Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/proc/base.c
   4 *
   5 *  Copyright (C) 1991, 1992 Linus Torvalds
   6 *
   7 *  proc base directory handling functions
   8 *
   9 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
  10 *  Instead of using magical inumbers to determine the kind of object
  11 *  we allocate and fill in-core inodes upon lookup. They don't even
  12 *  go into icache. We cache the reference to task_struct upon lookup too.
  13 *  Eventually it should become a filesystem in its own. We don't use the
  14 *  rest of procfs anymore.
  15 *
  16 *
  17 *  Changelog:
  18 *  17-Jan-2005
  19 *  Allan Bezerra
  20 *  Bruna Moreira <bruna.moreira@indt.org.br>
  21 *  Edjard Mota <edjard.mota@indt.org.br>
  22 *  Ilias Biris <ilias.biris@indt.org.br>
  23 *  Mauricio Lin <mauricio.lin@indt.org.br>
  24 *
  25 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  26 *
  27 *  A new process specific entry (smaps) included in /proc. It shows the
  28 *  size of rss for each memory area. The maps entry lacks information
  29 *  about physical memory size (rss) for each mapped file, i.e.,
  30 *  rss information for executables and library files.
  31 *  This additional information is useful for any tools that need to know
  32 *  about physical memory consumption for a process specific library.
  33 *
  34 *  Changelog:
  35 *  21-Feb-2005
  36 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  37 *  Pud inclusion in the page table walking.
  38 *
  39 *  ChangeLog:
  40 *  10-Mar-2005
  41 *  10LE Instituto Nokia de Tecnologia - INdT:
  42 *  A better way to walks through the page table as suggested by Hugh Dickins.
  43 *
  44 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  45 *  Smaps information related to shared, private, clean and dirty pages.
  46 *
  47 *  Paul Mundt <paul.mundt@nokia.com>:
  48 *  Overall revision about smaps.
  49 */
  50
  51#include <linux/uaccess.h>
  52
  53#include <linux/errno.h>
  54#include <linux/time.h>
  55#include <linux/proc_fs.h>
  56#include <linux/stat.h>
  57#include <linux/task_io_accounting_ops.h>
  58#include <linux/init.h>
  59#include <linux/capability.h>
  60#include <linux/file.h>
  61#include <linux/fdtable.h>
  62#include <linux/generic-radix-tree.h>
  63#include <linux/string.h>
  64#include <linux/seq_file.h>
  65#include <linux/namei.h>
  66#include <linux/mnt_namespace.h>
  67#include <linux/mm.h>
  68#include <linux/swap.h>
  69#include <linux/rcupdate.h>
 
  70#include <linux/stacktrace.h>
  71#include <linux/resource.h>
  72#include <linux/module.h>
  73#include <linux/mount.h>
  74#include <linux/security.h>
  75#include <linux/ptrace.h>
  76#include <linux/tracehook.h>
  77#include <linux/printk.h>
  78#include <linux/cache.h>
  79#include <linux/cgroup.h>
  80#include <linux/cpuset.h>
  81#include <linux/audit.h>
  82#include <linux/poll.h>
  83#include <linux/nsproxy.h>
  84#include <linux/oom.h>
  85#include <linux/elf.h>
  86#include <linux/pid_namespace.h>
  87#include <linux/user_namespace.h>
 
  88#include <linux/fs_struct.h>
  89#include <linux/slab.h>
  90#include <linux/sched/autogroup.h>
  91#include <linux/sched/mm.h>
  92#include <linux/sched/coredump.h>
  93#include <linux/sched/debug.h>
  94#include <linux/sched/stat.h>
  95#include <linux/posix-timers.h>
  96#include <linux/time_namespace.h>
  97#include <linux/resctrl.h>
 
 
 
  98#include <trace/events/oom.h>
  99#include "internal.h"
 100#include "fd.h"
 101
 102#include "../../lib/kstrtox.h"
 103
 104/* NOTE:
 105 *	Implementing inode permission operations in /proc is almost
 106 *	certainly an error.  Permission checks need to happen during
 107 *	each system call not at open time.  The reason is that most of
 108 *	what we wish to check for permissions in /proc varies at runtime.
 109 *
 110 *	The classic example of a problem is opening file descriptors
 111 *	in /proc for a task before it execs a suid executable.
 112 */
 113
 114static u8 nlink_tid __ro_after_init;
 115static u8 nlink_tgid __ro_after_init;
 116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117struct pid_entry {
 118	const char *name;
 119	unsigned int len;
 120	umode_t mode;
 121	const struct inode_operations *iop;
 122	const struct file_operations *fop;
 123	union proc_op op;
 124};
 125
 126#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 127	.name = (NAME),					\
 128	.len  = sizeof(NAME) - 1,			\
 129	.mode = MODE,					\
 130	.iop  = IOP,					\
 131	.fop  = FOP,					\
 132	.op   = OP,					\
 133}
 134
 135#define DIR(NAME, MODE, iops, fops)	\
 136	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 137#define LNK(NAME, get_link)					\
 138	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 139		&proc_pid_link_inode_operations, NULL,		\
 140		{ .proc_get_link = get_link } )
 141#define REG(NAME, MODE, fops)				\
 142	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 143#define ONE(NAME, MODE, show)				\
 144	NOD(NAME, (S_IFREG|(MODE)),			\
 145		NULL, &proc_single_file_operations,	\
 146		{ .proc_show = show } )
 147#define ATTR(LSM, NAME, MODE)				\
 148	NOD(NAME, (S_IFREG|(MODE)),			\
 149		NULL, &proc_pid_attr_operations,	\
 150		{ .lsm = LSM })
 151
 152/*
 153 * Count the number of hardlinks for the pid_entry table, excluding the .
 154 * and .. links.
 155 */
 156static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 157	unsigned int n)
 158{
 159	unsigned int i;
 160	unsigned int count;
 161
 162	count = 2;
 163	for (i = 0; i < n; ++i) {
 164		if (S_ISDIR(entries[i].mode))
 165			++count;
 166	}
 167
 168	return count;
 169}
 170
 171static int get_task_root(struct task_struct *task, struct path *root)
 172{
 173	int result = -ENOENT;
 174
 175	task_lock(task);
 176	if (task->fs) {
 177		get_fs_root(task->fs, root);
 178		result = 0;
 179	}
 180	task_unlock(task);
 181	return result;
 182}
 183
 184static int proc_cwd_link(struct dentry *dentry, struct path *path)
 185{
 186	struct task_struct *task = get_proc_task(d_inode(dentry));
 187	int result = -ENOENT;
 188
 189	if (task) {
 190		task_lock(task);
 191		if (task->fs) {
 192			get_fs_pwd(task->fs, path);
 193			result = 0;
 194		}
 195		task_unlock(task);
 196		put_task_struct(task);
 197	}
 198	return result;
 199}
 200
 201static int proc_root_link(struct dentry *dentry, struct path *path)
 202{
 203	struct task_struct *task = get_proc_task(d_inode(dentry));
 204	int result = -ENOENT;
 205
 206	if (task) {
 207		result = get_task_root(task, path);
 208		put_task_struct(task);
 209	}
 210	return result;
 211}
 212
 213/*
 214 * If the user used setproctitle(), we just get the string from
 215 * user space at arg_start, and limit it to a maximum of one page.
 216 */
 217static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
 218				size_t count, unsigned long pos,
 219				unsigned long arg_start)
 220{
 221	char *page;
 222	int ret, got;
 223
 224	if (pos >= PAGE_SIZE)
 225		return 0;
 226
 227	page = (char *)__get_free_page(GFP_KERNEL);
 228	if (!page)
 229		return -ENOMEM;
 230
 231	ret = 0;
 232	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
 233	if (got > 0) {
 234		int len = strnlen(page, got);
 235
 236		/* Include the NUL character if it was found */
 237		if (len < got)
 238			len++;
 239
 240		if (len > pos) {
 241			len -= pos;
 242			if (len > count)
 243				len = count;
 244			len -= copy_to_user(buf, page+pos, len);
 245			if (!len)
 246				len = -EFAULT;
 247			ret = len;
 248		}
 249	}
 250	free_page((unsigned long)page);
 251	return ret;
 252}
 253
 254static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
 255			      size_t count, loff_t *ppos)
 256{
 257	unsigned long arg_start, arg_end, env_start, env_end;
 258	unsigned long pos, len;
 259	char *page, c;
 260
 261	/* Check if process spawned far enough to have cmdline. */
 262	if (!mm->env_end)
 263		return 0;
 264
 265	spin_lock(&mm->arg_lock);
 266	arg_start = mm->arg_start;
 267	arg_end = mm->arg_end;
 268	env_start = mm->env_start;
 269	env_end = mm->env_end;
 270	spin_unlock(&mm->arg_lock);
 271
 272	if (arg_start >= arg_end)
 273		return 0;
 274
 275	/*
 276	 * We allow setproctitle() to overwrite the argument
 277	 * strings, and overflow past the original end. But
 278	 * only when it overflows into the environment area.
 279	 */
 280	if (env_start != arg_end || env_end < env_start)
 281		env_start = env_end = arg_end;
 282	len = env_end - arg_start;
 283
 284	/* We're not going to care if "*ppos" has high bits set */
 285	pos = *ppos;
 286	if (pos >= len)
 287		return 0;
 288	if (count > len - pos)
 289		count = len - pos;
 290	if (!count)
 291		return 0;
 292
 293	/*
 294	 * Magical special case: if the argv[] end byte is not
 295	 * zero, the user has overwritten it with setproctitle(3).
 296	 *
 297	 * Possible future enhancement: do this only once when
 298	 * pos is 0, and set a flag in the 'struct file'.
 299	 */
 300	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
 301		return get_mm_proctitle(mm, buf, count, pos, arg_start);
 302
 303	/*
 304	 * For the non-setproctitle() case we limit things strictly
 305	 * to the [arg_start, arg_end[ range.
 306	 */
 307	pos += arg_start;
 308	if (pos < arg_start || pos >= arg_end)
 309		return 0;
 310	if (count > arg_end - pos)
 311		count = arg_end - pos;
 312
 313	page = (char *)__get_free_page(GFP_KERNEL);
 314	if (!page)
 315		return -ENOMEM;
 316
 317	len = 0;
 318	while (count) {
 319		int got;
 320		size_t size = min_t(size_t, PAGE_SIZE, count);
 321
 322		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
 323		if (got <= 0)
 324			break;
 325		got -= copy_to_user(buf, page, got);
 326		if (unlikely(!got)) {
 327			if (!len)
 328				len = -EFAULT;
 329			break;
 330		}
 331		pos += got;
 332		buf += got;
 333		len += got;
 334		count -= got;
 335	}
 336
 337	free_page((unsigned long)page);
 338	return len;
 339}
 340
 341static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
 342				size_t count, loff_t *pos)
 343{
 344	struct mm_struct *mm;
 345	ssize_t ret;
 346
 347	mm = get_task_mm(tsk);
 348	if (!mm)
 349		return 0;
 350
 351	ret = get_mm_cmdline(mm, buf, count, pos);
 352	mmput(mm);
 353	return ret;
 354}
 355
 356static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 357				     size_t count, loff_t *pos)
 358{
 359	struct task_struct *tsk;
 360	ssize_t ret;
 361
 362	BUG_ON(*pos < 0);
 363
 364	tsk = get_proc_task(file_inode(file));
 365	if (!tsk)
 366		return -ESRCH;
 367	ret = get_task_cmdline(tsk, buf, count, pos);
 368	put_task_struct(tsk);
 369	if (ret > 0)
 370		*pos += ret;
 371	return ret;
 372}
 373
 374static const struct file_operations proc_pid_cmdline_ops = {
 375	.read	= proc_pid_cmdline_read,
 376	.llseek	= generic_file_llseek,
 377};
 378
 379#ifdef CONFIG_KALLSYMS
 380/*
 381 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 382 * Returns the resolved symbol.  If that fails, simply return the address.
 383 */
 384static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 385			  struct pid *pid, struct task_struct *task)
 386{
 387	unsigned long wchan;
 
 388
 389	if (ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
 390		wchan = get_wchan(task);
 391	else
 392		wchan = 0;
 393
 394	if (wchan)
 395		seq_printf(m, "%ps", (void *) wchan);
 396	else
 397		seq_putc(m, '0');
 
 398
 
 
 399	return 0;
 400}
 401#endif /* CONFIG_KALLSYMS */
 402
 403static int lock_trace(struct task_struct *task)
 404{
 405	int err = down_read_killable(&task->signal->exec_update_lock);
 406	if (err)
 407		return err;
 408	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 409		up_read(&task->signal->exec_update_lock);
 410		return -EPERM;
 411	}
 412	return 0;
 413}
 414
 415static void unlock_trace(struct task_struct *task)
 416{
 417	up_read(&task->signal->exec_update_lock);
 418}
 419
 420#ifdef CONFIG_STACKTRACE
 421
 422#define MAX_STACK_TRACE_DEPTH	64
 423
 424static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 425			  struct pid *pid, struct task_struct *task)
 426{
 427	unsigned long *entries;
 428	int err;
 429
 430	/*
 431	 * The ability to racily run the kernel stack unwinder on a running task
 432	 * and then observe the unwinder output is scary; while it is useful for
 433	 * debugging kernel issues, it can also allow an attacker to leak kernel
 434	 * stack contents.
 435	 * Doing this in a manner that is at least safe from races would require
 436	 * some work to ensure that the remote task can not be scheduled; and
 437	 * even then, this would still expose the unwinder as local attack
 438	 * surface.
 439	 * Therefore, this interface is restricted to root.
 440	 */
 441	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
 442		return -EACCES;
 443
 444	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
 445				GFP_KERNEL);
 446	if (!entries)
 447		return -ENOMEM;
 448
 449	err = lock_trace(task);
 450	if (!err) {
 451		unsigned int i, nr_entries;
 452
 453		nr_entries = stack_trace_save_tsk(task, entries,
 454						  MAX_STACK_TRACE_DEPTH, 0);
 455
 456		for (i = 0; i < nr_entries; i++) {
 457			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
 458		}
 459
 460		unlock_trace(task);
 461	}
 462	kfree(entries);
 463
 464	return err;
 465}
 466#endif
 467
 468#ifdef CONFIG_SCHED_INFO
 469/*
 470 * Provides /proc/PID/schedstat
 471 */
 472static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 473			      struct pid *pid, struct task_struct *task)
 474{
 475	if (unlikely(!sched_info_on()))
 476		seq_puts(m, "0 0 0\n");
 477	else
 478		seq_printf(m, "%llu %llu %lu\n",
 479		   (unsigned long long)task->se.sum_exec_runtime,
 480		   (unsigned long long)task->sched_info.run_delay,
 481		   task->sched_info.pcount);
 482
 483	return 0;
 484}
 485#endif
 486
 487#ifdef CONFIG_LATENCYTOP
 488static int lstats_show_proc(struct seq_file *m, void *v)
 489{
 490	int i;
 491	struct inode *inode = m->private;
 492	struct task_struct *task = get_proc_task(inode);
 493
 494	if (!task)
 495		return -ESRCH;
 496	seq_puts(m, "Latency Top version : v0.1\n");
 497	for (i = 0; i < LT_SAVECOUNT; i++) {
 498		struct latency_record *lr = &task->latency_record[i];
 499		if (lr->backtrace[0]) {
 500			int q;
 501			seq_printf(m, "%i %li %li",
 502				   lr->count, lr->time, lr->max);
 503			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 504				unsigned long bt = lr->backtrace[q];
 505
 506				if (!bt)
 507					break;
 508				seq_printf(m, " %ps", (void *)bt);
 509			}
 510			seq_putc(m, '\n');
 511		}
 512
 513	}
 514	put_task_struct(task);
 515	return 0;
 516}
 517
 518static int lstats_open(struct inode *inode, struct file *file)
 519{
 520	return single_open(file, lstats_show_proc, inode);
 521}
 522
 523static ssize_t lstats_write(struct file *file, const char __user *buf,
 524			    size_t count, loff_t *offs)
 525{
 526	struct task_struct *task = get_proc_task(file_inode(file));
 527
 528	if (!task)
 529		return -ESRCH;
 530	clear_tsk_latency_tracing(task);
 531	put_task_struct(task);
 532
 533	return count;
 534}
 535
 536static const struct file_operations proc_lstats_operations = {
 537	.open		= lstats_open,
 538	.read		= seq_read,
 539	.write		= lstats_write,
 540	.llseek		= seq_lseek,
 541	.release	= single_release,
 542};
 543
 544#endif
 545
 546static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 547			  struct pid *pid, struct task_struct *task)
 548{
 549	unsigned long totalpages = totalram_pages() + total_swap_pages;
 550	unsigned long points = 0;
 551	long badness;
 552
 553	badness = oom_badness(task, totalpages);
 554	/*
 555	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
 556	 * badness value into [0, 2000] range which we have been
 557	 * exporting for a long time so userspace might depend on it.
 558	 */
 559	if (badness != LONG_MIN)
 560		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
 561
 562	seq_printf(m, "%lu\n", points);
 563
 564	return 0;
 565}
 566
 567struct limit_names {
 568	const char *name;
 569	const char *unit;
 570};
 571
 572static const struct limit_names lnames[RLIM_NLIMITS] = {
 573	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 574	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 575	[RLIMIT_DATA] = {"Max data size", "bytes"},
 576	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 577	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 578	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 579	[RLIMIT_NPROC] = {"Max processes", "processes"},
 580	[RLIMIT_NOFILE] = {"Max open files", "files"},
 581	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 582	[RLIMIT_AS] = {"Max address space", "bytes"},
 583	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 584	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 585	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 586	[RLIMIT_NICE] = {"Max nice priority", NULL},
 587	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 588	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 589};
 590
 591/* Display limits for a process */
 592static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 593			   struct pid *pid, struct task_struct *task)
 594{
 595	unsigned int i;
 596	unsigned long flags;
 597
 598	struct rlimit rlim[RLIM_NLIMITS];
 599
 600	if (!lock_task_sighand(task, &flags))
 601		return 0;
 602	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 603	unlock_task_sighand(task, &flags);
 604
 605	/*
 606	 * print the file header
 607	 */
 608	seq_puts(m, "Limit                     "
 609		"Soft Limit           "
 610		"Hard Limit           "
 611		"Units     \n");
 612
 613	for (i = 0; i < RLIM_NLIMITS; i++) {
 614		if (rlim[i].rlim_cur == RLIM_INFINITY)
 615			seq_printf(m, "%-25s %-20s ",
 616				   lnames[i].name, "unlimited");
 617		else
 618			seq_printf(m, "%-25s %-20lu ",
 619				   lnames[i].name, rlim[i].rlim_cur);
 620
 621		if (rlim[i].rlim_max == RLIM_INFINITY)
 622			seq_printf(m, "%-20s ", "unlimited");
 623		else
 624			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 625
 626		if (lnames[i].unit)
 627			seq_printf(m, "%-10s\n", lnames[i].unit);
 628		else
 629			seq_putc(m, '\n');
 630	}
 631
 632	return 0;
 633}
 634
 635#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 636static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 637			    struct pid *pid, struct task_struct *task)
 638{
 639	struct syscall_info info;
 640	u64 *args = &info.data.args[0];
 641	int res;
 642
 643	res = lock_trace(task);
 644	if (res)
 645		return res;
 646
 647	if (task_current_syscall(task, &info))
 648		seq_puts(m, "running\n");
 649	else if (info.data.nr < 0)
 650		seq_printf(m, "%d 0x%llx 0x%llx\n",
 651			   info.data.nr, info.sp, info.data.instruction_pointer);
 652	else
 653		seq_printf(m,
 654		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
 655		       info.data.nr,
 656		       args[0], args[1], args[2], args[3], args[4], args[5],
 657		       info.sp, info.data.instruction_pointer);
 658	unlock_trace(task);
 659
 660	return 0;
 661}
 662#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 663
 664/************************************************************************/
 665/*                       Here the fs part begins                        */
 666/************************************************************************/
 667
 668/* permission checks */
 669static int proc_fd_access_allowed(struct inode *inode)
 670{
 671	struct task_struct *task;
 672	int allowed = 0;
 673	/* Allow access to a task's file descriptors if it is us or we
 674	 * may use ptrace attach to the process and find out that
 675	 * information.
 676	 */
 677	task = get_proc_task(inode);
 678	if (task) {
 679		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 680		put_task_struct(task);
 681	}
 682	return allowed;
 683}
 684
 685int proc_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
 686		 struct iattr *attr)
 687{
 688	int error;
 689	struct inode *inode = d_inode(dentry);
 690
 691	if (attr->ia_valid & ATTR_MODE)
 692		return -EPERM;
 693
 694	error = setattr_prepare(&init_user_ns, dentry, attr);
 695	if (error)
 696		return error;
 697
 698	setattr_copy(&init_user_ns, inode, attr);
 699	mark_inode_dirty(inode);
 700	return 0;
 701}
 702
 703/*
 704 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 705 * or euid/egid (for hide_pid_min=2)?
 706 */
 707static bool has_pid_permissions(struct proc_fs_info *fs_info,
 708				 struct task_struct *task,
 709				 enum proc_hidepid hide_pid_min)
 710{
 711	/*
 712	 * If 'hidpid' mount option is set force a ptrace check,
 713	 * we indicate that we are using a filesystem syscall
 714	 * by passing PTRACE_MODE_READ_FSCREDS
 715	 */
 716	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
 717		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 718
 719	if (fs_info->hide_pid < hide_pid_min)
 720		return true;
 721	if (in_group_p(fs_info->pid_gid))
 722		return true;
 723	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 724}
 725
 726
 727static int proc_pid_permission(struct user_namespace *mnt_userns,
 728			       struct inode *inode, int mask)
 729{
 730	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
 731	struct task_struct *task;
 732	bool has_perms;
 733
 734	task = get_proc_task(inode);
 735	if (!task)
 736		return -ESRCH;
 737	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
 738	put_task_struct(task);
 739
 740	if (!has_perms) {
 741		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
 742			/*
 743			 * Let's make getdents(), stat(), and open()
 744			 * consistent with each other.  If a process
 745			 * may not stat() a file, it shouldn't be seen
 746			 * in procfs at all.
 747			 */
 748			return -ENOENT;
 749		}
 750
 751		return -EPERM;
 752	}
 753	return generic_permission(&init_user_ns, inode, mask);
 754}
 755
 756
 757
 758static const struct inode_operations proc_def_inode_operations = {
 759	.setattr	= proc_setattr,
 760};
 761
 762static int proc_single_show(struct seq_file *m, void *v)
 763{
 764	struct inode *inode = m->private;
 765	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
 766	struct pid *pid = proc_pid(inode);
 767	struct task_struct *task;
 768	int ret;
 769
 770	task = get_pid_task(pid, PIDTYPE_PID);
 771	if (!task)
 772		return -ESRCH;
 773
 774	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 775
 776	put_task_struct(task);
 777	return ret;
 778}
 779
 780static int proc_single_open(struct inode *inode, struct file *filp)
 781{
 782	return single_open(filp, proc_single_show, inode);
 783}
 784
 785static const struct file_operations proc_single_file_operations = {
 786	.open		= proc_single_open,
 787	.read		= seq_read,
 788	.llseek		= seq_lseek,
 789	.release	= single_release,
 790};
 791
 792
 793struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 794{
 795	struct task_struct *task = get_proc_task(inode);
 796	struct mm_struct *mm = ERR_PTR(-ESRCH);
 797
 798	if (task) {
 799		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 800		put_task_struct(task);
 801
 802		if (!IS_ERR_OR_NULL(mm)) {
 803			/* ensure this mm_struct can't be freed */
 804			mmgrab(mm);
 805			/* but do not pin its memory */
 806			mmput(mm);
 807		}
 808	}
 
 
 
 809
 810	return mm;
 811}
 812
 813static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 814{
 815	struct mm_struct *mm = proc_mem_open(inode, mode);
 816
 817	if (IS_ERR(mm))
 818		return PTR_ERR(mm);
 819
 820	file->private_data = mm;
 821	return 0;
 822}
 823
 824static int mem_open(struct inode *inode, struct file *file)
 825{
 826	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 
 
 
 827
 828	/* OK to pass negative loff_t, we can catch out-of-range */
 829	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 
 
 830
 831	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 832}
 833
 834static ssize_t mem_rw(struct file *file, char __user *buf,
 835			size_t count, loff_t *ppos, int write)
 836{
 837	struct mm_struct *mm = file->private_data;
 838	unsigned long addr = *ppos;
 839	ssize_t copied;
 840	char *page;
 841	unsigned int flags;
 842
 843	if (!mm)
 844		return 0;
 845
 846	page = (char *)__get_free_page(GFP_KERNEL);
 847	if (!page)
 848		return -ENOMEM;
 849
 850	copied = 0;
 851	if (!mmget_not_zero(mm))
 852		goto free;
 853
 854	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
 
 
 855
 856	while (count > 0) {
 857		size_t this_len = min_t(size_t, count, PAGE_SIZE);
 858
 859		if (write && copy_from_user(page, buf, this_len)) {
 860			copied = -EFAULT;
 861			break;
 862		}
 863
 864		this_len = access_remote_vm(mm, addr, page, this_len, flags);
 865		if (!this_len) {
 866			if (!copied)
 867				copied = -EIO;
 868			break;
 869		}
 870
 871		if (!write && copy_to_user(buf, page, this_len)) {
 872			copied = -EFAULT;
 873			break;
 874		}
 875
 876		buf += this_len;
 877		addr += this_len;
 878		copied += this_len;
 879		count -= this_len;
 880	}
 881	*ppos = addr;
 882
 883	mmput(mm);
 884free:
 885	free_page((unsigned long) page);
 886	return copied;
 887}
 888
 889static ssize_t mem_read(struct file *file, char __user *buf,
 890			size_t count, loff_t *ppos)
 891{
 892	return mem_rw(file, buf, count, ppos, 0);
 893}
 894
 895static ssize_t mem_write(struct file *file, const char __user *buf,
 896			 size_t count, loff_t *ppos)
 897{
 898	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 899}
 900
 901loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 902{
 903	switch (orig) {
 904	case 0:
 905		file->f_pos = offset;
 906		break;
 907	case 1:
 908		file->f_pos += offset;
 909		break;
 910	default:
 911		return -EINVAL;
 912	}
 913	force_successful_syscall_return();
 914	return file->f_pos;
 915}
 916
 917static int mem_release(struct inode *inode, struct file *file)
 918{
 919	struct mm_struct *mm = file->private_data;
 920	if (mm)
 921		mmdrop(mm);
 922	return 0;
 923}
 924
 925static const struct file_operations proc_mem_operations = {
 926	.llseek		= mem_lseek,
 927	.read		= mem_read,
 928	.write		= mem_write,
 929	.open		= mem_open,
 930	.release	= mem_release,
 
 931};
 932
 933static int environ_open(struct inode *inode, struct file *file)
 934{
 935	return __mem_open(inode, file, PTRACE_MODE_READ);
 936}
 937
 938static ssize_t environ_read(struct file *file, char __user *buf,
 939			size_t count, loff_t *ppos)
 940{
 941	char *page;
 942	unsigned long src = *ppos;
 943	int ret = 0;
 944	struct mm_struct *mm = file->private_data;
 945	unsigned long env_start, env_end;
 946
 947	/* Ensure the process spawned far enough to have an environment. */
 948	if (!mm || !mm->env_end)
 949		return 0;
 950
 951	page = (char *)__get_free_page(GFP_KERNEL);
 952	if (!page)
 953		return -ENOMEM;
 954
 955	ret = 0;
 956	if (!mmget_not_zero(mm))
 957		goto free;
 958
 959	spin_lock(&mm->arg_lock);
 960	env_start = mm->env_start;
 961	env_end = mm->env_end;
 962	spin_unlock(&mm->arg_lock);
 963
 964	while (count > 0) {
 965		size_t this_len, max_len;
 966		int retval;
 967
 968		if (src >= (env_end - env_start))
 969			break;
 970
 971		this_len = env_end - (env_start + src);
 972
 973		max_len = min_t(size_t, PAGE_SIZE, count);
 974		this_len = min(max_len, this_len);
 975
 976		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
 977
 978		if (retval <= 0) {
 979			ret = retval;
 980			break;
 981		}
 982
 983		if (copy_to_user(buf, page, retval)) {
 984			ret = -EFAULT;
 985			break;
 986		}
 987
 988		ret += retval;
 989		src += retval;
 990		buf += retval;
 991		count -= retval;
 992	}
 993	*ppos = src;
 994	mmput(mm);
 995
 996free:
 997	free_page((unsigned long) page);
 998	return ret;
 999}
1000
1001static const struct file_operations proc_environ_operations = {
1002	.open		= environ_open,
1003	.read		= environ_read,
1004	.llseek		= generic_file_llseek,
1005	.release	= mem_release,
1006};
1007
1008static int auxv_open(struct inode *inode, struct file *file)
1009{
1010	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1011}
1012
1013static ssize_t auxv_read(struct file *file, char __user *buf,
1014			size_t count, loff_t *ppos)
1015{
1016	struct mm_struct *mm = file->private_data;
1017	unsigned int nwords = 0;
1018
1019	if (!mm)
1020		return 0;
1021	do {
1022		nwords += 2;
1023	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1024	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1025				       nwords * sizeof(mm->saved_auxv[0]));
1026}
1027
1028static const struct file_operations proc_auxv_operations = {
1029	.open		= auxv_open,
1030	.read		= auxv_read,
1031	.llseek		= generic_file_llseek,
1032	.release	= mem_release,
1033};
1034
1035static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1036			    loff_t *ppos)
1037{
1038	struct task_struct *task = get_proc_task(file_inode(file));
1039	char buffer[PROC_NUMBUF];
1040	int oom_adj = OOM_ADJUST_MIN;
1041	size_t len;
1042
1043	if (!task)
1044		return -ESRCH;
1045	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1046		oom_adj = OOM_ADJUST_MAX;
1047	else
1048		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1049			  OOM_SCORE_ADJ_MAX;
1050	put_task_struct(task);
1051	if (oom_adj > OOM_ADJUST_MAX)
1052		oom_adj = OOM_ADJUST_MAX;
1053	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1054	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1055}
1056
1057static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1058{
1059	struct mm_struct *mm = NULL;
1060	struct task_struct *task;
1061	int err = 0;
1062
1063	task = get_proc_task(file_inode(file));
1064	if (!task)
1065		return -ESRCH;
1066
1067	mutex_lock(&oom_adj_mutex);
1068	if (legacy) {
1069		if (oom_adj < task->signal->oom_score_adj &&
1070				!capable(CAP_SYS_RESOURCE)) {
1071			err = -EACCES;
1072			goto err_unlock;
1073		}
1074		/*
1075		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1076		 * /proc/pid/oom_score_adj instead.
1077		 */
1078		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1079			  current->comm, task_pid_nr(current), task_pid_nr(task),
1080			  task_pid_nr(task));
1081	} else {
1082		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1083				!capable(CAP_SYS_RESOURCE)) {
1084			err = -EACCES;
1085			goto err_unlock;
1086		}
1087	}
1088
1089	/*
1090	 * Make sure we will check other processes sharing the mm if this is
1091	 * not vfrok which wants its own oom_score_adj.
1092	 * pin the mm so it doesn't go away and get reused after task_unlock
1093	 */
1094	if (!task->vfork_done) {
1095		struct task_struct *p = find_lock_task_mm(task);
1096
1097		if (p) {
1098			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1099				mm = p->mm;
1100				mmgrab(mm);
1101			}
1102			task_unlock(p);
1103		}
1104	}
1105
1106	task->signal->oom_score_adj = oom_adj;
1107	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1108		task->signal->oom_score_adj_min = (short)oom_adj;
1109	trace_oom_score_adj_update(task);
1110
1111	if (mm) {
1112		struct task_struct *p;
1113
1114		rcu_read_lock();
1115		for_each_process(p) {
1116			if (same_thread_group(task, p))
1117				continue;
1118
1119			/* do not touch kernel threads or the global init */
1120			if (p->flags & PF_KTHREAD || is_global_init(p))
1121				continue;
1122
1123			task_lock(p);
1124			if (!p->vfork_done && process_shares_mm(p, mm)) {
1125				p->signal->oom_score_adj = oom_adj;
1126				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1127					p->signal->oom_score_adj_min = (short)oom_adj;
1128			}
1129			task_unlock(p);
1130		}
1131		rcu_read_unlock();
1132		mmdrop(mm);
1133	}
1134err_unlock:
1135	mutex_unlock(&oom_adj_mutex);
1136	put_task_struct(task);
1137	return err;
1138}
1139
1140/*
1141 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1142 * kernels.  The effective policy is defined by oom_score_adj, which has a
1143 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1144 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1145 * Processes that become oom disabled via oom_adj will still be oom disabled
1146 * with this implementation.
1147 *
1148 * oom_adj cannot be removed since existing userspace binaries use it.
1149 */
1150static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1151			     size_t count, loff_t *ppos)
1152{
1153	char buffer[PROC_NUMBUF];
1154	int oom_adj;
1155	int err;
1156
1157	memset(buffer, 0, sizeof(buffer));
1158	if (count > sizeof(buffer) - 1)
1159		count = sizeof(buffer) - 1;
1160	if (copy_from_user(buffer, buf, count)) {
1161		err = -EFAULT;
1162		goto out;
1163	}
1164
1165	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1166	if (err)
1167		goto out;
1168	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1169	     oom_adj != OOM_DISABLE) {
1170		err = -EINVAL;
1171		goto out;
1172	}
1173
1174	/*
1175	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1176	 * value is always attainable.
1177	 */
1178	if (oom_adj == OOM_ADJUST_MAX)
1179		oom_adj = OOM_SCORE_ADJ_MAX;
1180	else
1181		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1182
1183	err = __set_oom_adj(file, oom_adj, true);
1184out:
1185	return err < 0 ? err : count;
1186}
1187
1188static const struct file_operations proc_oom_adj_operations = {
1189	.read		= oom_adj_read,
1190	.write		= oom_adj_write,
1191	.llseek		= generic_file_llseek,
1192};
1193
1194static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1195					size_t count, loff_t *ppos)
1196{
1197	struct task_struct *task = get_proc_task(file_inode(file));
1198	char buffer[PROC_NUMBUF];
1199	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1200	size_t len;
1201
1202	if (!task)
1203		return -ESRCH;
1204	oom_score_adj = task->signal->oom_score_adj;
1205	put_task_struct(task);
1206	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1207	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1208}
1209
1210static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1211					size_t count, loff_t *ppos)
1212{
1213	char buffer[PROC_NUMBUF];
1214	int oom_score_adj;
1215	int err;
1216
1217	memset(buffer, 0, sizeof(buffer));
1218	if (count > sizeof(buffer) - 1)
1219		count = sizeof(buffer) - 1;
1220	if (copy_from_user(buffer, buf, count)) {
1221		err = -EFAULT;
1222		goto out;
1223	}
1224
1225	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1226	if (err)
1227		goto out;
1228	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1229			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1230		err = -EINVAL;
1231		goto out;
1232	}
1233
1234	err = __set_oom_adj(file, oom_score_adj, false);
1235out:
1236	return err < 0 ? err : count;
1237}
1238
1239static const struct file_operations proc_oom_score_adj_operations = {
1240	.read		= oom_score_adj_read,
1241	.write		= oom_score_adj_write,
1242	.llseek		= default_llseek,
1243};
1244
1245#ifdef CONFIG_AUDIT
1246#define TMPBUFLEN 11
1247static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1248				  size_t count, loff_t *ppos)
1249{
1250	struct inode * inode = file_inode(file);
1251	struct task_struct *task = get_proc_task(inode);
1252	ssize_t length;
1253	char tmpbuf[TMPBUFLEN];
1254
1255	if (!task)
1256		return -ESRCH;
1257	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1258			   from_kuid(file->f_cred->user_ns,
1259				     audit_get_loginuid(task)));
1260	put_task_struct(task);
1261	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1262}
1263
1264static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1265				   size_t count, loff_t *ppos)
1266{
1267	struct inode * inode = file_inode(file);
1268	uid_t loginuid;
1269	kuid_t kloginuid;
1270	int rv;
1271
1272	/* Don't let kthreads write their own loginuid */
1273	if (current->flags & PF_KTHREAD)
1274		return -EPERM;
1275
1276	rcu_read_lock();
1277	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1278		rcu_read_unlock();
1279		return -EPERM;
1280	}
1281	rcu_read_unlock();
1282
1283	if (*ppos != 0) {
1284		/* No partial writes. */
1285		return -EINVAL;
1286	}
1287
1288	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1289	if (rv < 0)
1290		return rv;
1291
1292	/* is userspace tring to explicitly UNSET the loginuid? */
1293	if (loginuid == AUDIT_UID_UNSET) {
1294		kloginuid = INVALID_UID;
1295	} else {
1296		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1297		if (!uid_valid(kloginuid))
1298			return -EINVAL;
1299	}
1300
1301	rv = audit_set_loginuid(kloginuid);
1302	if (rv < 0)
1303		return rv;
1304	return count;
1305}
1306
1307static const struct file_operations proc_loginuid_operations = {
1308	.read		= proc_loginuid_read,
1309	.write		= proc_loginuid_write,
1310	.llseek		= generic_file_llseek,
1311};
1312
1313static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1314				  size_t count, loff_t *ppos)
1315{
1316	struct inode * inode = file_inode(file);
1317	struct task_struct *task = get_proc_task(inode);
1318	ssize_t length;
1319	char tmpbuf[TMPBUFLEN];
1320
1321	if (!task)
1322		return -ESRCH;
1323	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1324				audit_get_sessionid(task));
1325	put_task_struct(task);
1326	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1327}
1328
1329static const struct file_operations proc_sessionid_operations = {
1330	.read		= proc_sessionid_read,
1331	.llseek		= generic_file_llseek,
1332};
1333#endif
1334
1335#ifdef CONFIG_FAULT_INJECTION
1336static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1337				      size_t count, loff_t *ppos)
1338{
1339	struct task_struct *task = get_proc_task(file_inode(file));
1340	char buffer[PROC_NUMBUF];
1341	size_t len;
1342	int make_it_fail;
1343
1344	if (!task)
1345		return -ESRCH;
1346	make_it_fail = task->make_it_fail;
1347	put_task_struct(task);
1348
1349	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1350
1351	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1352}
1353
1354static ssize_t proc_fault_inject_write(struct file * file,
1355			const char __user * buf, size_t count, loff_t *ppos)
1356{
1357	struct task_struct *task;
1358	char buffer[PROC_NUMBUF];
1359	int make_it_fail;
1360	int rv;
1361
1362	if (!capable(CAP_SYS_RESOURCE))
1363		return -EPERM;
1364	memset(buffer, 0, sizeof(buffer));
1365	if (count > sizeof(buffer) - 1)
1366		count = sizeof(buffer) - 1;
1367	if (copy_from_user(buffer, buf, count))
1368		return -EFAULT;
1369	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1370	if (rv < 0)
1371		return rv;
1372	if (make_it_fail < 0 || make_it_fail > 1)
1373		return -EINVAL;
1374
1375	task = get_proc_task(file_inode(file));
1376	if (!task)
1377		return -ESRCH;
1378	task->make_it_fail = make_it_fail;
1379	put_task_struct(task);
1380
1381	return count;
1382}
1383
1384static const struct file_operations proc_fault_inject_operations = {
1385	.read		= proc_fault_inject_read,
1386	.write		= proc_fault_inject_write,
1387	.llseek		= generic_file_llseek,
1388};
1389
1390static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1391				   size_t count, loff_t *ppos)
1392{
1393	struct task_struct *task;
1394	int err;
1395	unsigned int n;
1396
1397	err = kstrtouint_from_user(buf, count, 0, &n);
1398	if (err)
1399		return err;
1400
1401	task = get_proc_task(file_inode(file));
1402	if (!task)
1403		return -ESRCH;
1404	task->fail_nth = n;
1405	put_task_struct(task);
1406
1407	return count;
1408}
1409
1410static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1411				  size_t count, loff_t *ppos)
1412{
1413	struct task_struct *task;
1414	char numbuf[PROC_NUMBUF];
1415	ssize_t len;
1416
1417	task = get_proc_task(file_inode(file));
1418	if (!task)
1419		return -ESRCH;
1420	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1421	put_task_struct(task);
1422	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1423}
1424
1425static const struct file_operations proc_fail_nth_operations = {
1426	.read		= proc_fail_nth_read,
1427	.write		= proc_fail_nth_write,
1428};
1429#endif
1430
1431
1432#ifdef CONFIG_SCHED_DEBUG
1433/*
1434 * Print out various scheduling related per-task fields:
1435 */
1436static int sched_show(struct seq_file *m, void *v)
1437{
1438	struct inode *inode = m->private;
1439	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1440	struct task_struct *p;
1441
1442	p = get_proc_task(inode);
1443	if (!p)
1444		return -ESRCH;
1445	proc_sched_show_task(p, ns, m);
1446
1447	put_task_struct(p);
1448
1449	return 0;
1450}
1451
1452static ssize_t
1453sched_write(struct file *file, const char __user *buf,
1454	    size_t count, loff_t *offset)
1455{
1456	struct inode *inode = file_inode(file);
1457	struct task_struct *p;
1458
1459	p = get_proc_task(inode);
1460	if (!p)
1461		return -ESRCH;
1462	proc_sched_set_task(p);
1463
1464	put_task_struct(p);
1465
1466	return count;
1467}
1468
1469static int sched_open(struct inode *inode, struct file *filp)
1470{
1471	return single_open(filp, sched_show, inode);
1472}
1473
1474static const struct file_operations proc_pid_sched_operations = {
1475	.open		= sched_open,
1476	.read		= seq_read,
1477	.write		= sched_write,
1478	.llseek		= seq_lseek,
1479	.release	= single_release,
1480};
1481
1482#endif
1483
1484#ifdef CONFIG_SCHED_AUTOGROUP
1485/*
1486 * Print out autogroup related information:
1487 */
1488static int sched_autogroup_show(struct seq_file *m, void *v)
1489{
1490	struct inode *inode = m->private;
1491	struct task_struct *p;
1492
1493	p = get_proc_task(inode);
1494	if (!p)
1495		return -ESRCH;
1496	proc_sched_autogroup_show_task(p, m);
1497
1498	put_task_struct(p);
1499
1500	return 0;
1501}
1502
1503static ssize_t
1504sched_autogroup_write(struct file *file, const char __user *buf,
1505	    size_t count, loff_t *offset)
1506{
1507	struct inode *inode = file_inode(file);
1508	struct task_struct *p;
1509	char buffer[PROC_NUMBUF];
1510	int nice;
1511	int err;
1512
1513	memset(buffer, 0, sizeof(buffer));
1514	if (count > sizeof(buffer) - 1)
1515		count = sizeof(buffer) - 1;
1516	if (copy_from_user(buffer, buf, count))
1517		return -EFAULT;
1518
1519	err = kstrtoint(strstrip(buffer), 0, &nice);
1520	if (err < 0)
1521		return err;
1522
1523	p = get_proc_task(inode);
1524	if (!p)
1525		return -ESRCH;
1526
1527	err = proc_sched_autogroup_set_nice(p, nice);
1528	if (err)
1529		count = err;
1530
1531	put_task_struct(p);
1532
1533	return count;
1534}
1535
1536static int sched_autogroup_open(struct inode *inode, struct file *filp)
1537{
1538	int ret;
1539
1540	ret = single_open(filp, sched_autogroup_show, NULL);
1541	if (!ret) {
1542		struct seq_file *m = filp->private_data;
1543
1544		m->private = inode;
1545	}
1546	return ret;
1547}
1548
1549static const struct file_operations proc_pid_sched_autogroup_operations = {
1550	.open		= sched_autogroup_open,
1551	.read		= seq_read,
1552	.write		= sched_autogroup_write,
1553	.llseek		= seq_lseek,
1554	.release	= single_release,
1555};
1556
1557#endif /* CONFIG_SCHED_AUTOGROUP */
1558
1559#ifdef CONFIG_TIME_NS
1560static int timens_offsets_show(struct seq_file *m, void *v)
1561{
1562	struct task_struct *p;
1563
1564	p = get_proc_task(file_inode(m->file));
1565	if (!p)
1566		return -ESRCH;
1567	proc_timens_show_offsets(p, m);
1568
1569	put_task_struct(p);
1570
1571	return 0;
1572}
1573
1574static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1575				    size_t count, loff_t *ppos)
1576{
1577	struct inode *inode = file_inode(file);
1578	struct proc_timens_offset offsets[2];
1579	char *kbuf = NULL, *pos, *next_line;
1580	struct task_struct *p;
1581	int ret, noffsets;
1582
1583	/* Only allow < page size writes at the beginning of the file */
1584	if ((*ppos != 0) || (count >= PAGE_SIZE))
1585		return -EINVAL;
1586
1587	/* Slurp in the user data */
1588	kbuf = memdup_user_nul(buf, count);
1589	if (IS_ERR(kbuf))
1590		return PTR_ERR(kbuf);
1591
1592	/* Parse the user data */
1593	ret = -EINVAL;
1594	noffsets = 0;
1595	for (pos = kbuf; pos; pos = next_line) {
1596		struct proc_timens_offset *off = &offsets[noffsets];
1597		char clock[10];
1598		int err;
1599
1600		/* Find the end of line and ensure we don't look past it */
1601		next_line = strchr(pos, '\n');
1602		if (next_line) {
1603			*next_line = '\0';
1604			next_line++;
1605			if (*next_line == '\0')
1606				next_line = NULL;
1607		}
1608
1609		err = sscanf(pos, "%9s %lld %lu", clock,
1610				&off->val.tv_sec, &off->val.tv_nsec);
1611		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1612			goto out;
1613
1614		clock[sizeof(clock) - 1] = 0;
1615		if (strcmp(clock, "monotonic") == 0 ||
1616		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1617			off->clockid = CLOCK_MONOTONIC;
1618		else if (strcmp(clock, "boottime") == 0 ||
1619			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1620			off->clockid = CLOCK_BOOTTIME;
1621		else
1622			goto out;
1623
1624		noffsets++;
1625		if (noffsets == ARRAY_SIZE(offsets)) {
1626			if (next_line)
1627				count = next_line - kbuf;
1628			break;
1629		}
1630	}
1631
1632	ret = -ESRCH;
1633	p = get_proc_task(inode);
1634	if (!p)
1635		goto out;
1636	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1637	put_task_struct(p);
1638	if (ret)
1639		goto out;
1640
1641	ret = count;
1642out:
1643	kfree(kbuf);
1644	return ret;
1645}
1646
1647static int timens_offsets_open(struct inode *inode, struct file *filp)
1648{
1649	return single_open(filp, timens_offsets_show, inode);
1650}
1651
1652static const struct file_operations proc_timens_offsets_operations = {
1653	.open		= timens_offsets_open,
1654	.read		= seq_read,
1655	.write		= timens_offsets_write,
1656	.llseek		= seq_lseek,
1657	.release	= single_release,
1658};
1659#endif /* CONFIG_TIME_NS */
1660
1661static ssize_t comm_write(struct file *file, const char __user *buf,
1662				size_t count, loff_t *offset)
1663{
1664	struct inode *inode = file_inode(file);
1665	struct task_struct *p;
1666	char buffer[TASK_COMM_LEN];
1667	const size_t maxlen = sizeof(buffer) - 1;
1668
1669	memset(buffer, 0, sizeof(buffer));
1670	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1671		return -EFAULT;
1672
1673	p = get_proc_task(inode);
1674	if (!p)
1675		return -ESRCH;
1676
1677	if (same_thread_group(current, p))
1678		set_task_comm(p, buffer);
 
 
1679	else
1680		count = -EINVAL;
1681
1682	put_task_struct(p);
1683
1684	return count;
1685}
1686
1687static int comm_show(struct seq_file *m, void *v)
1688{
1689	struct inode *inode = m->private;
1690	struct task_struct *p;
1691
1692	p = get_proc_task(inode);
1693	if (!p)
1694		return -ESRCH;
1695
1696	proc_task_name(m, p, false);
1697	seq_putc(m, '\n');
1698
1699	put_task_struct(p);
1700
1701	return 0;
1702}
1703
1704static int comm_open(struct inode *inode, struct file *filp)
1705{
1706	return single_open(filp, comm_show, inode);
1707}
1708
1709static const struct file_operations proc_pid_set_comm_operations = {
1710	.open		= comm_open,
1711	.read		= seq_read,
1712	.write		= comm_write,
1713	.llseek		= seq_lseek,
1714	.release	= single_release,
1715};
1716
1717static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1718{
1719	struct task_struct *task;
1720	struct file *exe_file;
1721
1722	task = get_proc_task(d_inode(dentry));
1723	if (!task)
1724		return -ENOENT;
1725	exe_file = get_task_exe_file(task);
1726	put_task_struct(task);
1727	if (exe_file) {
1728		*exe_path = exe_file->f_path;
1729		path_get(&exe_file->f_path);
1730		fput(exe_file);
1731		return 0;
1732	} else
1733		return -ENOENT;
1734}
1735
1736static const char *proc_pid_get_link(struct dentry *dentry,
1737				     struct inode *inode,
1738				     struct delayed_call *done)
1739{
1740	struct path path;
1741	int error = -EACCES;
1742
1743	if (!dentry)
1744		return ERR_PTR(-ECHILD);
1745
1746	/* Are we allowed to snoop on the tasks file descriptors? */
1747	if (!proc_fd_access_allowed(inode))
1748		goto out;
1749
1750	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1751	if (error)
1752		goto out;
1753
1754	error = nd_jump_link(&path);
1755out:
1756	return ERR_PTR(error);
1757}
1758
1759static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1760{
1761	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1762	char *pathname;
1763	int len;
1764
1765	if (!tmp)
1766		return -ENOMEM;
1767
1768	pathname = d_path(path, tmp, PAGE_SIZE);
1769	len = PTR_ERR(pathname);
1770	if (IS_ERR(pathname))
1771		goto out;
1772	len = tmp + PAGE_SIZE - 1 - pathname;
1773
1774	if (len > buflen)
1775		len = buflen;
1776	if (copy_to_user(buffer, pathname, len))
1777		len = -EFAULT;
1778 out:
1779	free_page((unsigned long)tmp);
1780	return len;
1781}
1782
1783static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1784{
1785	int error = -EACCES;
1786	struct inode *inode = d_inode(dentry);
1787	struct path path;
1788
1789	/* Are we allowed to snoop on the tasks file descriptors? */
1790	if (!proc_fd_access_allowed(inode))
1791		goto out;
1792
1793	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1794	if (error)
1795		goto out;
1796
1797	error = do_proc_readlink(&path, buffer, buflen);
1798	path_put(&path);
1799out:
1800	return error;
1801}
1802
1803const struct inode_operations proc_pid_link_inode_operations = {
1804	.readlink	= proc_pid_readlink,
1805	.get_link	= proc_pid_get_link,
1806	.setattr	= proc_setattr,
1807};
1808
1809
1810/* building an inode */
1811
1812void task_dump_owner(struct task_struct *task, umode_t mode,
1813		     kuid_t *ruid, kgid_t *rgid)
1814{
1815	/* Depending on the state of dumpable compute who should own a
1816	 * proc file for a task.
1817	 */
1818	const struct cred *cred;
1819	kuid_t uid;
1820	kgid_t gid;
1821
1822	if (unlikely(task->flags & PF_KTHREAD)) {
1823		*ruid = GLOBAL_ROOT_UID;
1824		*rgid = GLOBAL_ROOT_GID;
1825		return;
1826	}
1827
1828	/* Default to the tasks effective ownership */
1829	rcu_read_lock();
1830	cred = __task_cred(task);
1831	uid = cred->euid;
1832	gid = cred->egid;
1833	rcu_read_unlock();
1834
1835	/*
1836	 * Before the /proc/pid/status file was created the only way to read
1837	 * the effective uid of a /process was to stat /proc/pid.  Reading
1838	 * /proc/pid/status is slow enough that procps and other packages
1839	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1840	 * made this apply to all per process world readable and executable
1841	 * directories.
1842	 */
1843	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1844		struct mm_struct *mm;
1845		task_lock(task);
1846		mm = task->mm;
1847		/* Make non-dumpable tasks owned by some root */
1848		if (mm) {
1849			if (get_dumpable(mm) != SUID_DUMP_USER) {
1850				struct user_namespace *user_ns = mm->user_ns;
1851
1852				uid = make_kuid(user_ns, 0);
1853				if (!uid_valid(uid))
1854					uid = GLOBAL_ROOT_UID;
1855
1856				gid = make_kgid(user_ns, 0);
1857				if (!gid_valid(gid))
1858					gid = GLOBAL_ROOT_GID;
1859			}
1860		} else {
1861			uid = GLOBAL_ROOT_UID;
1862			gid = GLOBAL_ROOT_GID;
1863		}
1864		task_unlock(task);
1865	}
1866	*ruid = uid;
1867	*rgid = gid;
1868}
1869
1870void proc_pid_evict_inode(struct proc_inode *ei)
1871{
1872	struct pid *pid = ei->pid;
1873
1874	if (S_ISDIR(ei->vfs_inode.i_mode)) {
1875		spin_lock(&pid->lock);
1876		hlist_del_init_rcu(&ei->sibling_inodes);
1877		spin_unlock(&pid->lock);
1878	}
1879
1880	put_pid(pid);
1881}
1882
1883struct inode *proc_pid_make_inode(struct super_block * sb,
1884				  struct task_struct *task, umode_t mode)
1885{
1886	struct inode * inode;
1887	struct proc_inode *ei;
1888	struct pid *pid;
1889
1890	/* We need a new inode */
1891
1892	inode = new_inode(sb);
1893	if (!inode)
1894		goto out;
1895
1896	/* Common stuff */
1897	ei = PROC_I(inode);
1898	inode->i_mode = mode;
1899	inode->i_ino = get_next_ino();
1900	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1901	inode->i_op = &proc_def_inode_operations;
1902
1903	/*
1904	 * grab the reference to task.
1905	 */
1906	pid = get_task_pid(task, PIDTYPE_PID);
1907	if (!pid)
1908		goto out_unlock;
1909
1910	/* Let the pid remember us for quick removal */
1911	ei->pid = pid;
1912	if (S_ISDIR(mode)) {
1913		spin_lock(&pid->lock);
1914		hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1915		spin_unlock(&pid->lock);
1916	}
1917
1918	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1919	security_task_to_inode(task, inode);
1920
1921out:
1922	return inode;
1923
1924out_unlock:
1925	iput(inode);
1926	return NULL;
1927}
1928
1929int pid_getattr(struct user_namespace *mnt_userns, const struct path *path,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1930		struct kstat *stat, u32 request_mask, unsigned int query_flags)
1931{
1932	struct inode *inode = d_inode(path->dentry);
1933	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1934	struct task_struct *task;
1935
1936	generic_fillattr(&init_user_ns, inode, stat);
1937
1938	stat->uid = GLOBAL_ROOT_UID;
1939	stat->gid = GLOBAL_ROOT_GID;
1940	rcu_read_lock();
1941	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1942	if (task) {
1943		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1944			rcu_read_unlock();
1945			/*
1946			 * This doesn't prevent learning whether PID exists,
1947			 * it only makes getattr() consistent with readdir().
1948			 */
1949			return -ENOENT;
1950		}
1951		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1952	}
1953	rcu_read_unlock();
1954	return 0;
1955}
1956
1957/* dentry stuff */
1958
1959/*
1960 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1961 */
1962void pid_update_inode(struct task_struct *task, struct inode *inode)
1963{
1964	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1965
1966	inode->i_mode &= ~(S_ISUID | S_ISGID);
1967	security_task_to_inode(task, inode);
1968}
1969
1970/*
1971 * Rewrite the inode's ownerships here because the owning task may have
1972 * performed a setuid(), etc.
1973 *
1974 */
1975static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1976{
1977	struct inode *inode;
1978	struct task_struct *task;
 
1979
1980	if (flags & LOOKUP_RCU)
1981		return -ECHILD;
1982
1983	inode = d_inode(dentry);
1984	task = get_proc_task(inode);
1985
1986	if (task) {
1987		pid_update_inode(task, inode);
1988		put_task_struct(task);
1989		return 1;
1990	}
1991	return 0;
 
 
1992}
1993
1994static inline bool proc_inode_is_dead(struct inode *inode)
1995{
1996	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1997}
1998
1999int pid_delete_dentry(const struct dentry *dentry)
2000{
2001	/* Is the task we represent dead?
2002	 * If so, then don't put the dentry on the lru list,
2003	 * kill it immediately.
2004	 */
2005	return proc_inode_is_dead(d_inode(dentry));
2006}
2007
2008const struct dentry_operations pid_dentry_operations =
2009{
2010	.d_revalidate	= pid_revalidate,
2011	.d_delete	= pid_delete_dentry,
2012};
2013
2014/* Lookups */
2015
2016/*
2017 * Fill a directory entry.
2018 *
2019 * If possible create the dcache entry and derive our inode number and
2020 * file type from dcache entry.
2021 *
2022 * Since all of the proc inode numbers are dynamically generated, the inode
2023 * numbers do not exist until the inode is cache.  This means creating
2024 * the dcache entry in readdir is necessary to keep the inode numbers
2025 * reported by readdir in sync with the inode numbers reported
2026 * by stat.
2027 */
2028bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2029	const char *name, unsigned int len,
2030	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2031{
2032	struct dentry *child, *dir = file->f_path.dentry;
2033	struct qstr qname = QSTR_INIT(name, len);
2034	struct inode *inode;
2035	unsigned type = DT_UNKNOWN;
2036	ino_t ino = 1;
2037
2038	child = d_hash_and_lookup(dir, &qname);
2039	if (!child) {
2040		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2041		child = d_alloc_parallel(dir, &qname, &wq);
2042		if (IS_ERR(child))
2043			goto end_instantiate;
2044		if (d_in_lookup(child)) {
2045			struct dentry *res;
2046			res = instantiate(child, task, ptr);
2047			d_lookup_done(child);
2048			if (unlikely(res)) {
2049				dput(child);
2050				child = res;
2051				if (IS_ERR(child))
2052					goto end_instantiate;
2053			}
2054		}
2055	}
2056	inode = d_inode(child);
2057	ino = inode->i_ino;
2058	type = inode->i_mode >> 12;
2059	dput(child);
2060end_instantiate:
2061	return dir_emit(ctx, name, len, ino, type);
2062}
2063
2064/*
2065 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2066 * which represent vma start and end addresses.
2067 */
2068static int dname_to_vma_addr(struct dentry *dentry,
2069			     unsigned long *start, unsigned long *end)
2070{
2071	const char *str = dentry->d_name.name;
2072	unsigned long long sval, eval;
2073	unsigned int len;
2074
2075	if (str[0] == '0' && str[1] != '-')
2076		return -EINVAL;
2077	len = _parse_integer(str, 16, &sval);
2078	if (len & KSTRTOX_OVERFLOW)
2079		return -EINVAL;
2080	if (sval != (unsigned long)sval)
2081		return -EINVAL;
2082	str += len;
2083
2084	if (*str != '-')
2085		return -EINVAL;
2086	str++;
2087
2088	if (str[0] == '0' && str[1])
2089		return -EINVAL;
2090	len = _parse_integer(str, 16, &eval);
2091	if (len & KSTRTOX_OVERFLOW)
2092		return -EINVAL;
2093	if (eval != (unsigned long)eval)
2094		return -EINVAL;
2095	str += len;
2096
2097	if (*str != '\0')
2098		return -EINVAL;
2099
2100	*start = sval;
2101	*end = eval;
2102
2103	return 0;
2104}
2105
2106static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2107{
2108	unsigned long vm_start, vm_end;
2109	bool exact_vma_exists = false;
2110	struct mm_struct *mm = NULL;
2111	struct task_struct *task;
2112	struct inode *inode;
2113	int status = 0;
2114
2115	if (flags & LOOKUP_RCU)
2116		return -ECHILD;
2117
2118	inode = d_inode(dentry);
2119	task = get_proc_task(inode);
2120	if (!task)
2121		goto out_notask;
2122
2123	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2124	if (IS_ERR_OR_NULL(mm))
2125		goto out;
2126
2127	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2128		status = mmap_read_lock_killable(mm);
2129		if (!status) {
2130			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2131							    vm_end);
2132			mmap_read_unlock(mm);
2133		}
2134	}
2135
2136	mmput(mm);
2137
2138	if (exact_vma_exists) {
2139		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2140
2141		security_task_to_inode(task, inode);
2142		status = 1;
2143	}
2144
2145out:
2146	put_task_struct(task);
2147
2148out_notask:
2149	return status;
2150}
2151
2152static const struct dentry_operations tid_map_files_dentry_operations = {
2153	.d_revalidate	= map_files_d_revalidate,
2154	.d_delete	= pid_delete_dentry,
2155};
2156
2157static int map_files_get_link(struct dentry *dentry, struct path *path)
2158{
2159	unsigned long vm_start, vm_end;
2160	struct vm_area_struct *vma;
2161	struct task_struct *task;
2162	struct mm_struct *mm;
2163	int rc;
2164
2165	rc = -ENOENT;
2166	task = get_proc_task(d_inode(dentry));
2167	if (!task)
2168		goto out;
2169
2170	mm = get_task_mm(task);
2171	put_task_struct(task);
2172	if (!mm)
2173		goto out;
2174
2175	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2176	if (rc)
2177		goto out_mmput;
2178
2179	rc = mmap_read_lock_killable(mm);
2180	if (rc)
2181		goto out_mmput;
2182
2183	rc = -ENOENT;
2184	vma = find_exact_vma(mm, vm_start, vm_end);
2185	if (vma && vma->vm_file) {
2186		*path = vma->vm_file->f_path;
2187		path_get(path);
2188		rc = 0;
2189	}
2190	mmap_read_unlock(mm);
2191
2192out_mmput:
2193	mmput(mm);
2194out:
2195	return rc;
2196}
2197
2198struct map_files_info {
2199	unsigned long	start;
2200	unsigned long	end;
2201	fmode_t		mode;
2202};
2203
2204/*
2205 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2206 * to concerns about how the symlinks may be used to bypass permissions on
2207 * ancestor directories in the path to the file in question.
2208 */
2209static const char *
2210proc_map_files_get_link(struct dentry *dentry,
2211			struct inode *inode,
2212		        struct delayed_call *done)
2213{
2214	if (!checkpoint_restore_ns_capable(&init_user_ns))
2215		return ERR_PTR(-EPERM);
2216
2217	return proc_pid_get_link(dentry, inode, done);
2218}
2219
2220/*
2221 * Identical to proc_pid_link_inode_operations except for get_link()
2222 */
2223static const struct inode_operations proc_map_files_link_inode_operations = {
2224	.readlink	= proc_pid_readlink,
2225	.get_link	= proc_map_files_get_link,
2226	.setattr	= proc_setattr,
2227};
2228
2229static struct dentry *
2230proc_map_files_instantiate(struct dentry *dentry,
2231			   struct task_struct *task, const void *ptr)
2232{
2233	fmode_t mode = (fmode_t)(unsigned long)ptr;
2234	struct proc_inode *ei;
2235	struct inode *inode;
2236
2237	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2238				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2239				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2240	if (!inode)
2241		return ERR_PTR(-ENOENT);
2242
2243	ei = PROC_I(inode);
2244	ei->op.proc_get_link = map_files_get_link;
2245
2246	inode->i_op = &proc_map_files_link_inode_operations;
2247	inode->i_size = 64;
2248
2249	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2250	return d_splice_alias(inode, dentry);
2251}
2252
2253static struct dentry *proc_map_files_lookup(struct inode *dir,
2254		struct dentry *dentry, unsigned int flags)
2255{
2256	unsigned long vm_start, vm_end;
2257	struct vm_area_struct *vma;
2258	struct task_struct *task;
2259	struct dentry *result;
2260	struct mm_struct *mm;
2261
2262	result = ERR_PTR(-ENOENT);
2263	task = get_proc_task(dir);
2264	if (!task)
2265		goto out;
2266
2267	result = ERR_PTR(-EACCES);
2268	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2269		goto out_put_task;
2270
2271	result = ERR_PTR(-ENOENT);
2272	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2273		goto out_put_task;
2274
2275	mm = get_task_mm(task);
2276	if (!mm)
2277		goto out_put_task;
2278
2279	result = ERR_PTR(-EINTR);
2280	if (mmap_read_lock_killable(mm))
2281		goto out_put_mm;
2282
2283	result = ERR_PTR(-ENOENT);
2284	vma = find_exact_vma(mm, vm_start, vm_end);
2285	if (!vma)
2286		goto out_no_vma;
2287
2288	if (vma->vm_file)
2289		result = proc_map_files_instantiate(dentry, task,
2290				(void *)(unsigned long)vma->vm_file->f_mode);
2291
2292out_no_vma:
2293	mmap_read_unlock(mm);
2294out_put_mm:
2295	mmput(mm);
2296out_put_task:
2297	put_task_struct(task);
2298out:
2299	return result;
2300}
2301
2302static const struct inode_operations proc_map_files_inode_operations = {
2303	.lookup		= proc_map_files_lookup,
2304	.permission	= proc_fd_permission,
2305	.setattr	= proc_setattr,
2306};
2307
2308static int
2309proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2310{
2311	struct vm_area_struct *vma;
2312	struct task_struct *task;
2313	struct mm_struct *mm;
2314	unsigned long nr_files, pos, i;
2315	GENRADIX(struct map_files_info) fa;
2316	struct map_files_info *p;
2317	int ret;
 
2318
2319	genradix_init(&fa);
2320
2321	ret = -ENOENT;
2322	task = get_proc_task(file_inode(file));
2323	if (!task)
2324		goto out;
2325
2326	ret = -EACCES;
2327	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2328		goto out_put_task;
2329
2330	ret = 0;
2331	if (!dir_emit_dots(file, ctx))
2332		goto out_put_task;
2333
2334	mm = get_task_mm(task);
2335	if (!mm)
2336		goto out_put_task;
2337
2338	ret = mmap_read_lock_killable(mm);
2339	if (ret) {
2340		mmput(mm);
2341		goto out_put_task;
2342	}
2343
2344	nr_files = 0;
2345
2346	/*
2347	 * We need two passes here:
2348	 *
2349	 *  1) Collect vmas of mapped files with mmap_lock taken
2350	 *  2) Release mmap_lock and instantiate entries
2351	 *
2352	 * otherwise we get lockdep complained, since filldir()
2353	 * routine might require mmap_lock taken in might_fault().
2354	 */
2355
2356	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
 
 
2357		if (!vma->vm_file)
2358			continue;
2359		if (++pos <= ctx->pos)
2360			continue;
2361
2362		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2363		if (!p) {
2364			ret = -ENOMEM;
2365			mmap_read_unlock(mm);
2366			mmput(mm);
2367			goto out_put_task;
2368		}
2369
2370		p->start = vma->vm_start;
2371		p->end = vma->vm_end;
2372		p->mode = vma->vm_file->f_mode;
2373	}
2374	mmap_read_unlock(mm);
2375	mmput(mm);
2376
2377	for (i = 0; i < nr_files; i++) {
2378		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2379		unsigned int len;
2380
2381		p = genradix_ptr(&fa, i);
2382		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2383		if (!proc_fill_cache(file, ctx,
2384				      buf, len,
2385				      proc_map_files_instantiate,
2386				      task,
2387				      (void *)(unsigned long)p->mode))
2388			break;
2389		ctx->pos++;
2390	}
2391
2392out_put_task:
2393	put_task_struct(task);
2394out:
2395	genradix_free(&fa);
2396	return ret;
2397}
2398
2399static const struct file_operations proc_map_files_operations = {
2400	.read		= generic_read_dir,
2401	.iterate_shared	= proc_map_files_readdir,
2402	.llseek		= generic_file_llseek,
2403};
2404
2405#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2406struct timers_private {
2407	struct pid *pid;
2408	struct task_struct *task;
2409	struct sighand_struct *sighand;
2410	struct pid_namespace *ns;
2411	unsigned long flags;
2412};
2413
2414static void *timers_start(struct seq_file *m, loff_t *pos)
2415{
2416	struct timers_private *tp = m->private;
2417
2418	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2419	if (!tp->task)
2420		return ERR_PTR(-ESRCH);
2421
2422	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2423	if (!tp->sighand)
2424		return ERR_PTR(-ESRCH);
2425
2426	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2427}
2428
2429static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2430{
2431	struct timers_private *tp = m->private;
2432	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2433}
2434
2435static void timers_stop(struct seq_file *m, void *v)
2436{
2437	struct timers_private *tp = m->private;
2438
2439	if (tp->sighand) {
2440		unlock_task_sighand(tp->task, &tp->flags);
2441		tp->sighand = NULL;
2442	}
2443
2444	if (tp->task) {
2445		put_task_struct(tp->task);
2446		tp->task = NULL;
2447	}
2448}
2449
2450static int show_timer(struct seq_file *m, void *v)
2451{
2452	struct k_itimer *timer;
2453	struct timers_private *tp = m->private;
2454	int notify;
2455	static const char * const nstr[] = {
2456		[SIGEV_SIGNAL] = "signal",
2457		[SIGEV_NONE] = "none",
2458		[SIGEV_THREAD] = "thread",
2459	};
2460
2461	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2462	notify = timer->it_sigev_notify;
2463
2464	seq_printf(m, "ID: %d\n", timer->it_id);
2465	seq_printf(m, "signal: %d/%px\n",
2466		   timer->sigq->info.si_signo,
2467		   timer->sigq->info.si_value.sival_ptr);
2468	seq_printf(m, "notify: %s/%s.%d\n",
2469		   nstr[notify & ~SIGEV_THREAD_ID],
2470		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2471		   pid_nr_ns(timer->it_pid, tp->ns));
2472	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2473
2474	return 0;
2475}
2476
2477static const struct seq_operations proc_timers_seq_ops = {
2478	.start	= timers_start,
2479	.next	= timers_next,
2480	.stop	= timers_stop,
2481	.show	= show_timer,
2482};
2483
2484static int proc_timers_open(struct inode *inode, struct file *file)
2485{
2486	struct timers_private *tp;
2487
2488	tp = __seq_open_private(file, &proc_timers_seq_ops,
2489			sizeof(struct timers_private));
2490	if (!tp)
2491		return -ENOMEM;
2492
2493	tp->pid = proc_pid(inode);
2494	tp->ns = proc_pid_ns(inode->i_sb);
2495	return 0;
2496}
2497
2498static const struct file_operations proc_timers_operations = {
2499	.open		= proc_timers_open,
2500	.read		= seq_read,
2501	.llseek		= seq_lseek,
2502	.release	= seq_release_private,
2503};
2504#endif
2505
2506static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2507					size_t count, loff_t *offset)
2508{
2509	struct inode *inode = file_inode(file);
2510	struct task_struct *p;
2511	u64 slack_ns;
2512	int err;
2513
2514	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2515	if (err < 0)
2516		return err;
2517
2518	p = get_proc_task(inode);
2519	if (!p)
2520		return -ESRCH;
2521
2522	if (p != current) {
2523		rcu_read_lock();
2524		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2525			rcu_read_unlock();
2526			count = -EPERM;
2527			goto out;
2528		}
2529		rcu_read_unlock();
2530
2531		err = security_task_setscheduler(p);
2532		if (err) {
2533			count = err;
2534			goto out;
2535		}
2536	}
2537
2538	task_lock(p);
2539	if (slack_ns == 0)
2540		p->timer_slack_ns = p->default_timer_slack_ns;
2541	else
2542		p->timer_slack_ns = slack_ns;
 
2543	task_unlock(p);
2544
2545out:
2546	put_task_struct(p);
2547
2548	return count;
2549}
2550
2551static int timerslack_ns_show(struct seq_file *m, void *v)
2552{
2553	struct inode *inode = m->private;
2554	struct task_struct *p;
2555	int err = 0;
2556
2557	p = get_proc_task(inode);
2558	if (!p)
2559		return -ESRCH;
2560
2561	if (p != current) {
2562		rcu_read_lock();
2563		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2564			rcu_read_unlock();
2565			err = -EPERM;
2566			goto out;
2567		}
2568		rcu_read_unlock();
2569
2570		err = security_task_getscheduler(p);
2571		if (err)
2572			goto out;
2573	}
2574
2575	task_lock(p);
2576	seq_printf(m, "%llu\n", p->timer_slack_ns);
2577	task_unlock(p);
2578
2579out:
2580	put_task_struct(p);
2581
2582	return err;
2583}
2584
2585static int timerslack_ns_open(struct inode *inode, struct file *filp)
2586{
2587	return single_open(filp, timerslack_ns_show, inode);
2588}
2589
2590static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2591	.open		= timerslack_ns_open,
2592	.read		= seq_read,
2593	.write		= timerslack_ns_write,
2594	.llseek		= seq_lseek,
2595	.release	= single_release,
2596};
2597
2598static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2599	struct task_struct *task, const void *ptr)
2600{
2601	const struct pid_entry *p = ptr;
2602	struct inode *inode;
2603	struct proc_inode *ei;
2604
2605	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2606	if (!inode)
2607		return ERR_PTR(-ENOENT);
2608
2609	ei = PROC_I(inode);
2610	if (S_ISDIR(inode->i_mode))
2611		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2612	if (p->iop)
2613		inode->i_op = p->iop;
2614	if (p->fop)
2615		inode->i_fop = p->fop;
2616	ei->op = p->op;
2617	pid_update_inode(task, inode);
2618	d_set_d_op(dentry, &pid_dentry_operations);
2619	return d_splice_alias(inode, dentry);
2620}
2621
2622static struct dentry *proc_pident_lookup(struct inode *dir, 
2623					 struct dentry *dentry,
2624					 const struct pid_entry *p,
2625					 const struct pid_entry *end)
2626{
2627	struct task_struct *task = get_proc_task(dir);
2628	struct dentry *res = ERR_PTR(-ENOENT);
2629
2630	if (!task)
2631		goto out_no_task;
2632
2633	/*
2634	 * Yes, it does not scale. And it should not. Don't add
2635	 * new entries into /proc/<tgid>/ without very good reasons.
2636	 */
2637	for (; p < end; p++) {
2638		if (p->len != dentry->d_name.len)
2639			continue;
2640		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2641			res = proc_pident_instantiate(dentry, task, p);
2642			break;
2643		}
2644	}
2645	put_task_struct(task);
2646out_no_task:
2647	return res;
2648}
2649
2650static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2651		const struct pid_entry *ents, unsigned int nents)
2652{
2653	struct task_struct *task = get_proc_task(file_inode(file));
2654	const struct pid_entry *p;
2655
2656	if (!task)
2657		return -ENOENT;
2658
2659	if (!dir_emit_dots(file, ctx))
2660		goto out;
2661
2662	if (ctx->pos >= nents + 2)
2663		goto out;
2664
2665	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2666		if (!proc_fill_cache(file, ctx, p->name, p->len,
2667				proc_pident_instantiate, task, p))
2668			break;
2669		ctx->pos++;
2670	}
2671out:
2672	put_task_struct(task);
2673	return 0;
2674}
2675
2676#ifdef CONFIG_SECURITY
2677static int proc_pid_attr_open(struct inode *inode, struct file *file)
2678{
2679	file->private_data = NULL;
2680	__mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2681	return 0;
2682}
2683
2684static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2685				  size_t count, loff_t *ppos)
2686{
2687	struct inode * inode = file_inode(file);
2688	char *p = NULL;
2689	ssize_t length;
2690	struct task_struct *task = get_proc_task(inode);
2691
2692	if (!task)
2693		return -ESRCH;
2694
2695	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2696				      (char*)file->f_path.dentry->d_name.name,
2697				      &p);
2698	put_task_struct(task);
2699	if (length > 0)
2700		length = simple_read_from_buffer(buf, count, ppos, p, length);
2701	kfree(p);
2702	return length;
2703}
2704
2705static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2706				   size_t count, loff_t *ppos)
2707{
2708	struct inode * inode = file_inode(file);
2709	struct task_struct *task;
2710	void *page;
2711	int rv;
2712
2713	/* A task may only write when it was the opener. */
2714	if (file->private_data != current->mm)
2715		return -EPERM;
2716
2717	rcu_read_lock();
2718	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2719	if (!task) {
2720		rcu_read_unlock();
2721		return -ESRCH;
2722	}
2723	/* A task may only write its own attributes. */
2724	if (current != task) {
2725		rcu_read_unlock();
2726		return -EACCES;
2727	}
2728	/* Prevent changes to overridden credentials. */
2729	if (current_cred() != current_real_cred()) {
2730		rcu_read_unlock();
2731		return -EBUSY;
2732	}
2733	rcu_read_unlock();
2734
2735	if (count > PAGE_SIZE)
2736		count = PAGE_SIZE;
2737
2738	/* No partial writes. */
2739	if (*ppos != 0)
2740		return -EINVAL;
2741
2742	page = memdup_user(buf, count);
2743	if (IS_ERR(page)) {
2744		rv = PTR_ERR(page);
2745		goto out;
2746	}
2747
2748	/* Guard against adverse ptrace interaction */
2749	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2750	if (rv < 0)
2751		goto out_free;
2752
2753	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2754				  file->f_path.dentry->d_name.name, page,
2755				  count);
2756	mutex_unlock(&current->signal->cred_guard_mutex);
2757out_free:
2758	kfree(page);
2759out:
2760	return rv;
2761}
2762
2763static const struct file_operations proc_pid_attr_operations = {
2764	.open		= proc_pid_attr_open,
2765	.read		= proc_pid_attr_read,
2766	.write		= proc_pid_attr_write,
2767	.llseek		= generic_file_llseek,
2768	.release	= mem_release,
2769};
2770
2771#define LSM_DIR_OPS(LSM) \
2772static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2773			     struct dir_context *ctx) \
2774{ \
2775	return proc_pident_readdir(filp, ctx, \
2776				   LSM##_attr_dir_stuff, \
2777				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2778} \
2779\
2780static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2781	.read		= generic_read_dir, \
2782	.iterate	= proc_##LSM##_attr_dir_iterate, \
2783	.llseek		= default_llseek, \
2784}; \
2785\
2786static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2787				struct dentry *dentry, unsigned int flags) \
2788{ \
2789	return proc_pident_lookup(dir, dentry, \
2790				  LSM##_attr_dir_stuff, \
2791				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2792} \
2793\
2794static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2795	.lookup		= proc_##LSM##_attr_dir_lookup, \
2796	.getattr	= pid_getattr, \
2797	.setattr	= proc_setattr, \
2798}
2799
2800#ifdef CONFIG_SECURITY_SMACK
2801static const struct pid_entry smack_attr_dir_stuff[] = {
2802	ATTR("smack", "current",	0666),
2803};
2804LSM_DIR_OPS(smack);
2805#endif
2806
2807#ifdef CONFIG_SECURITY_APPARMOR
2808static const struct pid_entry apparmor_attr_dir_stuff[] = {
2809	ATTR("apparmor", "current",	0666),
2810	ATTR("apparmor", "prev",	0444),
2811	ATTR("apparmor", "exec",	0666),
2812};
2813LSM_DIR_OPS(apparmor);
2814#endif
2815
2816static const struct pid_entry attr_dir_stuff[] = {
2817	ATTR(NULL, "current",		0666),
2818	ATTR(NULL, "prev",		0444),
2819	ATTR(NULL, "exec",		0666),
2820	ATTR(NULL, "fscreate",		0666),
2821	ATTR(NULL, "keycreate",		0666),
2822	ATTR(NULL, "sockcreate",	0666),
2823#ifdef CONFIG_SECURITY_SMACK
2824	DIR("smack",			0555,
2825	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2826#endif
2827#ifdef CONFIG_SECURITY_APPARMOR
2828	DIR("apparmor",			0555,
2829	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2830#endif
2831};
2832
2833static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2834{
2835	return proc_pident_readdir(file, ctx, 
2836				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2837}
2838
2839static const struct file_operations proc_attr_dir_operations = {
2840	.read		= generic_read_dir,
2841	.iterate_shared	= proc_attr_dir_readdir,
2842	.llseek		= generic_file_llseek,
2843};
2844
2845static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2846				struct dentry *dentry, unsigned int flags)
2847{
2848	return proc_pident_lookup(dir, dentry,
2849				  attr_dir_stuff,
2850				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2851}
2852
2853static const struct inode_operations proc_attr_dir_inode_operations = {
2854	.lookup		= proc_attr_dir_lookup,
2855	.getattr	= pid_getattr,
2856	.setattr	= proc_setattr,
2857};
2858
2859#endif
2860
2861#ifdef CONFIG_ELF_CORE
2862static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2863					 size_t count, loff_t *ppos)
2864{
2865	struct task_struct *task = get_proc_task(file_inode(file));
2866	struct mm_struct *mm;
2867	char buffer[PROC_NUMBUF];
2868	size_t len;
2869	int ret;
2870
2871	if (!task)
2872		return -ESRCH;
2873
2874	ret = 0;
2875	mm = get_task_mm(task);
2876	if (mm) {
2877		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2878			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2879				MMF_DUMP_FILTER_SHIFT));
2880		mmput(mm);
2881		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2882	}
2883
2884	put_task_struct(task);
2885
2886	return ret;
2887}
2888
2889static ssize_t proc_coredump_filter_write(struct file *file,
2890					  const char __user *buf,
2891					  size_t count,
2892					  loff_t *ppos)
2893{
2894	struct task_struct *task;
2895	struct mm_struct *mm;
2896	unsigned int val;
2897	int ret;
2898	int i;
2899	unsigned long mask;
2900
2901	ret = kstrtouint_from_user(buf, count, 0, &val);
2902	if (ret < 0)
2903		return ret;
2904
2905	ret = -ESRCH;
2906	task = get_proc_task(file_inode(file));
2907	if (!task)
2908		goto out_no_task;
2909
2910	mm = get_task_mm(task);
2911	if (!mm)
2912		goto out_no_mm;
2913	ret = 0;
2914
2915	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2916		if (val & mask)
2917			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2918		else
2919			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2920	}
2921
2922	mmput(mm);
2923 out_no_mm:
2924	put_task_struct(task);
2925 out_no_task:
2926	if (ret < 0)
2927		return ret;
2928	return count;
2929}
2930
2931static const struct file_operations proc_coredump_filter_operations = {
2932	.read		= proc_coredump_filter_read,
2933	.write		= proc_coredump_filter_write,
2934	.llseek		= generic_file_llseek,
2935};
2936#endif
2937
2938#ifdef CONFIG_TASK_IO_ACCOUNTING
2939static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2940{
2941	struct task_io_accounting acct = task->ioac;
2942	unsigned long flags;
2943	int result;
2944
2945	result = down_read_killable(&task->signal->exec_update_lock);
2946	if (result)
2947		return result;
2948
2949	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2950		result = -EACCES;
2951		goto out_unlock;
2952	}
2953
2954	if (whole && lock_task_sighand(task, &flags)) {
2955		struct task_struct *t = task;
 
 
 
2956
2957		task_io_accounting_add(&acct, &task->signal->ioac);
2958		while_each_thread(task, t)
2959			task_io_accounting_add(&acct, &t->ioac);
 
 
 
 
 
2960
2961		unlock_task_sighand(task, &flags);
 
 
 
 
2962	}
 
2963	seq_printf(m,
2964		   "rchar: %llu\n"
2965		   "wchar: %llu\n"
2966		   "syscr: %llu\n"
2967		   "syscw: %llu\n"
2968		   "read_bytes: %llu\n"
2969		   "write_bytes: %llu\n"
2970		   "cancelled_write_bytes: %llu\n",
2971		   (unsigned long long)acct.rchar,
2972		   (unsigned long long)acct.wchar,
2973		   (unsigned long long)acct.syscr,
2974		   (unsigned long long)acct.syscw,
2975		   (unsigned long long)acct.read_bytes,
2976		   (unsigned long long)acct.write_bytes,
2977		   (unsigned long long)acct.cancelled_write_bytes);
2978	result = 0;
2979
2980out_unlock:
2981	up_read(&task->signal->exec_update_lock);
2982	return result;
2983}
2984
2985static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2986				  struct pid *pid, struct task_struct *task)
2987{
2988	return do_io_accounting(task, m, 0);
2989}
2990
2991static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2992				   struct pid *pid, struct task_struct *task)
2993{
2994	return do_io_accounting(task, m, 1);
2995}
2996#endif /* CONFIG_TASK_IO_ACCOUNTING */
2997
2998#ifdef CONFIG_USER_NS
2999static int proc_id_map_open(struct inode *inode, struct file *file,
3000	const struct seq_operations *seq_ops)
3001{
3002	struct user_namespace *ns = NULL;
3003	struct task_struct *task;
3004	struct seq_file *seq;
3005	int ret = -EINVAL;
3006
3007	task = get_proc_task(inode);
3008	if (task) {
3009		rcu_read_lock();
3010		ns = get_user_ns(task_cred_xxx(task, user_ns));
3011		rcu_read_unlock();
3012		put_task_struct(task);
3013	}
3014	if (!ns)
3015		goto err;
3016
3017	ret = seq_open(file, seq_ops);
3018	if (ret)
3019		goto err_put_ns;
3020
3021	seq = file->private_data;
3022	seq->private = ns;
3023
3024	return 0;
3025err_put_ns:
3026	put_user_ns(ns);
3027err:
3028	return ret;
3029}
3030
3031static int proc_id_map_release(struct inode *inode, struct file *file)
3032{
3033	struct seq_file *seq = file->private_data;
3034	struct user_namespace *ns = seq->private;
3035	put_user_ns(ns);
3036	return seq_release(inode, file);
3037}
3038
3039static int proc_uid_map_open(struct inode *inode, struct file *file)
3040{
3041	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3042}
3043
3044static int proc_gid_map_open(struct inode *inode, struct file *file)
3045{
3046	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3047}
3048
3049static int proc_projid_map_open(struct inode *inode, struct file *file)
3050{
3051	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3052}
3053
3054static const struct file_operations proc_uid_map_operations = {
3055	.open		= proc_uid_map_open,
3056	.write		= proc_uid_map_write,
3057	.read		= seq_read,
3058	.llseek		= seq_lseek,
3059	.release	= proc_id_map_release,
3060};
3061
3062static const struct file_operations proc_gid_map_operations = {
3063	.open		= proc_gid_map_open,
3064	.write		= proc_gid_map_write,
3065	.read		= seq_read,
3066	.llseek		= seq_lseek,
3067	.release	= proc_id_map_release,
3068};
3069
3070static const struct file_operations proc_projid_map_operations = {
3071	.open		= proc_projid_map_open,
3072	.write		= proc_projid_map_write,
3073	.read		= seq_read,
3074	.llseek		= seq_lseek,
3075	.release	= proc_id_map_release,
3076};
3077
3078static int proc_setgroups_open(struct inode *inode, struct file *file)
3079{
3080	struct user_namespace *ns = NULL;
3081	struct task_struct *task;
3082	int ret;
3083
3084	ret = -ESRCH;
3085	task = get_proc_task(inode);
3086	if (task) {
3087		rcu_read_lock();
3088		ns = get_user_ns(task_cred_xxx(task, user_ns));
3089		rcu_read_unlock();
3090		put_task_struct(task);
3091	}
3092	if (!ns)
3093		goto err;
3094
3095	if (file->f_mode & FMODE_WRITE) {
3096		ret = -EACCES;
3097		if (!ns_capable(ns, CAP_SYS_ADMIN))
3098			goto err_put_ns;
3099	}
3100
3101	ret = single_open(file, &proc_setgroups_show, ns);
3102	if (ret)
3103		goto err_put_ns;
3104
3105	return 0;
3106err_put_ns:
3107	put_user_ns(ns);
3108err:
3109	return ret;
3110}
3111
3112static int proc_setgroups_release(struct inode *inode, struct file *file)
3113{
3114	struct seq_file *seq = file->private_data;
3115	struct user_namespace *ns = seq->private;
3116	int ret = single_release(inode, file);
3117	put_user_ns(ns);
3118	return ret;
3119}
3120
3121static const struct file_operations proc_setgroups_operations = {
3122	.open		= proc_setgroups_open,
3123	.write		= proc_setgroups_write,
3124	.read		= seq_read,
3125	.llseek		= seq_lseek,
3126	.release	= proc_setgroups_release,
3127};
3128#endif /* CONFIG_USER_NS */
3129
3130static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3131				struct pid *pid, struct task_struct *task)
3132{
3133	int err = lock_trace(task);
3134	if (!err) {
3135		seq_printf(m, "%08x\n", task->personality);
3136		unlock_trace(task);
3137	}
3138	return err;
3139}
3140
3141#ifdef CONFIG_LIVEPATCH
3142static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3143				struct pid *pid, struct task_struct *task)
3144{
3145	seq_printf(m, "%d\n", task->patch_state);
3146	return 0;
3147}
3148#endif /* CONFIG_LIVEPATCH */
3149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3150#ifdef CONFIG_STACKLEAK_METRICS
3151static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3152				struct pid *pid, struct task_struct *task)
3153{
3154	unsigned long prev_depth = THREAD_SIZE -
3155				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3156	unsigned long depth = THREAD_SIZE -
3157				(task->lowest_stack & (THREAD_SIZE - 1));
3158
3159	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3160							prev_depth, depth);
3161	return 0;
3162}
3163#endif /* CONFIG_STACKLEAK_METRICS */
3164
3165/*
3166 * Thread groups
3167 */
3168static const struct file_operations proc_task_operations;
3169static const struct inode_operations proc_task_inode_operations;
3170
3171static const struct pid_entry tgid_base_stuff[] = {
3172	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3173	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3174	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3175	DIR("fdinfo",     S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3176	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3177#ifdef CONFIG_NET
3178	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3179#endif
3180	REG("environ",    S_IRUSR, proc_environ_operations),
3181	REG("auxv",       S_IRUSR, proc_auxv_operations),
3182	ONE("status",     S_IRUGO, proc_pid_status),
3183	ONE("personality", S_IRUSR, proc_pid_personality),
3184	ONE("limits",	  S_IRUGO, proc_pid_limits),
3185#ifdef CONFIG_SCHED_DEBUG
3186	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3187#endif
3188#ifdef CONFIG_SCHED_AUTOGROUP
3189	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3190#endif
3191#ifdef CONFIG_TIME_NS
3192	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3193#endif
3194	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3195#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3196	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3197#endif
3198	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3199	ONE("stat",       S_IRUGO, proc_tgid_stat),
3200	ONE("statm",      S_IRUGO, proc_pid_statm),
3201	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3202#ifdef CONFIG_NUMA
3203	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3204#endif
3205	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3206	LNK("cwd",        proc_cwd_link),
3207	LNK("root",       proc_root_link),
3208	LNK("exe",        proc_exe_link),
3209	REG("mounts",     S_IRUGO, proc_mounts_operations),
3210	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3211	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3212#ifdef CONFIG_PROC_PAGE_MONITOR
3213	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3214	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3215	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3216	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3217#endif
3218#ifdef CONFIG_SECURITY
3219	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3220#endif
3221#ifdef CONFIG_KALLSYMS
3222	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3223#endif
3224#ifdef CONFIG_STACKTRACE
3225	ONE("stack",      S_IRUSR, proc_pid_stack),
3226#endif
3227#ifdef CONFIG_SCHED_INFO
3228	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3229#endif
3230#ifdef CONFIG_LATENCYTOP
3231	REG("latency",  S_IRUGO, proc_lstats_operations),
3232#endif
3233#ifdef CONFIG_PROC_PID_CPUSET
3234	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3235#endif
3236#ifdef CONFIG_CGROUPS
3237	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3238#endif
3239#ifdef CONFIG_PROC_CPU_RESCTRL
3240	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3241#endif
3242	ONE("oom_score",  S_IRUGO, proc_oom_score),
3243	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3244	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3245#ifdef CONFIG_AUDIT
3246	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3247	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3248#endif
3249#ifdef CONFIG_FAULT_INJECTION
3250	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3251	REG("fail-nth", 0644, proc_fail_nth_operations),
3252#endif
3253#ifdef CONFIG_ELF_CORE
3254	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3255#endif
3256#ifdef CONFIG_TASK_IO_ACCOUNTING
3257	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3258#endif
3259#ifdef CONFIG_USER_NS
3260	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3261	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3262	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3263	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3264#endif
3265#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3266	REG("timers",	  S_IRUGO, proc_timers_operations),
3267#endif
3268	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3269#ifdef CONFIG_LIVEPATCH
3270	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3271#endif
3272#ifdef CONFIG_STACKLEAK_METRICS
3273	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3274#endif
3275#ifdef CONFIG_PROC_PID_ARCH_STATUS
3276	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3277#endif
3278#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3279	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3280#endif
 
 
 
 
3281};
3282
3283static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3284{
3285	return proc_pident_readdir(file, ctx,
3286				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3287}
3288
3289static const struct file_operations proc_tgid_base_operations = {
3290	.read		= generic_read_dir,
3291	.iterate_shared	= proc_tgid_base_readdir,
3292	.llseek		= generic_file_llseek,
3293};
3294
3295struct pid *tgid_pidfd_to_pid(const struct file *file)
3296{
3297	if (file->f_op != &proc_tgid_base_operations)
3298		return ERR_PTR(-EBADF);
3299
3300	return proc_pid(file_inode(file));
3301}
3302
3303static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3304{
3305	return proc_pident_lookup(dir, dentry,
3306				  tgid_base_stuff,
3307				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3308}
3309
3310static const struct inode_operations proc_tgid_base_inode_operations = {
3311	.lookup		= proc_tgid_base_lookup,
3312	.getattr	= pid_getattr,
3313	.setattr	= proc_setattr,
3314	.permission	= proc_pid_permission,
3315};
3316
3317/**
3318 * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3319 * @pid: pid that should be flushed.
3320 *
3321 * This function walks a list of inodes (that belong to any proc
3322 * filesystem) that are attached to the pid and flushes them from
3323 * the dentry cache.
3324 *
3325 * It is safe and reasonable to cache /proc entries for a task until
3326 * that task exits.  After that they just clog up the dcache with
3327 * useless entries, possibly causing useful dcache entries to be
3328 * flushed instead.  This routine is provided to flush those useless
3329 * dcache entries when a process is reaped.
3330 *
3331 * NOTE: This routine is just an optimization so it does not guarantee
3332 *       that no dcache entries will exist after a process is reaped
3333 *       it just makes it very unlikely that any will persist.
3334 */
3335
3336void proc_flush_pid(struct pid *pid)
3337{
3338	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3339}
3340
3341static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3342				   struct task_struct *task, const void *ptr)
3343{
3344	struct inode *inode;
3345
3346	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
 
3347	if (!inode)
3348		return ERR_PTR(-ENOENT);
3349
3350	inode->i_op = &proc_tgid_base_inode_operations;
3351	inode->i_fop = &proc_tgid_base_operations;
3352	inode->i_flags|=S_IMMUTABLE;
3353
3354	set_nlink(inode, nlink_tgid);
3355	pid_update_inode(task, inode);
3356
3357	d_set_d_op(dentry, &pid_dentry_operations);
3358	return d_splice_alias(inode, dentry);
3359}
3360
3361struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3362{
3363	struct task_struct *task;
3364	unsigned tgid;
3365	struct proc_fs_info *fs_info;
3366	struct pid_namespace *ns;
3367	struct dentry *result = ERR_PTR(-ENOENT);
3368
3369	tgid = name_to_int(&dentry->d_name);
3370	if (tgid == ~0U)
3371		goto out;
3372
3373	fs_info = proc_sb_info(dentry->d_sb);
3374	ns = fs_info->pid_ns;
3375	rcu_read_lock();
3376	task = find_task_by_pid_ns(tgid, ns);
3377	if (task)
3378		get_task_struct(task);
3379	rcu_read_unlock();
3380	if (!task)
3381		goto out;
3382
3383	/* Limit procfs to only ptraceable tasks */
3384	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3385		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3386			goto out_put_task;
3387	}
3388
3389	result = proc_pid_instantiate(dentry, task, NULL);
3390out_put_task:
3391	put_task_struct(task);
3392out:
3393	return result;
3394}
3395
3396/*
3397 * Find the first task with tgid >= tgid
3398 *
3399 */
3400struct tgid_iter {
3401	unsigned int tgid;
3402	struct task_struct *task;
3403};
3404static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3405{
3406	struct pid *pid;
3407
3408	if (iter.task)
3409		put_task_struct(iter.task);
3410	rcu_read_lock();
3411retry:
3412	iter.task = NULL;
3413	pid = find_ge_pid(iter.tgid, ns);
3414	if (pid) {
3415		iter.tgid = pid_nr_ns(pid, ns);
3416		iter.task = pid_task(pid, PIDTYPE_TGID);
3417		if (!iter.task) {
3418			iter.tgid += 1;
3419			goto retry;
3420		}
3421		get_task_struct(iter.task);
3422	}
3423	rcu_read_unlock();
3424	return iter;
3425}
3426
3427#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3428
3429/* for the /proc/ directory itself, after non-process stuff has been done */
3430int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3431{
3432	struct tgid_iter iter;
3433	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3434	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3435	loff_t pos = ctx->pos;
3436
3437	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3438		return 0;
3439
3440	if (pos == TGID_OFFSET - 2) {
3441		struct inode *inode = d_inode(fs_info->proc_self);
3442		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3443			return 0;
3444		ctx->pos = pos = pos + 1;
3445	}
3446	if (pos == TGID_OFFSET - 1) {
3447		struct inode *inode = d_inode(fs_info->proc_thread_self);
3448		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3449			return 0;
3450		ctx->pos = pos = pos + 1;
3451	}
3452	iter.tgid = pos - TGID_OFFSET;
3453	iter.task = NULL;
3454	for (iter = next_tgid(ns, iter);
3455	     iter.task;
3456	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3457		char name[10 + 1];
3458		unsigned int len;
3459
3460		cond_resched();
3461		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3462			continue;
3463
3464		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3465		ctx->pos = iter.tgid + TGID_OFFSET;
3466		if (!proc_fill_cache(file, ctx, name, len,
3467				     proc_pid_instantiate, iter.task, NULL)) {
3468			put_task_struct(iter.task);
3469			return 0;
3470		}
3471	}
3472	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3473	return 0;
3474}
3475
3476/*
3477 * proc_tid_comm_permission is a special permission function exclusively
3478 * used for the node /proc/<pid>/task/<tid>/comm.
3479 * It bypasses generic permission checks in the case where a task of the same
3480 * task group attempts to access the node.
3481 * The rationale behind this is that glibc and bionic access this node for
3482 * cross thread naming (pthread_set/getname_np(!self)). However, if
3483 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3484 * which locks out the cross thread naming implementation.
3485 * This function makes sure that the node is always accessible for members of
3486 * same thread group.
3487 */
3488static int proc_tid_comm_permission(struct user_namespace *mnt_userns,
3489				    struct inode *inode, int mask)
3490{
3491	bool is_same_tgroup;
3492	struct task_struct *task;
3493
3494	task = get_proc_task(inode);
3495	if (!task)
3496		return -ESRCH;
3497	is_same_tgroup = same_thread_group(current, task);
3498	put_task_struct(task);
3499
3500	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3501		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3502		 * read or written by the members of the corresponding
3503		 * thread group.
3504		 */
3505		return 0;
3506	}
3507
3508	return generic_permission(&init_user_ns, inode, mask);
3509}
3510
3511static const struct inode_operations proc_tid_comm_inode_operations = {
3512		.permission = proc_tid_comm_permission,
 
3513};
3514
3515/*
3516 * Tasks
3517 */
3518static const struct pid_entry tid_base_stuff[] = {
3519	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3520	DIR("fdinfo",    S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3521	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3522#ifdef CONFIG_NET
3523	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3524#endif
3525	REG("environ",   S_IRUSR, proc_environ_operations),
3526	REG("auxv",      S_IRUSR, proc_auxv_operations),
3527	ONE("status",    S_IRUGO, proc_pid_status),
3528	ONE("personality", S_IRUSR, proc_pid_personality),
3529	ONE("limits",	 S_IRUGO, proc_pid_limits),
3530#ifdef CONFIG_SCHED_DEBUG
3531	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3532#endif
3533	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3534			 &proc_tid_comm_inode_operations,
3535			 &proc_pid_set_comm_operations, {}),
3536#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3537	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3538#endif
3539	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3540	ONE("stat",      S_IRUGO, proc_tid_stat),
3541	ONE("statm",     S_IRUGO, proc_pid_statm),
3542	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3543#ifdef CONFIG_PROC_CHILDREN
3544	REG("children",  S_IRUGO, proc_tid_children_operations),
3545#endif
3546#ifdef CONFIG_NUMA
3547	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3548#endif
3549	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3550	LNK("cwd",       proc_cwd_link),
3551	LNK("root",      proc_root_link),
3552	LNK("exe",       proc_exe_link),
3553	REG("mounts",    S_IRUGO, proc_mounts_operations),
3554	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3555#ifdef CONFIG_PROC_PAGE_MONITOR
3556	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3557	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3558	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3559	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3560#endif
3561#ifdef CONFIG_SECURITY
3562	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3563#endif
3564#ifdef CONFIG_KALLSYMS
3565	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3566#endif
3567#ifdef CONFIG_STACKTRACE
3568	ONE("stack",      S_IRUSR, proc_pid_stack),
3569#endif
3570#ifdef CONFIG_SCHED_INFO
3571	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3572#endif
3573#ifdef CONFIG_LATENCYTOP
3574	REG("latency",  S_IRUGO, proc_lstats_operations),
3575#endif
3576#ifdef CONFIG_PROC_PID_CPUSET
3577	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3578#endif
3579#ifdef CONFIG_CGROUPS
3580	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3581#endif
3582#ifdef CONFIG_PROC_CPU_RESCTRL
3583	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3584#endif
3585	ONE("oom_score", S_IRUGO, proc_oom_score),
3586	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3587	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3588#ifdef CONFIG_AUDIT
3589	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3590	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3591#endif
3592#ifdef CONFIG_FAULT_INJECTION
3593	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3594	REG("fail-nth", 0644, proc_fail_nth_operations),
3595#endif
3596#ifdef CONFIG_TASK_IO_ACCOUNTING
3597	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3598#endif
3599#ifdef CONFIG_USER_NS
3600	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3601	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3602	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3603	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3604#endif
3605#ifdef CONFIG_LIVEPATCH
3606	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3607#endif
3608#ifdef CONFIG_PROC_PID_ARCH_STATUS
3609	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3610#endif
3611#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3612	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3613#endif
 
 
 
 
3614};
3615
3616static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3617{
3618	return proc_pident_readdir(file, ctx,
3619				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3620}
3621
3622static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3623{
3624	return proc_pident_lookup(dir, dentry,
3625				  tid_base_stuff,
3626				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3627}
3628
3629static const struct file_operations proc_tid_base_operations = {
3630	.read		= generic_read_dir,
3631	.iterate_shared	= proc_tid_base_readdir,
3632	.llseek		= generic_file_llseek,
3633};
3634
3635static const struct inode_operations proc_tid_base_inode_operations = {
3636	.lookup		= proc_tid_base_lookup,
3637	.getattr	= pid_getattr,
3638	.setattr	= proc_setattr,
3639};
3640
3641static struct dentry *proc_task_instantiate(struct dentry *dentry,
3642	struct task_struct *task, const void *ptr)
3643{
3644	struct inode *inode;
3645	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
 
3646	if (!inode)
3647		return ERR_PTR(-ENOENT);
3648
3649	inode->i_op = &proc_tid_base_inode_operations;
3650	inode->i_fop = &proc_tid_base_operations;
3651	inode->i_flags |= S_IMMUTABLE;
3652
3653	set_nlink(inode, nlink_tid);
3654	pid_update_inode(task, inode);
3655
3656	d_set_d_op(dentry, &pid_dentry_operations);
3657	return d_splice_alias(inode, dentry);
3658}
3659
3660static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3661{
3662	struct task_struct *task;
3663	struct task_struct *leader = get_proc_task(dir);
3664	unsigned tid;
3665	struct proc_fs_info *fs_info;
3666	struct pid_namespace *ns;
3667	struct dentry *result = ERR_PTR(-ENOENT);
3668
3669	if (!leader)
3670		goto out_no_task;
3671
3672	tid = name_to_int(&dentry->d_name);
3673	if (tid == ~0U)
3674		goto out;
3675
3676	fs_info = proc_sb_info(dentry->d_sb);
3677	ns = fs_info->pid_ns;
3678	rcu_read_lock();
3679	task = find_task_by_pid_ns(tid, ns);
3680	if (task)
3681		get_task_struct(task);
3682	rcu_read_unlock();
3683	if (!task)
3684		goto out;
3685	if (!same_thread_group(leader, task))
3686		goto out_drop_task;
3687
3688	result = proc_task_instantiate(dentry, task, NULL);
3689out_drop_task:
3690	put_task_struct(task);
3691out:
3692	put_task_struct(leader);
3693out_no_task:
3694	return result;
3695}
3696
3697/*
3698 * Find the first tid of a thread group to return to user space.
3699 *
3700 * Usually this is just the thread group leader, but if the users
3701 * buffer was too small or there was a seek into the middle of the
3702 * directory we have more work todo.
3703 *
3704 * In the case of a short read we start with find_task_by_pid.
3705 *
3706 * In the case of a seek we start with the leader and walk nr
3707 * threads past it.
3708 */
3709static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3710					struct pid_namespace *ns)
3711{
3712	struct task_struct *pos, *task;
3713	unsigned long nr = f_pos;
3714
3715	if (nr != f_pos)	/* 32bit overflow? */
3716		return NULL;
3717
3718	rcu_read_lock();
3719	task = pid_task(pid, PIDTYPE_PID);
3720	if (!task)
3721		goto fail;
3722
3723	/* Attempt to start with the tid of a thread */
3724	if (tid && nr) {
3725		pos = find_task_by_pid_ns(tid, ns);
3726		if (pos && same_thread_group(pos, task))
3727			goto found;
3728	}
3729
3730	/* If nr exceeds the number of threads there is nothing todo */
3731	if (nr >= get_nr_threads(task))
3732		goto fail;
3733
3734	/* If we haven't found our starting place yet start
3735	 * with the leader and walk nr threads forward.
3736	 */
3737	pos = task = task->group_leader;
3738	do {
3739		if (!nr--)
3740			goto found;
3741	} while_each_thread(task, pos);
3742fail:
3743	pos = NULL;
3744	goto out;
3745found:
3746	get_task_struct(pos);
3747out:
3748	rcu_read_unlock();
3749	return pos;
3750}
3751
3752/*
3753 * Find the next thread in the thread list.
3754 * Return NULL if there is an error or no next thread.
3755 *
3756 * The reference to the input task_struct is released.
3757 */
3758static struct task_struct *next_tid(struct task_struct *start)
3759{
3760	struct task_struct *pos = NULL;
3761	rcu_read_lock();
3762	if (pid_alive(start)) {
3763		pos = next_thread(start);
3764		if (thread_group_leader(pos))
3765			pos = NULL;
3766		else
3767			get_task_struct(pos);
3768	}
3769	rcu_read_unlock();
3770	put_task_struct(start);
3771	return pos;
3772}
3773
3774/* for the /proc/TGID/task/ directories */
3775static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3776{
3777	struct inode *inode = file_inode(file);
3778	struct task_struct *task;
3779	struct pid_namespace *ns;
3780	int tid;
3781
3782	if (proc_inode_is_dead(inode))
3783		return -ENOENT;
3784
3785	if (!dir_emit_dots(file, ctx))
3786		return 0;
3787
3788	/* f_version caches the tgid value that the last readdir call couldn't
3789	 * return. lseek aka telldir automagically resets f_version to 0.
3790	 */
3791	ns = proc_pid_ns(inode->i_sb);
3792	tid = (int)file->f_version;
3793	file->f_version = 0;
3794	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3795	     task;
3796	     task = next_tid(task), ctx->pos++) {
3797		char name[10 + 1];
3798		unsigned int len;
 
3799		tid = task_pid_nr_ns(task, ns);
 
 
3800		len = snprintf(name, sizeof(name), "%u", tid);
3801		if (!proc_fill_cache(file, ctx, name, len,
3802				proc_task_instantiate, task, NULL)) {
3803			/* returning this tgid failed, save it as the first
3804			 * pid for the next readir call */
3805			file->f_version = (u64)tid;
3806			put_task_struct(task);
3807			break;
3808		}
3809	}
3810
3811	return 0;
3812}
3813
3814static int proc_task_getattr(struct user_namespace *mnt_userns,
3815			     const struct path *path, struct kstat *stat,
3816			     u32 request_mask, unsigned int query_flags)
3817{
3818	struct inode *inode = d_inode(path->dentry);
3819	struct task_struct *p = get_proc_task(inode);
3820	generic_fillattr(&init_user_ns, inode, stat);
3821
3822	if (p) {
3823		stat->nlink += get_nr_threads(p);
3824		put_task_struct(p);
3825	}
3826
3827	return 0;
3828}
3829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3830static const struct inode_operations proc_task_inode_operations = {
3831	.lookup		= proc_task_lookup,
3832	.getattr	= proc_task_getattr,
3833	.setattr	= proc_setattr,
3834	.permission	= proc_pid_permission,
3835};
3836
3837static const struct file_operations proc_task_operations = {
3838	.read		= generic_read_dir,
3839	.iterate_shared	= proc_task_readdir,
3840	.llseek		= generic_file_llseek,
3841};
3842
3843void __init set_proc_pid_nlink(void)
3844{
3845	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3846	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3847}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/proc/base.c
   4 *
   5 *  Copyright (C) 1991, 1992 Linus Torvalds
   6 *
   7 *  proc base directory handling functions
   8 *
   9 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
  10 *  Instead of using magical inumbers to determine the kind of object
  11 *  we allocate and fill in-core inodes upon lookup. They don't even
  12 *  go into icache. We cache the reference to task_struct upon lookup too.
  13 *  Eventually it should become a filesystem in its own. We don't use the
  14 *  rest of procfs anymore.
  15 *
  16 *
  17 *  Changelog:
  18 *  17-Jan-2005
  19 *  Allan Bezerra
  20 *  Bruna Moreira <bruna.moreira@indt.org.br>
  21 *  Edjard Mota <edjard.mota@indt.org.br>
  22 *  Ilias Biris <ilias.biris@indt.org.br>
  23 *  Mauricio Lin <mauricio.lin@indt.org.br>
  24 *
  25 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  26 *
  27 *  A new process specific entry (smaps) included in /proc. It shows the
  28 *  size of rss for each memory area. The maps entry lacks information
  29 *  about physical memory size (rss) for each mapped file, i.e.,
  30 *  rss information for executables and library files.
  31 *  This additional information is useful for any tools that need to know
  32 *  about physical memory consumption for a process specific library.
  33 *
  34 *  Changelog:
  35 *  21-Feb-2005
  36 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  37 *  Pud inclusion in the page table walking.
  38 *
  39 *  ChangeLog:
  40 *  10-Mar-2005
  41 *  10LE Instituto Nokia de Tecnologia - INdT:
  42 *  A better way to walks through the page table as suggested by Hugh Dickins.
  43 *
  44 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  45 *  Smaps information related to shared, private, clean and dirty pages.
  46 *
  47 *  Paul Mundt <paul.mundt@nokia.com>:
  48 *  Overall revision about smaps.
  49 */
  50
  51#include <linux/uaccess.h>
  52
  53#include <linux/errno.h>
  54#include <linux/time.h>
  55#include <linux/proc_fs.h>
  56#include <linux/stat.h>
  57#include <linux/task_io_accounting_ops.h>
  58#include <linux/init.h>
  59#include <linux/capability.h>
  60#include <linux/file.h>
 
  61#include <linux/generic-radix-tree.h>
  62#include <linux/string.h>
  63#include <linux/seq_file.h>
  64#include <linux/namei.h>
  65#include <linux/mnt_namespace.h>
  66#include <linux/mm.h>
  67#include <linux/swap.h>
  68#include <linux/rcupdate.h>
  69#include <linux/kallsyms.h>
  70#include <linux/stacktrace.h>
  71#include <linux/resource.h>
  72#include <linux/module.h>
  73#include <linux/mount.h>
  74#include <linux/security.h>
  75#include <linux/ptrace.h>
 
  76#include <linux/printk.h>
  77#include <linux/cache.h>
  78#include <linux/cgroup.h>
  79#include <linux/cpuset.h>
  80#include <linux/audit.h>
  81#include <linux/poll.h>
  82#include <linux/nsproxy.h>
  83#include <linux/oom.h>
  84#include <linux/elf.h>
  85#include <linux/pid_namespace.h>
  86#include <linux/user_namespace.h>
  87#include <linux/fs_parser.h>
  88#include <linux/fs_struct.h>
  89#include <linux/slab.h>
  90#include <linux/sched/autogroup.h>
  91#include <linux/sched/mm.h>
  92#include <linux/sched/coredump.h>
  93#include <linux/sched/debug.h>
  94#include <linux/sched/stat.h>
  95#include <linux/posix-timers.h>
  96#include <linux/time_namespace.h>
  97#include <linux/resctrl.h>
  98#include <linux/cn_proc.h>
  99#include <linux/ksm.h>
 100#include <uapi/linux/lsm.h>
 101#include <trace/events/oom.h>
 102#include "internal.h"
 103#include "fd.h"
 104
 105#include "../../lib/kstrtox.h"
 106
 107/* NOTE:
 108 *	Implementing inode permission operations in /proc is almost
 109 *	certainly an error.  Permission checks need to happen during
 110 *	each system call not at open time.  The reason is that most of
 111 *	what we wish to check for permissions in /proc varies at runtime.
 112 *
 113 *	The classic example of a problem is opening file descriptors
 114 *	in /proc for a task before it execs a suid executable.
 115 */
 116
 117static u8 nlink_tid __ro_after_init;
 118static u8 nlink_tgid __ro_after_init;
 119
 120enum proc_mem_force {
 121	PROC_MEM_FORCE_ALWAYS,
 122	PROC_MEM_FORCE_PTRACE,
 123	PROC_MEM_FORCE_NEVER
 124};
 125
 126static enum proc_mem_force proc_mem_force_override __ro_after_init =
 127	IS_ENABLED(CONFIG_PROC_MEM_NO_FORCE) ? PROC_MEM_FORCE_NEVER :
 128	IS_ENABLED(CONFIG_PROC_MEM_FORCE_PTRACE) ? PROC_MEM_FORCE_PTRACE :
 129	PROC_MEM_FORCE_ALWAYS;
 130
 131static const struct constant_table proc_mem_force_table[] __initconst = {
 132	{ "always", PROC_MEM_FORCE_ALWAYS },
 133	{ "ptrace", PROC_MEM_FORCE_PTRACE },
 134	{ "never", PROC_MEM_FORCE_NEVER },
 135	{ }
 136};
 137
 138static int __init early_proc_mem_force_override(char *buf)
 139{
 140	if (!buf)
 141		return -EINVAL;
 142
 143	/*
 144	 * lookup_constant() defaults to proc_mem_force_override to preseve
 145	 * the initial Kconfig choice in case an invalid param gets passed.
 146	 */
 147	proc_mem_force_override = lookup_constant(proc_mem_force_table,
 148						  buf, proc_mem_force_override);
 149
 150	return 0;
 151}
 152early_param("proc_mem.force_override", early_proc_mem_force_override);
 153
 154struct pid_entry {
 155	const char *name;
 156	unsigned int len;
 157	umode_t mode;
 158	const struct inode_operations *iop;
 159	const struct file_operations *fop;
 160	union proc_op op;
 161};
 162
 163#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 164	.name = (NAME),					\
 165	.len  = sizeof(NAME) - 1,			\
 166	.mode = MODE,					\
 167	.iop  = IOP,					\
 168	.fop  = FOP,					\
 169	.op   = OP,					\
 170}
 171
 172#define DIR(NAME, MODE, iops, fops)	\
 173	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 174#define LNK(NAME, get_link)					\
 175	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 176		&proc_pid_link_inode_operations, NULL,		\
 177		{ .proc_get_link = get_link } )
 178#define REG(NAME, MODE, fops)				\
 179	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 180#define ONE(NAME, MODE, show)				\
 181	NOD(NAME, (S_IFREG|(MODE)),			\
 182		NULL, &proc_single_file_operations,	\
 183		{ .proc_show = show } )
 184#define ATTR(LSMID, NAME, MODE)				\
 185	NOD(NAME, (S_IFREG|(MODE)),			\
 186		NULL, &proc_pid_attr_operations,	\
 187		{ .lsmid = LSMID })
 188
 189/*
 190 * Count the number of hardlinks for the pid_entry table, excluding the .
 191 * and .. links.
 192 */
 193static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 194	unsigned int n)
 195{
 196	unsigned int i;
 197	unsigned int count;
 198
 199	count = 2;
 200	for (i = 0; i < n; ++i) {
 201		if (S_ISDIR(entries[i].mode))
 202			++count;
 203	}
 204
 205	return count;
 206}
 207
 208static int get_task_root(struct task_struct *task, struct path *root)
 209{
 210	int result = -ENOENT;
 211
 212	task_lock(task);
 213	if (task->fs) {
 214		get_fs_root(task->fs, root);
 215		result = 0;
 216	}
 217	task_unlock(task);
 218	return result;
 219}
 220
 221static int proc_cwd_link(struct dentry *dentry, struct path *path)
 222{
 223	struct task_struct *task = get_proc_task(d_inode(dentry));
 224	int result = -ENOENT;
 225
 226	if (task) {
 227		task_lock(task);
 228		if (task->fs) {
 229			get_fs_pwd(task->fs, path);
 230			result = 0;
 231		}
 232		task_unlock(task);
 233		put_task_struct(task);
 234	}
 235	return result;
 236}
 237
 238static int proc_root_link(struct dentry *dentry, struct path *path)
 239{
 240	struct task_struct *task = get_proc_task(d_inode(dentry));
 241	int result = -ENOENT;
 242
 243	if (task) {
 244		result = get_task_root(task, path);
 245		put_task_struct(task);
 246	}
 247	return result;
 248}
 249
 250/*
 251 * If the user used setproctitle(), we just get the string from
 252 * user space at arg_start, and limit it to a maximum of one page.
 253 */
 254static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
 255				size_t count, unsigned long pos,
 256				unsigned long arg_start)
 257{
 258	char *page;
 259	int ret, got;
 260
 261	if (pos >= PAGE_SIZE)
 262		return 0;
 263
 264	page = (char *)__get_free_page(GFP_KERNEL);
 265	if (!page)
 266		return -ENOMEM;
 267
 268	ret = 0;
 269	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
 270	if (got > 0) {
 271		int len = strnlen(page, got);
 272
 273		/* Include the NUL character if it was found */
 274		if (len < got)
 275			len++;
 276
 277		if (len > pos) {
 278			len -= pos;
 279			if (len > count)
 280				len = count;
 281			len -= copy_to_user(buf, page+pos, len);
 282			if (!len)
 283				len = -EFAULT;
 284			ret = len;
 285		}
 286	}
 287	free_page((unsigned long)page);
 288	return ret;
 289}
 290
 291static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
 292			      size_t count, loff_t *ppos)
 293{
 294	unsigned long arg_start, arg_end, env_start, env_end;
 295	unsigned long pos, len;
 296	char *page, c;
 297
 298	/* Check if process spawned far enough to have cmdline. */
 299	if (!mm->env_end)
 300		return 0;
 301
 302	spin_lock(&mm->arg_lock);
 303	arg_start = mm->arg_start;
 304	arg_end = mm->arg_end;
 305	env_start = mm->env_start;
 306	env_end = mm->env_end;
 307	spin_unlock(&mm->arg_lock);
 308
 309	if (arg_start >= arg_end)
 310		return 0;
 311
 312	/*
 313	 * We allow setproctitle() to overwrite the argument
 314	 * strings, and overflow past the original end. But
 315	 * only when it overflows into the environment area.
 316	 */
 317	if (env_start != arg_end || env_end < env_start)
 318		env_start = env_end = arg_end;
 319	len = env_end - arg_start;
 320
 321	/* We're not going to care if "*ppos" has high bits set */
 322	pos = *ppos;
 323	if (pos >= len)
 324		return 0;
 325	if (count > len - pos)
 326		count = len - pos;
 327	if (!count)
 328		return 0;
 329
 330	/*
 331	 * Magical special case: if the argv[] end byte is not
 332	 * zero, the user has overwritten it with setproctitle(3).
 333	 *
 334	 * Possible future enhancement: do this only once when
 335	 * pos is 0, and set a flag in the 'struct file'.
 336	 */
 337	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
 338		return get_mm_proctitle(mm, buf, count, pos, arg_start);
 339
 340	/*
 341	 * For the non-setproctitle() case we limit things strictly
 342	 * to the [arg_start, arg_end[ range.
 343	 */
 344	pos += arg_start;
 345	if (pos < arg_start || pos >= arg_end)
 346		return 0;
 347	if (count > arg_end - pos)
 348		count = arg_end - pos;
 349
 350	page = (char *)__get_free_page(GFP_KERNEL);
 351	if (!page)
 352		return -ENOMEM;
 353
 354	len = 0;
 355	while (count) {
 356		int got;
 357		size_t size = min_t(size_t, PAGE_SIZE, count);
 358
 359		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
 360		if (got <= 0)
 361			break;
 362		got -= copy_to_user(buf, page, got);
 363		if (unlikely(!got)) {
 364			if (!len)
 365				len = -EFAULT;
 366			break;
 367		}
 368		pos += got;
 369		buf += got;
 370		len += got;
 371		count -= got;
 372	}
 373
 374	free_page((unsigned long)page);
 375	return len;
 376}
 377
 378static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
 379				size_t count, loff_t *pos)
 380{
 381	struct mm_struct *mm;
 382	ssize_t ret;
 383
 384	mm = get_task_mm(tsk);
 385	if (!mm)
 386		return 0;
 387
 388	ret = get_mm_cmdline(mm, buf, count, pos);
 389	mmput(mm);
 390	return ret;
 391}
 392
 393static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 394				     size_t count, loff_t *pos)
 395{
 396	struct task_struct *tsk;
 397	ssize_t ret;
 398
 399	BUG_ON(*pos < 0);
 400
 401	tsk = get_proc_task(file_inode(file));
 402	if (!tsk)
 403		return -ESRCH;
 404	ret = get_task_cmdline(tsk, buf, count, pos);
 405	put_task_struct(tsk);
 406	if (ret > 0)
 407		*pos += ret;
 408	return ret;
 409}
 410
 411static const struct file_operations proc_pid_cmdline_ops = {
 412	.read	= proc_pid_cmdline_read,
 413	.llseek	= generic_file_llseek,
 414};
 415
 416#ifdef CONFIG_KALLSYMS
 417/*
 418 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 419 * Returns the resolved symbol.  If that fails, simply return the address.
 420 */
 421static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 422			  struct pid *pid, struct task_struct *task)
 423{
 424	unsigned long wchan;
 425	char symname[KSYM_NAME_LEN];
 426
 427	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
 428		goto print0;
 
 
 429
 430	wchan = get_wchan(task);
 431	if (wchan && !lookup_symbol_name(wchan, symname)) {
 432		seq_puts(m, symname);
 433		return 0;
 434	}
 435
 436print0:
 437	seq_putc(m, '0');
 438	return 0;
 439}
 440#endif /* CONFIG_KALLSYMS */
 441
 442static int lock_trace(struct task_struct *task)
 443{
 444	int err = down_read_killable(&task->signal->exec_update_lock);
 445	if (err)
 446		return err;
 447	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 448		up_read(&task->signal->exec_update_lock);
 449		return -EPERM;
 450	}
 451	return 0;
 452}
 453
 454static void unlock_trace(struct task_struct *task)
 455{
 456	up_read(&task->signal->exec_update_lock);
 457}
 458
 459#ifdef CONFIG_STACKTRACE
 460
 461#define MAX_STACK_TRACE_DEPTH	64
 462
 463static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 464			  struct pid *pid, struct task_struct *task)
 465{
 466	unsigned long *entries;
 467	int err;
 468
 469	/*
 470	 * The ability to racily run the kernel stack unwinder on a running task
 471	 * and then observe the unwinder output is scary; while it is useful for
 472	 * debugging kernel issues, it can also allow an attacker to leak kernel
 473	 * stack contents.
 474	 * Doing this in a manner that is at least safe from races would require
 475	 * some work to ensure that the remote task can not be scheduled; and
 476	 * even then, this would still expose the unwinder as local attack
 477	 * surface.
 478	 * Therefore, this interface is restricted to root.
 479	 */
 480	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
 481		return -EACCES;
 482
 483	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
 484				GFP_KERNEL);
 485	if (!entries)
 486		return -ENOMEM;
 487
 488	err = lock_trace(task);
 489	if (!err) {
 490		unsigned int i, nr_entries;
 491
 492		nr_entries = stack_trace_save_tsk(task, entries,
 493						  MAX_STACK_TRACE_DEPTH, 0);
 494
 495		for (i = 0; i < nr_entries; i++) {
 496			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
 497		}
 498
 499		unlock_trace(task);
 500	}
 501	kfree(entries);
 502
 503	return err;
 504}
 505#endif
 506
 507#ifdef CONFIG_SCHED_INFO
 508/*
 509 * Provides /proc/PID/schedstat
 510 */
 511static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 512			      struct pid *pid, struct task_struct *task)
 513{
 514	if (unlikely(!sched_info_on()))
 515		seq_puts(m, "0 0 0\n");
 516	else
 517		seq_printf(m, "%llu %llu %lu\n",
 518		   (unsigned long long)task->se.sum_exec_runtime,
 519		   (unsigned long long)task->sched_info.run_delay,
 520		   task->sched_info.pcount);
 521
 522	return 0;
 523}
 524#endif
 525
 526#ifdef CONFIG_LATENCYTOP
 527static int lstats_show_proc(struct seq_file *m, void *v)
 528{
 529	int i;
 530	struct inode *inode = m->private;
 531	struct task_struct *task = get_proc_task(inode);
 532
 533	if (!task)
 534		return -ESRCH;
 535	seq_puts(m, "Latency Top version : v0.1\n");
 536	for (i = 0; i < LT_SAVECOUNT; i++) {
 537		struct latency_record *lr = &task->latency_record[i];
 538		if (lr->backtrace[0]) {
 539			int q;
 540			seq_printf(m, "%i %li %li",
 541				   lr->count, lr->time, lr->max);
 542			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 543				unsigned long bt = lr->backtrace[q];
 544
 545				if (!bt)
 546					break;
 547				seq_printf(m, " %ps", (void *)bt);
 548			}
 549			seq_putc(m, '\n');
 550		}
 551
 552	}
 553	put_task_struct(task);
 554	return 0;
 555}
 556
 557static int lstats_open(struct inode *inode, struct file *file)
 558{
 559	return single_open(file, lstats_show_proc, inode);
 560}
 561
 562static ssize_t lstats_write(struct file *file, const char __user *buf,
 563			    size_t count, loff_t *offs)
 564{
 565	struct task_struct *task = get_proc_task(file_inode(file));
 566
 567	if (!task)
 568		return -ESRCH;
 569	clear_tsk_latency_tracing(task);
 570	put_task_struct(task);
 571
 572	return count;
 573}
 574
 575static const struct file_operations proc_lstats_operations = {
 576	.open		= lstats_open,
 577	.read		= seq_read,
 578	.write		= lstats_write,
 579	.llseek		= seq_lseek,
 580	.release	= single_release,
 581};
 582
 583#endif
 584
 585static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 586			  struct pid *pid, struct task_struct *task)
 587{
 588	unsigned long totalpages = totalram_pages() + total_swap_pages;
 589	unsigned long points = 0;
 590	long badness;
 591
 592	badness = oom_badness(task, totalpages);
 593	/*
 594	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
 595	 * badness value into [0, 2000] range which we have been
 596	 * exporting for a long time so userspace might depend on it.
 597	 */
 598	if (badness != LONG_MIN)
 599		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
 600
 601	seq_printf(m, "%lu\n", points);
 602
 603	return 0;
 604}
 605
 606struct limit_names {
 607	const char *name;
 608	const char *unit;
 609};
 610
 611static const struct limit_names lnames[RLIM_NLIMITS] = {
 612	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 613	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 614	[RLIMIT_DATA] = {"Max data size", "bytes"},
 615	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 616	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 617	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 618	[RLIMIT_NPROC] = {"Max processes", "processes"},
 619	[RLIMIT_NOFILE] = {"Max open files", "files"},
 620	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 621	[RLIMIT_AS] = {"Max address space", "bytes"},
 622	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 623	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 624	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 625	[RLIMIT_NICE] = {"Max nice priority", NULL},
 626	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 627	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 628};
 629
 630/* Display limits for a process */
 631static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 632			   struct pid *pid, struct task_struct *task)
 633{
 634	unsigned int i;
 635	unsigned long flags;
 636
 637	struct rlimit rlim[RLIM_NLIMITS];
 638
 639	if (!lock_task_sighand(task, &flags))
 640		return 0;
 641	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 642	unlock_task_sighand(task, &flags);
 643
 644	/*
 645	 * print the file header
 646	 */
 647	seq_puts(m, "Limit                     "
 648		"Soft Limit           "
 649		"Hard Limit           "
 650		"Units     \n");
 651
 652	for (i = 0; i < RLIM_NLIMITS; i++) {
 653		if (rlim[i].rlim_cur == RLIM_INFINITY)
 654			seq_printf(m, "%-25s %-20s ",
 655				   lnames[i].name, "unlimited");
 656		else
 657			seq_printf(m, "%-25s %-20lu ",
 658				   lnames[i].name, rlim[i].rlim_cur);
 659
 660		if (rlim[i].rlim_max == RLIM_INFINITY)
 661			seq_printf(m, "%-20s ", "unlimited");
 662		else
 663			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 664
 665		if (lnames[i].unit)
 666			seq_printf(m, "%-10s\n", lnames[i].unit);
 667		else
 668			seq_putc(m, '\n');
 669	}
 670
 671	return 0;
 672}
 673
 674#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 675static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 676			    struct pid *pid, struct task_struct *task)
 677{
 678	struct syscall_info info;
 679	u64 *args = &info.data.args[0];
 680	int res;
 681
 682	res = lock_trace(task);
 683	if (res)
 684		return res;
 685
 686	if (task_current_syscall(task, &info))
 687		seq_puts(m, "running\n");
 688	else if (info.data.nr < 0)
 689		seq_printf(m, "%d 0x%llx 0x%llx\n",
 690			   info.data.nr, info.sp, info.data.instruction_pointer);
 691	else
 692		seq_printf(m,
 693		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
 694		       info.data.nr,
 695		       args[0], args[1], args[2], args[3], args[4], args[5],
 696		       info.sp, info.data.instruction_pointer);
 697	unlock_trace(task);
 698
 699	return 0;
 700}
 701#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 702
 703/************************************************************************/
 704/*                       Here the fs part begins                        */
 705/************************************************************************/
 706
 707/* permission checks */
 708static bool proc_fd_access_allowed(struct inode *inode)
 709{
 710	struct task_struct *task;
 711	bool allowed = false;
 712	/* Allow access to a task's file descriptors if it is us or we
 713	 * may use ptrace attach to the process and find out that
 714	 * information.
 715	 */
 716	task = get_proc_task(inode);
 717	if (task) {
 718		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 719		put_task_struct(task);
 720	}
 721	return allowed;
 722}
 723
 724int proc_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
 725		 struct iattr *attr)
 726{
 727	int error;
 728	struct inode *inode = d_inode(dentry);
 729
 730	if (attr->ia_valid & ATTR_MODE)
 731		return -EPERM;
 732
 733	error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
 734	if (error)
 735		return error;
 736
 737	setattr_copy(&nop_mnt_idmap, inode, attr);
 
 738	return 0;
 739}
 740
 741/*
 742 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 743 * or euid/egid (for hide_pid_min=2)?
 744 */
 745static bool has_pid_permissions(struct proc_fs_info *fs_info,
 746				 struct task_struct *task,
 747				 enum proc_hidepid hide_pid_min)
 748{
 749	/*
 750	 * If 'hidpid' mount option is set force a ptrace check,
 751	 * we indicate that we are using a filesystem syscall
 752	 * by passing PTRACE_MODE_READ_FSCREDS
 753	 */
 754	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
 755		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 756
 757	if (fs_info->hide_pid < hide_pid_min)
 758		return true;
 759	if (in_group_p(fs_info->pid_gid))
 760		return true;
 761	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 762}
 763
 764
 765static int proc_pid_permission(struct mnt_idmap *idmap,
 766			       struct inode *inode, int mask)
 767{
 768	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
 769	struct task_struct *task;
 770	bool has_perms;
 771
 772	task = get_proc_task(inode);
 773	if (!task)
 774		return -ESRCH;
 775	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
 776	put_task_struct(task);
 777
 778	if (!has_perms) {
 779		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
 780			/*
 781			 * Let's make getdents(), stat(), and open()
 782			 * consistent with each other.  If a process
 783			 * may not stat() a file, it shouldn't be seen
 784			 * in procfs at all.
 785			 */
 786			return -ENOENT;
 787		}
 788
 789		return -EPERM;
 790	}
 791	return generic_permission(&nop_mnt_idmap, inode, mask);
 792}
 793
 794
 795
 796static const struct inode_operations proc_def_inode_operations = {
 797	.setattr	= proc_setattr,
 798};
 799
 800static int proc_single_show(struct seq_file *m, void *v)
 801{
 802	struct inode *inode = m->private;
 803	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
 804	struct pid *pid = proc_pid(inode);
 805	struct task_struct *task;
 806	int ret;
 807
 808	task = get_pid_task(pid, PIDTYPE_PID);
 809	if (!task)
 810		return -ESRCH;
 811
 812	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 813
 814	put_task_struct(task);
 815	return ret;
 816}
 817
 818static int proc_single_open(struct inode *inode, struct file *filp)
 819{
 820	return single_open(filp, proc_single_show, inode);
 821}
 822
 823static const struct file_operations proc_single_file_operations = {
 824	.open		= proc_single_open,
 825	.read		= seq_read,
 826	.llseek		= seq_lseek,
 827	.release	= single_release,
 828};
 829
 830
 831struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 832{
 833	struct task_struct *task = get_proc_task(inode);
 834	struct mm_struct *mm;
 835
 836	if (!task)
 837		return ERR_PTR(-ESRCH);
 
 838
 839	mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 840	put_task_struct(task);
 841
 842	if (IS_ERR(mm))
 843		return mm == ERR_PTR(-ESRCH) ? NULL : mm;
 844
 845	/* ensure this mm_struct can't be freed */
 846	mmgrab(mm);
 847	/* but do not pin its memory */
 848	mmput(mm);
 849
 850	return mm;
 851}
 852
 853static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 854{
 855	struct mm_struct *mm = proc_mem_open(inode, mode);
 856
 857	if (IS_ERR(mm))
 858		return PTR_ERR(mm);
 859
 860	file->private_data = mm;
 861	return 0;
 862}
 863
 864static int mem_open(struct inode *inode, struct file *file)
 865{
 866	if (WARN_ON_ONCE(!(file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)))
 867		return -EINVAL;
 868	return __mem_open(inode, file, PTRACE_MODE_ATTACH);
 869}
 870
 871static bool proc_mem_foll_force(struct file *file, struct mm_struct *mm)
 872{
 873	struct task_struct *task;
 874	bool ptrace_active = false;
 875
 876	switch (proc_mem_force_override) {
 877	case PROC_MEM_FORCE_NEVER:
 878		return false;
 879	case PROC_MEM_FORCE_PTRACE:
 880		task = get_proc_task(file_inode(file));
 881		if (task) {
 882			ptrace_active =	READ_ONCE(task->ptrace) &&
 883					READ_ONCE(task->mm) == mm &&
 884					READ_ONCE(task->parent) == current;
 885			put_task_struct(task);
 886		}
 887		return ptrace_active;
 888	default:
 889		return true;
 890	}
 891}
 892
 893static ssize_t mem_rw(struct file *file, char __user *buf,
 894			size_t count, loff_t *ppos, int write)
 895{
 896	struct mm_struct *mm = file->private_data;
 897	unsigned long addr = *ppos;
 898	ssize_t copied;
 899	char *page;
 900	unsigned int flags;
 901
 902	if (!mm)
 903		return 0;
 904
 905	page = (char *)__get_free_page(GFP_KERNEL);
 906	if (!page)
 907		return -ENOMEM;
 908
 909	copied = 0;
 910	if (!mmget_not_zero(mm))
 911		goto free;
 912
 913	flags = write ? FOLL_WRITE : 0;
 914	if (proc_mem_foll_force(file, mm))
 915		flags |= FOLL_FORCE;
 916
 917	while (count > 0) {
 918		size_t this_len = min_t(size_t, count, PAGE_SIZE);
 919
 920		if (write && copy_from_user(page, buf, this_len)) {
 921			copied = -EFAULT;
 922			break;
 923		}
 924
 925		this_len = access_remote_vm(mm, addr, page, this_len, flags);
 926		if (!this_len) {
 927			if (!copied)
 928				copied = -EIO;
 929			break;
 930		}
 931
 932		if (!write && copy_to_user(buf, page, this_len)) {
 933			copied = -EFAULT;
 934			break;
 935		}
 936
 937		buf += this_len;
 938		addr += this_len;
 939		copied += this_len;
 940		count -= this_len;
 941	}
 942	*ppos = addr;
 943
 944	mmput(mm);
 945free:
 946	free_page((unsigned long) page);
 947	return copied;
 948}
 949
 950static ssize_t mem_read(struct file *file, char __user *buf,
 951			size_t count, loff_t *ppos)
 952{
 953	return mem_rw(file, buf, count, ppos, 0);
 954}
 955
 956static ssize_t mem_write(struct file *file, const char __user *buf,
 957			 size_t count, loff_t *ppos)
 958{
 959	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 960}
 961
 962loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 963{
 964	switch (orig) {
 965	case 0:
 966		file->f_pos = offset;
 967		break;
 968	case 1:
 969		file->f_pos += offset;
 970		break;
 971	default:
 972		return -EINVAL;
 973	}
 974	force_successful_syscall_return();
 975	return file->f_pos;
 976}
 977
 978static int mem_release(struct inode *inode, struct file *file)
 979{
 980	struct mm_struct *mm = file->private_data;
 981	if (mm)
 982		mmdrop(mm);
 983	return 0;
 984}
 985
 986static const struct file_operations proc_mem_operations = {
 987	.llseek		= mem_lseek,
 988	.read		= mem_read,
 989	.write		= mem_write,
 990	.open		= mem_open,
 991	.release	= mem_release,
 992	.fop_flags	= FOP_UNSIGNED_OFFSET,
 993};
 994
 995static int environ_open(struct inode *inode, struct file *file)
 996{
 997	return __mem_open(inode, file, PTRACE_MODE_READ);
 998}
 999
1000static ssize_t environ_read(struct file *file, char __user *buf,
1001			size_t count, loff_t *ppos)
1002{
1003	char *page;
1004	unsigned long src = *ppos;
1005	int ret = 0;
1006	struct mm_struct *mm = file->private_data;
1007	unsigned long env_start, env_end;
1008
1009	/* Ensure the process spawned far enough to have an environment. */
1010	if (!mm || !mm->env_end)
1011		return 0;
1012
1013	page = (char *)__get_free_page(GFP_KERNEL);
1014	if (!page)
1015		return -ENOMEM;
1016
1017	ret = 0;
1018	if (!mmget_not_zero(mm))
1019		goto free;
1020
1021	spin_lock(&mm->arg_lock);
1022	env_start = mm->env_start;
1023	env_end = mm->env_end;
1024	spin_unlock(&mm->arg_lock);
1025
1026	while (count > 0) {
1027		size_t this_len, max_len;
1028		int retval;
1029
1030		if (src >= (env_end - env_start))
1031			break;
1032
1033		this_len = env_end - (env_start + src);
1034
1035		max_len = min_t(size_t, PAGE_SIZE, count);
1036		this_len = min(max_len, this_len);
1037
1038		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
1039
1040		if (retval <= 0) {
1041			ret = retval;
1042			break;
1043		}
1044
1045		if (copy_to_user(buf, page, retval)) {
1046			ret = -EFAULT;
1047			break;
1048		}
1049
1050		ret += retval;
1051		src += retval;
1052		buf += retval;
1053		count -= retval;
1054	}
1055	*ppos = src;
1056	mmput(mm);
1057
1058free:
1059	free_page((unsigned long) page);
1060	return ret;
1061}
1062
1063static const struct file_operations proc_environ_operations = {
1064	.open		= environ_open,
1065	.read		= environ_read,
1066	.llseek		= generic_file_llseek,
1067	.release	= mem_release,
1068};
1069
1070static int auxv_open(struct inode *inode, struct file *file)
1071{
1072	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1073}
1074
1075static ssize_t auxv_read(struct file *file, char __user *buf,
1076			size_t count, loff_t *ppos)
1077{
1078	struct mm_struct *mm = file->private_data;
1079	unsigned int nwords = 0;
1080
1081	if (!mm)
1082		return 0;
1083	do {
1084		nwords += 2;
1085	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1086	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1087				       nwords * sizeof(mm->saved_auxv[0]));
1088}
1089
1090static const struct file_operations proc_auxv_operations = {
1091	.open		= auxv_open,
1092	.read		= auxv_read,
1093	.llseek		= generic_file_llseek,
1094	.release	= mem_release,
1095};
1096
1097static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1098			    loff_t *ppos)
1099{
1100	struct task_struct *task = get_proc_task(file_inode(file));
1101	char buffer[PROC_NUMBUF];
1102	int oom_adj = OOM_ADJUST_MIN;
1103	size_t len;
1104
1105	if (!task)
1106		return -ESRCH;
1107	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1108		oom_adj = OOM_ADJUST_MAX;
1109	else
1110		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1111			  OOM_SCORE_ADJ_MAX;
1112	put_task_struct(task);
1113	if (oom_adj > OOM_ADJUST_MAX)
1114		oom_adj = OOM_ADJUST_MAX;
1115	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1116	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1117}
1118
1119static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1120{
1121	struct mm_struct *mm = NULL;
1122	struct task_struct *task;
1123	int err = 0;
1124
1125	task = get_proc_task(file_inode(file));
1126	if (!task)
1127		return -ESRCH;
1128
1129	mutex_lock(&oom_adj_mutex);
1130	if (legacy) {
1131		if (oom_adj < task->signal->oom_score_adj &&
1132				!capable(CAP_SYS_RESOURCE)) {
1133			err = -EACCES;
1134			goto err_unlock;
1135		}
1136		/*
1137		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1138		 * /proc/pid/oom_score_adj instead.
1139		 */
1140		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1141			  current->comm, task_pid_nr(current), task_pid_nr(task),
1142			  task_pid_nr(task));
1143	} else {
1144		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1145				!capable(CAP_SYS_RESOURCE)) {
1146			err = -EACCES;
1147			goto err_unlock;
1148		}
1149	}
1150
1151	/*
1152	 * Make sure we will check other processes sharing the mm if this is
1153	 * not vfrok which wants its own oom_score_adj.
1154	 * pin the mm so it doesn't go away and get reused after task_unlock
1155	 */
1156	if (!task->vfork_done) {
1157		struct task_struct *p = find_lock_task_mm(task);
1158
1159		if (p) {
1160			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1161				mm = p->mm;
1162				mmgrab(mm);
1163			}
1164			task_unlock(p);
1165		}
1166	}
1167
1168	task->signal->oom_score_adj = oom_adj;
1169	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1170		task->signal->oom_score_adj_min = (short)oom_adj;
1171	trace_oom_score_adj_update(task);
1172
1173	if (mm) {
1174		struct task_struct *p;
1175
1176		rcu_read_lock();
1177		for_each_process(p) {
1178			if (same_thread_group(task, p))
1179				continue;
1180
1181			/* do not touch kernel threads or the global init */
1182			if (p->flags & PF_KTHREAD || is_global_init(p))
1183				continue;
1184
1185			task_lock(p);
1186			if (!p->vfork_done && process_shares_mm(p, mm)) {
1187				p->signal->oom_score_adj = oom_adj;
1188				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1189					p->signal->oom_score_adj_min = (short)oom_adj;
1190			}
1191			task_unlock(p);
1192		}
1193		rcu_read_unlock();
1194		mmdrop(mm);
1195	}
1196err_unlock:
1197	mutex_unlock(&oom_adj_mutex);
1198	put_task_struct(task);
1199	return err;
1200}
1201
1202/*
1203 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1204 * kernels.  The effective policy is defined by oom_score_adj, which has a
1205 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1206 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1207 * Processes that become oom disabled via oom_adj will still be oom disabled
1208 * with this implementation.
1209 *
1210 * oom_adj cannot be removed since existing userspace binaries use it.
1211 */
1212static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1213			     size_t count, loff_t *ppos)
1214{
1215	char buffer[PROC_NUMBUF] = {};
1216	int oom_adj;
1217	int err;
1218
 
1219	if (count > sizeof(buffer) - 1)
1220		count = sizeof(buffer) - 1;
1221	if (copy_from_user(buffer, buf, count)) {
1222		err = -EFAULT;
1223		goto out;
1224	}
1225
1226	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1227	if (err)
1228		goto out;
1229	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1230	     oom_adj != OOM_DISABLE) {
1231		err = -EINVAL;
1232		goto out;
1233	}
1234
1235	/*
1236	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1237	 * value is always attainable.
1238	 */
1239	if (oom_adj == OOM_ADJUST_MAX)
1240		oom_adj = OOM_SCORE_ADJ_MAX;
1241	else
1242		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1243
1244	err = __set_oom_adj(file, oom_adj, true);
1245out:
1246	return err < 0 ? err : count;
1247}
1248
1249static const struct file_operations proc_oom_adj_operations = {
1250	.read		= oom_adj_read,
1251	.write		= oom_adj_write,
1252	.llseek		= generic_file_llseek,
1253};
1254
1255static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1256					size_t count, loff_t *ppos)
1257{
1258	struct task_struct *task = get_proc_task(file_inode(file));
1259	char buffer[PROC_NUMBUF];
1260	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1261	size_t len;
1262
1263	if (!task)
1264		return -ESRCH;
1265	oom_score_adj = task->signal->oom_score_adj;
1266	put_task_struct(task);
1267	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1268	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1269}
1270
1271static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1272					size_t count, loff_t *ppos)
1273{
1274	char buffer[PROC_NUMBUF] = {};
1275	int oom_score_adj;
1276	int err;
1277
 
1278	if (count > sizeof(buffer) - 1)
1279		count = sizeof(buffer) - 1;
1280	if (copy_from_user(buffer, buf, count)) {
1281		err = -EFAULT;
1282		goto out;
1283	}
1284
1285	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1286	if (err)
1287		goto out;
1288	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1289			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1290		err = -EINVAL;
1291		goto out;
1292	}
1293
1294	err = __set_oom_adj(file, oom_score_adj, false);
1295out:
1296	return err < 0 ? err : count;
1297}
1298
1299static const struct file_operations proc_oom_score_adj_operations = {
1300	.read		= oom_score_adj_read,
1301	.write		= oom_score_adj_write,
1302	.llseek		= default_llseek,
1303};
1304
1305#ifdef CONFIG_AUDIT
1306#define TMPBUFLEN 11
1307static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1308				  size_t count, loff_t *ppos)
1309{
1310	struct inode * inode = file_inode(file);
1311	struct task_struct *task = get_proc_task(inode);
1312	ssize_t length;
1313	char tmpbuf[TMPBUFLEN];
1314
1315	if (!task)
1316		return -ESRCH;
1317	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1318			   from_kuid(file->f_cred->user_ns,
1319				     audit_get_loginuid(task)));
1320	put_task_struct(task);
1321	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1322}
1323
1324static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1325				   size_t count, loff_t *ppos)
1326{
1327	struct inode * inode = file_inode(file);
1328	uid_t loginuid;
1329	kuid_t kloginuid;
1330	int rv;
1331
1332	/* Don't let kthreads write their own loginuid */
1333	if (current->flags & PF_KTHREAD)
1334		return -EPERM;
1335
1336	rcu_read_lock();
1337	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1338		rcu_read_unlock();
1339		return -EPERM;
1340	}
1341	rcu_read_unlock();
1342
1343	if (*ppos != 0) {
1344		/* No partial writes. */
1345		return -EINVAL;
1346	}
1347
1348	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1349	if (rv < 0)
1350		return rv;
1351
1352	/* is userspace tring to explicitly UNSET the loginuid? */
1353	if (loginuid == AUDIT_UID_UNSET) {
1354		kloginuid = INVALID_UID;
1355	} else {
1356		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1357		if (!uid_valid(kloginuid))
1358			return -EINVAL;
1359	}
1360
1361	rv = audit_set_loginuid(kloginuid);
1362	if (rv < 0)
1363		return rv;
1364	return count;
1365}
1366
1367static const struct file_operations proc_loginuid_operations = {
1368	.read		= proc_loginuid_read,
1369	.write		= proc_loginuid_write,
1370	.llseek		= generic_file_llseek,
1371};
1372
1373static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1374				  size_t count, loff_t *ppos)
1375{
1376	struct inode * inode = file_inode(file);
1377	struct task_struct *task = get_proc_task(inode);
1378	ssize_t length;
1379	char tmpbuf[TMPBUFLEN];
1380
1381	if (!task)
1382		return -ESRCH;
1383	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1384				audit_get_sessionid(task));
1385	put_task_struct(task);
1386	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1387}
1388
1389static const struct file_operations proc_sessionid_operations = {
1390	.read		= proc_sessionid_read,
1391	.llseek		= generic_file_llseek,
1392};
1393#endif
1394
1395#ifdef CONFIG_FAULT_INJECTION
1396static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1397				      size_t count, loff_t *ppos)
1398{
1399	struct task_struct *task = get_proc_task(file_inode(file));
1400	char buffer[PROC_NUMBUF];
1401	size_t len;
1402	int make_it_fail;
1403
1404	if (!task)
1405		return -ESRCH;
1406	make_it_fail = task->make_it_fail;
1407	put_task_struct(task);
1408
1409	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1410
1411	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1412}
1413
1414static ssize_t proc_fault_inject_write(struct file * file,
1415			const char __user * buf, size_t count, loff_t *ppos)
1416{
1417	struct task_struct *task;
1418	char buffer[PROC_NUMBUF] = {};
1419	int make_it_fail;
1420	int rv;
1421
1422	if (!capable(CAP_SYS_RESOURCE))
1423		return -EPERM;
1424
1425	if (count > sizeof(buffer) - 1)
1426		count = sizeof(buffer) - 1;
1427	if (copy_from_user(buffer, buf, count))
1428		return -EFAULT;
1429	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1430	if (rv < 0)
1431		return rv;
1432	if (make_it_fail < 0 || make_it_fail > 1)
1433		return -EINVAL;
1434
1435	task = get_proc_task(file_inode(file));
1436	if (!task)
1437		return -ESRCH;
1438	task->make_it_fail = make_it_fail;
1439	put_task_struct(task);
1440
1441	return count;
1442}
1443
1444static const struct file_operations proc_fault_inject_operations = {
1445	.read		= proc_fault_inject_read,
1446	.write		= proc_fault_inject_write,
1447	.llseek		= generic_file_llseek,
1448};
1449
1450static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1451				   size_t count, loff_t *ppos)
1452{
1453	struct task_struct *task;
1454	int err;
1455	unsigned int n;
1456
1457	err = kstrtouint_from_user(buf, count, 0, &n);
1458	if (err)
1459		return err;
1460
1461	task = get_proc_task(file_inode(file));
1462	if (!task)
1463		return -ESRCH;
1464	task->fail_nth = n;
1465	put_task_struct(task);
1466
1467	return count;
1468}
1469
1470static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1471				  size_t count, loff_t *ppos)
1472{
1473	struct task_struct *task;
1474	char numbuf[PROC_NUMBUF];
1475	ssize_t len;
1476
1477	task = get_proc_task(file_inode(file));
1478	if (!task)
1479		return -ESRCH;
1480	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1481	put_task_struct(task);
1482	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1483}
1484
1485static const struct file_operations proc_fail_nth_operations = {
1486	.read		= proc_fail_nth_read,
1487	.write		= proc_fail_nth_write,
1488};
1489#endif
1490
1491
1492#ifdef CONFIG_SCHED_DEBUG
1493/*
1494 * Print out various scheduling related per-task fields:
1495 */
1496static int sched_show(struct seq_file *m, void *v)
1497{
1498	struct inode *inode = m->private;
1499	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1500	struct task_struct *p;
1501
1502	p = get_proc_task(inode);
1503	if (!p)
1504		return -ESRCH;
1505	proc_sched_show_task(p, ns, m);
1506
1507	put_task_struct(p);
1508
1509	return 0;
1510}
1511
1512static ssize_t
1513sched_write(struct file *file, const char __user *buf,
1514	    size_t count, loff_t *offset)
1515{
1516	struct inode *inode = file_inode(file);
1517	struct task_struct *p;
1518
1519	p = get_proc_task(inode);
1520	if (!p)
1521		return -ESRCH;
1522	proc_sched_set_task(p);
1523
1524	put_task_struct(p);
1525
1526	return count;
1527}
1528
1529static int sched_open(struct inode *inode, struct file *filp)
1530{
1531	return single_open(filp, sched_show, inode);
1532}
1533
1534static const struct file_operations proc_pid_sched_operations = {
1535	.open		= sched_open,
1536	.read		= seq_read,
1537	.write		= sched_write,
1538	.llseek		= seq_lseek,
1539	.release	= single_release,
1540};
1541
1542#endif
1543
1544#ifdef CONFIG_SCHED_AUTOGROUP
1545/*
1546 * Print out autogroup related information:
1547 */
1548static int sched_autogroup_show(struct seq_file *m, void *v)
1549{
1550	struct inode *inode = m->private;
1551	struct task_struct *p;
1552
1553	p = get_proc_task(inode);
1554	if (!p)
1555		return -ESRCH;
1556	proc_sched_autogroup_show_task(p, m);
1557
1558	put_task_struct(p);
1559
1560	return 0;
1561}
1562
1563static ssize_t
1564sched_autogroup_write(struct file *file, const char __user *buf,
1565	    size_t count, loff_t *offset)
1566{
1567	struct inode *inode = file_inode(file);
1568	struct task_struct *p;
1569	char buffer[PROC_NUMBUF] = {};
1570	int nice;
1571	int err;
1572
 
1573	if (count > sizeof(buffer) - 1)
1574		count = sizeof(buffer) - 1;
1575	if (copy_from_user(buffer, buf, count))
1576		return -EFAULT;
1577
1578	err = kstrtoint(strstrip(buffer), 0, &nice);
1579	if (err < 0)
1580		return err;
1581
1582	p = get_proc_task(inode);
1583	if (!p)
1584		return -ESRCH;
1585
1586	err = proc_sched_autogroup_set_nice(p, nice);
1587	if (err)
1588		count = err;
1589
1590	put_task_struct(p);
1591
1592	return count;
1593}
1594
1595static int sched_autogroup_open(struct inode *inode, struct file *filp)
1596{
1597	int ret;
1598
1599	ret = single_open(filp, sched_autogroup_show, NULL);
1600	if (!ret) {
1601		struct seq_file *m = filp->private_data;
1602
1603		m->private = inode;
1604	}
1605	return ret;
1606}
1607
1608static const struct file_operations proc_pid_sched_autogroup_operations = {
1609	.open		= sched_autogroup_open,
1610	.read		= seq_read,
1611	.write		= sched_autogroup_write,
1612	.llseek		= seq_lseek,
1613	.release	= single_release,
1614};
1615
1616#endif /* CONFIG_SCHED_AUTOGROUP */
1617
1618#ifdef CONFIG_TIME_NS
1619static int timens_offsets_show(struct seq_file *m, void *v)
1620{
1621	struct task_struct *p;
1622
1623	p = get_proc_task(file_inode(m->file));
1624	if (!p)
1625		return -ESRCH;
1626	proc_timens_show_offsets(p, m);
1627
1628	put_task_struct(p);
1629
1630	return 0;
1631}
1632
1633static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1634				    size_t count, loff_t *ppos)
1635{
1636	struct inode *inode = file_inode(file);
1637	struct proc_timens_offset offsets[2];
1638	char *kbuf = NULL, *pos, *next_line;
1639	struct task_struct *p;
1640	int ret, noffsets;
1641
1642	/* Only allow < page size writes at the beginning of the file */
1643	if ((*ppos != 0) || (count >= PAGE_SIZE))
1644		return -EINVAL;
1645
1646	/* Slurp in the user data */
1647	kbuf = memdup_user_nul(buf, count);
1648	if (IS_ERR(kbuf))
1649		return PTR_ERR(kbuf);
1650
1651	/* Parse the user data */
1652	ret = -EINVAL;
1653	noffsets = 0;
1654	for (pos = kbuf; pos; pos = next_line) {
1655		struct proc_timens_offset *off = &offsets[noffsets];
1656		char clock[10];
1657		int err;
1658
1659		/* Find the end of line and ensure we don't look past it */
1660		next_line = strchr(pos, '\n');
1661		if (next_line) {
1662			*next_line = '\0';
1663			next_line++;
1664			if (*next_line == '\0')
1665				next_line = NULL;
1666		}
1667
1668		err = sscanf(pos, "%9s %lld %lu", clock,
1669				&off->val.tv_sec, &off->val.tv_nsec);
1670		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1671			goto out;
1672
1673		clock[sizeof(clock) - 1] = 0;
1674		if (strcmp(clock, "monotonic") == 0 ||
1675		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1676			off->clockid = CLOCK_MONOTONIC;
1677		else if (strcmp(clock, "boottime") == 0 ||
1678			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1679			off->clockid = CLOCK_BOOTTIME;
1680		else
1681			goto out;
1682
1683		noffsets++;
1684		if (noffsets == ARRAY_SIZE(offsets)) {
1685			if (next_line)
1686				count = next_line - kbuf;
1687			break;
1688		}
1689	}
1690
1691	ret = -ESRCH;
1692	p = get_proc_task(inode);
1693	if (!p)
1694		goto out;
1695	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1696	put_task_struct(p);
1697	if (ret)
1698		goto out;
1699
1700	ret = count;
1701out:
1702	kfree(kbuf);
1703	return ret;
1704}
1705
1706static int timens_offsets_open(struct inode *inode, struct file *filp)
1707{
1708	return single_open(filp, timens_offsets_show, inode);
1709}
1710
1711static const struct file_operations proc_timens_offsets_operations = {
1712	.open		= timens_offsets_open,
1713	.read		= seq_read,
1714	.write		= timens_offsets_write,
1715	.llseek		= seq_lseek,
1716	.release	= single_release,
1717};
1718#endif /* CONFIG_TIME_NS */
1719
1720static ssize_t comm_write(struct file *file, const char __user *buf,
1721				size_t count, loff_t *offset)
1722{
1723	struct inode *inode = file_inode(file);
1724	struct task_struct *p;
1725	char buffer[TASK_COMM_LEN] = {};
1726	const size_t maxlen = sizeof(buffer) - 1;
1727
 
1728	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1729		return -EFAULT;
1730
1731	p = get_proc_task(inode);
1732	if (!p)
1733		return -ESRCH;
1734
1735	if (same_thread_group(current, p)) {
1736		set_task_comm(p, buffer);
1737		proc_comm_connector(p);
1738	}
1739	else
1740		count = -EINVAL;
1741
1742	put_task_struct(p);
1743
1744	return count;
1745}
1746
1747static int comm_show(struct seq_file *m, void *v)
1748{
1749	struct inode *inode = m->private;
1750	struct task_struct *p;
1751
1752	p = get_proc_task(inode);
1753	if (!p)
1754		return -ESRCH;
1755
1756	proc_task_name(m, p, false);
1757	seq_putc(m, '\n');
1758
1759	put_task_struct(p);
1760
1761	return 0;
1762}
1763
1764static int comm_open(struct inode *inode, struct file *filp)
1765{
1766	return single_open(filp, comm_show, inode);
1767}
1768
1769static const struct file_operations proc_pid_set_comm_operations = {
1770	.open		= comm_open,
1771	.read		= seq_read,
1772	.write		= comm_write,
1773	.llseek		= seq_lseek,
1774	.release	= single_release,
1775};
1776
1777static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1778{
1779	struct task_struct *task;
1780	struct file *exe_file;
1781
1782	task = get_proc_task(d_inode(dentry));
1783	if (!task)
1784		return -ENOENT;
1785	exe_file = get_task_exe_file(task);
1786	put_task_struct(task);
1787	if (exe_file) {
1788		*exe_path = exe_file->f_path;
1789		path_get(&exe_file->f_path);
1790		fput(exe_file);
1791		return 0;
1792	} else
1793		return -ENOENT;
1794}
1795
1796static const char *proc_pid_get_link(struct dentry *dentry,
1797				     struct inode *inode,
1798				     struct delayed_call *done)
1799{
1800	struct path path;
1801	int error = -EACCES;
1802
1803	if (!dentry)
1804		return ERR_PTR(-ECHILD);
1805
1806	/* Are we allowed to snoop on the tasks file descriptors? */
1807	if (!proc_fd_access_allowed(inode))
1808		goto out;
1809
1810	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1811	if (error)
1812		goto out;
1813
1814	error = nd_jump_link(&path);
1815out:
1816	return ERR_PTR(error);
1817}
1818
1819static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen)
1820{
1821	char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
1822	char *pathname;
1823	int len;
1824
1825	if (!tmp)
1826		return -ENOMEM;
1827
1828	pathname = d_path(path, tmp, PATH_MAX);
1829	len = PTR_ERR(pathname);
1830	if (IS_ERR(pathname))
1831		goto out;
1832	len = tmp + PATH_MAX - 1 - pathname;
1833
1834	if (len > buflen)
1835		len = buflen;
1836	if (copy_to_user(buffer, pathname, len))
1837		len = -EFAULT;
1838 out:
1839	kfree(tmp);
1840	return len;
1841}
1842
1843static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1844{
1845	int error = -EACCES;
1846	struct inode *inode = d_inode(dentry);
1847	struct path path;
1848
1849	/* Are we allowed to snoop on the tasks file descriptors? */
1850	if (!proc_fd_access_allowed(inode))
1851		goto out;
1852
1853	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1854	if (error)
1855		goto out;
1856
1857	error = do_proc_readlink(&path, buffer, buflen);
1858	path_put(&path);
1859out:
1860	return error;
1861}
1862
1863const struct inode_operations proc_pid_link_inode_operations = {
1864	.readlink	= proc_pid_readlink,
1865	.get_link	= proc_pid_get_link,
1866	.setattr	= proc_setattr,
1867};
1868
1869
1870/* building an inode */
1871
1872void task_dump_owner(struct task_struct *task, umode_t mode,
1873		     kuid_t *ruid, kgid_t *rgid)
1874{
1875	/* Depending on the state of dumpable compute who should own a
1876	 * proc file for a task.
1877	 */
1878	const struct cred *cred;
1879	kuid_t uid;
1880	kgid_t gid;
1881
1882	if (unlikely(task->flags & PF_KTHREAD)) {
1883		*ruid = GLOBAL_ROOT_UID;
1884		*rgid = GLOBAL_ROOT_GID;
1885		return;
1886	}
1887
1888	/* Default to the tasks effective ownership */
1889	rcu_read_lock();
1890	cred = __task_cred(task);
1891	uid = cred->euid;
1892	gid = cred->egid;
1893	rcu_read_unlock();
1894
1895	/*
1896	 * Before the /proc/pid/status file was created the only way to read
1897	 * the effective uid of a /process was to stat /proc/pid.  Reading
1898	 * /proc/pid/status is slow enough that procps and other packages
1899	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1900	 * made this apply to all per process world readable and executable
1901	 * directories.
1902	 */
1903	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1904		struct mm_struct *mm;
1905		task_lock(task);
1906		mm = task->mm;
1907		/* Make non-dumpable tasks owned by some root */
1908		if (mm) {
1909			if (get_dumpable(mm) != SUID_DUMP_USER) {
1910				struct user_namespace *user_ns = mm->user_ns;
1911
1912				uid = make_kuid(user_ns, 0);
1913				if (!uid_valid(uid))
1914					uid = GLOBAL_ROOT_UID;
1915
1916				gid = make_kgid(user_ns, 0);
1917				if (!gid_valid(gid))
1918					gid = GLOBAL_ROOT_GID;
1919			}
1920		} else {
1921			uid = GLOBAL_ROOT_UID;
1922			gid = GLOBAL_ROOT_GID;
1923		}
1924		task_unlock(task);
1925	}
1926	*ruid = uid;
1927	*rgid = gid;
1928}
1929
1930void proc_pid_evict_inode(struct proc_inode *ei)
1931{
1932	struct pid *pid = ei->pid;
1933
1934	if (S_ISDIR(ei->vfs_inode.i_mode)) {
1935		spin_lock(&pid->lock);
1936		hlist_del_init_rcu(&ei->sibling_inodes);
1937		spin_unlock(&pid->lock);
1938	}
 
 
1939}
1940
1941struct inode *proc_pid_make_inode(struct super_block *sb,
1942				  struct task_struct *task, umode_t mode)
1943{
1944	struct inode * inode;
1945	struct proc_inode *ei;
1946	struct pid *pid;
1947
1948	/* We need a new inode */
1949
1950	inode = new_inode(sb);
1951	if (!inode)
1952		goto out;
1953
1954	/* Common stuff */
1955	ei = PROC_I(inode);
1956	inode->i_mode = mode;
1957	inode->i_ino = get_next_ino();
1958	simple_inode_init_ts(inode);
1959	inode->i_op = &proc_def_inode_operations;
1960
1961	/*
1962	 * grab the reference to task.
1963	 */
1964	pid = get_task_pid(task, PIDTYPE_PID);
1965	if (!pid)
1966		goto out_unlock;
1967
1968	/* Let the pid remember us for quick removal */
1969	ei->pid = pid;
 
 
 
 
 
1970
1971	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1972	security_task_to_inode(task, inode);
1973
1974out:
1975	return inode;
1976
1977out_unlock:
1978	iput(inode);
1979	return NULL;
1980}
1981
1982/*
1983 * Generating an inode and adding it into @pid->inodes, so that task will
1984 * invalidate inode's dentry before being released.
1985 *
1986 * This helper is used for creating dir-type entries under '/proc' and
1987 * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>'
1988 * can be released by invalidating '/proc/<tgid>' dentry.
1989 * In theory, dentries under '/proc/<tgid>/task' can also be released by
1990 * invalidating '/proc/<tgid>' dentry, we reserve it to handle single
1991 * thread exiting situation: Any one of threads should invalidate its
1992 * '/proc/<tgid>/task/<pid>' dentry before released.
1993 */
1994static struct inode *proc_pid_make_base_inode(struct super_block *sb,
1995				struct task_struct *task, umode_t mode)
1996{
1997	struct inode *inode;
1998	struct proc_inode *ei;
1999	struct pid *pid;
2000
2001	inode = proc_pid_make_inode(sb, task, mode);
2002	if (!inode)
2003		return NULL;
2004
2005	/* Let proc_flush_pid find this directory inode */
2006	ei = PROC_I(inode);
2007	pid = ei->pid;
2008	spin_lock(&pid->lock);
2009	hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
2010	spin_unlock(&pid->lock);
2011
2012	return inode;
2013}
2014
2015int pid_getattr(struct mnt_idmap *idmap, const struct path *path,
2016		struct kstat *stat, u32 request_mask, unsigned int query_flags)
2017{
2018	struct inode *inode = d_inode(path->dentry);
2019	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
2020	struct task_struct *task;
2021
2022	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
2023
2024	stat->uid = GLOBAL_ROOT_UID;
2025	stat->gid = GLOBAL_ROOT_GID;
2026	rcu_read_lock();
2027	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2028	if (task) {
2029		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
2030			rcu_read_unlock();
2031			/*
2032			 * This doesn't prevent learning whether PID exists,
2033			 * it only makes getattr() consistent with readdir().
2034			 */
2035			return -ENOENT;
2036		}
2037		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
2038	}
2039	rcu_read_unlock();
2040	return 0;
2041}
2042
2043/* dentry stuff */
2044
2045/*
2046 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
2047 */
2048void pid_update_inode(struct task_struct *task, struct inode *inode)
2049{
2050	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
2051
2052	inode->i_mode &= ~(S_ISUID | S_ISGID);
2053	security_task_to_inode(task, inode);
2054}
2055
2056/*
2057 * Rewrite the inode's ownerships here because the owning task may have
2058 * performed a setuid(), etc.
2059 *
2060 */
2061static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2062{
2063	struct inode *inode;
2064	struct task_struct *task;
2065	int ret = 0;
2066
2067	rcu_read_lock();
2068	inode = d_inode_rcu(dentry);
2069	if (!inode)
2070		goto out;
2071	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2072
2073	if (task) {
2074		pid_update_inode(task, inode);
2075		ret = 1;
 
2076	}
2077out:
2078	rcu_read_unlock();
2079	return ret;
2080}
2081
2082static inline bool proc_inode_is_dead(struct inode *inode)
2083{
2084	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2085}
2086
2087int pid_delete_dentry(const struct dentry *dentry)
2088{
2089	/* Is the task we represent dead?
2090	 * If so, then don't put the dentry on the lru list,
2091	 * kill it immediately.
2092	 */
2093	return proc_inode_is_dead(d_inode(dentry));
2094}
2095
2096const struct dentry_operations pid_dentry_operations =
2097{
2098	.d_revalidate	= pid_revalidate,
2099	.d_delete	= pid_delete_dentry,
2100};
2101
2102/* Lookups */
2103
2104/*
2105 * Fill a directory entry.
2106 *
2107 * If possible create the dcache entry and derive our inode number and
2108 * file type from dcache entry.
2109 *
2110 * Since all of the proc inode numbers are dynamically generated, the inode
2111 * numbers do not exist until the inode is cache.  This means creating
2112 * the dcache entry in readdir is necessary to keep the inode numbers
2113 * reported by readdir in sync with the inode numbers reported
2114 * by stat.
2115 */
2116bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2117	const char *name, unsigned int len,
2118	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2119{
2120	struct dentry *child, *dir = file->f_path.dentry;
2121	struct qstr qname = QSTR_INIT(name, len);
2122	struct inode *inode;
2123	unsigned type = DT_UNKNOWN;
2124	ino_t ino = 1;
2125
2126	child = d_hash_and_lookup(dir, &qname);
2127	if (!child) {
2128		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2129		child = d_alloc_parallel(dir, &qname, &wq);
2130		if (IS_ERR(child))
2131			goto end_instantiate;
2132		if (d_in_lookup(child)) {
2133			struct dentry *res;
2134			res = instantiate(child, task, ptr);
2135			d_lookup_done(child);
2136			if (unlikely(res)) {
2137				dput(child);
2138				child = res;
2139				if (IS_ERR(child))
2140					goto end_instantiate;
2141			}
2142		}
2143	}
2144	inode = d_inode(child);
2145	ino = inode->i_ino;
2146	type = inode->i_mode >> 12;
2147	dput(child);
2148end_instantiate:
2149	return dir_emit(ctx, name, len, ino, type);
2150}
2151
2152/*
2153 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2154 * which represent vma start and end addresses.
2155 */
2156static int dname_to_vma_addr(struct dentry *dentry,
2157			     unsigned long *start, unsigned long *end)
2158{
2159	const char *str = dentry->d_name.name;
2160	unsigned long long sval, eval;
2161	unsigned int len;
2162
2163	if (str[0] == '0' && str[1] != '-')
2164		return -EINVAL;
2165	len = _parse_integer(str, 16, &sval);
2166	if (len & KSTRTOX_OVERFLOW)
2167		return -EINVAL;
2168	if (sval != (unsigned long)sval)
2169		return -EINVAL;
2170	str += len;
2171
2172	if (*str != '-')
2173		return -EINVAL;
2174	str++;
2175
2176	if (str[0] == '0' && str[1])
2177		return -EINVAL;
2178	len = _parse_integer(str, 16, &eval);
2179	if (len & KSTRTOX_OVERFLOW)
2180		return -EINVAL;
2181	if (eval != (unsigned long)eval)
2182		return -EINVAL;
2183	str += len;
2184
2185	if (*str != '\0')
2186		return -EINVAL;
2187
2188	*start = sval;
2189	*end = eval;
2190
2191	return 0;
2192}
2193
2194static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2195{
2196	unsigned long vm_start, vm_end;
2197	bool exact_vma_exists = false;
2198	struct mm_struct *mm = NULL;
2199	struct task_struct *task;
2200	struct inode *inode;
2201	int status = 0;
2202
2203	if (flags & LOOKUP_RCU)
2204		return -ECHILD;
2205
2206	inode = d_inode(dentry);
2207	task = get_proc_task(inode);
2208	if (!task)
2209		goto out_notask;
2210
2211	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2212	if (IS_ERR(mm))
2213		goto out;
2214
2215	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2216		status = mmap_read_lock_killable(mm);
2217		if (!status) {
2218			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2219							    vm_end);
2220			mmap_read_unlock(mm);
2221		}
2222	}
2223
2224	mmput(mm);
2225
2226	if (exact_vma_exists) {
2227		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2228
2229		security_task_to_inode(task, inode);
2230		status = 1;
2231	}
2232
2233out:
2234	put_task_struct(task);
2235
2236out_notask:
2237	return status;
2238}
2239
2240static const struct dentry_operations tid_map_files_dentry_operations = {
2241	.d_revalidate	= map_files_d_revalidate,
2242	.d_delete	= pid_delete_dentry,
2243};
2244
2245static int map_files_get_link(struct dentry *dentry, struct path *path)
2246{
2247	unsigned long vm_start, vm_end;
2248	struct vm_area_struct *vma;
2249	struct task_struct *task;
2250	struct mm_struct *mm;
2251	int rc;
2252
2253	rc = -ENOENT;
2254	task = get_proc_task(d_inode(dentry));
2255	if (!task)
2256		goto out;
2257
2258	mm = get_task_mm(task);
2259	put_task_struct(task);
2260	if (!mm)
2261		goto out;
2262
2263	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2264	if (rc)
2265		goto out_mmput;
2266
2267	rc = mmap_read_lock_killable(mm);
2268	if (rc)
2269		goto out_mmput;
2270
2271	rc = -ENOENT;
2272	vma = find_exact_vma(mm, vm_start, vm_end);
2273	if (vma && vma->vm_file) {
2274		*path = *file_user_path(vma->vm_file);
2275		path_get(path);
2276		rc = 0;
2277	}
2278	mmap_read_unlock(mm);
2279
2280out_mmput:
2281	mmput(mm);
2282out:
2283	return rc;
2284}
2285
2286struct map_files_info {
2287	unsigned long	start;
2288	unsigned long	end;
2289	fmode_t		mode;
2290};
2291
2292/*
2293 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2294 * to concerns about how the symlinks may be used to bypass permissions on
2295 * ancestor directories in the path to the file in question.
2296 */
2297static const char *
2298proc_map_files_get_link(struct dentry *dentry,
2299			struct inode *inode,
2300		        struct delayed_call *done)
2301{
2302	if (!checkpoint_restore_ns_capable(&init_user_ns))
2303		return ERR_PTR(-EPERM);
2304
2305	return proc_pid_get_link(dentry, inode, done);
2306}
2307
2308/*
2309 * Identical to proc_pid_link_inode_operations except for get_link()
2310 */
2311static const struct inode_operations proc_map_files_link_inode_operations = {
2312	.readlink	= proc_pid_readlink,
2313	.get_link	= proc_map_files_get_link,
2314	.setattr	= proc_setattr,
2315};
2316
2317static struct dentry *
2318proc_map_files_instantiate(struct dentry *dentry,
2319			   struct task_struct *task, const void *ptr)
2320{
2321	fmode_t mode = (fmode_t)(unsigned long)ptr;
2322	struct proc_inode *ei;
2323	struct inode *inode;
2324
2325	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2326				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2327				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2328	if (!inode)
2329		return ERR_PTR(-ENOENT);
2330
2331	ei = PROC_I(inode);
2332	ei->op.proc_get_link = map_files_get_link;
2333
2334	inode->i_op = &proc_map_files_link_inode_operations;
2335	inode->i_size = 64;
2336
2337	return proc_splice_unmountable(inode, dentry,
2338				       &tid_map_files_dentry_operations);
2339}
2340
2341static struct dentry *proc_map_files_lookup(struct inode *dir,
2342		struct dentry *dentry, unsigned int flags)
2343{
2344	unsigned long vm_start, vm_end;
2345	struct vm_area_struct *vma;
2346	struct task_struct *task;
2347	struct dentry *result;
2348	struct mm_struct *mm;
2349
2350	result = ERR_PTR(-ENOENT);
2351	task = get_proc_task(dir);
2352	if (!task)
2353		goto out;
2354
2355	result = ERR_PTR(-EACCES);
2356	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2357		goto out_put_task;
2358
2359	result = ERR_PTR(-ENOENT);
2360	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2361		goto out_put_task;
2362
2363	mm = get_task_mm(task);
2364	if (!mm)
2365		goto out_put_task;
2366
2367	result = ERR_PTR(-EINTR);
2368	if (mmap_read_lock_killable(mm))
2369		goto out_put_mm;
2370
2371	result = ERR_PTR(-ENOENT);
2372	vma = find_exact_vma(mm, vm_start, vm_end);
2373	if (!vma)
2374		goto out_no_vma;
2375
2376	if (vma->vm_file)
2377		result = proc_map_files_instantiate(dentry, task,
2378				(void *)(unsigned long)vma->vm_file->f_mode);
2379
2380out_no_vma:
2381	mmap_read_unlock(mm);
2382out_put_mm:
2383	mmput(mm);
2384out_put_task:
2385	put_task_struct(task);
2386out:
2387	return result;
2388}
2389
2390static const struct inode_operations proc_map_files_inode_operations = {
2391	.lookup		= proc_map_files_lookup,
2392	.permission	= proc_fd_permission,
2393	.setattr	= proc_setattr,
2394};
2395
2396static int
2397proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2398{
2399	struct vm_area_struct *vma;
2400	struct task_struct *task;
2401	struct mm_struct *mm;
2402	unsigned long nr_files, pos, i;
2403	GENRADIX(struct map_files_info) fa;
2404	struct map_files_info *p;
2405	int ret;
2406	struct vma_iterator vmi;
2407
2408	genradix_init(&fa);
2409
2410	ret = -ENOENT;
2411	task = get_proc_task(file_inode(file));
2412	if (!task)
2413		goto out;
2414
2415	ret = -EACCES;
2416	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2417		goto out_put_task;
2418
2419	ret = 0;
2420	if (!dir_emit_dots(file, ctx))
2421		goto out_put_task;
2422
2423	mm = get_task_mm(task);
2424	if (!mm)
2425		goto out_put_task;
2426
2427	ret = mmap_read_lock_killable(mm);
2428	if (ret) {
2429		mmput(mm);
2430		goto out_put_task;
2431	}
2432
2433	nr_files = 0;
2434
2435	/*
2436	 * We need two passes here:
2437	 *
2438	 *  1) Collect vmas of mapped files with mmap_lock taken
2439	 *  2) Release mmap_lock and instantiate entries
2440	 *
2441	 * otherwise we get lockdep complained, since filldir()
2442	 * routine might require mmap_lock taken in might_fault().
2443	 */
2444
2445	pos = 2;
2446	vma_iter_init(&vmi, mm, 0);
2447	for_each_vma(vmi, vma) {
2448		if (!vma->vm_file)
2449			continue;
2450		if (++pos <= ctx->pos)
2451			continue;
2452
2453		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2454		if (!p) {
2455			ret = -ENOMEM;
2456			mmap_read_unlock(mm);
2457			mmput(mm);
2458			goto out_put_task;
2459		}
2460
2461		p->start = vma->vm_start;
2462		p->end = vma->vm_end;
2463		p->mode = vma->vm_file->f_mode;
2464	}
2465	mmap_read_unlock(mm);
2466	mmput(mm);
2467
2468	for (i = 0; i < nr_files; i++) {
2469		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2470		unsigned int len;
2471
2472		p = genradix_ptr(&fa, i);
2473		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2474		if (!proc_fill_cache(file, ctx,
2475				      buf, len,
2476				      proc_map_files_instantiate,
2477				      task,
2478				      (void *)(unsigned long)p->mode))
2479			break;
2480		ctx->pos++;
2481	}
2482
2483out_put_task:
2484	put_task_struct(task);
2485out:
2486	genradix_free(&fa);
2487	return ret;
2488}
2489
2490static const struct file_operations proc_map_files_operations = {
2491	.read		= generic_read_dir,
2492	.iterate_shared	= proc_map_files_readdir,
2493	.llseek		= generic_file_llseek,
2494};
2495
2496#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2497struct timers_private {
2498	struct pid *pid;
2499	struct task_struct *task;
2500	struct sighand_struct *sighand;
2501	struct pid_namespace *ns;
2502	unsigned long flags;
2503};
2504
2505static void *timers_start(struct seq_file *m, loff_t *pos)
2506{
2507	struct timers_private *tp = m->private;
2508
2509	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2510	if (!tp->task)
2511		return ERR_PTR(-ESRCH);
2512
2513	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2514	if (!tp->sighand)
2515		return ERR_PTR(-ESRCH);
2516
2517	return seq_hlist_start(&tp->task->signal->posix_timers, *pos);
2518}
2519
2520static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2521{
2522	struct timers_private *tp = m->private;
2523	return seq_hlist_next(v, &tp->task->signal->posix_timers, pos);
2524}
2525
2526static void timers_stop(struct seq_file *m, void *v)
2527{
2528	struct timers_private *tp = m->private;
2529
2530	if (tp->sighand) {
2531		unlock_task_sighand(tp->task, &tp->flags);
2532		tp->sighand = NULL;
2533	}
2534
2535	if (tp->task) {
2536		put_task_struct(tp->task);
2537		tp->task = NULL;
2538	}
2539}
2540
2541static int show_timer(struct seq_file *m, void *v)
2542{
2543	struct k_itimer *timer;
2544	struct timers_private *tp = m->private;
2545	int notify;
2546	static const char * const nstr[] = {
2547		[SIGEV_SIGNAL] = "signal",
2548		[SIGEV_NONE] = "none",
2549		[SIGEV_THREAD] = "thread",
2550	};
2551
2552	timer = hlist_entry((struct hlist_node *)v, struct k_itimer, list);
2553	notify = timer->it_sigev_notify;
2554
2555	seq_printf(m, "ID: %d\n", timer->it_id);
2556	seq_printf(m, "signal: %d/%px\n",
2557		   timer->sigq.info.si_signo,
2558		   timer->sigq.info.si_value.sival_ptr);
2559	seq_printf(m, "notify: %s/%s.%d\n",
2560		   nstr[notify & ~SIGEV_THREAD_ID],
2561		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2562		   pid_nr_ns(timer->it_pid, tp->ns));
2563	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2564
2565	return 0;
2566}
2567
2568static const struct seq_operations proc_timers_seq_ops = {
2569	.start	= timers_start,
2570	.next	= timers_next,
2571	.stop	= timers_stop,
2572	.show	= show_timer,
2573};
2574
2575static int proc_timers_open(struct inode *inode, struct file *file)
2576{
2577	struct timers_private *tp;
2578
2579	tp = __seq_open_private(file, &proc_timers_seq_ops,
2580			sizeof(struct timers_private));
2581	if (!tp)
2582		return -ENOMEM;
2583
2584	tp->pid = proc_pid(inode);
2585	tp->ns = proc_pid_ns(inode->i_sb);
2586	return 0;
2587}
2588
2589static const struct file_operations proc_timers_operations = {
2590	.open		= proc_timers_open,
2591	.read		= seq_read,
2592	.llseek		= seq_lseek,
2593	.release	= seq_release_private,
2594};
2595#endif
2596
2597static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2598					size_t count, loff_t *offset)
2599{
2600	struct inode *inode = file_inode(file);
2601	struct task_struct *p;
2602	u64 slack_ns;
2603	int err;
2604
2605	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2606	if (err < 0)
2607		return err;
2608
2609	p = get_proc_task(inode);
2610	if (!p)
2611		return -ESRCH;
2612
2613	if (p != current) {
2614		rcu_read_lock();
2615		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2616			rcu_read_unlock();
2617			count = -EPERM;
2618			goto out;
2619		}
2620		rcu_read_unlock();
2621
2622		err = security_task_setscheduler(p);
2623		if (err) {
2624			count = err;
2625			goto out;
2626		}
2627	}
2628
2629	task_lock(p);
2630	if (rt_or_dl_task_policy(p))
2631		slack_ns = 0;
2632	else if (slack_ns == 0)
2633		slack_ns = p->default_timer_slack_ns;
2634	p->timer_slack_ns = slack_ns;
2635	task_unlock(p);
2636
2637out:
2638	put_task_struct(p);
2639
2640	return count;
2641}
2642
2643static int timerslack_ns_show(struct seq_file *m, void *v)
2644{
2645	struct inode *inode = m->private;
2646	struct task_struct *p;
2647	int err = 0;
2648
2649	p = get_proc_task(inode);
2650	if (!p)
2651		return -ESRCH;
2652
2653	if (p != current) {
2654		rcu_read_lock();
2655		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2656			rcu_read_unlock();
2657			err = -EPERM;
2658			goto out;
2659		}
2660		rcu_read_unlock();
2661
2662		err = security_task_getscheduler(p);
2663		if (err)
2664			goto out;
2665	}
2666
2667	task_lock(p);
2668	seq_printf(m, "%llu\n", p->timer_slack_ns);
2669	task_unlock(p);
2670
2671out:
2672	put_task_struct(p);
2673
2674	return err;
2675}
2676
2677static int timerslack_ns_open(struct inode *inode, struct file *filp)
2678{
2679	return single_open(filp, timerslack_ns_show, inode);
2680}
2681
2682static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2683	.open		= timerslack_ns_open,
2684	.read		= seq_read,
2685	.write		= timerslack_ns_write,
2686	.llseek		= seq_lseek,
2687	.release	= single_release,
2688};
2689
2690static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2691	struct task_struct *task, const void *ptr)
2692{
2693	const struct pid_entry *p = ptr;
2694	struct inode *inode;
2695	struct proc_inode *ei;
2696
2697	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2698	if (!inode)
2699		return ERR_PTR(-ENOENT);
2700
2701	ei = PROC_I(inode);
2702	if (S_ISDIR(inode->i_mode))
2703		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2704	if (p->iop)
2705		inode->i_op = p->iop;
2706	if (p->fop)
2707		inode->i_fop = p->fop;
2708	ei->op = p->op;
2709	pid_update_inode(task, inode);
2710	d_set_d_op(dentry, &pid_dentry_operations);
2711	return d_splice_alias(inode, dentry);
2712}
2713
2714static struct dentry *proc_pident_lookup(struct inode *dir, 
2715					 struct dentry *dentry,
2716					 const struct pid_entry *p,
2717					 const struct pid_entry *end)
2718{
2719	struct task_struct *task = get_proc_task(dir);
2720	struct dentry *res = ERR_PTR(-ENOENT);
2721
2722	if (!task)
2723		goto out_no_task;
2724
2725	/*
2726	 * Yes, it does not scale. And it should not. Don't add
2727	 * new entries into /proc/<tgid>/ without very good reasons.
2728	 */
2729	for (; p < end; p++) {
2730		if (p->len != dentry->d_name.len)
2731			continue;
2732		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2733			res = proc_pident_instantiate(dentry, task, p);
2734			break;
2735		}
2736	}
2737	put_task_struct(task);
2738out_no_task:
2739	return res;
2740}
2741
2742static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2743		const struct pid_entry *ents, unsigned int nents)
2744{
2745	struct task_struct *task = get_proc_task(file_inode(file));
2746	const struct pid_entry *p;
2747
2748	if (!task)
2749		return -ENOENT;
2750
2751	if (!dir_emit_dots(file, ctx))
2752		goto out;
2753
2754	if (ctx->pos >= nents + 2)
2755		goto out;
2756
2757	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2758		if (!proc_fill_cache(file, ctx, p->name, p->len,
2759				proc_pident_instantiate, task, p))
2760			break;
2761		ctx->pos++;
2762	}
2763out:
2764	put_task_struct(task);
2765	return 0;
2766}
2767
2768#ifdef CONFIG_SECURITY
2769static int proc_pid_attr_open(struct inode *inode, struct file *file)
2770{
2771	file->private_data = NULL;
2772	__mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2773	return 0;
2774}
2775
2776static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2777				  size_t count, loff_t *ppos)
2778{
2779	struct inode * inode = file_inode(file);
2780	char *p = NULL;
2781	ssize_t length;
2782	struct task_struct *task = get_proc_task(inode);
2783
2784	if (!task)
2785		return -ESRCH;
2786
2787	length = security_getprocattr(task, PROC_I(inode)->op.lsmid,
2788				      file->f_path.dentry->d_name.name,
2789				      &p);
2790	put_task_struct(task);
2791	if (length > 0)
2792		length = simple_read_from_buffer(buf, count, ppos, p, length);
2793	kfree(p);
2794	return length;
2795}
2796
2797static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2798				   size_t count, loff_t *ppos)
2799{
2800	struct inode * inode = file_inode(file);
2801	struct task_struct *task;
2802	void *page;
2803	int rv;
2804
2805	/* A task may only write when it was the opener. */
2806	if (file->private_data != current->mm)
2807		return -EPERM;
2808
2809	rcu_read_lock();
2810	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2811	if (!task) {
2812		rcu_read_unlock();
2813		return -ESRCH;
2814	}
2815	/* A task may only write its own attributes. */
2816	if (current != task) {
2817		rcu_read_unlock();
2818		return -EACCES;
2819	}
2820	/* Prevent changes to overridden credentials. */
2821	if (current_cred() != current_real_cred()) {
2822		rcu_read_unlock();
2823		return -EBUSY;
2824	}
2825	rcu_read_unlock();
2826
2827	if (count > PAGE_SIZE)
2828		count = PAGE_SIZE;
2829
2830	/* No partial writes. */
2831	if (*ppos != 0)
2832		return -EINVAL;
2833
2834	page = memdup_user(buf, count);
2835	if (IS_ERR(page)) {
2836		rv = PTR_ERR(page);
2837		goto out;
2838	}
2839
2840	/* Guard against adverse ptrace interaction */
2841	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2842	if (rv < 0)
2843		goto out_free;
2844
2845	rv = security_setprocattr(PROC_I(inode)->op.lsmid,
2846				  file->f_path.dentry->d_name.name, page,
2847				  count);
2848	mutex_unlock(&current->signal->cred_guard_mutex);
2849out_free:
2850	kfree(page);
2851out:
2852	return rv;
2853}
2854
2855static const struct file_operations proc_pid_attr_operations = {
2856	.open		= proc_pid_attr_open,
2857	.read		= proc_pid_attr_read,
2858	.write		= proc_pid_attr_write,
2859	.llseek		= generic_file_llseek,
2860	.release	= mem_release,
2861};
2862
2863#define LSM_DIR_OPS(LSM) \
2864static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2865			     struct dir_context *ctx) \
2866{ \
2867	return proc_pident_readdir(filp, ctx, \
2868				   LSM##_attr_dir_stuff, \
2869				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2870} \
2871\
2872static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2873	.read		= generic_read_dir, \
2874	.iterate_shared	= proc_##LSM##_attr_dir_iterate, \
2875	.llseek		= default_llseek, \
2876}; \
2877\
2878static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2879				struct dentry *dentry, unsigned int flags) \
2880{ \
2881	return proc_pident_lookup(dir, dentry, \
2882				  LSM##_attr_dir_stuff, \
2883				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2884} \
2885\
2886static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2887	.lookup		= proc_##LSM##_attr_dir_lookup, \
2888	.getattr	= pid_getattr, \
2889	.setattr	= proc_setattr, \
2890}
2891
2892#ifdef CONFIG_SECURITY_SMACK
2893static const struct pid_entry smack_attr_dir_stuff[] = {
2894	ATTR(LSM_ID_SMACK, "current",	0666),
2895};
2896LSM_DIR_OPS(smack);
2897#endif
2898
2899#ifdef CONFIG_SECURITY_APPARMOR
2900static const struct pid_entry apparmor_attr_dir_stuff[] = {
2901	ATTR(LSM_ID_APPARMOR, "current",	0666),
2902	ATTR(LSM_ID_APPARMOR, "prev",		0444),
2903	ATTR(LSM_ID_APPARMOR, "exec",		0666),
2904};
2905LSM_DIR_OPS(apparmor);
2906#endif
2907
2908static const struct pid_entry attr_dir_stuff[] = {
2909	ATTR(LSM_ID_UNDEF, "current",	0666),
2910	ATTR(LSM_ID_UNDEF, "prev",		0444),
2911	ATTR(LSM_ID_UNDEF, "exec",		0666),
2912	ATTR(LSM_ID_UNDEF, "fscreate",	0666),
2913	ATTR(LSM_ID_UNDEF, "keycreate",	0666),
2914	ATTR(LSM_ID_UNDEF, "sockcreate",	0666),
2915#ifdef CONFIG_SECURITY_SMACK
2916	DIR("smack",			0555,
2917	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2918#endif
2919#ifdef CONFIG_SECURITY_APPARMOR
2920	DIR("apparmor",			0555,
2921	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2922#endif
2923};
2924
2925static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2926{
2927	return proc_pident_readdir(file, ctx, 
2928				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2929}
2930
2931static const struct file_operations proc_attr_dir_operations = {
2932	.read		= generic_read_dir,
2933	.iterate_shared	= proc_attr_dir_readdir,
2934	.llseek		= generic_file_llseek,
2935};
2936
2937static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2938				struct dentry *dentry, unsigned int flags)
2939{
2940	return proc_pident_lookup(dir, dentry,
2941				  attr_dir_stuff,
2942				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2943}
2944
2945static const struct inode_operations proc_attr_dir_inode_operations = {
2946	.lookup		= proc_attr_dir_lookup,
2947	.getattr	= pid_getattr,
2948	.setattr	= proc_setattr,
2949};
2950
2951#endif
2952
2953#ifdef CONFIG_ELF_CORE
2954static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2955					 size_t count, loff_t *ppos)
2956{
2957	struct task_struct *task = get_proc_task(file_inode(file));
2958	struct mm_struct *mm;
2959	char buffer[PROC_NUMBUF];
2960	size_t len;
2961	int ret;
2962
2963	if (!task)
2964		return -ESRCH;
2965
2966	ret = 0;
2967	mm = get_task_mm(task);
2968	if (mm) {
2969		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2970			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2971				MMF_DUMP_FILTER_SHIFT));
2972		mmput(mm);
2973		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2974	}
2975
2976	put_task_struct(task);
2977
2978	return ret;
2979}
2980
2981static ssize_t proc_coredump_filter_write(struct file *file,
2982					  const char __user *buf,
2983					  size_t count,
2984					  loff_t *ppos)
2985{
2986	struct task_struct *task;
2987	struct mm_struct *mm;
2988	unsigned int val;
2989	int ret;
2990	int i;
2991	unsigned long mask;
2992
2993	ret = kstrtouint_from_user(buf, count, 0, &val);
2994	if (ret < 0)
2995		return ret;
2996
2997	ret = -ESRCH;
2998	task = get_proc_task(file_inode(file));
2999	if (!task)
3000		goto out_no_task;
3001
3002	mm = get_task_mm(task);
3003	if (!mm)
3004		goto out_no_mm;
3005	ret = 0;
3006
3007	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
3008		if (val & mask)
3009			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3010		else
3011			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3012	}
3013
3014	mmput(mm);
3015 out_no_mm:
3016	put_task_struct(task);
3017 out_no_task:
3018	if (ret < 0)
3019		return ret;
3020	return count;
3021}
3022
3023static const struct file_operations proc_coredump_filter_operations = {
3024	.read		= proc_coredump_filter_read,
3025	.write		= proc_coredump_filter_write,
3026	.llseek		= generic_file_llseek,
3027};
3028#endif
3029
3030#ifdef CONFIG_TASK_IO_ACCOUNTING
3031static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
3032{
3033	struct task_io_accounting acct;
 
3034	int result;
3035
3036	result = down_read_killable(&task->signal->exec_update_lock);
3037	if (result)
3038		return result;
3039
3040	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
3041		result = -EACCES;
3042		goto out_unlock;
3043	}
3044
3045	if (whole) {
3046		struct signal_struct *sig = task->signal;
3047		struct task_struct *t;
3048		unsigned int seq = 1;
3049		unsigned long flags;
3050
3051		rcu_read_lock();
3052		do {
3053			seq++; /* 2 on the 1st/lockless path, otherwise odd */
3054			flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
3055
3056			acct = sig->ioac;
3057			__for_each_thread(sig, t)
3058				task_io_accounting_add(&acct, &t->ioac);
3059
3060		} while (need_seqretry(&sig->stats_lock, seq));
3061		done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
3062		rcu_read_unlock();
3063	} else {
3064		acct = task->ioac;
3065	}
3066
3067	seq_printf(m,
3068		   "rchar: %llu\n"
3069		   "wchar: %llu\n"
3070		   "syscr: %llu\n"
3071		   "syscw: %llu\n"
3072		   "read_bytes: %llu\n"
3073		   "write_bytes: %llu\n"
3074		   "cancelled_write_bytes: %llu\n",
3075		   (unsigned long long)acct.rchar,
3076		   (unsigned long long)acct.wchar,
3077		   (unsigned long long)acct.syscr,
3078		   (unsigned long long)acct.syscw,
3079		   (unsigned long long)acct.read_bytes,
3080		   (unsigned long long)acct.write_bytes,
3081		   (unsigned long long)acct.cancelled_write_bytes);
3082	result = 0;
3083
3084out_unlock:
3085	up_read(&task->signal->exec_update_lock);
3086	return result;
3087}
3088
3089static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3090				  struct pid *pid, struct task_struct *task)
3091{
3092	return do_io_accounting(task, m, 0);
3093}
3094
3095static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3096				   struct pid *pid, struct task_struct *task)
3097{
3098	return do_io_accounting(task, m, 1);
3099}
3100#endif /* CONFIG_TASK_IO_ACCOUNTING */
3101
3102#ifdef CONFIG_USER_NS
3103static int proc_id_map_open(struct inode *inode, struct file *file,
3104	const struct seq_operations *seq_ops)
3105{
3106	struct user_namespace *ns = NULL;
3107	struct task_struct *task;
3108	struct seq_file *seq;
3109	int ret = -EINVAL;
3110
3111	task = get_proc_task(inode);
3112	if (task) {
3113		rcu_read_lock();
3114		ns = get_user_ns(task_cred_xxx(task, user_ns));
3115		rcu_read_unlock();
3116		put_task_struct(task);
3117	}
3118	if (!ns)
3119		goto err;
3120
3121	ret = seq_open(file, seq_ops);
3122	if (ret)
3123		goto err_put_ns;
3124
3125	seq = file->private_data;
3126	seq->private = ns;
3127
3128	return 0;
3129err_put_ns:
3130	put_user_ns(ns);
3131err:
3132	return ret;
3133}
3134
3135static int proc_id_map_release(struct inode *inode, struct file *file)
3136{
3137	struct seq_file *seq = file->private_data;
3138	struct user_namespace *ns = seq->private;
3139	put_user_ns(ns);
3140	return seq_release(inode, file);
3141}
3142
3143static int proc_uid_map_open(struct inode *inode, struct file *file)
3144{
3145	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3146}
3147
3148static int proc_gid_map_open(struct inode *inode, struct file *file)
3149{
3150	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3151}
3152
3153static int proc_projid_map_open(struct inode *inode, struct file *file)
3154{
3155	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3156}
3157
3158static const struct file_operations proc_uid_map_operations = {
3159	.open		= proc_uid_map_open,
3160	.write		= proc_uid_map_write,
3161	.read		= seq_read,
3162	.llseek		= seq_lseek,
3163	.release	= proc_id_map_release,
3164};
3165
3166static const struct file_operations proc_gid_map_operations = {
3167	.open		= proc_gid_map_open,
3168	.write		= proc_gid_map_write,
3169	.read		= seq_read,
3170	.llseek		= seq_lseek,
3171	.release	= proc_id_map_release,
3172};
3173
3174static const struct file_operations proc_projid_map_operations = {
3175	.open		= proc_projid_map_open,
3176	.write		= proc_projid_map_write,
3177	.read		= seq_read,
3178	.llseek		= seq_lseek,
3179	.release	= proc_id_map_release,
3180};
3181
3182static int proc_setgroups_open(struct inode *inode, struct file *file)
3183{
3184	struct user_namespace *ns = NULL;
3185	struct task_struct *task;
3186	int ret;
3187
3188	ret = -ESRCH;
3189	task = get_proc_task(inode);
3190	if (task) {
3191		rcu_read_lock();
3192		ns = get_user_ns(task_cred_xxx(task, user_ns));
3193		rcu_read_unlock();
3194		put_task_struct(task);
3195	}
3196	if (!ns)
3197		goto err;
3198
3199	if (file->f_mode & FMODE_WRITE) {
3200		ret = -EACCES;
3201		if (!ns_capable(ns, CAP_SYS_ADMIN))
3202			goto err_put_ns;
3203	}
3204
3205	ret = single_open(file, &proc_setgroups_show, ns);
3206	if (ret)
3207		goto err_put_ns;
3208
3209	return 0;
3210err_put_ns:
3211	put_user_ns(ns);
3212err:
3213	return ret;
3214}
3215
3216static int proc_setgroups_release(struct inode *inode, struct file *file)
3217{
3218	struct seq_file *seq = file->private_data;
3219	struct user_namespace *ns = seq->private;
3220	int ret = single_release(inode, file);
3221	put_user_ns(ns);
3222	return ret;
3223}
3224
3225static const struct file_operations proc_setgroups_operations = {
3226	.open		= proc_setgroups_open,
3227	.write		= proc_setgroups_write,
3228	.read		= seq_read,
3229	.llseek		= seq_lseek,
3230	.release	= proc_setgroups_release,
3231};
3232#endif /* CONFIG_USER_NS */
3233
3234static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3235				struct pid *pid, struct task_struct *task)
3236{
3237	int err = lock_trace(task);
3238	if (!err) {
3239		seq_printf(m, "%08x\n", task->personality);
3240		unlock_trace(task);
3241	}
3242	return err;
3243}
3244
3245#ifdef CONFIG_LIVEPATCH
3246static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3247				struct pid *pid, struct task_struct *task)
3248{
3249	seq_printf(m, "%d\n", task->patch_state);
3250	return 0;
3251}
3252#endif /* CONFIG_LIVEPATCH */
3253
3254#ifdef CONFIG_KSM
3255static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
3256				struct pid *pid, struct task_struct *task)
3257{
3258	struct mm_struct *mm;
3259
3260	mm = get_task_mm(task);
3261	if (mm) {
3262		seq_printf(m, "%lu\n", mm->ksm_merging_pages);
3263		mmput(mm);
3264	}
3265
3266	return 0;
3267}
3268static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns,
3269				struct pid *pid, struct task_struct *task)
3270{
3271	struct mm_struct *mm;
3272
3273	mm = get_task_mm(task);
3274	if (mm) {
3275		seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items);
3276		seq_printf(m, "ksm_zero_pages %ld\n", mm_ksm_zero_pages(mm));
3277		seq_printf(m, "ksm_merging_pages %lu\n", mm->ksm_merging_pages);
3278		seq_printf(m, "ksm_process_profit %ld\n", ksm_process_profit(mm));
3279		mmput(mm);
3280	}
3281
3282	return 0;
3283}
3284#endif /* CONFIG_KSM */
3285
3286#ifdef CONFIG_STACKLEAK_METRICS
3287static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3288				struct pid *pid, struct task_struct *task)
3289{
3290	unsigned long prev_depth = THREAD_SIZE -
3291				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3292	unsigned long depth = THREAD_SIZE -
3293				(task->lowest_stack & (THREAD_SIZE - 1));
3294
3295	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3296							prev_depth, depth);
3297	return 0;
3298}
3299#endif /* CONFIG_STACKLEAK_METRICS */
3300
3301/*
3302 * Thread groups
3303 */
3304static const struct file_operations proc_task_operations;
3305static const struct inode_operations proc_task_inode_operations;
3306
3307static const struct pid_entry tgid_base_stuff[] = {
3308	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3309	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3310	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3311	DIR("fdinfo",     S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3312	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3313#ifdef CONFIG_NET
3314	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3315#endif
3316	REG("environ",    S_IRUSR, proc_environ_operations),
3317	REG("auxv",       S_IRUSR, proc_auxv_operations),
3318	ONE("status",     S_IRUGO, proc_pid_status),
3319	ONE("personality", S_IRUSR, proc_pid_personality),
3320	ONE("limits",	  S_IRUGO, proc_pid_limits),
3321#ifdef CONFIG_SCHED_DEBUG
3322	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3323#endif
3324#ifdef CONFIG_SCHED_AUTOGROUP
3325	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3326#endif
3327#ifdef CONFIG_TIME_NS
3328	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3329#endif
3330	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3331#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3332	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3333#endif
3334	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3335	ONE("stat",       S_IRUGO, proc_tgid_stat),
3336	ONE("statm",      S_IRUGO, proc_pid_statm),
3337	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3338#ifdef CONFIG_NUMA
3339	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3340#endif
3341	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3342	LNK("cwd",        proc_cwd_link),
3343	LNK("root",       proc_root_link),
3344	LNK("exe",        proc_exe_link),
3345	REG("mounts",     S_IRUGO, proc_mounts_operations),
3346	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3347	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3348#ifdef CONFIG_PROC_PAGE_MONITOR
3349	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3350	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3351	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3352	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3353#endif
3354#ifdef CONFIG_SECURITY
3355	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3356#endif
3357#ifdef CONFIG_KALLSYMS
3358	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3359#endif
3360#ifdef CONFIG_STACKTRACE
3361	ONE("stack",      S_IRUSR, proc_pid_stack),
3362#endif
3363#ifdef CONFIG_SCHED_INFO
3364	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3365#endif
3366#ifdef CONFIG_LATENCYTOP
3367	REG("latency",  S_IRUGO, proc_lstats_operations),
3368#endif
3369#ifdef CONFIG_PROC_PID_CPUSET
3370	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3371#endif
3372#ifdef CONFIG_CGROUPS
3373	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3374#endif
3375#ifdef CONFIG_PROC_CPU_RESCTRL
3376	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3377#endif
3378	ONE("oom_score",  S_IRUGO, proc_oom_score),
3379	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3380	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3381#ifdef CONFIG_AUDIT
3382	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3383	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3384#endif
3385#ifdef CONFIG_FAULT_INJECTION
3386	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3387	REG("fail-nth", 0644, proc_fail_nth_operations),
3388#endif
3389#ifdef CONFIG_ELF_CORE
3390	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3391#endif
3392#ifdef CONFIG_TASK_IO_ACCOUNTING
3393	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3394#endif
3395#ifdef CONFIG_USER_NS
3396	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3397	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3398	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3399	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3400#endif
3401#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3402	REG("timers",	  S_IRUGO, proc_timers_operations),
3403#endif
3404	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3405#ifdef CONFIG_LIVEPATCH
3406	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3407#endif
3408#ifdef CONFIG_STACKLEAK_METRICS
3409	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3410#endif
3411#ifdef CONFIG_PROC_PID_ARCH_STATUS
3412	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3413#endif
3414#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3415	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3416#endif
3417#ifdef CONFIG_KSM
3418	ONE("ksm_merging_pages",  S_IRUSR, proc_pid_ksm_merging_pages),
3419	ONE("ksm_stat",  S_IRUSR, proc_pid_ksm_stat),
3420#endif
3421};
3422
3423static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3424{
3425	return proc_pident_readdir(file, ctx,
3426				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3427}
3428
3429static const struct file_operations proc_tgid_base_operations = {
3430	.read		= generic_read_dir,
3431	.iterate_shared	= proc_tgid_base_readdir,
3432	.llseek		= generic_file_llseek,
3433};
3434
3435struct pid *tgid_pidfd_to_pid(const struct file *file)
3436{
3437	if (file->f_op != &proc_tgid_base_operations)
3438		return ERR_PTR(-EBADF);
3439
3440	return proc_pid(file_inode(file));
3441}
3442
3443static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3444{
3445	return proc_pident_lookup(dir, dentry,
3446				  tgid_base_stuff,
3447				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3448}
3449
3450static const struct inode_operations proc_tgid_base_inode_operations = {
3451	.lookup		= proc_tgid_base_lookup,
3452	.getattr	= pid_getattr,
3453	.setattr	= proc_setattr,
3454	.permission	= proc_pid_permission,
3455};
3456
3457/**
3458 * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3459 * @pid: pid that should be flushed.
3460 *
3461 * This function walks a list of inodes (that belong to any proc
3462 * filesystem) that are attached to the pid and flushes them from
3463 * the dentry cache.
3464 *
3465 * It is safe and reasonable to cache /proc entries for a task until
3466 * that task exits.  After that they just clog up the dcache with
3467 * useless entries, possibly causing useful dcache entries to be
3468 * flushed instead.  This routine is provided to flush those useless
3469 * dcache entries when a process is reaped.
3470 *
3471 * NOTE: This routine is just an optimization so it does not guarantee
3472 *       that no dcache entries will exist after a process is reaped
3473 *       it just makes it very unlikely that any will persist.
3474 */
3475
3476void proc_flush_pid(struct pid *pid)
3477{
3478	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3479}
3480
3481static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3482				   struct task_struct *task, const void *ptr)
3483{
3484	struct inode *inode;
3485
3486	inode = proc_pid_make_base_inode(dentry->d_sb, task,
3487					 S_IFDIR | S_IRUGO | S_IXUGO);
3488	if (!inode)
3489		return ERR_PTR(-ENOENT);
3490
3491	inode->i_op = &proc_tgid_base_inode_operations;
3492	inode->i_fop = &proc_tgid_base_operations;
3493	inode->i_flags|=S_IMMUTABLE;
3494
3495	set_nlink(inode, nlink_tgid);
3496	pid_update_inode(task, inode);
3497
3498	d_set_d_op(dentry, &pid_dentry_operations);
3499	return d_splice_alias(inode, dentry);
3500}
3501
3502struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3503{
3504	struct task_struct *task;
3505	unsigned tgid;
3506	struct proc_fs_info *fs_info;
3507	struct pid_namespace *ns;
3508	struct dentry *result = ERR_PTR(-ENOENT);
3509
3510	tgid = name_to_int(&dentry->d_name);
3511	if (tgid == ~0U)
3512		goto out;
3513
3514	fs_info = proc_sb_info(dentry->d_sb);
3515	ns = fs_info->pid_ns;
3516	rcu_read_lock();
3517	task = find_task_by_pid_ns(tgid, ns);
3518	if (task)
3519		get_task_struct(task);
3520	rcu_read_unlock();
3521	if (!task)
3522		goto out;
3523
3524	/* Limit procfs to only ptraceable tasks */
3525	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3526		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3527			goto out_put_task;
3528	}
3529
3530	result = proc_pid_instantiate(dentry, task, NULL);
3531out_put_task:
3532	put_task_struct(task);
3533out:
3534	return result;
3535}
3536
3537/*
3538 * Find the first task with tgid >= tgid
3539 *
3540 */
3541struct tgid_iter {
3542	unsigned int tgid;
3543	struct task_struct *task;
3544};
3545static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3546{
3547	struct pid *pid;
3548
3549	if (iter.task)
3550		put_task_struct(iter.task);
3551	rcu_read_lock();
3552retry:
3553	iter.task = NULL;
3554	pid = find_ge_pid(iter.tgid, ns);
3555	if (pid) {
3556		iter.tgid = pid_nr_ns(pid, ns);
3557		iter.task = pid_task(pid, PIDTYPE_TGID);
3558		if (!iter.task) {
3559			iter.tgid += 1;
3560			goto retry;
3561		}
3562		get_task_struct(iter.task);
3563	}
3564	rcu_read_unlock();
3565	return iter;
3566}
3567
3568#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3569
3570/* for the /proc/ directory itself, after non-process stuff has been done */
3571int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3572{
3573	struct tgid_iter iter;
3574	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3575	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3576	loff_t pos = ctx->pos;
3577
3578	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3579		return 0;
3580
3581	if (pos == TGID_OFFSET - 2) {
3582		struct inode *inode = d_inode(fs_info->proc_self);
3583		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3584			return 0;
3585		ctx->pos = pos = pos + 1;
3586	}
3587	if (pos == TGID_OFFSET - 1) {
3588		struct inode *inode = d_inode(fs_info->proc_thread_self);
3589		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3590			return 0;
3591		ctx->pos = pos = pos + 1;
3592	}
3593	iter.tgid = pos - TGID_OFFSET;
3594	iter.task = NULL;
3595	for (iter = next_tgid(ns, iter);
3596	     iter.task;
3597	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3598		char name[10 + 1];
3599		unsigned int len;
3600
3601		cond_resched();
3602		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3603			continue;
3604
3605		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3606		ctx->pos = iter.tgid + TGID_OFFSET;
3607		if (!proc_fill_cache(file, ctx, name, len,
3608				     proc_pid_instantiate, iter.task, NULL)) {
3609			put_task_struct(iter.task);
3610			return 0;
3611		}
3612	}
3613	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3614	return 0;
3615}
3616
3617/*
3618 * proc_tid_comm_permission is a special permission function exclusively
3619 * used for the node /proc/<pid>/task/<tid>/comm.
3620 * It bypasses generic permission checks in the case where a task of the same
3621 * task group attempts to access the node.
3622 * The rationale behind this is that glibc and bionic access this node for
3623 * cross thread naming (pthread_set/getname_np(!self)). However, if
3624 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3625 * which locks out the cross thread naming implementation.
3626 * This function makes sure that the node is always accessible for members of
3627 * same thread group.
3628 */
3629static int proc_tid_comm_permission(struct mnt_idmap *idmap,
3630				    struct inode *inode, int mask)
3631{
3632	bool is_same_tgroup;
3633	struct task_struct *task;
3634
3635	task = get_proc_task(inode);
3636	if (!task)
3637		return -ESRCH;
3638	is_same_tgroup = same_thread_group(current, task);
3639	put_task_struct(task);
3640
3641	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3642		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3643		 * read or written by the members of the corresponding
3644		 * thread group.
3645		 */
3646		return 0;
3647	}
3648
3649	return generic_permission(&nop_mnt_idmap, inode, mask);
3650}
3651
3652static const struct inode_operations proc_tid_comm_inode_operations = {
3653		.setattr	= proc_setattr,
3654		.permission	= proc_tid_comm_permission,
3655};
3656
3657/*
3658 * Tasks
3659 */
3660static const struct pid_entry tid_base_stuff[] = {
3661	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3662	DIR("fdinfo",    S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3663	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3664#ifdef CONFIG_NET
3665	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3666#endif
3667	REG("environ",   S_IRUSR, proc_environ_operations),
3668	REG("auxv",      S_IRUSR, proc_auxv_operations),
3669	ONE("status",    S_IRUGO, proc_pid_status),
3670	ONE("personality", S_IRUSR, proc_pid_personality),
3671	ONE("limits",	 S_IRUGO, proc_pid_limits),
3672#ifdef CONFIG_SCHED_DEBUG
3673	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3674#endif
3675	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3676			 &proc_tid_comm_inode_operations,
3677			 &proc_pid_set_comm_operations, {}),
3678#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3679	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3680#endif
3681	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3682	ONE("stat",      S_IRUGO, proc_tid_stat),
3683	ONE("statm",     S_IRUGO, proc_pid_statm),
3684	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3685#ifdef CONFIG_PROC_CHILDREN
3686	REG("children",  S_IRUGO, proc_tid_children_operations),
3687#endif
3688#ifdef CONFIG_NUMA
3689	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3690#endif
3691	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3692	LNK("cwd",       proc_cwd_link),
3693	LNK("root",      proc_root_link),
3694	LNK("exe",       proc_exe_link),
3695	REG("mounts",    S_IRUGO, proc_mounts_operations),
3696	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3697#ifdef CONFIG_PROC_PAGE_MONITOR
3698	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3699	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3700	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3701	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3702#endif
3703#ifdef CONFIG_SECURITY
3704	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3705#endif
3706#ifdef CONFIG_KALLSYMS
3707	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3708#endif
3709#ifdef CONFIG_STACKTRACE
3710	ONE("stack",      S_IRUSR, proc_pid_stack),
3711#endif
3712#ifdef CONFIG_SCHED_INFO
3713	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3714#endif
3715#ifdef CONFIG_LATENCYTOP
3716	REG("latency",  S_IRUGO, proc_lstats_operations),
3717#endif
3718#ifdef CONFIG_PROC_PID_CPUSET
3719	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3720#endif
3721#ifdef CONFIG_CGROUPS
3722	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3723#endif
3724#ifdef CONFIG_PROC_CPU_RESCTRL
3725	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3726#endif
3727	ONE("oom_score", S_IRUGO, proc_oom_score),
3728	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3729	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3730#ifdef CONFIG_AUDIT
3731	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3732	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3733#endif
3734#ifdef CONFIG_FAULT_INJECTION
3735	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3736	REG("fail-nth", 0644, proc_fail_nth_operations),
3737#endif
3738#ifdef CONFIG_TASK_IO_ACCOUNTING
3739	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3740#endif
3741#ifdef CONFIG_USER_NS
3742	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3743	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3744	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3745	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3746#endif
3747#ifdef CONFIG_LIVEPATCH
3748	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3749#endif
3750#ifdef CONFIG_PROC_PID_ARCH_STATUS
3751	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3752#endif
3753#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3754	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3755#endif
3756#ifdef CONFIG_KSM
3757	ONE("ksm_merging_pages",  S_IRUSR, proc_pid_ksm_merging_pages),
3758	ONE("ksm_stat",  S_IRUSR, proc_pid_ksm_stat),
3759#endif
3760};
3761
3762static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3763{
3764	return proc_pident_readdir(file, ctx,
3765				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3766}
3767
3768static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3769{
3770	return proc_pident_lookup(dir, dentry,
3771				  tid_base_stuff,
3772				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3773}
3774
3775static const struct file_operations proc_tid_base_operations = {
3776	.read		= generic_read_dir,
3777	.iterate_shared	= proc_tid_base_readdir,
3778	.llseek		= generic_file_llseek,
3779};
3780
3781static const struct inode_operations proc_tid_base_inode_operations = {
3782	.lookup		= proc_tid_base_lookup,
3783	.getattr	= pid_getattr,
3784	.setattr	= proc_setattr,
3785};
3786
3787static struct dentry *proc_task_instantiate(struct dentry *dentry,
3788	struct task_struct *task, const void *ptr)
3789{
3790	struct inode *inode;
3791	inode = proc_pid_make_base_inode(dentry->d_sb, task,
3792					 S_IFDIR | S_IRUGO | S_IXUGO);
3793	if (!inode)
3794		return ERR_PTR(-ENOENT);
3795
3796	inode->i_op = &proc_tid_base_inode_operations;
3797	inode->i_fop = &proc_tid_base_operations;
3798	inode->i_flags |= S_IMMUTABLE;
3799
3800	set_nlink(inode, nlink_tid);
3801	pid_update_inode(task, inode);
3802
3803	d_set_d_op(dentry, &pid_dentry_operations);
3804	return d_splice_alias(inode, dentry);
3805}
3806
3807static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3808{
3809	struct task_struct *task;
3810	struct task_struct *leader = get_proc_task(dir);
3811	unsigned tid;
3812	struct proc_fs_info *fs_info;
3813	struct pid_namespace *ns;
3814	struct dentry *result = ERR_PTR(-ENOENT);
3815
3816	if (!leader)
3817		goto out_no_task;
3818
3819	tid = name_to_int(&dentry->d_name);
3820	if (tid == ~0U)
3821		goto out;
3822
3823	fs_info = proc_sb_info(dentry->d_sb);
3824	ns = fs_info->pid_ns;
3825	rcu_read_lock();
3826	task = find_task_by_pid_ns(tid, ns);
3827	if (task)
3828		get_task_struct(task);
3829	rcu_read_unlock();
3830	if (!task)
3831		goto out;
3832	if (!same_thread_group(leader, task))
3833		goto out_drop_task;
3834
3835	result = proc_task_instantiate(dentry, task, NULL);
3836out_drop_task:
3837	put_task_struct(task);
3838out:
3839	put_task_struct(leader);
3840out_no_task:
3841	return result;
3842}
3843
3844/*
3845 * Find the first tid of a thread group to return to user space.
3846 *
3847 * Usually this is just the thread group leader, but if the users
3848 * buffer was too small or there was a seek into the middle of the
3849 * directory we have more work todo.
3850 *
3851 * In the case of a short read we start with find_task_by_pid.
3852 *
3853 * In the case of a seek we start with the leader and walk nr
3854 * threads past it.
3855 */
3856static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3857					struct pid_namespace *ns)
3858{
3859	struct task_struct *pos, *task;
3860	unsigned long nr = f_pos;
3861
3862	if (nr != f_pos)	/* 32bit overflow? */
3863		return NULL;
3864
3865	rcu_read_lock();
3866	task = pid_task(pid, PIDTYPE_PID);
3867	if (!task)
3868		goto fail;
3869
3870	/* Attempt to start with the tid of a thread */
3871	if (tid && nr) {
3872		pos = find_task_by_pid_ns(tid, ns);
3873		if (pos && same_thread_group(pos, task))
3874			goto found;
3875	}
3876
3877	/* If nr exceeds the number of threads there is nothing todo */
3878	if (nr >= get_nr_threads(task))
3879		goto fail;
3880
3881	/* If we haven't found our starting place yet start
3882	 * with the leader and walk nr threads forward.
3883	 */
3884	for_each_thread(task, pos) {
 
3885		if (!nr--)
3886			goto found;
3887	}
3888fail:
3889	pos = NULL;
3890	goto out;
3891found:
3892	get_task_struct(pos);
3893out:
3894	rcu_read_unlock();
3895	return pos;
3896}
3897
3898/*
3899 * Find the next thread in the thread list.
3900 * Return NULL if there is an error or no next thread.
3901 *
3902 * The reference to the input task_struct is released.
3903 */
3904static struct task_struct *next_tid(struct task_struct *start)
3905{
3906	struct task_struct *pos = NULL;
3907	rcu_read_lock();
3908	if (pid_alive(start)) {
3909		pos = __next_thread(start);
3910		if (pos)
 
 
3911			get_task_struct(pos);
3912	}
3913	rcu_read_unlock();
3914	put_task_struct(start);
3915	return pos;
3916}
3917
3918/* for the /proc/TGID/task/ directories */
3919static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3920{
3921	struct inode *inode = file_inode(file);
3922	struct task_struct *task;
3923	struct pid_namespace *ns;
3924	int tid;
3925
3926	if (proc_inode_is_dead(inode))
3927		return -ENOENT;
3928
3929	if (!dir_emit_dots(file, ctx))
3930		return 0;
3931
3932	/* We cache the tgid value that the last readdir call couldn't
3933	 * return and lseek resets it to 0.
3934	 */
3935	ns = proc_pid_ns(inode->i_sb);
3936	tid = (int)(intptr_t)file->private_data;
3937	file->private_data = NULL;
3938	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3939	     task;
3940	     task = next_tid(task), ctx->pos++) {
3941		char name[10 + 1];
3942		unsigned int len;
3943
3944		tid = task_pid_nr_ns(task, ns);
3945		if (!tid)
3946			continue;	/* The task has just exited. */
3947		len = snprintf(name, sizeof(name), "%u", tid);
3948		if (!proc_fill_cache(file, ctx, name, len,
3949				proc_task_instantiate, task, NULL)) {
3950			/* returning this tgid failed, save it as the first
3951			 * pid for the next readir call */
3952			file->private_data = (void *)(intptr_t)tid;
3953			put_task_struct(task);
3954			break;
3955		}
3956	}
3957
3958	return 0;
3959}
3960
3961static int proc_task_getattr(struct mnt_idmap *idmap,
3962			     const struct path *path, struct kstat *stat,
3963			     u32 request_mask, unsigned int query_flags)
3964{
3965	struct inode *inode = d_inode(path->dentry);
3966	struct task_struct *p = get_proc_task(inode);
3967	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
3968
3969	if (p) {
3970		stat->nlink += get_nr_threads(p);
3971		put_task_struct(p);
3972	}
3973
3974	return 0;
3975}
3976
3977/*
3978 * proc_task_readdir() set @file->private_data to a positive integer
3979 * value, so casting that to u64 is safe. generic_llseek_cookie() will
3980 * set @cookie to 0, so casting to an int is safe. The WARN_ON_ONCE() is
3981 * here to catch any unexpected change in behavior either in
3982 * proc_task_readdir() or generic_llseek_cookie().
3983 */
3984static loff_t proc_dir_llseek(struct file *file, loff_t offset, int whence)
3985{
3986	u64 cookie = (u64)(intptr_t)file->private_data;
3987	loff_t off;
3988
3989	off = generic_llseek_cookie(file, offset, whence, &cookie);
3990	WARN_ON_ONCE(cookie > INT_MAX);
3991	file->private_data = (void *)(intptr_t)cookie; /* serialized by f_pos_lock */
3992	return off;
3993}
3994
3995static const struct inode_operations proc_task_inode_operations = {
3996	.lookup		= proc_task_lookup,
3997	.getattr	= proc_task_getattr,
3998	.setattr	= proc_setattr,
3999	.permission	= proc_pid_permission,
4000};
4001
4002static const struct file_operations proc_task_operations = {
4003	.read		= generic_read_dir,
4004	.iterate_shared	= proc_task_readdir,
4005	.llseek		= proc_dir_llseek,
4006};
4007
4008void __init set_proc_pid_nlink(void)
4009{
4010	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
4011	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
4012}