct net *net;
682
683 /* Never send a reset in response to a reset. */
684 if (th->rst)
685 return;
686
687 /* If sk not NULL, it means we did a successful lookup and incoming
688 * route had to be correct. prequeue might have dropped our dst.
689 */
690 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
691 return;
692
693 /* Swap the send and the receive. */
694 memset(&rep, 0, sizeof(rep));
695 rep.th.dest = th->source;
696 rep.th.source = th->dest;
697 rep.th.doff = sizeof(struct tcphdr) / 4;
698 rep.th.rst = 1;
699
700 if (th->ack) {
701 rep.th.seq = th->ack_seq;
702 } else {
703 rep.th.ack = 1;
704 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
705 skb->len - (th->doff << 2));
706 }
707
708 memset(&arg, 0, sizeof(arg));
709 arg.iov[0].iov_base = (unsigned char *)&rep;
710 arg.iov[0].iov_len = sizeof(rep.th);
711
712 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
713#ifdef CONFIG_TCP_MD5SIG
714 rcu_read_lock();
715 hash_location = tcp_parse_md5sig_option(th);
716 if (sk && sk_fullsock(sk)) {
717 const union tcp_md5_addr *addr;
718 int l3index;
719
720 /* sdif set, means packet ingressed via a device
721 * in an L3 domain and inet_iif is set to it.
722 */
723 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
724 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
725 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
726 } else if (hash_location) {
727 const union tcp_md5_addr *addr;
728 int sdif = tcp_v4_sdif(skb);
729 int dif = inet_iif(skb);
730 int l3index;
731
732 /*
733 * active side is lost. Try to find listening socket through
734 * source port, and then find md5 key through listening socket.
735 * we are not loose security here:
736 * Incoming packet is checked with md5 hash with finding key,
737 * no RST generated if md5 hash doesn't match.
738 */
739 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0,
740 ip_hdr(skb)->saddr,
741 th->source, ip_hdr(skb)->daddr,
742 ntohs(th->source), dif, sdif);
743 /* don't send rst if it can't find key */
744 if (!sk1)
745 goto out;
746
747 /* sdif set, means packet ingressed via a device
748 * in an L3 domain and dif is set to it.
749 */
750 l3index = sdif ? dif : 0;
751 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
752 key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
753 if (!key)
754 goto out;
755
756
757 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
758 if (genhash || memcmp(hash_location, newhash, 16) != 0)
759 goto out;
760
761 }
762
763 if (key) {
764 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
765 (TCPOPT_NOP << 16) |
766 (TCPOPT_MD5SIG << 8) |
767 TCPOLEN_MD5SIG);
768 /* Update length and the length the header thinks exists */
769 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
770 rep.th.doff = arg.iov[0].iov_len / 4;
771
772 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
773 key, ip_hdr(skb)->saddr,
774 ip_hdr(skb)->daddr, &rep.th);
775 }
776#endif
777 /* Can't co-exist with TCPMD5, hence check rep.opt[0] */
778 if (rep.opt[0] == 0) {
779 __be32 mrst = mptcp_reset_option(skb);
780
781 if (mrst) {
782 rep.opt[0] = mrst;
783 arg.iov[0].iov_len += sizeof(mrst);
784 rep.th.doff = arg.iov[0].iov_len / 4;
785 }
786 }
787
788 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
789 ip_hdr(skb)->saddr, /* XXX */
790 arg.iov[0].iov_len, IPPROTO_TCP, 0);
791 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
792 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
793
794 /* When socket is gone, all binding information is lost.
795 * routing might fail in this case. No choice here, if we choose to force
796 * input interface, we will misroute in case of asymmetric route.
797 */
798 if (sk) {
799 arg.bound_dev_if = sk->sk_bound_dev_if;
800 if (sk_fullsock(sk))
801 trace_tcp_send_reset(sk, skb);
802 }
803
804 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
805 offsetof(struct inet_timewait_sock, tw_bound_dev_if));
806
807 arg.tos = ip_hdr(skb)->tos;
808 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
809 local_bh_disable();
810 ctl_sk = this_cpu_read(*net->ipv4.tcp_sk);
811 if (sk) {
812 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
813 inet_twsk(sk)->tw_mark : sk->sk_mark;
814 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
815 inet_twsk(sk)->tw_priority : sk->sk_priority;
816 transmit_time = tcp_transmit_time(sk);
817 }
818 ip_send_unicast_reply(ctl_sk,
819 skb, &TCP_SKB_CB(skb)->header.h4.opt,
820 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
821 &arg, arg.iov[0].iov_len,
822 transmit_time);
823
824 ctl_sk->sk_mark = 0;
825 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
826 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
827 local_bh_enable();
828
829#ifdef CONFIG_TCP_MD5SIG
830out:
831 rcu_read_unlock();
832#endif
833}
834
835/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
836 outside socket context is ugly, certainly. What can I do?
837 */
838
839static void tcp_v4_send_ack(const struct sock *sk,
840 struct sk_buff *skb, u32 seq, u32 ack,
841 u32 win, u32 tsval, u32 tsecr, int oif,
842 struct tcp_md5sig_key *key,
843 int reply_flags, u8 tos)
844{
845 const struct tcphdr *th = tcp_hdr(skb);
846 struct {
847 struct tcphdr th;
848 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
849#ifdef CONFIG_TCP_MD5SIG
850 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
851#endif
852 ];
853 } rep;
854 struct net *net = sock_net(sk);
855 struct ip_reply_arg arg;
856 struct sock *ctl_sk;
857 u64 transmit_time;
858
859 memset(&rep.th, 0, sizeof(struct tcphdr));
860 memset(&arg, 0, sizeof(arg));
861
862 arg.iov[0].iov_base = (unsigned char *)&rep;
863 arg.iov[0].iov_len = sizeof(rep.th);
864 if (tsecr) {
865 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
866 (TCPOPT_TIMESTAMP << 8) |
867 TCPOLEN_TIMESTAMP);
868 rep.opt[1] = htonl(tsval);
869 rep.opt[2] = htonl(tsecr);
870 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
871 }
872
873 /* Swap the send and the receive. */
874 rep.th.dest = th->source;
875 rep.th.source = th->dest;
876 rep.th.doff = arg.iov[0].iov_len / 4;
877 rep.th.seq = htonl(seq);
878 rep.th.ack_seq = htonl(ack);
879 rep.th.ack = 1;
880 rep.th.window = htons(win);
881
882#ifdef CONFIG_TCP_MD5SIG
883 if (key) {
884 int offset = (tsecr) ? 3 : 0;
885
886 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
887 (TCPOPT_NOP << 16) |
888 (TCPOPT_MD5SIG << 8) |
889 TCPOLEN_MD5SIG);
890 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
891 rep.th.doff = arg.iov[0].iov_len/4;
892
893 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
894 key, ip_hdr(skb)->saddr,
895 ip_hdr(skb)->daddr, &rep.th);
896 }
897#endif
898 arg.flags = reply_flags;
899 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
900 ip_hdr(skb)->saddr, /* XXX */
901 arg.iov[0].iov_len, IPPROTO_TCP, 0);
902 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
903 if (oif)
904 arg.bound_dev_if = oif;
905 arg.tos = tos;
906 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
907 local_bh_disable();
908 ctl_sk = this_cpu_read(*net->ipv4.tcp_sk);
909 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
910 inet_twsk(sk)->tw_mark : sk->sk_mark;
911 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
912 inet_twsk(sk)->tw_priority : sk->sk_priority;
913 transmit_time = tcp_transmit_time(sk);
914 ip_send_unicast_reply(ctl_sk,
915 skb, &TCP_SKB_CB(skb)->header.h4.opt,
916 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
917 &arg, arg.iov[0].iov_len,
918 transmit_time);
919
920 ctl_sk->sk_mark = 0;
921 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
922 local_bh_enable();
923}
924
925static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
926{
927 struct inet_timewait_sock *tw = inet_twsk(sk);
928 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
929
930 tcp_v4_send_ack(sk, skb,
931 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
932 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
933 tcp_time_stamp_raw() + tcptw->tw_ts_offset,
934 tcptw->tw_ts_recent,
935 tw->tw_bound_dev_if,
936 tcp_twsk_md5_key(tcptw),
937 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
938 tw->tw_tos
939 );
940
941 inet_twsk_put(tw);
942}
943
944static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
945 struct request_sock *req)
946{
947 const union tcp_md5_addr *addr;
948 int l3index;
949
950 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
951 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
952 */
953 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
954 tcp_sk(sk)->snd_nxt;
955
956 /* RFC 7323 2.3
957 * The window field (SEG.WND) of every outgoing segment, with the
958 * exception of <SYN> segments, MUST be right-shifted by
959 * Rcv.Wind.Shift bits:
960 */
961 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
962 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
963 tcp_v4_send_ack(sk, skb, seq,
964 tcp_rsk(req)->rcv_nxt,
965 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
966 tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
967 req->ts_recent,
968 0,
969 tcp_md5_do_lookup(sk, l3index, addr, AF_INET),
970 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
971 ip_hdr(skb)->tos);
972}
973
974/*
975 * Send a SYN-ACK after having received a SYN.
976 * This still operates on a request_sock only, not on a big
977 * socket.
978 */
979static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
980 struct flowi *fl,
981 struct request_sock *req,
982 struct tcp_fastopen_cookie *foc,
983 enum tcp_synack_type synack_type,
984 struct sk_buff *syn_skb)
985{
986 const struct inet_request_sock *ireq = inet_rsk(req);
987 struct flowi4 fl4;
988 int err = -1;
989 struct sk_buff *skb;
990 u8 tos;
991
992 /* First, grab a route. */
993 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
994 return -1;
995
996 skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
997
998 if (skb) {
999 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1000
1001 tos = sock_net(sk)->ipv4.sysctl_tcp_reflect_tos ?
1002 (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1003 (inet_sk(sk)->tos & INET_ECN_MASK) :
1004 inet_sk(sk)->tos;
1005
1006 if (!INET_ECN_is_capable(tos) &&
1007 tcp_bpf_ca_needs_ecn((struct sock *)req))
1008 tos |= INET_ECN_ECT_0;
1009
1010 rcu_read_lock();
1011 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1012 ireq->ir_rmt_addr,
1013 rcu_dereference(ireq->ireq_opt),
1014 tos);
1015 rcu_read_unlock();
1016 err = net_xmit_eval(err);
1017 }
1018
1019 return err;
1020}
1021
1022/*
1023 * IPv4 request_sock destructor.
1024 */
1025static void tcp_v4_reqsk_destructor(struct request_sock *req)
1026{
1027 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1028}
1029
1030#ifdef CONFIG_TCP_MD5SIG
1031/*
1032 * RFC2385 MD5 checksumming requires a mapping of
1033 * IP address->MD5 Key.
1034 * We need to maintain these in the sk structure.
1035 */
1036
1037DEFINE_STATIC_KEY_FALSE(tcp_md5_needed);
1038EXPORT_SYMBOL(tcp_md5_needed);
1039
1040static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1041{
1042 if (!old)
1043 return true;
1044
1045 /* l3index always overrides non-l3index */
1046 if (old->l3index && new->l3index == 0)
1047 return false;
1048 if (old->l3index == 0 && new->l3index)
1049 return true;
1050
1051 return old->prefixlen < new->prefixlen;
1052}
1053
1054/* Find the Key structure for an address. */
1055struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1056 const union tcp_md5_addr *addr,
1057 int family)
1058{
1059 const struct tcp_sock *tp = tcp_sk(sk);
1060 struct tcp_md5sig_key *key;
1061 const struct tcp_md5sig_info *md5sig;
1062 __be32 mask;
1063 struct tcp_md5sig_key *best_match = NULL;
1064 bool match;
1065
1066 /* caller either holds rcu_read_lock() or socket lock */
1067 md5sig = rcu_dereference_check(tp->md5sig_info,
1068 lockdep_sock_is_held(sk));
1069 if (!md5sig)
1070 return NULL;
1071
1072 hlist_for_each_entry_rcu(key, &md5sig->head, node,
1073 lockdep_sock_is_held(sk)) {
1074 if (key->family != family)
1075 continue;
1076 if (key->l3index && key->l3index != l3index)
1077 continue;
1078 if (family == AF_INET) {
1079 mask = inet_make_mask(key->prefixlen);
1080 match = (key->addr.a4.s_addr & mask) ==
1081 (addr->a4.s_addr & mask);
1082#if IS_ENABLED(CONFIG_IPV6)
1083 } else if (family == AF_INET6) {
1084 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1085 key->prefixlen);
1086#endif
1087 } else {
1088 match = false;
1089 }
1090
1091 if (match && better_md5_match(best_match, key))
1092 best_match = key;
1093 }
1094 return best_match;
1095}
1096EXPORT_SYMBOL(__tcp_md5_do_lookup);
1097
1098static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1099 const union tcp_md5_addr *addr,
1100 int family, u8 prefixlen,
1101 int l3index)
1102{
1103 const struct tcp_sock *tp = tcp_sk(sk);
1104 struct tcp_md5sig_key *key;
1105 unsigned int size = sizeof(struct in_addr);
1106 const struct tcp_md5sig_info *md5sig;
1107
1108 /* caller either holds rcu_read_lock() or socket lock */
1109 md5sig = rcu_dereference_check(tp->md5sig_info,
1110 lockdep_sock_is_held(sk));
1111 if (!md5sig)
1112 return NULL;
1113#if IS_ENABLED(CONFIG_IPV6)
1114 if (family == AF_INET6)
1115 size = sizeof(struct in6_addr);
1116#endif
1117 hlist_for_each_entry_rcu(key, &md5sig->head, node,
1118 lockdep_sock_is_held(sk)) {
1119 if (key->family != family)
1120 continue;
1121 if (key->l3index != l3index)
1122 continue;
1123 if (!memcmp(&key->addr, addr, size) &&
1124 key->prefixlen == prefixlen)
1125 return key;
1126 }
1127 return NULL;
1128}
1129
1130struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1131 const struct sock *addr_sk)
1132{
1133 const union tcp_md5_addr *addr;
1134 int l3index;
1135
1136 l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1137 addr_sk->sk_bound_dev_if);
1138 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1139 return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1140}
1141EXPORT_SYMBOL(tcp_v4_md5_lookup);
1142
1143/* This can be called on a newly created socket, from other files */
1144int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1145 int family, u8 prefixlen, int l3index,
1146 const u8 *newkey, u8 newkeylen, gfp_t gfp)
1147{
1148 /* Add Key to the list */
1149 struct tcp_md5sig_key *key;
1150 struct tcp_sock *tp = tcp_sk(sk);
1151 struct tcp_md5sig_info *md5sig;
1152
1153 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index);
1154 if (key) {
1155 /* Pre-existing entry - just update that one.
1156 * Note that the key might be used concurrently.
1157 * data_race() is telling kcsan that we do not care of
1158 * key mismatches, since changing MD5 key on live flows
1159 * can lead to packet drops.
1160 */
1161 data_race(memcpy(key->key, newkey, newkeylen));
1162
1163 /* Pairs with READ_ONCE() in tcp_md5_hash_key().
1164 * Also note that a reader could catch new key->keylen value
1165 * but old key->key[], this is the reason we use __GFP_ZERO
1166 * at sock_kmalloc() time below these lines.
1167 */
1168 WRITE_ONCE(key->keylen, newkeylen);
1169
1170 return 0;
1171 }
1172
1173 md5sig = rcu_dereference_protected(tp->md5sig_info,
1174 lockdep_sock_is_held(sk));
1175 if (!md5sig) {
1176 md5sig = kmalloc(sizeof(*md5sig), gfp);
1177 if (!md5sig)
1178 return -ENOMEM;
1179
1180 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1181 INIT_HLIST_HEAD(&md5sig->head);
1182 rcu_assign_pointer(tp->md5sig_info, md5sig);
1183 }
1184
1185 key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1186 if (!key)
1187 return -ENOMEM;
1188 if (!tcp_alloc_md5sig_pool()) {
1189 sock_kfree_s(sk, key, sizeof(*key));
1190 return -ENOMEM;
1191 }
1192
1193 memcpy(key->key, newkey, newkeylen);
1194 key->keylen = newkeylen;
1195 key->family = family;
1196 key->prefixlen = prefixlen;
1197 key->l3index = l3index;
1198 memcpy(&key->addr, addr,
1199 (family == AF_INET6) ? sizeof(struct in6_addr) :
1200 sizeof(struct in_addr));
1201 hlist_add_head_rcu(&key->node, &md5sig->head);
1202 return 0;
1203}
1204EXPORT_SYMBOL(tcp_md5_do_add);
1205
1206int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1207 u8 prefixlen, int l3index)
1208{
1209 struct tcp_md5sig_key *key;
1210
1211 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index);
1212 if (!key)
1213 return -ENOENT;
1214 hlist_del_rcu(&key->node);
1215 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1216 kfree_rcu(key, rcu);
1217 return 0;
1218}
1219EXPORT_SYMBOL(tcp_md5_do_del);
1220
1221static void tcp_clear_md5_list(struct sock *sk)
1222{
1223 struct tcp_sock *tp = tcp_sk(sk);
1224 struct tcp_md5sig_key *key;
1225 struct hlist_node *n;
1226 struct tcp_md5sig_info *md5sig;
1227
1228 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1229
1230 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1231 hlist_del_rcu(&key->node);
1232 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1233 kfree_rcu(key, rcu);
1234 }
1235}
1236
1237static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1238 sockptr_t optval, int optlen)
1239{
1240 struct tcp_md5sig cmd;
1241 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1242 const union tcp_md5_addr *addr;
1243 u8 prefixlen = 32;
1244 int l3index = 0;
1245
1246 if (optlen < sizeof(cmd))
1247 return -EINVAL;
1248
1249 if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1250 return -EFAULT;
1251
1252 if (sin->sin_family != AF_INET)
1253 return -EINVAL;
1254
1255 if (optname == TCP_MD5SIG_EXT &&
1256 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1257 prefixlen = cmd.tcpm_prefixlen;
1258 if (prefixlen > 32)
1259 return -EINVAL;
1260 }
1261
1262 if (optname == TCP_MD5SIG_EXT &&
1263 cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1264 struct net_device *dev;
1265
1266 rcu_read_lock();
1267 dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1268 if (dev && netif_is_l3_master(dev))
1269 l3index = dev->ifindex;
1270
1271 rcu_read_unlock();
1272
1273 /* ok to reference set/not set outside of rcu;
1274 * right now device MUST be an L3 master
1275 */
1276 if (!dev || !l3index)
1277 return -EINVAL;
1278 }
1279
1280 addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1281
1282 if (!cmd.tcpm_keylen)
1283 return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index);
1284
1285 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1286 return -EINVAL;
1287
1288 return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index,
1289 cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
1290}
1291
1292static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1293 __be32 daddr, __be32 saddr,
1294 const struct tcphdr *th, int nbytes)
1295{
1296 struct tcp4_pseudohdr *bp;
1297 struct scatterlist sg;
1298 struct tcphdr *_th;
1299
1300 bp = hp->scratch;
1301 bp->saddr = saddr;
1302 bp->daddr = daddr;
1303 bp->pad = 0;
1304 bp->protocol = IPPROTO_TCP;
1305 bp->len = cpu_to_be16(nbytes);
1306
1307 _th = (struct tcphdr *)(bp + 1);
1308 memcpy(_th, th, sizeof(*th));
1309 _th->check = 0;
1310
1311 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1312 ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1313 sizeof(*bp) + sizeof(*th));
1314 return crypto_ahash_update(hp->md5_req);
1315}
1316
1317static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1318 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1319{
1320 struct tcp_md5sig_pool *hp;
1321 struct ahash_request *req;
1322
1323 hp = tcp_get_md5sig_pool();
1324 if (!hp)
1325 goto clear_hash_noput;
1326 req = hp->md5_req;
1327
1328 if (crypto_ahash_init(req))
1329 goto clear_hash;
1330 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1331 goto clear_hash;
1332 if (tcp_md5_hash_key(hp, key))
1333 goto clear_hash;
1334 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1335 if (crypto_ahash_final(req))
1336 goto clear_hash;
1337
1338 tcp_put_md5sig_pool();
1339 return 0;
1340
1341clear_hash:
1342 tcp_put_md5sig_pool();
1343clear_hash_noput:
1344 memset(md5_hash, 0, 16);
1345 return 1;
1346}
1347
1348int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1349 const struct sock *sk,
1350 const struct sk_buff *skb)
1351{
1352 struct tcp_md5sig_pool *hp;
1353 struct ahash_request *req;
1354 const struct tcphdr *th = tcp_hdr(skb);
1355 __be32 saddr, daddr;
1356
1357 if (sk) { /* valid for establish/request sockets */
1358 saddr = sk->sk_rcv_saddr;
1359 daddr = sk->sk_daddr;
1360 } else {
1361 const struct iphdr *iph = ip_hdr(skb);
1362 saddr = iph->saddr;
1363 daddr = iph->daddr;
1364 }
1365
1366 hp = tcp_get_md5sig_pool();
1367 if (!hp)
1368 goto clear_hash_noput;
1369 req = hp->md5_req;
1370
1371 if (crypto_ahash_init(req))
1372 goto clear_hash;
1373
1374 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1375 goto clear_hash;
1376 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1377 goto clear_hash;
1378 if (tcp_md5_hash_key(hp, key))
1379 goto clear_hash;
1380 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1381 if (crypto_ahash_final(req))
1382 goto clear_hash;
1383
1384 tcp_put_md5sig_pool();
1385 return 0;
1386
1387clear_hash:
1388 tcp_put_md5sig_pool();
1389clear_hash_noput:
1390 memset(md5_hash, 0, 16);
1391 return 1;
1392}
1393EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1394
1395#endif
1396
1397/* Called with rcu_read_lock() */
1398static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1399 const struct sk_buff *skb,
1400 int dif, int sdif)
1401{
1402#ifdef CONFIG_TCP_MD5SIG
1403 /*
1404 * This gets called for each TCP segment that arrives
1405 * so we want to be efficient.
1406 * We have 3 drop cases:
1407 * o No MD5 hash and one expected.
1408 * o MD5 hash and we're not expecting one.
1409 * o MD5 hash and its wrong.
1410 */
1411 const __u8 *hash_location = NULL;
1412 struct tcp_md5sig_key *hash_expected;
1413 const struct iphdr *iph = ip_hdr(skb);
1414 const struct tcphdr *th = tcp_hdr(skb);
1415 const union tcp_md5_addr *addr;
1416 unsigned char newhash[16];
1417 int genhash, l3index;
1418
1419 /* sdif set, means packet ingressed via a device
1420 * in an L3 domain and dif is set to the l3mdev
1421 */
1422 l3index = sdif ? dif : 0;
1423
1424 addr = (union tcp_md5_addr *)&iph->saddr;
1425 hash_expected = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1426 hash_location = tcp_parse_md5sig_option(th);
1427
1428 /* We've parsed the options - do we have a hash? */
1429 if (!hash_expected && !hash_location)
1430 return false;
1431
1432 if (hash_expected && !hash_location) {
1433 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1434 return true;
1435 }
1436
1437 if (!hash_expected && hash_location) {
1438 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1439 return true;
1440 }
1441
1442 /* Okay, so this is hash_expected and hash_location -
1443 * so we need to calculate the checksum.
1444 */
1445 genhash = tcp_v4_md5_hash_skb(newhash,
1446 hash_expected,
1447 NULL, skb);
1448
1449 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1450 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
1451 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
1452 &iph->saddr, ntohs(th->source),
1453 &iph->daddr, ntohs(th->dest),
1454 genhash ? " tcp_v4_calc_md5_hash failed"
1455 : "", l3index);
1456 return true;
1457 }
1458 return false;
1459#endif
1460 return false;
1461}
1462
1463static void tcp_v4_init_req(struct request_sock *req,
1464 const struct sock *sk_listener,
1465 struct sk_buff *skb)
1466{
1467 struct inet_request_sock *ireq = inet_rsk(req);
1468 struct net *net = sock_net(sk_listener);
1469
1470 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1471 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1472 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1473}
1474
1475static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1476 struct sk_buff *skb,
1477 struct flowi *fl,
1478 struct request_sock *req)
1479{
1480 tcp_v4_init_req(req, sk, skb);
1481
1482 if (security_inet_conn_request(sk, skb, req))
1483 return NULL;
1484
1485 return inet_csk_route_req(sk, &fl->u.ip4, req);
1486}
1487
1488struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1489 .family = PF_INET,
1490 .obj_size = sizeof(struct tcp_request_sock),
1491 .rtx_syn_ack = tcp_rtx_synack,
1492 .send_ack = tcp_v4_reqsk_send_ack,
1493 .destructor = tcp_v4_reqsk_destructor,
1494 .send_reset = tcp_v4_send_reset,
1495 .syn_ack_timeout = tcp_syn_ack_timeout,
1496};
1497
1498const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1499 .mss_clamp = TCP_MSS_DEFAULT,
1500#ifdef CONFIG_TCP_MD5SIG
1501 .req_md5_lookup = tcp_v4_md5_lookup,
1502 .calc_md5_hash = tcp_v4_md5_hash_skb,
1503#endif
1504#ifdef CONFIG_SYN_COOKIES
1505 .cookie_init_seq = cookie_v4_init_sequence,
1506#endif
1507 .route_req = tcp_v4_route_req,
1508 .init_seq = tcp_v4_init_seq,
1509 .init_ts_off = tcp_v4_init_ts_off,
1510 .send_synack = tcp_v4_send_synack,
1511};
1512
1513int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1514{
1515 /* Never answer to SYNs send to broadcast or multicast */
1516 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1517 goto drop;
1518
1519 return tcp_conn_request(&tcp_request_sock_ops,
1520 &tcp_request_sock_ipv4_ops, sk, skb);
1521
1522drop:
1523 tcp_listendrop(sk);
1524 return 0;
1525}
1526EXPORT_SYMBOL(tcp_v4_conn_request);
1527
1528
1529/*
1530 * The three way handshake has completed - we got a valid synack -
1531 * now create the new socket.
1532 */
1533struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1534 struct request_sock *req,
1535 struct dst_entry *dst,
1536 struct request_sock *req_unhash,
1537 bool *own_req)
1538{
1539 struct inet_request_sock *ireq;
1540 bool found_dup_sk = false;
1541 struct inet_sock *newinet;
1542 struct tcp_sock *newtp;
1543 struct sock *newsk;
1544#ifdef CONFIG_TCP_MD5SIG
1545 const union tcp_md5_addr *addr;
1546 struct tcp_md5sig_key *key;
1547 int l3index;
1548#endif
1549 struct ip_options_rcu *inet_opt;
1550
1551 if (sk_acceptq_is_full(sk))
1552 goto exit_overflow;
1553
1554 newsk = tcp_create_openreq_child(sk, req, skb);
1555 if (!newsk)
1556 goto exit_nonewsk;
1557
1558 newsk->sk_gso_type = SKB_GSO_TCPV4;
1559 inet_sk_rx_dst_set(newsk, skb);
1560
1561 newtp = tcp_sk(newsk);
1562 newinet = inet_sk(newsk);
1563 ireq = inet_rsk(req);
1564 sk_daddr_set(newsk, ireq->ir_rmt_addr);
1565 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1566 newsk->sk_bound_dev_if = ireq->ir_iif;
1567 newinet->inet_saddr = ireq->ir_loc_addr;
1568 inet_opt = rcu_dereference(ireq->ireq_opt);
1569 RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1570 newinet->mc_index = inet_iif(skb);
1571 newinet->mc_ttl = ip_hdr(skb)->ttl;
1572 newinet->rcv_tos = ip_hdr(skb)->tos;
1573 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1574 if (inet_opt)
1575 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1576 newinet->inet_id = prandom_u32();
1577
1578 /* Set ToS of the new socket based upon the value of incoming SYN.
1579 * ECT bits are set later in tcp_init_transfer().
1580 */
1581 if (sock_net(sk)->ipv4.sysctl_tcp_reflect_tos)
1582 newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1583
1584 if (!dst) {
1585 dst = inet_csk_route_child_sock(sk, newsk, req);
1586 if (!dst)
1587 goto put_and_exit;
1588 } else {
1589 /* syncookie case : see end of cookie_v4_check() */
1590 }
1591 sk_setup_caps(newsk, dst);
1592
1593 tcp_ca_openreq_child(newsk, dst);
1594
1595 tcp_sync_mss(newsk, dst_mtu(dst));
1596 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1597
1598 tcp_initialize_rcv_mss(newsk);
1599
1600#ifdef CONFIG_TCP_MD5SIG
1601 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1602 /* Copy over the MD5 key from the original socket */
1603 addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1604 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1605 if (key) {
1606 /*
1607 * We're using one, so create a matching key
1608 * on the newsk structure. If we fail to get
1609 * memory, then we end up not copying the key
1610 * across. Shucks.
1611 */
1612 tcp_md5_do_add(newsk, addr, AF_INET, 32, l3index,
1613 key->key, key->keylen, GFP_ATOMIC);
1614 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1615 }
1616#endif
1617
1618 if (__inet_inherit_port(sk, newsk) < 0)
1619 goto put_and_exit;
1620 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1621 &found_dup_sk);
1622 if (likely(*own_req)) {
1623 tcp_move_syn(newtp, req);
1624 ireq->ireq_opt = NULL;
1625 } else {
1626 newinet->inet_opt = NULL;
1627
1628 if (!req_unhash && found_dup_sk) {
1629 /* This code path should only be executed in the
1630 * syncookie case only
1631 */
1632 bh_unlock_sock(newsk);
1633 sock_put(newsk);
1634 newsk = NULL;
1635 }
1636 }
1637 return newsk;
1638
1639exit_overflow:
1640 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1641exit_nonewsk:
1642 dst_release(dst);
1643exit:
1644 tcp_listendrop(sk);
1645 return NULL;
1646put_and_exit:
1647 newinet->inet_opt = NULL;
1648 inet_csk_prepare_forced_close(newsk);
1649 tcp_done(newsk);
1650 goto exit;
1651}
1652EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1653
1654static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1655{
1656#ifdef CONFIG_SYN_COOKIES
1657 const struct tcphdr *th = tcp_hdr(skb);
1658
1659 if (!th->syn)
1660 sk = cookie_v4_check(sk, skb);
1661#endif
1662 return sk;
1663}
1664
1665u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1666 struct tcphdr *th, u32 *cookie)
1667{
1668 u16 mss = 0;
1669#ifdef CONFIG_SYN_COOKIES
1670 mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1671 &tcp_request_sock_ipv4_ops, sk, th);
1672 if (mss) {
1673 *cookie = __cookie_v4_init_sequence(iph, th, &mss);
1674 tcp_synq_overflow(sk);
1675 }
1676#endif
1677 return mss;
1678}
1679
1680INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1681 u32));
1682/* The socket must have it's spinlock held when we get
1683 * here, unless it is a TCP_LISTEN socket.
1684 *
1685 * We have a potential double-lock case here, so even when
1686 * doing backlog processing we use the BH locking scheme.
1687 * This is because we cannot sleep with the original spinlock
1688 * held.
1689 */
1690int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1691{
1692 struct sock *rsk;
1693
1694 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1695 struct dst_entry *dst = sk->sk_rx_dst;
1696
1697 sock_rps_save_rxhash(sk, skb);
1698 sk_mark_napi_id(sk, skb);
1699 if (dst) {
1700 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1701 !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1702 dst, 0)) {
1703 dst_release(dst);
1704 sk->sk_rx_dst = NULL;
1705 }
1706 }
1707 tcp_rcv_established(sk, skb);
1708 return 0;
1709 }
1710
1711 if (tcp_checksum_complete(skb))
1712 goto csum_err;
1713
1714 if (sk->sk_state == TCP_LISTEN) {
1715 struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1716
1717 if (!nsk)
1718 goto discard;
1719 if (nsk != sk) {
1720 if (tcp_child_process(sk, nsk, skb)) {
1721 rsk = nsk;
1722 goto reset;
1723 }
1724 return 0;
1725 }
1726 } else
1727 sock_rps_save_rxhash(sk, skb);
1728
1729 if (tcp_rcv_state_process(sk, skb)) {
1730 rsk = sk;
1731 goto reset;
1732 }
1733 return 0;
1734
1735reset:
1736 tcp_v4_send_reset(rsk, skb);
1737discard:
1738 kfree_skb(skb);
1739 /* Be careful here. If this function gets more complicated and
1740 * gcc suffers from register pressure on the x86, sk (in %ebx)
1741 * might be destroyed here. This current version compiles correctly,
1742 * but you have been warned.
1743 */
1744 return 0;
1745
1746csum_err:
1747 trace_tcp_bad_csum(skb);
1748 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1749 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1750 goto discard;
1751}
1752EXPORT_SYMBOL(tcp_v4_do_rcv);
1753
1754int tcp_v4_early_demux(struct sk_buff *skb)
1755{
1756 const struct iphdr *iph;
1757 const struct tcphdr *th;
1758 struct sock *sk;
1759
1760 if (skb->pkt_type != PACKET_HOST)
1761 return 0;
1762
1763 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1764 return 0;
1765
1766 iph = ip_hdr(skb);
1767 th = tcp_hdr(skb);
1768
1769 if (th->doff < sizeof(struct tcphdr) / 4)
1770 return 0;
1771
1772 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1773 iph->saddr, th->source,
1774 iph->daddr, ntohs(th->dest),
1775 skb->skb_iif, inet_sdif(skb));
1776 if (sk) {
1777 skb->sk = sk;
1778 skb->destructor = sock_edemux;
1779 if (sk_fullsock(sk)) {
1780 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1781
1782 if (dst)
1783 dst = dst_check(dst, 0);
1784 if (dst &&
1785 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1786 skb_dst_set_noref(skb, dst);
1787 }
1788 }
1789 return 0;
1790}
1791
1792bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb)
1793{
1794 u32 limit = READ_ONCE(sk->sk_rcvbuf) + READ_ONCE(sk->sk_sndbuf);
1795 u32 tail_gso_size, tail_gso_segs;
1796 struct skb_shared_info *shinfo;
1797 const struct tcphdr *th;
1798 struct tcphdr *thtail;
1799 struct sk_buff *tail;
1800 unsigned int hdrlen;
1801 bool fragstolen;
1802 u32 gso_segs;
1803 u32 gso_size;
1804 int delta;
1805
1806 /* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1807 * we can fix skb->truesize to its real value to avoid future drops.
1808 * This is valid because skb is not yet charged to the socket.
1809 * It has been noticed pure SACK packets were sometimes dropped
1810 * (if cooked by drivers without copybreak feature).
1811 */
1812 skb_condense(skb);
1813
1814 skb_dst_drop(skb);
1815
1816 if (unlikely(tcp_checksum_complete(skb))) {
1817 bh_unlock_sock(sk);
1818 trace_tcp_bad_csum(skb);
1819 __TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1820 __TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1821 return true;
1822 }
1823
1824 /* Attempt coalescing to last skb in backlog, even if we are
1825 * above the limits.
1826 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
1827 */
1828 th = (const struct tcphdr *)skb->data;
1829 hdrlen = th->doff * 4;
1830
1831 tail = sk->sk_backlog.tail;
1832 if (!tail)
1833 goto no_coalesce;
1834 thtail = (struct tcphdr *)tail->data;
1835
1836 if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
1837 TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
1838 ((TCP_SKB_CB(tail)->tcp_flags |
1839 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
1840 !((TCP_SKB_CB(tail)->tcp_flags &
1841 TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
1842 ((TCP_SKB_CB(tail)->tcp_flags ^
1843 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
1844#ifdef CONFIG_TLS_DEVICE
1845 tail->decrypted != skb->decrypted ||
1846#endif
1847 thtail->doff != th->doff ||
1848 memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
1849 goto no_coalesce;
1850
1851 __skb_pull(skb, hdrlen);
1852
1853 shinfo = skb_shinfo(skb);
1854 gso_size = shinfo->gso_size ?: skb->len;
1855 gso_segs = shinfo->gso_segs ?: 1;
1856
1857 shinfo = skb_shinfo(tail);
1858 tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
1859 tail_gso_segs = shinfo->gso_segs ?: 1;
1860
1861 if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
1862 TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
1863
1864 if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
1865 TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
1866 thtail->window = th->window;
1867 }
1868
1869 /* We have to update both TCP_SKB_CB(tail)->tcp_flags and
1870 * thtail->fin, so that the fast path in tcp_rcv_established()
1871 * is not entered if we append a packet with a FIN.
1872 * SYN, RST, URG are not present.
1873 * ACK is set on both packets.
1874 * PSH : we do not really care in TCP stack,
1875 * at least for 'GRO' packets.
1876 */
1877 thtail->fin |= th->fin;
1878 TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1879
1880 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1881 TCP_SKB_CB(tail)->has_rxtstamp = true;
1882 tail->tstamp = skb->tstamp;
1883 skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
1884 }
1885
1886 /* Not as strict as GRO. We only need to carry mss max value */
1887 shinfo->gso_size = max(gso_size, tail_gso_size);
1888 shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
1889
1890 sk->sk_backlog.len += delta;
1891 __NET_INC_STATS(sock_net(sk),
1892 LINUX_MIB_TCPBACKLOGCOALESCE);
1893 kfree_skb_partial(skb, fragstolen);
1894 return false;
1895 }
1896 __skb_push(skb, hdrlen);
1897
1898no_coalesce:
1899 /* Only socket owner can try to collapse/prune rx queues
1900 * to reduce memory overhead, so add a little headroom here.
1901 * Few sockets backlog are possibly concurrently non empty.
1902 */
1903 limit += 64*1024;
1904
1905 if (unlikely(sk_add_backlog(sk, skb, limit))) {
1906 bh_unlock_sock(sk);
1907 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1908 return true;
1909 }
1910 return false;
1911}
1912EXPORT_SYMBOL(tcp_add_backlog);
1913
1914int tcp_filter(struct sock *sk, struct sk_buff *skb)
1915{
1916 struct tcphdr *th = (struct tcphdr *)skb->data;
1917
1918 return sk_filter_trim_cap(sk, skb, th->doff * 4);
1919}
1920EXPORT_SYMBOL(tcp_filter);
1921
1922static void tcp_v4_restore_cb(struct sk_buff *skb)
1923{
1924 memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1925 sizeof(struct inet_skb_parm));
1926}
1927
1928static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1929 const struct tcphdr *th)
1930{
1931 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1932 * barrier() makes sure compiler wont play fool^Waliasing games.
1933 */
1934 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1935 sizeof(struct inet_skb_parm));
1936 barrier();
1937
1938 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1939 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1940 skb->len - th->doff * 4);
1941 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1942 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1943 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1944 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1945 TCP_SKB_CB(skb)->sacked = 0;
1946 TCP_SKB_CB(skb)->has_rxtstamp =
1947 skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1948}
1949
1950/*
1951 * From tcp_input.c
1952 */
1953
1954int tcp_v4_rcv(struct sk_buff *skb)
1955{
1956 struct net *net = dev_net(skb->dev);
1957 struct sk_buff *skb_to_free;
1958 int sdif = inet_sdif(skb);
1959 int dif = inet_iif(skb);
1960 const struct iphdr *iph;
1961 const struct tcphdr *th;
1962 bool refcounted;
1963 struct sock *sk;
1964 int ret;
1965
1966 if (skb->pkt_type != PACKET_HOST)
1967 goto discard_it;
1968
1969 /* Count it even if it's bad */
1970 __TCP_INC_STATS(net, TCP_MIB_INSEGS);
1971
1972 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1973 goto discard_it;
1974
1975 th = (const struct tcphdr *)skb->data;
1976
1977 if (unlikely(th->doff < sizeof(struct tcphdr) / 4))
1978 goto bad_packet;
1979 if (!pskb_may_pull(skb, th->doff * 4))
1980 goto discard_it;
1981
1982 /* An explanation is required here, I think.
1983 * Packet length and doff are validated by header prediction,
1984 * provided case of th->doff==0 is eliminated.
1985 * So, we defer the checks. */
1986
1987 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1988 goto csum_error;
1989
1990 th = (const struct tcphdr *)skb->data;
1991 iph = ip_hdr(skb);
1992lookup:
1993 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
1994 th->dest, sdif, &refcounted);
1995 if (!sk)
1996 goto no_tcp_socket;
1997
1998process:
1999 if (sk->sk_state == TCP_TIME_WAIT)
2000 goto do_time_wait;
2001
2002 if (sk->sk_state == TCP_NEW_SYN_RECV) {
2003 struct request_sock *req = inet_reqsk(sk);
2004 bool req_stolen = false;
2005 struct sock *nsk;
2006
2007 sk = req->rsk_listener;
2008 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb, dif, sdif))) {
2009 sk_drops_add(sk, skb);
2010 reqsk_put(req);
2011 goto discard_it;
2012 }
2013 if (tcp_checksum_complete(skb)) {
2014 reqsk_put(req);
2015 goto csum_error;
2016 }
2017 if (unlikely(sk->sk_state != TCP_LISTEN)) {
2018 nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2019 if (!nsk) {
2020 inet_csk_reqsk_queue_drop_and_put(sk, req);
2021 goto lookup;
2022 }
2023 sk = nsk;
2024 /* reuseport_migrate_sock() has already held one sk_refcnt
2025 * before returning.
2026 */
2027 } else {
2028 /* We own a reference on the listener, increase it again
2029 * as we might lose it too soon.
2030 */
2031 sock_hold(sk);
2032 }
2033 refcounted = true;
2034 nsk = NULL;
2035 if (!tcp_filter(sk, skb)) {
2036 th = (const struct tcphdr *)skb->data;
2037 iph = ip_hdr(skb);
2038 tcp_v4_fill_cb(skb, iph, th);
2039 nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2040 }
2041 if (!nsk) {
2042 reqsk_put(req);
2043 if (req_stolen) {
2044 /* Another cpu got exclusive access to req
2045 * and created a full blown socket.
2046 * Try to feed this packet to this socket
2047 * instead of discarding it.
2048 */
2049 tcp_v4_restore_cb(skb);
2050 sock_put(sk);
2051 goto lookup;
2052 }
2053 goto discard_and_relse;
2054 }
2055 if (nsk == sk) {
2056 reqsk_put(req);
2057 tcp_v4_restore_cb(skb);
2058 } else if (tcp_child_process(sk, nsk, skb)) {
2059 tcp_v4_send_reset(nsk, skb);
2060 goto discard_and_relse;
2061 } else {
2062 sock_put(sk);
2063 return 0;
2064 }
2065 }
2066 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2067 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2068 goto discard_and_relse;
2069 }
2070
2071 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2072 goto discard_and_relse;
2073
2074 if (tcp_v4_inbound_md5_hash(sk, skb, dif, sdif))
2075 goto discard_and_relse;
2076
2077 nf_reset_ct(skb);
2078
2079 if (tcp_filter(sk, skb))
2080 goto discard_and_relse;
2081 th = (const struct tcphdr *)skb->data;
2082 iph = ip_hdr(skb);
2083 tcp_v4_fill_cb(skb, iph, th);
2084
2085 skb->dev = NULL;
2086
2087 if (sk->sk_state == TCP_LISTEN) {
2088 ret = tcp_v4_do_rcv(sk, skb);
2089 goto put_and_return;
2090 }
2091
2092 sk_incoming_cpu_update(sk);
2093
2094 bh_lock_sock_nested(sk);
2095 tcp_segs_in(tcp_sk(sk), skb);
2096 ret = 0;
2097 if (!sock_owned_by_user(sk)) {
2098 skb_to_free = sk->sk_rx_skb_cache;
2099 sk->sk_rx_skb_cache = NULL;
2100 ret = tcp_v4_do_rcv(sk, skb);
2101 } else {
2102 if (tcp_add_backlog(sk, skb))
2103 goto discard_and_relse;
2104 skb_to_free = NULL;
2105 }
2106 bh_unlock_sock(sk);
2107 if (skb_to_free)
2108 __kfree_skb(skb_to_free);
2109
2110put_and_return:
2111 if (refcounted)
2112 sock_put(sk);
2113
2114 return ret;
2115
2116no_tcp_socket:
2117 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2118 goto discard_it;
2119
2120 tcp_v4_fill_cb(skb, iph, th);
2121
2122 if (tcp_checksum_complete(skb)) {
2123csum_error:
2124 trace_tcp_bad_csum(skb);
2125 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2126bad_packet:
2127 __TCP_INC_STATS(net, TCP_MIB_INERRS);
2128 } else {
2129 tcp_v4_send_reset(NULL, skb);
2130 }
2131
2132discard_it:
2133 /* Discard frame. */
2134 kfree_skb(skb);
2135 return 0;
2136
2137discard_and_relse:
2138 sk_drops_add(sk, skb);
2139 if (refcounted)
2140 sock_put(sk);
2141 goto discard_it;
2142
2143do_time_wait:
2144 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2145 inet_twsk_put(inet_twsk(sk));
2146 goto discard_it;
2147 }
2148
2149 tcp_v4_fill_cb(skb, iph, th);
2150
2151 if (tcp_checksum_complete(skb)) {
2152 inet_twsk_put(inet_twsk(sk));
2153 goto csum_error;
2154 }
2155 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2156 case TCP_TW_SYN: {
2157 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2158 &tcp_hashinfo, skb,
2159 __tcp_hdrlen(th),
2160 iph->saddr, th->source,
2161 iph->daddr, th->dest,
2162 inet_iif(skb),
2163 sdif);
2164 if (sk2) {
2165 inet_twsk_deschedule_put(inet_twsk(sk));
2166 sk = sk2;
2167 tcp_v4_restore_cb(skb);
2168 refcounted = false;
2169 goto process;
2170 }
2171 }
2172 /* to ACK */
2173 fallthrough;
2174 case TCP_TW_ACK:
2175 tcp_v4_timewait_ack(sk, skb);
2176 break;
2177 case TCP_TW_RST:
2178 tcp_v4_send_reset(sk, skb);
2179 inet_twsk_deschedule_put(inet_twsk(sk));
2180 goto discard_it;
2181 case TCP_TW_SUCCESS:;
2182 }
2183 goto discard_it;
2184}
2185
2186static struct timewait_sock_ops tcp_timewait_sock_ops = {
2187 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
2188 .twsk_unique = tcp_twsk_unique,
2189 .twsk_destructor= tcp_twsk_destructor,
2190};
2191
2192void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2193{
2194 struct dst_entry *dst = skb_dst(skb);
2195
2196 if (dst && dst_hold_safe(dst)) {
2197 sk->sk_rx_dst = dst;
2198 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2199 }
2200}
2201EXPORT_SYMBOL(inet_sk_rx_dst_set);
2202
2203const struct inet_connection_sock_af_ops ipv4_specific = {
2204 .queue_xmit = ip_queue_xmit,
2205 .send_check = tcp_v4_send_check,
2206 .rebuild_header = inet_sk_rebuild_header,
2207 .sk_rx_dst_set = inet_sk_rx_dst_set,
2208 .conn_request = tcp_v4_conn_request,
2209 .syn_recv_sock = tcp_v4_syn_recv_sock,
2210 .net_header_len = sizeof(struct iphdr),
2211 .setsockopt = ip_setsockopt,
2212 .getsockopt = ip_getsockopt,
2213 .addr2sockaddr = inet_csk_addr2sockaddr,
2214 .sockaddr_len = sizeof(struct sockaddr_in),
2215 .mtu_reduced = tcp_v4_mtu_reduced,
2216};
2217EXPORT_SYMBOL(ipv4_specific);
2218
2219#ifdef CONFIG_TCP_MD5SIG
2220static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2221 .md5_lookup = tcp_v4_md5_lookup,
2222 .calc_md5_hash = tcp_v4_md5_hash_skb,
2223 .md5_parse = tcp_v4_parse_md5_keys,
2224};
2225#endif
2226
2227/* NOTE: A lot of things set to zero explicitly by call to
2228 * sk_alloc() so need not be done here.
2229 */
2230static int tcp_v4_init_sock(struct sock *sk)
2231{
2232 struct inet_connection_sock *icsk = inet_csk(sk);
2233
2234 tcp_init_sock(sk);
2235
2236 icsk->icsk_af_ops = &ipv4_specific;
2237
2238#ifdef CONFIG_TCP_MD5SIG
2239 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2240#endif
2241
2242 return 0;
2243}
2244
2245void tcp_v4_destroy_sock(struct sock *sk)
2246{
2247 struct tcp_sock *tp = tcp_sk(sk);
2248
2249 trace_tcp_destroy_sock(sk);
2250
2251 tcp_clear_xmit_timers(sk);
2252
2253 tcp_cleanup_congestion_control(sk);
2254
2255 tcp_cleanup_ulp(sk);
2256
2257 /* Cleanup up the write buffer. */
2258 tcp_write_queue_purge(sk);
2259
2260 /* Check if we want to disable active TFO */
2261 tcp_fastopen_active_disable_ofo_check(sk);
2262
2263 /* Cleans up our, hopefully empty, out_of_order_queue. */
2264 skb_rbtree_purge(&tp->out_of_order_queue);
2265
2266#ifdef CONFIG_TCP_MD5SIG
2267 /* Clean up the MD5 key list, if any */
2268 if (tp->md5sig_info) {
2269 tcp_clear_md5_list(sk);
2270 kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu);
2271 tp->md5sig_info = NULL;
2272 }
2273#endif
2274
2275 /* Clean up a referenced TCP bind bucket. */
2276 if (inet_csk(sk)->icsk_bind_hash)
2277 inet_put_port(sk);
2278
2279 BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2280
2281 /* If socket is aborted during connect operation */
2282 tcp_free_fastopen_req(tp);
2283 tcp_fastopen_destroy_cipher(sk);
2284 tcp_saved_syn_free(tp);
2285
2286 sk_sockets_allocated_dec(sk);
2287}
2288EXPORT_SYMBOL(tcp_v4_destroy_sock);
2289
2290#ifdef CONFIG_PROC_FS
2291/* Proc filesystem TCP sock list dumping. */
2292
2293/*
2294 * Get next listener socket follow cur. If cur is NULL, get first socket
2295 * starting from bucket given in st->bucket; when st->bucket is zero the
2296 * very first socket in the hash table is returned.
2297 */
2298static void *listening_get_next(struct seq_file *seq, void *cur)
2299{
2300 struct tcp_seq_afinfo *afinfo;
2301 struct tcp_iter_state *st = seq->private;
2302 struct net *net = seq_file_net(seq);
2303 struct inet_listen_hashbucket *ilb;
2304 struct hlist_nulls_node *node;
2305 struct sock *sk = cur;
2306
2307 if (st->bpf_seq_afinfo)
2308 afinfo = st->bpf_seq_afinfo;
2309 else
2310 afinfo = PDE_DATA(file_inode(seq->file));
2311
2312 if (!sk) {
2313get_head:
2314 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2315 spin_lock(&ilb->lock);
2316 sk = sk_nulls_head(&ilb->nulls_head);
2317 st->offset = 0;
2318 goto get_sk;
2319 }
2320 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2321 ++st->num;
2322 ++st->offset;
2323
2324 sk = sk_nulls_next(sk);
2325get_sk:
2326 sk_nulls_for_each_from(sk, node) {
2327 if (!net_eq(sock_net(sk), net))
2328 continue;
2329 if (afinfo->family == AF_UNSPEC ||
2330 sk->sk_family == afinfo->family)
2331 return sk;
2332 }
2333 spin_unlock(&ilb->lock);
2334 st->offset = 0;
2335 if (++st->bucket < INET_LHTABLE_SIZE)
2336 goto get_head;
2337 return NULL;
2338}
2339
2340static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2341{
2342 struct tcp_iter_state *st = seq->private;
2343 void *rc;
2344
2345 st->bucket = 0;
2346 st->offset = 0;
2347 rc = listening_get_next(seq, NULL);
2348
2349 while (rc && *pos) {
2350 rc = listening_get_next(seq, rc);
2351 --*pos;
2352 }
2353 return rc;
2354}
2355
2356static inline bool empty_bucket(const struct tcp_iter_state *st)
2357{
2358 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
2359}
2360
2361/*
2362 * Get first established socket starting from bucket given in st->bucket.
2363 * If st->bucket is zero, the very first socket in the hash is returned.
2364 */
2365static void *established_get_first(struct seq_file *seq)
2366{
2367 struct tcp_seq_afinfo *afinfo;
2368 struct tcp_iter_state *st = seq->private;
2369 struct net *net = seq_file_net(seq);
2370 void *rc = NULL;
2371
2372 if (st->bpf_seq_afinfo)
2373 afinfo = st->bpf_seq_afinfo;
2374 else
2375 afinfo = PDE_DATA(file_inode(seq->file));
2376
2377 st->offset = 0;
2378 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2379 struct sock *sk;
2380 struct hlist_nulls_node *node;
2381 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2382
2383 /* Lockless fast path for the common case of empty buckets */
2384 if (empty_bucket(st))
2385 continue;
2386
2387 spin_lock_bh(lock);
2388 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2389 if ((afinfo->family != AF_UNSPEC &&
2390 sk->sk_family != afinfo->family) ||
2391 !net_eq(sock_net(sk), net)) {
2392 continue;
2393 }
2394 rc = sk;
2395 goto out;
2396 }
2397 spin_unlock_bh(lock);
2398 }
2399out:
2400 return rc;
2401}
2402
2403static void *established_get_next(struct seq_file *seq, void *cur)
2404{
2405 struct tcp_seq_afinfo *afinfo;
2406 struct sock *sk = cur;
2407 struct hlist_nulls_node *node;
2408 struct tcp_iter_state *st = seq->private;
2409 struct net *net = seq_file_net(seq);
2410
2411 if (st->bpf_seq_afinfo)
2412 afinfo = st->bpf_seq_afinfo;
2413 else
2414 afinfo = PDE_DATA(file_inode(seq->file));
2415
2416 ++st->num;
2417 ++st->offset;
2418
2419 sk = sk_nulls_next(sk);
2420
2421 sk_nulls_for_each_from(sk, node) {
2422 if ((afinfo->family == AF_UNSPEC ||
2423 sk->sk_family == afinfo->family) &&
2424 net_eq(sock_net(sk), net))
2425 return sk;
2426 }
2427
2428 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2429 ++st->bucket;
2430 return established_get_first(seq);
2431}
2432
2433static void *established_get_idx(struct seq_file *seq, loff_t pos)
2434{
2435 struct tcp_iter_state *st = seq->private;
2436 void *rc;
2437
2438 st->bucket = 0;
2439 rc = established_get_first(seq);
2440
2441 while (rc && pos) {
2442 rc = established_get_next(seq, rc);
2443 --pos;
2444 }
2445 return rc;
2446}
2447
2448static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2449{
2450 void *rc;
2451 struct tcp_iter_state *st = seq->private;
2452
2453 st->state = TCP_SEQ_STATE_LISTENING;
2454 rc = listening_get_idx(seq, &pos);
2455
2456 if (!rc) {
2457 st->state = TCP_SEQ_STATE_ESTABLISHED;
2458 rc = established_get_idx(seq, pos);
2459 }
2460
2461 return rc;
2462}
2463
2464static void *tcp_seek_last_pos(struct seq_file *seq)
2465{
2466 struct tcp_iter_state *st = seq->private;
2467 int bucket = st->bucket;
2468 int offset = st->offset;
2469 int orig_num = st->num;
2470 void *rc = NULL;
2471
2472 switch (st->state) {
2473 case TCP_SEQ_STATE_LISTENING:
2474 if (st->bucket >= INET_LHTABLE_SIZE)
2475 break;
2476 st->state = TCP_SEQ_STATE_LISTENING;
2477 rc = listening_get_next(seq, NULL);
2478 while (offset-- && rc && bucket == st->bucket)
2479 rc = listening_get_next(seq, rc);
2480 if (rc)
2481 break;
2482 st->bucket = 0;
2483 st->state = TCP_SEQ_STATE_ESTABLISHED;
2484 fallthrough;
2485 case TCP_SEQ_STATE_ESTABLISHED:
2486 if (st->bucket > tcp_hashinfo.ehash_mask)
2487 break;
2488 rc = established_get_first(seq);
2489 while (offset-- && rc && bucket == st->bucket)
2490 rc = established_get_next(seq, rc);
2491 }
2492
2493 st->num = orig_num;
2494
2495 return rc;
2496}
2497
2498void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2499{
2500 struct tcp_iter_state *st = seq->private;
2501 void *rc;
2502
2503 if (*pos && *pos == st->last_pos) {
2504 rc = tcp_seek_last_pos(seq);
2505 if (rc)
2506 goto out;
2507 }
2508
2509 st->state = TCP_SEQ_STATE_LISTENING;
2510 st->num = 0;
2511 st->bucket = 0;
2512 st->offset = 0;
2513 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2514
2515out:
2516 st->last_pos = *pos;
2517 return rc;
2518}
2519EXPORT_SYMBOL(tcp_seq_start);
2520
2521void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2522{
2523 struct tcp_iter_state *st = seq->private;
2524 void *rc = NULL;
2525
2526 if (v == SEQ_START_TOKEN) {
2527 rc = tcp_get_idx(seq, 0);
2528 goto out;
2529 }
2530
2531 switch (st->state) {
2532 case TCP_SEQ_STATE_LISTENING:
2533 rc = listening_get_next(seq, v);
2534 if (!rc) {
2535 st->state = TCP_SEQ_STATE_ESTABLISHED;
2536 st->bucket = 0;
2537 st->offset = 0;
2538 rc = established_get_first(seq);
2539 }
2540 break;
2541 case TCP_SEQ_STATE_ESTABLISHED:
2542 rc = established_get_next(seq, v);
2543 break;
2544 }
2545out:
2546 ++*pos;
2547 st->last_pos = *pos;
2548 return rc;
2549}
2550EXPORT_SYMBOL(tcp_seq_next);
2551
2552void tcp_seq_stop(struct seq_file *seq, void *v)
2553{
2554 struct tcp_iter_state *st = seq->private;
2555
2556 switch (st->state) {
2557 case TCP_SEQ_STATE_LISTENING:
2558 if (v != SEQ_START_TOKEN)
2559 spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock);
2560 break;
2561 case TCP_SEQ_STATE_ESTABLISHED:
2562 if (v)
2563 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2564 break;
2565 }
2566}
2567EXPORT_SYMBOL(tcp_seq_stop);
2568
2569static void get_openreq4(const struct request_sock *req,
2570 struct seq_file *f, int i)
2571{
2572 const struct inet_request_sock *ireq = inet_rsk(req);
2573 long delta = req->rsk_timer.expires - jiffies;
2574
2575 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2576 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2577 i,
2578 ireq->ir_loc_addr,
2579 ireq->ir_num,
2580 ireq->ir_rmt_addr,
2581 ntohs(ireq->ir_rmt_port),
2582 TCP_SYN_RECV,
2583 0, 0, /* could print option size, but that is af dependent. */
2584 1, /* timers active (only the expire timer) */
2585 jiffies_delta_to_clock_t(delta),
2586 req->num_timeout,
2587 from_kuid_munged(seq_user_ns(f),
2588 sock_i_uid(req->rsk_listener)),
2589 0, /* non standard timer */
2590 0, /* open_requests have no inode */
2591 0,
2592 req);
2593}
2594
2595static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2596{
2597 int timer_active;
2598 unsigned long timer_expires;
2599 const struct tcp_sock *tp = tcp_sk(sk);
2600 const struct inet_connection_sock *icsk = inet_csk(sk);
2601 const struct inet_sock *inet = inet_sk(sk);
2602 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2603 __be32 dest = inet->inet_daddr;
2604 __be32 src = inet->inet_rcv_saddr;
2605 __u16 destp = ntohs(inet->inet_dport);
2606 __u16 srcp = ntohs(inet->inet_sport);
2607 int rx_queue;
2608 int state;
2609
2610 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2611 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2612 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2613 timer_active = 1;
2614 timer_expires = icsk->icsk_timeout;
2615 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2616 timer_active = 4;
2617 timer_expires = icsk->icsk_timeout;
2618 } else if (timer_pending(&sk->sk_timer)) {
2619 timer_active = 2;
2620 timer_expires = sk->sk_timer.expires;
2621 } else {
2622 timer_active = 0;
2623 timer_expires = jiffies;
2624 }
2625
2626 state = inet_sk_state_load(sk);
2627 if (state == TCP_LISTEN)
2628 rx_queue = READ_ONCE(sk->sk_ack_backlog);
2629 else
2630 /* Because we don't lock the socket,
2631 * we might find a transient negative value.
2632 */
2633 rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2634 READ_ONCE(tp->copied_seq), 0);
2635
2636 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2637 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2638 i, src, srcp, dest, destp, state,
2639 READ_ONCE(tp->write_seq) - tp->snd_una,
2640 rx_queue,
2641 timer_active,
2642 jiffies_delta_to_clock_t(timer_expires - jiffies),
2643 icsk->icsk_retransmits,
2644 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2645 icsk->icsk_probes_out,
2646 sock_i_ino(sk),
2647 refcount_read(&sk->sk_refcnt), sk,
2648 jiffies_to_clock_t(icsk->icsk_rto),
2649 jiffies_to_clock_t(icsk->icsk_ack.ato),
2650 (icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2651 tp->snd_cwnd,
2652 state == TCP_LISTEN ?
2653 fastopenq->max_qlen :
2654 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2655}
2656
2657static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2658 struct seq_file *f, int i)
2659{
2660 long delta = tw->tw_timer.expires - jiffies;
2661 __be32 dest, src;
2662 __u16 destp, srcp;
2663
2664 dest = tw->tw_daddr;
2665 src = tw->tw_rcv_saddr;
2666 destp = ntohs(tw->tw_dport);
2667 srcp = ntohs(tw->tw_sport);
2668
2669 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2670 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2671 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2672 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2673 refcount_read(&tw->tw_refcnt), tw);
2674}
2675
2676#define TMPSZ 150
2677
2678static int tcp4_seq_show(struct seq_file *seq, void *v)
2679{
2680 struct tcp_iter_state *st;
2681 struct sock *sk = v;
2682
2683 seq_setwidth(seq, TMPSZ - 1);
2684 if (v == SEQ_START_TOKEN) {
2685 seq_puts(seq, " sl local_address rem_address st tx_queue "
2686 "rx_queue tr tm->when retrnsmt uid timeout "
2687 "inode");
2688 goto out;
2689 }
2690 st = seq->private;
2691
2692 if (sk->sk_state == TCP_TIME_WAIT)
2693 get_timewait4_sock(v, seq, st->num);
2694 else if (sk->sk_state == TCP_NEW_SYN_RECV)
2695 get_openreq4(v, seq, st->num);
2696 else
2697 get_tcp4_sock(v, seq, st->num);
2698out:
2699 seq_pad(seq, '\n');
2700 return 0;
2701}
2702
2703#ifdef CONFIG_BPF_SYSCALL
2704struct bpf_iter__tcp {
2705 __bpf_md_ptr(struct bpf_iter_meta *, meta);
2706 __bpf_md_ptr(struct sock_common *, sk_common);
2707 uid_t uid __aligned(8);
2708};
2709
2710static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2711 struct sock_common *sk_common, uid_t uid)
2712{
2713 struct bpf_iter__tcp ctx;
2714
2715 meta->seq_num--; /* skip SEQ_START_TOKEN */
2716 ctx.meta = meta;
2717 ctx.sk_common = sk_common;
2718 ctx.uid = uid;
2719 return bpf_iter_run_prog(prog, &ctx);
2720}
2721
2722static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
2723{
2724 struct bpf_iter_meta meta;
2725 struct bpf_prog *prog;
2726 struct sock *sk = v;
2727 uid_t uid;
2728
2729 if (v == SEQ_START_TOKEN)
2730 return 0;
2731
2732 if (sk->sk_state == TCP_TIME_WAIT) {
2733 uid = 0;
2734 } else if (sk->sk_state == TCP_NEW_SYN_RECV) {
2735 const struct request_sock *req = v;
2736
2737 uid = from_kuid_munged(seq_user_ns(seq),
2738 sock_i_uid(req->rsk_listener));
2739 } else {
2740 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
2741 }
2742
2743 meta.seq = seq;
2744 prog = bpf_iter_get_info(&meta, false);
2745 return tcp_prog_seq_show(prog, &meta, v, uid);
2746}
2747
2748static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
2749{
2750 struct bpf_iter_meta meta;
2751 struct bpf_prog *prog;
2752
2753 if (!v) {
2754 meta.seq = seq;
2755 prog = bpf_iter_get_info(&meta, true);
2756 if (prog)
2757 (void)tcp_prog_seq_show(prog, &meta, v, 0);
2758 }
2759
2760 tcp_seq_stop(seq, v);
2761}
2762
2763static const struct seq_operations bpf_iter_tcp_seq_ops = {
2764 .show = bpf_iter_tcp_seq_show,
2765 .start = tcp_seq_start,
2766 .next = tcp_seq_next,
2767 .stop = bpf_iter_tcp_seq_stop,
2768};
2769#endif
2770
2771static const struct seq_operations tcp4_seq_ops = {
2772 .show = tcp4_seq_show,
2773 .start = tcp_seq_start,
2774 .next = tcp_seq_next,
2775 .stop = tcp_seq_stop,
2776};
2777
2778static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2779 .family = AF_INET,
2780};
2781
2782static int __net_init tcp4_proc_init_net(struct net *net)
2783{
2784 if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
2785 sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
2786 return -ENOMEM;
2787 return 0;
2788}
2789
2790static void __net_exit tcp4_proc_exit_net(struct net *net)
2791{
2792 remove_proc_entry("tcp", net->proc_net);
2793}
2794
2795static struct pernet_operations tcp4_net_ops = {
2796 .init = tcp4_proc_init_net,
2797 .exit = tcp4_proc_exit_net,
2798};
2799
2800int __init tcp4_proc_init(void)
2801{
2802 return register_pernet_subsys(&tcp4_net_ops);
2803}
2804
2805void tcp4_proc_exit(void)
2806{
2807 unregister_pernet_subsys(&tcp4_net_ops);
2808}
2809#endif /* CONFIG_PROC_FS */
2810
2811/* @wake is one when sk_stream_write_space() calls us.
2812 * This sends EPOLLOUT only if notsent_bytes is half the limit.
2813 * This mimics the strategy used in sock_def_write_space().
2814 */
2815bool tcp_stream_memory_free(const struct sock *sk, int wake)
2816{
2817 const struct tcp_sock *tp = tcp_sk(sk);
2818 u32 notsent_bytes = READ_ONCE(tp->write_seq) -
2819 READ_ONCE(tp->snd_nxt);
2820
2821 return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
2822}
2823EXPORT_SYMBOL(tcp_stream_memory_free);
2824
2825struct proto tcp_prot = {
2826 .name = "TCP",
2827 .owner = THIS_MODULE,
2828 .close = tcp_close,
2829 .pre_connect = tcp_v4_pre_connect,
2830 .connect = tcp_v4_connect,
2831 .disconnect = tcp_disconnect,
2832 .accept = inet_csk_accept,
2833 .ioctl = tcp_ioctl,
2834 .init = tcp_v4_init_sock,
2835 .destroy = tcp_v4_destroy_sock,
2836 .shutdown = tcp_shutdown,
2837 .setsockopt = tcp_setsockopt,
2838 .getsockopt = tcp_getsockopt,
2839 .bpf_bypass_getsockopt = tcp_bpf_bypass_getsockopt,
2840 .keepalive = tcp_set_keepalive,
2841 .recvmsg = tcp_recvmsg,
2842 .sendmsg = tcp_sendmsg,
2843 .sendpage = tcp_sendpage,
2844 .backlog_rcv = tcp_v4_do_rcv,
2845 .release_cb = tcp_release_cb,
2846 .hash = inet_hash,
2847 .unhash = inet_unhash,
2848 .get_port = inet_csk_get_port,
2849#ifdef CONFIG_BPF_SYSCALL
2850 .psock_update_sk_prot = tcp_bpf_update_proto,
2851#endif
2852 .enter_memory_pressure = tcp_enter_memory_pressure,
2853 .leave_memory_pressure = tcp_leave_memory_pressure,
2854 .stream_memory_free = tcp_stream_memory_free,
2855 .sockets_allocated = &tcp_sockets_allocated,
2856 .orphan_count = &tcp_orphan_count,
2857 .memory_allocated = &tcp_memory_allocated,
2858 .memory_pressure = &tcp_memory_pressure,
2859 .sysctl_mem = sysctl_tcp_mem,
2860 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
2861 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
2862 .max_header = MAX_TCP_HEADER,
2863 .obj_size = sizeof(struct tcp_sock),
2864 .slab_flags = SLAB_TYPESAFE_BY_RCU,
2865 .twsk_prot = &tcp_timewait_sock_ops,
2866 .rsk_prot = &tcp_request_sock_ops,
2867 .h.hashinfo = &tcp_hashinfo,
2868 .no_autobind = true,
2869 .diag_destroy = tcp_abort,
2870};
2871EXPORT_SYMBOL(tcp_prot);
2872
2873static void __net_exit tcp_sk_exit(struct net *net)
2874{
2875 int cpu;
2876
2877 if (net->ipv4.tcp_congestion_control)
2878 bpf_module_put(net->ipv4.tcp_congestion_control,
2879 net->ipv4.tcp_congestion_control->owner);
2880
2881 for_each_possible_cpu(cpu)
2882 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2883 free_percpu(net->ipv4.tcp_sk);
2884}
2885
2886static int __net_init tcp_sk_init(struct net *net)
2887{
2888 int res, cpu, cnt;
2889
2890 net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2891 if (!net->ipv4.tcp_sk)
2892 return -ENOMEM;
2893
2894 for_each_possible_cpu(cpu) {
2895 struct sock *sk;
2896
2897 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2898 IPPROTO_TCP, net);
2899 if (res)
2900 goto fail;
2901 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
2902
2903 /* Please enforce IP_DF and IPID==0 for RST and
2904 * ACK sent in SYN-RECV and TIME-WAIT state.
2905 */
2906 inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
2907
2908 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2909 }
2910
2911 net->ipv4.sysctl_tcp_ecn = 2;
2912 net->ipv4.sysctl_tcp_ecn_fallback = 1;
2913
2914 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2915 net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
2916 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2917 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2918 net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
2919
2920 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2921 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2922 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2923
2924 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
2925 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
2926 net->ipv4.sysctl_tcp_syncookies = 1;
2927 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
2928 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
2929 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
2930 net->ipv4.sysctl_tcp_orphan_retries = 0;
2931 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
2932 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
2933 net->ipv4.sysctl_tcp_tw_reuse = 2;
2934 net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
2935
2936 cnt = tcp_hashinfo.ehash_mask + 1;
2937 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
2938 net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo;
2939
2940 net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 128);
2941 net->ipv4.sysctl_tcp_sack = 1;
2942 net->ipv4.sysctl_tcp_window_scaling = 1;
2943 net->ipv4.sysctl_tcp_timestamps = 1;
2944 net->ipv4.sysctl_tcp_early_retrans = 3;
2945 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
2946 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */
2947 net->ipv4.sysctl_tcp_retrans_collapse = 1;
2948 net->ipv4.sysctl_tcp_max_reordering = 300;
2949 net->ipv4.sysctl_tcp_dsack = 1;
2950 net->ipv4.sysctl_tcp_app_win = 31;
2951 net->ipv4.sysctl_tcp_adv_win_scale = 1;
2952 net->ipv4.sysctl_tcp_frto = 2;
2953 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
2954 /* This limits the percentage of the congestion window which we
2955 * will allow a single TSO frame to consume. Building TSO frames
2956 * which are too large can cause TCP streams to be bursty.
2957 */
2958 net->ipv4.sysctl_tcp_tso_win_divisor = 3;
2959 /* Default TSQ limit of 16 TSO segments */
2960 net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
2961 /* rfc5961 challenge ack rate limiting */
2962 net->ipv4.sysctl_tcp_challenge_ack_limit = 1000;
2963 net->ipv4.sysctl_tcp_min_tso_segs = 2;
2964 net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
2965 net->ipv4.sysctl_tcp_autocorking = 1;
2966 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
2967 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
2968 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
2969 if (net != &init_net) {
2970 memcpy(net->ipv4.sysctl_tcp_rmem,
2971 init_net.ipv4.sysctl_tcp_rmem,
2972 sizeof(init_net.ipv4.sysctl_tcp_rmem));
2973 memcpy(net->ipv4.sysctl_tcp_wmem,
2974 init_net.ipv4.sysctl_tcp_wmem,
2975 sizeof(init_net.ipv4.sysctl_tcp_wmem));
2976 }
2977 net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
2978 net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
2979 net->ipv4.sysctl_tcp_comp_sack_nr = 44;
2980 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
2981 spin_lock_init(&net->ipv4.tcp_fastopen_ctx_lock);
2982 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
2983 atomic_set(&net->ipv4.tfo_active_disable_times, 0);
2984
2985 /* Reno is always built in */
2986 if (!net_eq(net, &init_net) &&
2987 bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
2988 init_net.ipv4.tcp_congestion_control->owner))
2989 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
2990 else
2991 net->ipv4.tcp_congestion_control = &tcp_reno;
2992
2993 return 0;
2994fail:
2995 tcp_sk_exit(net);
2996
2997 return res;
2998}
2999
3000static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3001{
3002 struct net *net;
3003
3004 inet_twsk_purge(&tcp_hashinfo, AF_INET);
3005
3006 list_for_each_entry(net, net_exit_list, exit_list)
3007 tcp_fastopen_ctx_destroy(net);
3008}
3009
3010static struct pernet_operations __net_initdata tcp_sk_ops = {
3011 .init = tcp_sk_init,
3012 .exit = tcp_sk_exit,
3013 .exit_batch = tcp_sk_exit_batch,
3014};
3015
3016#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3017DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3018 struct sock_common *sk_common, uid_t uid)
3019
3020static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3021{
3022 struct tcp_iter_state *st = priv_data;
3023 struct tcp_seq_afinfo *afinfo;
3024 int ret;
3025
3026 afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3027 if (!afinfo)
3028 return -ENOMEM;
3029
3030 afinfo->family = AF_UNSPEC;
3031 st->bpf_seq_afinfo = afinfo;
3032 ret = bpf_iter_init_seq_net(priv_data, aux);
3033 if (ret)
3034 kfree(afinfo);
3035 return ret;
3036}
3037
3038static void bpf_iter_fini_tcp(void *priv_data)
3039{
3040 struct tcp_iter_state *st = priv_data;
3041
3042 kfree(st->bpf_seq_afinfo);
3043 bpf_iter_fini_seq_net(priv_data);
3044}
3045
3046static const struct bpf_iter_seq_info tcp_seq_info = {
3047 .seq_ops = &bpf_iter_tcp_seq_ops,
3048 .init_seq_private = bpf_iter_init_tcp,
3049 .fini_seq_private = bpf_iter_fini_tcp,
3050 .seq_priv_size = sizeof(struct tcp_iter_state),
3051};
3052
3053static struct bpf_iter_reg tcp_reg_info = {
3054 .target = "tcp",
3055 .ctx_arg_info_size = 1,
3056 .ctx_arg_info = {
3057 { offsetof(struct bpf_iter__tcp, sk_common),
3058 PTR_TO_BTF_ID_OR_NULL },
3059 },
3060 .seq_info = &tcp_seq_info,
3061};
3062
3063static void __init bpf_iter_register(void)
3064{
3065 tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3066 if (bpf_iter_reg_target(&tcp_reg_info))
3067 pr_warn("Warning: could not register bpf iterator tcp\n");
3068}
3069
3070#endif
3071
3072void __init tcp_v4_init(void)
3073{
3074 if (register_pernet_subsys(&tcp_sk_ops))
3075 panic("Failed to create the TCP control socket.\n");
3076
3077#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3078 bpf_iter_register();
3079#endif
3080}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * IPv4 specific functions
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 */
18
19/*
20 * Changes:
21 * David S. Miller : New socket lookup architecture.
22 * This code is dedicated to John Dyson.
23 * David S. Miller : Change semantics of established hash,
24 * half is devoted to TIME_WAIT sockets
25 * and the rest go in the other half.
26 * Andi Kleen : Add support for syncookies and fixed
27 * some bugs: ip options weren't passed to
28 * the TCP layer, missed a check for an
29 * ACK bit.
30 * Andi Kleen : Implemented fast path mtu discovery.
31 * Fixed many serious bugs in the
32 * request_sock handling and moved
33 * most of it into the af independent code.
34 * Added tail drop and some other bugfixes.
35 * Added new listen semantics.
36 * Mike McLagan : Routing by source
37 * Juan Jose Ciarlante: ip_dynaddr bits
38 * Andi Kleen: various fixes.
39 * Vitaly E. Lavrov : Transparent proxy revived after year
40 * coma.
41 * Andi Kleen : Fix new listen.
42 * Andi Kleen : Fix accept error reporting.
43 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
44 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
45 * a single port at the same time.
46 */
47
48#define pr_fmt(fmt) "TCP: " fmt
49
50#include <linux/bottom_half.h>
51#include <linux/types.h>
52#include <linux/fcntl.h>
53#include <linux/module.h>
54#include <linux/random.h>
55#include <linux/cache.h>
56#include <linux/jhash.h>
57#include <linux/init.h>
58#include <linux/times.h>
59#include <linux/slab.h>
60
61#include <net/net_namespace.h>
62#include <net/icmp.h>
63#include <net/inet_hashtables.h>
64#include <net/tcp.h>
65#include <net/transp_v6.h>
66#include <net/ipv6.h>
67#include <net/inet_common.h>
68#include <net/timewait_sock.h>
69#include <net/xfrm.h>
70#include <net/secure_seq.h>
71#include <net/busy_poll.h>
72
73#include <linux/inet.h>
74#include <linux/ipv6.h>
75#include <linux/stddef.h>
76#include <linux/proc_fs.h>
77#include <linux/seq_file.h>
78#include <linux/inetdevice.h>
79#include <linux/btf_ids.h>
80
81#include <crypto/hash.h>
82#include <linux/scatterlist.h>
83
84#include <trace/events/tcp.h>
85
86#ifdef CONFIG_TCP_MD5SIG
87static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
88 __be32 daddr, __be32 saddr, const struct tcphdr *th);
89#endif
90
91struct inet_hashinfo tcp_hashinfo;
92EXPORT_SYMBOL(tcp_hashinfo);
93
94static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk);
95
96static u32 tcp_v4_init_seq(const struct sk_buff *skb)
97{
98 return secure_tcp_seq(ip_hdr(skb)->daddr,
99 ip_hdr(skb)->saddr,
100 tcp_hdr(skb)->dest,
101 tcp_hdr(skb)->source);
102}
103
104static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
105{
106 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
107}
108
109int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110{
111 int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
112 const struct inet_timewait_sock *tw = inet_twsk(sktw);
113 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
114 struct tcp_sock *tp = tcp_sk(sk);
115
116 if (reuse == 2) {
117 /* Still does not detect *everything* that goes through
118 * lo, since we require a loopback src or dst address
119 * or direct binding to 'lo' interface.
120 */
121 bool loopback = false;
122 if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
123 loopback = true;
124#if IS_ENABLED(CONFIG_IPV6)
125 if (tw->tw_family == AF_INET6) {
126 if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
127 ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
128 ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
129 ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
130 loopback = true;
131 } else
132#endif
133 {
134 if (ipv4_is_loopback(tw->tw_daddr) ||
135 ipv4_is_loopback(tw->tw_rcv_saddr))
136 loopback = true;
137 }
138 if (!loopback)
139 reuse = 0;
140 }
141
142 /* With PAWS, it is safe from the viewpoint
143 of data integrity. Even without PAWS it is safe provided sequence
144 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
145
146 Actually, the idea is close to VJ's one, only timestamp cache is
147 held not per host, but per port pair and TW bucket is used as state
148 holder.
149
150 If TW bucket has been already destroyed we fall back to VJ's scheme
151 and use initial timestamp retrieved from peer table.
152 */
153 if (tcptw->tw_ts_recent_stamp &&
154 (!twp || (reuse && time_after32(ktime_get_seconds(),
155 tcptw->tw_ts_recent_stamp)))) {
156 /* In case of repair and re-using TIME-WAIT sockets we still
157 * want to be sure that it is safe as above but honor the
158 * sequence numbers and time stamps set as part of the repair
159 * process.
160 *
161 * Without this check re-using a TIME-WAIT socket with TCP
162 * repair would accumulate a -1 on the repair assigned
163 * sequence number. The first time it is reused the sequence
164 * is -1, the second time -2, etc. This fixes that issue
165 * without appearing to create any others.
166 */
167 if (likely(!tp->repair)) {
168 u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
169
170 if (!seq)
171 seq = 1;
172 WRITE_ONCE(tp->write_seq, seq);
173 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
174 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
175 }
176 sock_hold(sktw);
177 return 1;
178 }
179
180 return 0;
181}
182EXPORT_SYMBOL_GPL(tcp_twsk_unique);
183
184static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
185 int addr_len)
186{
187 /* This check is replicated from tcp_v4_connect() and intended to
188 * prevent BPF program called below from accessing bytes that are out
189 * of the bound specified by user in addr_len.
190 */
191 if (addr_len < sizeof(struct sockaddr_in))
192 return -EINVAL;
193
194 sock_owned_by_me(sk);
195
196 return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr);
197}
198
199/* This will initiate an outgoing connection. */
200int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
201{
202 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
203 struct inet_timewait_death_row *tcp_death_row;
204 struct inet_sock *inet = inet_sk(sk);
205 struct tcp_sock *tp = tcp_sk(sk);
206 struct ip_options_rcu *inet_opt;
207 struct net *net = sock_net(sk);
208 __be16 orig_sport, orig_dport;
209 __be32 daddr, nexthop;
210 struct flowi4 *fl4;
211 struct rtable *rt;
212 int err;
213
214 if (addr_len < sizeof(struct sockaddr_in))
215 return -EINVAL;
216
217 if (usin->sin_family != AF_INET)
218 return -EAFNOSUPPORT;
219
220 nexthop = daddr = usin->sin_addr.s_addr;
221 inet_opt = rcu_dereference_protected(inet->inet_opt,
222 lockdep_sock_is_held(sk));
223 if (inet_opt && inet_opt->opt.srr) {
224 if (!daddr)
225 return -EINVAL;
226 nexthop = inet_opt->opt.faddr;
227 }
228
229 orig_sport = inet->inet_sport;
230 orig_dport = usin->sin_port;
231 fl4 = &inet->cork.fl.u.ip4;
232 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
233 sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
234 orig_dport, sk);
235 if (IS_ERR(rt)) {
236 err = PTR_ERR(rt);
237 if (err == -ENETUNREACH)
238 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
239 return err;
240 }
241
242 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
243 ip_rt_put(rt);
244 return -ENETUNREACH;
245 }
246
247 if (!inet_opt || !inet_opt->opt.srr)
248 daddr = fl4->daddr;
249
250 tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
251
252 if (!inet->inet_saddr) {
253 err = inet_bhash2_update_saddr(sk, &fl4->saddr, AF_INET);
254 if (err) {
255 ip_rt_put(rt);
256 return err;
257 }
258 } else {
259 sk_rcv_saddr_set(sk, inet->inet_saddr);
260 }
261
262 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
263 /* Reset inherited state */
264 tp->rx_opt.ts_recent = 0;
265 tp->rx_opt.ts_recent_stamp = 0;
266 if (likely(!tp->repair))
267 WRITE_ONCE(tp->write_seq, 0);
268 }
269
270 inet->inet_dport = usin->sin_port;
271 sk_daddr_set(sk, daddr);
272
273 inet_csk(sk)->icsk_ext_hdr_len = 0;
274 if (inet_opt)
275 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
276
277 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
278
279 /* Socket identity is still unknown (sport may be zero).
280 * However we set state to SYN-SENT and not releasing socket
281 * lock select source port, enter ourselves into the hash tables and
282 * complete initialization after this.
283 */
284 tcp_set_state(sk, TCP_SYN_SENT);
285 err = inet_hash_connect(tcp_death_row, sk);
286 if (err)
287 goto failure;
288
289 sk_set_txhash(sk);
290
291 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
292 inet->inet_sport, inet->inet_dport, sk);
293 if (IS_ERR(rt)) {
294 err = PTR_ERR(rt);
295 rt = NULL;
296 goto failure;
297 }
298 /* OK, now commit destination to socket. */
299 sk->sk_gso_type = SKB_GSO_TCPV4;
300 sk_setup_caps(sk, &rt->dst);
301 rt = NULL;
302
303 if (likely(!tp->repair)) {
304 if (!tp->write_seq)
305 WRITE_ONCE(tp->write_seq,
306 secure_tcp_seq(inet->inet_saddr,
307 inet->inet_daddr,
308 inet->inet_sport,
309 usin->sin_port));
310 tp->tsoffset = secure_tcp_ts_off(net, inet->inet_saddr,
311 inet->inet_daddr);
312 }
313
314 inet->inet_id = get_random_u16();
315
316 if (tcp_fastopen_defer_connect(sk, &err))
317 return err;
318 if (err)
319 goto failure;
320
321 err = tcp_connect(sk);
322
323 if (err)
324 goto failure;
325
326 return 0;
327
328failure:
329 /*
330 * This unhashes the socket and releases the local port,
331 * if necessary.
332 */
333 tcp_set_state(sk, TCP_CLOSE);
334 inet_bhash2_reset_saddr(sk);
335 ip_rt_put(rt);
336 sk->sk_route_caps = 0;
337 inet->inet_dport = 0;
338 return err;
339}
340EXPORT_SYMBOL(tcp_v4_connect);
341
342/*
343 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
344 * It can be called through tcp_release_cb() if socket was owned by user
345 * at the time tcp_v4_err() was called to handle ICMP message.
346 */
347void tcp_v4_mtu_reduced(struct sock *sk)
348{
349 struct inet_sock *inet = inet_sk(sk);
350 struct dst_entry *dst;
351 u32 mtu;
352
353 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
354 return;
355 mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
356 dst = inet_csk_update_pmtu(sk, mtu);
357 if (!dst)
358 return;
359
360 /* Something is about to be wrong... Remember soft error
361 * for the case, if this connection will not able to recover.
362 */
363 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
364 sk->sk_err_soft = EMSGSIZE;
365
366 mtu = dst_mtu(dst);
367
368 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
369 ip_sk_accept_pmtu(sk) &&
370 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
371 tcp_sync_mss(sk, mtu);
372
373 /* Resend the TCP packet because it's
374 * clear that the old packet has been
375 * dropped. This is the new "fast" path mtu
376 * discovery.
377 */
378 tcp_simple_retransmit(sk);
379 } /* else let the usual retransmit timer handle it */
380}
381EXPORT_SYMBOL(tcp_v4_mtu_reduced);
382
383static void do_redirect(struct sk_buff *skb, struct sock *sk)
384{
385 struct dst_entry *dst = __sk_dst_check(sk, 0);
386
387 if (dst)
388 dst->ops->redirect(dst, sk, skb);
389}
390
391
392/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
393void tcp_req_err(struct sock *sk, u32 seq, bool abort)
394{
395 struct request_sock *req = inet_reqsk(sk);
396 struct net *net = sock_net(sk);
397
398 /* ICMPs are not backlogged, hence we cannot get
399 * an established socket here.
400 */
401 if (seq != tcp_rsk(req)->snt_isn) {
402 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
403 } else if (abort) {
404 /*
405 * Still in SYN_RECV, just remove it silently.
406 * There is no good way to pass the error to the newly
407 * created socket, and POSIX does not want network
408 * errors returned from accept().
409 */
410 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
411 tcp_listendrop(req->rsk_listener);
412 }
413 reqsk_put(req);
414}
415EXPORT_SYMBOL(tcp_req_err);
416
417/* TCP-LD (RFC 6069) logic */
418void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
419{
420 struct inet_connection_sock *icsk = inet_csk(sk);
421 struct tcp_sock *tp = tcp_sk(sk);
422 struct sk_buff *skb;
423 s32 remaining;
424 u32 delta_us;
425
426 if (sock_owned_by_user(sk))
427 return;
428
429 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
430 !icsk->icsk_backoff)
431 return;
432
433 skb = tcp_rtx_queue_head(sk);
434 if (WARN_ON_ONCE(!skb))
435 return;
436
437 icsk->icsk_backoff--;
438 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
439 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
440
441 tcp_mstamp_refresh(tp);
442 delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
443 remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
444
445 if (remaining > 0) {
446 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
447 remaining, TCP_RTO_MAX);
448 } else {
449 /* RTO revert clocked out retransmission.
450 * Will retransmit now.
451 */
452 tcp_retransmit_timer(sk);
453 }
454}
455EXPORT_SYMBOL(tcp_ld_RTO_revert);
456
457/*
458 * This routine is called by the ICMP module when it gets some
459 * sort of error condition. If err < 0 then the socket should
460 * be closed and the error returned to the user. If err > 0
461 * it's just the icmp type << 8 | icmp code. After adjustment
462 * header points to the first 8 bytes of the tcp header. We need
463 * to find the appropriate port.
464 *
465 * The locking strategy used here is very "optimistic". When
466 * someone else accesses the socket the ICMP is just dropped
467 * and for some paths there is no check at all.
468 * A more general error queue to queue errors for later handling
469 * is probably better.
470 *
471 */
472
473int tcp_v4_err(struct sk_buff *skb, u32 info)
474{
475 const struct iphdr *iph = (const struct iphdr *)skb->data;
476 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
477 struct tcp_sock *tp;
478 struct inet_sock *inet;
479 const int type = icmp_hdr(skb)->type;
480 const int code = icmp_hdr(skb)->code;
481 struct sock *sk;
482 struct request_sock *fastopen;
483 u32 seq, snd_una;
484 int err;
485 struct net *net = dev_net(skb->dev);
486
487 sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
488 iph->daddr, th->dest, iph->saddr,
489 ntohs(th->source), inet_iif(skb), 0);
490 if (!sk) {
491 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
492 return -ENOENT;
493 }
494 if (sk->sk_state == TCP_TIME_WAIT) {
495 inet_twsk_put(inet_twsk(sk));
496 return 0;
497 }
498 seq = ntohl(th->seq);
499 if (sk->sk_state == TCP_NEW_SYN_RECV) {
500 tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
501 type == ICMP_TIME_EXCEEDED ||
502 (type == ICMP_DEST_UNREACH &&
503 (code == ICMP_NET_UNREACH ||
504 code == ICMP_HOST_UNREACH)));
505 return 0;
506 }
507
508 bh_lock_sock(sk);
509 /* If too many ICMPs get dropped on busy
510 * servers this needs to be solved differently.
511 * We do take care of PMTU discovery (RFC1191) special case :
512 * we can receive locally generated ICMP messages while socket is held.
513 */
514 if (sock_owned_by_user(sk)) {
515 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
516 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
517 }
518 if (sk->sk_state == TCP_CLOSE)
519 goto out;
520
521 if (static_branch_unlikely(&ip4_min_ttl)) {
522 /* min_ttl can be changed concurrently from do_ip_setsockopt() */
523 if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
524 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
525 goto out;
526 }
527 }
528
529 tp = tcp_sk(sk);
530 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
531 fastopen = rcu_dereference(tp->fastopen_rsk);
532 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
533 if (sk->sk_state != TCP_LISTEN &&
534 !between(seq, snd_una, tp->snd_nxt)) {
535 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
536 goto out;
537 }
538
539 switch (type) {
540 case ICMP_REDIRECT:
541 if (!sock_owned_by_user(sk))
542 do_redirect(skb, sk);
543 goto out;
544 case ICMP_SOURCE_QUENCH:
545 /* Just silently ignore these. */
546 goto out;
547 case ICMP_PARAMETERPROB:
548 err = EPROTO;
549 break;
550 case ICMP_DEST_UNREACH:
551 if (code > NR_ICMP_UNREACH)
552 goto out;
553
554 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
555 /* We are not interested in TCP_LISTEN and open_requests
556 * (SYN-ACKs send out by Linux are always <576bytes so
557 * they should go through unfragmented).
558 */
559 if (sk->sk_state == TCP_LISTEN)
560 goto out;
561
562 WRITE_ONCE(tp->mtu_info, info);
563 if (!sock_owned_by_user(sk)) {
564 tcp_v4_mtu_reduced(sk);
565 } else {
566 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
567 sock_hold(sk);
568 }
569 goto out;
570 }
571
572 err = icmp_err_convert[code].errno;
573 /* check if this ICMP message allows revert of backoff.
574 * (see RFC 6069)
575 */
576 if (!fastopen &&
577 (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
578 tcp_ld_RTO_revert(sk, seq);
579 break;
580 case ICMP_TIME_EXCEEDED:
581 err = EHOSTUNREACH;
582 break;
583 default:
584 goto out;
585 }
586
587 switch (sk->sk_state) {
588 case TCP_SYN_SENT:
589 case TCP_SYN_RECV:
590 /* Only in fast or simultaneous open. If a fast open socket is
591 * already accepted it is treated as a connected one below.
592 */
593 if (fastopen && !fastopen->sk)
594 break;
595
596 ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
597
598 if (!sock_owned_by_user(sk)) {
599 sk->sk_err = err;
600
601 sk_error_report(sk);
602
603 tcp_done(sk);
604 } else {
605 sk->sk_err_soft = err;
606 }
607 goto out;
608 }
609
610 /* If we've already connected we will keep trying
611 * until we time out, or the user gives up.
612 *
613 * rfc1122 4.2.3.9 allows to consider as hard errors
614 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
615 * but it is obsoleted by pmtu discovery).
616 *
617 * Note, that in modern internet, where routing is unreliable
618 * and in each dark corner broken firewalls sit, sending random
619 * errors ordered by their masters even this two messages finally lose
620 * their original sense (even Linux sends invalid PORT_UNREACHs)
621 *
622 * Now we are in compliance with RFCs.
623 * --ANK (980905)
624 */
625
626 inet = inet_sk(sk);
627 if (!sock_owned_by_user(sk) && inet->recverr) {
628 sk->sk_err = err;
629 sk_error_report(sk);
630 } else { /* Only an error on timeout */
631 sk->sk_err_soft = err;
632 }
633
634out:
635 bh_unlock_sock(sk);
636 sock_put(sk);
637 return 0;
638}
639
640void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
641{
642 struct tcphdr *th = tcp_hdr(skb);
643
644 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
645 skb->csum_start = skb_transport_header(skb) - skb->head;
646 skb->csum_offset = offsetof(struct tcphdr, check);
647}
648
649/* This routine computes an IPv4 TCP checksum. */
650void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
651{
652 const struct inet_sock *inet = inet_sk(sk);
653
654 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
655}
656EXPORT_SYMBOL(tcp_v4_send_check);
657
658/*
659 * This routine will send an RST to the other tcp.
660 *
661 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
662 * for reset.
663 * Answer: if a packet caused RST, it is not for a socket
664 * existing in our system, if it is matched to a socket,
665 * it is just duplicate segment or bug in other side's TCP.
666 * So that we build reply only basing on parameters
667 * arrived with segment.
668 * Exception: precedence violation. We do not implement it in any case.
669 */
670
671#ifdef CONFIG_TCP_MD5SIG
672#define OPTION_BYTES TCPOLEN_MD5SIG_ALIGNED
673#else
674#define OPTION_BYTES sizeof(__be32)
675#endif
676
677static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
678{
679 const struct tcphdr *th = tcp_hdr(skb);
680 struct {
681 struct tcphdr th;
682 __be32 opt[OPTION_BYTES / sizeof(__be32)];
683 } rep;
684 struct ip_reply_arg arg;
685#ifdef CONFIG_TCP_MD5SIG
686 struct tcp_md5sig_key *key = NULL;
687 const __u8 *hash_location = NULL;
688 unsigned char newhash[16];
689 int genhash;
690 struct sock *sk1 = NULL;
691#endif
692 u64 transmit_time = 0;
693 struct sock *ctl_sk;
694 struct net *net;
695
696 /* Never send a reset in response to a reset. */
697 if (th->rst)
698 return;
699
700 /* If sk not NULL, it means we did a successful lookup and incoming
701 * route had to be correct. prequeue might have dropped our dst.
702 */
703 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
704 return;
705
706 /* Swap the send and the receive. */
707 memset(&rep, 0, sizeof(rep));
708 rep.th.dest = th->source;
709 rep.th.source = th->dest;
710 rep.th.doff = sizeof(struct tcphdr) / 4;
711 rep.th.rst = 1;
712
713 if (th->ack) {
714 rep.th.seq = th->ack_seq;
715 } else {
716 rep.th.ack = 1;
717 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
718 skb->len - (th->doff << 2));
719 }
720
721 memset(&arg, 0, sizeof(arg));
722 arg.iov[0].iov_base = (unsigned char *)&rep;
723 arg.iov[0].iov_len = sizeof(rep.th);
724
725 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
726#ifdef CONFIG_TCP_MD5SIG
727 rcu_read_lock();
728 hash_location = tcp_parse_md5sig_option(th);
729 if (sk && sk_fullsock(sk)) {
730 const union tcp_md5_addr *addr;
731 int l3index;
732
733 /* sdif set, means packet ingressed via a device
734 * in an L3 domain and inet_iif is set to it.
735 */
736 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
737 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
738 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
739 } else if (hash_location) {
740 const union tcp_md5_addr *addr;
741 int sdif = tcp_v4_sdif(skb);
742 int dif = inet_iif(skb);
743 int l3index;
744
745 /*
746 * active side is lost. Try to find listening socket through
747 * source port, and then find md5 key through listening socket.
748 * we are not loose security here:
749 * Incoming packet is checked with md5 hash with finding key,
750 * no RST generated if md5 hash doesn't match.
751 */
752 sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
753 NULL, 0, ip_hdr(skb)->saddr,
754 th->source, ip_hdr(skb)->daddr,
755 ntohs(th->source), dif, sdif);
756 /* don't send rst if it can't find key */
757 if (!sk1)
758 goto out;
759
760 /* sdif set, means packet ingressed via a device
761 * in an L3 domain and dif is set to it.
762 */
763 l3index = sdif ? dif : 0;
764 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
765 key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
766 if (!key)
767 goto out;
768
769
770 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
771 if (genhash || memcmp(hash_location, newhash, 16) != 0)
772 goto out;
773
774 }
775
776 if (key) {
777 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
778 (TCPOPT_NOP << 16) |
779 (TCPOPT_MD5SIG << 8) |
780 TCPOLEN_MD5SIG);
781 /* Update length and the length the header thinks exists */
782 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
783 rep.th.doff = arg.iov[0].iov_len / 4;
784
785 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
786 key, ip_hdr(skb)->saddr,
787 ip_hdr(skb)->daddr, &rep.th);
788 }
789#endif
790 /* Can't co-exist with TCPMD5, hence check rep.opt[0] */
791 if (rep.opt[0] == 0) {
792 __be32 mrst = mptcp_reset_option(skb);
793
794 if (mrst) {
795 rep.opt[0] = mrst;
796 arg.iov[0].iov_len += sizeof(mrst);
797 rep.th.doff = arg.iov[0].iov_len / 4;
798 }
799 }
800
801 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
802 ip_hdr(skb)->saddr, /* XXX */
803 arg.iov[0].iov_len, IPPROTO_TCP, 0);
804 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
805 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
806
807 /* When socket is gone, all binding information is lost.
808 * routing might fail in this case. No choice here, if we choose to force
809 * input interface, we will misroute in case of asymmetric route.
810 */
811 if (sk) {
812 arg.bound_dev_if = sk->sk_bound_dev_if;
813 if (sk_fullsock(sk))
814 trace_tcp_send_reset(sk, skb);
815 }
816
817 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
818 offsetof(struct inet_timewait_sock, tw_bound_dev_if));
819
820 arg.tos = ip_hdr(skb)->tos;
821 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
822 local_bh_disable();
823 ctl_sk = this_cpu_read(ipv4_tcp_sk);
824 sock_net_set(ctl_sk, net);
825 if (sk) {
826 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
827 inet_twsk(sk)->tw_mark : sk->sk_mark;
828 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
829 inet_twsk(sk)->tw_priority : sk->sk_priority;
830 transmit_time = tcp_transmit_time(sk);
831 xfrm_sk_clone_policy(ctl_sk, sk);
832 }
833 ip_send_unicast_reply(ctl_sk,
834 skb, &TCP_SKB_CB(skb)->header.h4.opt,
835 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
836 &arg, arg.iov[0].iov_len,
837 transmit_time);
838
839 ctl_sk->sk_mark = 0;
840 xfrm_sk_free_policy(ctl_sk);
841 sock_net_set(ctl_sk, &init_net);
842 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
843 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
844 local_bh_enable();
845
846#ifdef CONFIG_TCP_MD5SIG
847out:
848 rcu_read_unlock();
849#endif
850}
851
852/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
853 outside socket context is ugly, certainly. What can I do?
854 */
855
856static void tcp_v4_send_ack(const struct sock *sk,
857 struct sk_buff *skb, u32 seq, u32 ack,
858 u32 win, u32 tsval, u32 tsecr, int oif,
859 struct tcp_md5sig_key *key,
860 int reply_flags, u8 tos)
861{
862 const struct tcphdr *th = tcp_hdr(skb);
863 struct {
864 struct tcphdr th;
865 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
866#ifdef CONFIG_TCP_MD5SIG
867 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
868#endif
869 ];
870 } rep;
871 struct net *net = sock_net(sk);
872 struct ip_reply_arg arg;
873 struct sock *ctl_sk;
874 u64 transmit_time;
875
876 memset(&rep.th, 0, sizeof(struct tcphdr));
877 memset(&arg, 0, sizeof(arg));
878
879 arg.iov[0].iov_base = (unsigned char *)&rep;
880 arg.iov[0].iov_len = sizeof(rep.th);
881 if (tsecr) {
882 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
883 (TCPOPT_TIMESTAMP << 8) |
884 TCPOLEN_TIMESTAMP);
885 rep.opt[1] = htonl(tsval);
886 rep.opt[2] = htonl(tsecr);
887 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
888 }
889
890 /* Swap the send and the receive. */
891 rep.th.dest = th->source;
892 rep.th.source = th->dest;
893 rep.th.doff = arg.iov[0].iov_len / 4;
894 rep.th.seq = htonl(seq);
895 rep.th.ack_seq = htonl(ack);
896 rep.th.ack = 1;
897 rep.th.window = htons(win);
898
899#ifdef CONFIG_TCP_MD5SIG
900 if (key) {
901 int offset = (tsecr) ? 3 : 0;
902
903 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
904 (TCPOPT_NOP << 16) |
905 (TCPOPT_MD5SIG << 8) |
906 TCPOLEN_MD5SIG);
907 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
908 rep.th.doff = arg.iov[0].iov_len/4;
909
910 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
911 key, ip_hdr(skb)->saddr,
912 ip_hdr(skb)->daddr, &rep.th);
913 }
914#endif
915 arg.flags = reply_flags;
916 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
917 ip_hdr(skb)->saddr, /* XXX */
918 arg.iov[0].iov_len, IPPROTO_TCP, 0);
919 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
920 if (oif)
921 arg.bound_dev_if = oif;
922 arg.tos = tos;
923 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
924 local_bh_disable();
925 ctl_sk = this_cpu_read(ipv4_tcp_sk);
926 sock_net_set(ctl_sk, net);
927 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
928 inet_twsk(sk)->tw_mark : sk->sk_mark;
929 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
930 inet_twsk(sk)->tw_priority : sk->sk_priority;
931 transmit_time = tcp_transmit_time(sk);
932 ip_send_unicast_reply(ctl_sk,
933 skb, &TCP_SKB_CB(skb)->header.h4.opt,
934 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
935 &arg, arg.iov[0].iov_len,
936 transmit_time);
937
938 ctl_sk->sk_mark = 0;
939 sock_net_set(ctl_sk, &init_net);
940 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
941 local_bh_enable();
942}
943
944static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
945{
946 struct inet_timewait_sock *tw = inet_twsk(sk);
947 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
948
949 tcp_v4_send_ack(sk, skb,
950 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
951 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
952 tcp_time_stamp_raw() + tcptw->tw_ts_offset,
953 tcptw->tw_ts_recent,
954 tw->tw_bound_dev_if,
955 tcp_twsk_md5_key(tcptw),
956 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
957 tw->tw_tos
958 );
959
960 inet_twsk_put(tw);
961}
962
963static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
964 struct request_sock *req)
965{
966 const union tcp_md5_addr *addr;
967 int l3index;
968
969 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
970 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
971 */
972 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
973 tcp_sk(sk)->snd_nxt;
974
975 /* RFC 7323 2.3
976 * The window field (SEG.WND) of every outgoing segment, with the
977 * exception of <SYN> segments, MUST be right-shifted by
978 * Rcv.Wind.Shift bits:
979 */
980 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
981 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
982 tcp_v4_send_ack(sk, skb, seq,
983 tcp_rsk(req)->rcv_nxt,
984 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
985 tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
986 req->ts_recent,
987 0,
988 tcp_md5_do_lookup(sk, l3index, addr, AF_INET),
989 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
990 ip_hdr(skb)->tos);
991}
992
993/*
994 * Send a SYN-ACK after having received a SYN.
995 * This still operates on a request_sock only, not on a big
996 * socket.
997 */
998static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
999 struct flowi *fl,
1000 struct request_sock *req,
1001 struct tcp_fastopen_cookie *foc,
1002 enum tcp_synack_type synack_type,
1003 struct sk_buff *syn_skb)
1004{
1005 const struct inet_request_sock *ireq = inet_rsk(req);
1006 struct flowi4 fl4;
1007 int err = -1;
1008 struct sk_buff *skb;
1009 u8 tos;
1010
1011 /* First, grab a route. */
1012 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1013 return -1;
1014
1015 skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1016
1017 if (skb) {
1018 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1019
1020 tos = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos) ?
1021 (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1022 (inet_sk(sk)->tos & INET_ECN_MASK) :
1023 inet_sk(sk)->tos;
1024
1025 if (!INET_ECN_is_capable(tos) &&
1026 tcp_bpf_ca_needs_ecn((struct sock *)req))
1027 tos |= INET_ECN_ECT_0;
1028
1029 rcu_read_lock();
1030 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1031 ireq->ir_rmt_addr,
1032 rcu_dereference(ireq->ireq_opt),
1033 tos);
1034 rcu_read_unlock();
1035 err = net_xmit_eval(err);
1036 }
1037
1038 return err;
1039}
1040
1041/*
1042 * IPv4 request_sock destructor.
1043 */
1044static void tcp_v4_reqsk_destructor(struct request_sock *req)
1045{
1046 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1047}
1048
1049#ifdef CONFIG_TCP_MD5SIG
1050/*
1051 * RFC2385 MD5 checksumming requires a mapping of
1052 * IP address->MD5 Key.
1053 * We need to maintain these in the sk structure.
1054 */
1055
1056DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1057EXPORT_SYMBOL(tcp_md5_needed);
1058
1059static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1060{
1061 if (!old)
1062 return true;
1063
1064 /* l3index always overrides non-l3index */
1065 if (old->l3index && new->l3index == 0)
1066 return false;
1067 if (old->l3index == 0 && new->l3index)
1068 return true;
1069
1070 return old->prefixlen < new->prefixlen;
1071}
1072
1073/* Find the Key structure for an address. */
1074struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1075 const union tcp_md5_addr *addr,
1076 int family)
1077{
1078 const struct tcp_sock *tp = tcp_sk(sk);
1079 struct tcp_md5sig_key *key;
1080 const struct tcp_md5sig_info *md5sig;
1081 __be32 mask;
1082 struct tcp_md5sig_key *best_match = NULL;
1083 bool match;
1084
1085 /* caller either holds rcu_read_lock() or socket lock */
1086 md5sig = rcu_dereference_check(tp->md5sig_info,
1087 lockdep_sock_is_held(sk));
1088 if (!md5sig)
1089 return NULL;
1090
1091 hlist_for_each_entry_rcu(key, &md5sig->head, node,
1092 lockdep_sock_is_held(sk)) {
1093 if (key->family != family)
1094 continue;
1095 if (key->flags & TCP_MD5SIG_FLAG_IFINDEX && key->l3index != l3index)
1096 continue;
1097 if (family == AF_INET) {
1098 mask = inet_make_mask(key->prefixlen);
1099 match = (key->addr.a4.s_addr & mask) ==
1100 (addr->a4.s_addr & mask);
1101#if IS_ENABLED(CONFIG_IPV6)
1102 } else if (family == AF_INET6) {
1103 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1104 key->prefixlen);
1105#endif
1106 } else {
1107 match = false;
1108 }
1109
1110 if (match && better_md5_match(best_match, key))
1111 best_match = key;
1112 }
1113 return best_match;
1114}
1115EXPORT_SYMBOL(__tcp_md5_do_lookup);
1116
1117static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1118 const union tcp_md5_addr *addr,
1119 int family, u8 prefixlen,
1120 int l3index, u8 flags)
1121{
1122 const struct tcp_sock *tp = tcp_sk(sk);
1123 struct tcp_md5sig_key *key;
1124 unsigned int size = sizeof(struct in_addr);
1125 const struct tcp_md5sig_info *md5sig;
1126
1127 /* caller either holds rcu_read_lock() or socket lock */
1128 md5sig = rcu_dereference_check(tp->md5sig_info,
1129 lockdep_sock_is_held(sk));
1130 if (!md5sig)
1131 return NULL;
1132#if IS_ENABLED(CONFIG_IPV6)
1133 if (family == AF_INET6)
1134 size = sizeof(struct in6_addr);
1135#endif
1136 hlist_for_each_entry_rcu(key, &md5sig->head, node,
1137 lockdep_sock_is_held(sk)) {
1138 if (key->family != family)
1139 continue;
1140 if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1141 continue;
1142 if (key->l3index != l3index)
1143 continue;
1144 if (!memcmp(&key->addr, addr, size) &&
1145 key->prefixlen == prefixlen)
1146 return key;
1147 }
1148 return NULL;
1149}
1150
1151struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1152 const struct sock *addr_sk)
1153{
1154 const union tcp_md5_addr *addr;
1155 int l3index;
1156
1157 l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1158 addr_sk->sk_bound_dev_if);
1159 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1160 return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1161}
1162EXPORT_SYMBOL(tcp_v4_md5_lookup);
1163
1164static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
1165{
1166 struct tcp_sock *tp = tcp_sk(sk);
1167 struct tcp_md5sig_info *md5sig;
1168
1169 md5sig = kmalloc(sizeof(*md5sig), gfp);
1170 if (!md5sig)
1171 return -ENOMEM;
1172
1173 sk_gso_disable(sk);
1174 INIT_HLIST_HEAD(&md5sig->head);
1175 rcu_assign_pointer(tp->md5sig_info, md5sig);
1176 return 0;
1177}
1178
1179/* This can be called on a newly created socket, from other files */
1180static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1181 int family, u8 prefixlen, int l3index, u8 flags,
1182 const u8 *newkey, u8 newkeylen, gfp_t gfp)
1183{
1184 /* Add Key to the list */
1185 struct tcp_md5sig_key *key;
1186 struct tcp_sock *tp = tcp_sk(sk);
1187 struct tcp_md5sig_info *md5sig;
1188
1189 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1190 if (key) {
1191 /* Pre-existing entry - just update that one.
1192 * Note that the key might be used concurrently.
1193 * data_race() is telling kcsan that we do not care of
1194 * key mismatches, since changing MD5 key on live flows
1195 * can lead to packet drops.
1196 */
1197 data_race(memcpy(key->key, newkey, newkeylen));
1198
1199 /* Pairs with READ_ONCE() in tcp_md5_hash_key().
1200 * Also note that a reader could catch new key->keylen value
1201 * but old key->key[], this is the reason we use __GFP_ZERO
1202 * at sock_kmalloc() time below these lines.
1203 */
1204 WRITE_ONCE(key->keylen, newkeylen);
1205
1206 return 0;
1207 }
1208
1209 md5sig = rcu_dereference_protected(tp->md5sig_info,
1210 lockdep_sock_is_held(sk));
1211
1212 key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1213 if (!key)
1214 return -ENOMEM;
1215 if (!tcp_alloc_md5sig_pool()) {
1216 sock_kfree_s(sk, key, sizeof(*key));
1217 return -ENOMEM;
1218 }
1219
1220 memcpy(key->key, newkey, newkeylen);
1221 key->keylen = newkeylen;
1222 key->family = family;
1223 key->prefixlen = prefixlen;
1224 key->l3index = l3index;
1225 key->flags = flags;
1226 memcpy(&key->addr, addr,
1227 (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1228 sizeof(struct in_addr));
1229 hlist_add_head_rcu(&key->node, &md5sig->head);
1230 return 0;
1231}
1232
1233int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1234 int family, u8 prefixlen, int l3index, u8 flags,
1235 const u8 *newkey, u8 newkeylen)
1236{
1237 struct tcp_sock *tp = tcp_sk(sk);
1238
1239 if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1240 if (tcp_md5sig_info_add(sk, GFP_KERNEL))
1241 return -ENOMEM;
1242
1243 if (!static_branch_inc(&tcp_md5_needed.key)) {
1244 struct tcp_md5sig_info *md5sig;
1245
1246 md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1247 rcu_assign_pointer(tp->md5sig_info, NULL);
1248 kfree_rcu(md5sig, rcu);
1249 return -EUSERS;
1250 }
1251 }
1252
1253 return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1254 newkey, newkeylen, GFP_KERNEL);
1255}
1256EXPORT_SYMBOL(tcp_md5_do_add);
1257
1258int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1259 int family, u8 prefixlen, int l3index,
1260 struct tcp_md5sig_key *key)
1261{
1262 struct tcp_sock *tp = tcp_sk(sk);
1263
1264 if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1265 if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC)))
1266 return -ENOMEM;
1267
1268 if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1269 struct tcp_md5sig_info *md5sig;
1270
1271 md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1272 net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1273 rcu_assign_pointer(tp->md5sig_info, NULL);
1274 kfree_rcu(md5sig, rcu);
1275 return -EUSERS;
1276 }
1277 }
1278
1279 return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1280 key->flags, key->key, key->keylen,
1281 sk_gfp_mask(sk, GFP_ATOMIC));
1282}
1283EXPORT_SYMBOL(tcp_md5_key_copy);
1284
1285int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1286 u8 prefixlen, int l3index, u8 flags)
1287{
1288 struct tcp_md5sig_key *key;
1289
1290 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1291 if (!key)
1292 return -ENOENT;
1293 hlist_del_rcu(&key->node);
1294 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1295 kfree_rcu(key, rcu);
1296 return 0;
1297}
1298EXPORT_SYMBOL(tcp_md5_do_del);
1299
1300static void tcp_clear_md5_list(struct sock *sk)
1301{
1302 struct tcp_sock *tp = tcp_sk(sk);
1303 struct tcp_md5sig_key *key;
1304 struct hlist_node *n;
1305 struct tcp_md5sig_info *md5sig;
1306
1307 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1308
1309 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1310 hlist_del_rcu(&key->node);
1311 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1312 kfree_rcu(key, rcu);
1313 }
1314}
1315
1316static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1317 sockptr_t optval, int optlen)
1318{
1319 struct tcp_md5sig cmd;
1320 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1321 const union tcp_md5_addr *addr;
1322 u8 prefixlen = 32;
1323 int l3index = 0;
1324 u8 flags;
1325
1326 if (optlen < sizeof(cmd))
1327 return -EINVAL;
1328
1329 if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1330 return -EFAULT;
1331
1332 if (sin->sin_family != AF_INET)
1333 return -EINVAL;
1334
1335 flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1336
1337 if (optname == TCP_MD5SIG_EXT &&
1338 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1339 prefixlen = cmd.tcpm_prefixlen;
1340 if (prefixlen > 32)
1341 return -EINVAL;
1342 }
1343
1344 if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1345 cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1346 struct net_device *dev;
1347
1348 rcu_read_lock();
1349 dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1350 if (dev && netif_is_l3_master(dev))
1351 l3index = dev->ifindex;
1352
1353 rcu_read_unlock();
1354
1355 /* ok to reference set/not set outside of rcu;
1356 * right now device MUST be an L3 master
1357 */
1358 if (!dev || !l3index)
1359 return -EINVAL;
1360 }
1361
1362 addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1363
1364 if (!cmd.tcpm_keylen)
1365 return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1366
1367 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1368 return -EINVAL;
1369
1370 return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1371 cmd.tcpm_key, cmd.tcpm_keylen);
1372}
1373
1374static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1375 __be32 daddr, __be32 saddr,
1376 const struct tcphdr *th, int nbytes)
1377{
1378 struct tcp4_pseudohdr *bp;
1379 struct scatterlist sg;
1380 struct tcphdr *_th;
1381
1382 bp = hp->scratch;
1383 bp->saddr = saddr;
1384 bp->daddr = daddr;
1385 bp->pad = 0;
1386 bp->protocol = IPPROTO_TCP;
1387 bp->len = cpu_to_be16(nbytes);
1388
1389 _th = (struct tcphdr *)(bp + 1);
1390 memcpy(_th, th, sizeof(*th));
1391 _th->check = 0;
1392
1393 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1394 ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1395 sizeof(*bp) + sizeof(*th));
1396 return crypto_ahash_update(hp->md5_req);
1397}
1398
1399static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1400 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1401{
1402 struct tcp_md5sig_pool *hp;
1403 struct ahash_request *req;
1404
1405 hp = tcp_get_md5sig_pool();
1406 if (!hp)
1407 goto clear_hash_noput;
1408 req = hp->md5_req;
1409
1410 if (crypto_ahash_init(req))
1411 goto clear_hash;
1412 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1413 goto clear_hash;
1414 if (tcp_md5_hash_key(hp, key))
1415 goto clear_hash;
1416 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1417 if (crypto_ahash_final(req))
1418 goto clear_hash;
1419
1420 tcp_put_md5sig_pool();
1421 return 0;
1422
1423clear_hash:
1424 tcp_put_md5sig_pool();
1425clear_hash_noput:
1426 memset(md5_hash, 0, 16);
1427 return 1;
1428}
1429
1430int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1431 const struct sock *sk,
1432 const struct sk_buff *skb)
1433{
1434 struct tcp_md5sig_pool *hp;
1435 struct ahash_request *req;
1436 const struct tcphdr *th = tcp_hdr(skb);
1437 __be32 saddr, daddr;
1438
1439 if (sk) { /* valid for establish/request sockets */
1440 saddr = sk->sk_rcv_saddr;
1441 daddr = sk->sk_daddr;
1442 } else {
1443 const struct iphdr *iph = ip_hdr(skb);
1444 saddr = iph->saddr;
1445 daddr = iph->daddr;
1446 }
1447
1448 hp = tcp_get_md5sig_pool();
1449 if (!hp)
1450 goto clear_hash_noput;
1451 req = hp->md5_req;
1452
1453 if (crypto_ahash_init(req))
1454 goto clear_hash;
1455
1456 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1457 goto clear_hash;
1458 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1459 goto clear_hash;
1460 if (tcp_md5_hash_key(hp, key))
1461 goto clear_hash;
1462 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1463 if (crypto_ahash_final(req))
1464 goto clear_hash;
1465
1466 tcp_put_md5sig_pool();
1467 return 0;
1468
1469clear_hash:
1470 tcp_put_md5sig_pool();
1471clear_hash_noput:
1472 memset(md5_hash, 0, 16);
1473 return 1;
1474}
1475EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1476
1477#endif
1478
1479static void tcp_v4_init_req(struct request_sock *req,
1480 const struct sock *sk_listener,
1481 struct sk_buff *skb)
1482{
1483 struct inet_request_sock *ireq = inet_rsk(req);
1484 struct net *net = sock_net(sk_listener);
1485
1486 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1487 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1488 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1489}
1490
1491static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1492 struct sk_buff *skb,
1493 struct flowi *fl,
1494 struct request_sock *req)
1495{
1496 tcp_v4_init_req(req, sk, skb);
1497
1498 if (security_inet_conn_request(sk, skb, req))
1499 return NULL;
1500
1501 return inet_csk_route_req(sk, &fl->u.ip4, req);
1502}
1503
1504struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1505 .family = PF_INET,
1506 .obj_size = sizeof(struct tcp_request_sock),
1507 .rtx_syn_ack = tcp_rtx_synack,
1508 .send_ack = tcp_v4_reqsk_send_ack,
1509 .destructor = tcp_v4_reqsk_destructor,
1510 .send_reset = tcp_v4_send_reset,
1511 .syn_ack_timeout = tcp_syn_ack_timeout,
1512};
1513
1514const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1515 .mss_clamp = TCP_MSS_DEFAULT,
1516#ifdef CONFIG_TCP_MD5SIG
1517 .req_md5_lookup = tcp_v4_md5_lookup,
1518 .calc_md5_hash = tcp_v4_md5_hash_skb,
1519#endif
1520#ifdef CONFIG_SYN_COOKIES
1521 .cookie_init_seq = cookie_v4_init_sequence,
1522#endif
1523 .route_req = tcp_v4_route_req,
1524 .init_seq = tcp_v4_init_seq,
1525 .init_ts_off = tcp_v4_init_ts_off,
1526 .send_synack = tcp_v4_send_synack,
1527};
1528
1529int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1530{
1531 /* Never answer to SYNs send to broadcast or multicast */
1532 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1533 goto drop;
1534
1535 return tcp_conn_request(&tcp_request_sock_ops,
1536 &tcp_request_sock_ipv4_ops, sk, skb);
1537
1538drop:
1539 tcp_listendrop(sk);
1540 return 0;
1541}
1542EXPORT_SYMBOL(tcp_v4_conn_request);
1543
1544
1545/*
1546 * The three way handshake has completed - we got a valid synack -
1547 * now create the new socket.
1548 */
1549struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1550 struct request_sock *req,
1551 struct dst_entry *dst,
1552 struct request_sock *req_unhash,
1553 bool *own_req)
1554{
1555 struct inet_request_sock *ireq;
1556 bool found_dup_sk = false;
1557 struct inet_sock *newinet;
1558 struct tcp_sock *newtp;
1559 struct sock *newsk;
1560#ifdef CONFIG_TCP_MD5SIG
1561 const union tcp_md5_addr *addr;
1562 struct tcp_md5sig_key *key;
1563 int l3index;
1564#endif
1565 struct ip_options_rcu *inet_opt;
1566
1567 if (sk_acceptq_is_full(sk))
1568 goto exit_overflow;
1569
1570 newsk = tcp_create_openreq_child(sk, req, skb);
1571 if (!newsk)
1572 goto exit_nonewsk;
1573
1574 newsk->sk_gso_type = SKB_GSO_TCPV4;
1575 inet_sk_rx_dst_set(newsk, skb);
1576
1577 newtp = tcp_sk(newsk);
1578 newinet = inet_sk(newsk);
1579 ireq = inet_rsk(req);
1580 sk_daddr_set(newsk, ireq->ir_rmt_addr);
1581 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1582 newsk->sk_bound_dev_if = ireq->ir_iif;
1583 newinet->inet_saddr = ireq->ir_loc_addr;
1584 inet_opt = rcu_dereference(ireq->ireq_opt);
1585 RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1586 newinet->mc_index = inet_iif(skb);
1587 newinet->mc_ttl = ip_hdr(skb)->ttl;
1588 newinet->rcv_tos = ip_hdr(skb)->tos;
1589 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1590 if (inet_opt)
1591 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1592 newinet->inet_id = get_random_u16();
1593
1594 /* Set ToS of the new socket based upon the value of incoming SYN.
1595 * ECT bits are set later in tcp_init_transfer().
1596 */
1597 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1598 newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1599
1600 if (!dst) {
1601 dst = inet_csk_route_child_sock(sk, newsk, req);
1602 if (!dst)
1603 goto put_and_exit;
1604 } else {
1605 /* syncookie case : see end of cookie_v4_check() */
1606 }
1607 sk_setup_caps(newsk, dst);
1608
1609 tcp_ca_openreq_child(newsk, dst);
1610
1611 tcp_sync_mss(newsk, dst_mtu(dst));
1612 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1613
1614 tcp_initialize_rcv_mss(newsk);
1615
1616#ifdef CONFIG_TCP_MD5SIG
1617 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1618 /* Copy over the MD5 key from the original socket */
1619 addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1620 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1621 if (key) {
1622 if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1623 goto put_and_exit;
1624 sk_gso_disable(newsk);
1625 }
1626#endif
1627
1628 if (__inet_inherit_port(sk, newsk) < 0)
1629 goto put_and_exit;
1630 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1631 &found_dup_sk);
1632 if (likely(*own_req)) {
1633 tcp_move_syn(newtp, req);
1634 ireq->ireq_opt = NULL;
1635 } else {
1636 newinet->inet_opt = NULL;
1637
1638 if (!req_unhash && found_dup_sk) {
1639 /* This code path should only be executed in the
1640 * syncookie case only
1641 */
1642 bh_unlock_sock(newsk);
1643 sock_put(newsk);
1644 newsk = NULL;
1645 }
1646 }
1647 return newsk;
1648
1649exit_overflow:
1650 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1651exit_nonewsk:
1652 dst_release(dst);
1653exit:
1654 tcp_listendrop(sk);
1655 return NULL;
1656put_and_exit:
1657 newinet->inet_opt = NULL;
1658 inet_csk_prepare_forced_close(newsk);
1659 tcp_done(newsk);
1660 goto exit;
1661}
1662EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1663
1664static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1665{
1666#ifdef CONFIG_SYN_COOKIES
1667 const struct tcphdr *th = tcp_hdr(skb);
1668
1669 if (!th->syn)
1670 sk = cookie_v4_check(sk, skb);
1671#endif
1672 return sk;
1673}
1674
1675u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1676 struct tcphdr *th, u32 *cookie)
1677{
1678 u16 mss = 0;
1679#ifdef CONFIG_SYN_COOKIES
1680 mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1681 &tcp_request_sock_ipv4_ops, sk, th);
1682 if (mss) {
1683 *cookie = __cookie_v4_init_sequence(iph, th, &mss);
1684 tcp_synq_overflow(sk);
1685 }
1686#endif
1687 return mss;
1688}
1689
1690INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1691 u32));
1692/* The socket must have it's spinlock held when we get
1693 * here, unless it is a TCP_LISTEN socket.
1694 *
1695 * We have a potential double-lock case here, so even when
1696 * doing backlog processing we use the BH locking scheme.
1697 * This is because we cannot sleep with the original spinlock
1698 * held.
1699 */
1700int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1701{
1702 enum skb_drop_reason reason;
1703 struct sock *rsk;
1704
1705 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1706 struct dst_entry *dst;
1707
1708 dst = rcu_dereference_protected(sk->sk_rx_dst,
1709 lockdep_sock_is_held(sk));
1710
1711 sock_rps_save_rxhash(sk, skb);
1712 sk_mark_napi_id(sk, skb);
1713 if (dst) {
1714 if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1715 !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1716 dst, 0)) {
1717 RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1718 dst_release(dst);
1719 }
1720 }
1721 tcp_rcv_established(sk, skb);
1722 return 0;
1723 }
1724
1725 reason = SKB_DROP_REASON_NOT_SPECIFIED;
1726 if (tcp_checksum_complete(skb))
1727 goto csum_err;
1728
1729 if (sk->sk_state == TCP_LISTEN) {
1730 struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1731
1732 if (!nsk)
1733 goto discard;
1734 if (nsk != sk) {
1735 if (tcp_child_process(sk, nsk, skb)) {
1736 rsk = nsk;
1737 goto reset;
1738 }
1739 return 0;
1740 }
1741 } else
1742 sock_rps_save_rxhash(sk, skb);
1743
1744 if (tcp_rcv_state_process(sk, skb)) {
1745 rsk = sk;
1746 goto reset;
1747 }
1748 return 0;
1749
1750reset:
1751 tcp_v4_send_reset(rsk, skb);
1752discard:
1753 kfree_skb_reason(skb, reason);
1754 /* Be careful here. If this function gets more complicated and
1755 * gcc suffers from register pressure on the x86, sk (in %ebx)
1756 * might be destroyed here. This current version compiles correctly,
1757 * but you have been warned.
1758 */
1759 return 0;
1760
1761csum_err:
1762 reason = SKB_DROP_REASON_TCP_CSUM;
1763 trace_tcp_bad_csum(skb);
1764 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1765 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1766 goto discard;
1767}
1768EXPORT_SYMBOL(tcp_v4_do_rcv);
1769
1770int tcp_v4_early_demux(struct sk_buff *skb)
1771{
1772 struct net *net = dev_net(skb->dev);
1773 const struct iphdr *iph;
1774 const struct tcphdr *th;
1775 struct sock *sk;
1776
1777 if (skb->pkt_type != PACKET_HOST)
1778 return 0;
1779
1780 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1781 return 0;
1782
1783 iph = ip_hdr(skb);
1784 th = tcp_hdr(skb);
1785
1786 if (th->doff < sizeof(struct tcphdr) / 4)
1787 return 0;
1788
1789 sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1790 iph->saddr, th->source,
1791 iph->daddr, ntohs(th->dest),
1792 skb->skb_iif, inet_sdif(skb));
1793 if (sk) {
1794 skb->sk = sk;
1795 skb->destructor = sock_edemux;
1796 if (sk_fullsock(sk)) {
1797 struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1798
1799 if (dst)
1800 dst = dst_check(dst, 0);
1801 if (dst &&
1802 sk->sk_rx_dst_ifindex == skb->skb_iif)
1803 skb_dst_set_noref(skb, dst);
1804 }
1805 }
1806 return 0;
1807}
1808
1809bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1810 enum skb_drop_reason *reason)
1811{
1812 u32 limit, tail_gso_size, tail_gso_segs;
1813 struct skb_shared_info *shinfo;
1814 const struct tcphdr *th;
1815 struct tcphdr *thtail;
1816 struct sk_buff *tail;
1817 unsigned int hdrlen;
1818 bool fragstolen;
1819 u32 gso_segs;
1820 u32 gso_size;
1821 int delta;
1822
1823 /* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1824 * we can fix skb->truesize to its real value to avoid future drops.
1825 * This is valid because skb is not yet charged to the socket.
1826 * It has been noticed pure SACK packets were sometimes dropped
1827 * (if cooked by drivers without copybreak feature).
1828 */
1829 skb_condense(skb);
1830
1831 skb_dst_drop(skb);
1832
1833 if (unlikely(tcp_checksum_complete(skb))) {
1834 bh_unlock_sock(sk);
1835 trace_tcp_bad_csum(skb);
1836 *reason = SKB_DROP_REASON_TCP_CSUM;
1837 __TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1838 __TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1839 return true;
1840 }
1841
1842 /* Attempt coalescing to last skb in backlog, even if we are
1843 * above the limits.
1844 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
1845 */
1846 th = (const struct tcphdr *)skb->data;
1847 hdrlen = th->doff * 4;
1848
1849 tail = sk->sk_backlog.tail;
1850 if (!tail)
1851 goto no_coalesce;
1852 thtail = (struct tcphdr *)tail->data;
1853
1854 if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
1855 TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
1856 ((TCP_SKB_CB(tail)->tcp_flags |
1857 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
1858 !((TCP_SKB_CB(tail)->tcp_flags &
1859 TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
1860 ((TCP_SKB_CB(tail)->tcp_flags ^
1861 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
1862#ifdef CONFIG_TLS_DEVICE
1863 tail->decrypted != skb->decrypted ||
1864#endif
1865 thtail->doff != th->doff ||
1866 memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
1867 goto no_coalesce;
1868
1869 __skb_pull(skb, hdrlen);
1870
1871 shinfo = skb_shinfo(skb);
1872 gso_size = shinfo->gso_size ?: skb->len;
1873 gso_segs = shinfo->gso_segs ?: 1;
1874
1875 shinfo = skb_shinfo(tail);
1876 tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
1877 tail_gso_segs = shinfo->gso_segs ?: 1;
1878
1879 if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
1880 TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
1881
1882 if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
1883 TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
1884 thtail->window = th->window;
1885 }
1886
1887 /* We have to update both TCP_SKB_CB(tail)->tcp_flags and
1888 * thtail->fin, so that the fast path in tcp_rcv_established()
1889 * is not entered if we append a packet with a FIN.
1890 * SYN, RST, URG are not present.
1891 * ACK is set on both packets.
1892 * PSH : we do not really care in TCP stack,
1893 * at least for 'GRO' packets.
1894 */
1895 thtail->fin |= th->fin;
1896 TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1897
1898 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1899 TCP_SKB_CB(tail)->has_rxtstamp = true;
1900 tail->tstamp = skb->tstamp;
1901 skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
1902 }
1903
1904 /* Not as strict as GRO. We only need to carry mss max value */
1905 shinfo->gso_size = max(gso_size, tail_gso_size);
1906 shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
1907
1908 sk->sk_backlog.len += delta;
1909 __NET_INC_STATS(sock_net(sk),
1910 LINUX_MIB_TCPBACKLOGCOALESCE);
1911 kfree_skb_partial(skb, fragstolen);
1912 return false;
1913 }
1914 __skb_push(skb, hdrlen);
1915
1916no_coalesce:
1917 limit = (u32)READ_ONCE(sk->sk_rcvbuf) + (u32)(READ_ONCE(sk->sk_sndbuf) >> 1);
1918
1919 /* Only socket owner can try to collapse/prune rx queues
1920 * to reduce memory overhead, so add a little headroom here.
1921 * Few sockets backlog are possibly concurrently non empty.
1922 */
1923 limit += 64 * 1024;
1924
1925 if (unlikely(sk_add_backlog(sk, skb, limit))) {
1926 bh_unlock_sock(sk);
1927 *reason = SKB_DROP_REASON_SOCKET_BACKLOG;
1928 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1929 return true;
1930 }
1931 return false;
1932}
1933EXPORT_SYMBOL(tcp_add_backlog);
1934
1935int tcp_filter(struct sock *sk, struct sk_buff *skb)
1936{
1937 struct tcphdr *th = (struct tcphdr *)skb->data;
1938
1939 return sk_filter_trim_cap(sk, skb, th->doff * 4);
1940}
1941EXPORT_SYMBOL(tcp_filter);
1942
1943static void tcp_v4_restore_cb(struct sk_buff *skb)
1944{
1945 memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1946 sizeof(struct inet_skb_parm));
1947}
1948
1949static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1950 const struct tcphdr *th)
1951{
1952 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1953 * barrier() makes sure compiler wont play fool^Waliasing games.
1954 */
1955 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1956 sizeof(struct inet_skb_parm));
1957 barrier();
1958
1959 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1960 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1961 skb->len - th->doff * 4);
1962 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1963 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1964 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1965 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1966 TCP_SKB_CB(skb)->sacked = 0;
1967 TCP_SKB_CB(skb)->has_rxtstamp =
1968 skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1969}
1970
1971/*
1972 * From tcp_input.c
1973 */
1974
1975int tcp_v4_rcv(struct sk_buff *skb)
1976{
1977 struct net *net = dev_net(skb->dev);
1978 enum skb_drop_reason drop_reason;
1979 int sdif = inet_sdif(skb);
1980 int dif = inet_iif(skb);
1981 const struct iphdr *iph;
1982 const struct tcphdr *th;
1983 bool refcounted;
1984 struct sock *sk;
1985 int ret;
1986
1987 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
1988 if (skb->pkt_type != PACKET_HOST)
1989 goto discard_it;
1990
1991 /* Count it even if it's bad */
1992 __TCP_INC_STATS(net, TCP_MIB_INSEGS);
1993
1994 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1995 goto discard_it;
1996
1997 th = (const struct tcphdr *)skb->data;
1998
1999 if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2000 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2001 goto bad_packet;
2002 }
2003 if (!pskb_may_pull(skb, th->doff * 4))
2004 goto discard_it;
2005
2006 /* An explanation is required here, I think.
2007 * Packet length and doff are validated by header prediction,
2008 * provided case of th->doff==0 is eliminated.
2009 * So, we defer the checks. */
2010
2011 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2012 goto csum_error;
2013
2014 th = (const struct tcphdr *)skb->data;
2015 iph = ip_hdr(skb);
2016lookup:
2017 sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
2018 skb, __tcp_hdrlen(th), th->source,
2019 th->dest, sdif, &refcounted);
2020 if (!sk)
2021 goto no_tcp_socket;
2022
2023process:
2024 if (sk->sk_state == TCP_TIME_WAIT)
2025 goto do_time_wait;
2026
2027 if (sk->sk_state == TCP_NEW_SYN_RECV) {
2028 struct request_sock *req = inet_reqsk(sk);
2029 bool req_stolen = false;
2030 struct sock *nsk;
2031
2032 sk = req->rsk_listener;
2033 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2034 drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2035 else
2036 drop_reason = tcp_inbound_md5_hash(sk, skb,
2037 &iph->saddr, &iph->daddr,
2038 AF_INET, dif, sdif);
2039 if (unlikely(drop_reason)) {
2040 sk_drops_add(sk, skb);
2041 reqsk_put(req);
2042 goto discard_it;
2043 }
2044 if (tcp_checksum_complete(skb)) {
2045 reqsk_put(req);
2046 goto csum_error;
2047 }
2048 if (unlikely(sk->sk_state != TCP_LISTEN)) {
2049 nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2050 if (!nsk) {
2051 inet_csk_reqsk_queue_drop_and_put(sk, req);
2052 goto lookup;
2053 }
2054 sk = nsk;
2055 /* reuseport_migrate_sock() has already held one sk_refcnt
2056 * before returning.
2057 */
2058 } else {
2059 /* We own a reference on the listener, increase it again
2060 * as we might lose it too soon.
2061 */
2062 sock_hold(sk);
2063 }
2064 refcounted = true;
2065 nsk = NULL;
2066 if (!tcp_filter(sk, skb)) {
2067 th = (const struct tcphdr *)skb->data;
2068 iph = ip_hdr(skb);
2069 tcp_v4_fill_cb(skb, iph, th);
2070 nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2071 } else {
2072 drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2073 }
2074 if (!nsk) {
2075 reqsk_put(req);
2076 if (req_stolen) {
2077 /* Another cpu got exclusive access to req
2078 * and created a full blown socket.
2079 * Try to feed this packet to this socket
2080 * instead of discarding it.
2081 */
2082 tcp_v4_restore_cb(skb);
2083 sock_put(sk);
2084 goto lookup;
2085 }
2086 goto discard_and_relse;
2087 }
2088 nf_reset_ct(skb);
2089 if (nsk == sk) {
2090 reqsk_put(req);
2091 tcp_v4_restore_cb(skb);
2092 } else if (tcp_child_process(sk, nsk, skb)) {
2093 tcp_v4_send_reset(nsk, skb);
2094 goto discard_and_relse;
2095 } else {
2096 sock_put(sk);
2097 return 0;
2098 }
2099 }
2100
2101 if (static_branch_unlikely(&ip4_min_ttl)) {
2102 /* min_ttl can be changed concurrently from do_ip_setsockopt() */
2103 if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2104 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2105 goto discard_and_relse;
2106 }
2107 }
2108
2109 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2110 drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2111 goto discard_and_relse;
2112 }
2113
2114 drop_reason = tcp_inbound_md5_hash(sk, skb, &iph->saddr,
2115 &iph->daddr, AF_INET, dif, sdif);
2116 if (drop_reason)
2117 goto discard_and_relse;
2118
2119 nf_reset_ct(skb);
2120
2121 if (tcp_filter(sk, skb)) {
2122 drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2123 goto discard_and_relse;
2124 }
2125 th = (const struct tcphdr *)skb->data;
2126 iph = ip_hdr(skb);
2127 tcp_v4_fill_cb(skb, iph, th);
2128
2129 skb->dev = NULL;
2130
2131 if (sk->sk_state == TCP_LISTEN) {
2132 ret = tcp_v4_do_rcv(sk, skb);
2133 goto put_and_return;
2134 }
2135
2136 sk_incoming_cpu_update(sk);
2137
2138 bh_lock_sock_nested(sk);
2139 tcp_segs_in(tcp_sk(sk), skb);
2140 ret = 0;
2141 if (!sock_owned_by_user(sk)) {
2142 ret = tcp_v4_do_rcv(sk, skb);
2143 } else {
2144 if (tcp_add_backlog(sk, skb, &drop_reason))
2145 goto discard_and_relse;
2146 }
2147 bh_unlock_sock(sk);
2148
2149put_and_return:
2150 if (refcounted)
2151 sock_put(sk);
2152
2153 return ret;
2154
2155no_tcp_socket:
2156 drop_reason = SKB_DROP_REASON_NO_SOCKET;
2157 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2158 goto discard_it;
2159
2160 tcp_v4_fill_cb(skb, iph, th);
2161
2162 if (tcp_checksum_complete(skb)) {
2163csum_error:
2164 drop_reason = SKB_DROP_REASON_TCP_CSUM;
2165 trace_tcp_bad_csum(skb);
2166 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2167bad_packet:
2168 __TCP_INC_STATS(net, TCP_MIB_INERRS);
2169 } else {
2170 tcp_v4_send_reset(NULL, skb);
2171 }
2172
2173discard_it:
2174 SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2175 /* Discard frame. */
2176 kfree_skb_reason(skb, drop_reason);
2177 return 0;
2178
2179discard_and_relse:
2180 sk_drops_add(sk, skb);
2181 if (refcounted)
2182 sock_put(sk);
2183 goto discard_it;
2184
2185do_time_wait:
2186 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2187 drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2188 inet_twsk_put(inet_twsk(sk));
2189 goto discard_it;
2190 }
2191
2192 tcp_v4_fill_cb(skb, iph, th);
2193
2194 if (tcp_checksum_complete(skb)) {
2195 inet_twsk_put(inet_twsk(sk));
2196 goto csum_error;
2197 }
2198 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2199 case TCP_TW_SYN: {
2200 struct sock *sk2 = inet_lookup_listener(net,
2201 net->ipv4.tcp_death_row.hashinfo,
2202 skb, __tcp_hdrlen(th),
2203 iph->saddr, th->source,
2204 iph->daddr, th->dest,
2205 inet_iif(skb),
2206 sdif);
2207 if (sk2) {
2208 inet_twsk_deschedule_put(inet_twsk(sk));
2209 sk = sk2;
2210 tcp_v4_restore_cb(skb);
2211 refcounted = false;
2212 goto process;
2213 }
2214 }
2215 /* to ACK */
2216 fallthrough;
2217 case TCP_TW_ACK:
2218 tcp_v4_timewait_ack(sk, skb);
2219 break;
2220 case TCP_TW_RST:
2221 tcp_v4_send_reset(sk, skb);
2222 inet_twsk_deschedule_put(inet_twsk(sk));
2223 goto discard_it;
2224 case TCP_TW_SUCCESS:;
2225 }
2226 goto discard_it;
2227}
2228
2229static struct timewait_sock_ops tcp_timewait_sock_ops = {
2230 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
2231 .twsk_unique = tcp_twsk_unique,
2232 .twsk_destructor= tcp_twsk_destructor,
2233};
2234
2235void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2236{
2237 struct dst_entry *dst = skb_dst(skb);
2238
2239 if (dst && dst_hold_safe(dst)) {
2240 rcu_assign_pointer(sk->sk_rx_dst, dst);
2241 sk->sk_rx_dst_ifindex = skb->skb_iif;
2242 }
2243}
2244EXPORT_SYMBOL(inet_sk_rx_dst_set);
2245
2246const struct inet_connection_sock_af_ops ipv4_specific = {
2247 .queue_xmit = ip_queue_xmit,
2248 .send_check = tcp_v4_send_check,
2249 .rebuild_header = inet_sk_rebuild_header,
2250 .sk_rx_dst_set = inet_sk_rx_dst_set,
2251 .conn_request = tcp_v4_conn_request,
2252 .syn_recv_sock = tcp_v4_syn_recv_sock,
2253 .net_header_len = sizeof(struct iphdr),
2254 .setsockopt = ip_setsockopt,
2255 .getsockopt = ip_getsockopt,
2256 .addr2sockaddr = inet_csk_addr2sockaddr,
2257 .sockaddr_len = sizeof(struct sockaddr_in),
2258 .mtu_reduced = tcp_v4_mtu_reduced,
2259};
2260EXPORT_SYMBOL(ipv4_specific);
2261
2262#ifdef CONFIG_TCP_MD5SIG
2263static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2264 .md5_lookup = tcp_v4_md5_lookup,
2265 .calc_md5_hash = tcp_v4_md5_hash_skb,
2266 .md5_parse = tcp_v4_parse_md5_keys,
2267};
2268#endif
2269
2270/* NOTE: A lot of things set to zero explicitly by call to
2271 * sk_alloc() so need not be done here.
2272 */
2273static int tcp_v4_init_sock(struct sock *sk)
2274{
2275 struct inet_connection_sock *icsk = inet_csk(sk);
2276
2277 tcp_init_sock(sk);
2278
2279 icsk->icsk_af_ops = &ipv4_specific;
2280
2281#ifdef CONFIG_TCP_MD5SIG
2282 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2283#endif
2284
2285 return 0;
2286}
2287
2288void tcp_v4_destroy_sock(struct sock *sk)
2289{
2290 struct tcp_sock *tp = tcp_sk(sk);
2291
2292 trace_tcp_destroy_sock(sk);
2293
2294 tcp_clear_xmit_timers(sk);
2295
2296 tcp_cleanup_congestion_control(sk);
2297
2298 tcp_cleanup_ulp(sk);
2299
2300 /* Cleanup up the write buffer. */
2301 tcp_write_queue_purge(sk);
2302
2303 /* Check if we want to disable active TFO */
2304 tcp_fastopen_active_disable_ofo_check(sk);
2305
2306 /* Cleans up our, hopefully empty, out_of_order_queue. */
2307 skb_rbtree_purge(&tp->out_of_order_queue);
2308
2309#ifdef CONFIG_TCP_MD5SIG
2310 /* Clean up the MD5 key list, if any */
2311 if (tp->md5sig_info) {
2312 tcp_clear_md5_list(sk);
2313 kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu);
2314 tp->md5sig_info = NULL;
2315 static_branch_slow_dec_deferred(&tcp_md5_needed);
2316 }
2317#endif
2318
2319 /* Clean up a referenced TCP bind bucket. */
2320 if (inet_csk(sk)->icsk_bind_hash)
2321 inet_put_port(sk);
2322
2323 BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2324
2325 /* If socket is aborted during connect operation */
2326 tcp_free_fastopen_req(tp);
2327 tcp_fastopen_destroy_cipher(sk);
2328 tcp_saved_syn_free(tp);
2329
2330 sk_sockets_allocated_dec(sk);
2331}
2332EXPORT_SYMBOL(tcp_v4_destroy_sock);
2333
2334#ifdef CONFIG_PROC_FS
2335/* Proc filesystem TCP sock list dumping. */
2336
2337static unsigned short seq_file_family(const struct seq_file *seq);
2338
2339static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2340{
2341 unsigned short family = seq_file_family(seq);
2342
2343 /* AF_UNSPEC is used as a match all */
2344 return ((family == AF_UNSPEC || family == sk->sk_family) &&
2345 net_eq(sock_net(sk), seq_file_net(seq)));
2346}
2347
2348/* Find a non empty bucket (starting from st->bucket)
2349 * and return the first sk from it.
2350 */
2351static void *listening_get_first(struct seq_file *seq)
2352{
2353 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2354 struct tcp_iter_state *st = seq->private;
2355
2356 st->offset = 0;
2357 for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2358 struct inet_listen_hashbucket *ilb2;
2359 struct hlist_nulls_node *node;
2360 struct sock *sk;
2361
2362 ilb2 = &hinfo->lhash2[st->bucket];
2363 if (hlist_nulls_empty(&ilb2->nulls_head))
2364 continue;
2365
2366 spin_lock(&ilb2->lock);
2367 sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2368 if (seq_sk_match(seq, sk))
2369 return sk;
2370 }
2371 spin_unlock(&ilb2->lock);
2372 }
2373
2374 return NULL;
2375}
2376
2377/* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2378 * If "cur" is the last one in the st->bucket,
2379 * call listening_get_first() to return the first sk of the next
2380 * non empty bucket.
2381 */
2382static void *listening_get_next(struct seq_file *seq, void *cur)
2383{
2384 struct tcp_iter_state *st = seq->private;
2385 struct inet_listen_hashbucket *ilb2;
2386 struct hlist_nulls_node *node;
2387 struct inet_hashinfo *hinfo;
2388 struct sock *sk = cur;
2389
2390 ++st->num;
2391 ++st->offset;
2392
2393 sk = sk_nulls_next(sk);
2394 sk_nulls_for_each_from(sk, node) {
2395 if (seq_sk_match(seq, sk))
2396 return sk;
2397 }
2398
2399 hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2400 ilb2 = &hinfo->lhash2[st->bucket];
2401 spin_unlock(&ilb2->lock);
2402 ++st->bucket;
2403 return listening_get_first(seq);
2404}
2405
2406static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2407{
2408 struct tcp_iter_state *st = seq->private;
2409 void *rc;
2410
2411 st->bucket = 0;
2412 st->offset = 0;
2413 rc = listening_get_first(seq);
2414
2415 while (rc && *pos) {
2416 rc = listening_get_next(seq, rc);
2417 --*pos;
2418 }
2419 return rc;
2420}
2421
2422static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2423 const struct tcp_iter_state *st)
2424{
2425 return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
2426}
2427
2428/*
2429 * Get first established socket starting from bucket given in st->bucket.
2430 * If st->bucket is zero, the very first socket in the hash is returned.
2431 */
2432static void *established_get_first(struct seq_file *seq)
2433{
2434 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2435 struct tcp_iter_state *st = seq->private;
2436
2437 st->offset = 0;
2438 for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2439 struct sock *sk;
2440 struct hlist_nulls_node *node;
2441 spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2442
2443 /* Lockless fast path for the common case of empty buckets */
2444 if (empty_bucket(hinfo, st))
2445 continue;
2446
2447 spin_lock_bh(lock);
2448 sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2449 if (seq_sk_match(seq, sk))
2450 return sk;
2451 }
2452 spin_unlock_bh(lock);
2453 }
2454
2455 return NULL;
2456}
2457
2458static void *established_get_next(struct seq_file *seq, void *cur)
2459{
2460 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2461 struct tcp_iter_state *st = seq->private;
2462 struct hlist_nulls_node *node;
2463 struct sock *sk = cur;
2464
2465 ++st->num;
2466 ++st->offset;
2467
2468 sk = sk_nulls_next(sk);
2469
2470 sk_nulls_for_each_from(sk, node) {
2471 if (seq_sk_match(seq, sk))
2472 return sk;
2473 }
2474
2475 spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2476 ++st->bucket;
2477 return established_get_first(seq);
2478}
2479
2480static void *established_get_idx(struct seq_file *seq, loff_t pos)
2481{
2482 struct tcp_iter_state *st = seq->private;
2483 void *rc;
2484
2485 st->bucket = 0;
2486 rc = established_get_first(seq);
2487
2488 while (rc && pos) {
2489 rc = established_get_next(seq, rc);
2490 --pos;
2491 }
2492 return rc;
2493}
2494
2495static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2496{
2497 void *rc;
2498 struct tcp_iter_state *st = seq->private;
2499
2500 st->state = TCP_SEQ_STATE_LISTENING;
2501 rc = listening_get_idx(seq, &pos);
2502
2503 if (!rc) {
2504 st->state = TCP_SEQ_STATE_ESTABLISHED;
2505 rc = established_get_idx(seq, pos);
2506 }
2507
2508 return rc;
2509}
2510
2511static void *tcp_seek_last_pos(struct seq_file *seq)
2512{
2513 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2514 struct tcp_iter_state *st = seq->private;
2515 int bucket = st->bucket;
2516 int offset = st->offset;
2517 int orig_num = st->num;
2518 void *rc = NULL;
2519
2520 switch (st->state) {
2521 case TCP_SEQ_STATE_LISTENING:
2522 if (st->bucket > hinfo->lhash2_mask)
2523 break;
2524 rc = listening_get_first(seq);
2525 while (offset-- && rc && bucket == st->bucket)
2526 rc = listening_get_next(seq, rc);
2527 if (rc)
2528 break;
2529 st->bucket = 0;
2530 st->state = TCP_SEQ_STATE_ESTABLISHED;
2531 fallthrough;
2532 case TCP_SEQ_STATE_ESTABLISHED:
2533 if (st->bucket > hinfo->ehash_mask)
2534 break;
2535 rc = established_get_first(seq);
2536 while (offset-- && rc && bucket == st->bucket)
2537 rc = established_get_next(seq, rc);
2538 }
2539
2540 st->num = orig_num;
2541
2542 return rc;
2543}
2544
2545void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2546{
2547 struct tcp_iter_state *st = seq->private;
2548 void *rc;
2549
2550 if (*pos && *pos == st->last_pos) {
2551 rc = tcp_seek_last_pos(seq);
2552 if (rc)
2553 goto out;
2554 }
2555
2556 st->state = TCP_SEQ_STATE_LISTENING;
2557 st->num = 0;
2558 st->bucket = 0;
2559 st->offset = 0;
2560 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2561
2562out:
2563 st->last_pos = *pos;
2564 return rc;
2565}
2566EXPORT_SYMBOL(tcp_seq_start);
2567
2568void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2569{
2570 struct tcp_iter_state *st = seq->private;
2571 void *rc = NULL;
2572
2573 if (v == SEQ_START_TOKEN) {
2574 rc = tcp_get_idx(seq, 0);
2575 goto out;
2576 }
2577
2578 switch (st->state) {
2579 case TCP_SEQ_STATE_LISTENING:
2580 rc = listening_get_next(seq, v);
2581 if (!rc) {
2582 st->state = TCP_SEQ_STATE_ESTABLISHED;
2583 st->bucket = 0;
2584 st->offset = 0;
2585 rc = established_get_first(seq);
2586 }
2587 break;
2588 case TCP_SEQ_STATE_ESTABLISHED:
2589 rc = established_get_next(seq, v);
2590 break;
2591 }
2592out:
2593 ++*pos;
2594 st->last_pos = *pos;
2595 return rc;
2596}
2597EXPORT_SYMBOL(tcp_seq_next);
2598
2599void tcp_seq_stop(struct seq_file *seq, void *v)
2600{
2601 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2602 struct tcp_iter_state *st = seq->private;
2603
2604 switch (st->state) {
2605 case TCP_SEQ_STATE_LISTENING:
2606 if (v != SEQ_START_TOKEN)
2607 spin_unlock(&hinfo->lhash2[st->bucket].lock);
2608 break;
2609 case TCP_SEQ_STATE_ESTABLISHED:
2610 if (v)
2611 spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2612 break;
2613 }
2614}
2615EXPORT_SYMBOL(tcp_seq_stop);
2616
2617static void get_openreq4(const struct request_sock *req,
2618 struct seq_file *f, int i)
2619{
2620 const struct inet_request_sock *ireq = inet_rsk(req);
2621 long delta = req->rsk_timer.expires - jiffies;
2622
2623 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2624 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2625 i,
2626 ireq->ir_loc_addr,
2627 ireq->ir_num,
2628 ireq->ir_rmt_addr,
2629 ntohs(ireq->ir_rmt_port),
2630 TCP_SYN_RECV,
2631 0, 0, /* could print option size, but that is af dependent. */
2632 1, /* timers active (only the expire timer) */
2633 jiffies_delta_to_clock_t(delta),
2634 req->num_timeout,
2635 from_kuid_munged(seq_user_ns(f),
2636 sock_i_uid(req->rsk_listener)),
2637 0, /* non standard timer */
2638 0, /* open_requests have no inode */
2639 0,
2640 req);
2641}
2642
2643static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2644{
2645 int timer_active;
2646 unsigned long timer_expires;
2647 const struct tcp_sock *tp = tcp_sk(sk);
2648 const struct inet_connection_sock *icsk = inet_csk(sk);
2649 const struct inet_sock *inet = inet_sk(sk);
2650 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2651 __be32 dest = inet->inet_daddr;
2652 __be32 src = inet->inet_rcv_saddr;
2653 __u16 destp = ntohs(inet->inet_dport);
2654 __u16 srcp = ntohs(inet->inet_sport);
2655 int rx_queue;
2656 int state;
2657
2658 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2659 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2660 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2661 timer_active = 1;
2662 timer_expires = icsk->icsk_timeout;
2663 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2664 timer_active = 4;
2665 timer_expires = icsk->icsk_timeout;
2666 } else if (timer_pending(&sk->sk_timer)) {
2667 timer_active = 2;
2668 timer_expires = sk->sk_timer.expires;
2669 } else {
2670 timer_active = 0;
2671 timer_expires = jiffies;
2672 }
2673
2674 state = inet_sk_state_load(sk);
2675 if (state == TCP_LISTEN)
2676 rx_queue = READ_ONCE(sk->sk_ack_backlog);
2677 else
2678 /* Because we don't lock the socket,
2679 * we might find a transient negative value.
2680 */
2681 rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2682 READ_ONCE(tp->copied_seq), 0);
2683
2684 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2685 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2686 i, src, srcp, dest, destp, state,
2687 READ_ONCE(tp->write_seq) - tp->snd_una,
2688 rx_queue,
2689 timer_active,
2690 jiffies_delta_to_clock_t(timer_expires - jiffies),
2691 icsk->icsk_retransmits,
2692 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2693 icsk->icsk_probes_out,
2694 sock_i_ino(sk),
2695 refcount_read(&sk->sk_refcnt), sk,
2696 jiffies_to_clock_t(icsk->icsk_rto),
2697 jiffies_to_clock_t(icsk->icsk_ack.ato),
2698 (icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2699 tcp_snd_cwnd(tp),
2700 state == TCP_LISTEN ?
2701 fastopenq->max_qlen :
2702 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2703}
2704
2705static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2706 struct seq_file *f, int i)
2707{
2708 long delta = tw->tw_timer.expires - jiffies;
2709 __be32 dest, src;
2710 __u16 destp, srcp;
2711
2712 dest = tw->tw_daddr;
2713 src = tw->tw_rcv_saddr;
2714 destp = ntohs(tw->tw_dport);
2715 srcp = ntohs(tw->tw_sport);
2716
2717 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2718 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2719 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2720 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2721 refcount_read(&tw->tw_refcnt), tw);
2722}
2723
2724#define TMPSZ 150
2725
2726static int tcp4_seq_show(struct seq_file *seq, void *v)
2727{
2728 struct tcp_iter_state *st;
2729 struct sock *sk = v;
2730
2731 seq_setwidth(seq, TMPSZ - 1);
2732 if (v == SEQ_START_TOKEN) {
2733 seq_puts(seq, " sl local_address rem_address st tx_queue "
2734 "rx_queue tr tm->when retrnsmt uid timeout "
2735 "inode");
2736 goto out;
2737 }
2738 st = seq->private;
2739
2740 if (sk->sk_state == TCP_TIME_WAIT)
2741 get_timewait4_sock(v, seq, st->num);
2742 else if (sk->sk_state == TCP_NEW_SYN_RECV)
2743 get_openreq4(v, seq, st->num);
2744 else
2745 get_tcp4_sock(v, seq, st->num);
2746out:
2747 seq_pad(seq, '\n');
2748 return 0;
2749}
2750
2751#ifdef CONFIG_BPF_SYSCALL
2752struct bpf_tcp_iter_state {
2753 struct tcp_iter_state state;
2754 unsigned int cur_sk;
2755 unsigned int end_sk;
2756 unsigned int max_sk;
2757 struct sock **batch;
2758 bool st_bucket_done;
2759};
2760
2761struct bpf_iter__tcp {
2762 __bpf_md_ptr(struct bpf_iter_meta *, meta);
2763 __bpf_md_ptr(struct sock_common *, sk_common);
2764 uid_t uid __aligned(8);
2765};
2766
2767static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2768 struct sock_common *sk_common, uid_t uid)
2769{
2770 struct bpf_iter__tcp ctx;
2771
2772 meta->seq_num--; /* skip SEQ_START_TOKEN */
2773 ctx.meta = meta;
2774 ctx.sk_common = sk_common;
2775 ctx.uid = uid;
2776 return bpf_iter_run_prog(prog, &ctx);
2777}
2778
2779static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
2780{
2781 while (iter->cur_sk < iter->end_sk)
2782 sock_put(iter->batch[iter->cur_sk++]);
2783}
2784
2785static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
2786 unsigned int new_batch_sz)
2787{
2788 struct sock **new_batch;
2789
2790 new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
2791 GFP_USER | __GFP_NOWARN);
2792 if (!new_batch)
2793 return -ENOMEM;
2794
2795 bpf_iter_tcp_put_batch(iter);
2796 kvfree(iter->batch);
2797 iter->batch = new_batch;
2798 iter->max_sk = new_batch_sz;
2799
2800 return 0;
2801}
2802
2803static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
2804 struct sock *start_sk)
2805{
2806 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2807 struct bpf_tcp_iter_state *iter = seq->private;
2808 struct tcp_iter_state *st = &iter->state;
2809 struct hlist_nulls_node *node;
2810 unsigned int expected = 1;
2811 struct sock *sk;
2812
2813 sock_hold(start_sk);
2814 iter->batch[iter->end_sk++] = start_sk;
2815
2816 sk = sk_nulls_next(start_sk);
2817 sk_nulls_for_each_from(sk, node) {
2818 if (seq_sk_match(seq, sk)) {
2819 if (iter->end_sk < iter->max_sk) {
2820 sock_hold(sk);
2821 iter->batch[iter->end_sk++] = sk;
2822 }
2823 expected++;
2824 }
2825 }
2826 spin_unlock(&hinfo->lhash2[st->bucket].lock);
2827
2828 return expected;
2829}
2830
2831static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
2832 struct sock *start_sk)
2833{
2834 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2835 struct bpf_tcp_iter_state *iter = seq->private;
2836 struct tcp_iter_state *st = &iter->state;
2837 struct hlist_nulls_node *node;
2838 unsigned int expected = 1;
2839 struct sock *sk;
2840
2841 sock_hold(start_sk);
2842 iter->batch[iter->end_sk++] = start_sk;
2843
2844 sk = sk_nulls_next(start_sk);
2845 sk_nulls_for_each_from(sk, node) {
2846 if (seq_sk_match(seq, sk)) {
2847 if (iter->end_sk < iter->max_sk) {
2848 sock_hold(sk);
2849 iter->batch[iter->end_sk++] = sk;
2850 }
2851 expected++;
2852 }
2853 }
2854 spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2855
2856 return expected;
2857}
2858
2859static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
2860{
2861 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2862 struct bpf_tcp_iter_state *iter = seq->private;
2863 struct tcp_iter_state *st = &iter->state;
2864 unsigned int expected;
2865 bool resized = false;
2866 struct sock *sk;
2867
2868 /* The st->bucket is done. Directly advance to the next
2869 * bucket instead of having the tcp_seek_last_pos() to skip
2870 * one by one in the current bucket and eventually find out
2871 * it has to advance to the next bucket.
2872 */
2873 if (iter->st_bucket_done) {
2874 st->offset = 0;
2875 st->bucket++;
2876 if (st->state == TCP_SEQ_STATE_LISTENING &&
2877 st->bucket > hinfo->lhash2_mask) {
2878 st->state = TCP_SEQ_STATE_ESTABLISHED;
2879 st->bucket = 0;
2880 }
2881 }
2882
2883again:
2884 /* Get a new batch */
2885 iter->cur_sk = 0;
2886 iter->end_sk = 0;
2887 iter->st_bucket_done = false;
2888
2889 sk = tcp_seek_last_pos(seq);
2890 if (!sk)
2891 return NULL; /* Done */
2892
2893 if (st->state == TCP_SEQ_STATE_LISTENING)
2894 expected = bpf_iter_tcp_listening_batch(seq, sk);
2895 else
2896 expected = bpf_iter_tcp_established_batch(seq, sk);
2897
2898 if (iter->end_sk == expected) {
2899 iter->st_bucket_done = true;
2900 return sk;
2901 }
2902
2903 if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
2904 resized = true;
2905 goto again;
2906 }
2907
2908 return sk;
2909}
2910
2911static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
2912{
2913 /* bpf iter does not support lseek, so it always
2914 * continue from where it was stop()-ped.
2915 */
2916 if (*pos)
2917 return bpf_iter_tcp_batch(seq);
2918
2919 return SEQ_START_TOKEN;
2920}
2921
2922static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2923{
2924 struct bpf_tcp_iter_state *iter = seq->private;
2925 struct tcp_iter_state *st = &iter->state;
2926 struct sock *sk;
2927
2928 /* Whenever seq_next() is called, the iter->cur_sk is
2929 * done with seq_show(), so advance to the next sk in
2930 * the batch.
2931 */
2932 if (iter->cur_sk < iter->end_sk) {
2933 /* Keeping st->num consistent in tcp_iter_state.
2934 * bpf_iter_tcp does not use st->num.
2935 * meta.seq_num is used instead.
2936 */
2937 st->num++;
2938 /* Move st->offset to the next sk in the bucket such that
2939 * the future start() will resume at st->offset in
2940 * st->bucket. See tcp_seek_last_pos().
2941 */
2942 st->offset++;
2943 sock_put(iter->batch[iter->cur_sk++]);
2944 }
2945
2946 if (iter->cur_sk < iter->end_sk)
2947 sk = iter->batch[iter->cur_sk];
2948 else
2949 sk = bpf_iter_tcp_batch(seq);
2950
2951 ++*pos;
2952 /* Keeping st->last_pos consistent in tcp_iter_state.
2953 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
2954 */
2955 st->last_pos = *pos;
2956 return sk;
2957}
2958
2959static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
2960{
2961 struct bpf_iter_meta meta;
2962 struct bpf_prog *prog;
2963 struct sock *sk = v;
2964 bool slow;
2965 uid_t uid;
2966 int ret;
2967
2968 if (v == SEQ_START_TOKEN)
2969 return 0;
2970
2971 if (sk_fullsock(sk))
2972 slow = lock_sock_fast(sk);
2973
2974 if (unlikely(sk_unhashed(sk))) {
2975 ret = SEQ_SKIP;
2976 goto unlock;
2977 }
2978
2979 if (sk->sk_state == TCP_TIME_WAIT) {
2980 uid = 0;
2981 } else if (sk->sk_state == TCP_NEW_SYN_RECV) {
2982 const struct request_sock *req = v;
2983
2984 uid = from_kuid_munged(seq_user_ns(seq),
2985 sock_i_uid(req->rsk_listener));
2986 } else {
2987 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
2988 }
2989
2990 meta.seq = seq;
2991 prog = bpf_iter_get_info(&meta, false);
2992 ret = tcp_prog_seq_show(prog, &meta, v, uid);
2993
2994unlock:
2995 if (sk_fullsock(sk))
2996 unlock_sock_fast(sk, slow);
2997 return ret;
2998
2999}
3000
3001static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3002{
3003 struct bpf_tcp_iter_state *iter = seq->private;
3004 struct bpf_iter_meta meta;
3005 struct bpf_prog *prog;
3006
3007 if (!v) {
3008 meta.seq = seq;
3009 prog = bpf_iter_get_info(&meta, true);
3010 if (prog)
3011 (void)tcp_prog_seq_show(prog, &meta, v, 0);
3012 }
3013
3014 if (iter->cur_sk < iter->end_sk) {
3015 bpf_iter_tcp_put_batch(iter);
3016 iter->st_bucket_done = false;
3017 }
3018}
3019
3020static const struct seq_operations bpf_iter_tcp_seq_ops = {
3021 .show = bpf_iter_tcp_seq_show,
3022 .start = bpf_iter_tcp_seq_start,
3023 .next = bpf_iter_tcp_seq_next,
3024 .stop = bpf_iter_tcp_seq_stop,
3025};
3026#endif
3027static unsigned short seq_file_family(const struct seq_file *seq)
3028{
3029 const struct tcp_seq_afinfo *afinfo;
3030
3031#ifdef CONFIG_BPF_SYSCALL
3032 /* Iterated from bpf_iter. Let the bpf prog to filter instead. */
3033 if (seq->op == &bpf_iter_tcp_seq_ops)
3034 return AF_UNSPEC;
3035#endif
3036
3037 /* Iterated from proc fs */
3038 afinfo = pde_data(file_inode(seq->file));
3039 return afinfo->family;
3040}
3041
3042static const struct seq_operations tcp4_seq_ops = {
3043 .show = tcp4_seq_show,
3044 .start = tcp_seq_start,
3045 .next = tcp_seq_next,
3046 .stop = tcp_seq_stop,
3047};
3048
3049static struct tcp_seq_afinfo tcp4_seq_afinfo = {
3050 .family = AF_INET,
3051};
3052
3053static int __net_init tcp4_proc_init_net(struct net *net)
3054{
3055 if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3056 sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3057 return -ENOMEM;
3058 return 0;
3059}
3060
3061static void __net_exit tcp4_proc_exit_net(struct net *net)
3062{
3063 remove_proc_entry("tcp", net->proc_net);
3064}
3065
3066static struct pernet_operations tcp4_net_ops = {
3067 .init = tcp4_proc_init_net,
3068 .exit = tcp4_proc_exit_net,
3069};
3070
3071int __init tcp4_proc_init(void)
3072{
3073 return register_pernet_subsys(&tcp4_net_ops);
3074}
3075
3076void tcp4_proc_exit(void)
3077{
3078 unregister_pernet_subsys(&tcp4_net_ops);
3079}
3080#endif /* CONFIG_PROC_FS */
3081
3082/* @wake is one when sk_stream_write_space() calls us.
3083 * This sends EPOLLOUT only if notsent_bytes is half the limit.
3084 * This mimics the strategy used in sock_def_write_space().
3085 */
3086bool tcp_stream_memory_free(const struct sock *sk, int wake)
3087{
3088 const struct tcp_sock *tp = tcp_sk(sk);
3089 u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3090 READ_ONCE(tp->snd_nxt);
3091
3092 return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3093}
3094EXPORT_SYMBOL(tcp_stream_memory_free);
3095
3096struct proto tcp_prot = {
3097 .name = "TCP",
3098 .owner = THIS_MODULE,
3099 .close = tcp_close,
3100 .pre_connect = tcp_v4_pre_connect,
3101 .connect = tcp_v4_connect,
3102 .disconnect = tcp_disconnect,
3103 .accept = inet_csk_accept,
3104 .ioctl = tcp_ioctl,
3105 .init = tcp_v4_init_sock,
3106 .destroy = tcp_v4_destroy_sock,
3107 .shutdown = tcp_shutdown,
3108 .setsockopt = tcp_setsockopt,
3109 .getsockopt = tcp_getsockopt,
3110 .bpf_bypass_getsockopt = tcp_bpf_bypass_getsockopt,
3111 .keepalive = tcp_set_keepalive,
3112 .recvmsg = tcp_recvmsg,
3113 .sendmsg = tcp_sendmsg,
3114 .sendpage = tcp_sendpage,
3115 .backlog_rcv = tcp_v4_do_rcv,
3116 .release_cb = tcp_release_cb,
3117 .hash = inet_hash,
3118 .unhash = inet_unhash,
3119 .get_port = inet_csk_get_port,
3120 .put_port = inet_put_port,
3121#ifdef CONFIG_BPF_SYSCALL
3122 .psock_update_sk_prot = tcp_bpf_update_proto,
3123#endif
3124 .enter_memory_pressure = tcp_enter_memory_pressure,
3125 .leave_memory_pressure = tcp_leave_memory_pressure,
3126 .stream_memory_free = tcp_stream_memory_free,
3127 .sockets_allocated = &tcp_sockets_allocated,
3128 .orphan_count = &tcp_orphan_count,
3129
3130 .memory_allocated = &tcp_memory_allocated,
3131 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
3132
3133 .memory_pressure = &tcp_memory_pressure,
3134 .sysctl_mem = sysctl_tcp_mem,
3135 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
3136 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
3137 .max_header = MAX_TCP_HEADER,
3138 .obj_size = sizeof(struct tcp_sock),
3139 .slab_flags = SLAB_TYPESAFE_BY_RCU,
3140 .twsk_prot = &tcp_timewait_sock_ops,
3141 .rsk_prot = &tcp_request_sock_ops,
3142 .h.hashinfo = NULL,
3143 .no_autobind = true,
3144 .diag_destroy = tcp_abort,
3145};
3146EXPORT_SYMBOL(tcp_prot);
3147
3148static void __net_exit tcp_sk_exit(struct net *net)
3149{
3150 if (net->ipv4.tcp_congestion_control)
3151 bpf_module_put(net->ipv4.tcp_congestion_control,
3152 net->ipv4.tcp_congestion_control->owner);
3153}
3154
3155static void __net_init tcp_set_hashinfo(struct net *net)
3156{
3157 struct inet_hashinfo *hinfo;
3158 unsigned int ehash_entries;
3159 struct net *old_net;
3160
3161 if (net_eq(net, &init_net))
3162 goto fallback;
3163
3164 old_net = current->nsproxy->net_ns;
3165 ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3166 if (!ehash_entries)
3167 goto fallback;
3168
3169 ehash_entries = roundup_pow_of_two(ehash_entries);
3170 hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3171 if (!hinfo) {
3172 pr_warn("Failed to allocate TCP ehash (entries: %u) "
3173 "for a netns, fallback to the global one\n",
3174 ehash_entries);
3175fallback:
3176 hinfo = &tcp_hashinfo;
3177 ehash_entries = tcp_hashinfo.ehash_mask + 1;
3178 }
3179
3180 net->ipv4.tcp_death_row.hashinfo = hinfo;
3181 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3182 net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3183}
3184
3185static int __net_init tcp_sk_init(struct net *net)
3186{
3187 net->ipv4.sysctl_tcp_ecn = 2;
3188 net->ipv4.sysctl_tcp_ecn_fallback = 1;
3189
3190 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3191 net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3192 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3193 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3194 net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3195
3196 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3197 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3198 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3199
3200 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3201 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3202 net->ipv4.sysctl_tcp_syncookies = 1;
3203 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3204 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3205 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3206 net->ipv4.sysctl_tcp_orphan_retries = 0;
3207 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3208 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3209 net->ipv4.sysctl_tcp_tw_reuse = 2;
3210 net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3211
3212 refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3213 tcp_set_hashinfo(net);
3214
3215 net->ipv4.sysctl_tcp_sack = 1;
3216 net->ipv4.sysctl_tcp_window_scaling = 1;
3217 net->ipv4.sysctl_tcp_timestamps = 1;
3218 net->ipv4.sysctl_tcp_early_retrans = 3;
3219 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3220 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */
3221 net->ipv4.sysctl_tcp_retrans_collapse = 1;
3222 net->ipv4.sysctl_tcp_max_reordering = 300;
3223 net->ipv4.sysctl_tcp_dsack = 1;
3224 net->ipv4.sysctl_tcp_app_win = 31;
3225 net->ipv4.sysctl_tcp_adv_win_scale = 1;
3226 net->ipv4.sysctl_tcp_frto = 2;
3227 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3228 /* This limits the percentage of the congestion window which we
3229 * will allow a single TSO frame to consume. Building TSO frames
3230 * which are too large can cause TCP streams to be bursty.
3231 */
3232 net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3233 /* Default TSQ limit of 16 TSO segments */
3234 net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3235
3236 /* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3237 net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3238
3239 net->ipv4.sysctl_tcp_min_tso_segs = 2;
3240 net->ipv4.sysctl_tcp_tso_rtt_log = 9; /* 2^9 = 512 usec */
3241 net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3242 net->ipv4.sysctl_tcp_autocorking = 1;
3243 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3244 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3245 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3246 if (net != &init_net) {
3247 memcpy(net->ipv4.sysctl_tcp_rmem,
3248 init_net.ipv4.sysctl_tcp_rmem,
3249 sizeof(init_net.ipv4.sysctl_tcp_rmem));
3250 memcpy(net->ipv4.sysctl_tcp_wmem,
3251 init_net.ipv4.sysctl_tcp_wmem,
3252 sizeof(init_net.ipv4.sysctl_tcp_wmem));
3253 }
3254 net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3255 net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3256 net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3257 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3258 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3259 atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3260
3261 /* Set default values for PLB */
3262 net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3263 net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3264 net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3265 net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3266 /* Default congestion threshold for PLB to mark a round is 50% */
3267 net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3268
3269 /* Reno is always built in */
3270 if (!net_eq(net, &init_net) &&
3271 bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3272 init_net.ipv4.tcp_congestion_control->owner))
3273 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3274 else
3275 net->ipv4.tcp_congestion_control = &tcp_reno;
3276
3277 return 0;
3278}
3279
3280static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3281{
3282 struct net *net;
3283
3284 tcp_twsk_purge(net_exit_list, AF_INET);
3285
3286 list_for_each_entry(net, net_exit_list, exit_list) {
3287 inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3288 WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3289 tcp_fastopen_ctx_destroy(net);
3290 }
3291}
3292
3293static struct pernet_operations __net_initdata tcp_sk_ops = {
3294 .init = tcp_sk_init,
3295 .exit = tcp_sk_exit,
3296 .exit_batch = tcp_sk_exit_batch,
3297};
3298
3299#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3300DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3301 struct sock_common *sk_common, uid_t uid)
3302
3303#define INIT_BATCH_SZ 16
3304
3305static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3306{
3307 struct bpf_tcp_iter_state *iter = priv_data;
3308 int err;
3309
3310 err = bpf_iter_init_seq_net(priv_data, aux);
3311 if (err)
3312 return err;
3313
3314 err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3315 if (err) {
3316 bpf_iter_fini_seq_net(priv_data);
3317 return err;
3318 }
3319
3320 return 0;
3321}
3322
3323static void bpf_iter_fini_tcp(void *priv_data)
3324{
3325 struct bpf_tcp_iter_state *iter = priv_data;
3326
3327 bpf_iter_fini_seq_net(priv_data);
3328 kvfree(iter->batch);
3329}
3330
3331static const struct bpf_iter_seq_info tcp_seq_info = {
3332 .seq_ops = &bpf_iter_tcp_seq_ops,
3333 .init_seq_private = bpf_iter_init_tcp,
3334 .fini_seq_private = bpf_iter_fini_tcp,
3335 .seq_priv_size = sizeof(struct bpf_tcp_iter_state),
3336};
3337
3338static const struct bpf_func_proto *
3339bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3340 const struct bpf_prog *prog)
3341{
3342 switch (func_id) {
3343 case BPF_FUNC_setsockopt:
3344 return &bpf_sk_setsockopt_proto;
3345 case BPF_FUNC_getsockopt:
3346 return &bpf_sk_getsockopt_proto;
3347 default:
3348 return NULL;
3349 }
3350}
3351
3352static struct bpf_iter_reg tcp_reg_info = {
3353 .target = "tcp",
3354 .ctx_arg_info_size = 1,
3355 .ctx_arg_info = {
3356 { offsetof(struct bpf_iter__tcp, sk_common),
3357 PTR_TO_BTF_ID_OR_NULL },
3358 },
3359 .get_func_proto = bpf_iter_tcp_get_func_proto,
3360 .seq_info = &tcp_seq_info,
3361};
3362
3363static void __init bpf_iter_register(void)
3364{
3365 tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3366 if (bpf_iter_reg_target(&tcp_reg_info))
3367 pr_warn("Warning: could not register bpf iterator tcp\n");
3368}
3369
3370#endif
3371
3372void __init tcp_v4_init(void)
3373{
3374 int cpu, res;
3375
3376 for_each_possible_cpu(cpu) {
3377 struct sock *sk;
3378
3379 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3380 IPPROTO_TCP, &init_net);
3381 if (res)
3382 panic("Failed to create the TCP control socket.\n");
3383 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3384
3385 /* Please enforce IP_DF and IPID==0 for RST and
3386 * ACK sent in SYN-RECV and TIME-WAIT state.
3387 */
3388 inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3389
3390 per_cpu(ipv4_tcp_sk, cpu) = sk;
3391 }
3392 if (register_pernet_subsys(&tcp_sk_ops))
3393 panic("Failed to create the TCP control socket.\n");
3394
3395#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3396 bpf_iter_register();
3397#endif
3398}