Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51#include <linux/uaccess.h>
52
53#include <linux/errno.h>
54#include <linux/time.h>
55#include <linux/proc_fs.h>
56#include <linux/stat.h>
57#include <linux/task_io_accounting_ops.h>
58#include <linux/init.h>
59#include <linux/capability.h>
60#include <linux/file.h>
61#include <linux/fdtable.h>
62#include <linux/generic-radix-tree.h>
63#include <linux/string.h>
64#include <linux/seq_file.h>
65#include <linux/namei.h>
66#include <linux/mnt_namespace.h>
67#include <linux/mm.h>
68#include <linux/swap.h>
69#include <linux/rcupdate.h>
70#include <linux/stacktrace.h>
71#include <linux/resource.h>
72#include <linux/module.h>
73#include <linux/mount.h>
74#include <linux/security.h>
75#include <linux/ptrace.h>
76#include <linux/tracehook.h>
77#include <linux/printk.h>
78#include <linux/cache.h>
79#include <linux/cgroup.h>
80#include <linux/cpuset.h>
81#include <linux/audit.h>
82#include <linux/poll.h>
83#include <linux/nsproxy.h>
84#include <linux/oom.h>
85#include <linux/elf.h>
86#include <linux/pid_namespace.h>
87#include <linux/user_namespace.h>
88#include <linux/fs_struct.h>
89#include <linux/slab.h>
90#include <linux/sched/autogroup.h>
91#include <linux/sched/mm.h>
92#include <linux/sched/coredump.h>
93#include <linux/sched/debug.h>
94#include <linux/sched/stat.h>
95#include <linux/posix-timers.h>
96#include <linux/time_namespace.h>
97#include <linux/resctrl.h>
98#include <trace/events/oom.h>
99#include "internal.h"
100#include "fd.h"
101
102#include "../../lib/kstrtox.h"
103
104/* NOTE:
105 * Implementing inode permission operations in /proc is almost
106 * certainly an error. Permission checks need to happen during
107 * each system call not at open time. The reason is that most of
108 * what we wish to check for permissions in /proc varies at runtime.
109 *
110 * The classic example of a problem is opening file descriptors
111 * in /proc for a task before it execs a suid executable.
112 */
113
114static u8 nlink_tid __ro_after_init;
115static u8 nlink_tgid __ro_after_init;
116
117struct pid_entry {
118 const char *name;
119 unsigned int len;
120 umode_t mode;
121 const struct inode_operations *iop;
122 const struct file_operations *fop;
123 union proc_op op;
124};
125
126#define NOD(NAME, MODE, IOP, FOP, OP) { \
127 .name = (NAME), \
128 .len = sizeof(NAME) - 1, \
129 .mode = MODE, \
130 .iop = IOP, \
131 .fop = FOP, \
132 .op = OP, \
133}
134
135#define DIR(NAME, MODE, iops, fops) \
136 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
137#define LNK(NAME, get_link) \
138 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
139 &proc_pid_link_inode_operations, NULL, \
140 { .proc_get_link = get_link } )
141#define REG(NAME, MODE, fops) \
142 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
143#define ONE(NAME, MODE, show) \
144 NOD(NAME, (S_IFREG|(MODE)), \
145 NULL, &proc_single_file_operations, \
146 { .proc_show = show } )
147#define ATTR(LSM, NAME, MODE) \
148 NOD(NAME, (S_IFREG|(MODE)), \
149 NULL, &proc_pid_attr_operations, \
150 { .lsm = LSM })
151
152/*
153 * Count the number of hardlinks for the pid_entry table, excluding the .
154 * and .. links.
155 */
156static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
157 unsigned int n)
158{
159 unsigned int i;
160 unsigned int count;
161
162 count = 2;
163 for (i = 0; i < n; ++i) {
164 if (S_ISDIR(entries[i].mode))
165 ++count;
166 }
167
168 return count;
169}
170
171static int get_task_root(struct task_struct *task, struct path *root)
172{
173 int result = -ENOENT;
174
175 task_lock(task);
176 if (task->fs) {
177 get_fs_root(task->fs, root);
178 result = 0;
179 }
180 task_unlock(task);
181 return result;
182}
183
184static int proc_cwd_link(struct dentry *dentry, struct path *path)
185{
186 struct task_struct *task = get_proc_task(d_inode(dentry));
187 int result = -ENOENT;
188
189 if (task) {
190 task_lock(task);
191 if (task->fs) {
192 get_fs_pwd(task->fs, path);
193 result = 0;
194 }
195 task_unlock(task);
196 put_task_struct(task);
197 }
198 return result;
199}
200
201static int proc_root_link(struct dentry *dentry, struct path *path)
202{
203 struct task_struct *task = get_proc_task(d_inode(dentry));
204 int result = -ENOENT;
205
206 if (task) {
207 result = get_task_root(task, path);
208 put_task_struct(task);
209 }
210 return result;
211}
212
213/*
214 * If the user used setproctitle(), we just get the string from
215 * user space at arg_start, and limit it to a maximum of one page.
216 */
217static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
218 size_t count, unsigned long pos,
219 unsigned long arg_start)
220{
221 char *page;
222 int ret, got;
223
224 if (pos >= PAGE_SIZE)
225 return 0;
226
227 page = (char *)__get_free_page(GFP_KERNEL);
228 if (!page)
229 return -ENOMEM;
230
231 ret = 0;
232 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
233 if (got > 0) {
234 int len = strnlen(page, got);
235
236 /* Include the NUL character if it was found */
237 if (len < got)
238 len++;
239
240 if (len > pos) {
241 len -= pos;
242 if (len > count)
243 len = count;
244 len -= copy_to_user(buf, page+pos, len);
245 if (!len)
246 len = -EFAULT;
247 ret = len;
248 }
249 }
250 free_page((unsigned long)page);
251 return ret;
252}
253
254static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
255 size_t count, loff_t *ppos)
256{
257 unsigned long arg_start, arg_end, env_start, env_end;
258 unsigned long pos, len;
259 char *page, c;
260
261 /* Check if process spawned far enough to have cmdline. */
262 if (!mm->env_end)
263 return 0;
264
265 spin_lock(&mm->arg_lock);
266 arg_start = mm->arg_start;
267 arg_end = mm->arg_end;
268 env_start = mm->env_start;
269 env_end = mm->env_end;
270 spin_unlock(&mm->arg_lock);
271
272 if (arg_start >= arg_end)
273 return 0;
274
275 /*
276 * We allow setproctitle() to overwrite the argument
277 * strings, and overflow past the original end. But
278 * only when it overflows into the environment area.
279 */
280 if (env_start != arg_end || env_end < env_start)
281 env_start = env_end = arg_end;
282 len = env_end - arg_start;
283
284 /* We're not going to care if "*ppos" has high bits set */
285 pos = *ppos;
286 if (pos >= len)
287 return 0;
288 if (count > len - pos)
289 count = len - pos;
290 if (!count)
291 return 0;
292
293 /*
294 * Magical special case: if the argv[] end byte is not
295 * zero, the user has overwritten it with setproctitle(3).
296 *
297 * Possible future enhancement: do this only once when
298 * pos is 0, and set a flag in the 'struct file'.
299 */
300 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
301 return get_mm_proctitle(mm, buf, count, pos, arg_start);
302
303 /*
304 * For the non-setproctitle() case we limit things strictly
305 * to the [arg_start, arg_end[ range.
306 */
307 pos += arg_start;
308 if (pos < arg_start || pos >= arg_end)
309 return 0;
310 if (count > arg_end - pos)
311 count = arg_end - pos;
312
313 page = (char *)__get_free_page(GFP_KERNEL);
314 if (!page)
315 return -ENOMEM;
316
317 len = 0;
318 while (count) {
319 int got;
320 size_t size = min_t(size_t, PAGE_SIZE, count);
321
322 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
323 if (got <= 0)
324 break;
325 got -= copy_to_user(buf, page, got);
326 if (unlikely(!got)) {
327 if (!len)
328 len = -EFAULT;
329 break;
330 }
331 pos += got;
332 buf += got;
333 len += got;
334 count -= got;
335 }
336
337 free_page((unsigned long)page);
338 return len;
339}
340
341static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
342 size_t count, loff_t *pos)
343{
344 struct mm_struct *mm;
345 ssize_t ret;
346
347 mm = get_task_mm(tsk);
348 if (!mm)
349 return 0;
350
351 ret = get_mm_cmdline(mm, buf, count, pos);
352 mmput(mm);
353 return ret;
354}
355
356static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
357 size_t count, loff_t *pos)
358{
359 struct task_struct *tsk;
360 ssize_t ret;
361
362 BUG_ON(*pos < 0);
363
364 tsk = get_proc_task(file_inode(file));
365 if (!tsk)
366 return -ESRCH;
367 ret = get_task_cmdline(tsk, buf, count, pos);
368 put_task_struct(tsk);
369 if (ret > 0)
370 *pos += ret;
371 return ret;
372}
373
374static const struct file_operations proc_pid_cmdline_ops = {
375 .read = proc_pid_cmdline_read,
376 .llseek = generic_file_llseek,
377};
378
379#ifdef CONFIG_KALLSYMS
380/*
381 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
382 * Returns the resolved symbol. If that fails, simply return the address.
383 */
384static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
385 struct pid *pid, struct task_struct *task)
386{
387 unsigned long wchan;
388
389 if (ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
390 wchan = get_wchan(task);
391 else
392 wchan = 0;
393
394 if (wchan)
395 seq_printf(m, "%ps", (void *) wchan);
396 else
397 seq_putc(m, '0');
398
399 return 0;
400}
401#endif /* CONFIG_KALLSYMS */
402
403static int lock_trace(struct task_struct *task)
404{
405 int err = down_read_killable(&task->signal->exec_update_lock);
406 if (err)
407 return err;
408 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
409 up_read(&task->signal->exec_update_lock);
410 return -EPERM;
411 }
412 return 0;
413}
414
415static void unlock_trace(struct task_struct *task)
416{
417 up_read(&task->signal->exec_update_lock);
418}
419
420#ifdef CONFIG_STACKTRACE
421
422#define MAX_STACK_TRACE_DEPTH 64
423
424static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
425 struct pid *pid, struct task_struct *task)
426{
427 unsigned long *entries;
428 int err;
429
430 /*
431 * The ability to racily run the kernel stack unwinder on a running task
432 * and then observe the unwinder output is scary; while it is useful for
433 * debugging kernel issues, it can also allow an attacker to leak kernel
434 * stack contents.
435 * Doing this in a manner that is at least safe from races would require
436 * some work to ensure that the remote task can not be scheduled; and
437 * even then, this would still expose the unwinder as local attack
438 * surface.
439 * Therefore, this interface is restricted to root.
440 */
441 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
442 return -EACCES;
443
444 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
445 GFP_KERNEL);
446 if (!entries)
447 return -ENOMEM;
448
449 err = lock_trace(task);
450 if (!err) {
451 unsigned int i, nr_entries;
452
453 nr_entries = stack_trace_save_tsk(task, entries,
454 MAX_STACK_TRACE_DEPTH, 0);
455
456 for (i = 0; i < nr_entries; i++) {
457 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
458 }
459
460 unlock_trace(task);
461 }
462 kfree(entries);
463
464 return err;
465}
466#endif
467
468#ifdef CONFIG_SCHED_INFO
469/*
470 * Provides /proc/PID/schedstat
471 */
472static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
473 struct pid *pid, struct task_struct *task)
474{
475 if (unlikely(!sched_info_on()))
476 seq_puts(m, "0 0 0\n");
477 else
478 seq_printf(m, "%llu %llu %lu\n",
479 (unsigned long long)task->se.sum_exec_runtime,
480 (unsigned long long)task->sched_info.run_delay,
481 task->sched_info.pcount);
482
483 return 0;
484}
485#endif
486
487#ifdef CONFIG_LATENCYTOP
488static int lstats_show_proc(struct seq_file *m, void *v)
489{
490 int i;
491 struct inode *inode = m->private;
492 struct task_struct *task = get_proc_task(inode);
493
494 if (!task)
495 return -ESRCH;
496 seq_puts(m, "Latency Top version : v0.1\n");
497 for (i = 0; i < LT_SAVECOUNT; i++) {
498 struct latency_record *lr = &task->latency_record[i];
499 if (lr->backtrace[0]) {
500 int q;
501 seq_printf(m, "%i %li %li",
502 lr->count, lr->time, lr->max);
503 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
504 unsigned long bt = lr->backtrace[q];
505
506 if (!bt)
507 break;
508 seq_printf(m, " %ps", (void *)bt);
509 }
510 seq_putc(m, '\n');
511 }
512
513 }
514 put_task_struct(task);
515 return 0;
516}
517
518static int lstats_open(struct inode *inode, struct file *file)
519{
520 return single_open(file, lstats_show_proc, inode);
521}
522
523static ssize_t lstats_write(struct file *file, const char __user *buf,
524 size_t count, loff_t *offs)
525{
526 struct task_struct *task = get_proc_task(file_inode(file));
527
528 if (!task)
529 return -ESRCH;
530 clear_tsk_latency_tracing(task);
531 put_task_struct(task);
532
533 return count;
534}
535
536static const struct file_operations proc_lstats_operations = {
537 .open = lstats_open,
538 .read = seq_read,
539 .write = lstats_write,
540 .llseek = seq_lseek,
541 .release = single_release,
542};
543
544#endif
545
546static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
547 struct pid *pid, struct task_struct *task)
548{
549 unsigned long totalpages = totalram_pages() + total_swap_pages;
550 unsigned long points = 0;
551 long badness;
552
553 badness = oom_badness(task, totalpages);
554 /*
555 * Special case OOM_SCORE_ADJ_MIN for all others scale the
556 * badness value into [0, 2000] range which we have been
557 * exporting for a long time so userspace might depend on it.
558 */
559 if (badness != LONG_MIN)
560 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
561
562 seq_printf(m, "%lu\n", points);
563
564 return 0;
565}
566
567struct limit_names {
568 const char *name;
569 const char *unit;
570};
571
572static const struct limit_names lnames[RLIM_NLIMITS] = {
573 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
574 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
575 [RLIMIT_DATA] = {"Max data size", "bytes"},
576 [RLIMIT_STACK] = {"Max stack size", "bytes"},
577 [RLIMIT_CORE] = {"Max core file size", "bytes"},
578 [RLIMIT_RSS] = {"Max resident set", "bytes"},
579 [RLIMIT_NPROC] = {"Max processes", "processes"},
580 [RLIMIT_NOFILE] = {"Max open files", "files"},
581 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
582 [RLIMIT_AS] = {"Max address space", "bytes"},
583 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
584 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
585 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
586 [RLIMIT_NICE] = {"Max nice priority", NULL},
587 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
588 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
589};
590
591/* Display limits for a process */
592static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
593 struct pid *pid, struct task_struct *task)
594{
595 unsigned int i;
596 unsigned long flags;
597
598 struct rlimit rlim[RLIM_NLIMITS];
599
600 if (!lock_task_sighand(task, &flags))
601 return 0;
602 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
603 unlock_task_sighand(task, &flags);
604
605 /*
606 * print the file header
607 */
608 seq_puts(m, "Limit "
609 "Soft Limit "
610 "Hard Limit "
611 "Units \n");
612
613 for (i = 0; i < RLIM_NLIMITS; i++) {
614 if (rlim[i].rlim_cur == RLIM_INFINITY)
615 seq_printf(m, "%-25s %-20s ",
616 lnames[i].name, "unlimited");
617 else
618 seq_printf(m, "%-25s %-20lu ",
619 lnames[i].name, rlim[i].rlim_cur);
620
621 if (rlim[i].rlim_max == RLIM_INFINITY)
622 seq_printf(m, "%-20s ", "unlimited");
623 else
624 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
625
626 if (lnames[i].unit)
627 seq_printf(m, "%-10s\n", lnames[i].unit);
628 else
629 seq_putc(m, '\n');
630 }
631
632 return 0;
633}
634
635#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
636static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
637 struct pid *pid, struct task_struct *task)
638{
639 struct syscall_info info;
640 u64 *args = &info.data.args[0];
641 int res;
642
643 res = lock_trace(task);
644 if (res)
645 return res;
646
647 if (task_current_syscall(task, &info))
648 seq_puts(m, "running\n");
649 else if (info.data.nr < 0)
650 seq_printf(m, "%d 0x%llx 0x%llx\n",
651 info.data.nr, info.sp, info.data.instruction_pointer);
652 else
653 seq_printf(m,
654 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
655 info.data.nr,
656 args[0], args[1], args[2], args[3], args[4], args[5],
657 info.sp, info.data.instruction_pointer);
658 unlock_trace(task);
659
660 return 0;
661}
662#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
663
664/************************************************************************/
665/* Here the fs part begins */
666/************************************************************************/
667
668/* permission checks */
669static int proc_fd_access_allowed(struct inode *inode)
670{
671 struct task_struct *task;
672 int allowed = 0;
673 /* Allow access to a task's file descriptors if it is us or we
674 * may use ptrace attach to the process and find out that
675 * information.
676 */
677 task = get_proc_task(inode);
678 if (task) {
679 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
680 put_task_struct(task);
681 }
682 return allowed;
683}
684
685int proc_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
686 struct iattr *attr)
687{
688 int error;
689 struct inode *inode = d_inode(dentry);
690
691 if (attr->ia_valid & ATTR_MODE)
692 return -EPERM;
693
694 error = setattr_prepare(&init_user_ns, dentry, attr);
695 if (error)
696 return error;
697
698 setattr_copy(&init_user_ns, inode, attr);
699 mark_inode_dirty(inode);
700 return 0;
701}
702
703/*
704 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
705 * or euid/egid (for hide_pid_min=2)?
706 */
707static bool has_pid_permissions(struct proc_fs_info *fs_info,
708 struct task_struct *task,
709 enum proc_hidepid hide_pid_min)
710{
711 /*
712 * If 'hidpid' mount option is set force a ptrace check,
713 * we indicate that we are using a filesystem syscall
714 * by passing PTRACE_MODE_READ_FSCREDS
715 */
716 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
717 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
718
719 if (fs_info->hide_pid < hide_pid_min)
720 return true;
721 if (in_group_p(fs_info->pid_gid))
722 return true;
723 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
724}
725
726
727static int proc_pid_permission(struct user_namespace *mnt_userns,
728 struct inode *inode, int mask)
729{
730 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
731 struct task_struct *task;
732 bool has_perms;
733
734 task = get_proc_task(inode);
735 if (!task)
736 return -ESRCH;
737 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
738 put_task_struct(task);
739
740 if (!has_perms) {
741 if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
742 /*
743 * Let's make getdents(), stat(), and open()
744 * consistent with each other. If a process
745 * may not stat() a file, it shouldn't be seen
746 * in procfs at all.
747 */
748 return -ENOENT;
749 }
750
751 return -EPERM;
752 }
753 return generic_permission(&init_user_ns, inode, mask);
754}
755
756
757
758static const struct inode_operations proc_def_inode_operations = {
759 .setattr = proc_setattr,
760};
761
762static int proc_single_show(struct seq_file *m, void *v)
763{
764 struct inode *inode = m->private;
765 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
766 struct pid *pid = proc_pid(inode);
767 struct task_struct *task;
768 int ret;
769
770 task = get_pid_task(pid, PIDTYPE_PID);
771 if (!task)
772 return -ESRCH;
773
774 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
775
776 put_task_struct(task);
777 return ret;
778}
779
780static int proc_single_open(struct inode *inode, struct file *filp)
781{
782 return single_open(filp, proc_single_show, inode);
783}
784
785static const struct file_operations proc_single_file_operations = {
786 .open = proc_single_open,
787 .read = seq_read,
788 .llseek = seq_lseek,
789 .release = single_release,
790};
791
792
793struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
794{
795 struct task_struct *task = get_proc_task(inode);
796 struct mm_struct *mm = ERR_PTR(-ESRCH);
797
798 if (task) {
799 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
800 put_task_struct(task);
801
802 if (!IS_ERR_OR_NULL(mm)) {
803 /* ensure this mm_struct can't be freed */
804 mmgrab(mm);
805 /* but do not pin its memory */
806 mmput(mm);
807 }
808 }
809
810 return mm;
811}
812
813static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
814{
815 struct mm_struct *mm = proc_mem_open(inode, mode);
816
817 if (IS_ERR(mm))
818 return PTR_ERR(mm);
819
820 file->private_data = mm;
821 return 0;
822}
823
824static int mem_open(struct inode *inode, struct file *file)
825{
826 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
827
828 /* OK to pass negative loff_t, we can catch out-of-range */
829 file->f_mode |= FMODE_UNSIGNED_OFFSET;
830
831 return ret;
832}
833
834static ssize_t mem_rw(struct file *file, char __user *buf,
835 size_t count, loff_t *ppos, int write)
836{
837 struct mm_struct *mm = file->private_data;
838 unsigned long addr = *ppos;
839 ssize_t copied;
840 char *page;
841 unsigned int flags;
842
843 if (!mm)
844 return 0;
845
846 page = (char *)__get_free_page(GFP_KERNEL);
847 if (!page)
848 return -ENOMEM;
849
850 copied = 0;
851 if (!mmget_not_zero(mm))
852 goto free;
853
854 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
855
856 while (count > 0) {
857 size_t this_len = min_t(size_t, count, PAGE_SIZE);
858
859 if (write && copy_from_user(page, buf, this_len)) {
860 copied = -EFAULT;
861 break;
862 }
863
864 this_len = access_remote_vm(mm, addr, page, this_len, flags);
865 if (!this_len) {
866 if (!copied)
867 copied = -EIO;
868 break;
869 }
870
871 if (!write && copy_to_user(buf, page, this_len)) {
872 copied = -EFAULT;
873 break;
874 }
875
876 buf += this_len;
877 addr += this_len;
878 copied += this_len;
879 count -= this_len;
880 }
881 *ppos = addr;
882
883 mmput(mm);
884free:
885 free_page((unsigned long) page);
886 return copied;
887}
888
889static ssize_t mem_read(struct file *file, char __user *buf,
890 size_t count, loff_t *ppos)
891{
892 return mem_rw(file, buf, count, ppos, 0);
893}
894
895static ssize_t mem_write(struct file *file, const char __user *buf,
896 size_t count, loff_t *ppos)
897{
898 return mem_rw(file, (char __user*)buf, count, ppos, 1);
899}
900
901loff_t mem_lseek(struct file *file, loff_t offset, int orig)
902{
903 switch (orig) {
904 case 0:
905 file->f_pos = offset;
906 break;
907 case 1:
908 file->f_pos += offset;
909 break;
910 default:
911 return -EINVAL;
912 }
913 force_successful_syscall_return();
914 return file->f_pos;
915}
916
917static int mem_release(struct inode *inode, struct file *file)
918{
919 struct mm_struct *mm = file->private_data;
920 if (mm)
921 mmdrop(mm);
922 return 0;
923}
924
925static const struct file_operations proc_mem_operations = {
926 .llseek = mem_lseek,
927 .read = mem_read,
928 .write = mem_write,
929 .open = mem_open,
930 .release = mem_release,
931};
932
933static int environ_open(struct inode *inode, struct file *file)
934{
935 return __mem_open(inode, file, PTRACE_MODE_READ);
936}
937
938static ssize_t environ_read(struct file *file, char __user *buf,
939 size_t count, loff_t *ppos)
940{
941 char *page;
942 unsigned long src = *ppos;
943 int ret = 0;
944 struct mm_struct *mm = file->private_data;
945 unsigned long env_start, env_end;
946
947 /* Ensure the process spawned far enough to have an environment. */
948 if (!mm || !mm->env_end)
949 return 0;
950
951 page = (char *)__get_free_page(GFP_KERNEL);
952 if (!page)
953 return -ENOMEM;
954
955 ret = 0;
956 if (!mmget_not_zero(mm))
957 goto free;
958
959 spin_lock(&mm->arg_lock);
960 env_start = mm->env_start;
961 env_end = mm->env_end;
962 spin_unlock(&mm->arg_lock);
963
964 while (count > 0) {
965 size_t this_len, max_len;
966 int retval;
967
968 if (src >= (env_end - env_start))
969 break;
970
971 this_len = env_end - (env_start + src);
972
973 max_len = min_t(size_t, PAGE_SIZE, count);
974 this_len = min(max_len, this_len);
975
976 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
977
978 if (retval <= 0) {
979 ret = retval;
980 break;
981 }
982
983 if (copy_to_user(buf, page, retval)) {
984 ret = -EFAULT;
985 break;
986 }
987
988 ret += retval;
989 src += retval;
990 buf += retval;
991 count -= retval;
992 }
993 *ppos = src;
994 mmput(mm);
995
996free:
997 free_page((unsigned long) page);
998 return ret;
999}
1000
1001static const struct file_operations proc_environ_operations = {
1002 .open = environ_open,
1003 .read = environ_read,
1004 .llseek = generic_file_llseek,
1005 .release = mem_release,
1006};
1007
1008static int auxv_open(struct inode *inode, struct file *file)
1009{
1010 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1011}
1012
1013static ssize_t auxv_read(struct file *file, char __user *buf,
1014 size_t count, loff_t *ppos)
1015{
1016 struct mm_struct *mm = file->private_data;
1017 unsigned int nwords = 0;
1018
1019 if (!mm)
1020 return 0;
1021 do {
1022 nwords += 2;
1023 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1024 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1025 nwords * sizeof(mm->saved_auxv[0]));
1026}
1027
1028static const struct file_operations proc_auxv_operations = {
1029 .open = auxv_open,
1030 .read = auxv_read,
1031 .llseek = generic_file_llseek,
1032 .release = mem_release,
1033};
1034
1035static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1036 loff_t *ppos)
1037{
1038 struct task_struct *task = get_proc_task(file_inode(file));
1039 char buffer[PROC_NUMBUF];
1040 int oom_adj = OOM_ADJUST_MIN;
1041 size_t len;
1042
1043 if (!task)
1044 return -ESRCH;
1045 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1046 oom_adj = OOM_ADJUST_MAX;
1047 else
1048 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1049 OOM_SCORE_ADJ_MAX;
1050 put_task_struct(task);
1051 if (oom_adj > OOM_ADJUST_MAX)
1052 oom_adj = OOM_ADJUST_MAX;
1053 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1054 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1055}
1056
1057static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1058{
1059 struct mm_struct *mm = NULL;
1060 struct task_struct *task;
1061 int err = 0;
1062
1063 task = get_proc_task(file_inode(file));
1064 if (!task)
1065 return -ESRCH;
1066
1067 mutex_lock(&oom_adj_mutex);
1068 if (legacy) {
1069 if (oom_adj < task->signal->oom_score_adj &&
1070 !capable(CAP_SYS_RESOURCE)) {
1071 err = -EACCES;
1072 goto err_unlock;
1073 }
1074 /*
1075 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1076 * /proc/pid/oom_score_adj instead.
1077 */
1078 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1079 current->comm, task_pid_nr(current), task_pid_nr(task),
1080 task_pid_nr(task));
1081 } else {
1082 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1083 !capable(CAP_SYS_RESOURCE)) {
1084 err = -EACCES;
1085 goto err_unlock;
1086 }
1087 }
1088
1089 /*
1090 * Make sure we will check other processes sharing the mm if this is
1091 * not vfrok which wants its own oom_score_adj.
1092 * pin the mm so it doesn't go away and get reused after task_unlock
1093 */
1094 if (!task->vfork_done) {
1095 struct task_struct *p = find_lock_task_mm(task);
1096
1097 if (p) {
1098 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1099 mm = p->mm;
1100 mmgrab(mm);
1101 }
1102 task_unlock(p);
1103 }
1104 }
1105
1106 task->signal->oom_score_adj = oom_adj;
1107 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1108 task->signal->oom_score_adj_min = (short)oom_adj;
1109 trace_oom_score_adj_update(task);
1110
1111 if (mm) {
1112 struct task_struct *p;
1113
1114 rcu_read_lock();
1115 for_each_process(p) {
1116 if (same_thread_group(task, p))
1117 continue;
1118
1119 /* do not touch kernel threads or the global init */
1120 if (p->flags & PF_KTHREAD || is_global_init(p))
1121 continue;
1122
1123 task_lock(p);
1124 if (!p->vfork_done && process_shares_mm(p, mm)) {
1125 p->signal->oom_score_adj = oom_adj;
1126 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1127 p->signal->oom_score_adj_min = (short)oom_adj;
1128 }
1129 task_unlock(p);
1130 }
1131 rcu_read_unlock();
1132 mmdrop(mm);
1133 }
1134err_unlock:
1135 mutex_unlock(&oom_adj_mutex);
1136 put_task_struct(task);
1137 return err;
1138}
1139
1140/*
1141 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1142 * kernels. The effective policy is defined by oom_score_adj, which has a
1143 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1144 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1145 * Processes that become oom disabled via oom_adj will still be oom disabled
1146 * with this implementation.
1147 *
1148 * oom_adj cannot be removed since existing userspace binaries use it.
1149 */
1150static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1151 size_t count, loff_t *ppos)
1152{
1153 char buffer[PROC_NUMBUF];
1154 int oom_adj;
1155 int err;
1156
1157 memset(buffer, 0, sizeof(buffer));
1158 if (count > sizeof(buffer) - 1)
1159 count = sizeof(buffer) - 1;
1160 if (copy_from_user(buffer, buf, count)) {
1161 err = -EFAULT;
1162 goto out;
1163 }
1164
1165 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1166 if (err)
1167 goto out;
1168 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1169 oom_adj != OOM_DISABLE) {
1170 err = -EINVAL;
1171 goto out;
1172 }
1173
1174 /*
1175 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1176 * value is always attainable.
1177 */
1178 if (oom_adj == OOM_ADJUST_MAX)
1179 oom_adj = OOM_SCORE_ADJ_MAX;
1180 else
1181 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1182
1183 err = __set_oom_adj(file, oom_adj, true);
1184out:
1185 return err < 0 ? err : count;
1186}
1187
1188static const struct file_operations proc_oom_adj_operations = {
1189 .read = oom_adj_read,
1190 .write = oom_adj_write,
1191 .llseek = generic_file_llseek,
1192};
1193
1194static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1195 size_t count, loff_t *ppos)
1196{
1197 struct task_struct *task = get_proc_task(file_inode(file));
1198 char buffer[PROC_NUMBUF];
1199 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1200 size_t len;
1201
1202 if (!task)
1203 return -ESRCH;
1204 oom_score_adj = task->signal->oom_score_adj;
1205 put_task_struct(task);
1206 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1207 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1208}
1209
1210static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1211 size_t count, loff_t *ppos)
1212{
1213 char buffer[PROC_NUMBUF];
1214 int oom_score_adj;
1215 int err;
1216
1217 memset(buffer, 0, sizeof(buffer));
1218 if (count > sizeof(buffer) - 1)
1219 count = sizeof(buffer) - 1;
1220 if (copy_from_user(buffer, buf, count)) {
1221 err = -EFAULT;
1222 goto out;
1223 }
1224
1225 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1226 if (err)
1227 goto out;
1228 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1229 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1230 err = -EINVAL;
1231 goto out;
1232 }
1233
1234 err = __set_oom_adj(file, oom_score_adj, false);
1235out:
1236 return err < 0 ? err : count;
1237}
1238
1239static const struct file_operations proc_oom_score_adj_operations = {
1240 .read = oom_score_adj_read,
1241 .write = oom_score_adj_write,
1242 .llseek = default_llseek,
1243};
1244
1245#ifdef CONFIG_AUDIT
1246#define TMPBUFLEN 11
1247static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1248 size_t count, loff_t *ppos)
1249{
1250 struct inode * inode = file_inode(file);
1251 struct task_struct *task = get_proc_task(inode);
1252 ssize_t length;
1253 char tmpbuf[TMPBUFLEN];
1254
1255 if (!task)
1256 return -ESRCH;
1257 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1258 from_kuid(file->f_cred->user_ns,
1259 audit_get_loginuid(task)));
1260 put_task_struct(task);
1261 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1262}
1263
1264static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1265 size_t count, loff_t *ppos)
1266{
1267 struct inode * inode = file_inode(file);
1268 uid_t loginuid;
1269 kuid_t kloginuid;
1270 int rv;
1271
1272 /* Don't let kthreads write their own loginuid */
1273 if (current->flags & PF_KTHREAD)
1274 return -EPERM;
1275
1276 rcu_read_lock();
1277 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1278 rcu_read_unlock();
1279 return -EPERM;
1280 }
1281 rcu_read_unlock();
1282
1283 if (*ppos != 0) {
1284 /* No partial writes. */
1285 return -EINVAL;
1286 }
1287
1288 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1289 if (rv < 0)
1290 return rv;
1291
1292 /* is userspace tring to explicitly UNSET the loginuid? */
1293 if (loginuid == AUDIT_UID_UNSET) {
1294 kloginuid = INVALID_UID;
1295 } else {
1296 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1297 if (!uid_valid(kloginuid))
1298 return -EINVAL;
1299 }
1300
1301 rv = audit_set_loginuid(kloginuid);
1302 if (rv < 0)
1303 return rv;
1304 return count;
1305}
1306
1307static const struct file_operations proc_loginuid_operations = {
1308 .read = proc_loginuid_read,
1309 .write = proc_loginuid_write,
1310 .llseek = generic_file_llseek,
1311};
1312
1313static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1314 size_t count, loff_t *ppos)
1315{
1316 struct inode * inode = file_inode(file);
1317 struct task_struct *task = get_proc_task(inode);
1318 ssize_t length;
1319 char tmpbuf[TMPBUFLEN];
1320
1321 if (!task)
1322 return -ESRCH;
1323 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1324 audit_get_sessionid(task));
1325 put_task_struct(task);
1326 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1327}
1328
1329static const struct file_operations proc_sessionid_operations = {
1330 .read = proc_sessionid_read,
1331 .llseek = generic_file_llseek,
1332};
1333#endif
1334
1335#ifdef CONFIG_FAULT_INJECTION
1336static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1337 size_t count, loff_t *ppos)
1338{
1339 struct task_struct *task = get_proc_task(file_inode(file));
1340 char buffer[PROC_NUMBUF];
1341 size_t len;
1342 int make_it_fail;
1343
1344 if (!task)
1345 return -ESRCH;
1346 make_it_fail = task->make_it_fail;
1347 put_task_struct(task);
1348
1349 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1350
1351 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1352}
1353
1354static ssize_t proc_fault_inject_write(struct file * file,
1355 const char __user * buf, size_t count, loff_t *ppos)
1356{
1357 struct task_struct *task;
1358 char buffer[PROC_NUMBUF];
1359 int make_it_fail;
1360 int rv;
1361
1362 if (!capable(CAP_SYS_RESOURCE))
1363 return -EPERM;
1364 memset(buffer, 0, sizeof(buffer));
1365 if (count > sizeof(buffer) - 1)
1366 count = sizeof(buffer) - 1;
1367 if (copy_from_user(buffer, buf, count))
1368 return -EFAULT;
1369 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1370 if (rv < 0)
1371 return rv;
1372 if (make_it_fail < 0 || make_it_fail > 1)
1373 return -EINVAL;
1374
1375 task = get_proc_task(file_inode(file));
1376 if (!task)
1377 return -ESRCH;
1378 task->make_it_fail = make_it_fail;
1379 put_task_struct(task);
1380
1381 return count;
1382}
1383
1384static const struct file_operations proc_fault_inject_operations = {
1385 .read = proc_fault_inject_read,
1386 .write = proc_fault_inject_write,
1387 .llseek = generic_file_llseek,
1388};
1389
1390static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1391 size_t count, loff_t *ppos)
1392{
1393 struct task_struct *task;
1394 int err;
1395 unsigned int n;
1396
1397 err = kstrtouint_from_user(buf, count, 0, &n);
1398 if (err)
1399 return err;
1400
1401 task = get_proc_task(file_inode(file));
1402 if (!task)
1403 return -ESRCH;
1404 task->fail_nth = n;
1405 put_task_struct(task);
1406
1407 return count;
1408}
1409
1410static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1411 size_t count, loff_t *ppos)
1412{
1413 struct task_struct *task;
1414 char numbuf[PROC_NUMBUF];
1415 ssize_t len;
1416
1417 task = get_proc_task(file_inode(file));
1418 if (!task)
1419 return -ESRCH;
1420 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1421 put_task_struct(task);
1422 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1423}
1424
1425static const struct file_operations proc_fail_nth_operations = {
1426 .read = proc_fail_nth_read,
1427 .write = proc_fail_nth_write,
1428};
1429#endif
1430
1431
1432#ifdef CONFIG_SCHED_DEBUG
1433/*
1434 * Print out various scheduling related per-task fields:
1435 */
1436static int sched_show(struct seq_file *m, void *v)
1437{
1438 struct inode *inode = m->private;
1439 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1440 struct task_struct *p;
1441
1442 p = get_proc_task(inode);
1443 if (!p)
1444 return -ESRCH;
1445 proc_sched_show_task(p, ns, m);
1446
1447 put_task_struct(p);
1448
1449 return 0;
1450}
1451
1452static ssize_t
1453sched_write(struct file *file, const char __user *buf,
1454 size_t count, loff_t *offset)
1455{
1456 struct inode *inode = file_inode(file);
1457 struct task_struct *p;
1458
1459 p = get_proc_task(inode);
1460 if (!p)
1461 return -ESRCH;
1462 proc_sched_set_task(p);
1463
1464 put_task_struct(p);
1465
1466 return count;
1467}
1468
1469static int sched_open(struct inode *inode, struct file *filp)
1470{
1471 return single_open(filp, sched_show, inode);
1472}
1473
1474static const struct file_operations proc_pid_sched_operations = {
1475 .open = sched_open,
1476 .read = seq_read,
1477 .write = sched_write,
1478 .llseek = seq_lseek,
1479 .release = single_release,
1480};
1481
1482#endif
1483
1484#ifdef CONFIG_SCHED_AUTOGROUP
1485/*
1486 * Print out autogroup related information:
1487 */
1488static int sched_autogroup_show(struct seq_file *m, void *v)
1489{
1490 struct inode *inode = m->private;
1491 struct task_struct *p;
1492
1493 p = get_proc_task(inode);
1494 if (!p)
1495 return -ESRCH;
1496 proc_sched_autogroup_show_task(p, m);
1497
1498 put_task_struct(p);
1499
1500 return 0;
1501}
1502
1503static ssize_t
1504sched_autogroup_write(struct file *file, const char __user *buf,
1505 size_t count, loff_t *offset)
1506{
1507 struct inode *inode = file_inode(file);
1508 struct task_struct *p;
1509 char buffer[PROC_NUMBUF];
1510 int nice;
1511 int err;
1512
1513 memset(buffer, 0, sizeof(buffer));
1514 if (count > sizeof(buffer) - 1)
1515 count = sizeof(buffer) - 1;
1516 if (copy_from_user(buffer, buf, count))
1517 return -EFAULT;
1518
1519 err = kstrtoint(strstrip(buffer), 0, &nice);
1520 if (err < 0)
1521 return err;
1522
1523 p = get_proc_task(inode);
1524 if (!p)
1525 return -ESRCH;
1526
1527 err = proc_sched_autogroup_set_nice(p, nice);
1528 if (err)
1529 count = err;
1530
1531 put_task_struct(p);
1532
1533 return count;
1534}
1535
1536static int sched_autogroup_open(struct inode *inode, struct file *filp)
1537{
1538 int ret;
1539
1540 ret = single_open(filp, sched_autogroup_show, NULL);
1541 if (!ret) {
1542 struct seq_file *m = filp->private_data;
1543
1544 m->private = inode;
1545 }
1546 return ret;
1547}
1548
1549static const struct file_operations proc_pid_sched_autogroup_operations = {
1550 .open = sched_autogroup_open,
1551 .read = seq_read,
1552 .write = sched_autogroup_write,
1553 .llseek = seq_lseek,
1554 .release = single_release,
1555};
1556
1557#endif /* CONFIG_SCHED_AUTOGROUP */
1558
1559#ifdef CONFIG_TIME_NS
1560static int timens_offsets_show(struct seq_file *m, void *v)
1561{
1562 struct task_struct *p;
1563
1564 p = get_proc_task(file_inode(m->file));
1565 if (!p)
1566 return -ESRCH;
1567 proc_timens_show_offsets(p, m);
1568
1569 put_task_struct(p);
1570
1571 return 0;
1572}
1573
1574static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1575 size_t count, loff_t *ppos)
1576{
1577 struct inode *inode = file_inode(file);
1578 struct proc_timens_offset offsets[2];
1579 char *kbuf = NULL, *pos, *next_line;
1580 struct task_struct *p;
1581 int ret, noffsets;
1582
1583 /* Only allow < page size writes at the beginning of the file */
1584 if ((*ppos != 0) || (count >= PAGE_SIZE))
1585 return -EINVAL;
1586
1587 /* Slurp in the user data */
1588 kbuf = memdup_user_nul(buf, count);
1589 if (IS_ERR(kbuf))
1590 return PTR_ERR(kbuf);
1591
1592 /* Parse the user data */
1593 ret = -EINVAL;
1594 noffsets = 0;
1595 for (pos = kbuf; pos; pos = next_line) {
1596 struct proc_timens_offset *off = &offsets[noffsets];
1597 char clock[10];
1598 int err;
1599
1600 /* Find the end of line and ensure we don't look past it */
1601 next_line = strchr(pos, '\n');
1602 if (next_line) {
1603 *next_line = '\0';
1604 next_line++;
1605 if (*next_line == '\0')
1606 next_line = NULL;
1607 }
1608
1609 err = sscanf(pos, "%9s %lld %lu", clock,
1610 &off->val.tv_sec, &off->val.tv_nsec);
1611 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1612 goto out;
1613
1614 clock[sizeof(clock) - 1] = 0;
1615 if (strcmp(clock, "monotonic") == 0 ||
1616 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1617 off->clockid = CLOCK_MONOTONIC;
1618 else if (strcmp(clock, "boottime") == 0 ||
1619 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1620 off->clockid = CLOCK_BOOTTIME;
1621 else
1622 goto out;
1623
1624 noffsets++;
1625 if (noffsets == ARRAY_SIZE(offsets)) {
1626 if (next_line)
1627 count = next_line - kbuf;
1628 break;
1629 }
1630 }
1631
1632 ret = -ESRCH;
1633 p = get_proc_task(inode);
1634 if (!p)
1635 goto out;
1636 ret = proc_timens_set_offset(file, p, offsets, noffsets);
1637 put_task_struct(p);
1638 if (ret)
1639 goto out;
1640
1641 ret = count;
1642out:
1643 kfree(kbuf);
1644 return ret;
1645}
1646
1647static int timens_offsets_open(struct inode *inode, struct file *filp)
1648{
1649 return single_open(filp, timens_offsets_show, inode);
1650}
1651
1652static const struct file_operations proc_timens_offsets_operations = {
1653 .open = timens_offsets_open,
1654 .read = seq_read,
1655 .write = timens_offsets_write,
1656 .llseek = seq_lseek,
1657 .release = single_release,
1658};
1659#endif /* CONFIG_TIME_NS */
1660
1661static ssize_t comm_write(struct file *file, const char __user *buf,
1662 size_t count, loff_t *offset)
1663{
1664 struct inode *inode = file_inode(file);
1665 struct task_struct *p;
1666 char buffer[TASK_COMM_LEN];
1667 const size_t maxlen = sizeof(buffer) - 1;
1668
1669 memset(buffer, 0, sizeof(buffer));
1670 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1671 return -EFAULT;
1672
1673 p = get_proc_task(inode);
1674 if (!p)
1675 return -ESRCH;
1676
1677 if (same_thread_group(current, p))
1678 set_task_comm(p, buffer);
1679 else
1680 count = -EINVAL;
1681
1682 put_task_struct(p);
1683
1684 return count;
1685}
1686
1687static int comm_show(struct seq_file *m, void *v)
1688{
1689 struct inode *inode = m->private;
1690 struct task_struct *p;
1691
1692 p = get_proc_task(inode);
1693 if (!p)
1694 return -ESRCH;
1695
1696 proc_task_name(m, p, false);
1697 seq_putc(m, '\n');
1698
1699 put_task_struct(p);
1700
1701 return 0;
1702}
1703
1704static int comm_open(struct inode *inode, struct file *filp)
1705{
1706 return single_open(filp, comm_show, inode);
1707}
1708
1709static const struct file_operations proc_pid_set_comm_operations = {
1710 .open = comm_open,
1711 .read = seq_read,
1712 .write = comm_write,
1713 .llseek = seq_lseek,
1714 .release = single_release,
1715};
1716
1717static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1718{
1719 struct task_struct *task;
1720 struct file *exe_file;
1721
1722 task = get_proc_task(d_inode(dentry));
1723 if (!task)
1724 return -ENOENT;
1725 exe_file = get_task_exe_file(task);
1726 put_task_struct(task);
1727 if (exe_file) {
1728 *exe_path = exe_file->f_path;
1729 path_get(&exe_file->f_path);
1730 fput(exe_file);
1731 return 0;
1732 } else
1733 return -ENOENT;
1734}
1735
1736static const char *proc_pid_get_link(struct dentry *dentry,
1737 struct inode *inode,
1738 struct delayed_call *done)
1739{
1740 struct path path;
1741 int error = -EACCES;
1742
1743 if (!dentry)
1744 return ERR_PTR(-ECHILD);
1745
1746 /* Are we allowed to snoop on the tasks file descriptors? */
1747 if (!proc_fd_access_allowed(inode))
1748 goto out;
1749
1750 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1751 if (error)
1752 goto out;
1753
1754 error = nd_jump_link(&path);
1755out:
1756 return ERR_PTR(error);
1757}
1758
1759static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1760{
1761 char *tmp = (char *)__get_free_page(GFP_KERNEL);
1762 char *pathname;
1763 int len;
1764
1765 if (!tmp)
1766 return -ENOMEM;
1767
1768 pathname = d_path(path, tmp, PAGE_SIZE);
1769 len = PTR_ERR(pathname);
1770 if (IS_ERR(pathname))
1771 goto out;
1772 len = tmp + PAGE_SIZE - 1 - pathname;
1773
1774 if (len > buflen)
1775 len = buflen;
1776 if (copy_to_user(buffer, pathname, len))
1777 len = -EFAULT;
1778 out:
1779 free_page((unsigned long)tmp);
1780 return len;
1781}
1782
1783static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1784{
1785 int error = -EACCES;
1786 struct inode *inode = d_inode(dentry);
1787 struct path path;
1788
1789 /* Are we allowed to snoop on the tasks file descriptors? */
1790 if (!proc_fd_access_allowed(inode))
1791 goto out;
1792
1793 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1794 if (error)
1795 goto out;
1796
1797 error = do_proc_readlink(&path, buffer, buflen);
1798 path_put(&path);
1799out:
1800 return error;
1801}
1802
1803const struct inode_operations proc_pid_link_inode_operations = {
1804 .readlink = proc_pid_readlink,
1805 .get_link = proc_pid_get_link,
1806 .setattr = proc_setattr,
1807};
1808
1809
1810/* building an inode */
1811
1812void task_dump_owner(struct task_struct *task, umode_t mode,
1813 kuid_t *ruid, kgid_t *rgid)
1814{
1815 /* Depending on the state of dumpable compute who should own a
1816 * proc file for a task.
1817 */
1818 const struct cred *cred;
1819 kuid_t uid;
1820 kgid_t gid;
1821
1822 if (unlikely(task->flags & PF_KTHREAD)) {
1823 *ruid = GLOBAL_ROOT_UID;
1824 *rgid = GLOBAL_ROOT_GID;
1825 return;
1826 }
1827
1828 /* Default to the tasks effective ownership */
1829 rcu_read_lock();
1830 cred = __task_cred(task);
1831 uid = cred->euid;
1832 gid = cred->egid;
1833 rcu_read_unlock();
1834
1835 /*
1836 * Before the /proc/pid/status file was created the only way to read
1837 * the effective uid of a /process was to stat /proc/pid. Reading
1838 * /proc/pid/status is slow enough that procps and other packages
1839 * kept stating /proc/pid. To keep the rules in /proc simple I have
1840 * made this apply to all per process world readable and executable
1841 * directories.
1842 */
1843 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1844 struct mm_struct *mm;
1845 task_lock(task);
1846 mm = task->mm;
1847 /* Make non-dumpable tasks owned by some root */
1848 if (mm) {
1849 if (get_dumpable(mm) != SUID_DUMP_USER) {
1850 struct user_namespace *user_ns = mm->user_ns;
1851
1852 uid = make_kuid(user_ns, 0);
1853 if (!uid_valid(uid))
1854 uid = GLOBAL_ROOT_UID;
1855
1856 gid = make_kgid(user_ns, 0);
1857 if (!gid_valid(gid))
1858 gid = GLOBAL_ROOT_GID;
1859 }
1860 } else {
1861 uid = GLOBAL_ROOT_UID;
1862 gid = GLOBAL_ROOT_GID;
1863 }
1864 task_unlock(task);
1865 }
1866 *ruid = uid;
1867 *rgid = gid;
1868}
1869
1870void proc_pid_evict_inode(struct proc_inode *ei)
1871{
1872 struct pid *pid = ei->pid;
1873
1874 if (S_ISDIR(ei->vfs_inode.i_mode)) {
1875 spin_lock(&pid->lock);
1876 hlist_del_init_rcu(&ei->sibling_inodes);
1877 spin_unlock(&pid->lock);
1878 }
1879
1880 put_pid(pid);
1881}
1882
1883struct inode *proc_pid_make_inode(struct super_block * sb,
1884 struct task_struct *task, umode_t mode)
1885{
1886 struct inode * inode;
1887 struct proc_inode *ei;
1888 struct pid *pid;
1889
1890 /* We need a new inode */
1891
1892 inode = new_inode(sb);
1893 if (!inode)
1894 goto out;
1895
1896 /* Common stuff */
1897 ei = PROC_I(inode);
1898 inode->i_mode = mode;
1899 inode->i_ino = get_next_ino();
1900 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1901 inode->i_op = &proc_def_inode_operations;
1902
1903 /*
1904 * grab the reference to task.
1905 */
1906 pid = get_task_pid(task, PIDTYPE_PID);
1907 if (!pid)
1908 goto out_unlock;
1909
1910 /* Let the pid remember us for quick removal */
1911 ei->pid = pid;
1912 if (S_ISDIR(mode)) {
1913 spin_lock(&pid->lock);
1914 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1915 spin_unlock(&pid->lock);
1916 }
1917
1918 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1919 security_task_to_inode(task, inode);
1920
1921out:
1922 return inode;
1923
1924out_unlock:
1925 iput(inode);
1926 return NULL;
1927}
1928
1929int pid_getattr(struct user_namespace *mnt_userns, const struct path *path,
1930 struct kstat *stat, u32 request_mask, unsigned int query_flags)
1931{
1932 struct inode *inode = d_inode(path->dentry);
1933 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1934 struct task_struct *task;
1935
1936 generic_fillattr(&init_user_ns, inode, stat);
1937
1938 stat->uid = GLOBAL_ROOT_UID;
1939 stat->gid = GLOBAL_ROOT_GID;
1940 rcu_read_lock();
1941 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1942 if (task) {
1943 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1944 rcu_read_unlock();
1945 /*
1946 * This doesn't prevent learning whether PID exists,
1947 * it only makes getattr() consistent with readdir().
1948 */
1949 return -ENOENT;
1950 }
1951 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1952 }
1953 rcu_read_unlock();
1954 return 0;
1955}
1956
1957/* dentry stuff */
1958
1959/*
1960 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1961 */
1962void pid_update_inode(struct task_struct *task, struct inode *inode)
1963{
1964 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1965
1966 inode->i_mode &= ~(S_ISUID | S_ISGID);
1967 security_task_to_inode(task, inode);
1968}
1969
1970/*
1971 * Rewrite the inode's ownerships here because the owning task may have
1972 * performed a setuid(), etc.
1973 *
1974 */
1975static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1976{
1977 struct inode *inode;
1978 struct task_struct *task;
1979
1980 if (flags & LOOKUP_RCU)
1981 return -ECHILD;
1982
1983 inode = d_inode(dentry);
1984 task = get_proc_task(inode);
1985
1986 if (task) {
1987 pid_update_inode(task, inode);
1988 put_task_struct(task);
1989 return 1;
1990 }
1991 return 0;
1992}
1993
1994static inline bool proc_inode_is_dead(struct inode *inode)
1995{
1996 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1997}
1998
1999int pid_delete_dentry(const struct dentry *dentry)
2000{
2001 /* Is the task we represent dead?
2002 * If so, then don't put the dentry on the lru list,
2003 * kill it immediately.
2004 */
2005 return proc_inode_is_dead(d_inode(dentry));
2006}
2007
2008const struct dentry_operations pid_dentry_operations =
2009{
2010 .d_revalidate = pid_revalidate,
2011 .d_delete = pid_delete_dentry,
2012};
2013
2014/* Lookups */
2015
2016/*
2017 * Fill a directory entry.
2018 *
2019 * If possible create the dcache entry and derive our inode number and
2020 * file type from dcache entry.
2021 *
2022 * Since all of the proc inode numbers are dynamically generated, the inode
2023 * numbers do not exist until the inode is cache. This means creating
2024 * the dcache entry in readdir is necessary to keep the inode numbers
2025 * reported by readdir in sync with the inode numbers reported
2026 * by stat.
2027 */
2028bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2029 const char *name, unsigned int len,
2030 instantiate_t instantiate, struct task_struct *task, const void *ptr)
2031{
2032 struct dentry *child, *dir = file->f_path.dentry;
2033 struct qstr qname = QSTR_INIT(name, len);
2034 struct inode *inode;
2035 unsigned type = DT_UNKNOWN;
2036 ino_t ino = 1;
2037
2038 child = d_hash_and_lookup(dir, &qname);
2039 if (!child) {
2040 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2041 child = d_alloc_parallel(dir, &qname, &wq);
2042 if (IS_ERR(child))
2043 goto end_instantiate;
2044 if (d_in_lookup(child)) {
2045 struct dentry *res;
2046 res = instantiate(child, task, ptr);
2047 d_lookup_done(child);
2048 if (unlikely(res)) {
2049 dput(child);
2050 child = res;
2051 if (IS_ERR(child))
2052 goto end_instantiate;
2053 }
2054 }
2055 }
2056 inode = d_inode(child);
2057 ino = inode->i_ino;
2058 type = inode->i_mode >> 12;
2059 dput(child);
2060end_instantiate:
2061 return dir_emit(ctx, name, len, ino, type);
2062}
2063
2064/*
2065 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2066 * which represent vma start and end addresses.
2067 */
2068static int dname_to_vma_addr(struct dentry *dentry,
2069 unsigned long *start, unsigned long *end)
2070{
2071 const char *str = dentry->d_name.name;
2072 unsigned long long sval, eval;
2073 unsigned int len;
2074
2075 if (str[0] == '0' && str[1] != '-')
2076 return -EINVAL;
2077 len = _parse_integer(str, 16, &sval);
2078 if (len & KSTRTOX_OVERFLOW)
2079 return -EINVAL;
2080 if (sval != (unsigned long)sval)
2081 return -EINVAL;
2082 str += len;
2083
2084 if (*str != '-')
2085 return -EINVAL;
2086 str++;
2087
2088 if (str[0] == '0' && str[1])
2089 return -EINVAL;
2090 len = _parse_integer(str, 16, &eval);
2091 if (len & KSTRTOX_OVERFLOW)
2092 return -EINVAL;
2093 if (eval != (unsigned long)eval)
2094 return -EINVAL;
2095 str += len;
2096
2097 if (*str != '\0')
2098 return -EINVAL;
2099
2100 *start = sval;
2101 *end = eval;
2102
2103 return 0;
2104}
2105
2106static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2107{
2108 unsigned long vm_start, vm_end;
2109 bool exact_vma_exists = false;
2110 struct mm_struct *mm = NULL;
2111 struct task_struct *task;
2112 struct inode *inode;
2113 int status = 0;
2114
2115 if (flags & LOOKUP_RCU)
2116 return -ECHILD;
2117
2118 inode = d_inode(dentry);
2119 task = get_proc_task(inode);
2120 if (!task)
2121 goto out_notask;
2122
2123 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2124 if (IS_ERR_OR_NULL(mm))
2125 goto out;
2126
2127 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2128 status = mmap_read_lock_killable(mm);
2129 if (!status) {
2130 exact_vma_exists = !!find_exact_vma(mm, vm_start,
2131 vm_end);
2132 mmap_read_unlock(mm);
2133 }
2134 }
2135
2136 mmput(mm);
2137
2138 if (exact_vma_exists) {
2139 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2140
2141 security_task_to_inode(task, inode);
2142 status = 1;
2143 }
2144
2145out:
2146 put_task_struct(task);
2147
2148out_notask:
2149 return status;
2150}
2151
2152static const struct dentry_operations tid_map_files_dentry_operations = {
2153 .d_revalidate = map_files_d_revalidate,
2154 .d_delete = pid_delete_dentry,
2155};
2156
2157static int map_files_get_link(struct dentry *dentry, struct path *path)
2158{
2159 unsigned long vm_start, vm_end;
2160 struct vm_area_struct *vma;
2161 struct task_struct *task;
2162 struct mm_struct *mm;
2163 int rc;
2164
2165 rc = -ENOENT;
2166 task = get_proc_task(d_inode(dentry));
2167 if (!task)
2168 goto out;
2169
2170 mm = get_task_mm(task);
2171 put_task_struct(task);
2172 if (!mm)
2173 goto out;
2174
2175 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2176 if (rc)
2177 goto out_mmput;
2178
2179 rc = mmap_read_lock_killable(mm);
2180 if (rc)
2181 goto out_mmput;
2182
2183 rc = -ENOENT;
2184 vma = find_exact_vma(mm, vm_start, vm_end);
2185 if (vma && vma->vm_file) {
2186 *path = vma->vm_file->f_path;
2187 path_get(path);
2188 rc = 0;
2189 }
2190 mmap_read_unlock(mm);
2191
2192out_mmput:
2193 mmput(mm);
2194out:
2195 return rc;
2196}
2197
2198struct map_files_info {
2199 unsigned long start;
2200 unsigned long end;
2201 fmode_t mode;
2202};
2203
2204/*
2205 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2206 * to concerns about how the symlinks may be used to bypass permissions on
2207 * ancestor directories in the path to the file in question.
2208 */
2209static const char *
2210proc_map_files_get_link(struct dentry *dentry,
2211 struct inode *inode,
2212 struct delayed_call *done)
2213{
2214 if (!checkpoint_restore_ns_capable(&init_user_ns))
2215 return ERR_PTR(-EPERM);
2216
2217 return proc_pid_get_link(dentry, inode, done);
2218}
2219
2220/*
2221 * Identical to proc_pid_link_inode_operations except for get_link()
2222 */
2223static const struct inode_operations proc_map_files_link_inode_operations = {
2224 .readlink = proc_pid_readlink,
2225 .get_link = proc_map_files_get_link,
2226 .setattr = proc_setattr,
2227};
2228
2229static struct dentry *
2230proc_map_files_instantiate(struct dentry *dentry,
2231 struct task_struct *task, const void *ptr)
2232{
2233 fmode_t mode = (fmode_t)(unsigned long)ptr;
2234 struct proc_inode *ei;
2235 struct inode *inode;
2236
2237 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2238 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2239 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2240 if (!inode)
2241 return ERR_PTR(-ENOENT);
2242
2243 ei = PROC_I(inode);
2244 ei->op.proc_get_link = map_files_get_link;
2245
2246 inode->i_op = &proc_map_files_link_inode_operations;
2247 inode->i_size = 64;
2248
2249 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2250 return d_splice_alias(inode, dentry);
2251}
2252
2253static struct dentry *proc_map_files_lookup(struct inode *dir,
2254 struct dentry *dentry, unsigned int flags)
2255{
2256 unsigned long vm_start, vm_end;
2257 struct vm_area_struct *vma;
2258 struct task_struct *task;
2259 struct dentry *result;
2260 struct mm_struct *mm;
2261
2262 result = ERR_PTR(-ENOENT);
2263 task = get_proc_task(dir);
2264 if (!task)
2265 goto out;
2266
2267 result = ERR_PTR(-EACCES);
2268 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2269 goto out_put_task;
2270
2271 result = ERR_PTR(-ENOENT);
2272 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2273 goto out_put_task;
2274
2275 mm = get_task_mm(task);
2276 if (!mm)
2277 goto out_put_task;
2278
2279 result = ERR_PTR(-EINTR);
2280 if (mmap_read_lock_killable(mm))
2281 goto out_put_mm;
2282
2283 result = ERR_PTR(-ENOENT);
2284 vma = find_exact_vma(mm, vm_start, vm_end);
2285 if (!vma)
2286 goto out_no_vma;
2287
2288 if (vma->vm_file)
2289 result = proc_map_files_instantiate(dentry, task,
2290 (void *)(unsigned long)vma->vm_file->f_mode);
2291
2292out_no_vma:
2293 mmap_read_unlock(mm);
2294out_put_mm:
2295 mmput(mm);
2296out_put_task:
2297 put_task_struct(task);
2298out:
2299 return result;
2300}
2301
2302static const struct inode_operations proc_map_files_inode_operations = {
2303 .lookup = proc_map_files_lookup,
2304 .permission = proc_fd_permission,
2305 .setattr = proc_setattr,
2306};
2307
2308static int
2309proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2310{
2311 struct vm_area_struct *vma;
2312 struct task_struct *task;
2313 struct mm_struct *mm;
2314 unsigned long nr_files, pos, i;
2315 GENRADIX(struct map_files_info) fa;
2316 struct map_files_info *p;
2317 int ret;
2318
2319 genradix_init(&fa);
2320
2321 ret = -ENOENT;
2322 task = get_proc_task(file_inode(file));
2323 if (!task)
2324 goto out;
2325
2326 ret = -EACCES;
2327 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2328 goto out_put_task;
2329
2330 ret = 0;
2331 if (!dir_emit_dots(file, ctx))
2332 goto out_put_task;
2333
2334 mm = get_task_mm(task);
2335 if (!mm)
2336 goto out_put_task;
2337
2338 ret = mmap_read_lock_killable(mm);
2339 if (ret) {
2340 mmput(mm);
2341 goto out_put_task;
2342 }
2343
2344 nr_files = 0;
2345
2346 /*
2347 * We need two passes here:
2348 *
2349 * 1) Collect vmas of mapped files with mmap_lock taken
2350 * 2) Release mmap_lock and instantiate entries
2351 *
2352 * otherwise we get lockdep complained, since filldir()
2353 * routine might require mmap_lock taken in might_fault().
2354 */
2355
2356 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2357 if (!vma->vm_file)
2358 continue;
2359 if (++pos <= ctx->pos)
2360 continue;
2361
2362 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2363 if (!p) {
2364 ret = -ENOMEM;
2365 mmap_read_unlock(mm);
2366 mmput(mm);
2367 goto out_put_task;
2368 }
2369
2370 p->start = vma->vm_start;
2371 p->end = vma->vm_end;
2372 p->mode = vma->vm_file->f_mode;
2373 }
2374 mmap_read_unlock(mm);
2375 mmput(mm);
2376
2377 for (i = 0; i < nr_files; i++) {
2378 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2379 unsigned int len;
2380
2381 p = genradix_ptr(&fa, i);
2382 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2383 if (!proc_fill_cache(file, ctx,
2384 buf, len,
2385 proc_map_files_instantiate,
2386 task,
2387 (void *)(unsigned long)p->mode))
2388 break;
2389 ctx->pos++;
2390 }
2391
2392out_put_task:
2393 put_task_struct(task);
2394out:
2395 genradix_free(&fa);
2396 return ret;
2397}
2398
2399static const struct file_operations proc_map_files_operations = {
2400 .read = generic_read_dir,
2401 .iterate_shared = proc_map_files_readdir,
2402 .llseek = generic_file_llseek,
2403};
2404
2405#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2406struct timers_private {
2407 struct pid *pid;
2408 struct task_struct *task;
2409 struct sighand_struct *sighand;
2410 struct pid_namespace *ns;
2411 unsigned long flags;
2412};
2413
2414static void *timers_start(struct seq_file *m, loff_t *pos)
2415{
2416 struct timers_private *tp = m->private;
2417
2418 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2419 if (!tp->task)
2420 return ERR_PTR(-ESRCH);
2421
2422 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2423 if (!tp->sighand)
2424 return ERR_PTR(-ESRCH);
2425
2426 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2427}
2428
2429static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2430{
2431 struct timers_private *tp = m->private;
2432 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2433}
2434
2435static void timers_stop(struct seq_file *m, void *v)
2436{
2437 struct timers_private *tp = m->private;
2438
2439 if (tp->sighand) {
2440 unlock_task_sighand(tp->task, &tp->flags);
2441 tp->sighand = NULL;
2442 }
2443
2444 if (tp->task) {
2445 put_task_struct(tp->task);
2446 tp->task = NULL;
2447 }
2448}
2449
2450static int show_timer(struct seq_file *m, void *v)
2451{
2452 struct k_itimer *timer;
2453 struct timers_private *tp = m->private;
2454 int notify;
2455 static const char * const nstr[] = {
2456 [SIGEV_SIGNAL] = "signal",
2457 [SIGEV_NONE] = "none",
2458 [SIGEV_THREAD] = "thread",
2459 };
2460
2461 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2462 notify = timer->it_sigev_notify;
2463
2464 seq_printf(m, "ID: %d\n", timer->it_id);
2465 seq_printf(m, "signal: %d/%px\n",
2466 timer->sigq->info.si_signo,
2467 timer->sigq->info.si_value.sival_ptr);
2468 seq_printf(m, "notify: %s/%s.%d\n",
2469 nstr[notify & ~SIGEV_THREAD_ID],
2470 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2471 pid_nr_ns(timer->it_pid, tp->ns));
2472 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2473
2474 return 0;
2475}
2476
2477static const struct seq_operations proc_timers_seq_ops = {
2478 .start = timers_start,
2479 .next = timers_next,
2480 .stop = timers_stop,
2481 .show = show_timer,
2482};
2483
2484static int proc_timers_open(struct inode *inode, struct file *file)
2485{
2486 struct timers_private *tp;
2487
2488 tp = __seq_open_private(file, &proc_timers_seq_ops,
2489 sizeof(struct timers_private));
2490 if (!tp)
2491 return -ENOMEM;
2492
2493 tp->pid = proc_pid(inode);
2494 tp->ns = proc_pid_ns(inode->i_sb);
2495 return 0;
2496}
2497
2498static const struct file_operations proc_timers_operations = {
2499 .open = proc_timers_open,
2500 .read = seq_read,
2501 .llseek = seq_lseek,
2502 .release = seq_release_private,
2503};
2504#endif
2505
2506static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2507 size_t count, loff_t *offset)
2508{
2509 struct inode *inode = file_inode(file);
2510 struct task_struct *p;
2511 u64 slack_ns;
2512 int err;
2513
2514 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2515 if (err < 0)
2516 return err;
2517
2518 p = get_proc_task(inode);
2519 if (!p)
2520 return -ESRCH;
2521
2522 if (p != current) {
2523 rcu_read_lock();
2524 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2525 rcu_read_unlock();
2526 count = -EPERM;
2527 goto out;
2528 }
2529 rcu_read_unlock();
2530
2531 err = security_task_setscheduler(p);
2532 if (err) {
2533 count = err;
2534 goto out;
2535 }
2536 }
2537
2538 task_lock(p);
2539 if (slack_ns == 0)
2540 p->timer_slack_ns = p->default_timer_slack_ns;
2541 else
2542 p->timer_slack_ns = slack_ns;
2543 task_unlock(p);
2544
2545out:
2546 put_task_struct(p);
2547
2548 return count;
2549}
2550
2551static int timerslack_ns_show(struct seq_file *m, void *v)
2552{
2553 struct inode *inode = m->private;
2554 struct task_struct *p;
2555 int err = 0;
2556
2557 p = get_proc_task(inode);
2558 if (!p)
2559 return -ESRCH;
2560
2561 if (p != current) {
2562 rcu_read_lock();
2563 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2564 rcu_read_unlock();
2565 err = -EPERM;
2566 goto out;
2567 }
2568 rcu_read_unlock();
2569
2570 err = security_task_getscheduler(p);
2571 if (err)
2572 goto out;
2573 }
2574
2575 task_lock(p);
2576 seq_printf(m, "%llu\n", p->timer_slack_ns);
2577 task_unlock(p);
2578
2579out:
2580 put_task_struct(p);
2581
2582 return err;
2583}
2584
2585static int timerslack_ns_open(struct inode *inode, struct file *filp)
2586{
2587 return single_open(filp, timerslack_ns_show, inode);
2588}
2589
2590static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2591 .open = timerslack_ns_open,
2592 .read = seq_read,
2593 .write = timerslack_ns_write,
2594 .llseek = seq_lseek,
2595 .release = single_release,
2596};
2597
2598static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2599 struct task_struct *task, const void *ptr)
2600{
2601 const struct pid_entry *p = ptr;
2602 struct inode *inode;
2603 struct proc_inode *ei;
2604
2605 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2606 if (!inode)
2607 return ERR_PTR(-ENOENT);
2608
2609 ei = PROC_I(inode);
2610 if (S_ISDIR(inode->i_mode))
2611 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2612 if (p->iop)
2613 inode->i_op = p->iop;
2614 if (p->fop)
2615 inode->i_fop = p->fop;
2616 ei->op = p->op;
2617 pid_update_inode(task, inode);
2618 d_set_d_op(dentry, &pid_dentry_operations);
2619 return d_splice_alias(inode, dentry);
2620}
2621
2622static struct dentry *proc_pident_lookup(struct inode *dir,
2623 struct dentry *dentry,
2624 const struct pid_entry *p,
2625 const struct pid_entry *end)
2626{
2627 struct task_struct *task = get_proc_task(dir);
2628 struct dentry *res = ERR_PTR(-ENOENT);
2629
2630 if (!task)
2631 goto out_no_task;
2632
2633 /*
2634 * Yes, it does not scale. And it should not. Don't add
2635 * new entries into /proc/<tgid>/ without very good reasons.
2636 */
2637 for (; p < end; p++) {
2638 if (p->len != dentry->d_name.len)
2639 continue;
2640 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2641 res = proc_pident_instantiate(dentry, task, p);
2642 break;
2643 }
2644 }
2645 put_task_struct(task);
2646out_no_task:
2647 return res;
2648}
2649
2650static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2651 const struct pid_entry *ents, unsigned int nents)
2652{
2653 struct task_struct *task = get_proc_task(file_inode(file));
2654 const struct pid_entry *p;
2655
2656 if (!task)
2657 return -ENOENT;
2658
2659 if (!dir_emit_dots(file, ctx))
2660 goto out;
2661
2662 if (ctx->pos >= nents + 2)
2663 goto out;
2664
2665 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2666 if (!proc_fill_cache(file, ctx, p->name, p->len,
2667 proc_pident_instantiate, task, p))
2668 break;
2669 ctx->pos++;
2670 }
2671out:
2672 put_task_struct(task);
2673 return 0;
2674}
2675
2676#ifdef CONFIG_SECURITY
2677static int proc_pid_attr_open(struct inode *inode, struct file *file)
2678{
2679 file->private_data = NULL;
2680 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2681 return 0;
2682}
2683
2684static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2685 size_t count, loff_t *ppos)
2686{
2687 struct inode * inode = file_inode(file);
2688 char *p = NULL;
2689 ssize_t length;
2690 struct task_struct *task = get_proc_task(inode);
2691
2692 if (!task)
2693 return -ESRCH;
2694
2695 length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2696 (char*)file->f_path.dentry->d_name.name,
2697 &p);
2698 put_task_struct(task);
2699 if (length > 0)
2700 length = simple_read_from_buffer(buf, count, ppos, p, length);
2701 kfree(p);
2702 return length;
2703}
2704
2705static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2706 size_t count, loff_t *ppos)
2707{
2708 struct inode * inode = file_inode(file);
2709 struct task_struct *task;
2710 void *page;
2711 int rv;
2712
2713 /* A task may only write when it was the opener. */
2714 if (file->private_data != current->mm)
2715 return -EPERM;
2716
2717 rcu_read_lock();
2718 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2719 if (!task) {
2720 rcu_read_unlock();
2721 return -ESRCH;
2722 }
2723 /* A task may only write its own attributes. */
2724 if (current != task) {
2725 rcu_read_unlock();
2726 return -EACCES;
2727 }
2728 /* Prevent changes to overridden credentials. */
2729 if (current_cred() != current_real_cred()) {
2730 rcu_read_unlock();
2731 return -EBUSY;
2732 }
2733 rcu_read_unlock();
2734
2735 if (count > PAGE_SIZE)
2736 count = PAGE_SIZE;
2737
2738 /* No partial writes. */
2739 if (*ppos != 0)
2740 return -EINVAL;
2741
2742 page = memdup_user(buf, count);
2743 if (IS_ERR(page)) {
2744 rv = PTR_ERR(page);
2745 goto out;
2746 }
2747
2748 /* Guard against adverse ptrace interaction */
2749 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex);
2750 if (rv < 0)
2751 goto out_free;
2752
2753 rv = security_setprocattr(PROC_I(inode)->op.lsm,
2754 file->f_path.dentry->d_name.name, page,
2755 count);
2756 mutex_unlock(¤t->signal->cred_guard_mutex);
2757out_free:
2758 kfree(page);
2759out:
2760 return rv;
2761}
2762
2763static const struct file_operations proc_pid_attr_operations = {
2764 .open = proc_pid_attr_open,
2765 .read = proc_pid_attr_read,
2766 .write = proc_pid_attr_write,
2767 .llseek = generic_file_llseek,
2768 .release = mem_release,
2769};
2770
2771#define LSM_DIR_OPS(LSM) \
2772static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2773 struct dir_context *ctx) \
2774{ \
2775 return proc_pident_readdir(filp, ctx, \
2776 LSM##_attr_dir_stuff, \
2777 ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2778} \
2779\
2780static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2781 .read = generic_read_dir, \
2782 .iterate = proc_##LSM##_attr_dir_iterate, \
2783 .llseek = default_llseek, \
2784}; \
2785\
2786static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2787 struct dentry *dentry, unsigned int flags) \
2788{ \
2789 return proc_pident_lookup(dir, dentry, \
2790 LSM##_attr_dir_stuff, \
2791 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2792} \
2793\
2794static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2795 .lookup = proc_##LSM##_attr_dir_lookup, \
2796 .getattr = pid_getattr, \
2797 .setattr = proc_setattr, \
2798}
2799
2800#ifdef CONFIG_SECURITY_SMACK
2801static const struct pid_entry smack_attr_dir_stuff[] = {
2802 ATTR("smack", "current", 0666),
2803};
2804LSM_DIR_OPS(smack);
2805#endif
2806
2807#ifdef CONFIG_SECURITY_APPARMOR
2808static const struct pid_entry apparmor_attr_dir_stuff[] = {
2809 ATTR("apparmor", "current", 0666),
2810 ATTR("apparmor", "prev", 0444),
2811 ATTR("apparmor", "exec", 0666),
2812};
2813LSM_DIR_OPS(apparmor);
2814#endif
2815
2816static const struct pid_entry attr_dir_stuff[] = {
2817 ATTR(NULL, "current", 0666),
2818 ATTR(NULL, "prev", 0444),
2819 ATTR(NULL, "exec", 0666),
2820 ATTR(NULL, "fscreate", 0666),
2821 ATTR(NULL, "keycreate", 0666),
2822 ATTR(NULL, "sockcreate", 0666),
2823#ifdef CONFIG_SECURITY_SMACK
2824 DIR("smack", 0555,
2825 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2826#endif
2827#ifdef CONFIG_SECURITY_APPARMOR
2828 DIR("apparmor", 0555,
2829 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2830#endif
2831};
2832
2833static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2834{
2835 return proc_pident_readdir(file, ctx,
2836 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2837}
2838
2839static const struct file_operations proc_attr_dir_operations = {
2840 .read = generic_read_dir,
2841 .iterate_shared = proc_attr_dir_readdir,
2842 .llseek = generic_file_llseek,
2843};
2844
2845static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2846 struct dentry *dentry, unsigned int flags)
2847{
2848 return proc_pident_lookup(dir, dentry,
2849 attr_dir_stuff,
2850 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2851}
2852
2853static const struct inode_operations proc_attr_dir_inode_operations = {
2854 .lookup = proc_attr_dir_lookup,
2855 .getattr = pid_getattr,
2856 .setattr = proc_setattr,
2857};
2858
2859#endif
2860
2861#ifdef CONFIG_ELF_CORE
2862static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2863 size_t count, loff_t *ppos)
2864{
2865 struct task_struct *task = get_proc_task(file_inode(file));
2866 struct mm_struct *mm;
2867 char buffer[PROC_NUMBUF];
2868 size_t len;
2869 int ret;
2870
2871 if (!task)
2872 return -ESRCH;
2873
2874 ret = 0;
2875 mm = get_task_mm(task);
2876 if (mm) {
2877 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2878 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2879 MMF_DUMP_FILTER_SHIFT));
2880 mmput(mm);
2881 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2882 }
2883
2884 put_task_struct(task);
2885
2886 return ret;
2887}
2888
2889static ssize_t proc_coredump_filter_write(struct file *file,
2890 const char __user *buf,
2891 size_t count,
2892 loff_t *ppos)
2893{
2894 struct task_struct *task;
2895 struct mm_struct *mm;
2896 unsigned int val;
2897 int ret;
2898 int i;
2899 unsigned long mask;
2900
2901 ret = kstrtouint_from_user(buf, count, 0, &val);
2902 if (ret < 0)
2903 return ret;
2904
2905 ret = -ESRCH;
2906 task = get_proc_task(file_inode(file));
2907 if (!task)
2908 goto out_no_task;
2909
2910 mm = get_task_mm(task);
2911 if (!mm)
2912 goto out_no_mm;
2913 ret = 0;
2914
2915 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2916 if (val & mask)
2917 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2918 else
2919 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2920 }
2921
2922 mmput(mm);
2923 out_no_mm:
2924 put_task_struct(task);
2925 out_no_task:
2926 if (ret < 0)
2927 return ret;
2928 return count;
2929}
2930
2931static const struct file_operations proc_coredump_filter_operations = {
2932 .read = proc_coredump_filter_read,
2933 .write = proc_coredump_filter_write,
2934 .llseek = generic_file_llseek,
2935};
2936#endif
2937
2938#ifdef CONFIG_TASK_IO_ACCOUNTING
2939static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2940{
2941 struct task_io_accounting acct = task->ioac;
2942 unsigned long flags;
2943 int result;
2944
2945 result = down_read_killable(&task->signal->exec_update_lock);
2946 if (result)
2947 return result;
2948
2949 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2950 result = -EACCES;
2951 goto out_unlock;
2952 }
2953
2954 if (whole && lock_task_sighand(task, &flags)) {
2955 struct task_struct *t = task;
2956
2957 task_io_accounting_add(&acct, &task->signal->ioac);
2958 while_each_thread(task, t)
2959 task_io_accounting_add(&acct, &t->ioac);
2960
2961 unlock_task_sighand(task, &flags);
2962 }
2963 seq_printf(m,
2964 "rchar: %llu\n"
2965 "wchar: %llu\n"
2966 "syscr: %llu\n"
2967 "syscw: %llu\n"
2968 "read_bytes: %llu\n"
2969 "write_bytes: %llu\n"
2970 "cancelled_write_bytes: %llu\n",
2971 (unsigned long long)acct.rchar,
2972 (unsigned long long)acct.wchar,
2973 (unsigned long long)acct.syscr,
2974 (unsigned long long)acct.syscw,
2975 (unsigned long long)acct.read_bytes,
2976 (unsigned long long)acct.write_bytes,
2977 (unsigned long long)acct.cancelled_write_bytes);
2978 result = 0;
2979
2980out_unlock:
2981 up_read(&task->signal->exec_update_lock);
2982 return result;
2983}
2984
2985static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2986 struct pid *pid, struct task_struct *task)
2987{
2988 return do_io_accounting(task, m, 0);
2989}
2990
2991static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2992 struct pid *pid, struct task_struct *task)
2993{
2994 return do_io_accounting(task, m, 1);
2995}
2996#endif /* CONFIG_TASK_IO_ACCOUNTING */
2997
2998#ifdef CONFIG_USER_NS
2999static int proc_id_map_open(struct inode *inode, struct file *file,
3000 const struct seq_operations *seq_ops)
3001{
3002 struct user_namespace *ns = NULL;
3003 struct task_struct *task;
3004 struct seq_file *seq;
3005 int ret = -EINVAL;
3006
3007 task = get_proc_task(inode);
3008 if (task) {
3009 rcu_read_lock();
3010 ns = get_user_ns(task_cred_xxx(task, user_ns));
3011 rcu_read_unlock();
3012 put_task_struct(task);
3013 }
3014 if (!ns)
3015 goto err;
3016
3017 ret = seq_open(file, seq_ops);
3018 if (ret)
3019 goto err_put_ns;
3020
3021 seq = file->private_data;
3022 seq->private = ns;
3023
3024 return 0;
3025err_put_ns:
3026 put_user_ns(ns);
3027err:
3028 return ret;
3029}
3030
3031static int proc_id_map_release(struct inode *inode, struct file *file)
3032{
3033 struct seq_file *seq = file->private_data;
3034 struct user_namespace *ns = seq->private;
3035 put_user_ns(ns);
3036 return seq_release(inode, file);
3037}
3038
3039static int proc_uid_map_open(struct inode *inode, struct file *file)
3040{
3041 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3042}
3043
3044static int proc_gid_map_open(struct inode *inode, struct file *file)
3045{
3046 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3047}
3048
3049static int proc_projid_map_open(struct inode *inode, struct file *file)
3050{
3051 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3052}
3053
3054static const struct file_operations proc_uid_map_operations = {
3055 .open = proc_uid_map_open,
3056 .write = proc_uid_map_write,
3057 .read = seq_read,
3058 .llseek = seq_lseek,
3059 .release = proc_id_map_release,
3060};
3061
3062static const struct file_operations proc_gid_map_operations = {
3063 .open = proc_gid_map_open,
3064 .write = proc_gid_map_write,
3065 .read = seq_read,
3066 .llseek = seq_lseek,
3067 .release = proc_id_map_release,
3068};
3069
3070static const struct file_operations proc_projid_map_operations = {
3071 .open = proc_projid_map_open,
3072 .write = proc_projid_map_write,
3073 .read = seq_read,
3074 .llseek = seq_lseek,
3075 .release = proc_id_map_release,
3076};
3077
3078static int proc_setgroups_open(struct inode *inode, struct file *file)
3079{
3080 struct user_namespace *ns = NULL;
3081 struct task_struct *task;
3082 int ret;
3083
3084 ret = -ESRCH;
3085 task = get_proc_task(inode);
3086 if (task) {
3087 rcu_read_lock();
3088 ns = get_user_ns(task_cred_xxx(task, user_ns));
3089 rcu_read_unlock();
3090 put_task_struct(task);
3091 }
3092 if (!ns)
3093 goto err;
3094
3095 if (file->f_mode & FMODE_WRITE) {
3096 ret = -EACCES;
3097 if (!ns_capable(ns, CAP_SYS_ADMIN))
3098 goto err_put_ns;
3099 }
3100
3101 ret = single_open(file, &proc_setgroups_show, ns);
3102 if (ret)
3103 goto err_put_ns;
3104
3105 return 0;
3106err_put_ns:
3107 put_user_ns(ns);
3108err:
3109 return ret;
3110}
3111
3112static int proc_setgroups_release(struct inode *inode, struct file *file)
3113{
3114 struct seq_file *seq = file->private_data;
3115 struct user_namespace *ns = seq->private;
3116 int ret = single_release(inode, file);
3117 put_user_ns(ns);
3118 return ret;
3119}
3120
3121static const struct file_operations proc_setgroups_operations = {
3122 .open = proc_setgroups_open,
3123 .write = proc_setgroups_write,
3124 .read = seq_read,
3125 .llseek = seq_lseek,
3126 .release = proc_setgroups_release,
3127};
3128#endif /* CONFIG_USER_NS */
3129
3130static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3131 struct pid *pid, struct task_struct *task)
3132{
3133 int err = lock_trace(task);
3134 if (!err) {
3135 seq_printf(m, "%08x\n", task->personality);
3136 unlock_trace(task);
3137 }
3138 return err;
3139}
3140
3141#ifdef CONFIG_LIVEPATCH
3142static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3143 struct pid *pid, struct task_struct *task)
3144{
3145 seq_printf(m, "%d\n", task->patch_state);
3146 return 0;
3147}
3148#endif /* CONFIG_LIVEPATCH */
3149
3150#ifdef CONFIG_STACKLEAK_METRICS
3151static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3152 struct pid *pid, struct task_struct *task)
3153{
3154 unsigned long prev_depth = THREAD_SIZE -
3155 (task->prev_lowest_stack & (THREAD_SIZE - 1));
3156 unsigned long depth = THREAD_SIZE -
3157 (task->lowest_stack & (THREAD_SIZE - 1));
3158
3159 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3160 prev_depth, depth);
3161 return 0;
3162}
3163#endif /* CONFIG_STACKLEAK_METRICS */
3164
3165/*
3166 * Thread groups
3167 */
3168static const struct file_operations proc_task_operations;
3169static const struct inode_operations proc_task_inode_operations;
3170
3171static const struct pid_entry tgid_base_stuff[] = {
3172 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3173 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3174 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3175 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3176 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3177#ifdef CONFIG_NET
3178 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3179#endif
3180 REG("environ", S_IRUSR, proc_environ_operations),
3181 REG("auxv", S_IRUSR, proc_auxv_operations),
3182 ONE("status", S_IRUGO, proc_pid_status),
3183 ONE("personality", S_IRUSR, proc_pid_personality),
3184 ONE("limits", S_IRUGO, proc_pid_limits),
3185#ifdef CONFIG_SCHED_DEBUG
3186 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3187#endif
3188#ifdef CONFIG_SCHED_AUTOGROUP
3189 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3190#endif
3191#ifdef CONFIG_TIME_NS
3192 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3193#endif
3194 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3195#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3196 ONE("syscall", S_IRUSR, proc_pid_syscall),
3197#endif
3198 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3199 ONE("stat", S_IRUGO, proc_tgid_stat),
3200 ONE("statm", S_IRUGO, proc_pid_statm),
3201 REG("maps", S_IRUGO, proc_pid_maps_operations),
3202#ifdef CONFIG_NUMA
3203 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3204#endif
3205 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3206 LNK("cwd", proc_cwd_link),
3207 LNK("root", proc_root_link),
3208 LNK("exe", proc_exe_link),
3209 REG("mounts", S_IRUGO, proc_mounts_operations),
3210 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3211 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3212#ifdef CONFIG_PROC_PAGE_MONITOR
3213 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3214 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3215 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3216 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3217#endif
3218#ifdef CONFIG_SECURITY
3219 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3220#endif
3221#ifdef CONFIG_KALLSYMS
3222 ONE("wchan", S_IRUGO, proc_pid_wchan),
3223#endif
3224#ifdef CONFIG_STACKTRACE
3225 ONE("stack", S_IRUSR, proc_pid_stack),
3226#endif
3227#ifdef CONFIG_SCHED_INFO
3228 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3229#endif
3230#ifdef CONFIG_LATENCYTOP
3231 REG("latency", S_IRUGO, proc_lstats_operations),
3232#endif
3233#ifdef CONFIG_PROC_PID_CPUSET
3234 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3235#endif
3236#ifdef CONFIG_CGROUPS
3237 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3238#endif
3239#ifdef CONFIG_PROC_CPU_RESCTRL
3240 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3241#endif
3242 ONE("oom_score", S_IRUGO, proc_oom_score),
3243 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3244 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3245#ifdef CONFIG_AUDIT
3246 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3247 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3248#endif
3249#ifdef CONFIG_FAULT_INJECTION
3250 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3251 REG("fail-nth", 0644, proc_fail_nth_operations),
3252#endif
3253#ifdef CONFIG_ELF_CORE
3254 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3255#endif
3256#ifdef CONFIG_TASK_IO_ACCOUNTING
3257 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3258#endif
3259#ifdef CONFIG_USER_NS
3260 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3261 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3262 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3263 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3264#endif
3265#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3266 REG("timers", S_IRUGO, proc_timers_operations),
3267#endif
3268 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3269#ifdef CONFIG_LIVEPATCH
3270 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3271#endif
3272#ifdef CONFIG_STACKLEAK_METRICS
3273 ONE("stack_depth", S_IRUGO, proc_stack_depth),
3274#endif
3275#ifdef CONFIG_PROC_PID_ARCH_STATUS
3276 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3277#endif
3278#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3279 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3280#endif
3281};
3282
3283static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3284{
3285 return proc_pident_readdir(file, ctx,
3286 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3287}
3288
3289static const struct file_operations proc_tgid_base_operations = {
3290 .read = generic_read_dir,
3291 .iterate_shared = proc_tgid_base_readdir,
3292 .llseek = generic_file_llseek,
3293};
3294
3295struct pid *tgid_pidfd_to_pid(const struct file *file)
3296{
3297 if (file->f_op != &proc_tgid_base_operations)
3298 return ERR_PTR(-EBADF);
3299
3300 return proc_pid(file_inode(file));
3301}
3302
3303static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3304{
3305 return proc_pident_lookup(dir, dentry,
3306 tgid_base_stuff,
3307 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3308}
3309
3310static const struct inode_operations proc_tgid_base_inode_operations = {
3311 .lookup = proc_tgid_base_lookup,
3312 .getattr = pid_getattr,
3313 .setattr = proc_setattr,
3314 .permission = proc_pid_permission,
3315};
3316
3317/**
3318 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache.
3319 * @pid: pid that should be flushed.
3320 *
3321 * This function walks a list of inodes (that belong to any proc
3322 * filesystem) that are attached to the pid and flushes them from
3323 * the dentry cache.
3324 *
3325 * It is safe and reasonable to cache /proc entries for a task until
3326 * that task exits. After that they just clog up the dcache with
3327 * useless entries, possibly causing useful dcache entries to be
3328 * flushed instead. This routine is provided to flush those useless
3329 * dcache entries when a process is reaped.
3330 *
3331 * NOTE: This routine is just an optimization so it does not guarantee
3332 * that no dcache entries will exist after a process is reaped
3333 * it just makes it very unlikely that any will persist.
3334 */
3335
3336void proc_flush_pid(struct pid *pid)
3337{
3338 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3339}
3340
3341static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3342 struct task_struct *task, const void *ptr)
3343{
3344 struct inode *inode;
3345
3346 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3347 if (!inode)
3348 return ERR_PTR(-ENOENT);
3349
3350 inode->i_op = &proc_tgid_base_inode_operations;
3351 inode->i_fop = &proc_tgid_base_operations;
3352 inode->i_flags|=S_IMMUTABLE;
3353
3354 set_nlink(inode, nlink_tgid);
3355 pid_update_inode(task, inode);
3356
3357 d_set_d_op(dentry, &pid_dentry_operations);
3358 return d_splice_alias(inode, dentry);
3359}
3360
3361struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3362{
3363 struct task_struct *task;
3364 unsigned tgid;
3365 struct proc_fs_info *fs_info;
3366 struct pid_namespace *ns;
3367 struct dentry *result = ERR_PTR(-ENOENT);
3368
3369 tgid = name_to_int(&dentry->d_name);
3370 if (tgid == ~0U)
3371 goto out;
3372
3373 fs_info = proc_sb_info(dentry->d_sb);
3374 ns = fs_info->pid_ns;
3375 rcu_read_lock();
3376 task = find_task_by_pid_ns(tgid, ns);
3377 if (task)
3378 get_task_struct(task);
3379 rcu_read_unlock();
3380 if (!task)
3381 goto out;
3382
3383 /* Limit procfs to only ptraceable tasks */
3384 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3385 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3386 goto out_put_task;
3387 }
3388
3389 result = proc_pid_instantiate(dentry, task, NULL);
3390out_put_task:
3391 put_task_struct(task);
3392out:
3393 return result;
3394}
3395
3396/*
3397 * Find the first task with tgid >= tgid
3398 *
3399 */
3400struct tgid_iter {
3401 unsigned int tgid;
3402 struct task_struct *task;
3403};
3404static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3405{
3406 struct pid *pid;
3407
3408 if (iter.task)
3409 put_task_struct(iter.task);
3410 rcu_read_lock();
3411retry:
3412 iter.task = NULL;
3413 pid = find_ge_pid(iter.tgid, ns);
3414 if (pid) {
3415 iter.tgid = pid_nr_ns(pid, ns);
3416 iter.task = pid_task(pid, PIDTYPE_TGID);
3417 if (!iter.task) {
3418 iter.tgid += 1;
3419 goto retry;
3420 }
3421 get_task_struct(iter.task);
3422 }
3423 rcu_read_unlock();
3424 return iter;
3425}
3426
3427#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3428
3429/* for the /proc/ directory itself, after non-process stuff has been done */
3430int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3431{
3432 struct tgid_iter iter;
3433 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3434 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3435 loff_t pos = ctx->pos;
3436
3437 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3438 return 0;
3439
3440 if (pos == TGID_OFFSET - 2) {
3441 struct inode *inode = d_inode(fs_info->proc_self);
3442 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3443 return 0;
3444 ctx->pos = pos = pos + 1;
3445 }
3446 if (pos == TGID_OFFSET - 1) {
3447 struct inode *inode = d_inode(fs_info->proc_thread_self);
3448 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3449 return 0;
3450 ctx->pos = pos = pos + 1;
3451 }
3452 iter.tgid = pos - TGID_OFFSET;
3453 iter.task = NULL;
3454 for (iter = next_tgid(ns, iter);
3455 iter.task;
3456 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3457 char name[10 + 1];
3458 unsigned int len;
3459
3460 cond_resched();
3461 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3462 continue;
3463
3464 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3465 ctx->pos = iter.tgid + TGID_OFFSET;
3466 if (!proc_fill_cache(file, ctx, name, len,
3467 proc_pid_instantiate, iter.task, NULL)) {
3468 put_task_struct(iter.task);
3469 return 0;
3470 }
3471 }
3472 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3473 return 0;
3474}
3475
3476/*
3477 * proc_tid_comm_permission is a special permission function exclusively
3478 * used for the node /proc/<pid>/task/<tid>/comm.
3479 * It bypasses generic permission checks in the case where a task of the same
3480 * task group attempts to access the node.
3481 * The rationale behind this is that glibc and bionic access this node for
3482 * cross thread naming (pthread_set/getname_np(!self)). However, if
3483 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3484 * which locks out the cross thread naming implementation.
3485 * This function makes sure that the node is always accessible for members of
3486 * same thread group.
3487 */
3488static int proc_tid_comm_permission(struct user_namespace *mnt_userns,
3489 struct inode *inode, int mask)
3490{
3491 bool is_same_tgroup;
3492 struct task_struct *task;
3493
3494 task = get_proc_task(inode);
3495 if (!task)
3496 return -ESRCH;
3497 is_same_tgroup = same_thread_group(current, task);
3498 put_task_struct(task);
3499
3500 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3501 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3502 * read or written by the members of the corresponding
3503 * thread group.
3504 */
3505 return 0;
3506 }
3507
3508 return generic_permission(&init_user_ns, inode, mask);
3509}
3510
3511static const struct inode_operations proc_tid_comm_inode_operations = {
3512 .permission = proc_tid_comm_permission,
3513};
3514
3515/*
3516 * Tasks
3517 */
3518static const struct pid_entry tid_base_stuff[] = {
3519 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3520 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3521 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3522#ifdef CONFIG_NET
3523 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3524#endif
3525 REG("environ", S_IRUSR, proc_environ_operations),
3526 REG("auxv", S_IRUSR, proc_auxv_operations),
3527 ONE("status", S_IRUGO, proc_pid_status),
3528 ONE("personality", S_IRUSR, proc_pid_personality),
3529 ONE("limits", S_IRUGO, proc_pid_limits),
3530#ifdef CONFIG_SCHED_DEBUG
3531 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3532#endif
3533 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3534 &proc_tid_comm_inode_operations,
3535 &proc_pid_set_comm_operations, {}),
3536#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3537 ONE("syscall", S_IRUSR, proc_pid_syscall),
3538#endif
3539 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3540 ONE("stat", S_IRUGO, proc_tid_stat),
3541 ONE("statm", S_IRUGO, proc_pid_statm),
3542 REG("maps", S_IRUGO, proc_pid_maps_operations),
3543#ifdef CONFIG_PROC_CHILDREN
3544 REG("children", S_IRUGO, proc_tid_children_operations),
3545#endif
3546#ifdef CONFIG_NUMA
3547 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3548#endif
3549 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3550 LNK("cwd", proc_cwd_link),
3551 LNK("root", proc_root_link),
3552 LNK("exe", proc_exe_link),
3553 REG("mounts", S_IRUGO, proc_mounts_operations),
3554 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3555#ifdef CONFIG_PROC_PAGE_MONITOR
3556 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3557 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3558 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3559 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3560#endif
3561#ifdef CONFIG_SECURITY
3562 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3563#endif
3564#ifdef CONFIG_KALLSYMS
3565 ONE("wchan", S_IRUGO, proc_pid_wchan),
3566#endif
3567#ifdef CONFIG_STACKTRACE
3568 ONE("stack", S_IRUSR, proc_pid_stack),
3569#endif
3570#ifdef CONFIG_SCHED_INFO
3571 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3572#endif
3573#ifdef CONFIG_LATENCYTOP
3574 REG("latency", S_IRUGO, proc_lstats_operations),
3575#endif
3576#ifdef CONFIG_PROC_PID_CPUSET
3577 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3578#endif
3579#ifdef CONFIG_CGROUPS
3580 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3581#endif
3582#ifdef CONFIG_PROC_CPU_RESCTRL
3583 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3584#endif
3585 ONE("oom_score", S_IRUGO, proc_oom_score),
3586 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3587 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3588#ifdef CONFIG_AUDIT
3589 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3590 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3591#endif
3592#ifdef CONFIG_FAULT_INJECTION
3593 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3594 REG("fail-nth", 0644, proc_fail_nth_operations),
3595#endif
3596#ifdef CONFIG_TASK_IO_ACCOUNTING
3597 ONE("io", S_IRUSR, proc_tid_io_accounting),
3598#endif
3599#ifdef CONFIG_USER_NS
3600 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3601 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3602 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3603 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3604#endif
3605#ifdef CONFIG_LIVEPATCH
3606 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3607#endif
3608#ifdef CONFIG_PROC_PID_ARCH_STATUS
3609 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3610#endif
3611#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3612 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3613#endif
3614};
3615
3616static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3617{
3618 return proc_pident_readdir(file, ctx,
3619 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3620}
3621
3622static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3623{
3624 return proc_pident_lookup(dir, dentry,
3625 tid_base_stuff,
3626 tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3627}
3628
3629static const struct file_operations proc_tid_base_operations = {
3630 .read = generic_read_dir,
3631 .iterate_shared = proc_tid_base_readdir,
3632 .llseek = generic_file_llseek,
3633};
3634
3635static const struct inode_operations proc_tid_base_inode_operations = {
3636 .lookup = proc_tid_base_lookup,
3637 .getattr = pid_getattr,
3638 .setattr = proc_setattr,
3639};
3640
3641static struct dentry *proc_task_instantiate(struct dentry *dentry,
3642 struct task_struct *task, const void *ptr)
3643{
3644 struct inode *inode;
3645 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3646 if (!inode)
3647 return ERR_PTR(-ENOENT);
3648
3649 inode->i_op = &proc_tid_base_inode_operations;
3650 inode->i_fop = &proc_tid_base_operations;
3651 inode->i_flags |= S_IMMUTABLE;
3652
3653 set_nlink(inode, nlink_tid);
3654 pid_update_inode(task, inode);
3655
3656 d_set_d_op(dentry, &pid_dentry_operations);
3657 return d_splice_alias(inode, dentry);
3658}
3659
3660static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3661{
3662 struct task_struct *task;
3663 struct task_struct *leader = get_proc_task(dir);
3664 unsigned tid;
3665 struct proc_fs_info *fs_info;
3666 struct pid_namespace *ns;
3667 struct dentry *result = ERR_PTR(-ENOENT);
3668
3669 if (!leader)
3670 goto out_no_task;
3671
3672 tid = name_to_int(&dentry->d_name);
3673 if (tid == ~0U)
3674 goto out;
3675
3676 fs_info = proc_sb_info(dentry->d_sb);
3677 ns = fs_info->pid_ns;
3678 rcu_read_lock();
3679 task = find_task_by_pid_ns(tid, ns);
3680 if (task)
3681 get_task_struct(task);
3682 rcu_read_unlock();
3683 if (!task)
3684 goto out;
3685 if (!same_thread_group(leader, task))
3686 goto out_drop_task;
3687
3688 result = proc_task_instantiate(dentry, task, NULL);
3689out_drop_task:
3690 put_task_struct(task);
3691out:
3692 put_task_struct(leader);
3693out_no_task:
3694 return result;
3695}
3696
3697/*
3698 * Find the first tid of a thread group to return to user space.
3699 *
3700 * Usually this is just the thread group leader, but if the users
3701 * buffer was too small or there was a seek into the middle of the
3702 * directory we have more work todo.
3703 *
3704 * In the case of a short read we start with find_task_by_pid.
3705 *
3706 * In the case of a seek we start with the leader and walk nr
3707 * threads past it.
3708 */
3709static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3710 struct pid_namespace *ns)
3711{
3712 struct task_struct *pos, *task;
3713 unsigned long nr = f_pos;
3714
3715 if (nr != f_pos) /* 32bit overflow? */
3716 return NULL;
3717
3718 rcu_read_lock();
3719 task = pid_task(pid, PIDTYPE_PID);
3720 if (!task)
3721 goto fail;
3722
3723 /* Attempt to start with the tid of a thread */
3724 if (tid && nr) {
3725 pos = find_task_by_pid_ns(tid, ns);
3726 if (pos && same_thread_group(pos, task))
3727 goto found;
3728 }
3729
3730 /* If nr exceeds the number of threads there is nothing todo */
3731 if (nr >= get_nr_threads(task))
3732 goto fail;
3733
3734 /* If we haven't found our starting place yet start
3735 * with the leader and walk nr threads forward.
3736 */
3737 pos = task = task->group_leader;
3738 do {
3739 if (!nr--)
3740 goto found;
3741 } while_each_thread(task, pos);
3742fail:
3743 pos = NULL;
3744 goto out;
3745found:
3746 get_task_struct(pos);
3747out:
3748 rcu_read_unlock();
3749 return pos;
3750}
3751
3752/*
3753 * Find the next thread in the thread list.
3754 * Return NULL if there is an error or no next thread.
3755 *
3756 * The reference to the input task_struct is released.
3757 */
3758static struct task_struct *next_tid(struct task_struct *start)
3759{
3760 struct task_struct *pos = NULL;
3761 rcu_read_lock();
3762 if (pid_alive(start)) {
3763 pos = next_thread(start);
3764 if (thread_group_leader(pos))
3765 pos = NULL;
3766 else
3767 get_task_struct(pos);
3768 }
3769 rcu_read_unlock();
3770 put_task_struct(start);
3771 return pos;
3772}
3773
3774/* for the /proc/TGID/task/ directories */
3775static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3776{
3777 struct inode *inode = file_inode(file);
3778 struct task_struct *task;
3779 struct pid_namespace *ns;
3780 int tid;
3781
3782 if (proc_inode_is_dead(inode))
3783 return -ENOENT;
3784
3785 if (!dir_emit_dots(file, ctx))
3786 return 0;
3787
3788 /* f_version caches the tgid value that the last readdir call couldn't
3789 * return. lseek aka telldir automagically resets f_version to 0.
3790 */
3791 ns = proc_pid_ns(inode->i_sb);
3792 tid = (int)file->f_version;
3793 file->f_version = 0;
3794 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3795 task;
3796 task = next_tid(task), ctx->pos++) {
3797 char name[10 + 1];
3798 unsigned int len;
3799 tid = task_pid_nr_ns(task, ns);
3800 len = snprintf(name, sizeof(name), "%u", tid);
3801 if (!proc_fill_cache(file, ctx, name, len,
3802 proc_task_instantiate, task, NULL)) {
3803 /* returning this tgid failed, save it as the first
3804 * pid for the next readir call */
3805 file->f_version = (u64)tid;
3806 put_task_struct(task);
3807 break;
3808 }
3809 }
3810
3811 return 0;
3812}
3813
3814static int proc_task_getattr(struct user_namespace *mnt_userns,
3815 const struct path *path, struct kstat *stat,
3816 u32 request_mask, unsigned int query_flags)
3817{
3818 struct inode *inode = d_inode(path->dentry);
3819 struct task_struct *p = get_proc_task(inode);
3820 generic_fillattr(&init_user_ns, inode, stat);
3821
3822 if (p) {
3823 stat->nlink += get_nr_threads(p);
3824 put_task_struct(p);
3825 }
3826
3827 return 0;
3828}
3829
3830static const struct inode_operations proc_task_inode_operations = {
3831 .lookup = proc_task_lookup,
3832 .getattr = proc_task_getattr,
3833 .setattr = proc_setattr,
3834 .permission = proc_pid_permission,
3835};
3836
3837static const struct file_operations proc_task_operations = {
3838 .read = generic_read_dir,
3839 .iterate_shared = proc_task_readdir,
3840 .llseek = generic_file_llseek,
3841};
3842
3843void __init set_proc_pid_nlink(void)
3844{
3845 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3846 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3847}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51#include <linux/uaccess.h>
52
53#include <linux/errno.h>
54#include <linux/time.h>
55#include <linux/proc_fs.h>
56#include <linux/stat.h>
57#include <linux/task_io_accounting_ops.h>
58#include <linux/init.h>
59#include <linux/capability.h>
60#include <linux/file.h>
61#include <linux/fdtable.h>
62#include <linux/generic-radix-tree.h>
63#include <linux/string.h>
64#include <linux/seq_file.h>
65#include <linux/namei.h>
66#include <linux/mnt_namespace.h>
67#include <linux/mm.h>
68#include <linux/swap.h>
69#include <linux/rcupdate.h>
70#include <linux/kallsyms.h>
71#include <linux/stacktrace.h>
72#include <linux/resource.h>
73#include <linux/module.h>
74#include <linux/mount.h>
75#include <linux/security.h>
76#include <linux/ptrace.h>
77#include <linux/printk.h>
78#include <linux/cache.h>
79#include <linux/cgroup.h>
80#include <linux/cpuset.h>
81#include <linux/audit.h>
82#include <linux/poll.h>
83#include <linux/nsproxy.h>
84#include <linux/oom.h>
85#include <linux/elf.h>
86#include <linux/pid_namespace.h>
87#include <linux/user_namespace.h>
88#include <linux/fs_struct.h>
89#include <linux/slab.h>
90#include <linux/sched/autogroup.h>
91#include <linux/sched/mm.h>
92#include <linux/sched/coredump.h>
93#include <linux/sched/debug.h>
94#include <linux/sched/stat.h>
95#include <linux/posix-timers.h>
96#include <linux/time_namespace.h>
97#include <linux/resctrl.h>
98#include <linux/cn_proc.h>
99#include <linux/ksm.h>
100#include <uapi/linux/lsm.h>
101#include <trace/events/oom.h>
102#include "internal.h"
103#include "fd.h"
104
105#include "../../lib/kstrtox.h"
106
107/* NOTE:
108 * Implementing inode permission operations in /proc is almost
109 * certainly an error. Permission checks need to happen during
110 * each system call not at open time. The reason is that most of
111 * what we wish to check for permissions in /proc varies at runtime.
112 *
113 * The classic example of a problem is opening file descriptors
114 * in /proc for a task before it execs a suid executable.
115 */
116
117static u8 nlink_tid __ro_after_init;
118static u8 nlink_tgid __ro_after_init;
119
120struct pid_entry {
121 const char *name;
122 unsigned int len;
123 umode_t mode;
124 const struct inode_operations *iop;
125 const struct file_operations *fop;
126 union proc_op op;
127};
128
129#define NOD(NAME, MODE, IOP, FOP, OP) { \
130 .name = (NAME), \
131 .len = sizeof(NAME) - 1, \
132 .mode = MODE, \
133 .iop = IOP, \
134 .fop = FOP, \
135 .op = OP, \
136}
137
138#define DIR(NAME, MODE, iops, fops) \
139 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
140#define LNK(NAME, get_link) \
141 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
142 &proc_pid_link_inode_operations, NULL, \
143 { .proc_get_link = get_link } )
144#define REG(NAME, MODE, fops) \
145 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
146#define ONE(NAME, MODE, show) \
147 NOD(NAME, (S_IFREG|(MODE)), \
148 NULL, &proc_single_file_operations, \
149 { .proc_show = show } )
150#define ATTR(LSMID, NAME, MODE) \
151 NOD(NAME, (S_IFREG|(MODE)), \
152 NULL, &proc_pid_attr_operations, \
153 { .lsmid = LSMID })
154
155/*
156 * Count the number of hardlinks for the pid_entry table, excluding the .
157 * and .. links.
158 */
159static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
160 unsigned int n)
161{
162 unsigned int i;
163 unsigned int count;
164
165 count = 2;
166 for (i = 0; i < n; ++i) {
167 if (S_ISDIR(entries[i].mode))
168 ++count;
169 }
170
171 return count;
172}
173
174static int get_task_root(struct task_struct *task, struct path *root)
175{
176 int result = -ENOENT;
177
178 task_lock(task);
179 if (task->fs) {
180 get_fs_root(task->fs, root);
181 result = 0;
182 }
183 task_unlock(task);
184 return result;
185}
186
187static int proc_cwd_link(struct dentry *dentry, struct path *path)
188{
189 struct task_struct *task = get_proc_task(d_inode(dentry));
190 int result = -ENOENT;
191
192 if (task) {
193 task_lock(task);
194 if (task->fs) {
195 get_fs_pwd(task->fs, path);
196 result = 0;
197 }
198 task_unlock(task);
199 put_task_struct(task);
200 }
201 return result;
202}
203
204static int proc_root_link(struct dentry *dentry, struct path *path)
205{
206 struct task_struct *task = get_proc_task(d_inode(dentry));
207 int result = -ENOENT;
208
209 if (task) {
210 result = get_task_root(task, path);
211 put_task_struct(task);
212 }
213 return result;
214}
215
216/*
217 * If the user used setproctitle(), we just get the string from
218 * user space at arg_start, and limit it to a maximum of one page.
219 */
220static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
221 size_t count, unsigned long pos,
222 unsigned long arg_start)
223{
224 char *page;
225 int ret, got;
226
227 if (pos >= PAGE_SIZE)
228 return 0;
229
230 page = (char *)__get_free_page(GFP_KERNEL);
231 if (!page)
232 return -ENOMEM;
233
234 ret = 0;
235 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
236 if (got > 0) {
237 int len = strnlen(page, got);
238
239 /* Include the NUL character if it was found */
240 if (len < got)
241 len++;
242
243 if (len > pos) {
244 len -= pos;
245 if (len > count)
246 len = count;
247 len -= copy_to_user(buf, page+pos, len);
248 if (!len)
249 len = -EFAULT;
250 ret = len;
251 }
252 }
253 free_page((unsigned long)page);
254 return ret;
255}
256
257static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
258 size_t count, loff_t *ppos)
259{
260 unsigned long arg_start, arg_end, env_start, env_end;
261 unsigned long pos, len;
262 char *page, c;
263
264 /* Check if process spawned far enough to have cmdline. */
265 if (!mm->env_end)
266 return 0;
267
268 spin_lock(&mm->arg_lock);
269 arg_start = mm->arg_start;
270 arg_end = mm->arg_end;
271 env_start = mm->env_start;
272 env_end = mm->env_end;
273 spin_unlock(&mm->arg_lock);
274
275 if (arg_start >= arg_end)
276 return 0;
277
278 /*
279 * We allow setproctitle() to overwrite the argument
280 * strings, and overflow past the original end. But
281 * only when it overflows into the environment area.
282 */
283 if (env_start != arg_end || env_end < env_start)
284 env_start = env_end = arg_end;
285 len = env_end - arg_start;
286
287 /* We're not going to care if "*ppos" has high bits set */
288 pos = *ppos;
289 if (pos >= len)
290 return 0;
291 if (count > len - pos)
292 count = len - pos;
293 if (!count)
294 return 0;
295
296 /*
297 * Magical special case: if the argv[] end byte is not
298 * zero, the user has overwritten it with setproctitle(3).
299 *
300 * Possible future enhancement: do this only once when
301 * pos is 0, and set a flag in the 'struct file'.
302 */
303 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
304 return get_mm_proctitle(mm, buf, count, pos, arg_start);
305
306 /*
307 * For the non-setproctitle() case we limit things strictly
308 * to the [arg_start, arg_end[ range.
309 */
310 pos += arg_start;
311 if (pos < arg_start || pos >= arg_end)
312 return 0;
313 if (count > arg_end - pos)
314 count = arg_end - pos;
315
316 page = (char *)__get_free_page(GFP_KERNEL);
317 if (!page)
318 return -ENOMEM;
319
320 len = 0;
321 while (count) {
322 int got;
323 size_t size = min_t(size_t, PAGE_SIZE, count);
324
325 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
326 if (got <= 0)
327 break;
328 got -= copy_to_user(buf, page, got);
329 if (unlikely(!got)) {
330 if (!len)
331 len = -EFAULT;
332 break;
333 }
334 pos += got;
335 buf += got;
336 len += got;
337 count -= got;
338 }
339
340 free_page((unsigned long)page);
341 return len;
342}
343
344static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
345 size_t count, loff_t *pos)
346{
347 struct mm_struct *mm;
348 ssize_t ret;
349
350 mm = get_task_mm(tsk);
351 if (!mm)
352 return 0;
353
354 ret = get_mm_cmdline(mm, buf, count, pos);
355 mmput(mm);
356 return ret;
357}
358
359static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
360 size_t count, loff_t *pos)
361{
362 struct task_struct *tsk;
363 ssize_t ret;
364
365 BUG_ON(*pos < 0);
366
367 tsk = get_proc_task(file_inode(file));
368 if (!tsk)
369 return -ESRCH;
370 ret = get_task_cmdline(tsk, buf, count, pos);
371 put_task_struct(tsk);
372 if (ret > 0)
373 *pos += ret;
374 return ret;
375}
376
377static const struct file_operations proc_pid_cmdline_ops = {
378 .read = proc_pid_cmdline_read,
379 .llseek = generic_file_llseek,
380};
381
382#ifdef CONFIG_KALLSYMS
383/*
384 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
385 * Returns the resolved symbol. If that fails, simply return the address.
386 */
387static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
388 struct pid *pid, struct task_struct *task)
389{
390 unsigned long wchan;
391 char symname[KSYM_NAME_LEN];
392
393 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
394 goto print0;
395
396 wchan = get_wchan(task);
397 if (wchan && !lookup_symbol_name(wchan, symname)) {
398 seq_puts(m, symname);
399 return 0;
400 }
401
402print0:
403 seq_putc(m, '0');
404 return 0;
405}
406#endif /* CONFIG_KALLSYMS */
407
408static int lock_trace(struct task_struct *task)
409{
410 int err = down_read_killable(&task->signal->exec_update_lock);
411 if (err)
412 return err;
413 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
414 up_read(&task->signal->exec_update_lock);
415 return -EPERM;
416 }
417 return 0;
418}
419
420static void unlock_trace(struct task_struct *task)
421{
422 up_read(&task->signal->exec_update_lock);
423}
424
425#ifdef CONFIG_STACKTRACE
426
427#define MAX_STACK_TRACE_DEPTH 64
428
429static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
430 struct pid *pid, struct task_struct *task)
431{
432 unsigned long *entries;
433 int err;
434
435 /*
436 * The ability to racily run the kernel stack unwinder on a running task
437 * and then observe the unwinder output is scary; while it is useful for
438 * debugging kernel issues, it can also allow an attacker to leak kernel
439 * stack contents.
440 * Doing this in a manner that is at least safe from races would require
441 * some work to ensure that the remote task can not be scheduled; and
442 * even then, this would still expose the unwinder as local attack
443 * surface.
444 * Therefore, this interface is restricted to root.
445 */
446 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
447 return -EACCES;
448
449 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
450 GFP_KERNEL);
451 if (!entries)
452 return -ENOMEM;
453
454 err = lock_trace(task);
455 if (!err) {
456 unsigned int i, nr_entries;
457
458 nr_entries = stack_trace_save_tsk(task, entries,
459 MAX_STACK_TRACE_DEPTH, 0);
460
461 for (i = 0; i < nr_entries; i++) {
462 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
463 }
464
465 unlock_trace(task);
466 }
467 kfree(entries);
468
469 return err;
470}
471#endif
472
473#ifdef CONFIG_SCHED_INFO
474/*
475 * Provides /proc/PID/schedstat
476 */
477static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
478 struct pid *pid, struct task_struct *task)
479{
480 if (unlikely(!sched_info_on()))
481 seq_puts(m, "0 0 0\n");
482 else
483 seq_printf(m, "%llu %llu %lu\n",
484 (unsigned long long)task->se.sum_exec_runtime,
485 (unsigned long long)task->sched_info.run_delay,
486 task->sched_info.pcount);
487
488 return 0;
489}
490#endif
491
492#ifdef CONFIG_LATENCYTOP
493static int lstats_show_proc(struct seq_file *m, void *v)
494{
495 int i;
496 struct inode *inode = m->private;
497 struct task_struct *task = get_proc_task(inode);
498
499 if (!task)
500 return -ESRCH;
501 seq_puts(m, "Latency Top version : v0.1\n");
502 for (i = 0; i < LT_SAVECOUNT; i++) {
503 struct latency_record *lr = &task->latency_record[i];
504 if (lr->backtrace[0]) {
505 int q;
506 seq_printf(m, "%i %li %li",
507 lr->count, lr->time, lr->max);
508 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
509 unsigned long bt = lr->backtrace[q];
510
511 if (!bt)
512 break;
513 seq_printf(m, " %ps", (void *)bt);
514 }
515 seq_putc(m, '\n');
516 }
517
518 }
519 put_task_struct(task);
520 return 0;
521}
522
523static int lstats_open(struct inode *inode, struct file *file)
524{
525 return single_open(file, lstats_show_proc, inode);
526}
527
528static ssize_t lstats_write(struct file *file, const char __user *buf,
529 size_t count, loff_t *offs)
530{
531 struct task_struct *task = get_proc_task(file_inode(file));
532
533 if (!task)
534 return -ESRCH;
535 clear_tsk_latency_tracing(task);
536 put_task_struct(task);
537
538 return count;
539}
540
541static const struct file_operations proc_lstats_operations = {
542 .open = lstats_open,
543 .read = seq_read,
544 .write = lstats_write,
545 .llseek = seq_lseek,
546 .release = single_release,
547};
548
549#endif
550
551static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
552 struct pid *pid, struct task_struct *task)
553{
554 unsigned long totalpages = totalram_pages() + total_swap_pages;
555 unsigned long points = 0;
556 long badness;
557
558 badness = oom_badness(task, totalpages);
559 /*
560 * Special case OOM_SCORE_ADJ_MIN for all others scale the
561 * badness value into [0, 2000] range which we have been
562 * exporting for a long time so userspace might depend on it.
563 */
564 if (badness != LONG_MIN)
565 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
566
567 seq_printf(m, "%lu\n", points);
568
569 return 0;
570}
571
572struct limit_names {
573 const char *name;
574 const char *unit;
575};
576
577static const struct limit_names lnames[RLIM_NLIMITS] = {
578 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
579 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
580 [RLIMIT_DATA] = {"Max data size", "bytes"},
581 [RLIMIT_STACK] = {"Max stack size", "bytes"},
582 [RLIMIT_CORE] = {"Max core file size", "bytes"},
583 [RLIMIT_RSS] = {"Max resident set", "bytes"},
584 [RLIMIT_NPROC] = {"Max processes", "processes"},
585 [RLIMIT_NOFILE] = {"Max open files", "files"},
586 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
587 [RLIMIT_AS] = {"Max address space", "bytes"},
588 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
589 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
590 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
591 [RLIMIT_NICE] = {"Max nice priority", NULL},
592 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
593 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
594};
595
596/* Display limits for a process */
597static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
598 struct pid *pid, struct task_struct *task)
599{
600 unsigned int i;
601 unsigned long flags;
602
603 struct rlimit rlim[RLIM_NLIMITS];
604
605 if (!lock_task_sighand(task, &flags))
606 return 0;
607 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
608 unlock_task_sighand(task, &flags);
609
610 /*
611 * print the file header
612 */
613 seq_puts(m, "Limit "
614 "Soft Limit "
615 "Hard Limit "
616 "Units \n");
617
618 for (i = 0; i < RLIM_NLIMITS; i++) {
619 if (rlim[i].rlim_cur == RLIM_INFINITY)
620 seq_printf(m, "%-25s %-20s ",
621 lnames[i].name, "unlimited");
622 else
623 seq_printf(m, "%-25s %-20lu ",
624 lnames[i].name, rlim[i].rlim_cur);
625
626 if (rlim[i].rlim_max == RLIM_INFINITY)
627 seq_printf(m, "%-20s ", "unlimited");
628 else
629 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
630
631 if (lnames[i].unit)
632 seq_printf(m, "%-10s\n", lnames[i].unit);
633 else
634 seq_putc(m, '\n');
635 }
636
637 return 0;
638}
639
640#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
641static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
642 struct pid *pid, struct task_struct *task)
643{
644 struct syscall_info info;
645 u64 *args = &info.data.args[0];
646 int res;
647
648 res = lock_trace(task);
649 if (res)
650 return res;
651
652 if (task_current_syscall(task, &info))
653 seq_puts(m, "running\n");
654 else if (info.data.nr < 0)
655 seq_printf(m, "%d 0x%llx 0x%llx\n",
656 info.data.nr, info.sp, info.data.instruction_pointer);
657 else
658 seq_printf(m,
659 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
660 info.data.nr,
661 args[0], args[1], args[2], args[3], args[4], args[5],
662 info.sp, info.data.instruction_pointer);
663 unlock_trace(task);
664
665 return 0;
666}
667#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
668
669/************************************************************************/
670/* Here the fs part begins */
671/************************************************************************/
672
673/* permission checks */
674static bool proc_fd_access_allowed(struct inode *inode)
675{
676 struct task_struct *task;
677 bool allowed = false;
678 /* Allow access to a task's file descriptors if it is us or we
679 * may use ptrace attach to the process and find out that
680 * information.
681 */
682 task = get_proc_task(inode);
683 if (task) {
684 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
685 put_task_struct(task);
686 }
687 return allowed;
688}
689
690int proc_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
691 struct iattr *attr)
692{
693 int error;
694 struct inode *inode = d_inode(dentry);
695
696 if (attr->ia_valid & ATTR_MODE)
697 return -EPERM;
698
699 error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
700 if (error)
701 return error;
702
703 setattr_copy(&nop_mnt_idmap, inode, attr);
704 return 0;
705}
706
707/*
708 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
709 * or euid/egid (for hide_pid_min=2)?
710 */
711static bool has_pid_permissions(struct proc_fs_info *fs_info,
712 struct task_struct *task,
713 enum proc_hidepid hide_pid_min)
714{
715 /*
716 * If 'hidpid' mount option is set force a ptrace check,
717 * we indicate that we are using a filesystem syscall
718 * by passing PTRACE_MODE_READ_FSCREDS
719 */
720 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
721 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
722
723 if (fs_info->hide_pid < hide_pid_min)
724 return true;
725 if (in_group_p(fs_info->pid_gid))
726 return true;
727 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
728}
729
730
731static int proc_pid_permission(struct mnt_idmap *idmap,
732 struct inode *inode, int mask)
733{
734 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
735 struct task_struct *task;
736 bool has_perms;
737
738 task = get_proc_task(inode);
739 if (!task)
740 return -ESRCH;
741 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
742 put_task_struct(task);
743
744 if (!has_perms) {
745 if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
746 /*
747 * Let's make getdents(), stat(), and open()
748 * consistent with each other. If a process
749 * may not stat() a file, it shouldn't be seen
750 * in procfs at all.
751 */
752 return -ENOENT;
753 }
754
755 return -EPERM;
756 }
757 return generic_permission(&nop_mnt_idmap, inode, mask);
758}
759
760
761
762static const struct inode_operations proc_def_inode_operations = {
763 .setattr = proc_setattr,
764};
765
766static int proc_single_show(struct seq_file *m, void *v)
767{
768 struct inode *inode = m->private;
769 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
770 struct pid *pid = proc_pid(inode);
771 struct task_struct *task;
772 int ret;
773
774 task = get_pid_task(pid, PIDTYPE_PID);
775 if (!task)
776 return -ESRCH;
777
778 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
779
780 put_task_struct(task);
781 return ret;
782}
783
784static int proc_single_open(struct inode *inode, struct file *filp)
785{
786 return single_open(filp, proc_single_show, inode);
787}
788
789static const struct file_operations proc_single_file_operations = {
790 .open = proc_single_open,
791 .read = seq_read,
792 .llseek = seq_lseek,
793 .release = single_release,
794};
795
796
797struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
798{
799 struct task_struct *task = get_proc_task(inode);
800 struct mm_struct *mm = ERR_PTR(-ESRCH);
801
802 if (task) {
803 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
804 put_task_struct(task);
805
806 if (!IS_ERR_OR_NULL(mm)) {
807 /* ensure this mm_struct can't be freed */
808 mmgrab(mm);
809 /* but do not pin its memory */
810 mmput(mm);
811 }
812 }
813
814 return mm;
815}
816
817static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
818{
819 struct mm_struct *mm = proc_mem_open(inode, mode);
820
821 if (IS_ERR(mm))
822 return PTR_ERR(mm);
823
824 file->private_data = mm;
825 return 0;
826}
827
828static int mem_open(struct inode *inode, struct file *file)
829{
830 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
831
832 /* OK to pass negative loff_t, we can catch out-of-range */
833 file->f_mode |= FMODE_UNSIGNED_OFFSET;
834
835 return ret;
836}
837
838static ssize_t mem_rw(struct file *file, char __user *buf,
839 size_t count, loff_t *ppos, int write)
840{
841 struct mm_struct *mm = file->private_data;
842 unsigned long addr = *ppos;
843 ssize_t copied;
844 char *page;
845 unsigned int flags;
846
847 if (!mm)
848 return 0;
849
850 page = (char *)__get_free_page(GFP_KERNEL);
851 if (!page)
852 return -ENOMEM;
853
854 copied = 0;
855 if (!mmget_not_zero(mm))
856 goto free;
857
858 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
859
860 while (count > 0) {
861 size_t this_len = min_t(size_t, count, PAGE_SIZE);
862
863 if (write && copy_from_user(page, buf, this_len)) {
864 copied = -EFAULT;
865 break;
866 }
867
868 this_len = access_remote_vm(mm, addr, page, this_len, flags);
869 if (!this_len) {
870 if (!copied)
871 copied = -EIO;
872 break;
873 }
874
875 if (!write && copy_to_user(buf, page, this_len)) {
876 copied = -EFAULT;
877 break;
878 }
879
880 buf += this_len;
881 addr += this_len;
882 copied += this_len;
883 count -= this_len;
884 }
885 *ppos = addr;
886
887 mmput(mm);
888free:
889 free_page((unsigned long) page);
890 return copied;
891}
892
893static ssize_t mem_read(struct file *file, char __user *buf,
894 size_t count, loff_t *ppos)
895{
896 return mem_rw(file, buf, count, ppos, 0);
897}
898
899static ssize_t mem_write(struct file *file, const char __user *buf,
900 size_t count, loff_t *ppos)
901{
902 return mem_rw(file, (char __user*)buf, count, ppos, 1);
903}
904
905loff_t mem_lseek(struct file *file, loff_t offset, int orig)
906{
907 switch (orig) {
908 case 0:
909 file->f_pos = offset;
910 break;
911 case 1:
912 file->f_pos += offset;
913 break;
914 default:
915 return -EINVAL;
916 }
917 force_successful_syscall_return();
918 return file->f_pos;
919}
920
921static int mem_release(struct inode *inode, struct file *file)
922{
923 struct mm_struct *mm = file->private_data;
924 if (mm)
925 mmdrop(mm);
926 return 0;
927}
928
929static const struct file_operations proc_mem_operations = {
930 .llseek = mem_lseek,
931 .read = mem_read,
932 .write = mem_write,
933 .open = mem_open,
934 .release = mem_release,
935};
936
937static int environ_open(struct inode *inode, struct file *file)
938{
939 return __mem_open(inode, file, PTRACE_MODE_READ);
940}
941
942static ssize_t environ_read(struct file *file, char __user *buf,
943 size_t count, loff_t *ppos)
944{
945 char *page;
946 unsigned long src = *ppos;
947 int ret = 0;
948 struct mm_struct *mm = file->private_data;
949 unsigned long env_start, env_end;
950
951 /* Ensure the process spawned far enough to have an environment. */
952 if (!mm || !mm->env_end)
953 return 0;
954
955 page = (char *)__get_free_page(GFP_KERNEL);
956 if (!page)
957 return -ENOMEM;
958
959 ret = 0;
960 if (!mmget_not_zero(mm))
961 goto free;
962
963 spin_lock(&mm->arg_lock);
964 env_start = mm->env_start;
965 env_end = mm->env_end;
966 spin_unlock(&mm->arg_lock);
967
968 while (count > 0) {
969 size_t this_len, max_len;
970 int retval;
971
972 if (src >= (env_end - env_start))
973 break;
974
975 this_len = env_end - (env_start + src);
976
977 max_len = min_t(size_t, PAGE_SIZE, count);
978 this_len = min(max_len, this_len);
979
980 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
981
982 if (retval <= 0) {
983 ret = retval;
984 break;
985 }
986
987 if (copy_to_user(buf, page, retval)) {
988 ret = -EFAULT;
989 break;
990 }
991
992 ret += retval;
993 src += retval;
994 buf += retval;
995 count -= retval;
996 }
997 *ppos = src;
998 mmput(mm);
999
1000free:
1001 free_page((unsigned long) page);
1002 return ret;
1003}
1004
1005static const struct file_operations proc_environ_operations = {
1006 .open = environ_open,
1007 .read = environ_read,
1008 .llseek = generic_file_llseek,
1009 .release = mem_release,
1010};
1011
1012static int auxv_open(struct inode *inode, struct file *file)
1013{
1014 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1015}
1016
1017static ssize_t auxv_read(struct file *file, char __user *buf,
1018 size_t count, loff_t *ppos)
1019{
1020 struct mm_struct *mm = file->private_data;
1021 unsigned int nwords = 0;
1022
1023 if (!mm)
1024 return 0;
1025 do {
1026 nwords += 2;
1027 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1028 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1029 nwords * sizeof(mm->saved_auxv[0]));
1030}
1031
1032static const struct file_operations proc_auxv_operations = {
1033 .open = auxv_open,
1034 .read = auxv_read,
1035 .llseek = generic_file_llseek,
1036 .release = mem_release,
1037};
1038
1039static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1040 loff_t *ppos)
1041{
1042 struct task_struct *task = get_proc_task(file_inode(file));
1043 char buffer[PROC_NUMBUF];
1044 int oom_adj = OOM_ADJUST_MIN;
1045 size_t len;
1046
1047 if (!task)
1048 return -ESRCH;
1049 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1050 oom_adj = OOM_ADJUST_MAX;
1051 else
1052 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1053 OOM_SCORE_ADJ_MAX;
1054 put_task_struct(task);
1055 if (oom_adj > OOM_ADJUST_MAX)
1056 oom_adj = OOM_ADJUST_MAX;
1057 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1058 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1059}
1060
1061static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1062{
1063 struct mm_struct *mm = NULL;
1064 struct task_struct *task;
1065 int err = 0;
1066
1067 task = get_proc_task(file_inode(file));
1068 if (!task)
1069 return -ESRCH;
1070
1071 mutex_lock(&oom_adj_mutex);
1072 if (legacy) {
1073 if (oom_adj < task->signal->oom_score_adj &&
1074 !capable(CAP_SYS_RESOURCE)) {
1075 err = -EACCES;
1076 goto err_unlock;
1077 }
1078 /*
1079 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1080 * /proc/pid/oom_score_adj instead.
1081 */
1082 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1083 current->comm, task_pid_nr(current), task_pid_nr(task),
1084 task_pid_nr(task));
1085 } else {
1086 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1087 !capable(CAP_SYS_RESOURCE)) {
1088 err = -EACCES;
1089 goto err_unlock;
1090 }
1091 }
1092
1093 /*
1094 * Make sure we will check other processes sharing the mm if this is
1095 * not vfrok which wants its own oom_score_adj.
1096 * pin the mm so it doesn't go away and get reused after task_unlock
1097 */
1098 if (!task->vfork_done) {
1099 struct task_struct *p = find_lock_task_mm(task);
1100
1101 if (p) {
1102 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1103 mm = p->mm;
1104 mmgrab(mm);
1105 }
1106 task_unlock(p);
1107 }
1108 }
1109
1110 task->signal->oom_score_adj = oom_adj;
1111 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1112 task->signal->oom_score_adj_min = (short)oom_adj;
1113 trace_oom_score_adj_update(task);
1114
1115 if (mm) {
1116 struct task_struct *p;
1117
1118 rcu_read_lock();
1119 for_each_process(p) {
1120 if (same_thread_group(task, p))
1121 continue;
1122
1123 /* do not touch kernel threads or the global init */
1124 if (p->flags & PF_KTHREAD || is_global_init(p))
1125 continue;
1126
1127 task_lock(p);
1128 if (!p->vfork_done && process_shares_mm(p, mm)) {
1129 p->signal->oom_score_adj = oom_adj;
1130 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1131 p->signal->oom_score_adj_min = (short)oom_adj;
1132 }
1133 task_unlock(p);
1134 }
1135 rcu_read_unlock();
1136 mmdrop(mm);
1137 }
1138err_unlock:
1139 mutex_unlock(&oom_adj_mutex);
1140 put_task_struct(task);
1141 return err;
1142}
1143
1144/*
1145 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1146 * kernels. The effective policy is defined by oom_score_adj, which has a
1147 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1148 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1149 * Processes that become oom disabled via oom_adj will still be oom disabled
1150 * with this implementation.
1151 *
1152 * oom_adj cannot be removed since existing userspace binaries use it.
1153 */
1154static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1155 size_t count, loff_t *ppos)
1156{
1157 char buffer[PROC_NUMBUF] = {};
1158 int oom_adj;
1159 int err;
1160
1161 if (count > sizeof(buffer) - 1)
1162 count = sizeof(buffer) - 1;
1163 if (copy_from_user(buffer, buf, count)) {
1164 err = -EFAULT;
1165 goto out;
1166 }
1167
1168 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1169 if (err)
1170 goto out;
1171 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1172 oom_adj != OOM_DISABLE) {
1173 err = -EINVAL;
1174 goto out;
1175 }
1176
1177 /*
1178 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1179 * value is always attainable.
1180 */
1181 if (oom_adj == OOM_ADJUST_MAX)
1182 oom_adj = OOM_SCORE_ADJ_MAX;
1183 else
1184 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1185
1186 err = __set_oom_adj(file, oom_adj, true);
1187out:
1188 return err < 0 ? err : count;
1189}
1190
1191static const struct file_operations proc_oom_adj_operations = {
1192 .read = oom_adj_read,
1193 .write = oom_adj_write,
1194 .llseek = generic_file_llseek,
1195};
1196
1197static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1198 size_t count, loff_t *ppos)
1199{
1200 struct task_struct *task = get_proc_task(file_inode(file));
1201 char buffer[PROC_NUMBUF];
1202 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1203 size_t len;
1204
1205 if (!task)
1206 return -ESRCH;
1207 oom_score_adj = task->signal->oom_score_adj;
1208 put_task_struct(task);
1209 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1210 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1211}
1212
1213static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1214 size_t count, loff_t *ppos)
1215{
1216 char buffer[PROC_NUMBUF] = {};
1217 int oom_score_adj;
1218 int err;
1219
1220 if (count > sizeof(buffer) - 1)
1221 count = sizeof(buffer) - 1;
1222 if (copy_from_user(buffer, buf, count)) {
1223 err = -EFAULT;
1224 goto out;
1225 }
1226
1227 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1228 if (err)
1229 goto out;
1230 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1231 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1232 err = -EINVAL;
1233 goto out;
1234 }
1235
1236 err = __set_oom_adj(file, oom_score_adj, false);
1237out:
1238 return err < 0 ? err : count;
1239}
1240
1241static const struct file_operations proc_oom_score_adj_operations = {
1242 .read = oom_score_adj_read,
1243 .write = oom_score_adj_write,
1244 .llseek = default_llseek,
1245};
1246
1247#ifdef CONFIG_AUDIT
1248#define TMPBUFLEN 11
1249static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1250 size_t count, loff_t *ppos)
1251{
1252 struct inode * inode = file_inode(file);
1253 struct task_struct *task = get_proc_task(inode);
1254 ssize_t length;
1255 char tmpbuf[TMPBUFLEN];
1256
1257 if (!task)
1258 return -ESRCH;
1259 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1260 from_kuid(file->f_cred->user_ns,
1261 audit_get_loginuid(task)));
1262 put_task_struct(task);
1263 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1264}
1265
1266static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1267 size_t count, loff_t *ppos)
1268{
1269 struct inode * inode = file_inode(file);
1270 uid_t loginuid;
1271 kuid_t kloginuid;
1272 int rv;
1273
1274 /* Don't let kthreads write their own loginuid */
1275 if (current->flags & PF_KTHREAD)
1276 return -EPERM;
1277
1278 rcu_read_lock();
1279 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1280 rcu_read_unlock();
1281 return -EPERM;
1282 }
1283 rcu_read_unlock();
1284
1285 if (*ppos != 0) {
1286 /* No partial writes. */
1287 return -EINVAL;
1288 }
1289
1290 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1291 if (rv < 0)
1292 return rv;
1293
1294 /* is userspace tring to explicitly UNSET the loginuid? */
1295 if (loginuid == AUDIT_UID_UNSET) {
1296 kloginuid = INVALID_UID;
1297 } else {
1298 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1299 if (!uid_valid(kloginuid))
1300 return -EINVAL;
1301 }
1302
1303 rv = audit_set_loginuid(kloginuid);
1304 if (rv < 0)
1305 return rv;
1306 return count;
1307}
1308
1309static const struct file_operations proc_loginuid_operations = {
1310 .read = proc_loginuid_read,
1311 .write = proc_loginuid_write,
1312 .llseek = generic_file_llseek,
1313};
1314
1315static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1316 size_t count, loff_t *ppos)
1317{
1318 struct inode * inode = file_inode(file);
1319 struct task_struct *task = get_proc_task(inode);
1320 ssize_t length;
1321 char tmpbuf[TMPBUFLEN];
1322
1323 if (!task)
1324 return -ESRCH;
1325 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1326 audit_get_sessionid(task));
1327 put_task_struct(task);
1328 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1329}
1330
1331static const struct file_operations proc_sessionid_operations = {
1332 .read = proc_sessionid_read,
1333 .llseek = generic_file_llseek,
1334};
1335#endif
1336
1337#ifdef CONFIG_FAULT_INJECTION
1338static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1339 size_t count, loff_t *ppos)
1340{
1341 struct task_struct *task = get_proc_task(file_inode(file));
1342 char buffer[PROC_NUMBUF];
1343 size_t len;
1344 int make_it_fail;
1345
1346 if (!task)
1347 return -ESRCH;
1348 make_it_fail = task->make_it_fail;
1349 put_task_struct(task);
1350
1351 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1352
1353 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1354}
1355
1356static ssize_t proc_fault_inject_write(struct file * file,
1357 const char __user * buf, size_t count, loff_t *ppos)
1358{
1359 struct task_struct *task;
1360 char buffer[PROC_NUMBUF] = {};
1361 int make_it_fail;
1362 int rv;
1363
1364 if (!capable(CAP_SYS_RESOURCE))
1365 return -EPERM;
1366
1367 if (count > sizeof(buffer) - 1)
1368 count = sizeof(buffer) - 1;
1369 if (copy_from_user(buffer, buf, count))
1370 return -EFAULT;
1371 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1372 if (rv < 0)
1373 return rv;
1374 if (make_it_fail < 0 || make_it_fail > 1)
1375 return -EINVAL;
1376
1377 task = get_proc_task(file_inode(file));
1378 if (!task)
1379 return -ESRCH;
1380 task->make_it_fail = make_it_fail;
1381 put_task_struct(task);
1382
1383 return count;
1384}
1385
1386static const struct file_operations proc_fault_inject_operations = {
1387 .read = proc_fault_inject_read,
1388 .write = proc_fault_inject_write,
1389 .llseek = generic_file_llseek,
1390};
1391
1392static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1393 size_t count, loff_t *ppos)
1394{
1395 struct task_struct *task;
1396 int err;
1397 unsigned int n;
1398
1399 err = kstrtouint_from_user(buf, count, 0, &n);
1400 if (err)
1401 return err;
1402
1403 task = get_proc_task(file_inode(file));
1404 if (!task)
1405 return -ESRCH;
1406 task->fail_nth = n;
1407 put_task_struct(task);
1408
1409 return count;
1410}
1411
1412static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1413 size_t count, loff_t *ppos)
1414{
1415 struct task_struct *task;
1416 char numbuf[PROC_NUMBUF];
1417 ssize_t len;
1418
1419 task = get_proc_task(file_inode(file));
1420 if (!task)
1421 return -ESRCH;
1422 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1423 put_task_struct(task);
1424 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1425}
1426
1427static const struct file_operations proc_fail_nth_operations = {
1428 .read = proc_fail_nth_read,
1429 .write = proc_fail_nth_write,
1430};
1431#endif
1432
1433
1434#ifdef CONFIG_SCHED_DEBUG
1435/*
1436 * Print out various scheduling related per-task fields:
1437 */
1438static int sched_show(struct seq_file *m, void *v)
1439{
1440 struct inode *inode = m->private;
1441 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1442 struct task_struct *p;
1443
1444 p = get_proc_task(inode);
1445 if (!p)
1446 return -ESRCH;
1447 proc_sched_show_task(p, ns, m);
1448
1449 put_task_struct(p);
1450
1451 return 0;
1452}
1453
1454static ssize_t
1455sched_write(struct file *file, const char __user *buf,
1456 size_t count, loff_t *offset)
1457{
1458 struct inode *inode = file_inode(file);
1459 struct task_struct *p;
1460
1461 p = get_proc_task(inode);
1462 if (!p)
1463 return -ESRCH;
1464 proc_sched_set_task(p);
1465
1466 put_task_struct(p);
1467
1468 return count;
1469}
1470
1471static int sched_open(struct inode *inode, struct file *filp)
1472{
1473 return single_open(filp, sched_show, inode);
1474}
1475
1476static const struct file_operations proc_pid_sched_operations = {
1477 .open = sched_open,
1478 .read = seq_read,
1479 .write = sched_write,
1480 .llseek = seq_lseek,
1481 .release = single_release,
1482};
1483
1484#endif
1485
1486#ifdef CONFIG_SCHED_AUTOGROUP
1487/*
1488 * Print out autogroup related information:
1489 */
1490static int sched_autogroup_show(struct seq_file *m, void *v)
1491{
1492 struct inode *inode = m->private;
1493 struct task_struct *p;
1494
1495 p = get_proc_task(inode);
1496 if (!p)
1497 return -ESRCH;
1498 proc_sched_autogroup_show_task(p, m);
1499
1500 put_task_struct(p);
1501
1502 return 0;
1503}
1504
1505static ssize_t
1506sched_autogroup_write(struct file *file, const char __user *buf,
1507 size_t count, loff_t *offset)
1508{
1509 struct inode *inode = file_inode(file);
1510 struct task_struct *p;
1511 char buffer[PROC_NUMBUF] = {};
1512 int nice;
1513 int err;
1514
1515 if (count > sizeof(buffer) - 1)
1516 count = sizeof(buffer) - 1;
1517 if (copy_from_user(buffer, buf, count))
1518 return -EFAULT;
1519
1520 err = kstrtoint(strstrip(buffer), 0, &nice);
1521 if (err < 0)
1522 return err;
1523
1524 p = get_proc_task(inode);
1525 if (!p)
1526 return -ESRCH;
1527
1528 err = proc_sched_autogroup_set_nice(p, nice);
1529 if (err)
1530 count = err;
1531
1532 put_task_struct(p);
1533
1534 return count;
1535}
1536
1537static int sched_autogroup_open(struct inode *inode, struct file *filp)
1538{
1539 int ret;
1540
1541 ret = single_open(filp, sched_autogroup_show, NULL);
1542 if (!ret) {
1543 struct seq_file *m = filp->private_data;
1544
1545 m->private = inode;
1546 }
1547 return ret;
1548}
1549
1550static const struct file_operations proc_pid_sched_autogroup_operations = {
1551 .open = sched_autogroup_open,
1552 .read = seq_read,
1553 .write = sched_autogroup_write,
1554 .llseek = seq_lseek,
1555 .release = single_release,
1556};
1557
1558#endif /* CONFIG_SCHED_AUTOGROUP */
1559
1560#ifdef CONFIG_TIME_NS
1561static int timens_offsets_show(struct seq_file *m, void *v)
1562{
1563 struct task_struct *p;
1564
1565 p = get_proc_task(file_inode(m->file));
1566 if (!p)
1567 return -ESRCH;
1568 proc_timens_show_offsets(p, m);
1569
1570 put_task_struct(p);
1571
1572 return 0;
1573}
1574
1575static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1576 size_t count, loff_t *ppos)
1577{
1578 struct inode *inode = file_inode(file);
1579 struct proc_timens_offset offsets[2];
1580 char *kbuf = NULL, *pos, *next_line;
1581 struct task_struct *p;
1582 int ret, noffsets;
1583
1584 /* Only allow < page size writes at the beginning of the file */
1585 if ((*ppos != 0) || (count >= PAGE_SIZE))
1586 return -EINVAL;
1587
1588 /* Slurp in the user data */
1589 kbuf = memdup_user_nul(buf, count);
1590 if (IS_ERR(kbuf))
1591 return PTR_ERR(kbuf);
1592
1593 /* Parse the user data */
1594 ret = -EINVAL;
1595 noffsets = 0;
1596 for (pos = kbuf; pos; pos = next_line) {
1597 struct proc_timens_offset *off = &offsets[noffsets];
1598 char clock[10];
1599 int err;
1600
1601 /* Find the end of line and ensure we don't look past it */
1602 next_line = strchr(pos, '\n');
1603 if (next_line) {
1604 *next_line = '\0';
1605 next_line++;
1606 if (*next_line == '\0')
1607 next_line = NULL;
1608 }
1609
1610 err = sscanf(pos, "%9s %lld %lu", clock,
1611 &off->val.tv_sec, &off->val.tv_nsec);
1612 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1613 goto out;
1614
1615 clock[sizeof(clock) - 1] = 0;
1616 if (strcmp(clock, "monotonic") == 0 ||
1617 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1618 off->clockid = CLOCK_MONOTONIC;
1619 else if (strcmp(clock, "boottime") == 0 ||
1620 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1621 off->clockid = CLOCK_BOOTTIME;
1622 else
1623 goto out;
1624
1625 noffsets++;
1626 if (noffsets == ARRAY_SIZE(offsets)) {
1627 if (next_line)
1628 count = next_line - kbuf;
1629 break;
1630 }
1631 }
1632
1633 ret = -ESRCH;
1634 p = get_proc_task(inode);
1635 if (!p)
1636 goto out;
1637 ret = proc_timens_set_offset(file, p, offsets, noffsets);
1638 put_task_struct(p);
1639 if (ret)
1640 goto out;
1641
1642 ret = count;
1643out:
1644 kfree(kbuf);
1645 return ret;
1646}
1647
1648static int timens_offsets_open(struct inode *inode, struct file *filp)
1649{
1650 return single_open(filp, timens_offsets_show, inode);
1651}
1652
1653static const struct file_operations proc_timens_offsets_operations = {
1654 .open = timens_offsets_open,
1655 .read = seq_read,
1656 .write = timens_offsets_write,
1657 .llseek = seq_lseek,
1658 .release = single_release,
1659};
1660#endif /* CONFIG_TIME_NS */
1661
1662static ssize_t comm_write(struct file *file, const char __user *buf,
1663 size_t count, loff_t *offset)
1664{
1665 struct inode *inode = file_inode(file);
1666 struct task_struct *p;
1667 char buffer[TASK_COMM_LEN] = {};
1668 const size_t maxlen = sizeof(buffer) - 1;
1669
1670 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1671 return -EFAULT;
1672
1673 p = get_proc_task(inode);
1674 if (!p)
1675 return -ESRCH;
1676
1677 if (same_thread_group(current, p)) {
1678 set_task_comm(p, buffer);
1679 proc_comm_connector(p);
1680 }
1681 else
1682 count = -EINVAL;
1683
1684 put_task_struct(p);
1685
1686 return count;
1687}
1688
1689static int comm_show(struct seq_file *m, void *v)
1690{
1691 struct inode *inode = m->private;
1692 struct task_struct *p;
1693
1694 p = get_proc_task(inode);
1695 if (!p)
1696 return -ESRCH;
1697
1698 proc_task_name(m, p, false);
1699 seq_putc(m, '\n');
1700
1701 put_task_struct(p);
1702
1703 return 0;
1704}
1705
1706static int comm_open(struct inode *inode, struct file *filp)
1707{
1708 return single_open(filp, comm_show, inode);
1709}
1710
1711static const struct file_operations proc_pid_set_comm_operations = {
1712 .open = comm_open,
1713 .read = seq_read,
1714 .write = comm_write,
1715 .llseek = seq_lseek,
1716 .release = single_release,
1717};
1718
1719static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1720{
1721 struct task_struct *task;
1722 struct file *exe_file;
1723
1724 task = get_proc_task(d_inode(dentry));
1725 if (!task)
1726 return -ENOENT;
1727 exe_file = get_task_exe_file(task);
1728 put_task_struct(task);
1729 if (exe_file) {
1730 *exe_path = exe_file->f_path;
1731 path_get(&exe_file->f_path);
1732 fput(exe_file);
1733 return 0;
1734 } else
1735 return -ENOENT;
1736}
1737
1738static const char *proc_pid_get_link(struct dentry *dentry,
1739 struct inode *inode,
1740 struct delayed_call *done)
1741{
1742 struct path path;
1743 int error = -EACCES;
1744
1745 if (!dentry)
1746 return ERR_PTR(-ECHILD);
1747
1748 /* Are we allowed to snoop on the tasks file descriptors? */
1749 if (!proc_fd_access_allowed(inode))
1750 goto out;
1751
1752 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1753 if (error)
1754 goto out;
1755
1756 error = nd_jump_link(&path);
1757out:
1758 return ERR_PTR(error);
1759}
1760
1761static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen)
1762{
1763 char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
1764 char *pathname;
1765 int len;
1766
1767 if (!tmp)
1768 return -ENOMEM;
1769
1770 pathname = d_path(path, tmp, PATH_MAX);
1771 len = PTR_ERR(pathname);
1772 if (IS_ERR(pathname))
1773 goto out;
1774 len = tmp + PATH_MAX - 1 - pathname;
1775
1776 if (len > buflen)
1777 len = buflen;
1778 if (copy_to_user(buffer, pathname, len))
1779 len = -EFAULT;
1780 out:
1781 kfree(tmp);
1782 return len;
1783}
1784
1785static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1786{
1787 int error = -EACCES;
1788 struct inode *inode = d_inode(dentry);
1789 struct path path;
1790
1791 /* Are we allowed to snoop on the tasks file descriptors? */
1792 if (!proc_fd_access_allowed(inode))
1793 goto out;
1794
1795 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1796 if (error)
1797 goto out;
1798
1799 error = do_proc_readlink(&path, buffer, buflen);
1800 path_put(&path);
1801out:
1802 return error;
1803}
1804
1805const struct inode_operations proc_pid_link_inode_operations = {
1806 .readlink = proc_pid_readlink,
1807 .get_link = proc_pid_get_link,
1808 .setattr = proc_setattr,
1809};
1810
1811
1812/* building an inode */
1813
1814void task_dump_owner(struct task_struct *task, umode_t mode,
1815 kuid_t *ruid, kgid_t *rgid)
1816{
1817 /* Depending on the state of dumpable compute who should own a
1818 * proc file for a task.
1819 */
1820 const struct cred *cred;
1821 kuid_t uid;
1822 kgid_t gid;
1823
1824 if (unlikely(task->flags & PF_KTHREAD)) {
1825 *ruid = GLOBAL_ROOT_UID;
1826 *rgid = GLOBAL_ROOT_GID;
1827 return;
1828 }
1829
1830 /* Default to the tasks effective ownership */
1831 rcu_read_lock();
1832 cred = __task_cred(task);
1833 uid = cred->euid;
1834 gid = cred->egid;
1835 rcu_read_unlock();
1836
1837 /*
1838 * Before the /proc/pid/status file was created the only way to read
1839 * the effective uid of a /process was to stat /proc/pid. Reading
1840 * /proc/pid/status is slow enough that procps and other packages
1841 * kept stating /proc/pid. To keep the rules in /proc simple I have
1842 * made this apply to all per process world readable and executable
1843 * directories.
1844 */
1845 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1846 struct mm_struct *mm;
1847 task_lock(task);
1848 mm = task->mm;
1849 /* Make non-dumpable tasks owned by some root */
1850 if (mm) {
1851 if (get_dumpable(mm) != SUID_DUMP_USER) {
1852 struct user_namespace *user_ns = mm->user_ns;
1853
1854 uid = make_kuid(user_ns, 0);
1855 if (!uid_valid(uid))
1856 uid = GLOBAL_ROOT_UID;
1857
1858 gid = make_kgid(user_ns, 0);
1859 if (!gid_valid(gid))
1860 gid = GLOBAL_ROOT_GID;
1861 }
1862 } else {
1863 uid = GLOBAL_ROOT_UID;
1864 gid = GLOBAL_ROOT_GID;
1865 }
1866 task_unlock(task);
1867 }
1868 *ruid = uid;
1869 *rgid = gid;
1870}
1871
1872void proc_pid_evict_inode(struct proc_inode *ei)
1873{
1874 struct pid *pid = ei->pid;
1875
1876 if (S_ISDIR(ei->vfs_inode.i_mode)) {
1877 spin_lock(&pid->lock);
1878 hlist_del_init_rcu(&ei->sibling_inodes);
1879 spin_unlock(&pid->lock);
1880 }
1881}
1882
1883struct inode *proc_pid_make_inode(struct super_block *sb,
1884 struct task_struct *task, umode_t mode)
1885{
1886 struct inode * inode;
1887 struct proc_inode *ei;
1888 struct pid *pid;
1889
1890 /* We need a new inode */
1891
1892 inode = new_inode(sb);
1893 if (!inode)
1894 goto out;
1895
1896 /* Common stuff */
1897 ei = PROC_I(inode);
1898 inode->i_mode = mode;
1899 inode->i_ino = get_next_ino();
1900 simple_inode_init_ts(inode);
1901 inode->i_op = &proc_def_inode_operations;
1902
1903 /*
1904 * grab the reference to task.
1905 */
1906 pid = get_task_pid(task, PIDTYPE_PID);
1907 if (!pid)
1908 goto out_unlock;
1909
1910 /* Let the pid remember us for quick removal */
1911 ei->pid = pid;
1912
1913 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1914 security_task_to_inode(task, inode);
1915
1916out:
1917 return inode;
1918
1919out_unlock:
1920 iput(inode);
1921 return NULL;
1922}
1923
1924/*
1925 * Generating an inode and adding it into @pid->inodes, so that task will
1926 * invalidate inode's dentry before being released.
1927 *
1928 * This helper is used for creating dir-type entries under '/proc' and
1929 * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>'
1930 * can be released by invalidating '/proc/<tgid>' dentry.
1931 * In theory, dentries under '/proc/<tgid>/task' can also be released by
1932 * invalidating '/proc/<tgid>' dentry, we reserve it to handle single
1933 * thread exiting situation: Any one of threads should invalidate its
1934 * '/proc/<tgid>/task/<pid>' dentry before released.
1935 */
1936static struct inode *proc_pid_make_base_inode(struct super_block *sb,
1937 struct task_struct *task, umode_t mode)
1938{
1939 struct inode *inode;
1940 struct proc_inode *ei;
1941 struct pid *pid;
1942
1943 inode = proc_pid_make_inode(sb, task, mode);
1944 if (!inode)
1945 return NULL;
1946
1947 /* Let proc_flush_pid find this directory inode */
1948 ei = PROC_I(inode);
1949 pid = ei->pid;
1950 spin_lock(&pid->lock);
1951 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1952 spin_unlock(&pid->lock);
1953
1954 return inode;
1955}
1956
1957int pid_getattr(struct mnt_idmap *idmap, const struct path *path,
1958 struct kstat *stat, u32 request_mask, unsigned int query_flags)
1959{
1960 struct inode *inode = d_inode(path->dentry);
1961 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1962 struct task_struct *task;
1963
1964 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1965
1966 stat->uid = GLOBAL_ROOT_UID;
1967 stat->gid = GLOBAL_ROOT_GID;
1968 rcu_read_lock();
1969 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1970 if (task) {
1971 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1972 rcu_read_unlock();
1973 /*
1974 * This doesn't prevent learning whether PID exists,
1975 * it only makes getattr() consistent with readdir().
1976 */
1977 return -ENOENT;
1978 }
1979 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1980 }
1981 rcu_read_unlock();
1982 return 0;
1983}
1984
1985/* dentry stuff */
1986
1987/*
1988 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1989 */
1990void pid_update_inode(struct task_struct *task, struct inode *inode)
1991{
1992 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1993
1994 inode->i_mode &= ~(S_ISUID | S_ISGID);
1995 security_task_to_inode(task, inode);
1996}
1997
1998/*
1999 * Rewrite the inode's ownerships here because the owning task may have
2000 * performed a setuid(), etc.
2001 *
2002 */
2003static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2004{
2005 struct inode *inode;
2006 struct task_struct *task;
2007 int ret = 0;
2008
2009 rcu_read_lock();
2010 inode = d_inode_rcu(dentry);
2011 if (!inode)
2012 goto out;
2013 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2014
2015 if (task) {
2016 pid_update_inode(task, inode);
2017 ret = 1;
2018 }
2019out:
2020 rcu_read_unlock();
2021 return ret;
2022}
2023
2024static inline bool proc_inode_is_dead(struct inode *inode)
2025{
2026 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2027}
2028
2029int pid_delete_dentry(const struct dentry *dentry)
2030{
2031 /* Is the task we represent dead?
2032 * If so, then don't put the dentry on the lru list,
2033 * kill it immediately.
2034 */
2035 return proc_inode_is_dead(d_inode(dentry));
2036}
2037
2038const struct dentry_operations pid_dentry_operations =
2039{
2040 .d_revalidate = pid_revalidate,
2041 .d_delete = pid_delete_dentry,
2042};
2043
2044/* Lookups */
2045
2046/*
2047 * Fill a directory entry.
2048 *
2049 * If possible create the dcache entry and derive our inode number and
2050 * file type from dcache entry.
2051 *
2052 * Since all of the proc inode numbers are dynamically generated, the inode
2053 * numbers do not exist until the inode is cache. This means creating
2054 * the dcache entry in readdir is necessary to keep the inode numbers
2055 * reported by readdir in sync with the inode numbers reported
2056 * by stat.
2057 */
2058bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2059 const char *name, unsigned int len,
2060 instantiate_t instantiate, struct task_struct *task, const void *ptr)
2061{
2062 struct dentry *child, *dir = file->f_path.dentry;
2063 struct qstr qname = QSTR_INIT(name, len);
2064 struct inode *inode;
2065 unsigned type = DT_UNKNOWN;
2066 ino_t ino = 1;
2067
2068 child = d_hash_and_lookup(dir, &qname);
2069 if (!child) {
2070 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2071 child = d_alloc_parallel(dir, &qname, &wq);
2072 if (IS_ERR(child))
2073 goto end_instantiate;
2074 if (d_in_lookup(child)) {
2075 struct dentry *res;
2076 res = instantiate(child, task, ptr);
2077 d_lookup_done(child);
2078 if (unlikely(res)) {
2079 dput(child);
2080 child = res;
2081 if (IS_ERR(child))
2082 goto end_instantiate;
2083 }
2084 }
2085 }
2086 inode = d_inode(child);
2087 ino = inode->i_ino;
2088 type = inode->i_mode >> 12;
2089 dput(child);
2090end_instantiate:
2091 return dir_emit(ctx, name, len, ino, type);
2092}
2093
2094/*
2095 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2096 * which represent vma start and end addresses.
2097 */
2098static int dname_to_vma_addr(struct dentry *dentry,
2099 unsigned long *start, unsigned long *end)
2100{
2101 const char *str = dentry->d_name.name;
2102 unsigned long long sval, eval;
2103 unsigned int len;
2104
2105 if (str[0] == '0' && str[1] != '-')
2106 return -EINVAL;
2107 len = _parse_integer(str, 16, &sval);
2108 if (len & KSTRTOX_OVERFLOW)
2109 return -EINVAL;
2110 if (sval != (unsigned long)sval)
2111 return -EINVAL;
2112 str += len;
2113
2114 if (*str != '-')
2115 return -EINVAL;
2116 str++;
2117
2118 if (str[0] == '0' && str[1])
2119 return -EINVAL;
2120 len = _parse_integer(str, 16, &eval);
2121 if (len & KSTRTOX_OVERFLOW)
2122 return -EINVAL;
2123 if (eval != (unsigned long)eval)
2124 return -EINVAL;
2125 str += len;
2126
2127 if (*str != '\0')
2128 return -EINVAL;
2129
2130 *start = sval;
2131 *end = eval;
2132
2133 return 0;
2134}
2135
2136static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2137{
2138 unsigned long vm_start, vm_end;
2139 bool exact_vma_exists = false;
2140 struct mm_struct *mm = NULL;
2141 struct task_struct *task;
2142 struct inode *inode;
2143 int status = 0;
2144
2145 if (flags & LOOKUP_RCU)
2146 return -ECHILD;
2147
2148 inode = d_inode(dentry);
2149 task = get_proc_task(inode);
2150 if (!task)
2151 goto out_notask;
2152
2153 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2154 if (IS_ERR_OR_NULL(mm))
2155 goto out;
2156
2157 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2158 status = mmap_read_lock_killable(mm);
2159 if (!status) {
2160 exact_vma_exists = !!find_exact_vma(mm, vm_start,
2161 vm_end);
2162 mmap_read_unlock(mm);
2163 }
2164 }
2165
2166 mmput(mm);
2167
2168 if (exact_vma_exists) {
2169 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2170
2171 security_task_to_inode(task, inode);
2172 status = 1;
2173 }
2174
2175out:
2176 put_task_struct(task);
2177
2178out_notask:
2179 return status;
2180}
2181
2182static const struct dentry_operations tid_map_files_dentry_operations = {
2183 .d_revalidate = map_files_d_revalidate,
2184 .d_delete = pid_delete_dentry,
2185};
2186
2187static int map_files_get_link(struct dentry *dentry, struct path *path)
2188{
2189 unsigned long vm_start, vm_end;
2190 struct vm_area_struct *vma;
2191 struct task_struct *task;
2192 struct mm_struct *mm;
2193 int rc;
2194
2195 rc = -ENOENT;
2196 task = get_proc_task(d_inode(dentry));
2197 if (!task)
2198 goto out;
2199
2200 mm = get_task_mm(task);
2201 put_task_struct(task);
2202 if (!mm)
2203 goto out;
2204
2205 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2206 if (rc)
2207 goto out_mmput;
2208
2209 rc = mmap_read_lock_killable(mm);
2210 if (rc)
2211 goto out_mmput;
2212
2213 rc = -ENOENT;
2214 vma = find_exact_vma(mm, vm_start, vm_end);
2215 if (vma && vma->vm_file) {
2216 *path = *file_user_path(vma->vm_file);
2217 path_get(path);
2218 rc = 0;
2219 }
2220 mmap_read_unlock(mm);
2221
2222out_mmput:
2223 mmput(mm);
2224out:
2225 return rc;
2226}
2227
2228struct map_files_info {
2229 unsigned long start;
2230 unsigned long end;
2231 fmode_t mode;
2232};
2233
2234/*
2235 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2236 * to concerns about how the symlinks may be used to bypass permissions on
2237 * ancestor directories in the path to the file in question.
2238 */
2239static const char *
2240proc_map_files_get_link(struct dentry *dentry,
2241 struct inode *inode,
2242 struct delayed_call *done)
2243{
2244 if (!checkpoint_restore_ns_capable(&init_user_ns))
2245 return ERR_PTR(-EPERM);
2246
2247 return proc_pid_get_link(dentry, inode, done);
2248}
2249
2250/*
2251 * Identical to proc_pid_link_inode_operations except for get_link()
2252 */
2253static const struct inode_operations proc_map_files_link_inode_operations = {
2254 .readlink = proc_pid_readlink,
2255 .get_link = proc_map_files_get_link,
2256 .setattr = proc_setattr,
2257};
2258
2259static struct dentry *
2260proc_map_files_instantiate(struct dentry *dentry,
2261 struct task_struct *task, const void *ptr)
2262{
2263 fmode_t mode = (fmode_t)(unsigned long)ptr;
2264 struct proc_inode *ei;
2265 struct inode *inode;
2266
2267 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2268 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2269 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2270 if (!inode)
2271 return ERR_PTR(-ENOENT);
2272
2273 ei = PROC_I(inode);
2274 ei->op.proc_get_link = map_files_get_link;
2275
2276 inode->i_op = &proc_map_files_link_inode_operations;
2277 inode->i_size = 64;
2278
2279 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2280 return d_splice_alias(inode, dentry);
2281}
2282
2283static struct dentry *proc_map_files_lookup(struct inode *dir,
2284 struct dentry *dentry, unsigned int flags)
2285{
2286 unsigned long vm_start, vm_end;
2287 struct vm_area_struct *vma;
2288 struct task_struct *task;
2289 struct dentry *result;
2290 struct mm_struct *mm;
2291
2292 result = ERR_PTR(-ENOENT);
2293 task = get_proc_task(dir);
2294 if (!task)
2295 goto out;
2296
2297 result = ERR_PTR(-EACCES);
2298 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2299 goto out_put_task;
2300
2301 result = ERR_PTR(-ENOENT);
2302 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2303 goto out_put_task;
2304
2305 mm = get_task_mm(task);
2306 if (!mm)
2307 goto out_put_task;
2308
2309 result = ERR_PTR(-EINTR);
2310 if (mmap_read_lock_killable(mm))
2311 goto out_put_mm;
2312
2313 result = ERR_PTR(-ENOENT);
2314 vma = find_exact_vma(mm, vm_start, vm_end);
2315 if (!vma)
2316 goto out_no_vma;
2317
2318 if (vma->vm_file)
2319 result = proc_map_files_instantiate(dentry, task,
2320 (void *)(unsigned long)vma->vm_file->f_mode);
2321
2322out_no_vma:
2323 mmap_read_unlock(mm);
2324out_put_mm:
2325 mmput(mm);
2326out_put_task:
2327 put_task_struct(task);
2328out:
2329 return result;
2330}
2331
2332static const struct inode_operations proc_map_files_inode_operations = {
2333 .lookup = proc_map_files_lookup,
2334 .permission = proc_fd_permission,
2335 .setattr = proc_setattr,
2336};
2337
2338static int
2339proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2340{
2341 struct vm_area_struct *vma;
2342 struct task_struct *task;
2343 struct mm_struct *mm;
2344 unsigned long nr_files, pos, i;
2345 GENRADIX(struct map_files_info) fa;
2346 struct map_files_info *p;
2347 int ret;
2348 struct vma_iterator vmi;
2349
2350 genradix_init(&fa);
2351
2352 ret = -ENOENT;
2353 task = get_proc_task(file_inode(file));
2354 if (!task)
2355 goto out;
2356
2357 ret = -EACCES;
2358 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2359 goto out_put_task;
2360
2361 ret = 0;
2362 if (!dir_emit_dots(file, ctx))
2363 goto out_put_task;
2364
2365 mm = get_task_mm(task);
2366 if (!mm)
2367 goto out_put_task;
2368
2369 ret = mmap_read_lock_killable(mm);
2370 if (ret) {
2371 mmput(mm);
2372 goto out_put_task;
2373 }
2374
2375 nr_files = 0;
2376
2377 /*
2378 * We need two passes here:
2379 *
2380 * 1) Collect vmas of mapped files with mmap_lock taken
2381 * 2) Release mmap_lock and instantiate entries
2382 *
2383 * otherwise we get lockdep complained, since filldir()
2384 * routine might require mmap_lock taken in might_fault().
2385 */
2386
2387 pos = 2;
2388 vma_iter_init(&vmi, mm, 0);
2389 for_each_vma(vmi, vma) {
2390 if (!vma->vm_file)
2391 continue;
2392 if (++pos <= ctx->pos)
2393 continue;
2394
2395 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2396 if (!p) {
2397 ret = -ENOMEM;
2398 mmap_read_unlock(mm);
2399 mmput(mm);
2400 goto out_put_task;
2401 }
2402
2403 p->start = vma->vm_start;
2404 p->end = vma->vm_end;
2405 p->mode = vma->vm_file->f_mode;
2406 }
2407 mmap_read_unlock(mm);
2408 mmput(mm);
2409
2410 for (i = 0; i < nr_files; i++) {
2411 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2412 unsigned int len;
2413
2414 p = genradix_ptr(&fa, i);
2415 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2416 if (!proc_fill_cache(file, ctx,
2417 buf, len,
2418 proc_map_files_instantiate,
2419 task,
2420 (void *)(unsigned long)p->mode))
2421 break;
2422 ctx->pos++;
2423 }
2424
2425out_put_task:
2426 put_task_struct(task);
2427out:
2428 genradix_free(&fa);
2429 return ret;
2430}
2431
2432static const struct file_operations proc_map_files_operations = {
2433 .read = generic_read_dir,
2434 .iterate_shared = proc_map_files_readdir,
2435 .llseek = generic_file_llseek,
2436};
2437
2438#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2439struct timers_private {
2440 struct pid *pid;
2441 struct task_struct *task;
2442 struct sighand_struct *sighand;
2443 struct pid_namespace *ns;
2444 unsigned long flags;
2445};
2446
2447static void *timers_start(struct seq_file *m, loff_t *pos)
2448{
2449 struct timers_private *tp = m->private;
2450
2451 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2452 if (!tp->task)
2453 return ERR_PTR(-ESRCH);
2454
2455 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2456 if (!tp->sighand)
2457 return ERR_PTR(-ESRCH);
2458
2459 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2460}
2461
2462static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2463{
2464 struct timers_private *tp = m->private;
2465 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2466}
2467
2468static void timers_stop(struct seq_file *m, void *v)
2469{
2470 struct timers_private *tp = m->private;
2471
2472 if (tp->sighand) {
2473 unlock_task_sighand(tp->task, &tp->flags);
2474 tp->sighand = NULL;
2475 }
2476
2477 if (tp->task) {
2478 put_task_struct(tp->task);
2479 tp->task = NULL;
2480 }
2481}
2482
2483static int show_timer(struct seq_file *m, void *v)
2484{
2485 struct k_itimer *timer;
2486 struct timers_private *tp = m->private;
2487 int notify;
2488 static const char * const nstr[] = {
2489 [SIGEV_SIGNAL] = "signal",
2490 [SIGEV_NONE] = "none",
2491 [SIGEV_THREAD] = "thread",
2492 };
2493
2494 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2495 notify = timer->it_sigev_notify;
2496
2497 seq_printf(m, "ID: %d\n", timer->it_id);
2498 seq_printf(m, "signal: %d/%px\n",
2499 timer->sigq->info.si_signo,
2500 timer->sigq->info.si_value.sival_ptr);
2501 seq_printf(m, "notify: %s/%s.%d\n",
2502 nstr[notify & ~SIGEV_THREAD_ID],
2503 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2504 pid_nr_ns(timer->it_pid, tp->ns));
2505 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2506
2507 return 0;
2508}
2509
2510static const struct seq_operations proc_timers_seq_ops = {
2511 .start = timers_start,
2512 .next = timers_next,
2513 .stop = timers_stop,
2514 .show = show_timer,
2515};
2516
2517static int proc_timers_open(struct inode *inode, struct file *file)
2518{
2519 struct timers_private *tp;
2520
2521 tp = __seq_open_private(file, &proc_timers_seq_ops,
2522 sizeof(struct timers_private));
2523 if (!tp)
2524 return -ENOMEM;
2525
2526 tp->pid = proc_pid(inode);
2527 tp->ns = proc_pid_ns(inode->i_sb);
2528 return 0;
2529}
2530
2531static const struct file_operations proc_timers_operations = {
2532 .open = proc_timers_open,
2533 .read = seq_read,
2534 .llseek = seq_lseek,
2535 .release = seq_release_private,
2536};
2537#endif
2538
2539static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2540 size_t count, loff_t *offset)
2541{
2542 struct inode *inode = file_inode(file);
2543 struct task_struct *p;
2544 u64 slack_ns;
2545 int err;
2546
2547 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2548 if (err < 0)
2549 return err;
2550
2551 p = get_proc_task(inode);
2552 if (!p)
2553 return -ESRCH;
2554
2555 if (p != current) {
2556 rcu_read_lock();
2557 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2558 rcu_read_unlock();
2559 count = -EPERM;
2560 goto out;
2561 }
2562 rcu_read_unlock();
2563
2564 err = security_task_setscheduler(p);
2565 if (err) {
2566 count = err;
2567 goto out;
2568 }
2569 }
2570
2571 task_lock(p);
2572 if (slack_ns == 0)
2573 p->timer_slack_ns = p->default_timer_slack_ns;
2574 else
2575 p->timer_slack_ns = slack_ns;
2576 task_unlock(p);
2577
2578out:
2579 put_task_struct(p);
2580
2581 return count;
2582}
2583
2584static int timerslack_ns_show(struct seq_file *m, void *v)
2585{
2586 struct inode *inode = m->private;
2587 struct task_struct *p;
2588 int err = 0;
2589
2590 p = get_proc_task(inode);
2591 if (!p)
2592 return -ESRCH;
2593
2594 if (p != current) {
2595 rcu_read_lock();
2596 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2597 rcu_read_unlock();
2598 err = -EPERM;
2599 goto out;
2600 }
2601 rcu_read_unlock();
2602
2603 err = security_task_getscheduler(p);
2604 if (err)
2605 goto out;
2606 }
2607
2608 task_lock(p);
2609 seq_printf(m, "%llu\n", p->timer_slack_ns);
2610 task_unlock(p);
2611
2612out:
2613 put_task_struct(p);
2614
2615 return err;
2616}
2617
2618static int timerslack_ns_open(struct inode *inode, struct file *filp)
2619{
2620 return single_open(filp, timerslack_ns_show, inode);
2621}
2622
2623static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2624 .open = timerslack_ns_open,
2625 .read = seq_read,
2626 .write = timerslack_ns_write,
2627 .llseek = seq_lseek,
2628 .release = single_release,
2629};
2630
2631static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2632 struct task_struct *task, const void *ptr)
2633{
2634 const struct pid_entry *p = ptr;
2635 struct inode *inode;
2636 struct proc_inode *ei;
2637
2638 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2639 if (!inode)
2640 return ERR_PTR(-ENOENT);
2641
2642 ei = PROC_I(inode);
2643 if (S_ISDIR(inode->i_mode))
2644 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2645 if (p->iop)
2646 inode->i_op = p->iop;
2647 if (p->fop)
2648 inode->i_fop = p->fop;
2649 ei->op = p->op;
2650 pid_update_inode(task, inode);
2651 d_set_d_op(dentry, &pid_dentry_operations);
2652 return d_splice_alias(inode, dentry);
2653}
2654
2655static struct dentry *proc_pident_lookup(struct inode *dir,
2656 struct dentry *dentry,
2657 const struct pid_entry *p,
2658 const struct pid_entry *end)
2659{
2660 struct task_struct *task = get_proc_task(dir);
2661 struct dentry *res = ERR_PTR(-ENOENT);
2662
2663 if (!task)
2664 goto out_no_task;
2665
2666 /*
2667 * Yes, it does not scale. And it should not. Don't add
2668 * new entries into /proc/<tgid>/ without very good reasons.
2669 */
2670 for (; p < end; p++) {
2671 if (p->len != dentry->d_name.len)
2672 continue;
2673 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2674 res = proc_pident_instantiate(dentry, task, p);
2675 break;
2676 }
2677 }
2678 put_task_struct(task);
2679out_no_task:
2680 return res;
2681}
2682
2683static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2684 const struct pid_entry *ents, unsigned int nents)
2685{
2686 struct task_struct *task = get_proc_task(file_inode(file));
2687 const struct pid_entry *p;
2688
2689 if (!task)
2690 return -ENOENT;
2691
2692 if (!dir_emit_dots(file, ctx))
2693 goto out;
2694
2695 if (ctx->pos >= nents + 2)
2696 goto out;
2697
2698 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2699 if (!proc_fill_cache(file, ctx, p->name, p->len,
2700 proc_pident_instantiate, task, p))
2701 break;
2702 ctx->pos++;
2703 }
2704out:
2705 put_task_struct(task);
2706 return 0;
2707}
2708
2709#ifdef CONFIG_SECURITY
2710static int proc_pid_attr_open(struct inode *inode, struct file *file)
2711{
2712 file->private_data = NULL;
2713 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2714 return 0;
2715}
2716
2717static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2718 size_t count, loff_t *ppos)
2719{
2720 struct inode * inode = file_inode(file);
2721 char *p = NULL;
2722 ssize_t length;
2723 struct task_struct *task = get_proc_task(inode);
2724
2725 if (!task)
2726 return -ESRCH;
2727
2728 length = security_getprocattr(task, PROC_I(inode)->op.lsmid,
2729 file->f_path.dentry->d_name.name,
2730 &p);
2731 put_task_struct(task);
2732 if (length > 0)
2733 length = simple_read_from_buffer(buf, count, ppos, p, length);
2734 kfree(p);
2735 return length;
2736}
2737
2738static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2739 size_t count, loff_t *ppos)
2740{
2741 struct inode * inode = file_inode(file);
2742 struct task_struct *task;
2743 void *page;
2744 int rv;
2745
2746 /* A task may only write when it was the opener. */
2747 if (file->private_data != current->mm)
2748 return -EPERM;
2749
2750 rcu_read_lock();
2751 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2752 if (!task) {
2753 rcu_read_unlock();
2754 return -ESRCH;
2755 }
2756 /* A task may only write its own attributes. */
2757 if (current != task) {
2758 rcu_read_unlock();
2759 return -EACCES;
2760 }
2761 /* Prevent changes to overridden credentials. */
2762 if (current_cred() != current_real_cred()) {
2763 rcu_read_unlock();
2764 return -EBUSY;
2765 }
2766 rcu_read_unlock();
2767
2768 if (count > PAGE_SIZE)
2769 count = PAGE_SIZE;
2770
2771 /* No partial writes. */
2772 if (*ppos != 0)
2773 return -EINVAL;
2774
2775 page = memdup_user(buf, count);
2776 if (IS_ERR(page)) {
2777 rv = PTR_ERR(page);
2778 goto out;
2779 }
2780
2781 /* Guard against adverse ptrace interaction */
2782 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex);
2783 if (rv < 0)
2784 goto out_free;
2785
2786 rv = security_setprocattr(PROC_I(inode)->op.lsmid,
2787 file->f_path.dentry->d_name.name, page,
2788 count);
2789 mutex_unlock(¤t->signal->cred_guard_mutex);
2790out_free:
2791 kfree(page);
2792out:
2793 return rv;
2794}
2795
2796static const struct file_operations proc_pid_attr_operations = {
2797 .open = proc_pid_attr_open,
2798 .read = proc_pid_attr_read,
2799 .write = proc_pid_attr_write,
2800 .llseek = generic_file_llseek,
2801 .release = mem_release,
2802};
2803
2804#define LSM_DIR_OPS(LSM) \
2805static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2806 struct dir_context *ctx) \
2807{ \
2808 return proc_pident_readdir(filp, ctx, \
2809 LSM##_attr_dir_stuff, \
2810 ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2811} \
2812\
2813static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2814 .read = generic_read_dir, \
2815 .iterate_shared = proc_##LSM##_attr_dir_iterate, \
2816 .llseek = default_llseek, \
2817}; \
2818\
2819static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2820 struct dentry *dentry, unsigned int flags) \
2821{ \
2822 return proc_pident_lookup(dir, dentry, \
2823 LSM##_attr_dir_stuff, \
2824 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2825} \
2826\
2827static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2828 .lookup = proc_##LSM##_attr_dir_lookup, \
2829 .getattr = pid_getattr, \
2830 .setattr = proc_setattr, \
2831}
2832
2833#ifdef CONFIG_SECURITY_SMACK
2834static const struct pid_entry smack_attr_dir_stuff[] = {
2835 ATTR(LSM_ID_SMACK, "current", 0666),
2836};
2837LSM_DIR_OPS(smack);
2838#endif
2839
2840#ifdef CONFIG_SECURITY_APPARMOR
2841static const struct pid_entry apparmor_attr_dir_stuff[] = {
2842 ATTR(LSM_ID_APPARMOR, "current", 0666),
2843 ATTR(LSM_ID_APPARMOR, "prev", 0444),
2844 ATTR(LSM_ID_APPARMOR, "exec", 0666),
2845};
2846LSM_DIR_OPS(apparmor);
2847#endif
2848
2849static const struct pid_entry attr_dir_stuff[] = {
2850 ATTR(LSM_ID_UNDEF, "current", 0666),
2851 ATTR(LSM_ID_UNDEF, "prev", 0444),
2852 ATTR(LSM_ID_UNDEF, "exec", 0666),
2853 ATTR(LSM_ID_UNDEF, "fscreate", 0666),
2854 ATTR(LSM_ID_UNDEF, "keycreate", 0666),
2855 ATTR(LSM_ID_UNDEF, "sockcreate", 0666),
2856#ifdef CONFIG_SECURITY_SMACK
2857 DIR("smack", 0555,
2858 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2859#endif
2860#ifdef CONFIG_SECURITY_APPARMOR
2861 DIR("apparmor", 0555,
2862 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2863#endif
2864};
2865
2866static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2867{
2868 return proc_pident_readdir(file, ctx,
2869 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2870}
2871
2872static const struct file_operations proc_attr_dir_operations = {
2873 .read = generic_read_dir,
2874 .iterate_shared = proc_attr_dir_readdir,
2875 .llseek = generic_file_llseek,
2876};
2877
2878static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2879 struct dentry *dentry, unsigned int flags)
2880{
2881 return proc_pident_lookup(dir, dentry,
2882 attr_dir_stuff,
2883 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2884}
2885
2886static const struct inode_operations proc_attr_dir_inode_operations = {
2887 .lookup = proc_attr_dir_lookup,
2888 .getattr = pid_getattr,
2889 .setattr = proc_setattr,
2890};
2891
2892#endif
2893
2894#ifdef CONFIG_ELF_CORE
2895static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2896 size_t count, loff_t *ppos)
2897{
2898 struct task_struct *task = get_proc_task(file_inode(file));
2899 struct mm_struct *mm;
2900 char buffer[PROC_NUMBUF];
2901 size_t len;
2902 int ret;
2903
2904 if (!task)
2905 return -ESRCH;
2906
2907 ret = 0;
2908 mm = get_task_mm(task);
2909 if (mm) {
2910 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2911 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2912 MMF_DUMP_FILTER_SHIFT));
2913 mmput(mm);
2914 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2915 }
2916
2917 put_task_struct(task);
2918
2919 return ret;
2920}
2921
2922static ssize_t proc_coredump_filter_write(struct file *file,
2923 const char __user *buf,
2924 size_t count,
2925 loff_t *ppos)
2926{
2927 struct task_struct *task;
2928 struct mm_struct *mm;
2929 unsigned int val;
2930 int ret;
2931 int i;
2932 unsigned long mask;
2933
2934 ret = kstrtouint_from_user(buf, count, 0, &val);
2935 if (ret < 0)
2936 return ret;
2937
2938 ret = -ESRCH;
2939 task = get_proc_task(file_inode(file));
2940 if (!task)
2941 goto out_no_task;
2942
2943 mm = get_task_mm(task);
2944 if (!mm)
2945 goto out_no_mm;
2946 ret = 0;
2947
2948 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2949 if (val & mask)
2950 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2951 else
2952 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2953 }
2954
2955 mmput(mm);
2956 out_no_mm:
2957 put_task_struct(task);
2958 out_no_task:
2959 if (ret < 0)
2960 return ret;
2961 return count;
2962}
2963
2964static const struct file_operations proc_coredump_filter_operations = {
2965 .read = proc_coredump_filter_read,
2966 .write = proc_coredump_filter_write,
2967 .llseek = generic_file_llseek,
2968};
2969#endif
2970
2971#ifdef CONFIG_TASK_IO_ACCOUNTING
2972static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2973{
2974 struct task_io_accounting acct;
2975 int result;
2976
2977 result = down_read_killable(&task->signal->exec_update_lock);
2978 if (result)
2979 return result;
2980
2981 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2982 result = -EACCES;
2983 goto out_unlock;
2984 }
2985
2986 if (whole) {
2987 struct signal_struct *sig = task->signal;
2988 struct task_struct *t;
2989 unsigned int seq = 1;
2990 unsigned long flags;
2991
2992 rcu_read_lock();
2993 do {
2994 seq++; /* 2 on the 1st/lockless path, otherwise odd */
2995 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
2996
2997 acct = sig->ioac;
2998 __for_each_thread(sig, t)
2999 task_io_accounting_add(&acct, &t->ioac);
3000
3001 } while (need_seqretry(&sig->stats_lock, seq));
3002 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
3003 rcu_read_unlock();
3004 } else {
3005 acct = task->ioac;
3006 }
3007
3008 seq_printf(m,
3009 "rchar: %llu\n"
3010 "wchar: %llu\n"
3011 "syscr: %llu\n"
3012 "syscw: %llu\n"
3013 "read_bytes: %llu\n"
3014 "write_bytes: %llu\n"
3015 "cancelled_write_bytes: %llu\n",
3016 (unsigned long long)acct.rchar,
3017 (unsigned long long)acct.wchar,
3018 (unsigned long long)acct.syscr,
3019 (unsigned long long)acct.syscw,
3020 (unsigned long long)acct.read_bytes,
3021 (unsigned long long)acct.write_bytes,
3022 (unsigned long long)acct.cancelled_write_bytes);
3023 result = 0;
3024
3025out_unlock:
3026 up_read(&task->signal->exec_update_lock);
3027 return result;
3028}
3029
3030static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3031 struct pid *pid, struct task_struct *task)
3032{
3033 return do_io_accounting(task, m, 0);
3034}
3035
3036static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3037 struct pid *pid, struct task_struct *task)
3038{
3039 return do_io_accounting(task, m, 1);
3040}
3041#endif /* CONFIG_TASK_IO_ACCOUNTING */
3042
3043#ifdef CONFIG_USER_NS
3044static int proc_id_map_open(struct inode *inode, struct file *file,
3045 const struct seq_operations *seq_ops)
3046{
3047 struct user_namespace *ns = NULL;
3048 struct task_struct *task;
3049 struct seq_file *seq;
3050 int ret = -EINVAL;
3051
3052 task = get_proc_task(inode);
3053 if (task) {
3054 rcu_read_lock();
3055 ns = get_user_ns(task_cred_xxx(task, user_ns));
3056 rcu_read_unlock();
3057 put_task_struct(task);
3058 }
3059 if (!ns)
3060 goto err;
3061
3062 ret = seq_open(file, seq_ops);
3063 if (ret)
3064 goto err_put_ns;
3065
3066 seq = file->private_data;
3067 seq->private = ns;
3068
3069 return 0;
3070err_put_ns:
3071 put_user_ns(ns);
3072err:
3073 return ret;
3074}
3075
3076static int proc_id_map_release(struct inode *inode, struct file *file)
3077{
3078 struct seq_file *seq = file->private_data;
3079 struct user_namespace *ns = seq->private;
3080 put_user_ns(ns);
3081 return seq_release(inode, file);
3082}
3083
3084static int proc_uid_map_open(struct inode *inode, struct file *file)
3085{
3086 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3087}
3088
3089static int proc_gid_map_open(struct inode *inode, struct file *file)
3090{
3091 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3092}
3093
3094static int proc_projid_map_open(struct inode *inode, struct file *file)
3095{
3096 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3097}
3098
3099static const struct file_operations proc_uid_map_operations = {
3100 .open = proc_uid_map_open,
3101 .write = proc_uid_map_write,
3102 .read = seq_read,
3103 .llseek = seq_lseek,
3104 .release = proc_id_map_release,
3105};
3106
3107static const struct file_operations proc_gid_map_operations = {
3108 .open = proc_gid_map_open,
3109 .write = proc_gid_map_write,
3110 .read = seq_read,
3111 .llseek = seq_lseek,
3112 .release = proc_id_map_release,
3113};
3114
3115static const struct file_operations proc_projid_map_operations = {
3116 .open = proc_projid_map_open,
3117 .write = proc_projid_map_write,
3118 .read = seq_read,
3119 .llseek = seq_lseek,
3120 .release = proc_id_map_release,
3121};
3122
3123static int proc_setgroups_open(struct inode *inode, struct file *file)
3124{
3125 struct user_namespace *ns = NULL;
3126 struct task_struct *task;
3127 int ret;
3128
3129 ret = -ESRCH;
3130 task = get_proc_task(inode);
3131 if (task) {
3132 rcu_read_lock();
3133 ns = get_user_ns(task_cred_xxx(task, user_ns));
3134 rcu_read_unlock();
3135 put_task_struct(task);
3136 }
3137 if (!ns)
3138 goto err;
3139
3140 if (file->f_mode & FMODE_WRITE) {
3141 ret = -EACCES;
3142 if (!ns_capable(ns, CAP_SYS_ADMIN))
3143 goto err_put_ns;
3144 }
3145
3146 ret = single_open(file, &proc_setgroups_show, ns);
3147 if (ret)
3148 goto err_put_ns;
3149
3150 return 0;
3151err_put_ns:
3152 put_user_ns(ns);
3153err:
3154 return ret;
3155}
3156
3157static int proc_setgroups_release(struct inode *inode, struct file *file)
3158{
3159 struct seq_file *seq = file->private_data;
3160 struct user_namespace *ns = seq->private;
3161 int ret = single_release(inode, file);
3162 put_user_ns(ns);
3163 return ret;
3164}
3165
3166static const struct file_operations proc_setgroups_operations = {
3167 .open = proc_setgroups_open,
3168 .write = proc_setgroups_write,
3169 .read = seq_read,
3170 .llseek = seq_lseek,
3171 .release = proc_setgroups_release,
3172};
3173#endif /* CONFIG_USER_NS */
3174
3175static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3176 struct pid *pid, struct task_struct *task)
3177{
3178 int err = lock_trace(task);
3179 if (!err) {
3180 seq_printf(m, "%08x\n", task->personality);
3181 unlock_trace(task);
3182 }
3183 return err;
3184}
3185
3186#ifdef CONFIG_LIVEPATCH
3187static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3188 struct pid *pid, struct task_struct *task)
3189{
3190 seq_printf(m, "%d\n", task->patch_state);
3191 return 0;
3192}
3193#endif /* CONFIG_LIVEPATCH */
3194
3195#ifdef CONFIG_KSM
3196static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
3197 struct pid *pid, struct task_struct *task)
3198{
3199 struct mm_struct *mm;
3200
3201 mm = get_task_mm(task);
3202 if (mm) {
3203 seq_printf(m, "%lu\n", mm->ksm_merging_pages);
3204 mmput(mm);
3205 }
3206
3207 return 0;
3208}
3209static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns,
3210 struct pid *pid, struct task_struct *task)
3211{
3212 struct mm_struct *mm;
3213
3214 mm = get_task_mm(task);
3215 if (mm) {
3216 seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items);
3217 seq_printf(m, "ksm_zero_pages %lu\n", mm->ksm_zero_pages);
3218 seq_printf(m, "ksm_merging_pages %lu\n", mm->ksm_merging_pages);
3219 seq_printf(m, "ksm_process_profit %ld\n", ksm_process_profit(mm));
3220 mmput(mm);
3221 }
3222
3223 return 0;
3224}
3225#endif /* CONFIG_KSM */
3226
3227#ifdef CONFIG_STACKLEAK_METRICS
3228static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3229 struct pid *pid, struct task_struct *task)
3230{
3231 unsigned long prev_depth = THREAD_SIZE -
3232 (task->prev_lowest_stack & (THREAD_SIZE - 1));
3233 unsigned long depth = THREAD_SIZE -
3234 (task->lowest_stack & (THREAD_SIZE - 1));
3235
3236 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3237 prev_depth, depth);
3238 return 0;
3239}
3240#endif /* CONFIG_STACKLEAK_METRICS */
3241
3242/*
3243 * Thread groups
3244 */
3245static const struct file_operations proc_task_operations;
3246static const struct inode_operations proc_task_inode_operations;
3247
3248static const struct pid_entry tgid_base_stuff[] = {
3249 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3250 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3251 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3252 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3253 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3254#ifdef CONFIG_NET
3255 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3256#endif
3257 REG("environ", S_IRUSR, proc_environ_operations),
3258 REG("auxv", S_IRUSR, proc_auxv_operations),
3259 ONE("status", S_IRUGO, proc_pid_status),
3260 ONE("personality", S_IRUSR, proc_pid_personality),
3261 ONE("limits", S_IRUGO, proc_pid_limits),
3262#ifdef CONFIG_SCHED_DEBUG
3263 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3264#endif
3265#ifdef CONFIG_SCHED_AUTOGROUP
3266 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3267#endif
3268#ifdef CONFIG_TIME_NS
3269 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3270#endif
3271 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3272#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3273 ONE("syscall", S_IRUSR, proc_pid_syscall),
3274#endif
3275 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3276 ONE("stat", S_IRUGO, proc_tgid_stat),
3277 ONE("statm", S_IRUGO, proc_pid_statm),
3278 REG("maps", S_IRUGO, proc_pid_maps_operations),
3279#ifdef CONFIG_NUMA
3280 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3281#endif
3282 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3283 LNK("cwd", proc_cwd_link),
3284 LNK("root", proc_root_link),
3285 LNK("exe", proc_exe_link),
3286 REG("mounts", S_IRUGO, proc_mounts_operations),
3287 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3288 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3289#ifdef CONFIG_PROC_PAGE_MONITOR
3290 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3291 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3292 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3293 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3294#endif
3295#ifdef CONFIG_SECURITY
3296 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3297#endif
3298#ifdef CONFIG_KALLSYMS
3299 ONE("wchan", S_IRUGO, proc_pid_wchan),
3300#endif
3301#ifdef CONFIG_STACKTRACE
3302 ONE("stack", S_IRUSR, proc_pid_stack),
3303#endif
3304#ifdef CONFIG_SCHED_INFO
3305 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3306#endif
3307#ifdef CONFIG_LATENCYTOP
3308 REG("latency", S_IRUGO, proc_lstats_operations),
3309#endif
3310#ifdef CONFIG_PROC_PID_CPUSET
3311 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3312#endif
3313#ifdef CONFIG_CGROUPS
3314 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3315#endif
3316#ifdef CONFIG_PROC_CPU_RESCTRL
3317 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3318#endif
3319 ONE("oom_score", S_IRUGO, proc_oom_score),
3320 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3321 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3322#ifdef CONFIG_AUDIT
3323 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3324 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3325#endif
3326#ifdef CONFIG_FAULT_INJECTION
3327 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3328 REG("fail-nth", 0644, proc_fail_nth_operations),
3329#endif
3330#ifdef CONFIG_ELF_CORE
3331 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3332#endif
3333#ifdef CONFIG_TASK_IO_ACCOUNTING
3334 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3335#endif
3336#ifdef CONFIG_USER_NS
3337 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3338 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3339 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3340 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3341#endif
3342#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3343 REG("timers", S_IRUGO, proc_timers_operations),
3344#endif
3345 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3346#ifdef CONFIG_LIVEPATCH
3347 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3348#endif
3349#ifdef CONFIG_STACKLEAK_METRICS
3350 ONE("stack_depth", S_IRUGO, proc_stack_depth),
3351#endif
3352#ifdef CONFIG_PROC_PID_ARCH_STATUS
3353 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3354#endif
3355#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3356 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3357#endif
3358#ifdef CONFIG_KSM
3359 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3360 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat),
3361#endif
3362};
3363
3364static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3365{
3366 return proc_pident_readdir(file, ctx,
3367 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3368}
3369
3370static const struct file_operations proc_tgid_base_operations = {
3371 .read = generic_read_dir,
3372 .iterate_shared = proc_tgid_base_readdir,
3373 .llseek = generic_file_llseek,
3374};
3375
3376struct pid *tgid_pidfd_to_pid(const struct file *file)
3377{
3378 if (file->f_op != &proc_tgid_base_operations)
3379 return ERR_PTR(-EBADF);
3380
3381 return proc_pid(file_inode(file));
3382}
3383
3384static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3385{
3386 return proc_pident_lookup(dir, dentry,
3387 tgid_base_stuff,
3388 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3389}
3390
3391static const struct inode_operations proc_tgid_base_inode_operations = {
3392 .lookup = proc_tgid_base_lookup,
3393 .getattr = pid_getattr,
3394 .setattr = proc_setattr,
3395 .permission = proc_pid_permission,
3396};
3397
3398/**
3399 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache.
3400 * @pid: pid that should be flushed.
3401 *
3402 * This function walks a list of inodes (that belong to any proc
3403 * filesystem) that are attached to the pid and flushes them from
3404 * the dentry cache.
3405 *
3406 * It is safe and reasonable to cache /proc entries for a task until
3407 * that task exits. After that they just clog up the dcache with
3408 * useless entries, possibly causing useful dcache entries to be
3409 * flushed instead. This routine is provided to flush those useless
3410 * dcache entries when a process is reaped.
3411 *
3412 * NOTE: This routine is just an optimization so it does not guarantee
3413 * that no dcache entries will exist after a process is reaped
3414 * it just makes it very unlikely that any will persist.
3415 */
3416
3417void proc_flush_pid(struct pid *pid)
3418{
3419 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3420}
3421
3422static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3423 struct task_struct *task, const void *ptr)
3424{
3425 struct inode *inode;
3426
3427 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3428 S_IFDIR | S_IRUGO | S_IXUGO);
3429 if (!inode)
3430 return ERR_PTR(-ENOENT);
3431
3432 inode->i_op = &proc_tgid_base_inode_operations;
3433 inode->i_fop = &proc_tgid_base_operations;
3434 inode->i_flags|=S_IMMUTABLE;
3435
3436 set_nlink(inode, nlink_tgid);
3437 pid_update_inode(task, inode);
3438
3439 d_set_d_op(dentry, &pid_dentry_operations);
3440 return d_splice_alias(inode, dentry);
3441}
3442
3443struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3444{
3445 struct task_struct *task;
3446 unsigned tgid;
3447 struct proc_fs_info *fs_info;
3448 struct pid_namespace *ns;
3449 struct dentry *result = ERR_PTR(-ENOENT);
3450
3451 tgid = name_to_int(&dentry->d_name);
3452 if (tgid == ~0U)
3453 goto out;
3454
3455 fs_info = proc_sb_info(dentry->d_sb);
3456 ns = fs_info->pid_ns;
3457 rcu_read_lock();
3458 task = find_task_by_pid_ns(tgid, ns);
3459 if (task)
3460 get_task_struct(task);
3461 rcu_read_unlock();
3462 if (!task)
3463 goto out;
3464
3465 /* Limit procfs to only ptraceable tasks */
3466 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3467 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3468 goto out_put_task;
3469 }
3470
3471 result = proc_pid_instantiate(dentry, task, NULL);
3472out_put_task:
3473 put_task_struct(task);
3474out:
3475 return result;
3476}
3477
3478/*
3479 * Find the first task with tgid >= tgid
3480 *
3481 */
3482struct tgid_iter {
3483 unsigned int tgid;
3484 struct task_struct *task;
3485};
3486static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3487{
3488 struct pid *pid;
3489
3490 if (iter.task)
3491 put_task_struct(iter.task);
3492 rcu_read_lock();
3493retry:
3494 iter.task = NULL;
3495 pid = find_ge_pid(iter.tgid, ns);
3496 if (pid) {
3497 iter.tgid = pid_nr_ns(pid, ns);
3498 iter.task = pid_task(pid, PIDTYPE_TGID);
3499 if (!iter.task) {
3500 iter.tgid += 1;
3501 goto retry;
3502 }
3503 get_task_struct(iter.task);
3504 }
3505 rcu_read_unlock();
3506 return iter;
3507}
3508
3509#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3510
3511/* for the /proc/ directory itself, after non-process stuff has been done */
3512int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3513{
3514 struct tgid_iter iter;
3515 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3516 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3517 loff_t pos = ctx->pos;
3518
3519 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3520 return 0;
3521
3522 if (pos == TGID_OFFSET - 2) {
3523 struct inode *inode = d_inode(fs_info->proc_self);
3524 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3525 return 0;
3526 ctx->pos = pos = pos + 1;
3527 }
3528 if (pos == TGID_OFFSET - 1) {
3529 struct inode *inode = d_inode(fs_info->proc_thread_self);
3530 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3531 return 0;
3532 ctx->pos = pos = pos + 1;
3533 }
3534 iter.tgid = pos - TGID_OFFSET;
3535 iter.task = NULL;
3536 for (iter = next_tgid(ns, iter);
3537 iter.task;
3538 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3539 char name[10 + 1];
3540 unsigned int len;
3541
3542 cond_resched();
3543 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3544 continue;
3545
3546 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3547 ctx->pos = iter.tgid + TGID_OFFSET;
3548 if (!proc_fill_cache(file, ctx, name, len,
3549 proc_pid_instantiate, iter.task, NULL)) {
3550 put_task_struct(iter.task);
3551 return 0;
3552 }
3553 }
3554 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3555 return 0;
3556}
3557
3558/*
3559 * proc_tid_comm_permission is a special permission function exclusively
3560 * used for the node /proc/<pid>/task/<tid>/comm.
3561 * It bypasses generic permission checks in the case where a task of the same
3562 * task group attempts to access the node.
3563 * The rationale behind this is that glibc and bionic access this node for
3564 * cross thread naming (pthread_set/getname_np(!self)). However, if
3565 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3566 * which locks out the cross thread naming implementation.
3567 * This function makes sure that the node is always accessible for members of
3568 * same thread group.
3569 */
3570static int proc_tid_comm_permission(struct mnt_idmap *idmap,
3571 struct inode *inode, int mask)
3572{
3573 bool is_same_tgroup;
3574 struct task_struct *task;
3575
3576 task = get_proc_task(inode);
3577 if (!task)
3578 return -ESRCH;
3579 is_same_tgroup = same_thread_group(current, task);
3580 put_task_struct(task);
3581
3582 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3583 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3584 * read or written by the members of the corresponding
3585 * thread group.
3586 */
3587 return 0;
3588 }
3589
3590 return generic_permission(&nop_mnt_idmap, inode, mask);
3591}
3592
3593static const struct inode_operations proc_tid_comm_inode_operations = {
3594 .setattr = proc_setattr,
3595 .permission = proc_tid_comm_permission,
3596};
3597
3598/*
3599 * Tasks
3600 */
3601static const struct pid_entry tid_base_stuff[] = {
3602 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3603 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3604 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3605#ifdef CONFIG_NET
3606 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3607#endif
3608 REG("environ", S_IRUSR, proc_environ_operations),
3609 REG("auxv", S_IRUSR, proc_auxv_operations),
3610 ONE("status", S_IRUGO, proc_pid_status),
3611 ONE("personality", S_IRUSR, proc_pid_personality),
3612 ONE("limits", S_IRUGO, proc_pid_limits),
3613#ifdef CONFIG_SCHED_DEBUG
3614 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3615#endif
3616 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3617 &proc_tid_comm_inode_operations,
3618 &proc_pid_set_comm_operations, {}),
3619#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3620 ONE("syscall", S_IRUSR, proc_pid_syscall),
3621#endif
3622 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3623 ONE("stat", S_IRUGO, proc_tid_stat),
3624 ONE("statm", S_IRUGO, proc_pid_statm),
3625 REG("maps", S_IRUGO, proc_pid_maps_operations),
3626#ifdef CONFIG_PROC_CHILDREN
3627 REG("children", S_IRUGO, proc_tid_children_operations),
3628#endif
3629#ifdef CONFIG_NUMA
3630 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3631#endif
3632 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3633 LNK("cwd", proc_cwd_link),
3634 LNK("root", proc_root_link),
3635 LNK("exe", proc_exe_link),
3636 REG("mounts", S_IRUGO, proc_mounts_operations),
3637 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3638#ifdef CONFIG_PROC_PAGE_MONITOR
3639 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3640 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3641 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3642 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3643#endif
3644#ifdef CONFIG_SECURITY
3645 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3646#endif
3647#ifdef CONFIG_KALLSYMS
3648 ONE("wchan", S_IRUGO, proc_pid_wchan),
3649#endif
3650#ifdef CONFIG_STACKTRACE
3651 ONE("stack", S_IRUSR, proc_pid_stack),
3652#endif
3653#ifdef CONFIG_SCHED_INFO
3654 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3655#endif
3656#ifdef CONFIG_LATENCYTOP
3657 REG("latency", S_IRUGO, proc_lstats_operations),
3658#endif
3659#ifdef CONFIG_PROC_PID_CPUSET
3660 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3661#endif
3662#ifdef CONFIG_CGROUPS
3663 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3664#endif
3665#ifdef CONFIG_PROC_CPU_RESCTRL
3666 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3667#endif
3668 ONE("oom_score", S_IRUGO, proc_oom_score),
3669 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3670 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3671#ifdef CONFIG_AUDIT
3672 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3673 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3674#endif
3675#ifdef CONFIG_FAULT_INJECTION
3676 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3677 REG("fail-nth", 0644, proc_fail_nth_operations),
3678#endif
3679#ifdef CONFIG_TASK_IO_ACCOUNTING
3680 ONE("io", S_IRUSR, proc_tid_io_accounting),
3681#endif
3682#ifdef CONFIG_USER_NS
3683 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3684 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3685 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3686 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3687#endif
3688#ifdef CONFIG_LIVEPATCH
3689 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3690#endif
3691#ifdef CONFIG_PROC_PID_ARCH_STATUS
3692 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3693#endif
3694#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3695 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3696#endif
3697#ifdef CONFIG_KSM
3698 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3699 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat),
3700#endif
3701};
3702
3703static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3704{
3705 return proc_pident_readdir(file, ctx,
3706 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3707}
3708
3709static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3710{
3711 return proc_pident_lookup(dir, dentry,
3712 tid_base_stuff,
3713 tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3714}
3715
3716static const struct file_operations proc_tid_base_operations = {
3717 .read = generic_read_dir,
3718 .iterate_shared = proc_tid_base_readdir,
3719 .llseek = generic_file_llseek,
3720};
3721
3722static const struct inode_operations proc_tid_base_inode_operations = {
3723 .lookup = proc_tid_base_lookup,
3724 .getattr = pid_getattr,
3725 .setattr = proc_setattr,
3726};
3727
3728static struct dentry *proc_task_instantiate(struct dentry *dentry,
3729 struct task_struct *task, const void *ptr)
3730{
3731 struct inode *inode;
3732 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3733 S_IFDIR | S_IRUGO | S_IXUGO);
3734 if (!inode)
3735 return ERR_PTR(-ENOENT);
3736
3737 inode->i_op = &proc_tid_base_inode_operations;
3738 inode->i_fop = &proc_tid_base_operations;
3739 inode->i_flags |= S_IMMUTABLE;
3740
3741 set_nlink(inode, nlink_tid);
3742 pid_update_inode(task, inode);
3743
3744 d_set_d_op(dentry, &pid_dentry_operations);
3745 return d_splice_alias(inode, dentry);
3746}
3747
3748static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3749{
3750 struct task_struct *task;
3751 struct task_struct *leader = get_proc_task(dir);
3752 unsigned tid;
3753 struct proc_fs_info *fs_info;
3754 struct pid_namespace *ns;
3755 struct dentry *result = ERR_PTR(-ENOENT);
3756
3757 if (!leader)
3758 goto out_no_task;
3759
3760 tid = name_to_int(&dentry->d_name);
3761 if (tid == ~0U)
3762 goto out;
3763
3764 fs_info = proc_sb_info(dentry->d_sb);
3765 ns = fs_info->pid_ns;
3766 rcu_read_lock();
3767 task = find_task_by_pid_ns(tid, ns);
3768 if (task)
3769 get_task_struct(task);
3770 rcu_read_unlock();
3771 if (!task)
3772 goto out;
3773 if (!same_thread_group(leader, task))
3774 goto out_drop_task;
3775
3776 result = proc_task_instantiate(dentry, task, NULL);
3777out_drop_task:
3778 put_task_struct(task);
3779out:
3780 put_task_struct(leader);
3781out_no_task:
3782 return result;
3783}
3784
3785/*
3786 * Find the first tid of a thread group to return to user space.
3787 *
3788 * Usually this is just the thread group leader, but if the users
3789 * buffer was too small or there was a seek into the middle of the
3790 * directory we have more work todo.
3791 *
3792 * In the case of a short read we start with find_task_by_pid.
3793 *
3794 * In the case of a seek we start with the leader and walk nr
3795 * threads past it.
3796 */
3797static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3798 struct pid_namespace *ns)
3799{
3800 struct task_struct *pos, *task;
3801 unsigned long nr = f_pos;
3802
3803 if (nr != f_pos) /* 32bit overflow? */
3804 return NULL;
3805
3806 rcu_read_lock();
3807 task = pid_task(pid, PIDTYPE_PID);
3808 if (!task)
3809 goto fail;
3810
3811 /* Attempt to start with the tid of a thread */
3812 if (tid && nr) {
3813 pos = find_task_by_pid_ns(tid, ns);
3814 if (pos && same_thread_group(pos, task))
3815 goto found;
3816 }
3817
3818 /* If nr exceeds the number of threads there is nothing todo */
3819 if (nr >= get_nr_threads(task))
3820 goto fail;
3821
3822 /* If we haven't found our starting place yet start
3823 * with the leader and walk nr threads forward.
3824 */
3825 for_each_thread(task, pos) {
3826 if (!nr--)
3827 goto found;
3828 }
3829fail:
3830 pos = NULL;
3831 goto out;
3832found:
3833 get_task_struct(pos);
3834out:
3835 rcu_read_unlock();
3836 return pos;
3837}
3838
3839/*
3840 * Find the next thread in the thread list.
3841 * Return NULL if there is an error or no next thread.
3842 *
3843 * The reference to the input task_struct is released.
3844 */
3845static struct task_struct *next_tid(struct task_struct *start)
3846{
3847 struct task_struct *pos = NULL;
3848 rcu_read_lock();
3849 if (pid_alive(start)) {
3850 pos = __next_thread(start);
3851 if (pos)
3852 get_task_struct(pos);
3853 }
3854 rcu_read_unlock();
3855 put_task_struct(start);
3856 return pos;
3857}
3858
3859/* for the /proc/TGID/task/ directories */
3860static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3861{
3862 struct inode *inode = file_inode(file);
3863 struct task_struct *task;
3864 struct pid_namespace *ns;
3865 int tid;
3866
3867 if (proc_inode_is_dead(inode))
3868 return -ENOENT;
3869
3870 if (!dir_emit_dots(file, ctx))
3871 return 0;
3872
3873 /* f_version caches the tgid value that the last readdir call couldn't
3874 * return. lseek aka telldir automagically resets f_version to 0.
3875 */
3876 ns = proc_pid_ns(inode->i_sb);
3877 tid = (int)file->f_version;
3878 file->f_version = 0;
3879 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3880 task;
3881 task = next_tid(task), ctx->pos++) {
3882 char name[10 + 1];
3883 unsigned int len;
3884
3885 tid = task_pid_nr_ns(task, ns);
3886 if (!tid)
3887 continue; /* The task has just exited. */
3888 len = snprintf(name, sizeof(name), "%u", tid);
3889 if (!proc_fill_cache(file, ctx, name, len,
3890 proc_task_instantiate, task, NULL)) {
3891 /* returning this tgid failed, save it as the first
3892 * pid for the next readir call */
3893 file->f_version = (u64)tid;
3894 put_task_struct(task);
3895 break;
3896 }
3897 }
3898
3899 return 0;
3900}
3901
3902static int proc_task_getattr(struct mnt_idmap *idmap,
3903 const struct path *path, struct kstat *stat,
3904 u32 request_mask, unsigned int query_flags)
3905{
3906 struct inode *inode = d_inode(path->dentry);
3907 struct task_struct *p = get_proc_task(inode);
3908 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
3909
3910 if (p) {
3911 stat->nlink += get_nr_threads(p);
3912 put_task_struct(p);
3913 }
3914
3915 return 0;
3916}
3917
3918static const struct inode_operations proc_task_inode_operations = {
3919 .lookup = proc_task_lookup,
3920 .getattr = proc_task_getattr,
3921 .setattr = proc_setattr,
3922 .permission = proc_pid_permission,
3923};
3924
3925static const struct file_operations proc_task_operations = {
3926 .read = generic_read_dir,
3927 .iterate_shared = proc_task_readdir,
3928 .llseek = generic_file_llseek,
3929};
3930
3931void __init set_proc_pid_nlink(void)
3932{
3933 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3934 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3935}