Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/proc/base.c
   4 *
   5 *  Copyright (C) 1991, 1992 Linus Torvalds
   6 *
   7 *  proc base directory handling functions
   8 *
   9 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
  10 *  Instead of using magical inumbers to determine the kind of object
  11 *  we allocate and fill in-core inodes upon lookup. They don't even
  12 *  go into icache. We cache the reference to task_struct upon lookup too.
  13 *  Eventually it should become a filesystem in its own. We don't use the
  14 *  rest of procfs anymore.
  15 *
  16 *
  17 *  Changelog:
  18 *  17-Jan-2005
  19 *  Allan Bezerra
  20 *  Bruna Moreira <bruna.moreira@indt.org.br>
  21 *  Edjard Mota <edjard.mota@indt.org.br>
  22 *  Ilias Biris <ilias.biris@indt.org.br>
  23 *  Mauricio Lin <mauricio.lin@indt.org.br>
  24 *
  25 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  26 *
  27 *  A new process specific entry (smaps) included in /proc. It shows the
  28 *  size of rss for each memory area. The maps entry lacks information
  29 *  about physical memory size (rss) for each mapped file, i.e.,
  30 *  rss information for executables and library files.
  31 *  This additional information is useful for any tools that need to know
  32 *  about physical memory consumption for a process specific library.
  33 *
  34 *  Changelog:
  35 *  21-Feb-2005
  36 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  37 *  Pud inclusion in the page table walking.
  38 *
  39 *  ChangeLog:
  40 *  10-Mar-2005
  41 *  10LE Instituto Nokia de Tecnologia - INdT:
  42 *  A better way to walks through the page table as suggested by Hugh Dickins.
  43 *
  44 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  45 *  Smaps information related to shared, private, clean and dirty pages.
  46 *
  47 *  Paul Mundt <paul.mundt@nokia.com>:
  48 *  Overall revision about smaps.
  49 */
  50
  51#include <linux/uaccess.h>
  52
  53#include <linux/errno.h>
  54#include <linux/time.h>
  55#include <linux/proc_fs.h>
  56#include <linux/stat.h>
  57#include <linux/task_io_accounting_ops.h>
  58#include <linux/init.h>
  59#include <linux/capability.h>
  60#include <linux/file.h>
  61#include <linux/fdtable.h>
  62#include <linux/generic-radix-tree.h>
  63#include <linux/string.h>
  64#include <linux/seq_file.h>
  65#include <linux/namei.h>
  66#include <linux/mnt_namespace.h>
  67#include <linux/mm.h>
  68#include <linux/swap.h>
  69#include <linux/rcupdate.h>
 
  70#include <linux/stacktrace.h>
  71#include <linux/resource.h>
  72#include <linux/module.h>
  73#include <linux/mount.h>
  74#include <linux/security.h>
  75#include <linux/ptrace.h>
  76#include <linux/tracehook.h>
  77#include <linux/printk.h>
  78#include <linux/cache.h>
  79#include <linux/cgroup.h>
  80#include <linux/cpuset.h>
  81#include <linux/audit.h>
  82#include <linux/poll.h>
  83#include <linux/nsproxy.h>
  84#include <linux/oom.h>
  85#include <linux/elf.h>
  86#include <linux/pid_namespace.h>
  87#include <linux/user_namespace.h>
  88#include <linux/fs_struct.h>
  89#include <linux/slab.h>
  90#include <linux/sched/autogroup.h>
  91#include <linux/sched/mm.h>
  92#include <linux/sched/coredump.h>
  93#include <linux/sched/debug.h>
  94#include <linux/sched/stat.h>
  95#include <linux/posix-timers.h>
  96#include <linux/time_namespace.h>
  97#include <linux/resctrl.h>
 
  98#include <trace/events/oom.h>
  99#include "internal.h"
 100#include "fd.h"
 101
 102#include "../../lib/kstrtox.h"
 103
 104/* NOTE:
 105 *	Implementing inode permission operations in /proc is almost
 106 *	certainly an error.  Permission checks need to happen during
 107 *	each system call not at open time.  The reason is that most of
 108 *	what we wish to check for permissions in /proc varies at runtime.
 109 *
 110 *	The classic example of a problem is opening file descriptors
 111 *	in /proc for a task before it execs a suid executable.
 112 */
 113
 114static u8 nlink_tid __ro_after_init;
 115static u8 nlink_tgid __ro_after_init;
 116
 117struct pid_entry {
 118	const char *name;
 119	unsigned int len;
 120	umode_t mode;
 121	const struct inode_operations *iop;
 122	const struct file_operations *fop;
 123	union proc_op op;
 124};
 125
 126#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 127	.name = (NAME),					\
 128	.len  = sizeof(NAME) - 1,			\
 129	.mode = MODE,					\
 130	.iop  = IOP,					\
 131	.fop  = FOP,					\
 132	.op   = OP,					\
 133}
 134
 135#define DIR(NAME, MODE, iops, fops)	\
 136	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 137#define LNK(NAME, get_link)					\
 138	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 139		&proc_pid_link_inode_operations, NULL,		\
 140		{ .proc_get_link = get_link } )
 141#define REG(NAME, MODE, fops)				\
 142	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 143#define ONE(NAME, MODE, show)				\
 144	NOD(NAME, (S_IFREG|(MODE)),			\
 145		NULL, &proc_single_file_operations,	\
 146		{ .proc_show = show } )
 147#define ATTR(LSM, NAME, MODE)				\
 148	NOD(NAME, (S_IFREG|(MODE)),			\
 149		NULL, &proc_pid_attr_operations,	\
 150		{ .lsm = LSM })
 151
 152/*
 153 * Count the number of hardlinks for the pid_entry table, excluding the .
 154 * and .. links.
 155 */
 156static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 157	unsigned int n)
 158{
 159	unsigned int i;
 160	unsigned int count;
 161
 162	count = 2;
 163	for (i = 0; i < n; ++i) {
 164		if (S_ISDIR(entries[i].mode))
 165			++count;
 166	}
 167
 168	return count;
 169}
 170
 171static int get_task_root(struct task_struct *task, struct path *root)
 172{
 173	int result = -ENOENT;
 174
 175	task_lock(task);
 176	if (task->fs) {
 177		get_fs_root(task->fs, root);
 178		result = 0;
 179	}
 180	task_unlock(task);
 181	return result;
 182}
 183
 184static int proc_cwd_link(struct dentry *dentry, struct path *path)
 185{
 186	struct task_struct *task = get_proc_task(d_inode(dentry));
 187	int result = -ENOENT;
 188
 189	if (task) {
 190		task_lock(task);
 191		if (task->fs) {
 192			get_fs_pwd(task->fs, path);
 193			result = 0;
 194		}
 195		task_unlock(task);
 196		put_task_struct(task);
 197	}
 198	return result;
 199}
 200
 201static int proc_root_link(struct dentry *dentry, struct path *path)
 202{
 203	struct task_struct *task = get_proc_task(d_inode(dentry));
 204	int result = -ENOENT;
 205
 206	if (task) {
 207		result = get_task_root(task, path);
 208		put_task_struct(task);
 209	}
 210	return result;
 211}
 212
 213/*
 214 * If the user used setproctitle(), we just get the string from
 215 * user space at arg_start, and limit it to a maximum of one page.
 216 */
 217static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
 218				size_t count, unsigned long pos,
 219				unsigned long arg_start)
 220{
 
 
 221	char *page;
 222	int ret, got;
 223
 224	if (pos >= PAGE_SIZE)
 225		return 0;
 
 
 226
 227	page = (char *)__get_free_page(GFP_KERNEL);
 228	if (!page)
 229		return -ENOMEM;
 230
 231	ret = 0;
 232	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
 233	if (got > 0) {
 234		int len = strnlen(page, got);
 235
 236		/* Include the NUL character if it was found */
 237		if (len < got)
 238			len++;
 239
 240		if (len > pos) {
 241			len -= pos;
 242			if (len > count)
 243				len = count;
 244			len -= copy_to_user(buf, page+pos, len);
 245			if (!len)
 246				len = -EFAULT;
 247			ret = len;
 248		}
 249	}
 250	free_page((unsigned long)page);
 251	return ret;
 252}
 253
 254static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
 255			      size_t count, loff_t *ppos)
 256{
 257	unsigned long arg_start, arg_end, env_start, env_end;
 258	unsigned long pos, len;
 259	char *page, c;
 260
 261	/* Check if process spawned far enough to have cmdline. */
 262	if (!mm->env_end)
 263		return 0;
 
 
 264
 265	spin_lock(&mm->arg_lock);
 266	arg_start = mm->arg_start;
 267	arg_end = mm->arg_end;
 268	env_start = mm->env_start;
 269	env_end = mm->env_end;
 270	spin_unlock(&mm->arg_lock);
 271
 272	if (arg_start >= arg_end)
 273		return 0;
 274
 275	/*
 276	 * We allow setproctitle() to overwrite the argument
 277	 * strings, and overflow past the original end. But
 278	 * only when it overflows into the environment area.
 279	 */
 280	if (env_start != arg_end || env_end < env_start)
 281		env_start = env_end = arg_end;
 282	len = env_end - arg_start;
 283
 284	/* We're not going to care if "*ppos" has high bits set */
 285	pos = *ppos;
 286	if (pos >= len)
 287		return 0;
 288	if (count > len - pos)
 289		count = len - pos;
 290	if (!count)
 291		return 0;
 292
 
 
 
 
 
 293	/*
 294	 * Magical special case: if the argv[] end byte is not
 295	 * zero, the user has overwritten it with setproctitle(3).
 296	 *
 297	 * Possible future enhancement: do this only once when
 298	 * pos is 0, and set a flag in the 'struct file'.
 299	 */
 300	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
 301		return get_mm_proctitle(mm, buf, count, pos, arg_start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 302
 303	/*
 304	 * For the non-setproctitle() case we limit things strictly
 305	 * to the [arg_start, arg_end[ range.
 306	 */
 307	pos += arg_start;
 308	if (pos < arg_start || pos >= arg_end)
 309		return 0;
 310	if (count > arg_end - pos)
 311		count = arg_end - pos;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 312
 313	page = (char *)__get_free_page(GFP_KERNEL);
 314	if (!page)
 315		return -ENOMEM;
 
 
 
 
 
 
 
 316
 317	len = 0;
 318	while (count) {
 319		int got;
 320		size_t size = min_t(size_t, PAGE_SIZE, count);
 321
 322		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
 323		if (got <= 0)
 324			break;
 325		got -= copy_to_user(buf, page, got);
 326		if (unlikely(!got)) {
 327			if (!len)
 328				len = -EFAULT;
 329			break;
 330		}
 331		pos += got;
 332		buf += got;
 333		len += got;
 334		count -= got;
 335	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 336
 337	free_page((unsigned long)page);
 338	return len;
 339}
 
 340
 341static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
 342				size_t count, loff_t *pos)
 343{
 344	struct mm_struct *mm;
 345	ssize_t ret;
 346
 347	mm = get_task_mm(tsk);
 348	if (!mm)
 349		return 0;
 
 
 
 350
 351	ret = get_mm_cmdline(mm, buf, count, pos);
 
 
 352	mmput(mm);
 353	return ret;
 354}
 355
 356static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 357				     size_t count, loff_t *pos)
 358{
 359	struct task_struct *tsk;
 360	ssize_t ret;
 361
 362	BUG_ON(*pos < 0);
 363
 364	tsk = get_proc_task(file_inode(file));
 365	if (!tsk)
 366		return -ESRCH;
 367	ret = get_task_cmdline(tsk, buf, count, pos);
 368	put_task_struct(tsk);
 369	if (ret > 0)
 370		*pos += ret;
 371	return ret;
 372}
 373
 374static const struct file_operations proc_pid_cmdline_ops = {
 375	.read	= proc_pid_cmdline_read,
 376	.llseek	= generic_file_llseek,
 377};
 378
 379#ifdef CONFIG_KALLSYMS
 380/*
 381 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 382 * Returns the resolved symbol.  If that fails, simply return the address.
 383 */
 384static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 385			  struct pid *pid, struct task_struct *task)
 386{
 387	unsigned long wchan;
 
 388
 389	if (ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
 390		wchan = get_wchan(task);
 391	else
 392		wchan = 0;
 393
 394	if (wchan)
 395		seq_printf(m, "%ps", (void *) wchan);
 
 396	else
 397		seq_putc(m, '0');
 398
 399	return 0;
 400}
 401#endif /* CONFIG_KALLSYMS */
 402
 403static int lock_trace(struct task_struct *task)
 404{
 405	int err = down_read_killable(&task->signal->exec_update_lock);
 406	if (err)
 407		return err;
 408	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 409		up_read(&task->signal->exec_update_lock);
 410		return -EPERM;
 411	}
 412	return 0;
 413}
 414
 415static void unlock_trace(struct task_struct *task)
 416{
 417	up_read(&task->signal->exec_update_lock);
 418}
 419
 420#ifdef CONFIG_STACKTRACE
 421
 422#define MAX_STACK_TRACE_DEPTH	64
 423
 424static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 425			  struct pid *pid, struct task_struct *task)
 426{
 
 427	unsigned long *entries;
 428	int err;
 
 429
 430	/*
 431	 * The ability to racily run the kernel stack unwinder on a running task
 432	 * and then observe the unwinder output is scary; while it is useful for
 433	 * debugging kernel issues, it can also allow an attacker to leak kernel
 434	 * stack contents.
 435	 * Doing this in a manner that is at least safe from races would require
 436	 * some work to ensure that the remote task can not be scheduled; and
 437	 * even then, this would still expose the unwinder as local attack
 438	 * surface.
 439	 * Therefore, this interface is restricted to root.
 440	 */
 441	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
 442		return -EACCES;
 443
 444	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
 445				GFP_KERNEL);
 446	if (!entries)
 447		return -ENOMEM;
 448
 
 
 
 
 
 449	err = lock_trace(task);
 450	if (!err) {
 451		unsigned int i, nr_entries;
 452
 453		nr_entries = stack_trace_save_tsk(task, entries,
 454						  MAX_STACK_TRACE_DEPTH, 0);
 455
 456		for (i = 0; i < nr_entries; i++) {
 457			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
 458		}
 459
 460		unlock_trace(task);
 461	}
 462	kfree(entries);
 463
 464	return err;
 465}
 466#endif
 467
 468#ifdef CONFIG_SCHED_INFO
 469/*
 470 * Provides /proc/PID/schedstat
 471 */
 472static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 473			      struct pid *pid, struct task_struct *task)
 474{
 475	if (unlikely(!sched_info_on()))
 476		seq_puts(m, "0 0 0\n");
 477	else
 478		seq_printf(m, "%llu %llu %lu\n",
 479		   (unsigned long long)task->se.sum_exec_runtime,
 480		   (unsigned long long)task->sched_info.run_delay,
 481		   task->sched_info.pcount);
 482
 483	return 0;
 484}
 485#endif
 486
 487#ifdef CONFIG_LATENCYTOP
 488static int lstats_show_proc(struct seq_file *m, void *v)
 489{
 490	int i;
 491	struct inode *inode = m->private;
 492	struct task_struct *task = get_proc_task(inode);
 493
 494	if (!task)
 495		return -ESRCH;
 496	seq_puts(m, "Latency Top version : v0.1\n");
 497	for (i = 0; i < LT_SAVECOUNT; i++) {
 498		struct latency_record *lr = &task->latency_record[i];
 499		if (lr->backtrace[0]) {
 500			int q;
 501			seq_printf(m, "%i %li %li",
 502				   lr->count, lr->time, lr->max);
 503			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 504				unsigned long bt = lr->backtrace[q];
 505
 506				if (!bt)
 507					break;
 
 
 508				seq_printf(m, " %ps", (void *)bt);
 509			}
 510			seq_putc(m, '\n');
 511		}
 512
 513	}
 514	put_task_struct(task);
 515	return 0;
 516}
 517
 518static int lstats_open(struct inode *inode, struct file *file)
 519{
 520	return single_open(file, lstats_show_proc, inode);
 521}
 522
 523static ssize_t lstats_write(struct file *file, const char __user *buf,
 524			    size_t count, loff_t *offs)
 525{
 526	struct task_struct *task = get_proc_task(file_inode(file));
 527
 528	if (!task)
 529		return -ESRCH;
 530	clear_tsk_latency_tracing(task);
 531	put_task_struct(task);
 532
 533	return count;
 534}
 535
 536static const struct file_operations proc_lstats_operations = {
 537	.open		= lstats_open,
 538	.read		= seq_read,
 539	.write		= lstats_write,
 540	.llseek		= seq_lseek,
 541	.release	= single_release,
 542};
 543
 544#endif
 545
 546static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 547			  struct pid *pid, struct task_struct *task)
 548{
 549	unsigned long totalpages = totalram_pages() + total_swap_pages;
 550	unsigned long points = 0;
 551	long badness;
 552
 553	badness = oom_badness(task, totalpages);
 554	/*
 555	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
 556	 * badness value into [0, 2000] range which we have been
 557	 * exporting for a long time so userspace might depend on it.
 558	 */
 559	if (badness != LONG_MIN)
 560		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
 561
 
 
 562	seq_printf(m, "%lu\n", points);
 563
 564	return 0;
 565}
 566
 567struct limit_names {
 568	const char *name;
 569	const char *unit;
 570};
 571
 572static const struct limit_names lnames[RLIM_NLIMITS] = {
 573	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 574	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 575	[RLIMIT_DATA] = {"Max data size", "bytes"},
 576	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 577	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 578	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 579	[RLIMIT_NPROC] = {"Max processes", "processes"},
 580	[RLIMIT_NOFILE] = {"Max open files", "files"},
 581	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 582	[RLIMIT_AS] = {"Max address space", "bytes"},
 583	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 584	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 585	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 586	[RLIMIT_NICE] = {"Max nice priority", NULL},
 587	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 588	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 589};
 590
 591/* Display limits for a process */
 592static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 593			   struct pid *pid, struct task_struct *task)
 594{
 595	unsigned int i;
 596	unsigned long flags;
 597
 598	struct rlimit rlim[RLIM_NLIMITS];
 599
 600	if (!lock_task_sighand(task, &flags))
 601		return 0;
 602	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 603	unlock_task_sighand(task, &flags);
 604
 605	/*
 606	 * print the file header
 607	 */
 608	seq_puts(m, "Limit                     "
 609		"Soft Limit           "
 610		"Hard Limit           "
 611		"Units     \n");
 612
 613	for (i = 0; i < RLIM_NLIMITS; i++) {
 614		if (rlim[i].rlim_cur == RLIM_INFINITY)
 615			seq_printf(m, "%-25s %-20s ",
 616				   lnames[i].name, "unlimited");
 617		else
 618			seq_printf(m, "%-25s %-20lu ",
 619				   lnames[i].name, rlim[i].rlim_cur);
 620
 621		if (rlim[i].rlim_max == RLIM_INFINITY)
 622			seq_printf(m, "%-20s ", "unlimited");
 623		else
 624			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 625
 626		if (lnames[i].unit)
 627			seq_printf(m, "%-10s\n", lnames[i].unit);
 628		else
 629			seq_putc(m, '\n');
 630	}
 631
 632	return 0;
 633}
 634
 635#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 636static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 637			    struct pid *pid, struct task_struct *task)
 638{
 639	struct syscall_info info;
 640	u64 *args = &info.data.args[0];
 641	int res;
 642
 643	res = lock_trace(task);
 644	if (res)
 645		return res;
 646
 647	if (task_current_syscall(task, &info))
 648		seq_puts(m, "running\n");
 649	else if (info.data.nr < 0)
 650		seq_printf(m, "%d 0x%llx 0x%llx\n",
 651			   info.data.nr, info.sp, info.data.instruction_pointer);
 652	else
 653		seq_printf(m,
 654		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
 655		       info.data.nr,
 656		       args[0], args[1], args[2], args[3], args[4], args[5],
 657		       info.sp, info.data.instruction_pointer);
 658	unlock_trace(task);
 659
 660	return 0;
 661}
 662#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 663
 664/************************************************************************/
 665/*                       Here the fs part begins                        */
 666/************************************************************************/
 667
 668/* permission checks */
 669static int proc_fd_access_allowed(struct inode *inode)
 670{
 671	struct task_struct *task;
 672	int allowed = 0;
 673	/* Allow access to a task's file descriptors if it is us or we
 674	 * may use ptrace attach to the process and find out that
 675	 * information.
 676	 */
 677	task = get_proc_task(inode);
 678	if (task) {
 679		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 680		put_task_struct(task);
 681	}
 682	return allowed;
 683}
 684
 685int proc_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
 686		 struct iattr *attr)
 687{
 688	int error;
 689	struct inode *inode = d_inode(dentry);
 690
 691	if (attr->ia_valid & ATTR_MODE)
 692		return -EPERM;
 693
 694	error = setattr_prepare(&init_user_ns, dentry, attr);
 695	if (error)
 696		return error;
 697
 698	setattr_copy(&init_user_ns, inode, attr);
 699	mark_inode_dirty(inode);
 700	return 0;
 701}
 702
 703/*
 704 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 705 * or euid/egid (for hide_pid_min=2)?
 706 */
 707static bool has_pid_permissions(struct proc_fs_info *fs_info,
 708				 struct task_struct *task,
 709				 enum proc_hidepid hide_pid_min)
 710{
 711	/*
 712	 * If 'hidpid' mount option is set force a ptrace check,
 713	 * we indicate that we are using a filesystem syscall
 714	 * by passing PTRACE_MODE_READ_FSCREDS
 715	 */
 716	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
 717		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 718
 719	if (fs_info->hide_pid < hide_pid_min)
 720		return true;
 721	if (in_group_p(fs_info->pid_gid))
 722		return true;
 723	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 724}
 725
 726
 727static int proc_pid_permission(struct user_namespace *mnt_userns,
 728			       struct inode *inode, int mask)
 729{
 730	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
 731	struct task_struct *task;
 732	bool has_perms;
 733
 734	task = get_proc_task(inode);
 735	if (!task)
 736		return -ESRCH;
 737	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
 738	put_task_struct(task);
 739
 740	if (!has_perms) {
 741		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
 742			/*
 743			 * Let's make getdents(), stat(), and open()
 744			 * consistent with each other.  If a process
 745			 * may not stat() a file, it shouldn't be seen
 746			 * in procfs at all.
 747			 */
 748			return -ENOENT;
 749		}
 750
 751		return -EPERM;
 752	}
 753	return generic_permission(&init_user_ns, inode, mask);
 754}
 755
 756
 757
 758static const struct inode_operations proc_def_inode_operations = {
 759	.setattr	= proc_setattr,
 760};
 761
 762static int proc_single_show(struct seq_file *m, void *v)
 763{
 764	struct inode *inode = m->private;
 765	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
 766	struct pid *pid = proc_pid(inode);
 767	struct task_struct *task;
 768	int ret;
 769
 
 
 770	task = get_pid_task(pid, PIDTYPE_PID);
 771	if (!task)
 772		return -ESRCH;
 773
 774	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 775
 776	put_task_struct(task);
 777	return ret;
 778}
 779
 780static int proc_single_open(struct inode *inode, struct file *filp)
 781{
 782	return single_open(filp, proc_single_show, inode);
 783}
 784
 785static const struct file_operations proc_single_file_operations = {
 786	.open		= proc_single_open,
 787	.read		= seq_read,
 788	.llseek		= seq_lseek,
 789	.release	= single_release,
 790};
 791
 792
 793struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 794{
 795	struct task_struct *task = get_proc_task(inode);
 796	struct mm_struct *mm = ERR_PTR(-ESRCH);
 797
 798	if (task) {
 799		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 800		put_task_struct(task);
 801
 802		if (!IS_ERR_OR_NULL(mm)) {
 803			/* ensure this mm_struct can't be freed */
 804			mmgrab(mm);
 805			/* but do not pin its memory */
 806			mmput(mm);
 807		}
 808	}
 809
 810	return mm;
 811}
 812
 813static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 814{
 815	struct mm_struct *mm = proc_mem_open(inode, mode);
 816
 817	if (IS_ERR(mm))
 818		return PTR_ERR(mm);
 819
 820	file->private_data = mm;
 821	return 0;
 822}
 823
 824static int mem_open(struct inode *inode, struct file *file)
 825{
 826	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 827
 828	/* OK to pass negative loff_t, we can catch out-of-range */
 829	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 830
 831	return ret;
 832}
 833
 834static ssize_t mem_rw(struct file *file, char __user *buf,
 835			size_t count, loff_t *ppos, int write)
 836{
 837	struct mm_struct *mm = file->private_data;
 838	unsigned long addr = *ppos;
 839	ssize_t copied;
 840	char *page;
 841	unsigned int flags;
 842
 843	if (!mm)
 844		return 0;
 845
 846	page = (char *)__get_free_page(GFP_KERNEL);
 847	if (!page)
 848		return -ENOMEM;
 849
 850	copied = 0;
 851	if (!mmget_not_zero(mm))
 852		goto free;
 853
 854	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
 
 
 
 855
 856	while (count > 0) {
 857		size_t this_len = min_t(size_t, count, PAGE_SIZE);
 858
 859		if (write && copy_from_user(page, buf, this_len)) {
 860			copied = -EFAULT;
 861			break;
 862		}
 863
 864		this_len = access_remote_vm(mm, addr, page, this_len, flags);
 865		if (!this_len) {
 866			if (!copied)
 867				copied = -EIO;
 868			break;
 869		}
 870
 871		if (!write && copy_to_user(buf, page, this_len)) {
 872			copied = -EFAULT;
 873			break;
 874		}
 875
 876		buf += this_len;
 877		addr += this_len;
 878		copied += this_len;
 879		count -= this_len;
 880	}
 881	*ppos = addr;
 882
 883	mmput(mm);
 884free:
 885	free_page((unsigned long) page);
 886	return copied;
 887}
 888
 889static ssize_t mem_read(struct file *file, char __user *buf,
 890			size_t count, loff_t *ppos)
 891{
 892	return mem_rw(file, buf, count, ppos, 0);
 893}
 894
 895static ssize_t mem_write(struct file *file, const char __user *buf,
 896			 size_t count, loff_t *ppos)
 897{
 898	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 899}
 900
 901loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 902{
 903	switch (orig) {
 904	case 0:
 905		file->f_pos = offset;
 906		break;
 907	case 1:
 908		file->f_pos += offset;
 909		break;
 910	default:
 911		return -EINVAL;
 912	}
 913	force_successful_syscall_return();
 914	return file->f_pos;
 915}
 916
 917static int mem_release(struct inode *inode, struct file *file)
 918{
 919	struct mm_struct *mm = file->private_data;
 920	if (mm)
 921		mmdrop(mm);
 922	return 0;
 923}
 924
 925static const struct file_operations proc_mem_operations = {
 926	.llseek		= mem_lseek,
 927	.read		= mem_read,
 928	.write		= mem_write,
 929	.open		= mem_open,
 930	.release	= mem_release,
 931};
 932
 933static int environ_open(struct inode *inode, struct file *file)
 934{
 935	return __mem_open(inode, file, PTRACE_MODE_READ);
 936}
 937
 938static ssize_t environ_read(struct file *file, char __user *buf,
 939			size_t count, loff_t *ppos)
 940{
 941	char *page;
 942	unsigned long src = *ppos;
 943	int ret = 0;
 944	struct mm_struct *mm = file->private_data;
 945	unsigned long env_start, env_end;
 946
 947	/* Ensure the process spawned far enough to have an environment. */
 948	if (!mm || !mm->env_end)
 949		return 0;
 950
 951	page = (char *)__get_free_page(GFP_KERNEL);
 952	if (!page)
 953		return -ENOMEM;
 954
 955	ret = 0;
 956	if (!mmget_not_zero(mm))
 957		goto free;
 958
 959	spin_lock(&mm->arg_lock);
 960	env_start = mm->env_start;
 961	env_end = mm->env_end;
 962	spin_unlock(&mm->arg_lock);
 963
 964	while (count > 0) {
 965		size_t this_len, max_len;
 966		int retval;
 967
 968		if (src >= (env_end - env_start))
 969			break;
 970
 971		this_len = env_end - (env_start + src);
 972
 973		max_len = min_t(size_t, PAGE_SIZE, count);
 974		this_len = min(max_len, this_len);
 975
 976		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
 977
 978		if (retval <= 0) {
 979			ret = retval;
 980			break;
 981		}
 982
 983		if (copy_to_user(buf, page, retval)) {
 984			ret = -EFAULT;
 985			break;
 986		}
 987
 988		ret += retval;
 989		src += retval;
 990		buf += retval;
 991		count -= retval;
 992	}
 993	*ppos = src;
 994	mmput(mm);
 995
 996free:
 997	free_page((unsigned long) page);
 998	return ret;
 999}
1000
1001static const struct file_operations proc_environ_operations = {
1002	.open		= environ_open,
1003	.read		= environ_read,
1004	.llseek		= generic_file_llseek,
1005	.release	= mem_release,
1006};
1007
1008static int auxv_open(struct inode *inode, struct file *file)
1009{
1010	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1011}
1012
1013static ssize_t auxv_read(struct file *file, char __user *buf,
1014			size_t count, loff_t *ppos)
1015{
1016	struct mm_struct *mm = file->private_data;
1017	unsigned int nwords = 0;
1018
1019	if (!mm)
1020		return 0;
1021	do {
1022		nwords += 2;
1023	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1024	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1025				       nwords * sizeof(mm->saved_auxv[0]));
1026}
1027
1028static const struct file_operations proc_auxv_operations = {
1029	.open		= auxv_open,
1030	.read		= auxv_read,
1031	.llseek		= generic_file_llseek,
1032	.release	= mem_release,
1033};
1034
1035static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1036			    loff_t *ppos)
1037{
1038	struct task_struct *task = get_proc_task(file_inode(file));
1039	char buffer[PROC_NUMBUF];
1040	int oom_adj = OOM_ADJUST_MIN;
1041	size_t len;
1042
1043	if (!task)
1044		return -ESRCH;
1045	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1046		oom_adj = OOM_ADJUST_MAX;
1047	else
1048		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1049			  OOM_SCORE_ADJ_MAX;
1050	put_task_struct(task);
1051	if (oom_adj > OOM_ADJUST_MAX)
1052		oom_adj = OOM_ADJUST_MAX;
1053	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1054	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1055}
1056
1057static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1058{
 
1059	struct mm_struct *mm = NULL;
1060	struct task_struct *task;
1061	int err = 0;
1062
1063	task = get_proc_task(file_inode(file));
1064	if (!task)
1065		return -ESRCH;
1066
1067	mutex_lock(&oom_adj_mutex);
1068	if (legacy) {
1069		if (oom_adj < task->signal->oom_score_adj &&
1070				!capable(CAP_SYS_RESOURCE)) {
1071			err = -EACCES;
1072			goto err_unlock;
1073		}
1074		/*
1075		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1076		 * /proc/pid/oom_score_adj instead.
1077		 */
1078		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1079			  current->comm, task_pid_nr(current), task_pid_nr(task),
1080			  task_pid_nr(task));
1081	} else {
1082		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1083				!capable(CAP_SYS_RESOURCE)) {
1084			err = -EACCES;
1085			goto err_unlock;
1086		}
1087	}
1088
1089	/*
1090	 * Make sure we will check other processes sharing the mm if this is
1091	 * not vfrok which wants its own oom_score_adj.
1092	 * pin the mm so it doesn't go away and get reused after task_unlock
1093	 */
1094	if (!task->vfork_done) {
1095		struct task_struct *p = find_lock_task_mm(task);
1096
1097		if (p) {
1098			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1099				mm = p->mm;
1100				mmgrab(mm);
1101			}
1102			task_unlock(p);
1103		}
1104	}
1105
1106	task->signal->oom_score_adj = oom_adj;
1107	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1108		task->signal->oom_score_adj_min = (short)oom_adj;
1109	trace_oom_score_adj_update(task);
1110
1111	if (mm) {
1112		struct task_struct *p;
1113
1114		rcu_read_lock();
1115		for_each_process(p) {
1116			if (same_thread_group(task, p))
1117				continue;
1118
1119			/* do not touch kernel threads or the global init */
1120			if (p->flags & PF_KTHREAD || is_global_init(p))
1121				continue;
1122
1123			task_lock(p);
1124			if (!p->vfork_done && process_shares_mm(p, mm)) {
 
 
 
 
1125				p->signal->oom_score_adj = oom_adj;
1126				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1127					p->signal->oom_score_adj_min = (short)oom_adj;
1128			}
1129			task_unlock(p);
1130		}
1131		rcu_read_unlock();
1132		mmdrop(mm);
1133	}
1134err_unlock:
1135	mutex_unlock(&oom_adj_mutex);
1136	put_task_struct(task);
1137	return err;
1138}
1139
1140/*
1141 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1142 * kernels.  The effective policy is defined by oom_score_adj, which has a
1143 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1144 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1145 * Processes that become oom disabled via oom_adj will still be oom disabled
1146 * with this implementation.
1147 *
1148 * oom_adj cannot be removed since existing userspace binaries use it.
1149 */
1150static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1151			     size_t count, loff_t *ppos)
1152{
1153	char buffer[PROC_NUMBUF];
1154	int oom_adj;
1155	int err;
1156
1157	memset(buffer, 0, sizeof(buffer));
1158	if (count > sizeof(buffer) - 1)
1159		count = sizeof(buffer) - 1;
1160	if (copy_from_user(buffer, buf, count)) {
1161		err = -EFAULT;
1162		goto out;
1163	}
1164
1165	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1166	if (err)
1167		goto out;
1168	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1169	     oom_adj != OOM_DISABLE) {
1170		err = -EINVAL;
1171		goto out;
1172	}
1173
1174	/*
1175	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1176	 * value is always attainable.
1177	 */
1178	if (oom_adj == OOM_ADJUST_MAX)
1179		oom_adj = OOM_SCORE_ADJ_MAX;
1180	else
1181		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1182
1183	err = __set_oom_adj(file, oom_adj, true);
1184out:
1185	return err < 0 ? err : count;
1186}
1187
1188static const struct file_operations proc_oom_adj_operations = {
1189	.read		= oom_adj_read,
1190	.write		= oom_adj_write,
1191	.llseek		= generic_file_llseek,
1192};
1193
1194static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1195					size_t count, loff_t *ppos)
1196{
1197	struct task_struct *task = get_proc_task(file_inode(file));
1198	char buffer[PROC_NUMBUF];
1199	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1200	size_t len;
1201
1202	if (!task)
1203		return -ESRCH;
1204	oom_score_adj = task->signal->oom_score_adj;
1205	put_task_struct(task);
1206	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1207	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1208}
1209
1210static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1211					size_t count, loff_t *ppos)
1212{
1213	char buffer[PROC_NUMBUF];
1214	int oom_score_adj;
1215	int err;
1216
1217	memset(buffer, 0, sizeof(buffer));
1218	if (count > sizeof(buffer) - 1)
1219		count = sizeof(buffer) - 1;
1220	if (copy_from_user(buffer, buf, count)) {
1221		err = -EFAULT;
1222		goto out;
1223	}
1224
1225	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1226	if (err)
1227		goto out;
1228	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1229			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1230		err = -EINVAL;
1231		goto out;
1232	}
1233
1234	err = __set_oom_adj(file, oom_score_adj, false);
1235out:
1236	return err < 0 ? err : count;
1237}
1238
1239static const struct file_operations proc_oom_score_adj_operations = {
1240	.read		= oom_score_adj_read,
1241	.write		= oom_score_adj_write,
1242	.llseek		= default_llseek,
1243};
1244
1245#ifdef CONFIG_AUDIT
1246#define TMPBUFLEN 11
1247static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1248				  size_t count, loff_t *ppos)
1249{
1250	struct inode * inode = file_inode(file);
1251	struct task_struct *task = get_proc_task(inode);
1252	ssize_t length;
1253	char tmpbuf[TMPBUFLEN];
1254
1255	if (!task)
1256		return -ESRCH;
1257	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1258			   from_kuid(file->f_cred->user_ns,
1259				     audit_get_loginuid(task)));
1260	put_task_struct(task);
1261	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1262}
1263
1264static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1265				   size_t count, loff_t *ppos)
1266{
1267	struct inode * inode = file_inode(file);
1268	uid_t loginuid;
1269	kuid_t kloginuid;
1270	int rv;
1271
1272	/* Don't let kthreads write their own loginuid */
1273	if (current->flags & PF_KTHREAD)
1274		return -EPERM;
1275
1276	rcu_read_lock();
1277	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1278		rcu_read_unlock();
1279		return -EPERM;
1280	}
1281	rcu_read_unlock();
1282
1283	if (*ppos != 0) {
1284		/* No partial writes. */
1285		return -EINVAL;
1286	}
1287
1288	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1289	if (rv < 0)
1290		return rv;
1291
1292	/* is userspace tring to explicitly UNSET the loginuid? */
1293	if (loginuid == AUDIT_UID_UNSET) {
1294		kloginuid = INVALID_UID;
1295	} else {
1296		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1297		if (!uid_valid(kloginuid))
1298			return -EINVAL;
1299	}
1300
1301	rv = audit_set_loginuid(kloginuid);
1302	if (rv < 0)
1303		return rv;
1304	return count;
1305}
1306
1307static const struct file_operations proc_loginuid_operations = {
1308	.read		= proc_loginuid_read,
1309	.write		= proc_loginuid_write,
1310	.llseek		= generic_file_llseek,
1311};
1312
1313static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1314				  size_t count, loff_t *ppos)
1315{
1316	struct inode * inode = file_inode(file);
1317	struct task_struct *task = get_proc_task(inode);
1318	ssize_t length;
1319	char tmpbuf[TMPBUFLEN];
1320
1321	if (!task)
1322		return -ESRCH;
1323	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1324				audit_get_sessionid(task));
1325	put_task_struct(task);
1326	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1327}
1328
1329static const struct file_operations proc_sessionid_operations = {
1330	.read		= proc_sessionid_read,
1331	.llseek		= generic_file_llseek,
1332};
1333#endif
1334
1335#ifdef CONFIG_FAULT_INJECTION
1336static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1337				      size_t count, loff_t *ppos)
1338{
1339	struct task_struct *task = get_proc_task(file_inode(file));
1340	char buffer[PROC_NUMBUF];
1341	size_t len;
1342	int make_it_fail;
1343
1344	if (!task)
1345		return -ESRCH;
1346	make_it_fail = task->make_it_fail;
1347	put_task_struct(task);
1348
1349	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1350
1351	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1352}
1353
1354static ssize_t proc_fault_inject_write(struct file * file,
1355			const char __user * buf, size_t count, loff_t *ppos)
1356{
1357	struct task_struct *task;
1358	char buffer[PROC_NUMBUF];
1359	int make_it_fail;
1360	int rv;
1361
1362	if (!capable(CAP_SYS_RESOURCE))
1363		return -EPERM;
1364	memset(buffer, 0, sizeof(buffer));
1365	if (count > sizeof(buffer) - 1)
1366		count = sizeof(buffer) - 1;
1367	if (copy_from_user(buffer, buf, count))
1368		return -EFAULT;
1369	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1370	if (rv < 0)
1371		return rv;
1372	if (make_it_fail < 0 || make_it_fail > 1)
1373		return -EINVAL;
1374
1375	task = get_proc_task(file_inode(file));
1376	if (!task)
1377		return -ESRCH;
1378	task->make_it_fail = make_it_fail;
1379	put_task_struct(task);
1380
1381	return count;
1382}
1383
1384static const struct file_operations proc_fault_inject_operations = {
1385	.read		= proc_fault_inject_read,
1386	.write		= proc_fault_inject_write,
1387	.llseek		= generic_file_llseek,
1388};
1389
1390static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1391				   size_t count, loff_t *ppos)
1392{
1393	struct task_struct *task;
1394	int err;
1395	unsigned int n;
1396
1397	err = kstrtouint_from_user(buf, count, 0, &n);
1398	if (err)
1399		return err;
1400
1401	task = get_proc_task(file_inode(file));
1402	if (!task)
1403		return -ESRCH;
1404	task->fail_nth = n;
1405	put_task_struct(task);
1406
1407	return count;
1408}
1409
1410static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1411				  size_t count, loff_t *ppos)
1412{
1413	struct task_struct *task;
1414	char numbuf[PROC_NUMBUF];
1415	ssize_t len;
1416
1417	task = get_proc_task(file_inode(file));
1418	if (!task)
1419		return -ESRCH;
1420	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1421	put_task_struct(task);
1422	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1423}
1424
1425static const struct file_operations proc_fail_nth_operations = {
1426	.read		= proc_fail_nth_read,
1427	.write		= proc_fail_nth_write,
1428};
1429#endif
1430
1431
1432#ifdef CONFIG_SCHED_DEBUG
1433/*
1434 * Print out various scheduling related per-task fields:
1435 */
1436static int sched_show(struct seq_file *m, void *v)
1437{
1438	struct inode *inode = m->private;
1439	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1440	struct task_struct *p;
1441
1442	p = get_proc_task(inode);
1443	if (!p)
1444		return -ESRCH;
1445	proc_sched_show_task(p, ns, m);
1446
1447	put_task_struct(p);
1448
1449	return 0;
1450}
1451
1452static ssize_t
1453sched_write(struct file *file, const char __user *buf,
1454	    size_t count, loff_t *offset)
1455{
1456	struct inode *inode = file_inode(file);
1457	struct task_struct *p;
1458
1459	p = get_proc_task(inode);
1460	if (!p)
1461		return -ESRCH;
1462	proc_sched_set_task(p);
1463
1464	put_task_struct(p);
1465
1466	return count;
1467}
1468
1469static int sched_open(struct inode *inode, struct file *filp)
1470{
1471	return single_open(filp, sched_show, inode);
1472}
1473
1474static const struct file_operations proc_pid_sched_operations = {
1475	.open		= sched_open,
1476	.read		= seq_read,
1477	.write		= sched_write,
1478	.llseek		= seq_lseek,
1479	.release	= single_release,
1480};
1481
1482#endif
1483
1484#ifdef CONFIG_SCHED_AUTOGROUP
1485/*
1486 * Print out autogroup related information:
1487 */
1488static int sched_autogroup_show(struct seq_file *m, void *v)
1489{
1490	struct inode *inode = m->private;
1491	struct task_struct *p;
1492
1493	p = get_proc_task(inode);
1494	if (!p)
1495		return -ESRCH;
1496	proc_sched_autogroup_show_task(p, m);
1497
1498	put_task_struct(p);
1499
1500	return 0;
1501}
1502
1503static ssize_t
1504sched_autogroup_write(struct file *file, const char __user *buf,
1505	    size_t count, loff_t *offset)
1506{
1507	struct inode *inode = file_inode(file);
1508	struct task_struct *p;
1509	char buffer[PROC_NUMBUF];
1510	int nice;
1511	int err;
1512
1513	memset(buffer, 0, sizeof(buffer));
1514	if (count > sizeof(buffer) - 1)
1515		count = sizeof(buffer) - 1;
1516	if (copy_from_user(buffer, buf, count))
1517		return -EFAULT;
1518
1519	err = kstrtoint(strstrip(buffer), 0, &nice);
1520	if (err < 0)
1521		return err;
1522
1523	p = get_proc_task(inode);
1524	if (!p)
1525		return -ESRCH;
1526
1527	err = proc_sched_autogroup_set_nice(p, nice);
1528	if (err)
1529		count = err;
1530
1531	put_task_struct(p);
1532
1533	return count;
1534}
1535
1536static int sched_autogroup_open(struct inode *inode, struct file *filp)
1537{
1538	int ret;
1539
1540	ret = single_open(filp, sched_autogroup_show, NULL);
1541	if (!ret) {
1542		struct seq_file *m = filp->private_data;
1543
1544		m->private = inode;
1545	}
1546	return ret;
1547}
1548
1549static const struct file_operations proc_pid_sched_autogroup_operations = {
1550	.open		= sched_autogroup_open,
1551	.read		= seq_read,
1552	.write		= sched_autogroup_write,
1553	.llseek		= seq_lseek,
1554	.release	= single_release,
1555};
1556
1557#endif /* CONFIG_SCHED_AUTOGROUP */
1558
1559#ifdef CONFIG_TIME_NS
1560static int timens_offsets_show(struct seq_file *m, void *v)
1561{
1562	struct task_struct *p;
1563
1564	p = get_proc_task(file_inode(m->file));
1565	if (!p)
1566		return -ESRCH;
1567	proc_timens_show_offsets(p, m);
1568
1569	put_task_struct(p);
1570
1571	return 0;
1572}
1573
1574static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1575				    size_t count, loff_t *ppos)
1576{
1577	struct inode *inode = file_inode(file);
1578	struct proc_timens_offset offsets[2];
1579	char *kbuf = NULL, *pos, *next_line;
1580	struct task_struct *p;
1581	int ret, noffsets;
1582
1583	/* Only allow < page size writes at the beginning of the file */
1584	if ((*ppos != 0) || (count >= PAGE_SIZE))
1585		return -EINVAL;
1586
1587	/* Slurp in the user data */
1588	kbuf = memdup_user_nul(buf, count);
1589	if (IS_ERR(kbuf))
1590		return PTR_ERR(kbuf);
1591
1592	/* Parse the user data */
1593	ret = -EINVAL;
1594	noffsets = 0;
1595	for (pos = kbuf; pos; pos = next_line) {
1596		struct proc_timens_offset *off = &offsets[noffsets];
1597		char clock[10];
1598		int err;
1599
1600		/* Find the end of line and ensure we don't look past it */
1601		next_line = strchr(pos, '\n');
1602		if (next_line) {
1603			*next_line = '\0';
1604			next_line++;
1605			if (*next_line == '\0')
1606				next_line = NULL;
1607		}
1608
1609		err = sscanf(pos, "%9s %lld %lu", clock,
1610				&off->val.tv_sec, &off->val.tv_nsec);
1611		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1612			goto out;
1613
1614		clock[sizeof(clock) - 1] = 0;
1615		if (strcmp(clock, "monotonic") == 0 ||
1616		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1617			off->clockid = CLOCK_MONOTONIC;
1618		else if (strcmp(clock, "boottime") == 0 ||
1619			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1620			off->clockid = CLOCK_BOOTTIME;
1621		else
1622			goto out;
1623
1624		noffsets++;
1625		if (noffsets == ARRAY_SIZE(offsets)) {
1626			if (next_line)
1627				count = next_line - kbuf;
1628			break;
1629		}
1630	}
1631
1632	ret = -ESRCH;
1633	p = get_proc_task(inode);
1634	if (!p)
1635		goto out;
1636	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1637	put_task_struct(p);
1638	if (ret)
1639		goto out;
1640
1641	ret = count;
1642out:
1643	kfree(kbuf);
1644	return ret;
1645}
1646
1647static int timens_offsets_open(struct inode *inode, struct file *filp)
1648{
1649	return single_open(filp, timens_offsets_show, inode);
1650}
1651
1652static const struct file_operations proc_timens_offsets_operations = {
1653	.open		= timens_offsets_open,
1654	.read		= seq_read,
1655	.write		= timens_offsets_write,
1656	.llseek		= seq_lseek,
1657	.release	= single_release,
1658};
1659#endif /* CONFIG_TIME_NS */
1660
1661static ssize_t comm_write(struct file *file, const char __user *buf,
1662				size_t count, loff_t *offset)
1663{
1664	struct inode *inode = file_inode(file);
1665	struct task_struct *p;
1666	char buffer[TASK_COMM_LEN];
1667	const size_t maxlen = sizeof(buffer) - 1;
1668
1669	memset(buffer, 0, sizeof(buffer));
1670	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1671		return -EFAULT;
1672
1673	p = get_proc_task(inode);
1674	if (!p)
1675		return -ESRCH;
1676
1677	if (same_thread_group(current, p))
1678		set_task_comm(p, buffer);
1679	else
1680		count = -EINVAL;
1681
1682	put_task_struct(p);
1683
1684	return count;
1685}
1686
1687static int comm_show(struct seq_file *m, void *v)
1688{
1689	struct inode *inode = m->private;
1690	struct task_struct *p;
1691
1692	p = get_proc_task(inode);
1693	if (!p)
1694		return -ESRCH;
1695
1696	proc_task_name(m, p, false);
1697	seq_putc(m, '\n');
 
1698
1699	put_task_struct(p);
1700
1701	return 0;
1702}
1703
1704static int comm_open(struct inode *inode, struct file *filp)
1705{
1706	return single_open(filp, comm_show, inode);
1707}
1708
1709static const struct file_operations proc_pid_set_comm_operations = {
1710	.open		= comm_open,
1711	.read		= seq_read,
1712	.write		= comm_write,
1713	.llseek		= seq_lseek,
1714	.release	= single_release,
1715};
1716
1717static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1718{
1719	struct task_struct *task;
1720	struct file *exe_file;
1721
1722	task = get_proc_task(d_inode(dentry));
1723	if (!task)
1724		return -ENOENT;
1725	exe_file = get_task_exe_file(task);
1726	put_task_struct(task);
1727	if (exe_file) {
1728		*exe_path = exe_file->f_path;
1729		path_get(&exe_file->f_path);
1730		fput(exe_file);
1731		return 0;
1732	} else
1733		return -ENOENT;
1734}
1735
1736static const char *proc_pid_get_link(struct dentry *dentry,
1737				     struct inode *inode,
1738				     struct delayed_call *done)
1739{
1740	struct path path;
1741	int error = -EACCES;
1742
1743	if (!dentry)
1744		return ERR_PTR(-ECHILD);
1745
1746	/* Are we allowed to snoop on the tasks file descriptors? */
1747	if (!proc_fd_access_allowed(inode))
1748		goto out;
1749
1750	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1751	if (error)
1752		goto out;
1753
1754	error = nd_jump_link(&path);
 
1755out:
1756	return ERR_PTR(error);
1757}
1758
1759static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1760{
1761	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1762	char *pathname;
1763	int len;
1764
1765	if (!tmp)
1766		return -ENOMEM;
1767
1768	pathname = d_path(path, tmp, PAGE_SIZE);
1769	len = PTR_ERR(pathname);
1770	if (IS_ERR(pathname))
1771		goto out;
1772	len = tmp + PAGE_SIZE - 1 - pathname;
1773
1774	if (len > buflen)
1775		len = buflen;
1776	if (copy_to_user(buffer, pathname, len))
1777		len = -EFAULT;
1778 out:
1779	free_page((unsigned long)tmp);
1780	return len;
1781}
1782
1783static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1784{
1785	int error = -EACCES;
1786	struct inode *inode = d_inode(dentry);
1787	struct path path;
1788
1789	/* Are we allowed to snoop on the tasks file descriptors? */
1790	if (!proc_fd_access_allowed(inode))
1791		goto out;
1792
1793	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1794	if (error)
1795		goto out;
1796
1797	error = do_proc_readlink(&path, buffer, buflen);
1798	path_put(&path);
1799out:
1800	return error;
1801}
1802
1803const struct inode_operations proc_pid_link_inode_operations = {
1804	.readlink	= proc_pid_readlink,
1805	.get_link	= proc_pid_get_link,
1806	.setattr	= proc_setattr,
1807};
1808
1809
1810/* building an inode */
1811
1812void task_dump_owner(struct task_struct *task, umode_t mode,
1813		     kuid_t *ruid, kgid_t *rgid)
1814{
1815	/* Depending on the state of dumpable compute who should own a
1816	 * proc file for a task.
1817	 */
1818	const struct cred *cred;
1819	kuid_t uid;
1820	kgid_t gid;
1821
1822	if (unlikely(task->flags & PF_KTHREAD)) {
1823		*ruid = GLOBAL_ROOT_UID;
1824		*rgid = GLOBAL_ROOT_GID;
1825		return;
1826	}
1827
1828	/* Default to the tasks effective ownership */
1829	rcu_read_lock();
1830	cred = __task_cred(task);
1831	uid = cred->euid;
1832	gid = cred->egid;
1833	rcu_read_unlock();
1834
1835	/*
1836	 * Before the /proc/pid/status file was created the only way to read
1837	 * the effective uid of a /process was to stat /proc/pid.  Reading
1838	 * /proc/pid/status is slow enough that procps and other packages
1839	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1840	 * made this apply to all per process world readable and executable
1841	 * directories.
1842	 */
1843	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1844		struct mm_struct *mm;
1845		task_lock(task);
1846		mm = task->mm;
1847		/* Make non-dumpable tasks owned by some root */
1848		if (mm) {
1849			if (get_dumpable(mm) != SUID_DUMP_USER) {
1850				struct user_namespace *user_ns = mm->user_ns;
1851
1852				uid = make_kuid(user_ns, 0);
1853				if (!uid_valid(uid))
1854					uid = GLOBAL_ROOT_UID;
1855
1856				gid = make_kgid(user_ns, 0);
1857				if (!gid_valid(gid))
1858					gid = GLOBAL_ROOT_GID;
1859			}
1860		} else {
1861			uid = GLOBAL_ROOT_UID;
1862			gid = GLOBAL_ROOT_GID;
1863		}
1864		task_unlock(task);
1865	}
1866	*ruid = uid;
1867	*rgid = gid;
1868}
1869
1870void proc_pid_evict_inode(struct proc_inode *ei)
1871{
1872	struct pid *pid = ei->pid;
1873
1874	if (S_ISDIR(ei->vfs_inode.i_mode)) {
1875		spin_lock(&pid->lock);
1876		hlist_del_init_rcu(&ei->sibling_inodes);
1877		spin_unlock(&pid->lock);
1878	}
1879
1880	put_pid(pid);
1881}
1882
1883struct inode *proc_pid_make_inode(struct super_block * sb,
1884				  struct task_struct *task, umode_t mode)
1885{
1886	struct inode * inode;
1887	struct proc_inode *ei;
1888	struct pid *pid;
1889
1890	/* We need a new inode */
1891
1892	inode = new_inode(sb);
1893	if (!inode)
1894		goto out;
1895
1896	/* Common stuff */
1897	ei = PROC_I(inode);
1898	inode->i_mode = mode;
1899	inode->i_ino = get_next_ino();
1900	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1901	inode->i_op = &proc_def_inode_operations;
1902
1903	/*
1904	 * grab the reference to task.
1905	 */
1906	pid = get_task_pid(task, PIDTYPE_PID);
1907	if (!pid)
1908		goto out_unlock;
1909
1910	/* Let the pid remember us for quick removal */
1911	ei->pid = pid;
1912	if (S_ISDIR(mode)) {
1913		spin_lock(&pid->lock);
1914		hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1915		spin_unlock(&pid->lock);
1916	}
1917
1918	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1919	security_task_to_inode(task, inode);
1920
1921out:
1922	return inode;
1923
1924out_unlock:
1925	iput(inode);
1926	return NULL;
1927}
1928
1929int pid_getattr(struct user_namespace *mnt_userns, const struct path *path,
1930		struct kstat *stat, u32 request_mask, unsigned int query_flags)
1931{
1932	struct inode *inode = d_inode(path->dentry);
1933	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1934	struct task_struct *task;
 
 
1935
1936	generic_fillattr(&init_user_ns, inode, stat);
1937
 
1938	stat->uid = GLOBAL_ROOT_UID;
1939	stat->gid = GLOBAL_ROOT_GID;
1940	rcu_read_lock();
1941	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1942	if (task) {
1943		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1944			rcu_read_unlock();
1945			/*
1946			 * This doesn't prevent learning whether PID exists,
1947			 * it only makes getattr() consistent with readdir().
1948			 */
1949			return -ENOENT;
1950		}
1951		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
 
 
 
 
 
1952	}
1953	rcu_read_unlock();
1954	return 0;
1955}
1956
1957/* dentry stuff */
1958
1959/*
1960 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1961 */
1962void pid_update_inode(struct task_struct *task, struct inode *inode)
1963{
1964	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1965
1966	inode->i_mode &= ~(S_ISUID | S_ISGID);
1967	security_task_to_inode(task, inode);
1968}
1969
1970/*
1971 * Rewrite the inode's ownerships here because the owning task may have
1972 * performed a setuid(), etc.
1973 *
 
 
 
 
 
 
1974 */
1975static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1976{
1977	struct inode *inode;
1978	struct task_struct *task;
 
1979
1980	if (flags & LOOKUP_RCU)
1981		return -ECHILD;
1982
1983	inode = d_inode(dentry);
1984	task = get_proc_task(inode);
1985
1986	if (task) {
1987		pid_update_inode(task, inode);
 
 
 
 
 
 
 
 
 
 
 
 
1988		put_task_struct(task);
1989		return 1;
1990	}
1991	return 0;
1992}
1993
1994static inline bool proc_inode_is_dead(struct inode *inode)
1995{
1996	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1997}
1998
1999int pid_delete_dentry(const struct dentry *dentry)
2000{
2001	/* Is the task we represent dead?
2002	 * If so, then don't put the dentry on the lru list,
2003	 * kill it immediately.
2004	 */
2005	return proc_inode_is_dead(d_inode(dentry));
2006}
2007
2008const struct dentry_operations pid_dentry_operations =
2009{
2010	.d_revalidate	= pid_revalidate,
2011	.d_delete	= pid_delete_dentry,
2012};
2013
2014/* Lookups */
2015
2016/*
2017 * Fill a directory entry.
2018 *
2019 * If possible create the dcache entry and derive our inode number and
2020 * file type from dcache entry.
2021 *
2022 * Since all of the proc inode numbers are dynamically generated, the inode
2023 * numbers do not exist until the inode is cache.  This means creating
2024 * the dcache entry in readdir is necessary to keep the inode numbers
2025 * reported by readdir in sync with the inode numbers reported
2026 * by stat.
2027 */
2028bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2029	const char *name, unsigned int len,
2030	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2031{
2032	struct dentry *child, *dir = file->f_path.dentry;
2033	struct qstr qname = QSTR_INIT(name, len);
2034	struct inode *inode;
2035	unsigned type = DT_UNKNOWN;
2036	ino_t ino = 1;
2037
2038	child = d_hash_and_lookup(dir, &qname);
2039	if (!child) {
2040		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2041		child = d_alloc_parallel(dir, &qname, &wq);
2042		if (IS_ERR(child))
2043			goto end_instantiate;
2044		if (d_in_lookup(child)) {
2045			struct dentry *res;
2046			res = instantiate(child, task, ptr);
2047			d_lookup_done(child);
2048			if (unlikely(res)) {
2049				dput(child);
2050				child = res;
2051				if (IS_ERR(child))
2052					goto end_instantiate;
2053			}
2054		}
2055	}
2056	inode = d_inode(child);
2057	ino = inode->i_ino;
2058	type = inode->i_mode >> 12;
2059	dput(child);
2060end_instantiate:
2061	return dir_emit(ctx, name, len, ino, type);
 
 
 
2062}
2063
2064/*
2065 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2066 * which represent vma start and end addresses.
2067 */
2068static int dname_to_vma_addr(struct dentry *dentry,
2069			     unsigned long *start, unsigned long *end)
2070{
2071	const char *str = dentry->d_name.name;
2072	unsigned long long sval, eval;
2073	unsigned int len;
2074
2075	if (str[0] == '0' && str[1] != '-')
2076		return -EINVAL;
2077	len = _parse_integer(str, 16, &sval);
2078	if (len & KSTRTOX_OVERFLOW)
2079		return -EINVAL;
2080	if (sval != (unsigned long)sval)
2081		return -EINVAL;
2082	str += len;
2083
2084	if (*str != '-')
2085		return -EINVAL;
2086	str++;
2087
2088	if (str[0] == '0' && str[1])
2089		return -EINVAL;
2090	len = _parse_integer(str, 16, &eval);
2091	if (len & KSTRTOX_OVERFLOW)
2092		return -EINVAL;
2093	if (eval != (unsigned long)eval)
2094		return -EINVAL;
2095	str += len;
2096
2097	if (*str != '\0')
2098		return -EINVAL;
2099
2100	*start = sval;
2101	*end = eval;
2102
2103	return 0;
2104}
2105
2106static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2107{
2108	unsigned long vm_start, vm_end;
2109	bool exact_vma_exists = false;
2110	struct mm_struct *mm = NULL;
2111	struct task_struct *task;
 
2112	struct inode *inode;
2113	int status = 0;
2114
2115	if (flags & LOOKUP_RCU)
2116		return -ECHILD;
2117
2118	inode = d_inode(dentry);
2119	task = get_proc_task(inode);
2120	if (!task)
2121		goto out_notask;
2122
2123	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2124	if (IS_ERR_OR_NULL(mm))
2125		goto out;
2126
2127	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2128		status = mmap_read_lock_killable(mm);
2129		if (!status) {
2130			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2131							    vm_end);
2132			mmap_read_unlock(mm);
2133		}
2134	}
2135
2136	mmput(mm);
2137
2138	if (exact_vma_exists) {
2139		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2140
 
 
 
 
 
 
 
 
2141		security_task_to_inode(task, inode);
2142		status = 1;
2143	}
2144
2145out:
2146	put_task_struct(task);
2147
2148out_notask:
2149	return status;
2150}
2151
2152static const struct dentry_operations tid_map_files_dentry_operations = {
2153	.d_revalidate	= map_files_d_revalidate,
2154	.d_delete	= pid_delete_dentry,
2155};
2156
2157static int map_files_get_link(struct dentry *dentry, struct path *path)
2158{
2159	unsigned long vm_start, vm_end;
2160	struct vm_area_struct *vma;
2161	struct task_struct *task;
2162	struct mm_struct *mm;
2163	int rc;
2164
2165	rc = -ENOENT;
2166	task = get_proc_task(d_inode(dentry));
2167	if (!task)
2168		goto out;
2169
2170	mm = get_task_mm(task);
2171	put_task_struct(task);
2172	if (!mm)
2173		goto out;
2174
2175	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2176	if (rc)
2177		goto out_mmput;
2178
2179	rc = mmap_read_lock_killable(mm);
2180	if (rc)
2181		goto out_mmput;
2182
2183	rc = -ENOENT;
 
2184	vma = find_exact_vma(mm, vm_start, vm_end);
2185	if (vma && vma->vm_file) {
2186		*path = vma->vm_file->f_path;
2187		path_get(path);
2188		rc = 0;
2189	}
2190	mmap_read_unlock(mm);
2191
2192out_mmput:
2193	mmput(mm);
2194out:
2195	return rc;
2196}
2197
2198struct map_files_info {
2199	unsigned long	start;
2200	unsigned long	end;
2201	fmode_t		mode;
 
 
2202};
2203
2204/*
2205 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2206 * to concerns about how the symlinks may be used to bypass permissions on
2207 * ancestor directories in the path to the file in question.
2208 */
2209static const char *
2210proc_map_files_get_link(struct dentry *dentry,
2211			struct inode *inode,
2212		        struct delayed_call *done)
2213{
2214	if (!checkpoint_restore_ns_capable(&init_user_ns))
2215		return ERR_PTR(-EPERM);
2216
2217	return proc_pid_get_link(dentry, inode, done);
2218}
2219
2220/*
2221 * Identical to proc_pid_link_inode_operations except for get_link()
2222 */
2223static const struct inode_operations proc_map_files_link_inode_operations = {
2224	.readlink	= proc_pid_readlink,
2225	.get_link	= proc_map_files_get_link,
2226	.setattr	= proc_setattr,
2227};
2228
2229static struct dentry *
2230proc_map_files_instantiate(struct dentry *dentry,
2231			   struct task_struct *task, const void *ptr)
2232{
2233	fmode_t mode = (fmode_t)(unsigned long)ptr;
2234	struct proc_inode *ei;
2235	struct inode *inode;
2236
2237	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2238				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2239				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2240	if (!inode)
2241		return ERR_PTR(-ENOENT);
2242
2243	ei = PROC_I(inode);
2244	ei->op.proc_get_link = map_files_get_link;
2245
2246	inode->i_op = &proc_map_files_link_inode_operations;
2247	inode->i_size = 64;
2248
2249	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2250	return d_splice_alias(inode, dentry);
 
 
2251}
2252
2253static struct dentry *proc_map_files_lookup(struct inode *dir,
2254		struct dentry *dentry, unsigned int flags)
2255{
2256	unsigned long vm_start, vm_end;
2257	struct vm_area_struct *vma;
2258	struct task_struct *task;
2259	struct dentry *result;
2260	struct mm_struct *mm;
2261
2262	result = ERR_PTR(-ENOENT);
2263	task = get_proc_task(dir);
2264	if (!task)
2265		goto out;
2266
2267	result = ERR_PTR(-EACCES);
2268	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2269		goto out_put_task;
2270
2271	result = ERR_PTR(-ENOENT);
2272	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2273		goto out_put_task;
2274
2275	mm = get_task_mm(task);
2276	if (!mm)
2277		goto out_put_task;
2278
2279	result = ERR_PTR(-EINTR);
2280	if (mmap_read_lock_killable(mm))
2281		goto out_put_mm;
2282
2283	result = ERR_PTR(-ENOENT);
2284	vma = find_exact_vma(mm, vm_start, vm_end);
2285	if (!vma)
2286		goto out_no_vma;
2287
2288	if (vma->vm_file)
2289		result = proc_map_files_instantiate(dentry, task,
2290				(void *)(unsigned long)vma->vm_file->f_mode);
2291
2292out_no_vma:
2293	mmap_read_unlock(mm);
2294out_put_mm:
2295	mmput(mm);
2296out_put_task:
2297	put_task_struct(task);
2298out:
2299	return result;
2300}
2301
2302static const struct inode_operations proc_map_files_inode_operations = {
2303	.lookup		= proc_map_files_lookup,
2304	.permission	= proc_fd_permission,
2305	.setattr	= proc_setattr,
2306};
2307
2308static int
2309proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2310{
2311	struct vm_area_struct *vma;
2312	struct task_struct *task;
2313	struct mm_struct *mm;
2314	unsigned long nr_files, pos, i;
2315	GENRADIX(struct map_files_info) fa;
 
2316	struct map_files_info *p;
2317	int ret;
2318
2319	genradix_init(&fa);
2320
2321	ret = -ENOENT;
2322	task = get_proc_task(file_inode(file));
2323	if (!task)
2324		goto out;
2325
2326	ret = -EACCES;
2327	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2328		goto out_put_task;
2329
2330	ret = 0;
2331	if (!dir_emit_dots(file, ctx))
2332		goto out_put_task;
2333
2334	mm = get_task_mm(task);
2335	if (!mm)
2336		goto out_put_task;
2337
2338	ret = mmap_read_lock_killable(mm);
2339	if (ret) {
2340		mmput(mm);
2341		goto out_put_task;
2342	}
2343
2344	nr_files = 0;
2345
2346	/*
2347	 * We need two passes here:
2348	 *
2349	 *  1) Collect vmas of mapped files with mmap_lock taken
2350	 *  2) Release mmap_lock and instantiate entries
2351	 *
2352	 * otherwise we get lockdep complained, since filldir()
2353	 * routine might require mmap_lock taken in might_fault().
2354	 */
2355
2356	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2357		if (!vma->vm_file)
2358			continue;
2359		if (++pos <= ctx->pos)
2360			continue;
2361
2362		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2363		if (!p) {
 
 
 
2364			ret = -ENOMEM;
2365			mmap_read_unlock(mm);
 
 
2366			mmput(mm);
2367			goto out_put_task;
2368		}
 
 
 
 
 
 
2369
2370		p->start = vma->vm_start;
2371		p->end = vma->vm_end;
2372		p->mode = vma->vm_file->f_mode;
 
 
 
 
2373	}
2374	mmap_read_unlock(mm);
2375	mmput(mm);
2376
2377	for (i = 0; i < nr_files; i++) {
2378		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2379		unsigned int len;
2380
2381		p = genradix_ptr(&fa, i);
2382		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2383		if (!proc_fill_cache(file, ctx,
2384				      buf, len,
2385				      proc_map_files_instantiate,
2386				      task,
2387				      (void *)(unsigned long)p->mode))
2388			break;
2389		ctx->pos++;
2390	}
 
 
 
2391
2392out_put_task:
2393	put_task_struct(task);
2394out:
2395	genradix_free(&fa);
2396	return ret;
2397}
2398
2399static const struct file_operations proc_map_files_operations = {
2400	.read		= generic_read_dir,
2401	.iterate_shared	= proc_map_files_readdir,
2402	.llseek		= generic_file_llseek,
2403};
2404
2405#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2406struct timers_private {
2407	struct pid *pid;
2408	struct task_struct *task;
2409	struct sighand_struct *sighand;
2410	struct pid_namespace *ns;
2411	unsigned long flags;
2412};
2413
2414static void *timers_start(struct seq_file *m, loff_t *pos)
2415{
2416	struct timers_private *tp = m->private;
2417
2418	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2419	if (!tp->task)
2420		return ERR_PTR(-ESRCH);
2421
2422	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2423	if (!tp->sighand)
2424		return ERR_PTR(-ESRCH);
2425
2426	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2427}
2428
2429static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2430{
2431	struct timers_private *tp = m->private;
2432	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2433}
2434
2435static void timers_stop(struct seq_file *m, void *v)
2436{
2437	struct timers_private *tp = m->private;
2438
2439	if (tp->sighand) {
2440		unlock_task_sighand(tp->task, &tp->flags);
2441		tp->sighand = NULL;
2442	}
2443
2444	if (tp->task) {
2445		put_task_struct(tp->task);
2446		tp->task = NULL;
2447	}
2448}
2449
2450static int show_timer(struct seq_file *m, void *v)
2451{
2452	struct k_itimer *timer;
2453	struct timers_private *tp = m->private;
2454	int notify;
2455	static const char * const nstr[] = {
2456		[SIGEV_SIGNAL] = "signal",
2457		[SIGEV_NONE] = "none",
2458		[SIGEV_THREAD] = "thread",
2459	};
2460
2461	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2462	notify = timer->it_sigev_notify;
2463
2464	seq_printf(m, "ID: %d\n", timer->it_id);
2465	seq_printf(m, "signal: %d/%px\n",
2466		   timer->sigq->info.si_signo,
2467		   timer->sigq->info.si_value.sival_ptr);
2468	seq_printf(m, "notify: %s/%s.%d\n",
2469		   nstr[notify & ~SIGEV_THREAD_ID],
2470		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2471		   pid_nr_ns(timer->it_pid, tp->ns));
2472	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2473
2474	return 0;
2475}
2476
2477static const struct seq_operations proc_timers_seq_ops = {
2478	.start	= timers_start,
2479	.next	= timers_next,
2480	.stop	= timers_stop,
2481	.show	= show_timer,
2482};
2483
2484static int proc_timers_open(struct inode *inode, struct file *file)
2485{
2486	struct timers_private *tp;
2487
2488	tp = __seq_open_private(file, &proc_timers_seq_ops,
2489			sizeof(struct timers_private));
2490	if (!tp)
2491		return -ENOMEM;
2492
2493	tp->pid = proc_pid(inode);
2494	tp->ns = proc_pid_ns(inode->i_sb);
2495	return 0;
2496}
2497
2498static const struct file_operations proc_timers_operations = {
2499	.open		= proc_timers_open,
2500	.read		= seq_read,
2501	.llseek		= seq_lseek,
2502	.release	= seq_release_private,
2503};
2504#endif
2505
2506static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2507					size_t count, loff_t *offset)
2508{
2509	struct inode *inode = file_inode(file);
2510	struct task_struct *p;
2511	u64 slack_ns;
2512	int err;
2513
2514	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2515	if (err < 0)
2516		return err;
2517
2518	p = get_proc_task(inode);
2519	if (!p)
2520		return -ESRCH;
2521
2522	if (p != current) {
2523		rcu_read_lock();
2524		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2525			rcu_read_unlock();
2526			count = -EPERM;
2527			goto out;
2528		}
2529		rcu_read_unlock();
2530
2531		err = security_task_setscheduler(p);
2532		if (err) {
2533			count = err;
2534			goto out;
2535		}
2536	}
2537
2538	task_lock(p);
2539	if (slack_ns == 0)
2540		p->timer_slack_ns = p->default_timer_slack_ns;
2541	else
2542		p->timer_slack_ns = slack_ns;
2543	task_unlock(p);
2544
2545out:
2546	put_task_struct(p);
2547
2548	return count;
2549}
2550
2551static int timerslack_ns_show(struct seq_file *m, void *v)
2552{
2553	struct inode *inode = m->private;
2554	struct task_struct *p;
2555	int err = 0;
2556
2557	p = get_proc_task(inode);
2558	if (!p)
2559		return -ESRCH;
2560
2561	if (p != current) {
2562		rcu_read_lock();
2563		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2564			rcu_read_unlock();
2565			err = -EPERM;
2566			goto out;
2567		}
2568		rcu_read_unlock();
2569
2570		err = security_task_getscheduler(p);
2571		if (err)
2572			goto out;
2573	}
2574
2575	task_lock(p);
2576	seq_printf(m, "%llu\n", p->timer_slack_ns);
2577	task_unlock(p);
2578
2579out:
2580	put_task_struct(p);
2581
2582	return err;
2583}
2584
2585static int timerslack_ns_open(struct inode *inode, struct file *filp)
2586{
2587	return single_open(filp, timerslack_ns_show, inode);
2588}
2589
2590static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2591	.open		= timerslack_ns_open,
2592	.read		= seq_read,
2593	.write		= timerslack_ns_write,
2594	.llseek		= seq_lseek,
2595	.release	= single_release,
2596};
2597
2598static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2599	struct task_struct *task, const void *ptr)
2600{
2601	const struct pid_entry *p = ptr;
2602	struct inode *inode;
2603	struct proc_inode *ei;
2604
2605	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2606	if (!inode)
2607		return ERR_PTR(-ENOENT);
2608
2609	ei = PROC_I(inode);
2610	if (S_ISDIR(inode->i_mode))
2611		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2612	if (p->iop)
2613		inode->i_op = p->iop;
2614	if (p->fop)
2615		inode->i_fop = p->fop;
2616	ei->op = p->op;
2617	pid_update_inode(task, inode);
2618	d_set_d_op(dentry, &pid_dentry_operations);
2619	return d_splice_alias(inode, dentry);
 
 
 
 
 
2620}
2621
2622static struct dentry *proc_pident_lookup(struct inode *dir, 
2623					 struct dentry *dentry,
2624					 const struct pid_entry *p,
2625					 const struct pid_entry *end)
2626{
 
2627	struct task_struct *task = get_proc_task(dir);
2628	struct dentry *res = ERR_PTR(-ENOENT);
 
 
2629
2630	if (!task)
2631		goto out_no_task;
2632
2633	/*
2634	 * Yes, it does not scale. And it should not. Don't add
2635	 * new entries into /proc/<tgid>/ without very good reasons.
2636	 */
2637	for (; p < end; p++) {
 
2638		if (p->len != dentry->d_name.len)
2639			continue;
2640		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2641			res = proc_pident_instantiate(dentry, task, p);
2642			break;
2643		}
2644	}
 
 
 
 
 
2645	put_task_struct(task);
2646out_no_task:
2647	return res;
2648}
2649
2650static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2651		const struct pid_entry *ents, unsigned int nents)
2652{
2653	struct task_struct *task = get_proc_task(file_inode(file));
2654	const struct pid_entry *p;
2655
2656	if (!task)
2657		return -ENOENT;
2658
2659	if (!dir_emit_dots(file, ctx))
2660		goto out;
2661
2662	if (ctx->pos >= nents + 2)
2663		goto out;
2664
2665	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2666		if (!proc_fill_cache(file, ctx, p->name, p->len,
2667				proc_pident_instantiate, task, p))
2668			break;
2669		ctx->pos++;
2670	}
2671out:
2672	put_task_struct(task);
2673	return 0;
2674}
2675
2676#ifdef CONFIG_SECURITY
2677static int proc_pid_attr_open(struct inode *inode, struct file *file)
2678{
2679	file->private_data = NULL;
2680	__mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2681	return 0;
2682}
2683
2684static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2685				  size_t count, loff_t *ppos)
2686{
2687	struct inode * inode = file_inode(file);
2688	char *p = NULL;
2689	ssize_t length;
2690	struct task_struct *task = get_proc_task(inode);
2691
2692	if (!task)
2693		return -ESRCH;
2694
2695	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2696				      (char*)file->f_path.dentry->d_name.name,
2697				      &p);
2698	put_task_struct(task);
2699	if (length > 0)
2700		length = simple_read_from_buffer(buf, count, ppos, p, length);
2701	kfree(p);
2702	return length;
2703}
2704
2705static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2706				   size_t count, loff_t *ppos)
2707{
2708	struct inode * inode = file_inode(file);
2709	struct task_struct *task;
2710	void *page;
2711	int rv;
2712
2713	/* A task may only write when it was the opener. */
2714	if (file->private_data != current->mm)
2715		return -EPERM;
2716
2717	rcu_read_lock();
2718	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2719	if (!task) {
2720		rcu_read_unlock();
2721		return -ESRCH;
2722	}
2723	/* A task may only write its own attributes. */
2724	if (current != task) {
2725		rcu_read_unlock();
2726		return -EACCES;
2727	}
2728	/* Prevent changes to overridden credentials. */
2729	if (current_cred() != current_real_cred()) {
2730		rcu_read_unlock();
2731		return -EBUSY;
2732	}
2733	rcu_read_unlock();
2734
 
 
 
2735	if (count > PAGE_SIZE)
2736		count = PAGE_SIZE;
2737
2738	/* No partial writes. */
 
2739	if (*ppos != 0)
2740		return -EINVAL;
2741
2742	page = memdup_user(buf, count);
2743	if (IS_ERR(page)) {
2744		rv = PTR_ERR(page);
2745		goto out;
2746	}
2747
2748	/* Guard against adverse ptrace interaction */
2749	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2750	if (rv < 0)
2751		goto out_free;
2752
2753	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2754				  file->f_path.dentry->d_name.name, page,
2755				  count);
2756	mutex_unlock(&current->signal->cred_guard_mutex);
2757out_free:
2758	kfree(page);
2759out:
2760	return rv;
 
 
2761}
2762
2763static const struct file_operations proc_pid_attr_operations = {
2764	.open		= proc_pid_attr_open,
2765	.read		= proc_pid_attr_read,
2766	.write		= proc_pid_attr_write,
2767	.llseek		= generic_file_llseek,
2768	.release	= mem_release,
2769};
2770
2771#define LSM_DIR_OPS(LSM) \
2772static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2773			     struct dir_context *ctx) \
2774{ \
2775	return proc_pident_readdir(filp, ctx, \
2776				   LSM##_attr_dir_stuff, \
2777				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2778} \
2779\
2780static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2781	.read		= generic_read_dir, \
2782	.iterate	= proc_##LSM##_attr_dir_iterate, \
2783	.llseek		= default_llseek, \
2784}; \
2785\
2786static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2787				struct dentry *dentry, unsigned int flags) \
2788{ \
2789	return proc_pident_lookup(dir, dentry, \
2790				  LSM##_attr_dir_stuff, \
2791				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2792} \
2793\
2794static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2795	.lookup		= proc_##LSM##_attr_dir_lookup, \
2796	.getattr	= pid_getattr, \
2797	.setattr	= proc_setattr, \
2798}
2799
2800#ifdef CONFIG_SECURITY_SMACK
2801static const struct pid_entry smack_attr_dir_stuff[] = {
2802	ATTR("smack", "current",	0666),
2803};
2804LSM_DIR_OPS(smack);
2805#endif
2806
2807#ifdef CONFIG_SECURITY_APPARMOR
2808static const struct pid_entry apparmor_attr_dir_stuff[] = {
2809	ATTR("apparmor", "current",	0666),
2810	ATTR("apparmor", "prev",	0444),
2811	ATTR("apparmor", "exec",	0666),
2812};
2813LSM_DIR_OPS(apparmor);
2814#endif
2815
2816static const struct pid_entry attr_dir_stuff[] = {
2817	ATTR(NULL, "current",		0666),
2818	ATTR(NULL, "prev",		0444),
2819	ATTR(NULL, "exec",		0666),
2820	ATTR(NULL, "fscreate",		0666),
2821	ATTR(NULL, "keycreate",		0666),
2822	ATTR(NULL, "sockcreate",	0666),
2823#ifdef CONFIG_SECURITY_SMACK
2824	DIR("smack",			0555,
2825	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2826#endif
2827#ifdef CONFIG_SECURITY_APPARMOR
2828	DIR("apparmor",			0555,
2829	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2830#endif
2831};
2832
2833static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2834{
2835	return proc_pident_readdir(file, ctx, 
2836				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2837}
2838
2839static const struct file_operations proc_attr_dir_operations = {
2840	.read		= generic_read_dir,
2841	.iterate_shared	= proc_attr_dir_readdir,
2842	.llseek		= generic_file_llseek,
2843};
2844
2845static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2846				struct dentry *dentry, unsigned int flags)
2847{
2848	return proc_pident_lookup(dir, dentry,
2849				  attr_dir_stuff,
2850				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2851}
2852
2853static const struct inode_operations proc_attr_dir_inode_operations = {
2854	.lookup		= proc_attr_dir_lookup,
2855	.getattr	= pid_getattr,
2856	.setattr	= proc_setattr,
2857};
2858
2859#endif
2860
2861#ifdef CONFIG_ELF_CORE
2862static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2863					 size_t count, loff_t *ppos)
2864{
2865	struct task_struct *task = get_proc_task(file_inode(file));
2866	struct mm_struct *mm;
2867	char buffer[PROC_NUMBUF];
2868	size_t len;
2869	int ret;
2870
2871	if (!task)
2872		return -ESRCH;
2873
2874	ret = 0;
2875	mm = get_task_mm(task);
2876	if (mm) {
2877		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2878			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2879				MMF_DUMP_FILTER_SHIFT));
2880		mmput(mm);
2881		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2882	}
2883
2884	put_task_struct(task);
2885
2886	return ret;
2887}
2888
2889static ssize_t proc_coredump_filter_write(struct file *file,
2890					  const char __user *buf,
2891					  size_t count,
2892					  loff_t *ppos)
2893{
2894	struct task_struct *task;
2895	struct mm_struct *mm;
2896	unsigned int val;
2897	int ret;
2898	int i;
2899	unsigned long mask;
2900
2901	ret = kstrtouint_from_user(buf, count, 0, &val);
2902	if (ret < 0)
2903		return ret;
2904
2905	ret = -ESRCH;
2906	task = get_proc_task(file_inode(file));
2907	if (!task)
2908		goto out_no_task;
2909
2910	mm = get_task_mm(task);
2911	if (!mm)
2912		goto out_no_mm;
2913	ret = 0;
2914
2915	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2916		if (val & mask)
2917			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2918		else
2919			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2920	}
2921
2922	mmput(mm);
2923 out_no_mm:
2924	put_task_struct(task);
2925 out_no_task:
2926	if (ret < 0)
2927		return ret;
2928	return count;
2929}
2930
2931static const struct file_operations proc_coredump_filter_operations = {
2932	.read		= proc_coredump_filter_read,
2933	.write		= proc_coredump_filter_write,
2934	.llseek		= generic_file_llseek,
2935};
2936#endif
2937
2938#ifdef CONFIG_TASK_IO_ACCOUNTING
2939static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2940{
2941	struct task_io_accounting acct = task->ioac;
2942	unsigned long flags;
2943	int result;
2944
2945	result = down_read_killable(&task->signal->exec_update_lock);
2946	if (result)
2947		return result;
2948
2949	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2950		result = -EACCES;
2951		goto out_unlock;
2952	}
2953
2954	if (whole && lock_task_sighand(task, &flags)) {
2955		struct task_struct *t = task;
2956
2957		task_io_accounting_add(&acct, &task->signal->ioac);
2958		while_each_thread(task, t)
2959			task_io_accounting_add(&acct, &t->ioac);
2960
2961		unlock_task_sighand(task, &flags);
2962	}
2963	seq_printf(m,
2964		   "rchar: %llu\n"
2965		   "wchar: %llu\n"
2966		   "syscr: %llu\n"
2967		   "syscw: %llu\n"
2968		   "read_bytes: %llu\n"
2969		   "write_bytes: %llu\n"
2970		   "cancelled_write_bytes: %llu\n",
2971		   (unsigned long long)acct.rchar,
2972		   (unsigned long long)acct.wchar,
2973		   (unsigned long long)acct.syscr,
2974		   (unsigned long long)acct.syscw,
2975		   (unsigned long long)acct.read_bytes,
2976		   (unsigned long long)acct.write_bytes,
2977		   (unsigned long long)acct.cancelled_write_bytes);
2978	result = 0;
2979
2980out_unlock:
2981	up_read(&task->signal->exec_update_lock);
2982	return result;
2983}
2984
2985static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2986				  struct pid *pid, struct task_struct *task)
2987{
2988	return do_io_accounting(task, m, 0);
2989}
2990
2991static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2992				   struct pid *pid, struct task_struct *task)
2993{
2994	return do_io_accounting(task, m, 1);
2995}
2996#endif /* CONFIG_TASK_IO_ACCOUNTING */
2997
2998#ifdef CONFIG_USER_NS
2999static int proc_id_map_open(struct inode *inode, struct file *file,
3000	const struct seq_operations *seq_ops)
3001{
3002	struct user_namespace *ns = NULL;
3003	struct task_struct *task;
3004	struct seq_file *seq;
3005	int ret = -EINVAL;
3006
3007	task = get_proc_task(inode);
3008	if (task) {
3009		rcu_read_lock();
3010		ns = get_user_ns(task_cred_xxx(task, user_ns));
3011		rcu_read_unlock();
3012		put_task_struct(task);
3013	}
3014	if (!ns)
3015		goto err;
3016
3017	ret = seq_open(file, seq_ops);
3018	if (ret)
3019		goto err_put_ns;
3020
3021	seq = file->private_data;
3022	seq->private = ns;
3023
3024	return 0;
3025err_put_ns:
3026	put_user_ns(ns);
3027err:
3028	return ret;
3029}
3030
3031static int proc_id_map_release(struct inode *inode, struct file *file)
3032{
3033	struct seq_file *seq = file->private_data;
3034	struct user_namespace *ns = seq->private;
3035	put_user_ns(ns);
3036	return seq_release(inode, file);
3037}
3038
3039static int proc_uid_map_open(struct inode *inode, struct file *file)
3040{
3041	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3042}
3043
3044static int proc_gid_map_open(struct inode *inode, struct file *file)
3045{
3046	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3047}
3048
3049static int proc_projid_map_open(struct inode *inode, struct file *file)
3050{
3051	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3052}
3053
3054static const struct file_operations proc_uid_map_operations = {
3055	.open		= proc_uid_map_open,
3056	.write		= proc_uid_map_write,
3057	.read		= seq_read,
3058	.llseek		= seq_lseek,
3059	.release	= proc_id_map_release,
3060};
3061
3062static const struct file_operations proc_gid_map_operations = {
3063	.open		= proc_gid_map_open,
3064	.write		= proc_gid_map_write,
3065	.read		= seq_read,
3066	.llseek		= seq_lseek,
3067	.release	= proc_id_map_release,
3068};
3069
3070static const struct file_operations proc_projid_map_operations = {
3071	.open		= proc_projid_map_open,
3072	.write		= proc_projid_map_write,
3073	.read		= seq_read,
3074	.llseek		= seq_lseek,
3075	.release	= proc_id_map_release,
3076};
3077
3078static int proc_setgroups_open(struct inode *inode, struct file *file)
3079{
3080	struct user_namespace *ns = NULL;
3081	struct task_struct *task;
3082	int ret;
3083
3084	ret = -ESRCH;
3085	task = get_proc_task(inode);
3086	if (task) {
3087		rcu_read_lock();
3088		ns = get_user_ns(task_cred_xxx(task, user_ns));
3089		rcu_read_unlock();
3090		put_task_struct(task);
3091	}
3092	if (!ns)
3093		goto err;
3094
3095	if (file->f_mode & FMODE_WRITE) {
3096		ret = -EACCES;
3097		if (!ns_capable(ns, CAP_SYS_ADMIN))
3098			goto err_put_ns;
3099	}
3100
3101	ret = single_open(file, &proc_setgroups_show, ns);
3102	if (ret)
3103		goto err_put_ns;
3104
3105	return 0;
3106err_put_ns:
3107	put_user_ns(ns);
3108err:
3109	return ret;
3110}
3111
3112static int proc_setgroups_release(struct inode *inode, struct file *file)
3113{
3114	struct seq_file *seq = file->private_data;
3115	struct user_namespace *ns = seq->private;
3116	int ret = single_release(inode, file);
3117	put_user_ns(ns);
3118	return ret;
3119}
3120
3121static const struct file_operations proc_setgroups_operations = {
3122	.open		= proc_setgroups_open,
3123	.write		= proc_setgroups_write,
3124	.read		= seq_read,
3125	.llseek		= seq_lseek,
3126	.release	= proc_setgroups_release,
3127};
3128#endif /* CONFIG_USER_NS */
3129
3130static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3131				struct pid *pid, struct task_struct *task)
3132{
3133	int err = lock_trace(task);
3134	if (!err) {
3135		seq_printf(m, "%08x\n", task->personality);
3136		unlock_trace(task);
3137	}
3138	return err;
3139}
3140
3141#ifdef CONFIG_LIVEPATCH
3142static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3143				struct pid *pid, struct task_struct *task)
3144{
3145	seq_printf(m, "%d\n", task->patch_state);
3146	return 0;
3147}
3148#endif /* CONFIG_LIVEPATCH */
3149
3150#ifdef CONFIG_STACKLEAK_METRICS
3151static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3152				struct pid *pid, struct task_struct *task)
3153{
3154	unsigned long prev_depth = THREAD_SIZE -
3155				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3156	unsigned long depth = THREAD_SIZE -
3157				(task->lowest_stack & (THREAD_SIZE - 1));
3158
3159	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3160							prev_depth, depth);
3161	return 0;
3162}
3163#endif /* CONFIG_STACKLEAK_METRICS */
3164
3165/*
3166 * Thread groups
3167 */
3168static const struct file_operations proc_task_operations;
3169static const struct inode_operations proc_task_inode_operations;
3170
3171static const struct pid_entry tgid_base_stuff[] = {
3172	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3173	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3174	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3175	DIR("fdinfo",     S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3176	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3177#ifdef CONFIG_NET
3178	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3179#endif
3180	REG("environ",    S_IRUSR, proc_environ_operations),
3181	REG("auxv",       S_IRUSR, proc_auxv_operations),
3182	ONE("status",     S_IRUGO, proc_pid_status),
3183	ONE("personality", S_IRUSR, proc_pid_personality),
3184	ONE("limits",	  S_IRUGO, proc_pid_limits),
3185#ifdef CONFIG_SCHED_DEBUG
3186	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3187#endif
3188#ifdef CONFIG_SCHED_AUTOGROUP
3189	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3190#endif
3191#ifdef CONFIG_TIME_NS
3192	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3193#endif
3194	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3195#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3196	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3197#endif
3198	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3199	ONE("stat",       S_IRUGO, proc_tgid_stat),
3200	ONE("statm",      S_IRUGO, proc_pid_statm),
3201	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3202#ifdef CONFIG_NUMA
3203	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3204#endif
3205	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3206	LNK("cwd",        proc_cwd_link),
3207	LNK("root",       proc_root_link),
3208	LNK("exe",        proc_exe_link),
3209	REG("mounts",     S_IRUGO, proc_mounts_operations),
3210	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3211	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3212#ifdef CONFIG_PROC_PAGE_MONITOR
3213	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3214	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3215	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3216	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3217#endif
3218#ifdef CONFIG_SECURITY
3219	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3220#endif
3221#ifdef CONFIG_KALLSYMS
3222	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3223#endif
3224#ifdef CONFIG_STACKTRACE
3225	ONE("stack",      S_IRUSR, proc_pid_stack),
3226#endif
3227#ifdef CONFIG_SCHED_INFO
3228	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3229#endif
3230#ifdef CONFIG_LATENCYTOP
3231	REG("latency",  S_IRUGO, proc_lstats_operations),
3232#endif
3233#ifdef CONFIG_PROC_PID_CPUSET
3234	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3235#endif
3236#ifdef CONFIG_CGROUPS
3237	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3238#endif
3239#ifdef CONFIG_PROC_CPU_RESCTRL
3240	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3241#endif
3242	ONE("oom_score",  S_IRUGO, proc_oom_score),
3243	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3244	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3245#ifdef CONFIG_AUDIT
3246	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3247	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3248#endif
3249#ifdef CONFIG_FAULT_INJECTION
3250	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3251	REG("fail-nth", 0644, proc_fail_nth_operations),
3252#endif
3253#ifdef CONFIG_ELF_CORE
3254	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3255#endif
3256#ifdef CONFIG_TASK_IO_ACCOUNTING
3257	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3258#endif
 
 
 
3259#ifdef CONFIG_USER_NS
3260	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3261	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3262	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3263	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3264#endif
3265#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3266	REG("timers",	  S_IRUGO, proc_timers_operations),
3267#endif
3268	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3269#ifdef CONFIG_LIVEPATCH
3270	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3271#endif
3272#ifdef CONFIG_STACKLEAK_METRICS
3273	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3274#endif
3275#ifdef CONFIG_PROC_PID_ARCH_STATUS
3276	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3277#endif
3278#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3279	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3280#endif
3281};
3282
3283static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3284{
3285	return proc_pident_readdir(file, ctx,
3286				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3287}
3288
3289static const struct file_operations proc_tgid_base_operations = {
3290	.read		= generic_read_dir,
3291	.iterate_shared	= proc_tgid_base_readdir,
3292	.llseek		= generic_file_llseek,
3293};
3294
3295struct pid *tgid_pidfd_to_pid(const struct file *file)
3296{
3297	if (file->f_op != &proc_tgid_base_operations)
3298		return ERR_PTR(-EBADF);
3299
3300	return proc_pid(file_inode(file));
3301}
3302
3303static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3304{
3305	return proc_pident_lookup(dir, dentry,
3306				  tgid_base_stuff,
3307				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3308}
3309
3310static const struct inode_operations proc_tgid_base_inode_operations = {
3311	.lookup		= proc_tgid_base_lookup,
3312	.getattr	= pid_getattr,
3313	.setattr	= proc_setattr,
3314	.permission	= proc_pid_permission,
3315};
3316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3317/**
3318 * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3319 * @pid: pid that should be flushed.
3320 *
3321 * This function walks a list of inodes (that belong to any proc
3322 * filesystem) that are attached to the pid and flushes them from
3323 * the dentry cache.
 
 
 
 
 
 
3324 *
3325 * It is safe and reasonable to cache /proc entries for a task until
3326 * that task exits.  After that they just clog up the dcache with
3327 * useless entries, possibly causing useful dcache entries to be
3328 * flushed instead.  This routine is provided to flush those useless
3329 * dcache entries when a process is reaped.
3330 *
3331 * NOTE: This routine is just an optimization so it does not guarantee
3332 *       that no dcache entries will exist after a process is reaped
3333 *       it just makes it very unlikely that any will persist.
3334 */
3335
3336void proc_flush_pid(struct pid *pid)
3337{
3338	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
 
 
 
 
 
 
 
 
 
 
 
3339}
3340
3341static struct dentry *proc_pid_instantiate(struct dentry * dentry,
 
3342				   struct task_struct *task, const void *ptr)
3343{
3344	struct inode *inode;
3345
3346	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3347	if (!inode)
3348		return ERR_PTR(-ENOENT);
3349
3350	inode->i_op = &proc_tgid_base_inode_operations;
3351	inode->i_fop = &proc_tgid_base_operations;
3352	inode->i_flags|=S_IMMUTABLE;
3353
3354	set_nlink(inode, nlink_tgid);
3355	pid_update_inode(task, inode);
3356
3357	d_set_d_op(dentry, &pid_dentry_operations);
3358	return d_splice_alias(inode, dentry);
 
 
 
 
 
 
3359}
3360
3361struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3362{
 
3363	struct task_struct *task;
3364	unsigned tgid;
3365	struct proc_fs_info *fs_info;
3366	struct pid_namespace *ns;
3367	struct dentry *result = ERR_PTR(-ENOENT);
3368
3369	tgid = name_to_int(&dentry->d_name);
3370	if (tgid == ~0U)
3371		goto out;
3372
3373	fs_info = proc_sb_info(dentry->d_sb);
3374	ns = fs_info->pid_ns;
3375	rcu_read_lock();
3376	task = find_task_by_pid_ns(tgid, ns);
3377	if (task)
3378		get_task_struct(task);
3379	rcu_read_unlock();
3380	if (!task)
3381		goto out;
3382
3383	/* Limit procfs to only ptraceable tasks */
3384	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3385		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3386			goto out_put_task;
3387	}
3388
3389	result = proc_pid_instantiate(dentry, task, NULL);
3390out_put_task:
3391	put_task_struct(task);
3392out:
3393	return result;
3394}
3395
3396/*
3397 * Find the first task with tgid >= tgid
3398 *
3399 */
3400struct tgid_iter {
3401	unsigned int tgid;
3402	struct task_struct *task;
3403};
3404static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3405{
3406	struct pid *pid;
3407
3408	if (iter.task)
3409		put_task_struct(iter.task);
3410	rcu_read_lock();
3411retry:
3412	iter.task = NULL;
3413	pid = find_ge_pid(iter.tgid, ns);
3414	if (pid) {
3415		iter.tgid = pid_nr_ns(pid, ns);
3416		iter.task = pid_task(pid, PIDTYPE_TGID);
3417		if (!iter.task) {
 
 
 
 
 
 
 
 
 
 
 
 
3418			iter.tgid += 1;
3419			goto retry;
3420		}
3421		get_task_struct(iter.task);
3422	}
3423	rcu_read_unlock();
3424	return iter;
3425}
3426
3427#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3428
3429/* for the /proc/ directory itself, after non-process stuff has been done */
3430int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3431{
3432	struct tgid_iter iter;
3433	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3434	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3435	loff_t pos = ctx->pos;
3436
3437	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3438		return 0;
3439
3440	if (pos == TGID_OFFSET - 2) {
3441		struct inode *inode = d_inode(fs_info->proc_self);
3442		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3443			return 0;
3444		ctx->pos = pos = pos + 1;
3445	}
3446	if (pos == TGID_OFFSET - 1) {
3447		struct inode *inode = d_inode(fs_info->proc_thread_self);
3448		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3449			return 0;
3450		ctx->pos = pos = pos + 1;
3451	}
3452	iter.tgid = pos - TGID_OFFSET;
3453	iter.task = NULL;
3454	for (iter = next_tgid(ns, iter);
3455	     iter.task;
3456	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3457		char name[10 + 1];
3458		unsigned int len;
3459
3460		cond_resched();
3461		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3462			continue;
3463
3464		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3465		ctx->pos = iter.tgid + TGID_OFFSET;
3466		if (!proc_fill_cache(file, ctx, name, len,
3467				     proc_pid_instantiate, iter.task, NULL)) {
3468			put_task_struct(iter.task);
3469			return 0;
3470		}
3471	}
3472	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3473	return 0;
3474}
3475
3476/*
3477 * proc_tid_comm_permission is a special permission function exclusively
3478 * used for the node /proc/<pid>/task/<tid>/comm.
3479 * It bypasses generic permission checks in the case where a task of the same
3480 * task group attempts to access the node.
3481 * The rationale behind this is that glibc and bionic access this node for
3482 * cross thread naming (pthread_set/getname_np(!self)). However, if
3483 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3484 * which locks out the cross thread naming implementation.
3485 * This function makes sure that the node is always accessible for members of
3486 * same thread group.
3487 */
3488static int proc_tid_comm_permission(struct user_namespace *mnt_userns,
3489				    struct inode *inode, int mask)
3490{
3491	bool is_same_tgroup;
3492	struct task_struct *task;
3493
3494	task = get_proc_task(inode);
3495	if (!task)
3496		return -ESRCH;
3497	is_same_tgroup = same_thread_group(current, task);
3498	put_task_struct(task);
3499
3500	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3501		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3502		 * read or written by the members of the corresponding
3503		 * thread group.
3504		 */
3505		return 0;
3506	}
3507
3508	return generic_permission(&init_user_ns, inode, mask);
3509}
3510
3511static const struct inode_operations proc_tid_comm_inode_operations = {
3512		.permission = proc_tid_comm_permission,
3513};
3514
3515/*
3516 * Tasks
3517 */
3518static const struct pid_entry tid_base_stuff[] = {
3519	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3520	DIR("fdinfo",    S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3521	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3522#ifdef CONFIG_NET
3523	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3524#endif
3525	REG("environ",   S_IRUSR, proc_environ_operations),
3526	REG("auxv",      S_IRUSR, proc_auxv_operations),
3527	ONE("status",    S_IRUGO, proc_pid_status),
3528	ONE("personality", S_IRUSR, proc_pid_personality),
3529	ONE("limits",	 S_IRUGO, proc_pid_limits),
3530#ifdef CONFIG_SCHED_DEBUG
3531	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3532#endif
3533	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3534			 &proc_tid_comm_inode_operations,
3535			 &proc_pid_set_comm_operations, {}),
3536#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3537	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3538#endif
3539	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3540	ONE("stat",      S_IRUGO, proc_tid_stat),
3541	ONE("statm",     S_IRUGO, proc_pid_statm),
3542	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3543#ifdef CONFIG_PROC_CHILDREN
3544	REG("children",  S_IRUGO, proc_tid_children_operations),
3545#endif
3546#ifdef CONFIG_NUMA
3547	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3548#endif
3549	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3550	LNK("cwd",       proc_cwd_link),
3551	LNK("root",      proc_root_link),
3552	LNK("exe",       proc_exe_link),
3553	REG("mounts",    S_IRUGO, proc_mounts_operations),
3554	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3555#ifdef CONFIG_PROC_PAGE_MONITOR
3556	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3557	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3558	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3559	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3560#endif
3561#ifdef CONFIG_SECURITY
3562	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3563#endif
3564#ifdef CONFIG_KALLSYMS
3565	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3566#endif
3567#ifdef CONFIG_STACKTRACE
3568	ONE("stack",      S_IRUSR, proc_pid_stack),
3569#endif
3570#ifdef CONFIG_SCHED_INFO
3571	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3572#endif
3573#ifdef CONFIG_LATENCYTOP
3574	REG("latency",  S_IRUGO, proc_lstats_operations),
3575#endif
3576#ifdef CONFIG_PROC_PID_CPUSET
3577	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3578#endif
3579#ifdef CONFIG_CGROUPS
3580	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3581#endif
3582#ifdef CONFIG_PROC_CPU_RESCTRL
3583	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3584#endif
3585	ONE("oom_score", S_IRUGO, proc_oom_score),
3586	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3587	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3588#ifdef CONFIG_AUDIT
3589	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3590	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3591#endif
3592#ifdef CONFIG_FAULT_INJECTION
3593	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3594	REG("fail-nth", 0644, proc_fail_nth_operations),
3595#endif
3596#ifdef CONFIG_TASK_IO_ACCOUNTING
3597	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3598#endif
 
 
 
3599#ifdef CONFIG_USER_NS
3600	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3601	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3602	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3603	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3604#endif
3605#ifdef CONFIG_LIVEPATCH
3606	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3607#endif
3608#ifdef CONFIG_PROC_PID_ARCH_STATUS
3609	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3610#endif
3611#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3612	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3613#endif
3614};
3615
3616static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3617{
3618	return proc_pident_readdir(file, ctx,
3619				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3620}
3621
3622static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3623{
3624	return proc_pident_lookup(dir, dentry,
3625				  tid_base_stuff,
3626				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3627}
3628
3629static const struct file_operations proc_tid_base_operations = {
3630	.read		= generic_read_dir,
3631	.iterate_shared	= proc_tid_base_readdir,
3632	.llseek		= generic_file_llseek,
3633};
3634
3635static const struct inode_operations proc_tid_base_inode_operations = {
3636	.lookup		= proc_tid_base_lookup,
3637	.getattr	= pid_getattr,
3638	.setattr	= proc_setattr,
3639};
3640
3641static struct dentry *proc_task_instantiate(struct dentry *dentry,
3642	struct task_struct *task, const void *ptr)
3643{
3644	struct inode *inode;
3645	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3646	if (!inode)
3647		return ERR_PTR(-ENOENT);
3648
 
 
3649	inode->i_op = &proc_tid_base_inode_operations;
3650	inode->i_fop = &proc_tid_base_operations;
3651	inode->i_flags |= S_IMMUTABLE;
3652
3653	set_nlink(inode, nlink_tid);
3654	pid_update_inode(task, inode);
3655
3656	d_set_d_op(dentry, &pid_dentry_operations);
3657	return d_splice_alias(inode, dentry);
 
 
 
 
 
 
3658}
3659
3660static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3661{
 
3662	struct task_struct *task;
3663	struct task_struct *leader = get_proc_task(dir);
3664	unsigned tid;
3665	struct proc_fs_info *fs_info;
3666	struct pid_namespace *ns;
3667	struct dentry *result = ERR_PTR(-ENOENT);
3668
3669	if (!leader)
3670		goto out_no_task;
3671
3672	tid = name_to_int(&dentry->d_name);
3673	if (tid == ~0U)
3674		goto out;
3675
3676	fs_info = proc_sb_info(dentry->d_sb);
3677	ns = fs_info->pid_ns;
3678	rcu_read_lock();
3679	task = find_task_by_pid_ns(tid, ns);
3680	if (task)
3681		get_task_struct(task);
3682	rcu_read_unlock();
3683	if (!task)
3684		goto out;
3685	if (!same_thread_group(leader, task))
3686		goto out_drop_task;
3687
3688	result = proc_task_instantiate(dentry, task, NULL);
3689out_drop_task:
3690	put_task_struct(task);
3691out:
3692	put_task_struct(leader);
3693out_no_task:
3694	return result;
3695}
3696
3697/*
3698 * Find the first tid of a thread group to return to user space.
3699 *
3700 * Usually this is just the thread group leader, but if the users
3701 * buffer was too small or there was a seek into the middle of the
3702 * directory we have more work todo.
3703 *
3704 * In the case of a short read we start with find_task_by_pid.
3705 *
3706 * In the case of a seek we start with the leader and walk nr
3707 * threads past it.
3708 */
3709static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3710					struct pid_namespace *ns)
3711{
3712	struct task_struct *pos, *task;
3713	unsigned long nr = f_pos;
3714
3715	if (nr != f_pos)	/* 32bit overflow? */
3716		return NULL;
3717
3718	rcu_read_lock();
3719	task = pid_task(pid, PIDTYPE_PID);
3720	if (!task)
3721		goto fail;
3722
3723	/* Attempt to start with the tid of a thread */
3724	if (tid && nr) {
3725		pos = find_task_by_pid_ns(tid, ns);
3726		if (pos && same_thread_group(pos, task))
3727			goto found;
3728	}
3729
3730	/* If nr exceeds the number of threads there is nothing todo */
3731	if (nr >= get_nr_threads(task))
3732		goto fail;
3733
3734	/* If we haven't found our starting place yet start
3735	 * with the leader and walk nr threads forward.
3736	 */
3737	pos = task = task->group_leader;
3738	do {
3739		if (!nr--)
3740			goto found;
3741	} while_each_thread(task, pos);
3742fail:
3743	pos = NULL;
3744	goto out;
3745found:
3746	get_task_struct(pos);
3747out:
3748	rcu_read_unlock();
3749	return pos;
3750}
3751
3752/*
3753 * Find the next thread in the thread list.
3754 * Return NULL if there is an error or no next thread.
3755 *
3756 * The reference to the input task_struct is released.
3757 */
3758static struct task_struct *next_tid(struct task_struct *start)
3759{
3760	struct task_struct *pos = NULL;
3761	rcu_read_lock();
3762	if (pid_alive(start)) {
3763		pos = next_thread(start);
3764		if (thread_group_leader(pos))
3765			pos = NULL;
3766		else
3767			get_task_struct(pos);
3768	}
3769	rcu_read_unlock();
3770	put_task_struct(start);
3771	return pos;
3772}
3773
3774/* for the /proc/TGID/task/ directories */
3775static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3776{
3777	struct inode *inode = file_inode(file);
3778	struct task_struct *task;
3779	struct pid_namespace *ns;
3780	int tid;
3781
3782	if (proc_inode_is_dead(inode))
3783		return -ENOENT;
3784
3785	if (!dir_emit_dots(file, ctx))
3786		return 0;
3787
3788	/* f_version caches the tgid value that the last readdir call couldn't
3789	 * return. lseek aka telldir automagically resets f_version to 0.
3790	 */
3791	ns = proc_pid_ns(inode->i_sb);
3792	tid = (int)file->f_version;
3793	file->f_version = 0;
3794	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3795	     task;
3796	     task = next_tid(task), ctx->pos++) {
3797		char name[10 + 1];
3798		unsigned int len;
3799		tid = task_pid_nr_ns(task, ns);
3800		len = snprintf(name, sizeof(name), "%u", tid);
3801		if (!proc_fill_cache(file, ctx, name, len,
3802				proc_task_instantiate, task, NULL)) {
3803			/* returning this tgid failed, save it as the first
3804			 * pid for the next readir call */
3805			file->f_version = (u64)tid;
3806			put_task_struct(task);
3807			break;
3808		}
3809	}
3810
3811	return 0;
3812}
3813
3814static int proc_task_getattr(struct user_namespace *mnt_userns,
3815			     const struct path *path, struct kstat *stat,
3816			     u32 request_mask, unsigned int query_flags)
3817{
3818	struct inode *inode = d_inode(path->dentry);
3819	struct task_struct *p = get_proc_task(inode);
3820	generic_fillattr(&init_user_ns, inode, stat);
3821
3822	if (p) {
3823		stat->nlink += get_nr_threads(p);
3824		put_task_struct(p);
3825	}
3826
3827	return 0;
3828}
3829
3830static const struct inode_operations proc_task_inode_operations = {
3831	.lookup		= proc_task_lookup,
3832	.getattr	= proc_task_getattr,
3833	.setattr	= proc_setattr,
3834	.permission	= proc_pid_permission,
3835};
3836
3837static const struct file_operations proc_task_operations = {
3838	.read		= generic_read_dir,
3839	.iterate_shared	= proc_task_readdir,
3840	.llseek		= generic_file_llseek,
3841};
3842
3843void __init set_proc_pid_nlink(void)
3844{
3845	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3846	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3847}
v4.10.11
 
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <linux/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
 
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
  76#include <linux/printk.h>
 
  77#include <linux/cgroup.h>
  78#include <linux/cpuset.h>
  79#include <linux/audit.h>
  80#include <linux/poll.h>
  81#include <linux/nsproxy.h>
  82#include <linux/oom.h>
  83#include <linux/elf.h>
  84#include <linux/pid_namespace.h>
  85#include <linux/user_namespace.h>
  86#include <linux/fs_struct.h>
  87#include <linux/slab.h>
  88#include <linux/flex_array.h>
 
 
 
 
  89#include <linux/posix-timers.h>
  90#ifdef CONFIG_HARDWALL
  91#include <asm/hardwall.h>
  92#endif
  93#include <trace/events/oom.h>
  94#include "internal.h"
  95#include "fd.h"
  96
 
 
  97/* NOTE:
  98 *	Implementing inode permission operations in /proc is almost
  99 *	certainly an error.  Permission checks need to happen during
 100 *	each system call not at open time.  The reason is that most of
 101 *	what we wish to check for permissions in /proc varies at runtime.
 102 *
 103 *	The classic example of a problem is opening file descriptors
 104 *	in /proc for a task before it execs a suid executable.
 105 */
 106
 107static u8 nlink_tid;
 108static u8 nlink_tgid;
 109
 110struct pid_entry {
 111	const char *name;
 112	unsigned int len;
 113	umode_t mode;
 114	const struct inode_operations *iop;
 115	const struct file_operations *fop;
 116	union proc_op op;
 117};
 118
 119#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 120	.name = (NAME),					\
 121	.len  = sizeof(NAME) - 1,			\
 122	.mode = MODE,					\
 123	.iop  = IOP,					\
 124	.fop  = FOP,					\
 125	.op   = OP,					\
 126}
 127
 128#define DIR(NAME, MODE, iops, fops)	\
 129	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 130#define LNK(NAME, get_link)					\
 131	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 132		&proc_pid_link_inode_operations, NULL,		\
 133		{ .proc_get_link = get_link } )
 134#define REG(NAME, MODE, fops)				\
 135	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 136#define ONE(NAME, MODE, show)				\
 137	NOD(NAME, (S_IFREG|(MODE)), 			\
 138		NULL, &proc_single_file_operations,	\
 139		{ .proc_show = show } )
 
 
 
 
 140
 141/*
 142 * Count the number of hardlinks for the pid_entry table, excluding the .
 143 * and .. links.
 144 */
 145static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 146	unsigned int n)
 147{
 148	unsigned int i;
 149	unsigned int count;
 150
 151	count = 2;
 152	for (i = 0; i < n; ++i) {
 153		if (S_ISDIR(entries[i].mode))
 154			++count;
 155	}
 156
 157	return count;
 158}
 159
 160static int get_task_root(struct task_struct *task, struct path *root)
 161{
 162	int result = -ENOENT;
 163
 164	task_lock(task);
 165	if (task->fs) {
 166		get_fs_root(task->fs, root);
 167		result = 0;
 168	}
 169	task_unlock(task);
 170	return result;
 171}
 172
 173static int proc_cwd_link(struct dentry *dentry, struct path *path)
 174{
 175	struct task_struct *task = get_proc_task(d_inode(dentry));
 176	int result = -ENOENT;
 177
 178	if (task) {
 179		task_lock(task);
 180		if (task->fs) {
 181			get_fs_pwd(task->fs, path);
 182			result = 0;
 183		}
 184		task_unlock(task);
 185		put_task_struct(task);
 186	}
 187	return result;
 188}
 189
 190static int proc_root_link(struct dentry *dentry, struct path *path)
 191{
 192	struct task_struct *task = get_proc_task(d_inode(dentry));
 193	int result = -ENOENT;
 194
 195	if (task) {
 196		result = get_task_root(task, path);
 197		put_task_struct(task);
 198	}
 199	return result;
 200}
 201
 202static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 203				     size_t _count, loff_t *pos)
 
 
 
 
 
 204{
 205	struct task_struct *tsk;
 206	struct mm_struct *mm;
 207	char *page;
 208	unsigned long count = _count;
 209	unsigned long arg_start, arg_end, env_start, env_end;
 210	unsigned long len1, len2, len;
 211	unsigned long p;
 212	char c;
 213	ssize_t rv;
 214
 215	BUG_ON(*pos < 0);
 
 
 216
 217	tsk = get_proc_task(file_inode(file));
 218	if (!tsk)
 219		return -ESRCH;
 220	mm = get_task_mm(tsk);
 221	put_task_struct(tsk);
 222	if (!mm)
 223		return 0;
 224	/* Check if process spawned far enough to have cmdline. */
 225	if (!mm->env_end) {
 226		rv = 0;
 227		goto out_mmput;
 
 
 
 
 
 
 
 228	}
 
 
 
 
 
 
 
 
 
 
 229
 230	page = (char *)__get_free_page(GFP_TEMPORARY);
 231	if (!page) {
 232		rv = -ENOMEM;
 233		goto out_mmput;
 234	}
 235
 236	down_read(&mm->mmap_sem);
 237	arg_start = mm->arg_start;
 238	arg_end = mm->arg_end;
 239	env_start = mm->env_start;
 240	env_end = mm->env_end;
 241	up_read(&mm->mmap_sem);
 242
 243	BUG_ON(arg_start > arg_end);
 244	BUG_ON(env_start > env_end);
 245
 246	len1 = arg_end - arg_start;
 247	len2 = env_end - env_start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248
 249	/* Empty ARGV. */
 250	if (len1 == 0) {
 251		rv = 0;
 252		goto out_free_page;
 253	}
 254	/*
 255	 * Inherently racy -- command line shares address space
 256	 * with code and data.
 
 
 
 257	 */
 258	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
 259	if (rv <= 0)
 260		goto out_free_page;
 261
 262	rv = 0;
 263
 264	if (c == '\0') {
 265		/* Command line (set of strings) occupies whole ARGV. */
 266		if (len1 <= *pos)
 267			goto out_free_page;
 268
 269		p = arg_start + *pos;
 270		len = len1 - *pos;
 271		while (count > 0 && len > 0) {
 272			unsigned int _count;
 273			int nr_read;
 274
 275			_count = min3(count, len, PAGE_SIZE);
 276			nr_read = access_remote_vm(mm, p, page, _count, 0);
 277			if (nr_read < 0)
 278				rv = nr_read;
 279			if (nr_read <= 0)
 280				goto out_free_page;
 281
 282			if (copy_to_user(buf, page, nr_read)) {
 283				rv = -EFAULT;
 284				goto out_free_page;
 285			}
 286
 287			p	+= nr_read;
 288			len	-= nr_read;
 289			buf	+= nr_read;
 290			count	-= nr_read;
 291			rv	+= nr_read;
 292		}
 293	} else {
 294		/*
 295		 * Command line (1 string) occupies ARGV and maybe
 296		 * extends into ENVP.
 297		 */
 298		if (len1 + len2 <= *pos)
 299			goto skip_argv_envp;
 300		if (len1 <= *pos)
 301			goto skip_argv;
 302
 303		p = arg_start + *pos;
 304		len = len1 - *pos;
 305		while (count > 0 && len > 0) {
 306			unsigned int _count, l;
 307			int nr_read;
 308			bool final;
 309
 310			_count = min3(count, len, PAGE_SIZE);
 311			nr_read = access_remote_vm(mm, p, page, _count, 0);
 312			if (nr_read < 0)
 313				rv = nr_read;
 314			if (nr_read <= 0)
 315				goto out_free_page;
 316
 317			/*
 318			 * Command line can be shorter than whole ARGV
 319			 * even if last "marker" byte says it is not.
 320			 */
 321			final = false;
 322			l = strnlen(page, nr_read);
 323			if (l < nr_read) {
 324				nr_read = l;
 325				final = true;
 326			}
 327
 328			if (copy_to_user(buf, page, nr_read)) {
 329				rv = -EFAULT;
 330				goto out_free_page;
 331			}
 332
 333			p	+= nr_read;
 334			len	-= nr_read;
 335			buf	+= nr_read;
 336			count	-= nr_read;
 337			rv	+= nr_read;
 338
 339			if (final)
 340				goto out_free_page;
 341		}
 342skip_argv:
 343		/*
 344		 * Command line (1 string) occupies ARGV and
 345		 * extends into ENVP.
 346		 */
 347		if (len1 <= *pos) {
 348			p = env_start + *pos - len1;
 349			len = len1 + len2 - *pos;
 350		} else {
 351			p = env_start;
 352			len = len2;
 353		}
 354		while (count > 0 && len > 0) {
 355			unsigned int _count, l;
 356			int nr_read;
 357			bool final;
 358
 359			_count = min3(count, len, PAGE_SIZE);
 360			nr_read = access_remote_vm(mm, p, page, _count, 0);
 361			if (nr_read < 0)
 362				rv = nr_read;
 363			if (nr_read <= 0)
 364				goto out_free_page;
 365
 366			/* Find EOS. */
 367			final = false;
 368			l = strnlen(page, nr_read);
 369			if (l < nr_read) {
 370				nr_read = l;
 371				final = true;
 372			}
 373
 374			if (copy_to_user(buf, page, nr_read)) {
 375				rv = -EFAULT;
 376				goto out_free_page;
 377			}
 378
 379			p	+= nr_read;
 380			len	-= nr_read;
 381			buf	+= nr_read;
 382			count	-= nr_read;
 383			rv	+= nr_read;
 384
 385			if (final)
 386				goto out_free_page;
 387		}
 388skip_argv_envp:
 389		;
 390	}
 391
 392out_free_page:
 393	free_page((unsigned long)page);
 394out_mmput:
 395	mmput(mm);
 396	if (rv > 0)
 397		*pos += rv;
 398	return rv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 399}
 400
 401static const struct file_operations proc_pid_cmdline_ops = {
 402	.read	= proc_pid_cmdline_read,
 403	.llseek	= generic_file_llseek,
 404};
 405
 406#ifdef CONFIG_KALLSYMS
 407/*
 408 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 409 * Returns the resolved symbol.  If that fails, simply return the address.
 410 */
 411static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 412			  struct pid *pid, struct task_struct *task)
 413{
 414	unsigned long wchan;
 415	char symname[KSYM_NAME_LEN];
 416
 417	wchan = get_wchan(task);
 
 
 
 418
 419	if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
 420			&& !lookup_symbol_name(wchan, symname))
 421		seq_printf(m, "%s", symname);
 422	else
 423		seq_putc(m, '0');
 424
 425	return 0;
 426}
 427#endif /* CONFIG_KALLSYMS */
 428
 429static int lock_trace(struct task_struct *task)
 430{
 431	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 432	if (err)
 433		return err;
 434	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 435		mutex_unlock(&task->signal->cred_guard_mutex);
 436		return -EPERM;
 437	}
 438	return 0;
 439}
 440
 441static void unlock_trace(struct task_struct *task)
 442{
 443	mutex_unlock(&task->signal->cred_guard_mutex);
 444}
 445
 446#ifdef CONFIG_STACKTRACE
 447
 448#define MAX_STACK_TRACE_DEPTH	64
 449
 450static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 451			  struct pid *pid, struct task_struct *task)
 452{
 453	struct stack_trace trace;
 454	unsigned long *entries;
 455	int err;
 456	int i;
 457
 458	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 459	if (!entries)
 460		return -ENOMEM;
 461
 462	trace.nr_entries	= 0;
 463	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
 464	trace.entries		= entries;
 465	trace.skip		= 0;
 466
 467	err = lock_trace(task);
 468	if (!err) {
 469		save_stack_trace_tsk(task, &trace);
 470
 471		for (i = 0; i < trace.nr_entries; i++) {
 472			seq_printf(m, "[<%pK>] %pB\n",
 473				   (void *)entries[i], (void *)entries[i]);
 
 
 474		}
 
 475		unlock_trace(task);
 476	}
 477	kfree(entries);
 478
 479	return err;
 480}
 481#endif
 482
 483#ifdef CONFIG_SCHED_INFO
 484/*
 485 * Provides /proc/PID/schedstat
 486 */
 487static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 488			      struct pid *pid, struct task_struct *task)
 489{
 490	if (unlikely(!sched_info_on()))
 491		seq_printf(m, "0 0 0\n");
 492	else
 493		seq_printf(m, "%llu %llu %lu\n",
 494		   (unsigned long long)task->se.sum_exec_runtime,
 495		   (unsigned long long)task->sched_info.run_delay,
 496		   task->sched_info.pcount);
 497
 498	return 0;
 499}
 500#endif
 501
 502#ifdef CONFIG_LATENCYTOP
 503static int lstats_show_proc(struct seq_file *m, void *v)
 504{
 505	int i;
 506	struct inode *inode = m->private;
 507	struct task_struct *task = get_proc_task(inode);
 508
 509	if (!task)
 510		return -ESRCH;
 511	seq_puts(m, "Latency Top version : v0.1\n");
 512	for (i = 0; i < 32; i++) {
 513		struct latency_record *lr = &task->latency_record[i];
 514		if (lr->backtrace[0]) {
 515			int q;
 516			seq_printf(m, "%i %li %li",
 517				   lr->count, lr->time, lr->max);
 518			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 519				unsigned long bt = lr->backtrace[q];
 
 520				if (!bt)
 521					break;
 522				if (bt == ULONG_MAX)
 523					break;
 524				seq_printf(m, " %ps", (void *)bt);
 525			}
 526			seq_putc(m, '\n');
 527		}
 528
 529	}
 530	put_task_struct(task);
 531	return 0;
 532}
 533
 534static int lstats_open(struct inode *inode, struct file *file)
 535{
 536	return single_open(file, lstats_show_proc, inode);
 537}
 538
 539static ssize_t lstats_write(struct file *file, const char __user *buf,
 540			    size_t count, loff_t *offs)
 541{
 542	struct task_struct *task = get_proc_task(file_inode(file));
 543
 544	if (!task)
 545		return -ESRCH;
 546	clear_all_latency_tracing(task);
 547	put_task_struct(task);
 548
 549	return count;
 550}
 551
 552static const struct file_operations proc_lstats_operations = {
 553	.open		= lstats_open,
 554	.read		= seq_read,
 555	.write		= lstats_write,
 556	.llseek		= seq_lseek,
 557	.release	= single_release,
 558};
 559
 560#endif
 561
 562static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 563			  struct pid *pid, struct task_struct *task)
 564{
 565	unsigned long totalpages = totalram_pages + total_swap_pages;
 566	unsigned long points = 0;
 
 
 
 
 
 
 
 
 
 
 567
 568	points = oom_badness(task, NULL, NULL, totalpages) *
 569					1000 / totalpages;
 570	seq_printf(m, "%lu\n", points);
 571
 572	return 0;
 573}
 574
 575struct limit_names {
 576	const char *name;
 577	const char *unit;
 578};
 579
 580static const struct limit_names lnames[RLIM_NLIMITS] = {
 581	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 582	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 583	[RLIMIT_DATA] = {"Max data size", "bytes"},
 584	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 585	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 586	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 587	[RLIMIT_NPROC] = {"Max processes", "processes"},
 588	[RLIMIT_NOFILE] = {"Max open files", "files"},
 589	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 590	[RLIMIT_AS] = {"Max address space", "bytes"},
 591	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 592	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 593	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 594	[RLIMIT_NICE] = {"Max nice priority", NULL},
 595	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 596	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 597};
 598
 599/* Display limits for a process */
 600static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 601			   struct pid *pid, struct task_struct *task)
 602{
 603	unsigned int i;
 604	unsigned long flags;
 605
 606	struct rlimit rlim[RLIM_NLIMITS];
 607
 608	if (!lock_task_sighand(task, &flags))
 609		return 0;
 610	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 611	unlock_task_sighand(task, &flags);
 612
 613	/*
 614	 * print the file header
 615	 */
 616       seq_printf(m, "%-25s %-20s %-20s %-10s\n",
 617		  "Limit", "Soft Limit", "Hard Limit", "Units");
 
 
 618
 619	for (i = 0; i < RLIM_NLIMITS; i++) {
 620		if (rlim[i].rlim_cur == RLIM_INFINITY)
 621			seq_printf(m, "%-25s %-20s ",
 622				   lnames[i].name, "unlimited");
 623		else
 624			seq_printf(m, "%-25s %-20lu ",
 625				   lnames[i].name, rlim[i].rlim_cur);
 626
 627		if (rlim[i].rlim_max == RLIM_INFINITY)
 628			seq_printf(m, "%-20s ", "unlimited");
 629		else
 630			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 631
 632		if (lnames[i].unit)
 633			seq_printf(m, "%-10s\n", lnames[i].unit);
 634		else
 635			seq_putc(m, '\n');
 636	}
 637
 638	return 0;
 639}
 640
 641#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 642static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 643			    struct pid *pid, struct task_struct *task)
 644{
 645	long nr;
 646	unsigned long args[6], sp, pc;
 647	int res;
 648
 649	res = lock_trace(task);
 650	if (res)
 651		return res;
 652
 653	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 654		seq_puts(m, "running\n");
 655	else if (nr < 0)
 656		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 
 657	else
 658		seq_printf(m,
 659		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 660		       nr,
 661		       args[0], args[1], args[2], args[3], args[4], args[5],
 662		       sp, pc);
 663	unlock_trace(task);
 664
 665	return 0;
 666}
 667#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 668
 669/************************************************************************/
 670/*                       Here the fs part begins                        */
 671/************************************************************************/
 672
 673/* permission checks */
 674static int proc_fd_access_allowed(struct inode *inode)
 675{
 676	struct task_struct *task;
 677	int allowed = 0;
 678	/* Allow access to a task's file descriptors if it is us or we
 679	 * may use ptrace attach to the process and find out that
 680	 * information.
 681	 */
 682	task = get_proc_task(inode);
 683	if (task) {
 684		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 685		put_task_struct(task);
 686	}
 687	return allowed;
 688}
 689
 690int proc_setattr(struct dentry *dentry, struct iattr *attr)
 
 691{
 692	int error;
 693	struct inode *inode = d_inode(dentry);
 694
 695	if (attr->ia_valid & ATTR_MODE)
 696		return -EPERM;
 697
 698	error = setattr_prepare(dentry, attr);
 699	if (error)
 700		return error;
 701
 702	setattr_copy(inode, attr);
 703	mark_inode_dirty(inode);
 704	return 0;
 705}
 706
 707/*
 708 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 709 * or euid/egid (for hide_pid_min=2)?
 710 */
 711static bool has_pid_permissions(struct pid_namespace *pid,
 712				 struct task_struct *task,
 713				 int hide_pid_min)
 714{
 715	if (pid->hide_pid < hide_pid_min)
 
 
 
 
 
 
 
 
 716		return true;
 717	if (in_group_p(pid->pid_gid))
 718		return true;
 719	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 720}
 721
 722
 723static int proc_pid_permission(struct inode *inode, int mask)
 
 724{
 725	struct pid_namespace *pid = inode->i_sb->s_fs_info;
 726	struct task_struct *task;
 727	bool has_perms;
 728
 729	task = get_proc_task(inode);
 730	if (!task)
 731		return -ESRCH;
 732	has_perms = has_pid_permissions(pid, task, 1);
 733	put_task_struct(task);
 734
 735	if (!has_perms) {
 736		if (pid->hide_pid == 2) {
 737			/*
 738			 * Let's make getdents(), stat(), and open()
 739			 * consistent with each other.  If a process
 740			 * may not stat() a file, it shouldn't be seen
 741			 * in procfs at all.
 742			 */
 743			return -ENOENT;
 744		}
 745
 746		return -EPERM;
 747	}
 748	return generic_permission(inode, mask);
 749}
 750
 751
 752
 753static const struct inode_operations proc_def_inode_operations = {
 754	.setattr	= proc_setattr,
 755};
 756
 757static int proc_single_show(struct seq_file *m, void *v)
 758{
 759	struct inode *inode = m->private;
 760	struct pid_namespace *ns;
 761	struct pid *pid;
 762	struct task_struct *task;
 763	int ret;
 764
 765	ns = inode->i_sb->s_fs_info;
 766	pid = proc_pid(inode);
 767	task = get_pid_task(pid, PIDTYPE_PID);
 768	if (!task)
 769		return -ESRCH;
 770
 771	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 772
 773	put_task_struct(task);
 774	return ret;
 775}
 776
 777static int proc_single_open(struct inode *inode, struct file *filp)
 778{
 779	return single_open(filp, proc_single_show, inode);
 780}
 781
 782static const struct file_operations proc_single_file_operations = {
 783	.open		= proc_single_open,
 784	.read		= seq_read,
 785	.llseek		= seq_lseek,
 786	.release	= single_release,
 787};
 788
 789
 790struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 791{
 792	struct task_struct *task = get_proc_task(inode);
 793	struct mm_struct *mm = ERR_PTR(-ESRCH);
 794
 795	if (task) {
 796		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 797		put_task_struct(task);
 798
 799		if (!IS_ERR_OR_NULL(mm)) {
 800			/* ensure this mm_struct can't be freed */
 801			atomic_inc(&mm->mm_count);
 802			/* but do not pin its memory */
 803			mmput(mm);
 804		}
 805	}
 806
 807	return mm;
 808}
 809
 810static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 811{
 812	struct mm_struct *mm = proc_mem_open(inode, mode);
 813
 814	if (IS_ERR(mm))
 815		return PTR_ERR(mm);
 816
 817	file->private_data = mm;
 818	return 0;
 819}
 820
 821static int mem_open(struct inode *inode, struct file *file)
 822{
 823	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 824
 825	/* OK to pass negative loff_t, we can catch out-of-range */
 826	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 827
 828	return ret;
 829}
 830
 831static ssize_t mem_rw(struct file *file, char __user *buf,
 832			size_t count, loff_t *ppos, int write)
 833{
 834	struct mm_struct *mm = file->private_data;
 835	unsigned long addr = *ppos;
 836	ssize_t copied;
 837	char *page;
 838	unsigned int flags;
 839
 840	if (!mm)
 841		return 0;
 842
 843	page = (char *)__get_free_page(GFP_TEMPORARY);
 844	if (!page)
 845		return -ENOMEM;
 846
 847	copied = 0;
 848	if (!atomic_inc_not_zero(&mm->mm_users))
 849		goto free;
 850
 851	/* Maybe we should limit FOLL_FORCE to actual ptrace users? */
 852	flags = FOLL_FORCE;
 853	if (write)
 854		flags |= FOLL_WRITE;
 855
 856	while (count > 0) {
 857		int this_len = min_t(int, count, PAGE_SIZE);
 858
 859		if (write && copy_from_user(page, buf, this_len)) {
 860			copied = -EFAULT;
 861			break;
 862		}
 863
 864		this_len = access_remote_vm(mm, addr, page, this_len, flags);
 865		if (!this_len) {
 866			if (!copied)
 867				copied = -EIO;
 868			break;
 869		}
 870
 871		if (!write && copy_to_user(buf, page, this_len)) {
 872			copied = -EFAULT;
 873			break;
 874		}
 875
 876		buf += this_len;
 877		addr += this_len;
 878		copied += this_len;
 879		count -= this_len;
 880	}
 881	*ppos = addr;
 882
 883	mmput(mm);
 884free:
 885	free_page((unsigned long) page);
 886	return copied;
 887}
 888
 889static ssize_t mem_read(struct file *file, char __user *buf,
 890			size_t count, loff_t *ppos)
 891{
 892	return mem_rw(file, buf, count, ppos, 0);
 893}
 894
 895static ssize_t mem_write(struct file *file, const char __user *buf,
 896			 size_t count, loff_t *ppos)
 897{
 898	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 899}
 900
 901loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 902{
 903	switch (orig) {
 904	case 0:
 905		file->f_pos = offset;
 906		break;
 907	case 1:
 908		file->f_pos += offset;
 909		break;
 910	default:
 911		return -EINVAL;
 912	}
 913	force_successful_syscall_return();
 914	return file->f_pos;
 915}
 916
 917static int mem_release(struct inode *inode, struct file *file)
 918{
 919	struct mm_struct *mm = file->private_data;
 920	if (mm)
 921		mmdrop(mm);
 922	return 0;
 923}
 924
 925static const struct file_operations proc_mem_operations = {
 926	.llseek		= mem_lseek,
 927	.read		= mem_read,
 928	.write		= mem_write,
 929	.open		= mem_open,
 930	.release	= mem_release,
 931};
 932
 933static int environ_open(struct inode *inode, struct file *file)
 934{
 935	return __mem_open(inode, file, PTRACE_MODE_READ);
 936}
 937
 938static ssize_t environ_read(struct file *file, char __user *buf,
 939			size_t count, loff_t *ppos)
 940{
 941	char *page;
 942	unsigned long src = *ppos;
 943	int ret = 0;
 944	struct mm_struct *mm = file->private_data;
 945	unsigned long env_start, env_end;
 946
 947	/* Ensure the process spawned far enough to have an environment. */
 948	if (!mm || !mm->env_end)
 949		return 0;
 950
 951	page = (char *)__get_free_page(GFP_TEMPORARY);
 952	if (!page)
 953		return -ENOMEM;
 954
 955	ret = 0;
 956	if (!atomic_inc_not_zero(&mm->mm_users))
 957		goto free;
 958
 959	down_read(&mm->mmap_sem);
 960	env_start = mm->env_start;
 961	env_end = mm->env_end;
 962	up_read(&mm->mmap_sem);
 963
 964	while (count > 0) {
 965		size_t this_len, max_len;
 966		int retval;
 967
 968		if (src >= (env_end - env_start))
 969			break;
 970
 971		this_len = env_end - (env_start + src);
 972
 973		max_len = min_t(size_t, PAGE_SIZE, count);
 974		this_len = min(max_len, this_len);
 975
 976		retval = access_remote_vm(mm, (env_start + src), page, this_len, 0);
 977
 978		if (retval <= 0) {
 979			ret = retval;
 980			break;
 981		}
 982
 983		if (copy_to_user(buf, page, retval)) {
 984			ret = -EFAULT;
 985			break;
 986		}
 987
 988		ret += retval;
 989		src += retval;
 990		buf += retval;
 991		count -= retval;
 992	}
 993	*ppos = src;
 994	mmput(mm);
 995
 996free:
 997	free_page((unsigned long) page);
 998	return ret;
 999}
1000
1001static const struct file_operations proc_environ_operations = {
1002	.open		= environ_open,
1003	.read		= environ_read,
1004	.llseek		= generic_file_llseek,
1005	.release	= mem_release,
1006};
1007
1008static int auxv_open(struct inode *inode, struct file *file)
1009{
1010	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1011}
1012
1013static ssize_t auxv_read(struct file *file, char __user *buf,
1014			size_t count, loff_t *ppos)
1015{
1016	struct mm_struct *mm = file->private_data;
1017	unsigned int nwords = 0;
1018
1019	if (!mm)
1020		return 0;
1021	do {
1022		nwords += 2;
1023	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1024	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1025				       nwords * sizeof(mm->saved_auxv[0]));
1026}
1027
1028static const struct file_operations proc_auxv_operations = {
1029	.open		= auxv_open,
1030	.read		= auxv_read,
1031	.llseek		= generic_file_llseek,
1032	.release	= mem_release,
1033};
1034
1035static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1036			    loff_t *ppos)
1037{
1038	struct task_struct *task = get_proc_task(file_inode(file));
1039	char buffer[PROC_NUMBUF];
1040	int oom_adj = OOM_ADJUST_MIN;
1041	size_t len;
1042
1043	if (!task)
1044		return -ESRCH;
1045	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1046		oom_adj = OOM_ADJUST_MAX;
1047	else
1048		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1049			  OOM_SCORE_ADJ_MAX;
1050	put_task_struct(task);
 
 
1051	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1052	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1053}
1054
1055static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1056{
1057	static DEFINE_MUTEX(oom_adj_mutex);
1058	struct mm_struct *mm = NULL;
1059	struct task_struct *task;
1060	int err = 0;
1061
1062	task = get_proc_task(file_inode(file));
1063	if (!task)
1064		return -ESRCH;
1065
1066	mutex_lock(&oom_adj_mutex);
1067	if (legacy) {
1068		if (oom_adj < task->signal->oom_score_adj &&
1069				!capable(CAP_SYS_RESOURCE)) {
1070			err = -EACCES;
1071			goto err_unlock;
1072		}
1073		/*
1074		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1075		 * /proc/pid/oom_score_adj instead.
1076		 */
1077		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1078			  current->comm, task_pid_nr(current), task_pid_nr(task),
1079			  task_pid_nr(task));
1080	} else {
1081		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1082				!capable(CAP_SYS_RESOURCE)) {
1083			err = -EACCES;
1084			goto err_unlock;
1085		}
1086	}
1087
1088	/*
1089	 * Make sure we will check other processes sharing the mm if this is
1090	 * not vfrok which wants its own oom_score_adj.
1091	 * pin the mm so it doesn't go away and get reused after task_unlock
1092	 */
1093	if (!task->vfork_done) {
1094		struct task_struct *p = find_lock_task_mm(task);
1095
1096		if (p) {
1097			if (atomic_read(&p->mm->mm_users) > 1) {
1098				mm = p->mm;
1099				atomic_inc(&mm->mm_count);
1100			}
1101			task_unlock(p);
1102		}
1103	}
1104
1105	task->signal->oom_score_adj = oom_adj;
1106	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1107		task->signal->oom_score_adj_min = (short)oom_adj;
1108	trace_oom_score_adj_update(task);
1109
1110	if (mm) {
1111		struct task_struct *p;
1112
1113		rcu_read_lock();
1114		for_each_process(p) {
1115			if (same_thread_group(task, p))
1116				continue;
1117
1118			/* do not touch kernel threads or the global init */
1119			if (p->flags & PF_KTHREAD || is_global_init(p))
1120				continue;
1121
1122			task_lock(p);
1123			if (!p->vfork_done && process_shares_mm(p, mm)) {
1124				pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1125						task_pid_nr(p), p->comm,
1126						p->signal->oom_score_adj, oom_adj,
1127						task_pid_nr(task), task->comm);
1128				p->signal->oom_score_adj = oom_adj;
1129				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1130					p->signal->oom_score_adj_min = (short)oom_adj;
1131			}
1132			task_unlock(p);
1133		}
1134		rcu_read_unlock();
1135		mmdrop(mm);
1136	}
1137err_unlock:
1138	mutex_unlock(&oom_adj_mutex);
1139	put_task_struct(task);
1140	return err;
1141}
1142
1143/*
1144 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1145 * kernels.  The effective policy is defined by oom_score_adj, which has a
1146 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1147 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1148 * Processes that become oom disabled via oom_adj will still be oom disabled
1149 * with this implementation.
1150 *
1151 * oom_adj cannot be removed since existing userspace binaries use it.
1152 */
1153static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1154			     size_t count, loff_t *ppos)
1155{
1156	char buffer[PROC_NUMBUF];
1157	int oom_adj;
1158	int err;
1159
1160	memset(buffer, 0, sizeof(buffer));
1161	if (count > sizeof(buffer) - 1)
1162		count = sizeof(buffer) - 1;
1163	if (copy_from_user(buffer, buf, count)) {
1164		err = -EFAULT;
1165		goto out;
1166	}
1167
1168	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1169	if (err)
1170		goto out;
1171	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1172	     oom_adj != OOM_DISABLE) {
1173		err = -EINVAL;
1174		goto out;
1175	}
1176
1177	/*
1178	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1179	 * value is always attainable.
1180	 */
1181	if (oom_adj == OOM_ADJUST_MAX)
1182		oom_adj = OOM_SCORE_ADJ_MAX;
1183	else
1184		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1185
1186	err = __set_oom_adj(file, oom_adj, true);
1187out:
1188	return err < 0 ? err : count;
1189}
1190
1191static const struct file_operations proc_oom_adj_operations = {
1192	.read		= oom_adj_read,
1193	.write		= oom_adj_write,
1194	.llseek		= generic_file_llseek,
1195};
1196
1197static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1198					size_t count, loff_t *ppos)
1199{
1200	struct task_struct *task = get_proc_task(file_inode(file));
1201	char buffer[PROC_NUMBUF];
1202	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1203	size_t len;
1204
1205	if (!task)
1206		return -ESRCH;
1207	oom_score_adj = task->signal->oom_score_adj;
1208	put_task_struct(task);
1209	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1210	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1211}
1212
1213static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1214					size_t count, loff_t *ppos)
1215{
1216	char buffer[PROC_NUMBUF];
1217	int oom_score_adj;
1218	int err;
1219
1220	memset(buffer, 0, sizeof(buffer));
1221	if (count > sizeof(buffer) - 1)
1222		count = sizeof(buffer) - 1;
1223	if (copy_from_user(buffer, buf, count)) {
1224		err = -EFAULT;
1225		goto out;
1226	}
1227
1228	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1229	if (err)
1230		goto out;
1231	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1232			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1233		err = -EINVAL;
1234		goto out;
1235	}
1236
1237	err = __set_oom_adj(file, oom_score_adj, false);
1238out:
1239	return err < 0 ? err : count;
1240}
1241
1242static const struct file_operations proc_oom_score_adj_operations = {
1243	.read		= oom_score_adj_read,
1244	.write		= oom_score_adj_write,
1245	.llseek		= default_llseek,
1246};
1247
1248#ifdef CONFIG_AUDITSYSCALL
1249#define TMPBUFLEN 11
1250static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1251				  size_t count, loff_t *ppos)
1252{
1253	struct inode * inode = file_inode(file);
1254	struct task_struct *task = get_proc_task(inode);
1255	ssize_t length;
1256	char tmpbuf[TMPBUFLEN];
1257
1258	if (!task)
1259		return -ESRCH;
1260	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1261			   from_kuid(file->f_cred->user_ns,
1262				     audit_get_loginuid(task)));
1263	put_task_struct(task);
1264	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1265}
1266
1267static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1268				   size_t count, loff_t *ppos)
1269{
1270	struct inode * inode = file_inode(file);
1271	uid_t loginuid;
1272	kuid_t kloginuid;
1273	int rv;
1274
 
 
 
 
1275	rcu_read_lock();
1276	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1277		rcu_read_unlock();
1278		return -EPERM;
1279	}
1280	rcu_read_unlock();
1281
1282	if (*ppos != 0) {
1283		/* No partial writes. */
1284		return -EINVAL;
1285	}
1286
1287	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1288	if (rv < 0)
1289		return rv;
1290
1291	/* is userspace tring to explicitly UNSET the loginuid? */
1292	if (loginuid == AUDIT_UID_UNSET) {
1293		kloginuid = INVALID_UID;
1294	} else {
1295		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1296		if (!uid_valid(kloginuid))
1297			return -EINVAL;
1298	}
1299
1300	rv = audit_set_loginuid(kloginuid);
1301	if (rv < 0)
1302		return rv;
1303	return count;
1304}
1305
1306static const struct file_operations proc_loginuid_operations = {
1307	.read		= proc_loginuid_read,
1308	.write		= proc_loginuid_write,
1309	.llseek		= generic_file_llseek,
1310};
1311
1312static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1313				  size_t count, loff_t *ppos)
1314{
1315	struct inode * inode = file_inode(file);
1316	struct task_struct *task = get_proc_task(inode);
1317	ssize_t length;
1318	char tmpbuf[TMPBUFLEN];
1319
1320	if (!task)
1321		return -ESRCH;
1322	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1323				audit_get_sessionid(task));
1324	put_task_struct(task);
1325	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1326}
1327
1328static const struct file_operations proc_sessionid_operations = {
1329	.read		= proc_sessionid_read,
1330	.llseek		= generic_file_llseek,
1331};
1332#endif
1333
1334#ifdef CONFIG_FAULT_INJECTION
1335static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1336				      size_t count, loff_t *ppos)
1337{
1338	struct task_struct *task = get_proc_task(file_inode(file));
1339	char buffer[PROC_NUMBUF];
1340	size_t len;
1341	int make_it_fail;
1342
1343	if (!task)
1344		return -ESRCH;
1345	make_it_fail = task->make_it_fail;
1346	put_task_struct(task);
1347
1348	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1349
1350	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1351}
1352
1353static ssize_t proc_fault_inject_write(struct file * file,
1354			const char __user * buf, size_t count, loff_t *ppos)
1355{
1356	struct task_struct *task;
1357	char buffer[PROC_NUMBUF];
1358	int make_it_fail;
1359	int rv;
1360
1361	if (!capable(CAP_SYS_RESOURCE))
1362		return -EPERM;
1363	memset(buffer, 0, sizeof(buffer));
1364	if (count > sizeof(buffer) - 1)
1365		count = sizeof(buffer) - 1;
1366	if (copy_from_user(buffer, buf, count))
1367		return -EFAULT;
1368	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1369	if (rv < 0)
1370		return rv;
1371	if (make_it_fail < 0 || make_it_fail > 1)
1372		return -EINVAL;
1373
1374	task = get_proc_task(file_inode(file));
1375	if (!task)
1376		return -ESRCH;
1377	task->make_it_fail = make_it_fail;
1378	put_task_struct(task);
1379
1380	return count;
1381}
1382
1383static const struct file_operations proc_fault_inject_operations = {
1384	.read		= proc_fault_inject_read,
1385	.write		= proc_fault_inject_write,
1386	.llseek		= generic_file_llseek,
1387};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1388#endif
1389
1390
1391#ifdef CONFIG_SCHED_DEBUG
1392/*
1393 * Print out various scheduling related per-task fields:
1394 */
1395static int sched_show(struct seq_file *m, void *v)
1396{
1397	struct inode *inode = m->private;
 
1398	struct task_struct *p;
1399
1400	p = get_proc_task(inode);
1401	if (!p)
1402		return -ESRCH;
1403	proc_sched_show_task(p, m);
1404
1405	put_task_struct(p);
1406
1407	return 0;
1408}
1409
1410static ssize_t
1411sched_write(struct file *file, const char __user *buf,
1412	    size_t count, loff_t *offset)
1413{
1414	struct inode *inode = file_inode(file);
1415	struct task_struct *p;
1416
1417	p = get_proc_task(inode);
1418	if (!p)
1419		return -ESRCH;
1420	proc_sched_set_task(p);
1421
1422	put_task_struct(p);
1423
1424	return count;
1425}
1426
1427static int sched_open(struct inode *inode, struct file *filp)
1428{
1429	return single_open(filp, sched_show, inode);
1430}
1431
1432static const struct file_operations proc_pid_sched_operations = {
1433	.open		= sched_open,
1434	.read		= seq_read,
1435	.write		= sched_write,
1436	.llseek		= seq_lseek,
1437	.release	= single_release,
1438};
1439
1440#endif
1441
1442#ifdef CONFIG_SCHED_AUTOGROUP
1443/*
1444 * Print out autogroup related information:
1445 */
1446static int sched_autogroup_show(struct seq_file *m, void *v)
1447{
1448	struct inode *inode = m->private;
1449	struct task_struct *p;
1450
1451	p = get_proc_task(inode);
1452	if (!p)
1453		return -ESRCH;
1454	proc_sched_autogroup_show_task(p, m);
1455
1456	put_task_struct(p);
1457
1458	return 0;
1459}
1460
1461static ssize_t
1462sched_autogroup_write(struct file *file, const char __user *buf,
1463	    size_t count, loff_t *offset)
1464{
1465	struct inode *inode = file_inode(file);
1466	struct task_struct *p;
1467	char buffer[PROC_NUMBUF];
1468	int nice;
1469	int err;
1470
1471	memset(buffer, 0, sizeof(buffer));
1472	if (count > sizeof(buffer) - 1)
1473		count = sizeof(buffer) - 1;
1474	if (copy_from_user(buffer, buf, count))
1475		return -EFAULT;
1476
1477	err = kstrtoint(strstrip(buffer), 0, &nice);
1478	if (err < 0)
1479		return err;
1480
1481	p = get_proc_task(inode);
1482	if (!p)
1483		return -ESRCH;
1484
1485	err = proc_sched_autogroup_set_nice(p, nice);
1486	if (err)
1487		count = err;
1488
1489	put_task_struct(p);
1490
1491	return count;
1492}
1493
1494static int sched_autogroup_open(struct inode *inode, struct file *filp)
1495{
1496	int ret;
1497
1498	ret = single_open(filp, sched_autogroup_show, NULL);
1499	if (!ret) {
1500		struct seq_file *m = filp->private_data;
1501
1502		m->private = inode;
1503	}
1504	return ret;
1505}
1506
1507static const struct file_operations proc_pid_sched_autogroup_operations = {
1508	.open		= sched_autogroup_open,
1509	.read		= seq_read,
1510	.write		= sched_autogroup_write,
1511	.llseek		= seq_lseek,
1512	.release	= single_release,
1513};
1514
1515#endif /* CONFIG_SCHED_AUTOGROUP */
1516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1517static ssize_t comm_write(struct file *file, const char __user *buf,
1518				size_t count, loff_t *offset)
1519{
1520	struct inode *inode = file_inode(file);
1521	struct task_struct *p;
1522	char buffer[TASK_COMM_LEN];
1523	const size_t maxlen = sizeof(buffer) - 1;
1524
1525	memset(buffer, 0, sizeof(buffer));
1526	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1527		return -EFAULT;
1528
1529	p = get_proc_task(inode);
1530	if (!p)
1531		return -ESRCH;
1532
1533	if (same_thread_group(current, p))
1534		set_task_comm(p, buffer);
1535	else
1536		count = -EINVAL;
1537
1538	put_task_struct(p);
1539
1540	return count;
1541}
1542
1543static int comm_show(struct seq_file *m, void *v)
1544{
1545	struct inode *inode = m->private;
1546	struct task_struct *p;
1547
1548	p = get_proc_task(inode);
1549	if (!p)
1550		return -ESRCH;
1551
1552	task_lock(p);
1553	seq_printf(m, "%s\n", p->comm);
1554	task_unlock(p);
1555
1556	put_task_struct(p);
1557
1558	return 0;
1559}
1560
1561static int comm_open(struct inode *inode, struct file *filp)
1562{
1563	return single_open(filp, comm_show, inode);
1564}
1565
1566static const struct file_operations proc_pid_set_comm_operations = {
1567	.open		= comm_open,
1568	.read		= seq_read,
1569	.write		= comm_write,
1570	.llseek		= seq_lseek,
1571	.release	= single_release,
1572};
1573
1574static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1575{
1576	struct task_struct *task;
1577	struct file *exe_file;
1578
1579	task = get_proc_task(d_inode(dentry));
1580	if (!task)
1581		return -ENOENT;
1582	exe_file = get_task_exe_file(task);
1583	put_task_struct(task);
1584	if (exe_file) {
1585		*exe_path = exe_file->f_path;
1586		path_get(&exe_file->f_path);
1587		fput(exe_file);
1588		return 0;
1589	} else
1590		return -ENOENT;
1591}
1592
1593static const char *proc_pid_get_link(struct dentry *dentry,
1594				     struct inode *inode,
1595				     struct delayed_call *done)
1596{
1597	struct path path;
1598	int error = -EACCES;
1599
1600	if (!dentry)
1601		return ERR_PTR(-ECHILD);
1602
1603	/* Are we allowed to snoop on the tasks file descriptors? */
1604	if (!proc_fd_access_allowed(inode))
1605		goto out;
1606
1607	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1608	if (error)
1609		goto out;
1610
1611	nd_jump_link(&path);
1612	return NULL;
1613out:
1614	return ERR_PTR(error);
1615}
1616
1617static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1618{
1619	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1620	char *pathname;
1621	int len;
1622
1623	if (!tmp)
1624		return -ENOMEM;
1625
1626	pathname = d_path(path, tmp, PAGE_SIZE);
1627	len = PTR_ERR(pathname);
1628	if (IS_ERR(pathname))
1629		goto out;
1630	len = tmp + PAGE_SIZE - 1 - pathname;
1631
1632	if (len > buflen)
1633		len = buflen;
1634	if (copy_to_user(buffer, pathname, len))
1635		len = -EFAULT;
1636 out:
1637	free_page((unsigned long)tmp);
1638	return len;
1639}
1640
1641static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1642{
1643	int error = -EACCES;
1644	struct inode *inode = d_inode(dentry);
1645	struct path path;
1646
1647	/* Are we allowed to snoop on the tasks file descriptors? */
1648	if (!proc_fd_access_allowed(inode))
1649		goto out;
1650
1651	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1652	if (error)
1653		goto out;
1654
1655	error = do_proc_readlink(&path, buffer, buflen);
1656	path_put(&path);
1657out:
1658	return error;
1659}
1660
1661const struct inode_operations proc_pid_link_inode_operations = {
1662	.readlink	= proc_pid_readlink,
1663	.get_link	= proc_pid_get_link,
1664	.setattr	= proc_setattr,
1665};
1666
1667
1668/* building an inode */
1669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1670struct inode *proc_pid_make_inode(struct super_block * sb,
1671				  struct task_struct *task, umode_t mode)
1672{
1673	struct inode * inode;
1674	struct proc_inode *ei;
1675	const struct cred *cred;
1676
1677	/* We need a new inode */
1678
1679	inode = new_inode(sb);
1680	if (!inode)
1681		goto out;
1682
1683	/* Common stuff */
1684	ei = PROC_I(inode);
1685	inode->i_mode = mode;
1686	inode->i_ino = get_next_ino();
1687	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1688	inode->i_op = &proc_def_inode_operations;
1689
1690	/*
1691	 * grab the reference to task.
1692	 */
1693	ei->pid = get_task_pid(task, PIDTYPE_PID);
1694	if (!ei->pid)
1695		goto out_unlock;
1696
1697	if (task_dumpable(task)) {
1698		rcu_read_lock();
1699		cred = __task_cred(task);
1700		inode->i_uid = cred->euid;
1701		inode->i_gid = cred->egid;
1702		rcu_read_unlock();
1703	}
 
 
1704	security_task_to_inode(task, inode);
1705
1706out:
1707	return inode;
1708
1709out_unlock:
1710	iput(inode);
1711	return NULL;
1712}
1713
1714int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
 
1715{
1716	struct inode *inode = d_inode(dentry);
 
1717	struct task_struct *task;
1718	const struct cred *cred;
1719	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1720
1721	generic_fillattr(inode, stat);
1722
1723	rcu_read_lock();
1724	stat->uid = GLOBAL_ROOT_UID;
1725	stat->gid = GLOBAL_ROOT_GID;
 
1726	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1727	if (task) {
1728		if (!has_pid_permissions(pid, task, 2)) {
1729			rcu_read_unlock();
1730			/*
1731			 * This doesn't prevent learning whether PID exists,
1732			 * it only makes getattr() consistent with readdir().
1733			 */
1734			return -ENOENT;
1735		}
1736		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1737		    task_dumpable(task)) {
1738			cred = __task_cred(task);
1739			stat->uid = cred->euid;
1740			stat->gid = cred->egid;
1741		}
1742	}
1743	rcu_read_unlock();
1744	return 0;
1745}
1746
1747/* dentry stuff */
1748
1749/*
1750 *	Exceptional case: normally we are not allowed to unhash a busy
1751 * directory. In this case, however, we can do it - no aliasing problems
1752 * due to the way we treat inodes.
1753 *
 
 
 
 
 
 
 
1754 * Rewrite the inode's ownerships here because the owning task may have
1755 * performed a setuid(), etc.
1756 *
1757 * Before the /proc/pid/status file was created the only way to read
1758 * the effective uid of a /process was to stat /proc/pid.  Reading
1759 * /proc/pid/status is slow enough that procps and other packages
1760 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1761 * made this apply to all per process world readable and executable
1762 * directories.
1763 */
1764int pid_revalidate(struct dentry *dentry, unsigned int flags)
1765{
1766	struct inode *inode;
1767	struct task_struct *task;
1768	const struct cred *cred;
1769
1770	if (flags & LOOKUP_RCU)
1771		return -ECHILD;
1772
1773	inode = d_inode(dentry);
1774	task = get_proc_task(inode);
1775
1776	if (task) {
1777		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1778		    task_dumpable(task)) {
1779			rcu_read_lock();
1780			cred = __task_cred(task);
1781			inode->i_uid = cred->euid;
1782			inode->i_gid = cred->egid;
1783			rcu_read_unlock();
1784		} else {
1785			inode->i_uid = GLOBAL_ROOT_UID;
1786			inode->i_gid = GLOBAL_ROOT_GID;
1787		}
1788		inode->i_mode &= ~(S_ISUID | S_ISGID);
1789		security_task_to_inode(task, inode);
1790		put_task_struct(task);
1791		return 1;
1792	}
1793	return 0;
1794}
1795
1796static inline bool proc_inode_is_dead(struct inode *inode)
1797{
1798	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1799}
1800
1801int pid_delete_dentry(const struct dentry *dentry)
1802{
1803	/* Is the task we represent dead?
1804	 * If so, then don't put the dentry on the lru list,
1805	 * kill it immediately.
1806	 */
1807	return proc_inode_is_dead(d_inode(dentry));
1808}
1809
1810const struct dentry_operations pid_dentry_operations =
1811{
1812	.d_revalidate	= pid_revalidate,
1813	.d_delete	= pid_delete_dentry,
1814};
1815
1816/* Lookups */
1817
1818/*
1819 * Fill a directory entry.
1820 *
1821 * If possible create the dcache entry and derive our inode number and
1822 * file type from dcache entry.
1823 *
1824 * Since all of the proc inode numbers are dynamically generated, the inode
1825 * numbers do not exist until the inode is cache.  This means creating the
1826 * the dcache entry in readdir is necessary to keep the inode numbers
1827 * reported by readdir in sync with the inode numbers reported
1828 * by stat.
1829 */
1830bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1831	const char *name, int len,
1832	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1833{
1834	struct dentry *child, *dir = file->f_path.dentry;
1835	struct qstr qname = QSTR_INIT(name, len);
1836	struct inode *inode;
1837	unsigned type;
1838	ino_t ino;
1839
1840	child = d_hash_and_lookup(dir, &qname);
1841	if (!child) {
1842		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1843		child = d_alloc_parallel(dir, &qname, &wq);
1844		if (IS_ERR(child))
1845			goto end_instantiate;
1846		if (d_in_lookup(child)) {
1847			int err = instantiate(d_inode(dir), child, task, ptr);
 
1848			d_lookup_done(child);
1849			if (err < 0) {
1850				dput(child);
1851				goto end_instantiate;
 
 
1852			}
1853		}
1854	}
1855	inode = d_inode(child);
1856	ino = inode->i_ino;
1857	type = inode->i_mode >> 12;
1858	dput(child);
 
1859	return dir_emit(ctx, name, len, ino, type);
1860
1861end_instantiate:
1862	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1863}
1864
1865/*
1866 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1867 * which represent vma start and end addresses.
1868 */
1869static int dname_to_vma_addr(struct dentry *dentry,
1870			     unsigned long *start, unsigned long *end)
1871{
1872	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1873		return -EINVAL;
 
 
 
 
 
 
 
1874
1875	return 0;
1876}
1877
1878static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1879{
1880	unsigned long vm_start, vm_end;
1881	bool exact_vma_exists = false;
1882	struct mm_struct *mm = NULL;
1883	struct task_struct *task;
1884	const struct cred *cred;
1885	struct inode *inode;
1886	int status = 0;
1887
1888	if (flags & LOOKUP_RCU)
1889		return -ECHILD;
1890
1891	inode = d_inode(dentry);
1892	task = get_proc_task(inode);
1893	if (!task)
1894		goto out_notask;
1895
1896	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1897	if (IS_ERR_OR_NULL(mm))
1898		goto out;
1899
1900	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1901		down_read(&mm->mmap_sem);
1902		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1903		up_read(&mm->mmap_sem);
 
 
 
1904	}
1905
1906	mmput(mm);
1907
1908	if (exact_vma_exists) {
1909		if (task_dumpable(task)) {
1910			rcu_read_lock();
1911			cred = __task_cred(task);
1912			inode->i_uid = cred->euid;
1913			inode->i_gid = cred->egid;
1914			rcu_read_unlock();
1915		} else {
1916			inode->i_uid = GLOBAL_ROOT_UID;
1917			inode->i_gid = GLOBAL_ROOT_GID;
1918		}
1919		security_task_to_inode(task, inode);
1920		status = 1;
1921	}
1922
1923out:
1924	put_task_struct(task);
1925
1926out_notask:
1927	return status;
1928}
1929
1930static const struct dentry_operations tid_map_files_dentry_operations = {
1931	.d_revalidate	= map_files_d_revalidate,
1932	.d_delete	= pid_delete_dentry,
1933};
1934
1935static int map_files_get_link(struct dentry *dentry, struct path *path)
1936{
1937	unsigned long vm_start, vm_end;
1938	struct vm_area_struct *vma;
1939	struct task_struct *task;
1940	struct mm_struct *mm;
1941	int rc;
1942
1943	rc = -ENOENT;
1944	task = get_proc_task(d_inode(dentry));
1945	if (!task)
1946		goto out;
1947
1948	mm = get_task_mm(task);
1949	put_task_struct(task);
1950	if (!mm)
1951		goto out;
1952
1953	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1954	if (rc)
1955		goto out_mmput;
1956
 
 
 
 
1957	rc = -ENOENT;
1958	down_read(&mm->mmap_sem);
1959	vma = find_exact_vma(mm, vm_start, vm_end);
1960	if (vma && vma->vm_file) {
1961		*path = vma->vm_file->f_path;
1962		path_get(path);
1963		rc = 0;
1964	}
1965	up_read(&mm->mmap_sem);
1966
1967out_mmput:
1968	mmput(mm);
1969out:
1970	return rc;
1971}
1972
1973struct map_files_info {
 
 
1974	fmode_t		mode;
1975	unsigned int	len;
1976	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1977};
1978
1979/*
1980 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1981 * symlinks may be used to bypass permissions on ancestor directories in the
1982 * path to the file in question.
1983 */
1984static const char *
1985proc_map_files_get_link(struct dentry *dentry,
1986			struct inode *inode,
1987		        struct delayed_call *done)
1988{
1989	if (!capable(CAP_SYS_ADMIN))
1990		return ERR_PTR(-EPERM);
1991
1992	return proc_pid_get_link(dentry, inode, done);
1993}
1994
1995/*
1996 * Identical to proc_pid_link_inode_operations except for get_link()
1997 */
1998static const struct inode_operations proc_map_files_link_inode_operations = {
1999	.readlink	= proc_pid_readlink,
2000	.get_link	= proc_map_files_get_link,
2001	.setattr	= proc_setattr,
2002};
2003
2004static int
2005proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2006			   struct task_struct *task, const void *ptr)
2007{
2008	fmode_t mode = (fmode_t)(unsigned long)ptr;
2009	struct proc_inode *ei;
2010	struct inode *inode;
2011
2012	inode = proc_pid_make_inode(dir->i_sb, task, S_IFLNK |
2013				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2014				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2015	if (!inode)
2016		return -ENOENT;
2017
2018	ei = PROC_I(inode);
2019	ei->op.proc_get_link = map_files_get_link;
2020
2021	inode->i_op = &proc_map_files_link_inode_operations;
2022	inode->i_size = 64;
2023
2024	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2025	d_add(dentry, inode);
2026
2027	return 0;
2028}
2029
2030static struct dentry *proc_map_files_lookup(struct inode *dir,
2031		struct dentry *dentry, unsigned int flags)
2032{
2033	unsigned long vm_start, vm_end;
2034	struct vm_area_struct *vma;
2035	struct task_struct *task;
2036	int result;
2037	struct mm_struct *mm;
2038
2039	result = -ENOENT;
2040	task = get_proc_task(dir);
2041	if (!task)
2042		goto out;
2043
2044	result = -EACCES;
2045	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2046		goto out_put_task;
2047
2048	result = -ENOENT;
2049	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2050		goto out_put_task;
2051
2052	mm = get_task_mm(task);
2053	if (!mm)
2054		goto out_put_task;
2055
2056	down_read(&mm->mmap_sem);
 
 
 
 
2057	vma = find_exact_vma(mm, vm_start, vm_end);
2058	if (!vma)
2059		goto out_no_vma;
2060
2061	if (vma->vm_file)
2062		result = proc_map_files_instantiate(dir, dentry, task,
2063				(void *)(unsigned long)vma->vm_file->f_mode);
2064
2065out_no_vma:
2066	up_read(&mm->mmap_sem);
 
2067	mmput(mm);
2068out_put_task:
2069	put_task_struct(task);
2070out:
2071	return ERR_PTR(result);
2072}
2073
2074static const struct inode_operations proc_map_files_inode_operations = {
2075	.lookup		= proc_map_files_lookup,
2076	.permission	= proc_fd_permission,
2077	.setattr	= proc_setattr,
2078};
2079
2080static int
2081proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2082{
2083	struct vm_area_struct *vma;
2084	struct task_struct *task;
2085	struct mm_struct *mm;
2086	unsigned long nr_files, pos, i;
2087	struct flex_array *fa = NULL;
2088	struct map_files_info info;
2089	struct map_files_info *p;
2090	int ret;
2091
 
 
2092	ret = -ENOENT;
2093	task = get_proc_task(file_inode(file));
2094	if (!task)
2095		goto out;
2096
2097	ret = -EACCES;
2098	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2099		goto out_put_task;
2100
2101	ret = 0;
2102	if (!dir_emit_dots(file, ctx))
2103		goto out_put_task;
2104
2105	mm = get_task_mm(task);
2106	if (!mm)
2107		goto out_put_task;
2108	down_read(&mm->mmap_sem);
 
 
 
 
 
2109
2110	nr_files = 0;
2111
2112	/*
2113	 * We need two passes here:
2114	 *
2115	 *  1) Collect vmas of mapped files with mmap_sem taken
2116	 *  2) Release mmap_sem and instantiate entries
2117	 *
2118	 * otherwise we get lockdep complained, since filldir()
2119	 * routine might require mmap_sem taken in might_fault().
2120	 */
2121
2122	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2123		if (vma->vm_file && ++pos > ctx->pos)
2124			nr_files++;
2125	}
 
2126
2127	if (nr_files) {
2128		fa = flex_array_alloc(sizeof(info), nr_files,
2129					GFP_KERNEL);
2130		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2131						GFP_KERNEL)) {
2132			ret = -ENOMEM;
2133			if (fa)
2134				flex_array_free(fa);
2135			up_read(&mm->mmap_sem);
2136			mmput(mm);
2137			goto out_put_task;
2138		}
2139		for (i = 0, vma = mm->mmap, pos = 2; vma;
2140				vma = vma->vm_next) {
2141			if (!vma->vm_file)
2142				continue;
2143			if (++pos <= ctx->pos)
2144				continue;
2145
2146			info.mode = vma->vm_file->f_mode;
2147			info.len = snprintf(info.name,
2148					sizeof(info.name), "%lx-%lx",
2149					vma->vm_start, vma->vm_end);
2150			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2151				BUG();
2152		}
2153	}
2154	up_read(&mm->mmap_sem);
 
2155
2156	for (i = 0; i < nr_files; i++) {
2157		p = flex_array_get(fa, i);
 
 
 
 
2158		if (!proc_fill_cache(file, ctx,
2159				      p->name, p->len,
2160				      proc_map_files_instantiate,
2161				      task,
2162				      (void *)(unsigned long)p->mode))
2163			break;
2164		ctx->pos++;
2165	}
2166	if (fa)
2167		flex_array_free(fa);
2168	mmput(mm);
2169
2170out_put_task:
2171	put_task_struct(task);
2172out:
 
2173	return ret;
2174}
2175
2176static const struct file_operations proc_map_files_operations = {
2177	.read		= generic_read_dir,
2178	.iterate_shared	= proc_map_files_readdir,
2179	.llseek		= generic_file_llseek,
2180};
2181
2182#ifdef CONFIG_CHECKPOINT_RESTORE
2183struct timers_private {
2184	struct pid *pid;
2185	struct task_struct *task;
2186	struct sighand_struct *sighand;
2187	struct pid_namespace *ns;
2188	unsigned long flags;
2189};
2190
2191static void *timers_start(struct seq_file *m, loff_t *pos)
2192{
2193	struct timers_private *tp = m->private;
2194
2195	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2196	if (!tp->task)
2197		return ERR_PTR(-ESRCH);
2198
2199	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2200	if (!tp->sighand)
2201		return ERR_PTR(-ESRCH);
2202
2203	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2204}
2205
2206static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2207{
2208	struct timers_private *tp = m->private;
2209	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2210}
2211
2212static void timers_stop(struct seq_file *m, void *v)
2213{
2214	struct timers_private *tp = m->private;
2215
2216	if (tp->sighand) {
2217		unlock_task_sighand(tp->task, &tp->flags);
2218		tp->sighand = NULL;
2219	}
2220
2221	if (tp->task) {
2222		put_task_struct(tp->task);
2223		tp->task = NULL;
2224	}
2225}
2226
2227static int show_timer(struct seq_file *m, void *v)
2228{
2229	struct k_itimer *timer;
2230	struct timers_private *tp = m->private;
2231	int notify;
2232	static const char * const nstr[] = {
2233		[SIGEV_SIGNAL] = "signal",
2234		[SIGEV_NONE] = "none",
2235		[SIGEV_THREAD] = "thread",
2236	};
2237
2238	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2239	notify = timer->it_sigev_notify;
2240
2241	seq_printf(m, "ID: %d\n", timer->it_id);
2242	seq_printf(m, "signal: %d/%p\n",
2243		   timer->sigq->info.si_signo,
2244		   timer->sigq->info.si_value.sival_ptr);
2245	seq_printf(m, "notify: %s/%s.%d\n",
2246		   nstr[notify & ~SIGEV_THREAD_ID],
2247		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2248		   pid_nr_ns(timer->it_pid, tp->ns));
2249	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2250
2251	return 0;
2252}
2253
2254static const struct seq_operations proc_timers_seq_ops = {
2255	.start	= timers_start,
2256	.next	= timers_next,
2257	.stop	= timers_stop,
2258	.show	= show_timer,
2259};
2260
2261static int proc_timers_open(struct inode *inode, struct file *file)
2262{
2263	struct timers_private *tp;
2264
2265	tp = __seq_open_private(file, &proc_timers_seq_ops,
2266			sizeof(struct timers_private));
2267	if (!tp)
2268		return -ENOMEM;
2269
2270	tp->pid = proc_pid(inode);
2271	tp->ns = inode->i_sb->s_fs_info;
2272	return 0;
2273}
2274
2275static const struct file_operations proc_timers_operations = {
2276	.open		= proc_timers_open,
2277	.read		= seq_read,
2278	.llseek		= seq_lseek,
2279	.release	= seq_release_private,
2280};
2281#endif
2282
2283static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2284					size_t count, loff_t *offset)
2285{
2286	struct inode *inode = file_inode(file);
2287	struct task_struct *p;
2288	u64 slack_ns;
2289	int err;
2290
2291	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2292	if (err < 0)
2293		return err;
2294
2295	p = get_proc_task(inode);
2296	if (!p)
2297		return -ESRCH;
2298
2299	if (p != current) {
2300		if (!capable(CAP_SYS_NICE)) {
 
 
2301			count = -EPERM;
2302			goto out;
2303		}
 
2304
2305		err = security_task_setscheduler(p);
2306		if (err) {
2307			count = err;
2308			goto out;
2309		}
2310	}
2311
2312	task_lock(p);
2313	if (slack_ns == 0)
2314		p->timer_slack_ns = p->default_timer_slack_ns;
2315	else
2316		p->timer_slack_ns = slack_ns;
2317	task_unlock(p);
2318
2319out:
2320	put_task_struct(p);
2321
2322	return count;
2323}
2324
2325static int timerslack_ns_show(struct seq_file *m, void *v)
2326{
2327	struct inode *inode = m->private;
2328	struct task_struct *p;
2329	int err = 0;
2330
2331	p = get_proc_task(inode);
2332	if (!p)
2333		return -ESRCH;
2334
2335	if (p != current) {
2336
2337		if (!capable(CAP_SYS_NICE)) {
 
2338			err = -EPERM;
2339			goto out;
2340		}
 
 
2341		err = security_task_getscheduler(p);
2342		if (err)
2343			goto out;
2344	}
2345
2346	task_lock(p);
2347	seq_printf(m, "%llu\n", p->timer_slack_ns);
2348	task_unlock(p);
2349
2350out:
2351	put_task_struct(p);
2352
2353	return err;
2354}
2355
2356static int timerslack_ns_open(struct inode *inode, struct file *filp)
2357{
2358	return single_open(filp, timerslack_ns_show, inode);
2359}
2360
2361static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2362	.open		= timerslack_ns_open,
2363	.read		= seq_read,
2364	.write		= timerslack_ns_write,
2365	.llseek		= seq_lseek,
2366	.release	= single_release,
2367};
2368
2369static int proc_pident_instantiate(struct inode *dir,
2370	struct dentry *dentry, struct task_struct *task, const void *ptr)
2371{
2372	const struct pid_entry *p = ptr;
2373	struct inode *inode;
2374	struct proc_inode *ei;
2375
2376	inode = proc_pid_make_inode(dir->i_sb, task, p->mode);
2377	if (!inode)
2378		goto out;
2379
2380	ei = PROC_I(inode);
2381	if (S_ISDIR(inode->i_mode))
2382		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2383	if (p->iop)
2384		inode->i_op = p->iop;
2385	if (p->fop)
2386		inode->i_fop = p->fop;
2387	ei->op = p->op;
 
2388	d_set_d_op(dentry, &pid_dentry_operations);
2389	d_add(dentry, inode);
2390	/* Close the race of the process dying before we return the dentry */
2391	if (pid_revalidate(dentry, 0))
2392		return 0;
2393out:
2394	return -ENOENT;
2395}
2396
2397static struct dentry *proc_pident_lookup(struct inode *dir, 
2398					 struct dentry *dentry,
2399					 const struct pid_entry *ents,
2400					 unsigned int nents)
2401{
2402	int error;
2403	struct task_struct *task = get_proc_task(dir);
2404	const struct pid_entry *p, *last;
2405
2406	error = -ENOENT;
2407
2408	if (!task)
2409		goto out_no_task;
2410
2411	/*
2412	 * Yes, it does not scale. And it should not. Don't add
2413	 * new entries into /proc/<tgid>/ without very good reasons.
2414	 */
2415	last = &ents[nents];
2416	for (p = ents; p < last; p++) {
2417		if (p->len != dentry->d_name.len)
2418			continue;
2419		if (!memcmp(dentry->d_name.name, p->name, p->len))
 
2420			break;
 
2421	}
2422	if (p >= last)
2423		goto out;
2424
2425	error = proc_pident_instantiate(dir, dentry, task, p);
2426out:
2427	put_task_struct(task);
2428out_no_task:
2429	return ERR_PTR(error);
2430}
2431
2432static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2433		const struct pid_entry *ents, unsigned int nents)
2434{
2435	struct task_struct *task = get_proc_task(file_inode(file));
2436	const struct pid_entry *p;
2437
2438	if (!task)
2439		return -ENOENT;
2440
2441	if (!dir_emit_dots(file, ctx))
2442		goto out;
2443
2444	if (ctx->pos >= nents + 2)
2445		goto out;
2446
2447	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2448		if (!proc_fill_cache(file, ctx, p->name, p->len,
2449				proc_pident_instantiate, task, p))
2450			break;
2451		ctx->pos++;
2452	}
2453out:
2454	put_task_struct(task);
2455	return 0;
2456}
2457
2458#ifdef CONFIG_SECURITY
 
 
 
 
 
 
 
2459static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2460				  size_t count, loff_t *ppos)
2461{
2462	struct inode * inode = file_inode(file);
2463	char *p = NULL;
2464	ssize_t length;
2465	struct task_struct *task = get_proc_task(inode);
2466
2467	if (!task)
2468		return -ESRCH;
2469
2470	length = security_getprocattr(task,
2471				      (char*)file->f_path.dentry->d_name.name,
2472				      &p);
2473	put_task_struct(task);
2474	if (length > 0)
2475		length = simple_read_from_buffer(buf, count, ppos, p, length);
2476	kfree(p);
2477	return length;
2478}
2479
2480static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2481				   size_t count, loff_t *ppos)
2482{
2483	struct inode * inode = file_inode(file);
 
2484	void *page;
2485	ssize_t length;
2486	struct task_struct *task = get_proc_task(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2487
2488	length = -ESRCH;
2489	if (!task)
2490		goto out_no_task;
2491	if (count > PAGE_SIZE)
2492		count = PAGE_SIZE;
2493
2494	/* No partial writes. */
2495	length = -EINVAL;
2496	if (*ppos != 0)
2497		goto out;
2498
2499	page = memdup_user(buf, count);
2500	if (IS_ERR(page)) {
2501		length = PTR_ERR(page);
2502		goto out;
2503	}
2504
2505	/* Guard against adverse ptrace interaction */
2506	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2507	if (length < 0)
2508		goto out_free;
2509
2510	length = security_setprocattr(task,
2511				      (char*)file->f_path.dentry->d_name.name,
2512				      page, count);
2513	mutex_unlock(&task->signal->cred_guard_mutex);
2514out_free:
2515	kfree(page);
2516out:
2517	put_task_struct(task);
2518out_no_task:
2519	return length;
2520}
2521
2522static const struct file_operations proc_pid_attr_operations = {
 
2523	.read		= proc_pid_attr_read,
2524	.write		= proc_pid_attr_write,
2525	.llseek		= generic_file_llseek,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2526};
 
 
2527
2528static const struct pid_entry attr_dir_stuff[] = {
2529	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2530	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2531	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2532	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2533	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2534	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
 
 
 
 
 
 
 
 
2535};
2536
2537static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2538{
2539	return proc_pident_readdir(file, ctx, 
2540				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2541}
2542
2543static const struct file_operations proc_attr_dir_operations = {
2544	.read		= generic_read_dir,
2545	.iterate_shared	= proc_attr_dir_readdir,
2546	.llseek		= generic_file_llseek,
2547};
2548
2549static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2550				struct dentry *dentry, unsigned int flags)
2551{
2552	return proc_pident_lookup(dir, dentry,
2553				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
 
2554}
2555
2556static const struct inode_operations proc_attr_dir_inode_operations = {
2557	.lookup		= proc_attr_dir_lookup,
2558	.getattr	= pid_getattr,
2559	.setattr	= proc_setattr,
2560};
2561
2562#endif
2563
2564#ifdef CONFIG_ELF_CORE
2565static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2566					 size_t count, loff_t *ppos)
2567{
2568	struct task_struct *task = get_proc_task(file_inode(file));
2569	struct mm_struct *mm;
2570	char buffer[PROC_NUMBUF];
2571	size_t len;
2572	int ret;
2573
2574	if (!task)
2575		return -ESRCH;
2576
2577	ret = 0;
2578	mm = get_task_mm(task);
2579	if (mm) {
2580		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2581			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2582				MMF_DUMP_FILTER_SHIFT));
2583		mmput(mm);
2584		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2585	}
2586
2587	put_task_struct(task);
2588
2589	return ret;
2590}
2591
2592static ssize_t proc_coredump_filter_write(struct file *file,
2593					  const char __user *buf,
2594					  size_t count,
2595					  loff_t *ppos)
2596{
2597	struct task_struct *task;
2598	struct mm_struct *mm;
2599	unsigned int val;
2600	int ret;
2601	int i;
2602	unsigned long mask;
2603
2604	ret = kstrtouint_from_user(buf, count, 0, &val);
2605	if (ret < 0)
2606		return ret;
2607
2608	ret = -ESRCH;
2609	task = get_proc_task(file_inode(file));
2610	if (!task)
2611		goto out_no_task;
2612
2613	mm = get_task_mm(task);
2614	if (!mm)
2615		goto out_no_mm;
2616	ret = 0;
2617
2618	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2619		if (val & mask)
2620			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2621		else
2622			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2623	}
2624
2625	mmput(mm);
2626 out_no_mm:
2627	put_task_struct(task);
2628 out_no_task:
2629	if (ret < 0)
2630		return ret;
2631	return count;
2632}
2633
2634static const struct file_operations proc_coredump_filter_operations = {
2635	.read		= proc_coredump_filter_read,
2636	.write		= proc_coredump_filter_write,
2637	.llseek		= generic_file_llseek,
2638};
2639#endif
2640
2641#ifdef CONFIG_TASK_IO_ACCOUNTING
2642static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2643{
2644	struct task_io_accounting acct = task->ioac;
2645	unsigned long flags;
2646	int result;
2647
2648	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2649	if (result)
2650		return result;
2651
2652	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2653		result = -EACCES;
2654		goto out_unlock;
2655	}
2656
2657	if (whole && lock_task_sighand(task, &flags)) {
2658		struct task_struct *t = task;
2659
2660		task_io_accounting_add(&acct, &task->signal->ioac);
2661		while_each_thread(task, t)
2662			task_io_accounting_add(&acct, &t->ioac);
2663
2664		unlock_task_sighand(task, &flags);
2665	}
2666	seq_printf(m,
2667		   "rchar: %llu\n"
2668		   "wchar: %llu\n"
2669		   "syscr: %llu\n"
2670		   "syscw: %llu\n"
2671		   "read_bytes: %llu\n"
2672		   "write_bytes: %llu\n"
2673		   "cancelled_write_bytes: %llu\n",
2674		   (unsigned long long)acct.rchar,
2675		   (unsigned long long)acct.wchar,
2676		   (unsigned long long)acct.syscr,
2677		   (unsigned long long)acct.syscw,
2678		   (unsigned long long)acct.read_bytes,
2679		   (unsigned long long)acct.write_bytes,
2680		   (unsigned long long)acct.cancelled_write_bytes);
2681	result = 0;
2682
2683out_unlock:
2684	mutex_unlock(&task->signal->cred_guard_mutex);
2685	return result;
2686}
2687
2688static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2689				  struct pid *pid, struct task_struct *task)
2690{
2691	return do_io_accounting(task, m, 0);
2692}
2693
2694static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2695				   struct pid *pid, struct task_struct *task)
2696{
2697	return do_io_accounting(task, m, 1);
2698}
2699#endif /* CONFIG_TASK_IO_ACCOUNTING */
2700
2701#ifdef CONFIG_USER_NS
2702static int proc_id_map_open(struct inode *inode, struct file *file,
2703	const struct seq_operations *seq_ops)
2704{
2705	struct user_namespace *ns = NULL;
2706	struct task_struct *task;
2707	struct seq_file *seq;
2708	int ret = -EINVAL;
2709
2710	task = get_proc_task(inode);
2711	if (task) {
2712		rcu_read_lock();
2713		ns = get_user_ns(task_cred_xxx(task, user_ns));
2714		rcu_read_unlock();
2715		put_task_struct(task);
2716	}
2717	if (!ns)
2718		goto err;
2719
2720	ret = seq_open(file, seq_ops);
2721	if (ret)
2722		goto err_put_ns;
2723
2724	seq = file->private_data;
2725	seq->private = ns;
2726
2727	return 0;
2728err_put_ns:
2729	put_user_ns(ns);
2730err:
2731	return ret;
2732}
2733
2734static int proc_id_map_release(struct inode *inode, struct file *file)
2735{
2736	struct seq_file *seq = file->private_data;
2737	struct user_namespace *ns = seq->private;
2738	put_user_ns(ns);
2739	return seq_release(inode, file);
2740}
2741
2742static int proc_uid_map_open(struct inode *inode, struct file *file)
2743{
2744	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2745}
2746
2747static int proc_gid_map_open(struct inode *inode, struct file *file)
2748{
2749	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2750}
2751
2752static int proc_projid_map_open(struct inode *inode, struct file *file)
2753{
2754	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2755}
2756
2757static const struct file_operations proc_uid_map_operations = {
2758	.open		= proc_uid_map_open,
2759	.write		= proc_uid_map_write,
2760	.read		= seq_read,
2761	.llseek		= seq_lseek,
2762	.release	= proc_id_map_release,
2763};
2764
2765static const struct file_operations proc_gid_map_operations = {
2766	.open		= proc_gid_map_open,
2767	.write		= proc_gid_map_write,
2768	.read		= seq_read,
2769	.llseek		= seq_lseek,
2770	.release	= proc_id_map_release,
2771};
2772
2773static const struct file_operations proc_projid_map_operations = {
2774	.open		= proc_projid_map_open,
2775	.write		= proc_projid_map_write,
2776	.read		= seq_read,
2777	.llseek		= seq_lseek,
2778	.release	= proc_id_map_release,
2779};
2780
2781static int proc_setgroups_open(struct inode *inode, struct file *file)
2782{
2783	struct user_namespace *ns = NULL;
2784	struct task_struct *task;
2785	int ret;
2786
2787	ret = -ESRCH;
2788	task = get_proc_task(inode);
2789	if (task) {
2790		rcu_read_lock();
2791		ns = get_user_ns(task_cred_xxx(task, user_ns));
2792		rcu_read_unlock();
2793		put_task_struct(task);
2794	}
2795	if (!ns)
2796		goto err;
2797
2798	if (file->f_mode & FMODE_WRITE) {
2799		ret = -EACCES;
2800		if (!ns_capable(ns, CAP_SYS_ADMIN))
2801			goto err_put_ns;
2802	}
2803
2804	ret = single_open(file, &proc_setgroups_show, ns);
2805	if (ret)
2806		goto err_put_ns;
2807
2808	return 0;
2809err_put_ns:
2810	put_user_ns(ns);
2811err:
2812	return ret;
2813}
2814
2815static int proc_setgroups_release(struct inode *inode, struct file *file)
2816{
2817	struct seq_file *seq = file->private_data;
2818	struct user_namespace *ns = seq->private;
2819	int ret = single_release(inode, file);
2820	put_user_ns(ns);
2821	return ret;
2822}
2823
2824static const struct file_operations proc_setgroups_operations = {
2825	.open		= proc_setgroups_open,
2826	.write		= proc_setgroups_write,
2827	.read		= seq_read,
2828	.llseek		= seq_lseek,
2829	.release	= proc_setgroups_release,
2830};
2831#endif /* CONFIG_USER_NS */
2832
2833static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2834				struct pid *pid, struct task_struct *task)
2835{
2836	int err = lock_trace(task);
2837	if (!err) {
2838		seq_printf(m, "%08x\n", task->personality);
2839		unlock_trace(task);
2840	}
2841	return err;
2842}
2843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2844/*
2845 * Thread groups
2846 */
2847static const struct file_operations proc_task_operations;
2848static const struct inode_operations proc_task_inode_operations;
2849
2850static const struct pid_entry tgid_base_stuff[] = {
2851	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2852	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2853	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2854	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2855	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2856#ifdef CONFIG_NET
2857	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2858#endif
2859	REG("environ",    S_IRUSR, proc_environ_operations),
2860	REG("auxv",       S_IRUSR, proc_auxv_operations),
2861	ONE("status",     S_IRUGO, proc_pid_status),
2862	ONE("personality", S_IRUSR, proc_pid_personality),
2863	ONE("limits",	  S_IRUGO, proc_pid_limits),
2864#ifdef CONFIG_SCHED_DEBUG
2865	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2866#endif
2867#ifdef CONFIG_SCHED_AUTOGROUP
2868	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2869#endif
 
 
 
2870	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2871#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2872	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2873#endif
2874	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2875	ONE("stat",       S_IRUGO, proc_tgid_stat),
2876	ONE("statm",      S_IRUGO, proc_pid_statm),
2877	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2878#ifdef CONFIG_NUMA
2879	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2880#endif
2881	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2882	LNK("cwd",        proc_cwd_link),
2883	LNK("root",       proc_root_link),
2884	LNK("exe",        proc_exe_link),
2885	REG("mounts",     S_IRUGO, proc_mounts_operations),
2886	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2887	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2888#ifdef CONFIG_PROC_PAGE_MONITOR
2889	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2890	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
 
2891	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2892#endif
2893#ifdef CONFIG_SECURITY
2894	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2895#endif
2896#ifdef CONFIG_KALLSYMS
2897	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2898#endif
2899#ifdef CONFIG_STACKTRACE
2900	ONE("stack",      S_IRUSR, proc_pid_stack),
2901#endif
2902#ifdef CONFIG_SCHED_INFO
2903	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2904#endif
2905#ifdef CONFIG_LATENCYTOP
2906	REG("latency",  S_IRUGO, proc_lstats_operations),
2907#endif
2908#ifdef CONFIG_PROC_PID_CPUSET
2909	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2910#endif
2911#ifdef CONFIG_CGROUPS
2912	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2913#endif
 
 
 
2914	ONE("oom_score",  S_IRUGO, proc_oom_score),
2915	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2916	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2917#ifdef CONFIG_AUDITSYSCALL
2918	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2919	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2920#endif
2921#ifdef CONFIG_FAULT_INJECTION
2922	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
 
2923#endif
2924#ifdef CONFIG_ELF_CORE
2925	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2926#endif
2927#ifdef CONFIG_TASK_IO_ACCOUNTING
2928	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2929#endif
2930#ifdef CONFIG_HARDWALL
2931	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2932#endif
2933#ifdef CONFIG_USER_NS
2934	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2935	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2936	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2937	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2938#endif
2939#ifdef CONFIG_CHECKPOINT_RESTORE
2940	REG("timers",	  S_IRUGO, proc_timers_operations),
2941#endif
2942	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
 
 
 
 
 
 
 
 
 
 
 
 
2943};
2944
2945static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2946{
2947	return proc_pident_readdir(file, ctx,
2948				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2949}
2950
2951static const struct file_operations proc_tgid_base_operations = {
2952	.read		= generic_read_dir,
2953	.iterate_shared	= proc_tgid_base_readdir,
2954	.llseek		= generic_file_llseek,
2955};
2956
 
 
 
 
 
 
 
 
2957static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2958{
2959	return proc_pident_lookup(dir, dentry,
2960				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
 
2961}
2962
2963static const struct inode_operations proc_tgid_base_inode_operations = {
2964	.lookup		= proc_tgid_base_lookup,
2965	.getattr	= pid_getattr,
2966	.setattr	= proc_setattr,
2967	.permission	= proc_pid_permission,
2968};
2969
2970static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2971{
2972	struct dentry *dentry, *leader, *dir;
2973	char buf[PROC_NUMBUF];
2974	struct qstr name;
2975
2976	name.name = buf;
2977	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2978	/* no ->d_hash() rejects on procfs */
2979	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2980	if (dentry) {
2981		d_invalidate(dentry);
2982		dput(dentry);
2983	}
2984
2985	if (pid == tgid)
2986		return;
2987
2988	name.name = buf;
2989	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2990	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2991	if (!leader)
2992		goto out;
2993
2994	name.name = "task";
2995	name.len = strlen(name.name);
2996	dir = d_hash_and_lookup(leader, &name);
2997	if (!dir)
2998		goto out_put_leader;
2999
3000	name.name = buf;
3001	name.len = snprintf(buf, sizeof(buf), "%d", pid);
3002	dentry = d_hash_and_lookup(dir, &name);
3003	if (dentry) {
3004		d_invalidate(dentry);
3005		dput(dentry);
3006	}
3007
3008	dput(dir);
3009out_put_leader:
3010	dput(leader);
3011out:
3012	return;
3013}
3014
3015/**
3016 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3017 * @task: task that should be flushed.
3018 *
3019 * When flushing dentries from proc, one needs to flush them from global
3020 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3021 * in. This call is supposed to do all of this job.
3022 *
3023 * Looks in the dcache for
3024 * /proc/@pid
3025 * /proc/@tgid/task/@pid
3026 * if either directory is present flushes it and all of it'ts children
3027 * from the dcache.
3028 *
3029 * It is safe and reasonable to cache /proc entries for a task until
3030 * that task exits.  After that they just clog up the dcache with
3031 * useless entries, possibly causing useful dcache entries to be
3032 * flushed instead.  This routine is proved to flush those useless
3033 * dcache entries at process exit time.
3034 *
3035 * NOTE: This routine is just an optimization so it does not guarantee
3036 *       that no dcache entries will exist at process exit time it
3037 *       just makes it very unlikely that any will persist.
3038 */
3039
3040void proc_flush_task(struct task_struct *task)
3041{
3042	int i;
3043	struct pid *pid, *tgid;
3044	struct upid *upid;
3045
3046	pid = task_pid(task);
3047	tgid = task_tgid(task);
3048
3049	for (i = 0; i <= pid->level; i++) {
3050		upid = &pid->numbers[i];
3051		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3052					tgid->numbers[i].nr);
3053	}
3054}
3055
3056static int proc_pid_instantiate(struct inode *dir,
3057				   struct dentry * dentry,
3058				   struct task_struct *task, const void *ptr)
3059{
3060	struct inode *inode;
3061
3062	inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3063	if (!inode)
3064		goto out;
3065
3066	inode->i_op = &proc_tgid_base_inode_operations;
3067	inode->i_fop = &proc_tgid_base_operations;
3068	inode->i_flags|=S_IMMUTABLE;
3069
3070	set_nlink(inode, nlink_tgid);
 
3071
3072	d_set_d_op(dentry, &pid_dentry_operations);
3073
3074	d_add(dentry, inode);
3075	/* Close the race of the process dying before we return the dentry */
3076	if (pid_revalidate(dentry, 0))
3077		return 0;
3078out:
3079	return -ENOENT;
3080}
3081
3082struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3083{
3084	int result = -ENOENT;
3085	struct task_struct *task;
3086	unsigned tgid;
 
3087	struct pid_namespace *ns;
 
3088
3089	tgid = name_to_int(&dentry->d_name);
3090	if (tgid == ~0U)
3091		goto out;
3092
3093	ns = dentry->d_sb->s_fs_info;
 
3094	rcu_read_lock();
3095	task = find_task_by_pid_ns(tgid, ns);
3096	if (task)
3097		get_task_struct(task);
3098	rcu_read_unlock();
3099	if (!task)
3100		goto out;
3101
3102	result = proc_pid_instantiate(dir, dentry, task, NULL);
 
 
 
 
 
 
 
3103	put_task_struct(task);
3104out:
3105	return ERR_PTR(result);
3106}
3107
3108/*
3109 * Find the first task with tgid >= tgid
3110 *
3111 */
3112struct tgid_iter {
3113	unsigned int tgid;
3114	struct task_struct *task;
3115};
3116static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3117{
3118	struct pid *pid;
3119
3120	if (iter.task)
3121		put_task_struct(iter.task);
3122	rcu_read_lock();
3123retry:
3124	iter.task = NULL;
3125	pid = find_ge_pid(iter.tgid, ns);
3126	if (pid) {
3127		iter.tgid = pid_nr_ns(pid, ns);
3128		iter.task = pid_task(pid, PIDTYPE_PID);
3129		/* What we to know is if the pid we have find is the
3130		 * pid of a thread_group_leader.  Testing for task
3131		 * being a thread_group_leader is the obvious thing
3132		 * todo but there is a window when it fails, due to
3133		 * the pid transfer logic in de_thread.
3134		 *
3135		 * So we perform the straight forward test of seeing
3136		 * if the pid we have found is the pid of a thread
3137		 * group leader, and don't worry if the task we have
3138		 * found doesn't happen to be a thread group leader.
3139		 * As we don't care in the case of readdir.
3140		 */
3141		if (!iter.task || !has_group_leader_pid(iter.task)) {
3142			iter.tgid += 1;
3143			goto retry;
3144		}
3145		get_task_struct(iter.task);
3146	}
3147	rcu_read_unlock();
3148	return iter;
3149}
3150
3151#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3152
3153/* for the /proc/ directory itself, after non-process stuff has been done */
3154int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3155{
3156	struct tgid_iter iter;
3157	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
 
3158	loff_t pos = ctx->pos;
3159
3160	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3161		return 0;
3162
3163	if (pos == TGID_OFFSET - 2) {
3164		struct inode *inode = d_inode(ns->proc_self);
3165		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3166			return 0;
3167		ctx->pos = pos = pos + 1;
3168	}
3169	if (pos == TGID_OFFSET - 1) {
3170		struct inode *inode = d_inode(ns->proc_thread_self);
3171		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3172			return 0;
3173		ctx->pos = pos = pos + 1;
3174	}
3175	iter.tgid = pos - TGID_OFFSET;
3176	iter.task = NULL;
3177	for (iter = next_tgid(ns, iter);
3178	     iter.task;
3179	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3180		char name[PROC_NUMBUF];
3181		int len;
3182
3183		cond_resched();
3184		if (!has_pid_permissions(ns, iter.task, 2))
3185			continue;
3186
3187		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3188		ctx->pos = iter.tgid + TGID_OFFSET;
3189		if (!proc_fill_cache(file, ctx, name, len,
3190				     proc_pid_instantiate, iter.task, NULL)) {
3191			put_task_struct(iter.task);
3192			return 0;
3193		}
3194	}
3195	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3196	return 0;
3197}
3198
3199/*
3200 * proc_tid_comm_permission is a special permission function exclusively
3201 * used for the node /proc/<pid>/task/<tid>/comm.
3202 * It bypasses generic permission checks in the case where a task of the same
3203 * task group attempts to access the node.
3204 * The rationale behind this is that glibc and bionic access this node for
3205 * cross thread naming (pthread_set/getname_np(!self)). However, if
3206 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3207 * which locks out the cross thread naming implementation.
3208 * This function makes sure that the node is always accessible for members of
3209 * same thread group.
3210 */
3211static int proc_tid_comm_permission(struct inode *inode, int mask)
 
3212{
3213	bool is_same_tgroup;
3214	struct task_struct *task;
3215
3216	task = get_proc_task(inode);
3217	if (!task)
3218		return -ESRCH;
3219	is_same_tgroup = same_thread_group(current, task);
3220	put_task_struct(task);
3221
3222	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3223		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3224		 * read or written by the members of the corresponding
3225		 * thread group.
3226		 */
3227		return 0;
3228	}
3229
3230	return generic_permission(inode, mask);
3231}
3232
3233static const struct inode_operations proc_tid_comm_inode_operations = {
3234		.permission = proc_tid_comm_permission,
3235};
3236
3237/*
3238 * Tasks
3239 */
3240static const struct pid_entry tid_base_stuff[] = {
3241	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3242	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3243	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3244#ifdef CONFIG_NET
3245	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3246#endif
3247	REG("environ",   S_IRUSR, proc_environ_operations),
3248	REG("auxv",      S_IRUSR, proc_auxv_operations),
3249	ONE("status",    S_IRUGO, proc_pid_status),
3250	ONE("personality", S_IRUSR, proc_pid_personality),
3251	ONE("limits",	 S_IRUGO, proc_pid_limits),
3252#ifdef CONFIG_SCHED_DEBUG
3253	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3254#endif
3255	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3256			 &proc_tid_comm_inode_operations,
3257			 &proc_pid_set_comm_operations, {}),
3258#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3259	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3260#endif
3261	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3262	ONE("stat",      S_IRUGO, proc_tid_stat),
3263	ONE("statm",     S_IRUGO, proc_pid_statm),
3264	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3265#ifdef CONFIG_PROC_CHILDREN
3266	REG("children",  S_IRUGO, proc_tid_children_operations),
3267#endif
3268#ifdef CONFIG_NUMA
3269	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3270#endif
3271	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3272	LNK("cwd",       proc_cwd_link),
3273	LNK("root",      proc_root_link),
3274	LNK("exe",       proc_exe_link),
3275	REG("mounts",    S_IRUGO, proc_mounts_operations),
3276	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3277#ifdef CONFIG_PROC_PAGE_MONITOR
3278	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3279	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
 
3280	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3281#endif
3282#ifdef CONFIG_SECURITY
3283	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3284#endif
3285#ifdef CONFIG_KALLSYMS
3286	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3287#endif
3288#ifdef CONFIG_STACKTRACE
3289	ONE("stack",      S_IRUSR, proc_pid_stack),
3290#endif
3291#ifdef CONFIG_SCHED_INFO
3292	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3293#endif
3294#ifdef CONFIG_LATENCYTOP
3295	REG("latency",  S_IRUGO, proc_lstats_operations),
3296#endif
3297#ifdef CONFIG_PROC_PID_CPUSET
3298	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3299#endif
3300#ifdef CONFIG_CGROUPS
3301	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3302#endif
 
 
 
3303	ONE("oom_score", S_IRUGO, proc_oom_score),
3304	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3305	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3306#ifdef CONFIG_AUDITSYSCALL
3307	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3308	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3309#endif
3310#ifdef CONFIG_FAULT_INJECTION
3311	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
 
3312#endif
3313#ifdef CONFIG_TASK_IO_ACCOUNTING
3314	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3315#endif
3316#ifdef CONFIG_HARDWALL
3317	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3318#endif
3319#ifdef CONFIG_USER_NS
3320	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3321	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3322	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3323	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3324#endif
 
 
 
 
 
 
 
 
 
3325};
3326
3327static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3328{
3329	return proc_pident_readdir(file, ctx,
3330				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3331}
3332
3333static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3334{
3335	return proc_pident_lookup(dir, dentry,
3336				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
 
3337}
3338
3339static const struct file_operations proc_tid_base_operations = {
3340	.read		= generic_read_dir,
3341	.iterate_shared	= proc_tid_base_readdir,
3342	.llseek		= generic_file_llseek,
3343};
3344
3345static const struct inode_operations proc_tid_base_inode_operations = {
3346	.lookup		= proc_tid_base_lookup,
3347	.getattr	= pid_getattr,
3348	.setattr	= proc_setattr,
3349};
3350
3351static int proc_task_instantiate(struct inode *dir,
3352	struct dentry *dentry, struct task_struct *task, const void *ptr)
3353{
3354	struct inode *inode;
3355	inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
 
 
3356
3357	if (!inode)
3358		goto out;
3359	inode->i_op = &proc_tid_base_inode_operations;
3360	inode->i_fop = &proc_tid_base_operations;
3361	inode->i_flags|=S_IMMUTABLE;
3362
3363	set_nlink(inode, nlink_tid);
 
3364
3365	d_set_d_op(dentry, &pid_dentry_operations);
3366
3367	d_add(dentry, inode);
3368	/* Close the race of the process dying before we return the dentry */
3369	if (pid_revalidate(dentry, 0))
3370		return 0;
3371out:
3372	return -ENOENT;
3373}
3374
3375static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3376{
3377	int result = -ENOENT;
3378	struct task_struct *task;
3379	struct task_struct *leader = get_proc_task(dir);
3380	unsigned tid;
 
3381	struct pid_namespace *ns;
 
3382
3383	if (!leader)
3384		goto out_no_task;
3385
3386	tid = name_to_int(&dentry->d_name);
3387	if (tid == ~0U)
3388		goto out;
3389
3390	ns = dentry->d_sb->s_fs_info;
 
3391	rcu_read_lock();
3392	task = find_task_by_pid_ns(tid, ns);
3393	if (task)
3394		get_task_struct(task);
3395	rcu_read_unlock();
3396	if (!task)
3397		goto out;
3398	if (!same_thread_group(leader, task))
3399		goto out_drop_task;
3400
3401	result = proc_task_instantiate(dir, dentry, task, NULL);
3402out_drop_task:
3403	put_task_struct(task);
3404out:
3405	put_task_struct(leader);
3406out_no_task:
3407	return ERR_PTR(result);
3408}
3409
3410/*
3411 * Find the first tid of a thread group to return to user space.
3412 *
3413 * Usually this is just the thread group leader, but if the users
3414 * buffer was too small or there was a seek into the middle of the
3415 * directory we have more work todo.
3416 *
3417 * In the case of a short read we start with find_task_by_pid.
3418 *
3419 * In the case of a seek we start with the leader and walk nr
3420 * threads past it.
3421 */
3422static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3423					struct pid_namespace *ns)
3424{
3425	struct task_struct *pos, *task;
3426	unsigned long nr = f_pos;
3427
3428	if (nr != f_pos)	/* 32bit overflow? */
3429		return NULL;
3430
3431	rcu_read_lock();
3432	task = pid_task(pid, PIDTYPE_PID);
3433	if (!task)
3434		goto fail;
3435
3436	/* Attempt to start with the tid of a thread */
3437	if (tid && nr) {
3438		pos = find_task_by_pid_ns(tid, ns);
3439		if (pos && same_thread_group(pos, task))
3440			goto found;
3441	}
3442
3443	/* If nr exceeds the number of threads there is nothing todo */
3444	if (nr >= get_nr_threads(task))
3445		goto fail;
3446
3447	/* If we haven't found our starting place yet start
3448	 * with the leader and walk nr threads forward.
3449	 */
3450	pos = task = task->group_leader;
3451	do {
3452		if (!nr--)
3453			goto found;
3454	} while_each_thread(task, pos);
3455fail:
3456	pos = NULL;
3457	goto out;
3458found:
3459	get_task_struct(pos);
3460out:
3461	rcu_read_unlock();
3462	return pos;
3463}
3464
3465/*
3466 * Find the next thread in the thread list.
3467 * Return NULL if there is an error or no next thread.
3468 *
3469 * The reference to the input task_struct is released.
3470 */
3471static struct task_struct *next_tid(struct task_struct *start)
3472{
3473	struct task_struct *pos = NULL;
3474	rcu_read_lock();
3475	if (pid_alive(start)) {
3476		pos = next_thread(start);
3477		if (thread_group_leader(pos))
3478			pos = NULL;
3479		else
3480			get_task_struct(pos);
3481	}
3482	rcu_read_unlock();
3483	put_task_struct(start);
3484	return pos;
3485}
3486
3487/* for the /proc/TGID/task/ directories */
3488static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3489{
3490	struct inode *inode = file_inode(file);
3491	struct task_struct *task;
3492	struct pid_namespace *ns;
3493	int tid;
3494
3495	if (proc_inode_is_dead(inode))
3496		return -ENOENT;
3497
3498	if (!dir_emit_dots(file, ctx))
3499		return 0;
3500
3501	/* f_version caches the tgid value that the last readdir call couldn't
3502	 * return. lseek aka telldir automagically resets f_version to 0.
3503	 */
3504	ns = inode->i_sb->s_fs_info;
3505	tid = (int)file->f_version;
3506	file->f_version = 0;
3507	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3508	     task;
3509	     task = next_tid(task), ctx->pos++) {
3510		char name[PROC_NUMBUF];
3511		int len;
3512		tid = task_pid_nr_ns(task, ns);
3513		len = snprintf(name, sizeof(name), "%d", tid);
3514		if (!proc_fill_cache(file, ctx, name, len,
3515				proc_task_instantiate, task, NULL)) {
3516			/* returning this tgid failed, save it as the first
3517			 * pid for the next readir call */
3518			file->f_version = (u64)tid;
3519			put_task_struct(task);
3520			break;
3521		}
3522	}
3523
3524	return 0;
3525}
3526
3527static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
 
 
3528{
3529	struct inode *inode = d_inode(dentry);
3530	struct task_struct *p = get_proc_task(inode);
3531	generic_fillattr(inode, stat);
3532
3533	if (p) {
3534		stat->nlink += get_nr_threads(p);
3535		put_task_struct(p);
3536	}
3537
3538	return 0;
3539}
3540
3541static const struct inode_operations proc_task_inode_operations = {
3542	.lookup		= proc_task_lookup,
3543	.getattr	= proc_task_getattr,
3544	.setattr	= proc_setattr,
3545	.permission	= proc_pid_permission,
3546};
3547
3548static const struct file_operations proc_task_operations = {
3549	.read		= generic_read_dir,
3550	.iterate_shared	= proc_task_readdir,
3551	.llseek		= generic_file_llseek,
3552};
3553
3554void __init set_proc_pid_nlink(void)
3555{
3556	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3557	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3558}