Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/prefetch.h>
13#include <linux/kthread.h>
14#include <linux/swap.h>
15#include <linux/timer.h>
16#include <linux/freezer.h>
17#include <linux/sched/signal.h>
18
19#include "f2fs.h"
20#include "segment.h"
21#include "node.h"
22#include "gc.h"
23#include <trace/events/f2fs.h>
24
25#define __reverse_ffz(x) __reverse_ffs(~(x))
26
27static struct kmem_cache *discard_entry_slab;
28static struct kmem_cache *discard_cmd_slab;
29static struct kmem_cache *sit_entry_set_slab;
30static struct kmem_cache *inmem_entry_slab;
31
32static unsigned long __reverse_ulong(unsigned char *str)
33{
34 unsigned long tmp = 0;
35 int shift = 24, idx = 0;
36
37#if BITS_PER_LONG == 64
38 shift = 56;
39#endif
40 while (shift >= 0) {
41 tmp |= (unsigned long)str[idx++] << shift;
42 shift -= BITS_PER_BYTE;
43 }
44 return tmp;
45}
46
47/*
48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
50 */
51static inline unsigned long __reverse_ffs(unsigned long word)
52{
53 int num = 0;
54
55#if BITS_PER_LONG == 64
56 if ((word & 0xffffffff00000000UL) == 0)
57 num += 32;
58 else
59 word >>= 32;
60#endif
61 if ((word & 0xffff0000) == 0)
62 num += 16;
63 else
64 word >>= 16;
65
66 if ((word & 0xff00) == 0)
67 num += 8;
68 else
69 word >>= 8;
70
71 if ((word & 0xf0) == 0)
72 num += 4;
73 else
74 word >>= 4;
75
76 if ((word & 0xc) == 0)
77 num += 2;
78 else
79 word >>= 2;
80
81 if ((word & 0x2) == 0)
82 num += 1;
83 return num;
84}
85
86/*
87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
89 * @size must be integral times of unsigned long.
90 * Example:
91 * MSB <--> LSB
92 * f2fs_set_bit(0, bitmap) => 1000 0000
93 * f2fs_set_bit(7, bitmap) => 0000 0001
94 */
95static unsigned long __find_rev_next_bit(const unsigned long *addr,
96 unsigned long size, unsigned long offset)
97{
98 const unsigned long *p = addr + BIT_WORD(offset);
99 unsigned long result = size;
100 unsigned long tmp;
101
102 if (offset >= size)
103 return size;
104
105 size -= (offset & ~(BITS_PER_LONG - 1));
106 offset %= BITS_PER_LONG;
107
108 while (1) {
109 if (*p == 0)
110 goto pass;
111
112 tmp = __reverse_ulong((unsigned char *)p);
113
114 tmp &= ~0UL >> offset;
115 if (size < BITS_PER_LONG)
116 tmp &= (~0UL << (BITS_PER_LONG - size));
117 if (tmp)
118 goto found;
119pass:
120 if (size <= BITS_PER_LONG)
121 break;
122 size -= BITS_PER_LONG;
123 offset = 0;
124 p++;
125 }
126 return result;
127found:
128 return result - size + __reverse_ffs(tmp);
129}
130
131static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
132 unsigned long size, unsigned long offset)
133{
134 const unsigned long *p = addr + BIT_WORD(offset);
135 unsigned long result = size;
136 unsigned long tmp;
137
138 if (offset >= size)
139 return size;
140
141 size -= (offset & ~(BITS_PER_LONG - 1));
142 offset %= BITS_PER_LONG;
143
144 while (1) {
145 if (*p == ~0UL)
146 goto pass;
147
148 tmp = __reverse_ulong((unsigned char *)p);
149
150 if (offset)
151 tmp |= ~0UL << (BITS_PER_LONG - offset);
152 if (size < BITS_PER_LONG)
153 tmp |= ~0UL >> size;
154 if (tmp != ~0UL)
155 goto found;
156pass:
157 if (size <= BITS_PER_LONG)
158 break;
159 size -= BITS_PER_LONG;
160 offset = 0;
161 p++;
162 }
163 return result;
164found:
165 return result - size + __reverse_ffz(tmp);
166}
167
168bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
169{
170 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
171 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
172 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
173
174 if (f2fs_lfs_mode(sbi))
175 return false;
176 if (sbi->gc_mode == GC_URGENT_HIGH)
177 return true;
178 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
179 return true;
180
181 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
182 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
183}
184
185void f2fs_register_inmem_page(struct inode *inode, struct page *page)
186{
187 struct inmem_pages *new;
188
189 set_page_private_atomic(page);
190
191 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
192
193 /* add atomic page indices to the list */
194 new->page = page;
195 INIT_LIST_HEAD(&new->list);
196
197 /* increase reference count with clean state */
198 get_page(page);
199 mutex_lock(&F2FS_I(inode)->inmem_lock);
200 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
201 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
202 mutex_unlock(&F2FS_I(inode)->inmem_lock);
203
204 trace_f2fs_register_inmem_page(page, INMEM);
205}
206
207static int __revoke_inmem_pages(struct inode *inode,
208 struct list_head *head, bool drop, bool recover,
209 bool trylock)
210{
211 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
212 struct inmem_pages *cur, *tmp;
213 int err = 0;
214
215 list_for_each_entry_safe(cur, tmp, head, list) {
216 struct page *page = cur->page;
217
218 if (drop)
219 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
220
221 if (trylock) {
222 /*
223 * to avoid deadlock in between page lock and
224 * inmem_lock.
225 */
226 if (!trylock_page(page))
227 continue;
228 } else {
229 lock_page(page);
230 }
231
232 f2fs_wait_on_page_writeback(page, DATA, true, true);
233
234 if (recover) {
235 struct dnode_of_data dn;
236 struct node_info ni;
237
238 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
239retry:
240 set_new_dnode(&dn, inode, NULL, NULL, 0);
241 err = f2fs_get_dnode_of_data(&dn, page->index,
242 LOOKUP_NODE);
243 if (err) {
244 if (err == -ENOMEM) {
245 congestion_wait(BLK_RW_ASYNC,
246 DEFAULT_IO_TIMEOUT);
247 cond_resched();
248 goto retry;
249 }
250 err = -EAGAIN;
251 goto next;
252 }
253
254 err = f2fs_get_node_info(sbi, dn.nid, &ni);
255 if (err) {
256 f2fs_put_dnode(&dn);
257 return err;
258 }
259
260 if (cur->old_addr == NEW_ADDR) {
261 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
262 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
263 } else
264 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
265 cur->old_addr, ni.version, true, true);
266 f2fs_put_dnode(&dn);
267 }
268next:
269 /* we don't need to invalidate this in the sccessful status */
270 if (drop || recover) {
271 ClearPageUptodate(page);
272 clear_page_private_gcing(page);
273 }
274 detach_page_private(page);
275 set_page_private(page, 0);
276 f2fs_put_page(page, 1);
277
278 list_del(&cur->list);
279 kmem_cache_free(inmem_entry_slab, cur);
280 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
281 }
282 return err;
283}
284
285void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
286{
287 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
288 struct inode *inode;
289 struct f2fs_inode_info *fi;
290 unsigned int count = sbi->atomic_files;
291 unsigned int looped = 0;
292next:
293 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
294 if (list_empty(head)) {
295 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
296 return;
297 }
298 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
299 inode = igrab(&fi->vfs_inode);
300 if (inode)
301 list_move_tail(&fi->inmem_ilist, head);
302 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
303
304 if (inode) {
305 if (gc_failure) {
306 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
307 goto skip;
308 }
309 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
310 f2fs_drop_inmem_pages(inode);
311skip:
312 iput(inode);
313 }
314 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
315 cond_resched();
316 if (gc_failure) {
317 if (++looped >= count)
318 return;
319 }
320 goto next;
321}
322
323void f2fs_drop_inmem_pages(struct inode *inode)
324{
325 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
326 struct f2fs_inode_info *fi = F2FS_I(inode);
327
328 do {
329 mutex_lock(&fi->inmem_lock);
330 if (list_empty(&fi->inmem_pages)) {
331 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
332
333 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
334 if (!list_empty(&fi->inmem_ilist))
335 list_del_init(&fi->inmem_ilist);
336 if (f2fs_is_atomic_file(inode)) {
337 clear_inode_flag(inode, FI_ATOMIC_FILE);
338 sbi->atomic_files--;
339 }
340 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
341
342 mutex_unlock(&fi->inmem_lock);
343 break;
344 }
345 __revoke_inmem_pages(inode, &fi->inmem_pages,
346 true, false, true);
347 mutex_unlock(&fi->inmem_lock);
348 } while (1);
349}
350
351void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
352{
353 struct f2fs_inode_info *fi = F2FS_I(inode);
354 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
355 struct list_head *head = &fi->inmem_pages;
356 struct inmem_pages *cur = NULL;
357
358 f2fs_bug_on(sbi, !page_private_atomic(page));
359
360 mutex_lock(&fi->inmem_lock);
361 list_for_each_entry(cur, head, list) {
362 if (cur->page == page)
363 break;
364 }
365
366 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
367 list_del(&cur->list);
368 mutex_unlock(&fi->inmem_lock);
369
370 dec_page_count(sbi, F2FS_INMEM_PAGES);
371 kmem_cache_free(inmem_entry_slab, cur);
372
373 ClearPageUptodate(page);
374 clear_page_private_atomic(page);
375 f2fs_put_page(page, 0);
376
377 detach_page_private(page);
378 set_page_private(page, 0);
379
380 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
381}
382
383static int __f2fs_commit_inmem_pages(struct inode *inode)
384{
385 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
386 struct f2fs_inode_info *fi = F2FS_I(inode);
387 struct inmem_pages *cur, *tmp;
388 struct f2fs_io_info fio = {
389 .sbi = sbi,
390 .ino = inode->i_ino,
391 .type = DATA,
392 .op = REQ_OP_WRITE,
393 .op_flags = REQ_SYNC | REQ_PRIO,
394 .io_type = FS_DATA_IO,
395 };
396 struct list_head revoke_list;
397 bool submit_bio = false;
398 int err = 0;
399
400 INIT_LIST_HEAD(&revoke_list);
401
402 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
403 struct page *page = cur->page;
404
405 lock_page(page);
406 if (page->mapping == inode->i_mapping) {
407 trace_f2fs_commit_inmem_page(page, INMEM);
408
409 f2fs_wait_on_page_writeback(page, DATA, true, true);
410
411 set_page_dirty(page);
412 if (clear_page_dirty_for_io(page)) {
413 inode_dec_dirty_pages(inode);
414 f2fs_remove_dirty_inode(inode);
415 }
416retry:
417 fio.page = page;
418 fio.old_blkaddr = NULL_ADDR;
419 fio.encrypted_page = NULL;
420 fio.need_lock = LOCK_DONE;
421 err = f2fs_do_write_data_page(&fio);
422 if (err) {
423 if (err == -ENOMEM) {
424 congestion_wait(BLK_RW_ASYNC,
425 DEFAULT_IO_TIMEOUT);
426 cond_resched();
427 goto retry;
428 }
429 unlock_page(page);
430 break;
431 }
432 /* record old blkaddr for revoking */
433 cur->old_addr = fio.old_blkaddr;
434 submit_bio = true;
435 }
436 unlock_page(page);
437 list_move_tail(&cur->list, &revoke_list);
438 }
439
440 if (submit_bio)
441 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
442
443 if (err) {
444 /*
445 * try to revoke all committed pages, but still we could fail
446 * due to no memory or other reason, if that happened, EAGAIN
447 * will be returned, which means in such case, transaction is
448 * already not integrity, caller should use journal to do the
449 * recovery or rewrite & commit last transaction. For other
450 * error number, revoking was done by filesystem itself.
451 */
452 err = __revoke_inmem_pages(inode, &revoke_list,
453 false, true, false);
454
455 /* drop all uncommitted pages */
456 __revoke_inmem_pages(inode, &fi->inmem_pages,
457 true, false, false);
458 } else {
459 __revoke_inmem_pages(inode, &revoke_list,
460 false, false, false);
461 }
462
463 return err;
464}
465
466int f2fs_commit_inmem_pages(struct inode *inode)
467{
468 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
469 struct f2fs_inode_info *fi = F2FS_I(inode);
470 int err;
471
472 f2fs_balance_fs(sbi, true);
473
474 down_write(&fi->i_gc_rwsem[WRITE]);
475
476 f2fs_lock_op(sbi);
477 set_inode_flag(inode, FI_ATOMIC_COMMIT);
478
479 mutex_lock(&fi->inmem_lock);
480 err = __f2fs_commit_inmem_pages(inode);
481 mutex_unlock(&fi->inmem_lock);
482
483 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
484
485 f2fs_unlock_op(sbi);
486 up_write(&fi->i_gc_rwsem[WRITE]);
487
488 return err;
489}
490
491/*
492 * This function balances dirty node and dentry pages.
493 * In addition, it controls garbage collection.
494 */
495void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
496{
497 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
498 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
499 f2fs_stop_checkpoint(sbi, false);
500 }
501
502 /* balance_fs_bg is able to be pending */
503 if (need && excess_cached_nats(sbi))
504 f2fs_balance_fs_bg(sbi, false);
505
506 if (!f2fs_is_checkpoint_ready(sbi))
507 return;
508
509 /*
510 * We should do GC or end up with checkpoint, if there are so many dirty
511 * dir/node pages without enough free segments.
512 */
513 if (has_not_enough_free_secs(sbi, 0, 0)) {
514 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
515 sbi->gc_thread->f2fs_gc_task) {
516 DEFINE_WAIT(wait);
517
518 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
519 TASK_UNINTERRUPTIBLE);
520 wake_up(&sbi->gc_thread->gc_wait_queue_head);
521 io_schedule();
522 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
523 } else {
524 down_write(&sbi->gc_lock);
525 f2fs_gc(sbi, false, false, false, NULL_SEGNO);
526 }
527 }
528}
529
530void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
531{
532 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
533 return;
534
535 /* try to shrink extent cache when there is no enough memory */
536 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
537 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
538
539 /* check the # of cached NAT entries */
540 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
541 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
542
543 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
544 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
545 else
546 f2fs_build_free_nids(sbi, false, false);
547
548 if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) ||
549 excess_prefree_segs(sbi))
550 goto do_sync;
551
552 /* there is background inflight IO or foreground operation recently */
553 if (is_inflight_io(sbi, REQ_TIME) ||
554 (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
555 return;
556
557 /* exceed periodical checkpoint timeout threshold */
558 if (f2fs_time_over(sbi, CP_TIME))
559 goto do_sync;
560
561 /* checkpoint is the only way to shrink partial cached entries */
562 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
563 f2fs_available_free_memory(sbi, INO_ENTRIES))
564 return;
565
566do_sync:
567 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
568 struct blk_plug plug;
569
570 mutex_lock(&sbi->flush_lock);
571
572 blk_start_plug(&plug);
573 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
574 blk_finish_plug(&plug);
575
576 mutex_unlock(&sbi->flush_lock);
577 }
578 f2fs_sync_fs(sbi->sb, true);
579 stat_inc_bg_cp_count(sbi->stat_info);
580}
581
582static int __submit_flush_wait(struct f2fs_sb_info *sbi,
583 struct block_device *bdev)
584{
585 int ret = blkdev_issue_flush(bdev);
586
587 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
588 test_opt(sbi, FLUSH_MERGE), ret);
589 return ret;
590}
591
592static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
593{
594 int ret = 0;
595 int i;
596
597 if (!f2fs_is_multi_device(sbi))
598 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
599
600 for (i = 0; i < sbi->s_ndevs; i++) {
601 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
602 continue;
603 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
604 if (ret)
605 break;
606 }
607 return ret;
608}
609
610static int issue_flush_thread(void *data)
611{
612 struct f2fs_sb_info *sbi = data;
613 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
614 wait_queue_head_t *q = &fcc->flush_wait_queue;
615repeat:
616 if (kthread_should_stop())
617 return 0;
618
619 if (!llist_empty(&fcc->issue_list)) {
620 struct flush_cmd *cmd, *next;
621 int ret;
622
623 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
624 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
625
626 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
627
628 ret = submit_flush_wait(sbi, cmd->ino);
629 atomic_inc(&fcc->issued_flush);
630
631 llist_for_each_entry_safe(cmd, next,
632 fcc->dispatch_list, llnode) {
633 cmd->ret = ret;
634 complete(&cmd->wait);
635 }
636 fcc->dispatch_list = NULL;
637 }
638
639 wait_event_interruptible(*q,
640 kthread_should_stop() || !llist_empty(&fcc->issue_list));
641 goto repeat;
642}
643
644int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
645{
646 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
647 struct flush_cmd cmd;
648 int ret;
649
650 if (test_opt(sbi, NOBARRIER))
651 return 0;
652
653 if (!test_opt(sbi, FLUSH_MERGE)) {
654 atomic_inc(&fcc->queued_flush);
655 ret = submit_flush_wait(sbi, ino);
656 atomic_dec(&fcc->queued_flush);
657 atomic_inc(&fcc->issued_flush);
658 return ret;
659 }
660
661 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
662 f2fs_is_multi_device(sbi)) {
663 ret = submit_flush_wait(sbi, ino);
664 atomic_dec(&fcc->queued_flush);
665
666 atomic_inc(&fcc->issued_flush);
667 return ret;
668 }
669
670 cmd.ino = ino;
671 init_completion(&cmd.wait);
672
673 llist_add(&cmd.llnode, &fcc->issue_list);
674
675 /*
676 * update issue_list before we wake up issue_flush thread, this
677 * smp_mb() pairs with another barrier in ___wait_event(), see
678 * more details in comments of waitqueue_active().
679 */
680 smp_mb();
681
682 if (waitqueue_active(&fcc->flush_wait_queue))
683 wake_up(&fcc->flush_wait_queue);
684
685 if (fcc->f2fs_issue_flush) {
686 wait_for_completion(&cmd.wait);
687 atomic_dec(&fcc->queued_flush);
688 } else {
689 struct llist_node *list;
690
691 list = llist_del_all(&fcc->issue_list);
692 if (!list) {
693 wait_for_completion(&cmd.wait);
694 atomic_dec(&fcc->queued_flush);
695 } else {
696 struct flush_cmd *tmp, *next;
697
698 ret = submit_flush_wait(sbi, ino);
699
700 llist_for_each_entry_safe(tmp, next, list, llnode) {
701 if (tmp == &cmd) {
702 cmd.ret = ret;
703 atomic_dec(&fcc->queued_flush);
704 continue;
705 }
706 tmp->ret = ret;
707 complete(&tmp->wait);
708 }
709 }
710 }
711
712 return cmd.ret;
713}
714
715int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
716{
717 dev_t dev = sbi->sb->s_bdev->bd_dev;
718 struct flush_cmd_control *fcc;
719 int err = 0;
720
721 if (SM_I(sbi)->fcc_info) {
722 fcc = SM_I(sbi)->fcc_info;
723 if (fcc->f2fs_issue_flush)
724 return err;
725 goto init_thread;
726 }
727
728 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
729 if (!fcc)
730 return -ENOMEM;
731 atomic_set(&fcc->issued_flush, 0);
732 atomic_set(&fcc->queued_flush, 0);
733 init_waitqueue_head(&fcc->flush_wait_queue);
734 init_llist_head(&fcc->issue_list);
735 SM_I(sbi)->fcc_info = fcc;
736 if (!test_opt(sbi, FLUSH_MERGE))
737 return err;
738
739init_thread:
740 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
741 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
742 if (IS_ERR(fcc->f2fs_issue_flush)) {
743 err = PTR_ERR(fcc->f2fs_issue_flush);
744 kfree(fcc);
745 SM_I(sbi)->fcc_info = NULL;
746 return err;
747 }
748
749 return err;
750}
751
752void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
753{
754 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
755
756 if (fcc && fcc->f2fs_issue_flush) {
757 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
758
759 fcc->f2fs_issue_flush = NULL;
760 kthread_stop(flush_thread);
761 }
762 if (free) {
763 kfree(fcc);
764 SM_I(sbi)->fcc_info = NULL;
765 }
766}
767
768int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
769{
770 int ret = 0, i;
771
772 if (!f2fs_is_multi_device(sbi))
773 return 0;
774
775 if (test_opt(sbi, NOBARRIER))
776 return 0;
777
778 for (i = 1; i < sbi->s_ndevs; i++) {
779 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
780 continue;
781 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
782 if (ret)
783 break;
784
785 spin_lock(&sbi->dev_lock);
786 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
787 spin_unlock(&sbi->dev_lock);
788 }
789
790 return ret;
791}
792
793static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
794 enum dirty_type dirty_type)
795{
796 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
797
798 /* need not be added */
799 if (IS_CURSEG(sbi, segno))
800 return;
801
802 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
803 dirty_i->nr_dirty[dirty_type]++;
804
805 if (dirty_type == DIRTY) {
806 struct seg_entry *sentry = get_seg_entry(sbi, segno);
807 enum dirty_type t = sentry->type;
808
809 if (unlikely(t >= DIRTY)) {
810 f2fs_bug_on(sbi, 1);
811 return;
812 }
813 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
814 dirty_i->nr_dirty[t]++;
815
816 if (__is_large_section(sbi)) {
817 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
818 block_t valid_blocks =
819 get_valid_blocks(sbi, segno, true);
820
821 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
822 valid_blocks == BLKS_PER_SEC(sbi)));
823
824 if (!IS_CURSEC(sbi, secno))
825 set_bit(secno, dirty_i->dirty_secmap);
826 }
827 }
828}
829
830static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
831 enum dirty_type dirty_type)
832{
833 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
834 block_t valid_blocks;
835
836 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
837 dirty_i->nr_dirty[dirty_type]--;
838
839 if (dirty_type == DIRTY) {
840 struct seg_entry *sentry = get_seg_entry(sbi, segno);
841 enum dirty_type t = sentry->type;
842
843 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
844 dirty_i->nr_dirty[t]--;
845
846 valid_blocks = get_valid_blocks(sbi, segno, true);
847 if (valid_blocks == 0) {
848 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
849 dirty_i->victim_secmap);
850#ifdef CONFIG_F2FS_CHECK_FS
851 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
852#endif
853 }
854 if (__is_large_section(sbi)) {
855 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
856
857 if (!valid_blocks ||
858 valid_blocks == BLKS_PER_SEC(sbi)) {
859 clear_bit(secno, dirty_i->dirty_secmap);
860 return;
861 }
862
863 if (!IS_CURSEC(sbi, secno))
864 set_bit(secno, dirty_i->dirty_secmap);
865 }
866 }
867}
868
869/*
870 * Should not occur error such as -ENOMEM.
871 * Adding dirty entry into seglist is not critical operation.
872 * If a given segment is one of current working segments, it won't be added.
873 */
874static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
875{
876 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
877 unsigned short valid_blocks, ckpt_valid_blocks;
878 unsigned int usable_blocks;
879
880 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
881 return;
882
883 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
884 mutex_lock(&dirty_i->seglist_lock);
885
886 valid_blocks = get_valid_blocks(sbi, segno, false);
887 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
888
889 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
890 ckpt_valid_blocks == usable_blocks)) {
891 __locate_dirty_segment(sbi, segno, PRE);
892 __remove_dirty_segment(sbi, segno, DIRTY);
893 } else if (valid_blocks < usable_blocks) {
894 __locate_dirty_segment(sbi, segno, DIRTY);
895 } else {
896 /* Recovery routine with SSR needs this */
897 __remove_dirty_segment(sbi, segno, DIRTY);
898 }
899
900 mutex_unlock(&dirty_i->seglist_lock);
901}
902
903/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
904void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
905{
906 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
907 unsigned int segno;
908
909 mutex_lock(&dirty_i->seglist_lock);
910 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
911 if (get_valid_blocks(sbi, segno, false))
912 continue;
913 if (IS_CURSEG(sbi, segno))
914 continue;
915 __locate_dirty_segment(sbi, segno, PRE);
916 __remove_dirty_segment(sbi, segno, DIRTY);
917 }
918 mutex_unlock(&dirty_i->seglist_lock);
919}
920
921block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
922{
923 int ovp_hole_segs =
924 (overprovision_segments(sbi) - reserved_segments(sbi));
925 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
926 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
927 block_t holes[2] = {0, 0}; /* DATA and NODE */
928 block_t unusable;
929 struct seg_entry *se;
930 unsigned int segno;
931
932 mutex_lock(&dirty_i->seglist_lock);
933 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
934 se = get_seg_entry(sbi, segno);
935 if (IS_NODESEG(se->type))
936 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
937 se->valid_blocks;
938 else
939 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
940 se->valid_blocks;
941 }
942 mutex_unlock(&dirty_i->seglist_lock);
943
944 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
945 if (unusable > ovp_holes)
946 return unusable - ovp_holes;
947 return 0;
948}
949
950int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
951{
952 int ovp_hole_segs =
953 (overprovision_segments(sbi) - reserved_segments(sbi));
954 if (unusable > F2FS_OPTION(sbi).unusable_cap)
955 return -EAGAIN;
956 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
957 dirty_segments(sbi) > ovp_hole_segs)
958 return -EAGAIN;
959 return 0;
960}
961
962/* This is only used by SBI_CP_DISABLED */
963static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
964{
965 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
966 unsigned int segno = 0;
967
968 mutex_lock(&dirty_i->seglist_lock);
969 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
970 if (get_valid_blocks(sbi, segno, false))
971 continue;
972 if (get_ckpt_valid_blocks(sbi, segno, false))
973 continue;
974 mutex_unlock(&dirty_i->seglist_lock);
975 return segno;
976 }
977 mutex_unlock(&dirty_i->seglist_lock);
978 return NULL_SEGNO;
979}
980
981static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
982 struct block_device *bdev, block_t lstart,
983 block_t start, block_t len)
984{
985 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
986 struct list_head *pend_list;
987 struct discard_cmd *dc;
988
989 f2fs_bug_on(sbi, !len);
990
991 pend_list = &dcc->pend_list[plist_idx(len)];
992
993 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
994 INIT_LIST_HEAD(&dc->list);
995 dc->bdev = bdev;
996 dc->lstart = lstart;
997 dc->start = start;
998 dc->len = len;
999 dc->ref = 0;
1000 dc->state = D_PREP;
1001 dc->queued = 0;
1002 dc->error = 0;
1003 init_completion(&dc->wait);
1004 list_add_tail(&dc->list, pend_list);
1005 spin_lock_init(&dc->lock);
1006 dc->bio_ref = 0;
1007 atomic_inc(&dcc->discard_cmd_cnt);
1008 dcc->undiscard_blks += len;
1009
1010 return dc;
1011}
1012
1013static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1014 struct block_device *bdev, block_t lstart,
1015 block_t start, block_t len,
1016 struct rb_node *parent, struct rb_node **p,
1017 bool leftmost)
1018{
1019 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1020 struct discard_cmd *dc;
1021
1022 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1023
1024 rb_link_node(&dc->rb_node, parent, p);
1025 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1026
1027 return dc;
1028}
1029
1030static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1031 struct discard_cmd *dc)
1032{
1033 if (dc->state == D_DONE)
1034 atomic_sub(dc->queued, &dcc->queued_discard);
1035
1036 list_del(&dc->list);
1037 rb_erase_cached(&dc->rb_node, &dcc->root);
1038 dcc->undiscard_blks -= dc->len;
1039
1040 kmem_cache_free(discard_cmd_slab, dc);
1041
1042 atomic_dec(&dcc->discard_cmd_cnt);
1043}
1044
1045static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1046 struct discard_cmd *dc)
1047{
1048 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1049 unsigned long flags;
1050
1051 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1052
1053 spin_lock_irqsave(&dc->lock, flags);
1054 if (dc->bio_ref) {
1055 spin_unlock_irqrestore(&dc->lock, flags);
1056 return;
1057 }
1058 spin_unlock_irqrestore(&dc->lock, flags);
1059
1060 f2fs_bug_on(sbi, dc->ref);
1061
1062 if (dc->error == -EOPNOTSUPP)
1063 dc->error = 0;
1064
1065 if (dc->error)
1066 printk_ratelimited(
1067 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1068 KERN_INFO, sbi->sb->s_id,
1069 dc->lstart, dc->start, dc->len, dc->error);
1070 __detach_discard_cmd(dcc, dc);
1071}
1072
1073static void f2fs_submit_discard_endio(struct bio *bio)
1074{
1075 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1076 unsigned long flags;
1077
1078 spin_lock_irqsave(&dc->lock, flags);
1079 if (!dc->error)
1080 dc->error = blk_status_to_errno(bio->bi_status);
1081 dc->bio_ref--;
1082 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1083 dc->state = D_DONE;
1084 complete_all(&dc->wait);
1085 }
1086 spin_unlock_irqrestore(&dc->lock, flags);
1087 bio_put(bio);
1088}
1089
1090static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1091 block_t start, block_t end)
1092{
1093#ifdef CONFIG_F2FS_CHECK_FS
1094 struct seg_entry *sentry;
1095 unsigned int segno;
1096 block_t blk = start;
1097 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1098 unsigned long *map;
1099
1100 while (blk < end) {
1101 segno = GET_SEGNO(sbi, blk);
1102 sentry = get_seg_entry(sbi, segno);
1103 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1104
1105 if (end < START_BLOCK(sbi, segno + 1))
1106 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1107 else
1108 size = max_blocks;
1109 map = (unsigned long *)(sentry->cur_valid_map);
1110 offset = __find_rev_next_bit(map, size, offset);
1111 f2fs_bug_on(sbi, offset != size);
1112 blk = START_BLOCK(sbi, segno + 1);
1113 }
1114#endif
1115}
1116
1117static void __init_discard_policy(struct f2fs_sb_info *sbi,
1118 struct discard_policy *dpolicy,
1119 int discard_type, unsigned int granularity)
1120{
1121 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1122
1123 /* common policy */
1124 dpolicy->type = discard_type;
1125 dpolicy->sync = true;
1126 dpolicy->ordered = false;
1127 dpolicy->granularity = granularity;
1128
1129 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1130 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1131 dpolicy->timeout = false;
1132
1133 if (discard_type == DPOLICY_BG) {
1134 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1135 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1136 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1137 dpolicy->io_aware = true;
1138 dpolicy->sync = false;
1139 dpolicy->ordered = true;
1140 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1141 dpolicy->granularity = 1;
1142 if (atomic_read(&dcc->discard_cmd_cnt))
1143 dpolicy->max_interval =
1144 DEF_MIN_DISCARD_ISSUE_TIME;
1145 }
1146 } else if (discard_type == DPOLICY_FORCE) {
1147 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1148 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1149 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1150 dpolicy->io_aware = false;
1151 } else if (discard_type == DPOLICY_FSTRIM) {
1152 dpolicy->io_aware = false;
1153 } else if (discard_type == DPOLICY_UMOUNT) {
1154 dpolicy->io_aware = false;
1155 /* we need to issue all to keep CP_TRIMMED_FLAG */
1156 dpolicy->granularity = 1;
1157 dpolicy->timeout = true;
1158 }
1159}
1160
1161static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1162 struct block_device *bdev, block_t lstart,
1163 block_t start, block_t len);
1164/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1165static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1166 struct discard_policy *dpolicy,
1167 struct discard_cmd *dc,
1168 unsigned int *issued)
1169{
1170 struct block_device *bdev = dc->bdev;
1171 struct request_queue *q = bdev_get_queue(bdev);
1172 unsigned int max_discard_blocks =
1173 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1174 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1175 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1176 &(dcc->fstrim_list) : &(dcc->wait_list);
1177 int flag = dpolicy->sync ? REQ_SYNC : 0;
1178 block_t lstart, start, len, total_len;
1179 int err = 0;
1180
1181 if (dc->state != D_PREP)
1182 return 0;
1183
1184 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1185 return 0;
1186
1187 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1188
1189 lstart = dc->lstart;
1190 start = dc->start;
1191 len = dc->len;
1192 total_len = len;
1193
1194 dc->len = 0;
1195
1196 while (total_len && *issued < dpolicy->max_requests && !err) {
1197 struct bio *bio = NULL;
1198 unsigned long flags;
1199 bool last = true;
1200
1201 if (len > max_discard_blocks) {
1202 len = max_discard_blocks;
1203 last = false;
1204 }
1205
1206 (*issued)++;
1207 if (*issued == dpolicy->max_requests)
1208 last = true;
1209
1210 dc->len += len;
1211
1212 if (time_to_inject(sbi, FAULT_DISCARD)) {
1213 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1214 err = -EIO;
1215 goto submit;
1216 }
1217 err = __blkdev_issue_discard(bdev,
1218 SECTOR_FROM_BLOCK(start),
1219 SECTOR_FROM_BLOCK(len),
1220 GFP_NOFS, 0, &bio);
1221submit:
1222 if (err) {
1223 spin_lock_irqsave(&dc->lock, flags);
1224 if (dc->state == D_PARTIAL)
1225 dc->state = D_SUBMIT;
1226 spin_unlock_irqrestore(&dc->lock, flags);
1227
1228 break;
1229 }
1230
1231 f2fs_bug_on(sbi, !bio);
1232
1233 /*
1234 * should keep before submission to avoid D_DONE
1235 * right away
1236 */
1237 spin_lock_irqsave(&dc->lock, flags);
1238 if (last)
1239 dc->state = D_SUBMIT;
1240 else
1241 dc->state = D_PARTIAL;
1242 dc->bio_ref++;
1243 spin_unlock_irqrestore(&dc->lock, flags);
1244
1245 atomic_inc(&dcc->queued_discard);
1246 dc->queued++;
1247 list_move_tail(&dc->list, wait_list);
1248
1249 /* sanity check on discard range */
1250 __check_sit_bitmap(sbi, lstart, lstart + len);
1251
1252 bio->bi_private = dc;
1253 bio->bi_end_io = f2fs_submit_discard_endio;
1254 bio->bi_opf |= flag;
1255 submit_bio(bio);
1256
1257 atomic_inc(&dcc->issued_discard);
1258
1259 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1260
1261 lstart += len;
1262 start += len;
1263 total_len -= len;
1264 len = total_len;
1265 }
1266
1267 if (!err && len) {
1268 dcc->undiscard_blks -= len;
1269 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1270 }
1271 return err;
1272}
1273
1274static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1275 struct block_device *bdev, block_t lstart,
1276 block_t start, block_t len,
1277 struct rb_node **insert_p,
1278 struct rb_node *insert_parent)
1279{
1280 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1281 struct rb_node **p;
1282 struct rb_node *parent = NULL;
1283 bool leftmost = true;
1284
1285 if (insert_p && insert_parent) {
1286 parent = insert_parent;
1287 p = insert_p;
1288 goto do_insert;
1289 }
1290
1291 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1292 lstart, &leftmost);
1293do_insert:
1294 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1295 p, leftmost);
1296}
1297
1298static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1299 struct discard_cmd *dc)
1300{
1301 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1302}
1303
1304static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1305 struct discard_cmd *dc, block_t blkaddr)
1306{
1307 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1308 struct discard_info di = dc->di;
1309 bool modified = false;
1310
1311 if (dc->state == D_DONE || dc->len == 1) {
1312 __remove_discard_cmd(sbi, dc);
1313 return;
1314 }
1315
1316 dcc->undiscard_blks -= di.len;
1317
1318 if (blkaddr > di.lstart) {
1319 dc->len = blkaddr - dc->lstart;
1320 dcc->undiscard_blks += dc->len;
1321 __relocate_discard_cmd(dcc, dc);
1322 modified = true;
1323 }
1324
1325 if (blkaddr < di.lstart + di.len - 1) {
1326 if (modified) {
1327 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1328 di.start + blkaddr + 1 - di.lstart,
1329 di.lstart + di.len - 1 - blkaddr,
1330 NULL, NULL);
1331 } else {
1332 dc->lstart++;
1333 dc->len--;
1334 dc->start++;
1335 dcc->undiscard_blks += dc->len;
1336 __relocate_discard_cmd(dcc, dc);
1337 }
1338 }
1339}
1340
1341static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1342 struct block_device *bdev, block_t lstart,
1343 block_t start, block_t len)
1344{
1345 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1346 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1347 struct discard_cmd *dc;
1348 struct discard_info di = {0};
1349 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1350 struct request_queue *q = bdev_get_queue(bdev);
1351 unsigned int max_discard_blocks =
1352 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1353 block_t end = lstart + len;
1354
1355 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1356 NULL, lstart,
1357 (struct rb_entry **)&prev_dc,
1358 (struct rb_entry **)&next_dc,
1359 &insert_p, &insert_parent, true, NULL);
1360 if (dc)
1361 prev_dc = dc;
1362
1363 if (!prev_dc) {
1364 di.lstart = lstart;
1365 di.len = next_dc ? next_dc->lstart - lstart : len;
1366 di.len = min(di.len, len);
1367 di.start = start;
1368 }
1369
1370 while (1) {
1371 struct rb_node *node;
1372 bool merged = false;
1373 struct discard_cmd *tdc = NULL;
1374
1375 if (prev_dc) {
1376 di.lstart = prev_dc->lstart + prev_dc->len;
1377 if (di.lstart < lstart)
1378 di.lstart = lstart;
1379 if (di.lstart >= end)
1380 break;
1381
1382 if (!next_dc || next_dc->lstart > end)
1383 di.len = end - di.lstart;
1384 else
1385 di.len = next_dc->lstart - di.lstart;
1386 di.start = start + di.lstart - lstart;
1387 }
1388
1389 if (!di.len)
1390 goto next;
1391
1392 if (prev_dc && prev_dc->state == D_PREP &&
1393 prev_dc->bdev == bdev &&
1394 __is_discard_back_mergeable(&di, &prev_dc->di,
1395 max_discard_blocks)) {
1396 prev_dc->di.len += di.len;
1397 dcc->undiscard_blks += di.len;
1398 __relocate_discard_cmd(dcc, prev_dc);
1399 di = prev_dc->di;
1400 tdc = prev_dc;
1401 merged = true;
1402 }
1403
1404 if (next_dc && next_dc->state == D_PREP &&
1405 next_dc->bdev == bdev &&
1406 __is_discard_front_mergeable(&di, &next_dc->di,
1407 max_discard_blocks)) {
1408 next_dc->di.lstart = di.lstart;
1409 next_dc->di.len += di.len;
1410 next_dc->di.start = di.start;
1411 dcc->undiscard_blks += di.len;
1412 __relocate_discard_cmd(dcc, next_dc);
1413 if (tdc)
1414 __remove_discard_cmd(sbi, tdc);
1415 merged = true;
1416 }
1417
1418 if (!merged) {
1419 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1420 di.len, NULL, NULL);
1421 }
1422 next:
1423 prev_dc = next_dc;
1424 if (!prev_dc)
1425 break;
1426
1427 node = rb_next(&prev_dc->rb_node);
1428 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1429 }
1430}
1431
1432static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1433 struct block_device *bdev, block_t blkstart, block_t blklen)
1434{
1435 block_t lblkstart = blkstart;
1436
1437 if (!f2fs_bdev_support_discard(bdev))
1438 return 0;
1439
1440 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1441
1442 if (f2fs_is_multi_device(sbi)) {
1443 int devi = f2fs_target_device_index(sbi, blkstart);
1444
1445 blkstart -= FDEV(devi).start_blk;
1446 }
1447 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1448 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1449 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1450 return 0;
1451}
1452
1453static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1454 struct discard_policy *dpolicy)
1455{
1456 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1457 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1458 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1459 struct discard_cmd *dc;
1460 struct blk_plug plug;
1461 unsigned int pos = dcc->next_pos;
1462 unsigned int issued = 0;
1463 bool io_interrupted = false;
1464
1465 mutex_lock(&dcc->cmd_lock);
1466 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1467 NULL, pos,
1468 (struct rb_entry **)&prev_dc,
1469 (struct rb_entry **)&next_dc,
1470 &insert_p, &insert_parent, true, NULL);
1471 if (!dc)
1472 dc = next_dc;
1473
1474 blk_start_plug(&plug);
1475
1476 while (dc) {
1477 struct rb_node *node;
1478 int err = 0;
1479
1480 if (dc->state != D_PREP)
1481 goto next;
1482
1483 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1484 io_interrupted = true;
1485 break;
1486 }
1487
1488 dcc->next_pos = dc->lstart + dc->len;
1489 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1490
1491 if (issued >= dpolicy->max_requests)
1492 break;
1493next:
1494 node = rb_next(&dc->rb_node);
1495 if (err)
1496 __remove_discard_cmd(sbi, dc);
1497 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1498 }
1499
1500 blk_finish_plug(&plug);
1501
1502 if (!dc)
1503 dcc->next_pos = 0;
1504
1505 mutex_unlock(&dcc->cmd_lock);
1506
1507 if (!issued && io_interrupted)
1508 issued = -1;
1509
1510 return issued;
1511}
1512static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1513 struct discard_policy *dpolicy);
1514
1515static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1516 struct discard_policy *dpolicy)
1517{
1518 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1519 struct list_head *pend_list;
1520 struct discard_cmd *dc, *tmp;
1521 struct blk_plug plug;
1522 int i, issued;
1523 bool io_interrupted = false;
1524
1525 if (dpolicy->timeout)
1526 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1527
1528retry:
1529 issued = 0;
1530 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1531 if (dpolicy->timeout &&
1532 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1533 break;
1534
1535 if (i + 1 < dpolicy->granularity)
1536 break;
1537
1538 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1539 return __issue_discard_cmd_orderly(sbi, dpolicy);
1540
1541 pend_list = &dcc->pend_list[i];
1542
1543 mutex_lock(&dcc->cmd_lock);
1544 if (list_empty(pend_list))
1545 goto next;
1546 if (unlikely(dcc->rbtree_check))
1547 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1548 &dcc->root, false));
1549 blk_start_plug(&plug);
1550 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1551 f2fs_bug_on(sbi, dc->state != D_PREP);
1552
1553 if (dpolicy->timeout &&
1554 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1555 break;
1556
1557 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1558 !is_idle(sbi, DISCARD_TIME)) {
1559 io_interrupted = true;
1560 break;
1561 }
1562
1563 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1564
1565 if (issued >= dpolicy->max_requests)
1566 break;
1567 }
1568 blk_finish_plug(&plug);
1569next:
1570 mutex_unlock(&dcc->cmd_lock);
1571
1572 if (issued >= dpolicy->max_requests || io_interrupted)
1573 break;
1574 }
1575
1576 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1577 __wait_all_discard_cmd(sbi, dpolicy);
1578 goto retry;
1579 }
1580
1581 if (!issued && io_interrupted)
1582 issued = -1;
1583
1584 return issued;
1585}
1586
1587static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1588{
1589 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1590 struct list_head *pend_list;
1591 struct discard_cmd *dc, *tmp;
1592 int i;
1593 bool dropped = false;
1594
1595 mutex_lock(&dcc->cmd_lock);
1596 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1597 pend_list = &dcc->pend_list[i];
1598 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1599 f2fs_bug_on(sbi, dc->state != D_PREP);
1600 __remove_discard_cmd(sbi, dc);
1601 dropped = true;
1602 }
1603 }
1604 mutex_unlock(&dcc->cmd_lock);
1605
1606 return dropped;
1607}
1608
1609void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1610{
1611 __drop_discard_cmd(sbi);
1612}
1613
1614static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1615 struct discard_cmd *dc)
1616{
1617 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1618 unsigned int len = 0;
1619
1620 wait_for_completion_io(&dc->wait);
1621 mutex_lock(&dcc->cmd_lock);
1622 f2fs_bug_on(sbi, dc->state != D_DONE);
1623 dc->ref--;
1624 if (!dc->ref) {
1625 if (!dc->error)
1626 len = dc->len;
1627 __remove_discard_cmd(sbi, dc);
1628 }
1629 mutex_unlock(&dcc->cmd_lock);
1630
1631 return len;
1632}
1633
1634static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1635 struct discard_policy *dpolicy,
1636 block_t start, block_t end)
1637{
1638 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1639 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1640 &(dcc->fstrim_list) : &(dcc->wait_list);
1641 struct discard_cmd *dc, *tmp;
1642 bool need_wait;
1643 unsigned int trimmed = 0;
1644
1645next:
1646 need_wait = false;
1647
1648 mutex_lock(&dcc->cmd_lock);
1649 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1650 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1651 continue;
1652 if (dc->len < dpolicy->granularity)
1653 continue;
1654 if (dc->state == D_DONE && !dc->ref) {
1655 wait_for_completion_io(&dc->wait);
1656 if (!dc->error)
1657 trimmed += dc->len;
1658 __remove_discard_cmd(sbi, dc);
1659 } else {
1660 dc->ref++;
1661 need_wait = true;
1662 break;
1663 }
1664 }
1665 mutex_unlock(&dcc->cmd_lock);
1666
1667 if (need_wait) {
1668 trimmed += __wait_one_discard_bio(sbi, dc);
1669 goto next;
1670 }
1671
1672 return trimmed;
1673}
1674
1675static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1676 struct discard_policy *dpolicy)
1677{
1678 struct discard_policy dp;
1679 unsigned int discard_blks;
1680
1681 if (dpolicy)
1682 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1683
1684 /* wait all */
1685 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1686 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1687 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1688 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1689
1690 return discard_blks;
1691}
1692
1693/* This should be covered by global mutex, &sit_i->sentry_lock */
1694static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1695{
1696 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1697 struct discard_cmd *dc;
1698 bool need_wait = false;
1699
1700 mutex_lock(&dcc->cmd_lock);
1701 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1702 NULL, blkaddr);
1703 if (dc) {
1704 if (dc->state == D_PREP) {
1705 __punch_discard_cmd(sbi, dc, blkaddr);
1706 } else {
1707 dc->ref++;
1708 need_wait = true;
1709 }
1710 }
1711 mutex_unlock(&dcc->cmd_lock);
1712
1713 if (need_wait)
1714 __wait_one_discard_bio(sbi, dc);
1715}
1716
1717void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1718{
1719 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1720
1721 if (dcc && dcc->f2fs_issue_discard) {
1722 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1723
1724 dcc->f2fs_issue_discard = NULL;
1725 kthread_stop(discard_thread);
1726 }
1727}
1728
1729/* This comes from f2fs_put_super */
1730bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1731{
1732 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1733 struct discard_policy dpolicy;
1734 bool dropped;
1735
1736 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1737 dcc->discard_granularity);
1738 __issue_discard_cmd(sbi, &dpolicy);
1739 dropped = __drop_discard_cmd(sbi);
1740
1741 /* just to make sure there is no pending discard commands */
1742 __wait_all_discard_cmd(sbi, NULL);
1743
1744 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1745 return dropped;
1746}
1747
1748static int issue_discard_thread(void *data)
1749{
1750 struct f2fs_sb_info *sbi = data;
1751 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1752 wait_queue_head_t *q = &dcc->discard_wait_queue;
1753 struct discard_policy dpolicy;
1754 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1755 int issued;
1756
1757 set_freezable();
1758
1759 do {
1760 if (sbi->gc_mode == GC_URGENT_HIGH ||
1761 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1762 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1763 else
1764 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1765 dcc->discard_granularity);
1766
1767 if (!atomic_read(&dcc->discard_cmd_cnt))
1768 wait_ms = dpolicy.max_interval;
1769
1770 wait_event_interruptible_timeout(*q,
1771 kthread_should_stop() || freezing(current) ||
1772 dcc->discard_wake,
1773 msecs_to_jiffies(wait_ms));
1774
1775 if (dcc->discard_wake)
1776 dcc->discard_wake = 0;
1777
1778 /* clean up pending candidates before going to sleep */
1779 if (atomic_read(&dcc->queued_discard))
1780 __wait_all_discard_cmd(sbi, NULL);
1781
1782 if (try_to_freeze())
1783 continue;
1784 if (f2fs_readonly(sbi->sb))
1785 continue;
1786 if (kthread_should_stop())
1787 return 0;
1788 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1789 wait_ms = dpolicy.max_interval;
1790 continue;
1791 }
1792 if (!atomic_read(&dcc->discard_cmd_cnt))
1793 continue;
1794
1795 sb_start_intwrite(sbi->sb);
1796
1797 issued = __issue_discard_cmd(sbi, &dpolicy);
1798 if (issued > 0) {
1799 __wait_all_discard_cmd(sbi, &dpolicy);
1800 wait_ms = dpolicy.min_interval;
1801 } else if (issued == -1) {
1802 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1803 if (!wait_ms)
1804 wait_ms = dpolicy.mid_interval;
1805 } else {
1806 wait_ms = dpolicy.max_interval;
1807 }
1808
1809 sb_end_intwrite(sbi->sb);
1810
1811 } while (!kthread_should_stop());
1812 return 0;
1813}
1814
1815#ifdef CONFIG_BLK_DEV_ZONED
1816static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1817 struct block_device *bdev, block_t blkstart, block_t blklen)
1818{
1819 sector_t sector, nr_sects;
1820 block_t lblkstart = blkstart;
1821 int devi = 0;
1822
1823 if (f2fs_is_multi_device(sbi)) {
1824 devi = f2fs_target_device_index(sbi, blkstart);
1825 if (blkstart < FDEV(devi).start_blk ||
1826 blkstart > FDEV(devi).end_blk) {
1827 f2fs_err(sbi, "Invalid block %x", blkstart);
1828 return -EIO;
1829 }
1830 blkstart -= FDEV(devi).start_blk;
1831 }
1832
1833 /* For sequential zones, reset the zone write pointer */
1834 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1835 sector = SECTOR_FROM_BLOCK(blkstart);
1836 nr_sects = SECTOR_FROM_BLOCK(blklen);
1837
1838 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1839 nr_sects != bdev_zone_sectors(bdev)) {
1840 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1841 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1842 blkstart, blklen);
1843 return -EIO;
1844 }
1845 trace_f2fs_issue_reset_zone(bdev, blkstart);
1846 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1847 sector, nr_sects, GFP_NOFS);
1848 }
1849
1850 /* For conventional zones, use regular discard if supported */
1851 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1852}
1853#endif
1854
1855static int __issue_discard_async(struct f2fs_sb_info *sbi,
1856 struct block_device *bdev, block_t blkstart, block_t blklen)
1857{
1858#ifdef CONFIG_BLK_DEV_ZONED
1859 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1860 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1861#endif
1862 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1863}
1864
1865static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1866 block_t blkstart, block_t blklen)
1867{
1868 sector_t start = blkstart, len = 0;
1869 struct block_device *bdev;
1870 struct seg_entry *se;
1871 unsigned int offset;
1872 block_t i;
1873 int err = 0;
1874
1875 bdev = f2fs_target_device(sbi, blkstart, NULL);
1876
1877 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1878 if (i != start) {
1879 struct block_device *bdev2 =
1880 f2fs_target_device(sbi, i, NULL);
1881
1882 if (bdev2 != bdev) {
1883 err = __issue_discard_async(sbi, bdev,
1884 start, len);
1885 if (err)
1886 return err;
1887 bdev = bdev2;
1888 start = i;
1889 len = 0;
1890 }
1891 }
1892
1893 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1894 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1895
1896 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1897 sbi->discard_blks--;
1898 }
1899
1900 if (len)
1901 err = __issue_discard_async(sbi, bdev, start, len);
1902 return err;
1903}
1904
1905static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1906 bool check_only)
1907{
1908 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1909 int max_blocks = sbi->blocks_per_seg;
1910 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1911 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1912 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1913 unsigned long *discard_map = (unsigned long *)se->discard_map;
1914 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1915 unsigned int start = 0, end = -1;
1916 bool force = (cpc->reason & CP_DISCARD);
1917 struct discard_entry *de = NULL;
1918 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1919 int i;
1920
1921 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1922 return false;
1923
1924 if (!force) {
1925 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1926 SM_I(sbi)->dcc_info->nr_discards >=
1927 SM_I(sbi)->dcc_info->max_discards)
1928 return false;
1929 }
1930
1931 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1932 for (i = 0; i < entries; i++)
1933 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1934 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1935
1936 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1937 SM_I(sbi)->dcc_info->max_discards) {
1938 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1939 if (start >= max_blocks)
1940 break;
1941
1942 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1943 if (force && start && end != max_blocks
1944 && (end - start) < cpc->trim_minlen)
1945 continue;
1946
1947 if (check_only)
1948 return true;
1949
1950 if (!de) {
1951 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1952 GFP_F2FS_ZERO);
1953 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1954 list_add_tail(&de->list, head);
1955 }
1956
1957 for (i = start; i < end; i++)
1958 __set_bit_le(i, (void *)de->discard_map);
1959
1960 SM_I(sbi)->dcc_info->nr_discards += end - start;
1961 }
1962 return false;
1963}
1964
1965static void release_discard_addr(struct discard_entry *entry)
1966{
1967 list_del(&entry->list);
1968 kmem_cache_free(discard_entry_slab, entry);
1969}
1970
1971void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1972{
1973 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1974 struct discard_entry *entry, *this;
1975
1976 /* drop caches */
1977 list_for_each_entry_safe(entry, this, head, list)
1978 release_discard_addr(entry);
1979}
1980
1981/*
1982 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1983 */
1984static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1985{
1986 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1987 unsigned int segno;
1988
1989 mutex_lock(&dirty_i->seglist_lock);
1990 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1991 __set_test_and_free(sbi, segno, false);
1992 mutex_unlock(&dirty_i->seglist_lock);
1993}
1994
1995void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1996 struct cp_control *cpc)
1997{
1998 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1999 struct list_head *head = &dcc->entry_list;
2000 struct discard_entry *entry, *this;
2001 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2002 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2003 unsigned int start = 0, end = -1;
2004 unsigned int secno, start_segno;
2005 bool force = (cpc->reason & CP_DISCARD);
2006 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2007
2008 mutex_lock(&dirty_i->seglist_lock);
2009
2010 while (1) {
2011 int i;
2012
2013 if (need_align && end != -1)
2014 end--;
2015 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2016 if (start >= MAIN_SEGS(sbi))
2017 break;
2018 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2019 start + 1);
2020
2021 if (need_align) {
2022 start = rounddown(start, sbi->segs_per_sec);
2023 end = roundup(end, sbi->segs_per_sec);
2024 }
2025
2026 for (i = start; i < end; i++) {
2027 if (test_and_clear_bit(i, prefree_map))
2028 dirty_i->nr_dirty[PRE]--;
2029 }
2030
2031 if (!f2fs_realtime_discard_enable(sbi))
2032 continue;
2033
2034 if (force && start >= cpc->trim_start &&
2035 (end - 1) <= cpc->trim_end)
2036 continue;
2037
2038 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2039 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2040 (end - start) << sbi->log_blocks_per_seg);
2041 continue;
2042 }
2043next:
2044 secno = GET_SEC_FROM_SEG(sbi, start);
2045 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2046 if (!IS_CURSEC(sbi, secno) &&
2047 !get_valid_blocks(sbi, start, true))
2048 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2049 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2050
2051 start = start_segno + sbi->segs_per_sec;
2052 if (start < end)
2053 goto next;
2054 else
2055 end = start - 1;
2056 }
2057 mutex_unlock(&dirty_i->seglist_lock);
2058
2059 /* send small discards */
2060 list_for_each_entry_safe(entry, this, head, list) {
2061 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2062 bool is_valid = test_bit_le(0, entry->discard_map);
2063
2064find_next:
2065 if (is_valid) {
2066 next_pos = find_next_zero_bit_le(entry->discard_map,
2067 sbi->blocks_per_seg, cur_pos);
2068 len = next_pos - cur_pos;
2069
2070 if (f2fs_sb_has_blkzoned(sbi) ||
2071 (force && len < cpc->trim_minlen))
2072 goto skip;
2073
2074 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2075 len);
2076 total_len += len;
2077 } else {
2078 next_pos = find_next_bit_le(entry->discard_map,
2079 sbi->blocks_per_seg, cur_pos);
2080 }
2081skip:
2082 cur_pos = next_pos;
2083 is_valid = !is_valid;
2084
2085 if (cur_pos < sbi->blocks_per_seg)
2086 goto find_next;
2087
2088 release_discard_addr(entry);
2089 dcc->nr_discards -= total_len;
2090 }
2091
2092 wake_up_discard_thread(sbi, false);
2093}
2094
2095static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2096{
2097 dev_t dev = sbi->sb->s_bdev->bd_dev;
2098 struct discard_cmd_control *dcc;
2099 int err = 0, i;
2100
2101 if (SM_I(sbi)->dcc_info) {
2102 dcc = SM_I(sbi)->dcc_info;
2103 goto init_thread;
2104 }
2105
2106 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2107 if (!dcc)
2108 return -ENOMEM;
2109
2110 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2111 INIT_LIST_HEAD(&dcc->entry_list);
2112 for (i = 0; i < MAX_PLIST_NUM; i++)
2113 INIT_LIST_HEAD(&dcc->pend_list[i]);
2114 INIT_LIST_HEAD(&dcc->wait_list);
2115 INIT_LIST_HEAD(&dcc->fstrim_list);
2116 mutex_init(&dcc->cmd_lock);
2117 atomic_set(&dcc->issued_discard, 0);
2118 atomic_set(&dcc->queued_discard, 0);
2119 atomic_set(&dcc->discard_cmd_cnt, 0);
2120 dcc->nr_discards = 0;
2121 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2122 dcc->undiscard_blks = 0;
2123 dcc->next_pos = 0;
2124 dcc->root = RB_ROOT_CACHED;
2125 dcc->rbtree_check = false;
2126
2127 init_waitqueue_head(&dcc->discard_wait_queue);
2128 SM_I(sbi)->dcc_info = dcc;
2129init_thread:
2130 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2131 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2132 if (IS_ERR(dcc->f2fs_issue_discard)) {
2133 err = PTR_ERR(dcc->f2fs_issue_discard);
2134 kfree(dcc);
2135 SM_I(sbi)->dcc_info = NULL;
2136 return err;
2137 }
2138
2139 return err;
2140}
2141
2142static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2143{
2144 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2145
2146 if (!dcc)
2147 return;
2148
2149 f2fs_stop_discard_thread(sbi);
2150
2151 /*
2152 * Recovery can cache discard commands, so in error path of
2153 * fill_super(), it needs to give a chance to handle them.
2154 */
2155 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2156 f2fs_issue_discard_timeout(sbi);
2157
2158 kfree(dcc);
2159 SM_I(sbi)->dcc_info = NULL;
2160}
2161
2162static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2163{
2164 struct sit_info *sit_i = SIT_I(sbi);
2165
2166 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2167 sit_i->dirty_sentries++;
2168 return false;
2169 }
2170
2171 return true;
2172}
2173
2174static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2175 unsigned int segno, int modified)
2176{
2177 struct seg_entry *se = get_seg_entry(sbi, segno);
2178
2179 se->type = type;
2180 if (modified)
2181 __mark_sit_entry_dirty(sbi, segno);
2182}
2183
2184static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2185 block_t blkaddr)
2186{
2187 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2188
2189 if (segno == NULL_SEGNO)
2190 return 0;
2191 return get_seg_entry(sbi, segno)->mtime;
2192}
2193
2194static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2195 unsigned long long old_mtime)
2196{
2197 struct seg_entry *se;
2198 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2199 unsigned long long ctime = get_mtime(sbi, false);
2200 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2201
2202 if (segno == NULL_SEGNO)
2203 return;
2204
2205 se = get_seg_entry(sbi, segno);
2206
2207 if (!se->mtime)
2208 se->mtime = mtime;
2209 else
2210 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2211 se->valid_blocks + 1);
2212
2213 if (ctime > SIT_I(sbi)->max_mtime)
2214 SIT_I(sbi)->max_mtime = ctime;
2215}
2216
2217static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2218{
2219 struct seg_entry *se;
2220 unsigned int segno, offset;
2221 long int new_vblocks;
2222 bool exist;
2223#ifdef CONFIG_F2FS_CHECK_FS
2224 bool mir_exist;
2225#endif
2226
2227 segno = GET_SEGNO(sbi, blkaddr);
2228
2229 se = get_seg_entry(sbi, segno);
2230 new_vblocks = se->valid_blocks + del;
2231 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2232
2233 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2234 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2235
2236 se->valid_blocks = new_vblocks;
2237
2238 /* Update valid block bitmap */
2239 if (del > 0) {
2240 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2241#ifdef CONFIG_F2FS_CHECK_FS
2242 mir_exist = f2fs_test_and_set_bit(offset,
2243 se->cur_valid_map_mir);
2244 if (unlikely(exist != mir_exist)) {
2245 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2246 blkaddr, exist);
2247 f2fs_bug_on(sbi, 1);
2248 }
2249#endif
2250 if (unlikely(exist)) {
2251 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2252 blkaddr);
2253 f2fs_bug_on(sbi, 1);
2254 se->valid_blocks--;
2255 del = 0;
2256 }
2257
2258 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2259 sbi->discard_blks--;
2260
2261 /*
2262 * SSR should never reuse block which is checkpointed
2263 * or newly invalidated.
2264 */
2265 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2266 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2267 se->ckpt_valid_blocks++;
2268 }
2269 } else {
2270 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2271#ifdef CONFIG_F2FS_CHECK_FS
2272 mir_exist = f2fs_test_and_clear_bit(offset,
2273 se->cur_valid_map_mir);
2274 if (unlikely(exist != mir_exist)) {
2275 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2276 blkaddr, exist);
2277 f2fs_bug_on(sbi, 1);
2278 }
2279#endif
2280 if (unlikely(!exist)) {
2281 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2282 blkaddr);
2283 f2fs_bug_on(sbi, 1);
2284 se->valid_blocks++;
2285 del = 0;
2286 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2287 /*
2288 * If checkpoints are off, we must not reuse data that
2289 * was used in the previous checkpoint. If it was used
2290 * before, we must track that to know how much space we
2291 * really have.
2292 */
2293 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2294 spin_lock(&sbi->stat_lock);
2295 sbi->unusable_block_count++;
2296 spin_unlock(&sbi->stat_lock);
2297 }
2298 }
2299
2300 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2301 sbi->discard_blks++;
2302 }
2303 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2304 se->ckpt_valid_blocks += del;
2305
2306 __mark_sit_entry_dirty(sbi, segno);
2307
2308 /* update total number of valid blocks to be written in ckpt area */
2309 SIT_I(sbi)->written_valid_blocks += del;
2310
2311 if (__is_large_section(sbi))
2312 get_sec_entry(sbi, segno)->valid_blocks += del;
2313}
2314
2315void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2316{
2317 unsigned int segno = GET_SEGNO(sbi, addr);
2318 struct sit_info *sit_i = SIT_I(sbi);
2319
2320 f2fs_bug_on(sbi, addr == NULL_ADDR);
2321 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2322 return;
2323
2324 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2325 f2fs_invalidate_compress_page(sbi, addr);
2326
2327 /* add it into sit main buffer */
2328 down_write(&sit_i->sentry_lock);
2329
2330 update_segment_mtime(sbi, addr, 0);
2331 update_sit_entry(sbi, addr, -1);
2332
2333 /* add it into dirty seglist */
2334 locate_dirty_segment(sbi, segno);
2335
2336 up_write(&sit_i->sentry_lock);
2337}
2338
2339bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2340{
2341 struct sit_info *sit_i = SIT_I(sbi);
2342 unsigned int segno, offset;
2343 struct seg_entry *se;
2344 bool is_cp = false;
2345
2346 if (!__is_valid_data_blkaddr(blkaddr))
2347 return true;
2348
2349 down_read(&sit_i->sentry_lock);
2350
2351 segno = GET_SEGNO(sbi, blkaddr);
2352 se = get_seg_entry(sbi, segno);
2353 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2354
2355 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2356 is_cp = true;
2357
2358 up_read(&sit_i->sentry_lock);
2359
2360 return is_cp;
2361}
2362
2363/*
2364 * This function should be resided under the curseg_mutex lock
2365 */
2366static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2367 struct f2fs_summary *sum)
2368{
2369 struct curseg_info *curseg = CURSEG_I(sbi, type);
2370 void *addr = curseg->sum_blk;
2371
2372 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2373 memcpy(addr, sum, sizeof(struct f2fs_summary));
2374}
2375
2376/*
2377 * Calculate the number of current summary pages for writing
2378 */
2379int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2380{
2381 int valid_sum_count = 0;
2382 int i, sum_in_page;
2383
2384 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2385 if (sbi->ckpt->alloc_type[i] == SSR)
2386 valid_sum_count += sbi->blocks_per_seg;
2387 else {
2388 if (for_ra)
2389 valid_sum_count += le16_to_cpu(
2390 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2391 else
2392 valid_sum_count += curseg_blkoff(sbi, i);
2393 }
2394 }
2395
2396 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2397 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2398 if (valid_sum_count <= sum_in_page)
2399 return 1;
2400 else if ((valid_sum_count - sum_in_page) <=
2401 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2402 return 2;
2403 return 3;
2404}
2405
2406/*
2407 * Caller should put this summary page
2408 */
2409struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2410{
2411 if (unlikely(f2fs_cp_error(sbi)))
2412 return ERR_PTR(-EIO);
2413 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2414}
2415
2416void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2417 void *src, block_t blk_addr)
2418{
2419 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2420
2421 memcpy(page_address(page), src, PAGE_SIZE);
2422 set_page_dirty(page);
2423 f2fs_put_page(page, 1);
2424}
2425
2426static void write_sum_page(struct f2fs_sb_info *sbi,
2427 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2428{
2429 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2430}
2431
2432static void write_current_sum_page(struct f2fs_sb_info *sbi,
2433 int type, block_t blk_addr)
2434{
2435 struct curseg_info *curseg = CURSEG_I(sbi, type);
2436 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2437 struct f2fs_summary_block *src = curseg->sum_blk;
2438 struct f2fs_summary_block *dst;
2439
2440 dst = (struct f2fs_summary_block *)page_address(page);
2441 memset(dst, 0, PAGE_SIZE);
2442
2443 mutex_lock(&curseg->curseg_mutex);
2444
2445 down_read(&curseg->journal_rwsem);
2446 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2447 up_read(&curseg->journal_rwsem);
2448
2449 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2450 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2451
2452 mutex_unlock(&curseg->curseg_mutex);
2453
2454 set_page_dirty(page);
2455 f2fs_put_page(page, 1);
2456}
2457
2458static int is_next_segment_free(struct f2fs_sb_info *sbi,
2459 struct curseg_info *curseg, int type)
2460{
2461 unsigned int segno = curseg->segno + 1;
2462 struct free_segmap_info *free_i = FREE_I(sbi);
2463
2464 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2465 return !test_bit(segno, free_i->free_segmap);
2466 return 0;
2467}
2468
2469/*
2470 * Find a new segment from the free segments bitmap to right order
2471 * This function should be returned with success, otherwise BUG
2472 */
2473static void get_new_segment(struct f2fs_sb_info *sbi,
2474 unsigned int *newseg, bool new_sec, int dir)
2475{
2476 struct free_segmap_info *free_i = FREE_I(sbi);
2477 unsigned int segno, secno, zoneno;
2478 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2479 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2480 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2481 unsigned int left_start = hint;
2482 bool init = true;
2483 int go_left = 0;
2484 int i;
2485
2486 spin_lock(&free_i->segmap_lock);
2487
2488 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2489 segno = find_next_zero_bit(free_i->free_segmap,
2490 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2491 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2492 goto got_it;
2493 }
2494find_other_zone:
2495 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2496 if (secno >= MAIN_SECS(sbi)) {
2497 if (dir == ALLOC_RIGHT) {
2498 secno = find_next_zero_bit(free_i->free_secmap,
2499 MAIN_SECS(sbi), 0);
2500 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2501 } else {
2502 go_left = 1;
2503 left_start = hint - 1;
2504 }
2505 }
2506 if (go_left == 0)
2507 goto skip_left;
2508
2509 while (test_bit(left_start, free_i->free_secmap)) {
2510 if (left_start > 0) {
2511 left_start--;
2512 continue;
2513 }
2514 left_start = find_next_zero_bit(free_i->free_secmap,
2515 MAIN_SECS(sbi), 0);
2516 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2517 break;
2518 }
2519 secno = left_start;
2520skip_left:
2521 segno = GET_SEG_FROM_SEC(sbi, secno);
2522 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2523
2524 /* give up on finding another zone */
2525 if (!init)
2526 goto got_it;
2527 if (sbi->secs_per_zone == 1)
2528 goto got_it;
2529 if (zoneno == old_zoneno)
2530 goto got_it;
2531 if (dir == ALLOC_LEFT) {
2532 if (!go_left && zoneno + 1 >= total_zones)
2533 goto got_it;
2534 if (go_left && zoneno == 0)
2535 goto got_it;
2536 }
2537 for (i = 0; i < NR_CURSEG_TYPE; i++)
2538 if (CURSEG_I(sbi, i)->zone == zoneno)
2539 break;
2540
2541 if (i < NR_CURSEG_TYPE) {
2542 /* zone is in user, try another */
2543 if (go_left)
2544 hint = zoneno * sbi->secs_per_zone - 1;
2545 else if (zoneno + 1 >= total_zones)
2546 hint = 0;
2547 else
2548 hint = (zoneno + 1) * sbi->secs_per_zone;
2549 init = false;
2550 goto find_other_zone;
2551 }
2552got_it:
2553 /* set it as dirty segment in free segmap */
2554 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2555 __set_inuse(sbi, segno);
2556 *newseg = segno;
2557 spin_unlock(&free_i->segmap_lock);
2558}
2559
2560static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2561{
2562 struct curseg_info *curseg = CURSEG_I(sbi, type);
2563 struct summary_footer *sum_footer;
2564 unsigned short seg_type = curseg->seg_type;
2565
2566 curseg->inited = true;
2567 curseg->segno = curseg->next_segno;
2568 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2569 curseg->next_blkoff = 0;
2570 curseg->next_segno = NULL_SEGNO;
2571
2572 sum_footer = &(curseg->sum_blk->footer);
2573 memset(sum_footer, 0, sizeof(struct summary_footer));
2574
2575 sanity_check_seg_type(sbi, seg_type);
2576
2577 if (IS_DATASEG(seg_type))
2578 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2579 if (IS_NODESEG(seg_type))
2580 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2581 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2582}
2583
2584static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2585{
2586 struct curseg_info *curseg = CURSEG_I(sbi, type);
2587 unsigned short seg_type = curseg->seg_type;
2588
2589 sanity_check_seg_type(sbi, seg_type);
2590
2591 /* if segs_per_sec is large than 1, we need to keep original policy. */
2592 if (__is_large_section(sbi))
2593 return curseg->segno;
2594
2595 /* inmem log may not locate on any segment after mount */
2596 if (!curseg->inited)
2597 return 0;
2598
2599 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2600 return 0;
2601
2602 if (test_opt(sbi, NOHEAP) &&
2603 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2604 return 0;
2605
2606 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2607 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2608
2609 /* find segments from 0 to reuse freed segments */
2610 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2611 return 0;
2612
2613 return curseg->segno;
2614}
2615
2616/*
2617 * Allocate a current working segment.
2618 * This function always allocates a free segment in LFS manner.
2619 */
2620static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2621{
2622 struct curseg_info *curseg = CURSEG_I(sbi, type);
2623 unsigned short seg_type = curseg->seg_type;
2624 unsigned int segno = curseg->segno;
2625 int dir = ALLOC_LEFT;
2626
2627 if (curseg->inited)
2628 write_sum_page(sbi, curseg->sum_blk,
2629 GET_SUM_BLOCK(sbi, segno));
2630 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2631 dir = ALLOC_RIGHT;
2632
2633 if (test_opt(sbi, NOHEAP))
2634 dir = ALLOC_RIGHT;
2635
2636 segno = __get_next_segno(sbi, type);
2637 get_new_segment(sbi, &segno, new_sec, dir);
2638 curseg->next_segno = segno;
2639 reset_curseg(sbi, type, 1);
2640 curseg->alloc_type = LFS;
2641}
2642
2643static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2644 int segno, block_t start)
2645{
2646 struct seg_entry *se = get_seg_entry(sbi, segno);
2647 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2648 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2649 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2650 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2651 int i;
2652
2653 for (i = 0; i < entries; i++)
2654 target_map[i] = ckpt_map[i] | cur_map[i];
2655
2656 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2657}
2658
2659/*
2660 * If a segment is written by LFS manner, next block offset is just obtained
2661 * by increasing the current block offset. However, if a segment is written by
2662 * SSR manner, next block offset obtained by calling __next_free_blkoff
2663 */
2664static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2665 struct curseg_info *seg)
2666{
2667 if (seg->alloc_type == SSR)
2668 seg->next_blkoff =
2669 __next_free_blkoff(sbi, seg->segno,
2670 seg->next_blkoff + 1);
2671 else
2672 seg->next_blkoff++;
2673}
2674
2675bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2676{
2677 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2678}
2679
2680/*
2681 * This function always allocates a used segment(from dirty seglist) by SSR
2682 * manner, so it should recover the existing segment information of valid blocks
2683 */
2684static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2685{
2686 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2687 struct curseg_info *curseg = CURSEG_I(sbi, type);
2688 unsigned int new_segno = curseg->next_segno;
2689 struct f2fs_summary_block *sum_node;
2690 struct page *sum_page;
2691
2692 if (flush)
2693 write_sum_page(sbi, curseg->sum_blk,
2694 GET_SUM_BLOCK(sbi, curseg->segno));
2695
2696 __set_test_and_inuse(sbi, new_segno);
2697
2698 mutex_lock(&dirty_i->seglist_lock);
2699 __remove_dirty_segment(sbi, new_segno, PRE);
2700 __remove_dirty_segment(sbi, new_segno, DIRTY);
2701 mutex_unlock(&dirty_i->seglist_lock);
2702
2703 reset_curseg(sbi, type, 1);
2704 curseg->alloc_type = SSR;
2705 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2706
2707 sum_page = f2fs_get_sum_page(sbi, new_segno);
2708 if (IS_ERR(sum_page)) {
2709 /* GC won't be able to use stale summary pages by cp_error */
2710 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2711 return;
2712 }
2713 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2714 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2715 f2fs_put_page(sum_page, 1);
2716}
2717
2718static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2719 int alloc_mode, unsigned long long age);
2720
2721static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2722 int target_type, int alloc_mode,
2723 unsigned long long age)
2724{
2725 struct curseg_info *curseg = CURSEG_I(sbi, type);
2726
2727 curseg->seg_type = target_type;
2728
2729 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2730 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2731
2732 curseg->seg_type = se->type;
2733 change_curseg(sbi, type, true);
2734 } else {
2735 /* allocate cold segment by default */
2736 curseg->seg_type = CURSEG_COLD_DATA;
2737 new_curseg(sbi, type, true);
2738 }
2739 stat_inc_seg_type(sbi, curseg);
2740}
2741
2742static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2743{
2744 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2745
2746 if (!sbi->am.atgc_enabled)
2747 return;
2748
2749 down_read(&SM_I(sbi)->curseg_lock);
2750
2751 mutex_lock(&curseg->curseg_mutex);
2752 down_write(&SIT_I(sbi)->sentry_lock);
2753
2754 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2755
2756 up_write(&SIT_I(sbi)->sentry_lock);
2757 mutex_unlock(&curseg->curseg_mutex);
2758
2759 up_read(&SM_I(sbi)->curseg_lock);
2760
2761}
2762void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2763{
2764 __f2fs_init_atgc_curseg(sbi);
2765}
2766
2767static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2768{
2769 struct curseg_info *curseg = CURSEG_I(sbi, type);
2770
2771 mutex_lock(&curseg->curseg_mutex);
2772 if (!curseg->inited)
2773 goto out;
2774
2775 if (get_valid_blocks(sbi, curseg->segno, false)) {
2776 write_sum_page(sbi, curseg->sum_blk,
2777 GET_SUM_BLOCK(sbi, curseg->segno));
2778 } else {
2779 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2780 __set_test_and_free(sbi, curseg->segno, true);
2781 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2782 }
2783out:
2784 mutex_unlock(&curseg->curseg_mutex);
2785}
2786
2787void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2788{
2789 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2790
2791 if (sbi->am.atgc_enabled)
2792 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2793}
2794
2795static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2796{
2797 struct curseg_info *curseg = CURSEG_I(sbi, type);
2798
2799 mutex_lock(&curseg->curseg_mutex);
2800 if (!curseg->inited)
2801 goto out;
2802 if (get_valid_blocks(sbi, curseg->segno, false))
2803 goto out;
2804
2805 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2806 __set_test_and_inuse(sbi, curseg->segno);
2807 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2808out:
2809 mutex_unlock(&curseg->curseg_mutex);
2810}
2811
2812void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2813{
2814 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2815
2816 if (sbi->am.atgc_enabled)
2817 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2818}
2819
2820static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2821 int alloc_mode, unsigned long long age)
2822{
2823 struct curseg_info *curseg = CURSEG_I(sbi, type);
2824 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2825 unsigned segno = NULL_SEGNO;
2826 unsigned short seg_type = curseg->seg_type;
2827 int i, cnt;
2828 bool reversed = false;
2829
2830 sanity_check_seg_type(sbi, seg_type);
2831
2832 /* f2fs_need_SSR() already forces to do this */
2833 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2834 curseg->next_segno = segno;
2835 return 1;
2836 }
2837
2838 /* For node segments, let's do SSR more intensively */
2839 if (IS_NODESEG(seg_type)) {
2840 if (seg_type >= CURSEG_WARM_NODE) {
2841 reversed = true;
2842 i = CURSEG_COLD_NODE;
2843 } else {
2844 i = CURSEG_HOT_NODE;
2845 }
2846 cnt = NR_CURSEG_NODE_TYPE;
2847 } else {
2848 if (seg_type >= CURSEG_WARM_DATA) {
2849 reversed = true;
2850 i = CURSEG_COLD_DATA;
2851 } else {
2852 i = CURSEG_HOT_DATA;
2853 }
2854 cnt = NR_CURSEG_DATA_TYPE;
2855 }
2856
2857 for (; cnt-- > 0; reversed ? i-- : i++) {
2858 if (i == seg_type)
2859 continue;
2860 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2861 curseg->next_segno = segno;
2862 return 1;
2863 }
2864 }
2865
2866 /* find valid_blocks=0 in dirty list */
2867 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2868 segno = get_free_segment(sbi);
2869 if (segno != NULL_SEGNO) {
2870 curseg->next_segno = segno;
2871 return 1;
2872 }
2873 }
2874 return 0;
2875}
2876
2877/*
2878 * flush out current segment and replace it with new segment
2879 * This function should be returned with success, otherwise BUG
2880 */
2881static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2882 int type, bool force)
2883{
2884 struct curseg_info *curseg = CURSEG_I(sbi, type);
2885
2886 if (force)
2887 new_curseg(sbi, type, true);
2888 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2889 curseg->seg_type == CURSEG_WARM_NODE)
2890 new_curseg(sbi, type, false);
2891 else if (curseg->alloc_type == LFS &&
2892 is_next_segment_free(sbi, curseg, type) &&
2893 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2894 new_curseg(sbi, type, false);
2895 else if (f2fs_need_SSR(sbi) &&
2896 get_ssr_segment(sbi, type, SSR, 0))
2897 change_curseg(sbi, type, true);
2898 else
2899 new_curseg(sbi, type, false);
2900
2901 stat_inc_seg_type(sbi, curseg);
2902}
2903
2904void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2905 unsigned int start, unsigned int end)
2906{
2907 struct curseg_info *curseg = CURSEG_I(sbi, type);
2908 unsigned int segno;
2909
2910 down_read(&SM_I(sbi)->curseg_lock);
2911 mutex_lock(&curseg->curseg_mutex);
2912 down_write(&SIT_I(sbi)->sentry_lock);
2913
2914 segno = CURSEG_I(sbi, type)->segno;
2915 if (segno < start || segno > end)
2916 goto unlock;
2917
2918 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2919 change_curseg(sbi, type, true);
2920 else
2921 new_curseg(sbi, type, true);
2922
2923 stat_inc_seg_type(sbi, curseg);
2924
2925 locate_dirty_segment(sbi, segno);
2926unlock:
2927 up_write(&SIT_I(sbi)->sentry_lock);
2928
2929 if (segno != curseg->segno)
2930 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2931 type, segno, curseg->segno);
2932
2933 mutex_unlock(&curseg->curseg_mutex);
2934 up_read(&SM_I(sbi)->curseg_lock);
2935}
2936
2937static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2938 bool new_sec, bool force)
2939{
2940 struct curseg_info *curseg = CURSEG_I(sbi, type);
2941 unsigned int old_segno;
2942
2943 if (!curseg->inited)
2944 goto alloc;
2945
2946 if (force || curseg->next_blkoff ||
2947 get_valid_blocks(sbi, curseg->segno, new_sec))
2948 goto alloc;
2949
2950 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2951 return;
2952alloc:
2953 old_segno = curseg->segno;
2954 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2955 locate_dirty_segment(sbi, old_segno);
2956}
2957
2958static void __allocate_new_section(struct f2fs_sb_info *sbi,
2959 int type, bool force)
2960{
2961 __allocate_new_segment(sbi, type, true, force);
2962}
2963
2964void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2965{
2966 down_read(&SM_I(sbi)->curseg_lock);
2967 down_write(&SIT_I(sbi)->sentry_lock);
2968 __allocate_new_section(sbi, type, force);
2969 up_write(&SIT_I(sbi)->sentry_lock);
2970 up_read(&SM_I(sbi)->curseg_lock);
2971}
2972
2973void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2974{
2975 int i;
2976
2977 down_read(&SM_I(sbi)->curseg_lock);
2978 down_write(&SIT_I(sbi)->sentry_lock);
2979 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2980 __allocate_new_segment(sbi, i, false, false);
2981 up_write(&SIT_I(sbi)->sentry_lock);
2982 up_read(&SM_I(sbi)->curseg_lock);
2983}
2984
2985static const struct segment_allocation default_salloc_ops = {
2986 .allocate_segment = allocate_segment_by_default,
2987};
2988
2989bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2990 struct cp_control *cpc)
2991{
2992 __u64 trim_start = cpc->trim_start;
2993 bool has_candidate = false;
2994
2995 down_write(&SIT_I(sbi)->sentry_lock);
2996 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2997 if (add_discard_addrs(sbi, cpc, true)) {
2998 has_candidate = true;
2999 break;
3000 }
3001 }
3002 up_write(&SIT_I(sbi)->sentry_lock);
3003
3004 cpc->trim_start = trim_start;
3005 return has_candidate;
3006}
3007
3008static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3009 struct discard_policy *dpolicy,
3010 unsigned int start, unsigned int end)
3011{
3012 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3013 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3014 struct rb_node **insert_p = NULL, *insert_parent = NULL;
3015 struct discard_cmd *dc;
3016 struct blk_plug plug;
3017 int issued;
3018 unsigned int trimmed = 0;
3019
3020next:
3021 issued = 0;
3022
3023 mutex_lock(&dcc->cmd_lock);
3024 if (unlikely(dcc->rbtree_check))
3025 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3026 &dcc->root, false));
3027
3028 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3029 NULL, start,
3030 (struct rb_entry **)&prev_dc,
3031 (struct rb_entry **)&next_dc,
3032 &insert_p, &insert_parent, true, NULL);
3033 if (!dc)
3034 dc = next_dc;
3035
3036 blk_start_plug(&plug);
3037
3038 while (dc && dc->lstart <= end) {
3039 struct rb_node *node;
3040 int err = 0;
3041
3042 if (dc->len < dpolicy->granularity)
3043 goto skip;
3044
3045 if (dc->state != D_PREP) {
3046 list_move_tail(&dc->list, &dcc->fstrim_list);
3047 goto skip;
3048 }
3049
3050 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3051
3052 if (issued >= dpolicy->max_requests) {
3053 start = dc->lstart + dc->len;
3054
3055 if (err)
3056 __remove_discard_cmd(sbi, dc);
3057
3058 blk_finish_plug(&plug);
3059 mutex_unlock(&dcc->cmd_lock);
3060 trimmed += __wait_all_discard_cmd(sbi, NULL);
3061 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3062 goto next;
3063 }
3064skip:
3065 node = rb_next(&dc->rb_node);
3066 if (err)
3067 __remove_discard_cmd(sbi, dc);
3068 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3069
3070 if (fatal_signal_pending(current))
3071 break;
3072 }
3073
3074 blk_finish_plug(&plug);
3075 mutex_unlock(&dcc->cmd_lock);
3076
3077 return trimmed;
3078}
3079
3080int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3081{
3082 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3083 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3084 unsigned int start_segno, end_segno;
3085 block_t start_block, end_block;
3086 struct cp_control cpc;
3087 struct discard_policy dpolicy;
3088 unsigned long long trimmed = 0;
3089 int err = 0;
3090 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3091
3092 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3093 return -EINVAL;
3094
3095 if (end < MAIN_BLKADDR(sbi))
3096 goto out;
3097
3098 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3099 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3100 return -EFSCORRUPTED;
3101 }
3102
3103 /* start/end segment number in main_area */
3104 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3105 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3106 GET_SEGNO(sbi, end);
3107 if (need_align) {
3108 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3109 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3110 }
3111
3112 cpc.reason = CP_DISCARD;
3113 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3114 cpc.trim_start = start_segno;
3115 cpc.trim_end = end_segno;
3116
3117 if (sbi->discard_blks == 0)
3118 goto out;
3119
3120 down_write(&sbi->gc_lock);
3121 err = f2fs_write_checkpoint(sbi, &cpc);
3122 up_write(&sbi->gc_lock);
3123 if (err)
3124 goto out;
3125
3126 /*
3127 * We filed discard candidates, but actually we don't need to wait for
3128 * all of them, since they'll be issued in idle time along with runtime
3129 * discard option. User configuration looks like using runtime discard
3130 * or periodic fstrim instead of it.
3131 */
3132 if (f2fs_realtime_discard_enable(sbi))
3133 goto out;
3134
3135 start_block = START_BLOCK(sbi, start_segno);
3136 end_block = START_BLOCK(sbi, end_segno + 1);
3137
3138 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3139 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3140 start_block, end_block);
3141
3142 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3143 start_block, end_block);
3144out:
3145 if (!err)
3146 range->len = F2FS_BLK_TO_BYTES(trimmed);
3147 return err;
3148}
3149
3150static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3151 struct curseg_info *curseg)
3152{
3153 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3154 curseg->segno);
3155}
3156
3157int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3158{
3159 switch (hint) {
3160 case WRITE_LIFE_SHORT:
3161 return CURSEG_HOT_DATA;
3162 case WRITE_LIFE_EXTREME:
3163 return CURSEG_COLD_DATA;
3164 default:
3165 return CURSEG_WARM_DATA;
3166 }
3167}
3168
3169/* This returns write hints for each segment type. This hints will be
3170 * passed down to block layer. There are mapping tables which depend on
3171 * the mount option 'whint_mode'.
3172 *
3173 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3174 *
3175 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3176 *
3177 * User F2FS Block
3178 * ---- ---- -----
3179 * META WRITE_LIFE_NOT_SET
3180 * HOT_NODE "
3181 * WARM_NODE "
3182 * COLD_NODE "
3183 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3184 * extension list " "
3185 *
3186 * -- buffered io
3187 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3188 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3189 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3190 * WRITE_LIFE_NONE " "
3191 * WRITE_LIFE_MEDIUM " "
3192 * WRITE_LIFE_LONG " "
3193 *
3194 * -- direct io
3195 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3196 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3197 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3198 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3199 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3200 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3201 *
3202 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3203 *
3204 * User F2FS Block
3205 * ---- ---- -----
3206 * META WRITE_LIFE_MEDIUM;
3207 * HOT_NODE WRITE_LIFE_NOT_SET
3208 * WARM_NODE "
3209 * COLD_NODE WRITE_LIFE_NONE
3210 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3211 * extension list " "
3212 *
3213 * -- buffered io
3214 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3215 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3216 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
3217 * WRITE_LIFE_NONE " "
3218 * WRITE_LIFE_MEDIUM " "
3219 * WRITE_LIFE_LONG " "
3220 *
3221 * -- direct io
3222 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3223 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3224 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3225 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3226 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3227 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3228 */
3229
3230enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3231 enum page_type type, enum temp_type temp)
3232{
3233 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3234 if (type == DATA) {
3235 if (temp == WARM)
3236 return WRITE_LIFE_NOT_SET;
3237 else if (temp == HOT)
3238 return WRITE_LIFE_SHORT;
3239 else if (temp == COLD)
3240 return WRITE_LIFE_EXTREME;
3241 } else {
3242 return WRITE_LIFE_NOT_SET;
3243 }
3244 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3245 if (type == DATA) {
3246 if (temp == WARM)
3247 return WRITE_LIFE_LONG;
3248 else if (temp == HOT)
3249 return WRITE_LIFE_SHORT;
3250 else if (temp == COLD)
3251 return WRITE_LIFE_EXTREME;
3252 } else if (type == NODE) {
3253 if (temp == WARM || temp == HOT)
3254 return WRITE_LIFE_NOT_SET;
3255 else if (temp == COLD)
3256 return WRITE_LIFE_NONE;
3257 } else if (type == META) {
3258 return WRITE_LIFE_MEDIUM;
3259 }
3260 }
3261 return WRITE_LIFE_NOT_SET;
3262}
3263
3264static int __get_segment_type_2(struct f2fs_io_info *fio)
3265{
3266 if (fio->type == DATA)
3267 return CURSEG_HOT_DATA;
3268 else
3269 return CURSEG_HOT_NODE;
3270}
3271
3272static int __get_segment_type_4(struct f2fs_io_info *fio)
3273{
3274 if (fio->type == DATA) {
3275 struct inode *inode = fio->page->mapping->host;
3276
3277 if (S_ISDIR(inode->i_mode))
3278 return CURSEG_HOT_DATA;
3279 else
3280 return CURSEG_COLD_DATA;
3281 } else {
3282 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3283 return CURSEG_WARM_NODE;
3284 else
3285 return CURSEG_COLD_NODE;
3286 }
3287}
3288
3289static int __get_segment_type_6(struct f2fs_io_info *fio)
3290{
3291 if (fio->type == DATA) {
3292 struct inode *inode = fio->page->mapping->host;
3293
3294 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3295 return CURSEG_COLD_DATA_PINNED;
3296
3297 if (page_private_gcing(fio->page)) {
3298 if (fio->sbi->am.atgc_enabled &&
3299 (fio->io_type == FS_DATA_IO) &&
3300 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3301 return CURSEG_ALL_DATA_ATGC;
3302 else
3303 return CURSEG_COLD_DATA;
3304 }
3305 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3306 return CURSEG_COLD_DATA;
3307 if (file_is_hot(inode) ||
3308 is_inode_flag_set(inode, FI_HOT_DATA) ||
3309 f2fs_is_atomic_file(inode) ||
3310 f2fs_is_volatile_file(inode))
3311 return CURSEG_HOT_DATA;
3312 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3313 } else {
3314 if (IS_DNODE(fio->page))
3315 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3316 CURSEG_HOT_NODE;
3317 return CURSEG_COLD_NODE;
3318 }
3319}
3320
3321static int __get_segment_type(struct f2fs_io_info *fio)
3322{
3323 int type = 0;
3324
3325 switch (F2FS_OPTION(fio->sbi).active_logs) {
3326 case 2:
3327 type = __get_segment_type_2(fio);
3328 break;
3329 case 4:
3330 type = __get_segment_type_4(fio);
3331 break;
3332 case 6:
3333 type = __get_segment_type_6(fio);
3334 break;
3335 default:
3336 f2fs_bug_on(fio->sbi, true);
3337 }
3338
3339 if (IS_HOT(type))
3340 fio->temp = HOT;
3341 else if (IS_WARM(type))
3342 fio->temp = WARM;
3343 else
3344 fio->temp = COLD;
3345 return type;
3346}
3347
3348void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3349 block_t old_blkaddr, block_t *new_blkaddr,
3350 struct f2fs_summary *sum, int type,
3351 struct f2fs_io_info *fio)
3352{
3353 struct sit_info *sit_i = SIT_I(sbi);
3354 struct curseg_info *curseg = CURSEG_I(sbi, type);
3355 unsigned long long old_mtime;
3356 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3357 struct seg_entry *se = NULL;
3358
3359 down_read(&SM_I(sbi)->curseg_lock);
3360
3361 mutex_lock(&curseg->curseg_mutex);
3362 down_write(&sit_i->sentry_lock);
3363
3364 if (from_gc) {
3365 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3366 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3367 sanity_check_seg_type(sbi, se->type);
3368 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3369 }
3370 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3371
3372 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3373
3374 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3375
3376 /*
3377 * __add_sum_entry should be resided under the curseg_mutex
3378 * because, this function updates a summary entry in the
3379 * current summary block.
3380 */
3381 __add_sum_entry(sbi, type, sum);
3382
3383 __refresh_next_blkoff(sbi, curseg);
3384
3385 stat_inc_block_count(sbi, curseg);
3386
3387 if (from_gc) {
3388 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3389 } else {
3390 update_segment_mtime(sbi, old_blkaddr, 0);
3391 old_mtime = 0;
3392 }
3393 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3394
3395 /*
3396 * SIT information should be updated before segment allocation,
3397 * since SSR needs latest valid block information.
3398 */
3399 update_sit_entry(sbi, *new_blkaddr, 1);
3400 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3401 update_sit_entry(sbi, old_blkaddr, -1);
3402
3403 if (!__has_curseg_space(sbi, curseg)) {
3404 if (from_gc)
3405 get_atssr_segment(sbi, type, se->type,
3406 AT_SSR, se->mtime);
3407 else
3408 sit_i->s_ops->allocate_segment(sbi, type, false);
3409 }
3410 /*
3411 * segment dirty status should be updated after segment allocation,
3412 * so we just need to update status only one time after previous
3413 * segment being closed.
3414 */
3415 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3416 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3417
3418 up_write(&sit_i->sentry_lock);
3419
3420 if (page && IS_NODESEG(type)) {
3421 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3422
3423 f2fs_inode_chksum_set(sbi, page);
3424 }
3425
3426 if (fio) {
3427 struct f2fs_bio_info *io;
3428
3429 if (F2FS_IO_ALIGNED(sbi))
3430 fio->retry = false;
3431
3432 INIT_LIST_HEAD(&fio->list);
3433 fio->in_list = true;
3434 io = sbi->write_io[fio->type] + fio->temp;
3435 spin_lock(&io->io_lock);
3436 list_add_tail(&fio->list, &io->io_list);
3437 spin_unlock(&io->io_lock);
3438 }
3439
3440 mutex_unlock(&curseg->curseg_mutex);
3441
3442 up_read(&SM_I(sbi)->curseg_lock);
3443}
3444
3445static void update_device_state(struct f2fs_io_info *fio)
3446{
3447 struct f2fs_sb_info *sbi = fio->sbi;
3448 unsigned int devidx;
3449
3450 if (!f2fs_is_multi_device(sbi))
3451 return;
3452
3453 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3454
3455 /* update device state for fsync */
3456 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3457
3458 /* update device state for checkpoint */
3459 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3460 spin_lock(&sbi->dev_lock);
3461 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3462 spin_unlock(&sbi->dev_lock);
3463 }
3464}
3465
3466static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3467{
3468 int type = __get_segment_type(fio);
3469 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3470
3471 if (keep_order)
3472 down_read(&fio->sbi->io_order_lock);
3473reallocate:
3474 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3475 &fio->new_blkaddr, sum, type, fio);
3476 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3477 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3478 fio->old_blkaddr, fio->old_blkaddr);
3479 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3480 }
3481
3482 /* writeout dirty page into bdev */
3483 f2fs_submit_page_write(fio);
3484 if (fio->retry) {
3485 fio->old_blkaddr = fio->new_blkaddr;
3486 goto reallocate;
3487 }
3488
3489 update_device_state(fio);
3490
3491 if (keep_order)
3492 up_read(&fio->sbi->io_order_lock);
3493}
3494
3495void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3496 enum iostat_type io_type)
3497{
3498 struct f2fs_io_info fio = {
3499 .sbi = sbi,
3500 .type = META,
3501 .temp = HOT,
3502 .op = REQ_OP_WRITE,
3503 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3504 .old_blkaddr = page->index,
3505 .new_blkaddr = page->index,
3506 .page = page,
3507 .encrypted_page = NULL,
3508 .in_list = false,
3509 };
3510
3511 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3512 fio.op_flags &= ~REQ_META;
3513
3514 set_page_writeback(page);
3515 ClearPageError(page);
3516 f2fs_submit_page_write(&fio);
3517
3518 stat_inc_meta_count(sbi, page->index);
3519 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3520}
3521
3522void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3523{
3524 struct f2fs_summary sum;
3525
3526 set_summary(&sum, nid, 0, 0);
3527 do_write_page(&sum, fio);
3528
3529 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3530}
3531
3532void f2fs_outplace_write_data(struct dnode_of_data *dn,
3533 struct f2fs_io_info *fio)
3534{
3535 struct f2fs_sb_info *sbi = fio->sbi;
3536 struct f2fs_summary sum;
3537
3538 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3539 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3540 do_write_page(&sum, fio);
3541 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3542
3543 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3544}
3545
3546int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3547{
3548 int err;
3549 struct f2fs_sb_info *sbi = fio->sbi;
3550 unsigned int segno;
3551
3552 fio->new_blkaddr = fio->old_blkaddr;
3553 /* i/o temperature is needed for passing down write hints */
3554 __get_segment_type(fio);
3555
3556 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3557
3558 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3559 set_sbi_flag(sbi, SBI_NEED_FSCK);
3560 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3561 __func__, segno);
3562 err = -EFSCORRUPTED;
3563 goto drop_bio;
3564 }
3565
3566 if (f2fs_cp_error(sbi)) {
3567 err = -EIO;
3568 goto drop_bio;
3569 }
3570
3571 stat_inc_inplace_blocks(fio->sbi);
3572
3573 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3574 err = f2fs_merge_page_bio(fio);
3575 else
3576 err = f2fs_submit_page_bio(fio);
3577 if (!err) {
3578 update_device_state(fio);
3579 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3580 }
3581
3582 return err;
3583drop_bio:
3584 if (fio->bio && *(fio->bio)) {
3585 struct bio *bio = *(fio->bio);
3586
3587 bio->bi_status = BLK_STS_IOERR;
3588 bio_endio(bio);
3589 *(fio->bio) = NULL;
3590 }
3591 return err;
3592}
3593
3594static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3595 unsigned int segno)
3596{
3597 int i;
3598
3599 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3600 if (CURSEG_I(sbi, i)->segno == segno)
3601 break;
3602 }
3603 return i;
3604}
3605
3606void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3607 block_t old_blkaddr, block_t new_blkaddr,
3608 bool recover_curseg, bool recover_newaddr,
3609 bool from_gc)
3610{
3611 struct sit_info *sit_i = SIT_I(sbi);
3612 struct curseg_info *curseg;
3613 unsigned int segno, old_cursegno;
3614 struct seg_entry *se;
3615 int type;
3616 unsigned short old_blkoff;
3617 unsigned char old_alloc_type;
3618
3619 segno = GET_SEGNO(sbi, new_blkaddr);
3620 se = get_seg_entry(sbi, segno);
3621 type = se->type;
3622
3623 down_write(&SM_I(sbi)->curseg_lock);
3624
3625 if (!recover_curseg) {
3626 /* for recovery flow */
3627 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3628 if (old_blkaddr == NULL_ADDR)
3629 type = CURSEG_COLD_DATA;
3630 else
3631 type = CURSEG_WARM_DATA;
3632 }
3633 } else {
3634 if (IS_CURSEG(sbi, segno)) {
3635 /* se->type is volatile as SSR allocation */
3636 type = __f2fs_get_curseg(sbi, segno);
3637 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3638 } else {
3639 type = CURSEG_WARM_DATA;
3640 }
3641 }
3642
3643 f2fs_bug_on(sbi, !IS_DATASEG(type));
3644 curseg = CURSEG_I(sbi, type);
3645
3646 mutex_lock(&curseg->curseg_mutex);
3647 down_write(&sit_i->sentry_lock);
3648
3649 old_cursegno = curseg->segno;
3650 old_blkoff = curseg->next_blkoff;
3651 old_alloc_type = curseg->alloc_type;
3652
3653 /* change the current segment */
3654 if (segno != curseg->segno) {
3655 curseg->next_segno = segno;
3656 change_curseg(sbi, type, true);
3657 }
3658
3659 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3660 __add_sum_entry(sbi, type, sum);
3661
3662 if (!recover_curseg || recover_newaddr) {
3663 if (!from_gc)
3664 update_segment_mtime(sbi, new_blkaddr, 0);
3665 update_sit_entry(sbi, new_blkaddr, 1);
3666 }
3667 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3668 invalidate_mapping_pages(META_MAPPING(sbi),
3669 old_blkaddr, old_blkaddr);
3670 f2fs_invalidate_compress_page(sbi, old_blkaddr);
3671 if (!from_gc)
3672 update_segment_mtime(sbi, old_blkaddr, 0);
3673 update_sit_entry(sbi, old_blkaddr, -1);
3674 }
3675
3676 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3677 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3678
3679 locate_dirty_segment(sbi, old_cursegno);
3680
3681 if (recover_curseg) {
3682 if (old_cursegno != curseg->segno) {
3683 curseg->next_segno = old_cursegno;
3684 change_curseg(sbi, type, true);
3685 }
3686 curseg->next_blkoff = old_blkoff;
3687 curseg->alloc_type = old_alloc_type;
3688 }
3689
3690 up_write(&sit_i->sentry_lock);
3691 mutex_unlock(&curseg->curseg_mutex);
3692 up_write(&SM_I(sbi)->curseg_lock);
3693}
3694
3695void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3696 block_t old_addr, block_t new_addr,
3697 unsigned char version, bool recover_curseg,
3698 bool recover_newaddr)
3699{
3700 struct f2fs_summary sum;
3701
3702 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3703
3704 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3705 recover_curseg, recover_newaddr, false);
3706
3707 f2fs_update_data_blkaddr(dn, new_addr);
3708}
3709
3710void f2fs_wait_on_page_writeback(struct page *page,
3711 enum page_type type, bool ordered, bool locked)
3712{
3713 if (PageWriteback(page)) {
3714 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3715
3716 /* submit cached LFS IO */
3717 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3718 /* sbumit cached IPU IO */
3719 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3720 if (ordered) {
3721 wait_on_page_writeback(page);
3722 f2fs_bug_on(sbi, locked && PageWriteback(page));
3723 } else {
3724 wait_for_stable_page(page);
3725 }
3726 }
3727}
3728
3729void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3730{
3731 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3732 struct page *cpage;
3733
3734 if (!f2fs_post_read_required(inode))
3735 return;
3736
3737 if (!__is_valid_data_blkaddr(blkaddr))
3738 return;
3739
3740 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3741 if (cpage) {
3742 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3743 f2fs_put_page(cpage, 1);
3744 }
3745}
3746
3747void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3748 block_t len)
3749{
3750 block_t i;
3751
3752 for (i = 0; i < len; i++)
3753 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3754}
3755
3756static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3757{
3758 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3759 struct curseg_info *seg_i;
3760 unsigned char *kaddr;
3761 struct page *page;
3762 block_t start;
3763 int i, j, offset;
3764
3765 start = start_sum_block(sbi);
3766
3767 page = f2fs_get_meta_page(sbi, start++);
3768 if (IS_ERR(page))
3769 return PTR_ERR(page);
3770 kaddr = (unsigned char *)page_address(page);
3771
3772 /* Step 1: restore nat cache */
3773 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3774 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3775
3776 /* Step 2: restore sit cache */
3777 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3778 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3779 offset = 2 * SUM_JOURNAL_SIZE;
3780
3781 /* Step 3: restore summary entries */
3782 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3783 unsigned short blk_off;
3784 unsigned int segno;
3785
3786 seg_i = CURSEG_I(sbi, i);
3787 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3788 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3789 seg_i->next_segno = segno;
3790 reset_curseg(sbi, i, 0);
3791 seg_i->alloc_type = ckpt->alloc_type[i];
3792 seg_i->next_blkoff = blk_off;
3793
3794 if (seg_i->alloc_type == SSR)
3795 blk_off = sbi->blocks_per_seg;
3796
3797 for (j = 0; j < blk_off; j++) {
3798 struct f2fs_summary *s;
3799
3800 s = (struct f2fs_summary *)(kaddr + offset);
3801 seg_i->sum_blk->entries[j] = *s;
3802 offset += SUMMARY_SIZE;
3803 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3804 SUM_FOOTER_SIZE)
3805 continue;
3806
3807 f2fs_put_page(page, 1);
3808 page = NULL;
3809
3810 page = f2fs_get_meta_page(sbi, start++);
3811 if (IS_ERR(page))
3812 return PTR_ERR(page);
3813 kaddr = (unsigned char *)page_address(page);
3814 offset = 0;
3815 }
3816 }
3817 f2fs_put_page(page, 1);
3818 return 0;
3819}
3820
3821static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3822{
3823 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3824 struct f2fs_summary_block *sum;
3825 struct curseg_info *curseg;
3826 struct page *new;
3827 unsigned short blk_off;
3828 unsigned int segno = 0;
3829 block_t blk_addr = 0;
3830 int err = 0;
3831
3832 /* get segment number and block addr */
3833 if (IS_DATASEG(type)) {
3834 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3835 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3836 CURSEG_HOT_DATA]);
3837 if (__exist_node_summaries(sbi))
3838 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3839 else
3840 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3841 } else {
3842 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3843 CURSEG_HOT_NODE]);
3844 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3845 CURSEG_HOT_NODE]);
3846 if (__exist_node_summaries(sbi))
3847 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3848 type - CURSEG_HOT_NODE);
3849 else
3850 blk_addr = GET_SUM_BLOCK(sbi, segno);
3851 }
3852
3853 new = f2fs_get_meta_page(sbi, blk_addr);
3854 if (IS_ERR(new))
3855 return PTR_ERR(new);
3856 sum = (struct f2fs_summary_block *)page_address(new);
3857
3858 if (IS_NODESEG(type)) {
3859 if (__exist_node_summaries(sbi)) {
3860 struct f2fs_summary *ns = &sum->entries[0];
3861 int i;
3862
3863 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3864 ns->version = 0;
3865 ns->ofs_in_node = 0;
3866 }
3867 } else {
3868 err = f2fs_restore_node_summary(sbi, segno, sum);
3869 if (err)
3870 goto out;
3871 }
3872 }
3873
3874 /* set uncompleted segment to curseg */
3875 curseg = CURSEG_I(sbi, type);
3876 mutex_lock(&curseg->curseg_mutex);
3877
3878 /* update journal info */
3879 down_write(&curseg->journal_rwsem);
3880 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3881 up_write(&curseg->journal_rwsem);
3882
3883 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3884 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3885 curseg->next_segno = segno;
3886 reset_curseg(sbi, type, 0);
3887 curseg->alloc_type = ckpt->alloc_type[type];
3888 curseg->next_blkoff = blk_off;
3889 mutex_unlock(&curseg->curseg_mutex);
3890out:
3891 f2fs_put_page(new, 1);
3892 return err;
3893}
3894
3895static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3896{
3897 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3898 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3899 int type = CURSEG_HOT_DATA;
3900 int err;
3901
3902 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3903 int npages = f2fs_npages_for_summary_flush(sbi, true);
3904
3905 if (npages >= 2)
3906 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3907 META_CP, true);
3908
3909 /* restore for compacted data summary */
3910 err = read_compacted_summaries(sbi);
3911 if (err)
3912 return err;
3913 type = CURSEG_HOT_NODE;
3914 }
3915
3916 if (__exist_node_summaries(sbi))
3917 f2fs_ra_meta_pages(sbi,
3918 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3919 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3920
3921 for (; type <= CURSEG_COLD_NODE; type++) {
3922 err = read_normal_summaries(sbi, type);
3923 if (err)
3924 return err;
3925 }
3926
3927 /* sanity check for summary blocks */
3928 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3929 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3930 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3931 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3932 return -EINVAL;
3933 }
3934
3935 return 0;
3936}
3937
3938static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3939{
3940 struct page *page;
3941 unsigned char *kaddr;
3942 struct f2fs_summary *summary;
3943 struct curseg_info *seg_i;
3944 int written_size = 0;
3945 int i, j;
3946
3947 page = f2fs_grab_meta_page(sbi, blkaddr++);
3948 kaddr = (unsigned char *)page_address(page);
3949 memset(kaddr, 0, PAGE_SIZE);
3950
3951 /* Step 1: write nat cache */
3952 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3953 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3954 written_size += SUM_JOURNAL_SIZE;
3955
3956 /* Step 2: write sit cache */
3957 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3958 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3959 written_size += SUM_JOURNAL_SIZE;
3960
3961 /* Step 3: write summary entries */
3962 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3963 unsigned short blkoff;
3964
3965 seg_i = CURSEG_I(sbi, i);
3966 if (sbi->ckpt->alloc_type[i] == SSR)
3967 blkoff = sbi->blocks_per_seg;
3968 else
3969 blkoff = curseg_blkoff(sbi, i);
3970
3971 for (j = 0; j < blkoff; j++) {
3972 if (!page) {
3973 page = f2fs_grab_meta_page(sbi, blkaddr++);
3974 kaddr = (unsigned char *)page_address(page);
3975 memset(kaddr, 0, PAGE_SIZE);
3976 written_size = 0;
3977 }
3978 summary = (struct f2fs_summary *)(kaddr + written_size);
3979 *summary = seg_i->sum_blk->entries[j];
3980 written_size += SUMMARY_SIZE;
3981
3982 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3983 SUM_FOOTER_SIZE)
3984 continue;
3985
3986 set_page_dirty(page);
3987 f2fs_put_page(page, 1);
3988 page = NULL;
3989 }
3990 }
3991 if (page) {
3992 set_page_dirty(page);
3993 f2fs_put_page(page, 1);
3994 }
3995}
3996
3997static void write_normal_summaries(struct f2fs_sb_info *sbi,
3998 block_t blkaddr, int type)
3999{
4000 int i, end;
4001
4002 if (IS_DATASEG(type))
4003 end = type + NR_CURSEG_DATA_TYPE;
4004 else
4005 end = type + NR_CURSEG_NODE_TYPE;
4006
4007 for (i = type; i < end; i++)
4008 write_current_sum_page(sbi, i, blkaddr + (i - type));
4009}
4010
4011void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4012{
4013 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4014 write_compacted_summaries(sbi, start_blk);
4015 else
4016 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4017}
4018
4019void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4020{
4021 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4022}
4023
4024int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4025 unsigned int val, int alloc)
4026{
4027 int i;
4028
4029 if (type == NAT_JOURNAL) {
4030 for (i = 0; i < nats_in_cursum(journal); i++) {
4031 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4032 return i;
4033 }
4034 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4035 return update_nats_in_cursum(journal, 1);
4036 } else if (type == SIT_JOURNAL) {
4037 for (i = 0; i < sits_in_cursum(journal); i++)
4038 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4039 return i;
4040 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4041 return update_sits_in_cursum(journal, 1);
4042 }
4043 return -1;
4044}
4045
4046static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4047 unsigned int segno)
4048{
4049 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4050}
4051
4052static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4053 unsigned int start)
4054{
4055 struct sit_info *sit_i = SIT_I(sbi);
4056 struct page *page;
4057 pgoff_t src_off, dst_off;
4058
4059 src_off = current_sit_addr(sbi, start);
4060 dst_off = next_sit_addr(sbi, src_off);
4061
4062 page = f2fs_grab_meta_page(sbi, dst_off);
4063 seg_info_to_sit_page(sbi, page, start);
4064
4065 set_page_dirty(page);
4066 set_to_next_sit(sit_i, start);
4067
4068 return page;
4069}
4070
4071static struct sit_entry_set *grab_sit_entry_set(void)
4072{
4073 struct sit_entry_set *ses =
4074 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
4075
4076 ses->entry_cnt = 0;
4077 INIT_LIST_HEAD(&ses->set_list);
4078 return ses;
4079}
4080
4081static void release_sit_entry_set(struct sit_entry_set *ses)
4082{
4083 list_del(&ses->set_list);
4084 kmem_cache_free(sit_entry_set_slab, ses);
4085}
4086
4087static void adjust_sit_entry_set(struct sit_entry_set *ses,
4088 struct list_head *head)
4089{
4090 struct sit_entry_set *next = ses;
4091
4092 if (list_is_last(&ses->set_list, head))
4093 return;
4094
4095 list_for_each_entry_continue(next, head, set_list)
4096 if (ses->entry_cnt <= next->entry_cnt)
4097 break;
4098
4099 list_move_tail(&ses->set_list, &next->set_list);
4100}
4101
4102static void add_sit_entry(unsigned int segno, struct list_head *head)
4103{
4104 struct sit_entry_set *ses;
4105 unsigned int start_segno = START_SEGNO(segno);
4106
4107 list_for_each_entry(ses, head, set_list) {
4108 if (ses->start_segno == start_segno) {
4109 ses->entry_cnt++;
4110 adjust_sit_entry_set(ses, head);
4111 return;
4112 }
4113 }
4114
4115 ses = grab_sit_entry_set();
4116
4117 ses->start_segno = start_segno;
4118 ses->entry_cnt++;
4119 list_add(&ses->set_list, head);
4120}
4121
4122static void add_sits_in_set(struct f2fs_sb_info *sbi)
4123{
4124 struct f2fs_sm_info *sm_info = SM_I(sbi);
4125 struct list_head *set_list = &sm_info->sit_entry_set;
4126 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4127 unsigned int segno;
4128
4129 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4130 add_sit_entry(segno, set_list);
4131}
4132
4133static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4134{
4135 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4136 struct f2fs_journal *journal = curseg->journal;
4137 int i;
4138
4139 down_write(&curseg->journal_rwsem);
4140 for (i = 0; i < sits_in_cursum(journal); i++) {
4141 unsigned int segno;
4142 bool dirtied;
4143
4144 segno = le32_to_cpu(segno_in_journal(journal, i));
4145 dirtied = __mark_sit_entry_dirty(sbi, segno);
4146
4147 if (!dirtied)
4148 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4149 }
4150 update_sits_in_cursum(journal, -i);
4151 up_write(&curseg->journal_rwsem);
4152}
4153
4154/*
4155 * CP calls this function, which flushes SIT entries including sit_journal,
4156 * and moves prefree segs to free segs.
4157 */
4158void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4159{
4160 struct sit_info *sit_i = SIT_I(sbi);
4161 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4162 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4163 struct f2fs_journal *journal = curseg->journal;
4164 struct sit_entry_set *ses, *tmp;
4165 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4166 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4167 struct seg_entry *se;
4168
4169 down_write(&sit_i->sentry_lock);
4170
4171 if (!sit_i->dirty_sentries)
4172 goto out;
4173
4174 /*
4175 * add and account sit entries of dirty bitmap in sit entry
4176 * set temporarily
4177 */
4178 add_sits_in_set(sbi);
4179
4180 /*
4181 * if there are no enough space in journal to store dirty sit
4182 * entries, remove all entries from journal and add and account
4183 * them in sit entry set.
4184 */
4185 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4186 !to_journal)
4187 remove_sits_in_journal(sbi);
4188
4189 /*
4190 * there are two steps to flush sit entries:
4191 * #1, flush sit entries to journal in current cold data summary block.
4192 * #2, flush sit entries to sit page.
4193 */
4194 list_for_each_entry_safe(ses, tmp, head, set_list) {
4195 struct page *page = NULL;
4196 struct f2fs_sit_block *raw_sit = NULL;
4197 unsigned int start_segno = ses->start_segno;
4198 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4199 (unsigned long)MAIN_SEGS(sbi));
4200 unsigned int segno = start_segno;
4201
4202 if (to_journal &&
4203 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4204 to_journal = false;
4205
4206 if (to_journal) {
4207 down_write(&curseg->journal_rwsem);
4208 } else {
4209 page = get_next_sit_page(sbi, start_segno);
4210 raw_sit = page_address(page);
4211 }
4212
4213 /* flush dirty sit entries in region of current sit set */
4214 for_each_set_bit_from(segno, bitmap, end) {
4215 int offset, sit_offset;
4216
4217 se = get_seg_entry(sbi, segno);
4218#ifdef CONFIG_F2FS_CHECK_FS
4219 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4220 SIT_VBLOCK_MAP_SIZE))
4221 f2fs_bug_on(sbi, 1);
4222#endif
4223
4224 /* add discard candidates */
4225 if (!(cpc->reason & CP_DISCARD)) {
4226 cpc->trim_start = segno;
4227 add_discard_addrs(sbi, cpc, false);
4228 }
4229
4230 if (to_journal) {
4231 offset = f2fs_lookup_journal_in_cursum(journal,
4232 SIT_JOURNAL, segno, 1);
4233 f2fs_bug_on(sbi, offset < 0);
4234 segno_in_journal(journal, offset) =
4235 cpu_to_le32(segno);
4236 seg_info_to_raw_sit(se,
4237 &sit_in_journal(journal, offset));
4238 check_block_count(sbi, segno,
4239 &sit_in_journal(journal, offset));
4240 } else {
4241 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4242 seg_info_to_raw_sit(se,
4243 &raw_sit->entries[sit_offset]);
4244 check_block_count(sbi, segno,
4245 &raw_sit->entries[sit_offset]);
4246 }
4247
4248 __clear_bit(segno, bitmap);
4249 sit_i->dirty_sentries--;
4250 ses->entry_cnt--;
4251 }
4252
4253 if (to_journal)
4254 up_write(&curseg->journal_rwsem);
4255 else
4256 f2fs_put_page(page, 1);
4257
4258 f2fs_bug_on(sbi, ses->entry_cnt);
4259 release_sit_entry_set(ses);
4260 }
4261
4262 f2fs_bug_on(sbi, !list_empty(head));
4263 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4264out:
4265 if (cpc->reason & CP_DISCARD) {
4266 __u64 trim_start = cpc->trim_start;
4267
4268 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4269 add_discard_addrs(sbi, cpc, false);
4270
4271 cpc->trim_start = trim_start;
4272 }
4273 up_write(&sit_i->sentry_lock);
4274
4275 set_prefree_as_free_segments(sbi);
4276}
4277
4278static int build_sit_info(struct f2fs_sb_info *sbi)
4279{
4280 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4281 struct sit_info *sit_i;
4282 unsigned int sit_segs, start;
4283 char *src_bitmap, *bitmap;
4284 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4285
4286 /* allocate memory for SIT information */
4287 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4288 if (!sit_i)
4289 return -ENOMEM;
4290
4291 SM_I(sbi)->sit_info = sit_i;
4292
4293 sit_i->sentries =
4294 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4295 MAIN_SEGS(sbi)),
4296 GFP_KERNEL);
4297 if (!sit_i->sentries)
4298 return -ENOMEM;
4299
4300 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4301 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4302 GFP_KERNEL);
4303 if (!sit_i->dirty_sentries_bitmap)
4304 return -ENOMEM;
4305
4306#ifdef CONFIG_F2FS_CHECK_FS
4307 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4308#else
4309 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4310#endif
4311 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4312 if (!sit_i->bitmap)
4313 return -ENOMEM;
4314
4315 bitmap = sit_i->bitmap;
4316
4317 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4318 sit_i->sentries[start].cur_valid_map = bitmap;
4319 bitmap += SIT_VBLOCK_MAP_SIZE;
4320
4321 sit_i->sentries[start].ckpt_valid_map = bitmap;
4322 bitmap += SIT_VBLOCK_MAP_SIZE;
4323
4324#ifdef CONFIG_F2FS_CHECK_FS
4325 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4326 bitmap += SIT_VBLOCK_MAP_SIZE;
4327#endif
4328
4329 sit_i->sentries[start].discard_map = bitmap;
4330 bitmap += SIT_VBLOCK_MAP_SIZE;
4331 }
4332
4333 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4334 if (!sit_i->tmp_map)
4335 return -ENOMEM;
4336
4337 if (__is_large_section(sbi)) {
4338 sit_i->sec_entries =
4339 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4340 MAIN_SECS(sbi)),
4341 GFP_KERNEL);
4342 if (!sit_i->sec_entries)
4343 return -ENOMEM;
4344 }
4345
4346 /* get information related with SIT */
4347 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4348
4349 /* setup SIT bitmap from ckeckpoint pack */
4350 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4351 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4352
4353 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4354 if (!sit_i->sit_bitmap)
4355 return -ENOMEM;
4356
4357#ifdef CONFIG_F2FS_CHECK_FS
4358 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4359 sit_bitmap_size, GFP_KERNEL);
4360 if (!sit_i->sit_bitmap_mir)
4361 return -ENOMEM;
4362
4363 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4364 main_bitmap_size, GFP_KERNEL);
4365 if (!sit_i->invalid_segmap)
4366 return -ENOMEM;
4367#endif
4368
4369 /* init SIT information */
4370 sit_i->s_ops = &default_salloc_ops;
4371
4372 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4373 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4374 sit_i->written_valid_blocks = 0;
4375 sit_i->bitmap_size = sit_bitmap_size;
4376 sit_i->dirty_sentries = 0;
4377 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4378 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4379 sit_i->mounted_time = ktime_get_boottime_seconds();
4380 init_rwsem(&sit_i->sentry_lock);
4381 return 0;
4382}
4383
4384static int build_free_segmap(struct f2fs_sb_info *sbi)
4385{
4386 struct free_segmap_info *free_i;
4387 unsigned int bitmap_size, sec_bitmap_size;
4388
4389 /* allocate memory for free segmap information */
4390 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4391 if (!free_i)
4392 return -ENOMEM;
4393
4394 SM_I(sbi)->free_info = free_i;
4395
4396 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4397 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4398 if (!free_i->free_segmap)
4399 return -ENOMEM;
4400
4401 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4402 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4403 if (!free_i->free_secmap)
4404 return -ENOMEM;
4405
4406 /* set all segments as dirty temporarily */
4407 memset(free_i->free_segmap, 0xff, bitmap_size);
4408 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4409
4410 /* init free segmap information */
4411 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4412 free_i->free_segments = 0;
4413 free_i->free_sections = 0;
4414 spin_lock_init(&free_i->segmap_lock);
4415 return 0;
4416}
4417
4418static int build_curseg(struct f2fs_sb_info *sbi)
4419{
4420 struct curseg_info *array;
4421 int i;
4422
4423 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4424 sizeof(*array)), GFP_KERNEL);
4425 if (!array)
4426 return -ENOMEM;
4427
4428 SM_I(sbi)->curseg_array = array;
4429
4430 for (i = 0; i < NO_CHECK_TYPE; i++) {
4431 mutex_init(&array[i].curseg_mutex);
4432 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4433 if (!array[i].sum_blk)
4434 return -ENOMEM;
4435 init_rwsem(&array[i].journal_rwsem);
4436 array[i].journal = f2fs_kzalloc(sbi,
4437 sizeof(struct f2fs_journal), GFP_KERNEL);
4438 if (!array[i].journal)
4439 return -ENOMEM;
4440 if (i < NR_PERSISTENT_LOG)
4441 array[i].seg_type = CURSEG_HOT_DATA + i;
4442 else if (i == CURSEG_COLD_DATA_PINNED)
4443 array[i].seg_type = CURSEG_COLD_DATA;
4444 else if (i == CURSEG_ALL_DATA_ATGC)
4445 array[i].seg_type = CURSEG_COLD_DATA;
4446 array[i].segno = NULL_SEGNO;
4447 array[i].next_blkoff = 0;
4448 array[i].inited = false;
4449 }
4450 return restore_curseg_summaries(sbi);
4451}
4452
4453static int build_sit_entries(struct f2fs_sb_info *sbi)
4454{
4455 struct sit_info *sit_i = SIT_I(sbi);
4456 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4457 struct f2fs_journal *journal = curseg->journal;
4458 struct seg_entry *se;
4459 struct f2fs_sit_entry sit;
4460 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4461 unsigned int i, start, end;
4462 unsigned int readed, start_blk = 0;
4463 int err = 0;
4464 block_t total_node_blocks = 0;
4465
4466 do {
4467 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4468 META_SIT, true);
4469
4470 start = start_blk * sit_i->sents_per_block;
4471 end = (start_blk + readed) * sit_i->sents_per_block;
4472
4473 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4474 struct f2fs_sit_block *sit_blk;
4475 struct page *page;
4476
4477 se = &sit_i->sentries[start];
4478 page = get_current_sit_page(sbi, start);
4479 if (IS_ERR(page))
4480 return PTR_ERR(page);
4481 sit_blk = (struct f2fs_sit_block *)page_address(page);
4482 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4483 f2fs_put_page(page, 1);
4484
4485 err = check_block_count(sbi, start, &sit);
4486 if (err)
4487 return err;
4488 seg_info_from_raw_sit(se, &sit);
4489 if (IS_NODESEG(se->type))
4490 total_node_blocks += se->valid_blocks;
4491
4492 /* build discard map only one time */
4493 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4494 memset(se->discard_map, 0xff,
4495 SIT_VBLOCK_MAP_SIZE);
4496 } else {
4497 memcpy(se->discard_map,
4498 se->cur_valid_map,
4499 SIT_VBLOCK_MAP_SIZE);
4500 sbi->discard_blks +=
4501 sbi->blocks_per_seg -
4502 se->valid_blocks;
4503 }
4504
4505 if (__is_large_section(sbi))
4506 get_sec_entry(sbi, start)->valid_blocks +=
4507 se->valid_blocks;
4508 }
4509 start_blk += readed;
4510 } while (start_blk < sit_blk_cnt);
4511
4512 down_read(&curseg->journal_rwsem);
4513 for (i = 0; i < sits_in_cursum(journal); i++) {
4514 unsigned int old_valid_blocks;
4515
4516 start = le32_to_cpu(segno_in_journal(journal, i));
4517 if (start >= MAIN_SEGS(sbi)) {
4518 f2fs_err(sbi, "Wrong journal entry on segno %u",
4519 start);
4520 err = -EFSCORRUPTED;
4521 break;
4522 }
4523
4524 se = &sit_i->sentries[start];
4525 sit = sit_in_journal(journal, i);
4526
4527 old_valid_blocks = se->valid_blocks;
4528 if (IS_NODESEG(se->type))
4529 total_node_blocks -= old_valid_blocks;
4530
4531 err = check_block_count(sbi, start, &sit);
4532 if (err)
4533 break;
4534 seg_info_from_raw_sit(se, &sit);
4535 if (IS_NODESEG(se->type))
4536 total_node_blocks += se->valid_blocks;
4537
4538 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4539 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4540 } else {
4541 memcpy(se->discard_map, se->cur_valid_map,
4542 SIT_VBLOCK_MAP_SIZE);
4543 sbi->discard_blks += old_valid_blocks;
4544 sbi->discard_blks -= se->valid_blocks;
4545 }
4546
4547 if (__is_large_section(sbi)) {
4548 get_sec_entry(sbi, start)->valid_blocks +=
4549 se->valid_blocks;
4550 get_sec_entry(sbi, start)->valid_blocks -=
4551 old_valid_blocks;
4552 }
4553 }
4554 up_read(&curseg->journal_rwsem);
4555
4556 if (!err && total_node_blocks != valid_node_count(sbi)) {
4557 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4558 total_node_blocks, valid_node_count(sbi));
4559 err = -EFSCORRUPTED;
4560 }
4561
4562 return err;
4563}
4564
4565static void init_free_segmap(struct f2fs_sb_info *sbi)
4566{
4567 unsigned int start;
4568 int type;
4569 struct seg_entry *sentry;
4570
4571 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4572 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4573 continue;
4574 sentry = get_seg_entry(sbi, start);
4575 if (!sentry->valid_blocks)
4576 __set_free(sbi, start);
4577 else
4578 SIT_I(sbi)->written_valid_blocks +=
4579 sentry->valid_blocks;
4580 }
4581
4582 /* set use the current segments */
4583 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4584 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4585
4586 __set_test_and_inuse(sbi, curseg_t->segno);
4587 }
4588}
4589
4590static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4591{
4592 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4593 struct free_segmap_info *free_i = FREE_I(sbi);
4594 unsigned int segno = 0, offset = 0, secno;
4595 block_t valid_blocks, usable_blks_in_seg;
4596 block_t blks_per_sec = BLKS_PER_SEC(sbi);
4597
4598 while (1) {
4599 /* find dirty segment based on free segmap */
4600 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4601 if (segno >= MAIN_SEGS(sbi))
4602 break;
4603 offset = segno + 1;
4604 valid_blocks = get_valid_blocks(sbi, segno, false);
4605 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4606 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4607 continue;
4608 if (valid_blocks > usable_blks_in_seg) {
4609 f2fs_bug_on(sbi, 1);
4610 continue;
4611 }
4612 mutex_lock(&dirty_i->seglist_lock);
4613 __locate_dirty_segment(sbi, segno, DIRTY);
4614 mutex_unlock(&dirty_i->seglist_lock);
4615 }
4616
4617 if (!__is_large_section(sbi))
4618 return;
4619
4620 mutex_lock(&dirty_i->seglist_lock);
4621 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4622 valid_blocks = get_valid_blocks(sbi, segno, true);
4623 secno = GET_SEC_FROM_SEG(sbi, segno);
4624
4625 if (!valid_blocks || valid_blocks == blks_per_sec)
4626 continue;
4627 if (IS_CURSEC(sbi, secno))
4628 continue;
4629 set_bit(secno, dirty_i->dirty_secmap);
4630 }
4631 mutex_unlock(&dirty_i->seglist_lock);
4632}
4633
4634static int init_victim_secmap(struct f2fs_sb_info *sbi)
4635{
4636 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4637 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4638
4639 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4640 if (!dirty_i->victim_secmap)
4641 return -ENOMEM;
4642 return 0;
4643}
4644
4645static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4646{
4647 struct dirty_seglist_info *dirty_i;
4648 unsigned int bitmap_size, i;
4649
4650 /* allocate memory for dirty segments list information */
4651 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4652 GFP_KERNEL);
4653 if (!dirty_i)
4654 return -ENOMEM;
4655
4656 SM_I(sbi)->dirty_info = dirty_i;
4657 mutex_init(&dirty_i->seglist_lock);
4658
4659 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4660
4661 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4662 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4663 GFP_KERNEL);
4664 if (!dirty_i->dirty_segmap[i])
4665 return -ENOMEM;
4666 }
4667
4668 if (__is_large_section(sbi)) {
4669 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4670 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4671 bitmap_size, GFP_KERNEL);
4672 if (!dirty_i->dirty_secmap)
4673 return -ENOMEM;
4674 }
4675
4676 init_dirty_segmap(sbi);
4677 return init_victim_secmap(sbi);
4678}
4679
4680static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4681{
4682 int i;
4683
4684 /*
4685 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4686 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4687 */
4688 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4689 struct curseg_info *curseg = CURSEG_I(sbi, i);
4690 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4691 unsigned int blkofs = curseg->next_blkoff;
4692
4693 if (f2fs_sb_has_readonly(sbi) &&
4694 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4695 continue;
4696
4697 sanity_check_seg_type(sbi, curseg->seg_type);
4698
4699 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4700 goto out;
4701
4702 if (curseg->alloc_type == SSR)
4703 continue;
4704
4705 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4706 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4707 continue;
4708out:
4709 f2fs_err(sbi,
4710 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4711 i, curseg->segno, curseg->alloc_type,
4712 curseg->next_blkoff, blkofs);
4713 return -EFSCORRUPTED;
4714 }
4715 }
4716 return 0;
4717}
4718
4719#ifdef CONFIG_BLK_DEV_ZONED
4720
4721static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4722 struct f2fs_dev_info *fdev,
4723 struct blk_zone *zone)
4724{
4725 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4726 block_t zone_block, wp_block, last_valid_block;
4727 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4728 int i, s, b, ret;
4729 struct seg_entry *se;
4730
4731 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4732 return 0;
4733
4734 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4735 wp_segno = GET_SEGNO(sbi, wp_block);
4736 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4737 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4738 zone_segno = GET_SEGNO(sbi, zone_block);
4739 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4740
4741 if (zone_segno >= MAIN_SEGS(sbi))
4742 return 0;
4743
4744 /*
4745 * Skip check of zones cursegs point to, since
4746 * fix_curseg_write_pointer() checks them.
4747 */
4748 for (i = 0; i < NO_CHECK_TYPE; i++)
4749 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4750 CURSEG_I(sbi, i)->segno))
4751 return 0;
4752
4753 /*
4754 * Get last valid block of the zone.
4755 */
4756 last_valid_block = zone_block - 1;
4757 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4758 segno = zone_segno + s;
4759 se = get_seg_entry(sbi, segno);
4760 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4761 if (f2fs_test_bit(b, se->cur_valid_map)) {
4762 last_valid_block = START_BLOCK(sbi, segno) + b;
4763 break;
4764 }
4765 if (last_valid_block >= zone_block)
4766 break;
4767 }
4768
4769 /*
4770 * If last valid block is beyond the write pointer, report the
4771 * inconsistency. This inconsistency does not cause write error
4772 * because the zone will not be selected for write operation until
4773 * it get discarded. Just report it.
4774 */
4775 if (last_valid_block >= wp_block) {
4776 f2fs_notice(sbi, "Valid block beyond write pointer: "
4777 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4778 GET_SEGNO(sbi, last_valid_block),
4779 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4780 wp_segno, wp_blkoff);
4781 return 0;
4782 }
4783
4784 /*
4785 * If there is no valid block in the zone and if write pointer is
4786 * not at zone start, reset the write pointer.
4787 */
4788 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4789 f2fs_notice(sbi,
4790 "Zone without valid block has non-zero write "
4791 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4792 wp_segno, wp_blkoff);
4793 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4794 zone->len >> log_sectors_per_block);
4795 if (ret) {
4796 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4797 fdev->path, ret);
4798 return ret;
4799 }
4800 }
4801
4802 return 0;
4803}
4804
4805static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4806 block_t zone_blkaddr)
4807{
4808 int i;
4809
4810 for (i = 0; i < sbi->s_ndevs; i++) {
4811 if (!bdev_is_zoned(FDEV(i).bdev))
4812 continue;
4813 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4814 zone_blkaddr <= FDEV(i).end_blk))
4815 return &FDEV(i);
4816 }
4817
4818 return NULL;
4819}
4820
4821static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4822 void *data)
4823{
4824 memcpy(data, zone, sizeof(struct blk_zone));
4825 return 0;
4826}
4827
4828static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4829{
4830 struct curseg_info *cs = CURSEG_I(sbi, type);
4831 struct f2fs_dev_info *zbd;
4832 struct blk_zone zone;
4833 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4834 block_t cs_zone_block, wp_block;
4835 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4836 sector_t zone_sector;
4837 int err;
4838
4839 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4840 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4841
4842 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4843 if (!zbd)
4844 return 0;
4845
4846 /* report zone for the sector the curseg points to */
4847 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4848 << log_sectors_per_block;
4849 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4850 report_one_zone_cb, &zone);
4851 if (err != 1) {
4852 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4853 zbd->path, err);
4854 return err;
4855 }
4856
4857 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4858 return 0;
4859
4860 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4861 wp_segno = GET_SEGNO(sbi, wp_block);
4862 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4863 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4864
4865 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4866 wp_sector_off == 0)
4867 return 0;
4868
4869 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4870 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4871 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4872
4873 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4874 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4875
4876 f2fs_allocate_new_section(sbi, type, true);
4877
4878 /* check consistency of the zone curseg pointed to */
4879 if (check_zone_write_pointer(sbi, zbd, &zone))
4880 return -EIO;
4881
4882 /* check newly assigned zone */
4883 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4884 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4885
4886 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4887 if (!zbd)
4888 return 0;
4889
4890 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4891 << log_sectors_per_block;
4892 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4893 report_one_zone_cb, &zone);
4894 if (err != 1) {
4895 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4896 zbd->path, err);
4897 return err;
4898 }
4899
4900 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4901 return 0;
4902
4903 if (zone.wp != zone.start) {
4904 f2fs_notice(sbi,
4905 "New zone for curseg[%d] is not yet discarded. "
4906 "Reset the zone: curseg[0x%x,0x%x]",
4907 type, cs->segno, cs->next_blkoff);
4908 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4909 zone_sector >> log_sectors_per_block,
4910 zone.len >> log_sectors_per_block);
4911 if (err) {
4912 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4913 zbd->path, err);
4914 return err;
4915 }
4916 }
4917
4918 return 0;
4919}
4920
4921int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4922{
4923 int i, ret;
4924
4925 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4926 ret = fix_curseg_write_pointer(sbi, i);
4927 if (ret)
4928 return ret;
4929 }
4930
4931 return 0;
4932}
4933
4934struct check_zone_write_pointer_args {
4935 struct f2fs_sb_info *sbi;
4936 struct f2fs_dev_info *fdev;
4937};
4938
4939static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4940 void *data)
4941{
4942 struct check_zone_write_pointer_args *args;
4943
4944 args = (struct check_zone_write_pointer_args *)data;
4945
4946 return check_zone_write_pointer(args->sbi, args->fdev, zone);
4947}
4948
4949int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4950{
4951 int i, ret;
4952 struct check_zone_write_pointer_args args;
4953
4954 for (i = 0; i < sbi->s_ndevs; i++) {
4955 if (!bdev_is_zoned(FDEV(i).bdev))
4956 continue;
4957
4958 args.sbi = sbi;
4959 args.fdev = &FDEV(i);
4960 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4961 check_zone_write_pointer_cb, &args);
4962 if (ret < 0)
4963 return ret;
4964 }
4965
4966 return 0;
4967}
4968
4969static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4970 unsigned int dev_idx)
4971{
4972 if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4973 return true;
4974 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4975}
4976
4977/* Return the zone index in the given device */
4978static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4979 int dev_idx)
4980{
4981 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4982
4983 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4984 sbi->log_blocks_per_blkz;
4985}
4986
4987/*
4988 * Return the usable segments in a section based on the zone's
4989 * corresponding zone capacity. Zone is equal to a section.
4990 */
4991static inline unsigned int f2fs_usable_zone_segs_in_sec(
4992 struct f2fs_sb_info *sbi, unsigned int segno)
4993{
4994 unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
4995
4996 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4997 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4998
4999 /* Conventional zone's capacity is always equal to zone size */
5000 if (is_conv_zone(sbi, zone_idx, dev_idx))
5001 return sbi->segs_per_sec;
5002
5003 /*
5004 * If the zone_capacity_blocks array is NULL, then zone capacity
5005 * is equal to the zone size for all zones
5006 */
5007 if (!FDEV(dev_idx).zone_capacity_blocks)
5008 return sbi->segs_per_sec;
5009
5010 /* Get the segment count beyond zone capacity block */
5011 unusable_segs_in_sec = (sbi->blocks_per_blkz -
5012 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5013 sbi->log_blocks_per_seg;
5014 return sbi->segs_per_sec - unusable_segs_in_sec;
5015}
5016
5017/*
5018 * Return the number of usable blocks in a segment. The number of blocks
5019 * returned is always equal to the number of blocks in a segment for
5020 * segments fully contained within a sequential zone capacity or a
5021 * conventional zone. For segments partially contained in a sequential
5022 * zone capacity, the number of usable blocks up to the zone capacity
5023 * is returned. 0 is returned in all other cases.
5024 */
5025static inline unsigned int f2fs_usable_zone_blks_in_seg(
5026 struct f2fs_sb_info *sbi, unsigned int segno)
5027{
5028 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5029 unsigned int zone_idx, dev_idx, secno;
5030
5031 secno = GET_SEC_FROM_SEG(sbi, segno);
5032 seg_start = START_BLOCK(sbi, segno);
5033 dev_idx = f2fs_target_device_index(sbi, seg_start);
5034 zone_idx = get_zone_idx(sbi, secno, dev_idx);
5035
5036 /*
5037 * Conventional zone's capacity is always equal to zone size,
5038 * so, blocks per segment is unchanged.
5039 */
5040 if (is_conv_zone(sbi, zone_idx, dev_idx))
5041 return sbi->blocks_per_seg;
5042
5043 if (!FDEV(dev_idx).zone_capacity_blocks)
5044 return sbi->blocks_per_seg;
5045
5046 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5047 sec_cap_blkaddr = sec_start_blkaddr +
5048 FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5049
5050 /*
5051 * If segment starts before zone capacity and spans beyond
5052 * zone capacity, then usable blocks are from seg start to
5053 * zone capacity. If the segment starts after the zone capacity,
5054 * then there are no usable blocks.
5055 */
5056 if (seg_start >= sec_cap_blkaddr)
5057 return 0;
5058 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5059 return sec_cap_blkaddr - seg_start;
5060
5061 return sbi->blocks_per_seg;
5062}
5063#else
5064int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5065{
5066 return 0;
5067}
5068
5069int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5070{
5071 return 0;
5072}
5073
5074static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5075 unsigned int segno)
5076{
5077 return 0;
5078}
5079
5080static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5081 unsigned int segno)
5082{
5083 return 0;
5084}
5085#endif
5086unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5087 unsigned int segno)
5088{
5089 if (f2fs_sb_has_blkzoned(sbi))
5090 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5091
5092 return sbi->blocks_per_seg;
5093}
5094
5095unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5096 unsigned int segno)
5097{
5098 if (f2fs_sb_has_blkzoned(sbi))
5099 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5100
5101 return sbi->segs_per_sec;
5102}
5103
5104/*
5105 * Update min, max modified time for cost-benefit GC algorithm
5106 */
5107static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5108{
5109 struct sit_info *sit_i = SIT_I(sbi);
5110 unsigned int segno;
5111
5112 down_write(&sit_i->sentry_lock);
5113
5114 sit_i->min_mtime = ULLONG_MAX;
5115
5116 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5117 unsigned int i;
5118 unsigned long long mtime = 0;
5119
5120 for (i = 0; i < sbi->segs_per_sec; i++)
5121 mtime += get_seg_entry(sbi, segno + i)->mtime;
5122
5123 mtime = div_u64(mtime, sbi->segs_per_sec);
5124
5125 if (sit_i->min_mtime > mtime)
5126 sit_i->min_mtime = mtime;
5127 }
5128 sit_i->max_mtime = get_mtime(sbi, false);
5129 sit_i->dirty_max_mtime = 0;
5130 up_write(&sit_i->sentry_lock);
5131}
5132
5133int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5134{
5135 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5136 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5137 struct f2fs_sm_info *sm_info;
5138 int err;
5139
5140 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5141 if (!sm_info)
5142 return -ENOMEM;
5143
5144 /* init sm info */
5145 sbi->sm_info = sm_info;
5146 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5147 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5148 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5149 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5150 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5151 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5152 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5153 sm_info->rec_prefree_segments = sm_info->main_segments *
5154 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5155 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5156 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5157
5158 if (!f2fs_lfs_mode(sbi))
5159 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5160 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5161 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5162 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
5163 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5164 sm_info->min_ssr_sections = reserved_sections(sbi);
5165
5166 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5167
5168 init_rwsem(&sm_info->curseg_lock);
5169
5170 if (!f2fs_readonly(sbi->sb)) {
5171 err = f2fs_create_flush_cmd_control(sbi);
5172 if (err)
5173 return err;
5174 }
5175
5176 err = create_discard_cmd_control(sbi);
5177 if (err)
5178 return err;
5179
5180 err = build_sit_info(sbi);
5181 if (err)
5182 return err;
5183 err = build_free_segmap(sbi);
5184 if (err)
5185 return err;
5186 err = build_curseg(sbi);
5187 if (err)
5188 return err;
5189
5190 /* reinit free segmap based on SIT */
5191 err = build_sit_entries(sbi);
5192 if (err)
5193 return err;
5194
5195 init_free_segmap(sbi);
5196 err = build_dirty_segmap(sbi);
5197 if (err)
5198 return err;
5199
5200 err = sanity_check_curseg(sbi);
5201 if (err)
5202 return err;
5203
5204 init_min_max_mtime(sbi);
5205 return 0;
5206}
5207
5208static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5209 enum dirty_type dirty_type)
5210{
5211 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5212
5213 mutex_lock(&dirty_i->seglist_lock);
5214 kvfree(dirty_i->dirty_segmap[dirty_type]);
5215 dirty_i->nr_dirty[dirty_type] = 0;
5216 mutex_unlock(&dirty_i->seglist_lock);
5217}
5218
5219static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5220{
5221 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5222
5223 kvfree(dirty_i->victim_secmap);
5224}
5225
5226static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5227{
5228 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5229 int i;
5230
5231 if (!dirty_i)
5232 return;
5233
5234 /* discard pre-free/dirty segments list */
5235 for (i = 0; i < NR_DIRTY_TYPE; i++)
5236 discard_dirty_segmap(sbi, i);
5237
5238 if (__is_large_section(sbi)) {
5239 mutex_lock(&dirty_i->seglist_lock);
5240 kvfree(dirty_i->dirty_secmap);
5241 mutex_unlock(&dirty_i->seglist_lock);
5242 }
5243
5244 destroy_victim_secmap(sbi);
5245 SM_I(sbi)->dirty_info = NULL;
5246 kfree(dirty_i);
5247}
5248
5249static void destroy_curseg(struct f2fs_sb_info *sbi)
5250{
5251 struct curseg_info *array = SM_I(sbi)->curseg_array;
5252 int i;
5253
5254 if (!array)
5255 return;
5256 SM_I(sbi)->curseg_array = NULL;
5257 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5258 kfree(array[i].sum_blk);
5259 kfree(array[i].journal);
5260 }
5261 kfree(array);
5262}
5263
5264static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5265{
5266 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5267
5268 if (!free_i)
5269 return;
5270 SM_I(sbi)->free_info = NULL;
5271 kvfree(free_i->free_segmap);
5272 kvfree(free_i->free_secmap);
5273 kfree(free_i);
5274}
5275
5276static void destroy_sit_info(struct f2fs_sb_info *sbi)
5277{
5278 struct sit_info *sit_i = SIT_I(sbi);
5279
5280 if (!sit_i)
5281 return;
5282
5283 if (sit_i->sentries)
5284 kvfree(sit_i->bitmap);
5285 kfree(sit_i->tmp_map);
5286
5287 kvfree(sit_i->sentries);
5288 kvfree(sit_i->sec_entries);
5289 kvfree(sit_i->dirty_sentries_bitmap);
5290
5291 SM_I(sbi)->sit_info = NULL;
5292 kvfree(sit_i->sit_bitmap);
5293#ifdef CONFIG_F2FS_CHECK_FS
5294 kvfree(sit_i->sit_bitmap_mir);
5295 kvfree(sit_i->invalid_segmap);
5296#endif
5297 kfree(sit_i);
5298}
5299
5300void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5301{
5302 struct f2fs_sm_info *sm_info = SM_I(sbi);
5303
5304 if (!sm_info)
5305 return;
5306 f2fs_destroy_flush_cmd_control(sbi, true);
5307 destroy_discard_cmd_control(sbi);
5308 destroy_dirty_segmap(sbi);
5309 destroy_curseg(sbi);
5310 destroy_free_segmap(sbi);
5311 destroy_sit_info(sbi);
5312 sbi->sm_info = NULL;
5313 kfree(sm_info);
5314}
5315
5316int __init f2fs_create_segment_manager_caches(void)
5317{
5318 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5319 sizeof(struct discard_entry));
5320 if (!discard_entry_slab)
5321 goto fail;
5322
5323 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5324 sizeof(struct discard_cmd));
5325 if (!discard_cmd_slab)
5326 goto destroy_discard_entry;
5327
5328 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5329 sizeof(struct sit_entry_set));
5330 if (!sit_entry_set_slab)
5331 goto destroy_discard_cmd;
5332
5333 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5334 sizeof(struct inmem_pages));
5335 if (!inmem_entry_slab)
5336 goto destroy_sit_entry_set;
5337 return 0;
5338
5339destroy_sit_entry_set:
5340 kmem_cache_destroy(sit_entry_set_slab);
5341destroy_discard_cmd:
5342 kmem_cache_destroy(discard_cmd_slab);
5343destroy_discard_entry:
5344 kmem_cache_destroy(discard_entry_slab);
5345fail:
5346 return -ENOMEM;
5347}
5348
5349void f2fs_destroy_segment_manager_caches(void)
5350{
5351 kmem_cache_destroy(sit_entry_set_slab);
5352 kmem_cache_destroy(discard_cmd_slab);
5353 kmem_cache_destroy(discard_entry_slab);
5354 kmem_cache_destroy(inmem_entry_slab);
5355}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/sched/mm.h>
13#include <linux/prefetch.h>
14#include <linux/kthread.h>
15#include <linux/swap.h>
16#include <linux/timer.h>
17#include <linux/freezer.h>
18#include <linux/sched/signal.h>
19#include <linux/random.h>
20
21#include "f2fs.h"
22#include "segment.h"
23#include "node.h"
24#include "gc.h"
25#include "iostat.h"
26#include <trace/events/f2fs.h>
27
28#define __reverse_ffz(x) __reverse_ffs(~(x))
29
30static struct kmem_cache *discard_entry_slab;
31static struct kmem_cache *discard_cmd_slab;
32static struct kmem_cache *sit_entry_set_slab;
33static struct kmem_cache *revoke_entry_slab;
34
35static unsigned long __reverse_ulong(unsigned char *str)
36{
37 unsigned long tmp = 0;
38 int shift = 24, idx = 0;
39
40#if BITS_PER_LONG == 64
41 shift = 56;
42#endif
43 while (shift >= 0) {
44 tmp |= (unsigned long)str[idx++] << shift;
45 shift -= BITS_PER_BYTE;
46 }
47 return tmp;
48}
49
50/*
51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
53 */
54static inline unsigned long __reverse_ffs(unsigned long word)
55{
56 int num = 0;
57
58#if BITS_PER_LONG == 64
59 if ((word & 0xffffffff00000000UL) == 0)
60 num += 32;
61 else
62 word >>= 32;
63#endif
64 if ((word & 0xffff0000) == 0)
65 num += 16;
66 else
67 word >>= 16;
68
69 if ((word & 0xff00) == 0)
70 num += 8;
71 else
72 word >>= 8;
73
74 if ((word & 0xf0) == 0)
75 num += 4;
76 else
77 word >>= 4;
78
79 if ((word & 0xc) == 0)
80 num += 2;
81 else
82 word >>= 2;
83
84 if ((word & 0x2) == 0)
85 num += 1;
86 return num;
87}
88
89/*
90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
92 * @size must be integral times of unsigned long.
93 * Example:
94 * MSB <--> LSB
95 * f2fs_set_bit(0, bitmap) => 1000 0000
96 * f2fs_set_bit(7, bitmap) => 0000 0001
97 */
98static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 unsigned long size, unsigned long offset)
100{
101 const unsigned long *p = addr + BIT_WORD(offset);
102 unsigned long result = size;
103 unsigned long tmp;
104
105 if (offset >= size)
106 return size;
107
108 size -= (offset & ~(BITS_PER_LONG - 1));
109 offset %= BITS_PER_LONG;
110
111 while (1) {
112 if (*p == 0)
113 goto pass;
114
115 tmp = __reverse_ulong((unsigned char *)p);
116
117 tmp &= ~0UL >> offset;
118 if (size < BITS_PER_LONG)
119 tmp &= (~0UL << (BITS_PER_LONG - size));
120 if (tmp)
121 goto found;
122pass:
123 if (size <= BITS_PER_LONG)
124 break;
125 size -= BITS_PER_LONG;
126 offset = 0;
127 p++;
128 }
129 return result;
130found:
131 return result - size + __reverse_ffs(tmp);
132}
133
134static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 unsigned long size, unsigned long offset)
136{
137 const unsigned long *p = addr + BIT_WORD(offset);
138 unsigned long result = size;
139 unsigned long tmp;
140
141 if (offset >= size)
142 return size;
143
144 size -= (offset & ~(BITS_PER_LONG - 1));
145 offset %= BITS_PER_LONG;
146
147 while (1) {
148 if (*p == ~0UL)
149 goto pass;
150
151 tmp = __reverse_ulong((unsigned char *)p);
152
153 if (offset)
154 tmp |= ~0UL << (BITS_PER_LONG - offset);
155 if (size < BITS_PER_LONG)
156 tmp |= ~0UL >> size;
157 if (tmp != ~0UL)
158 goto found;
159pass:
160 if (size <= BITS_PER_LONG)
161 break;
162 size -= BITS_PER_LONG;
163 offset = 0;
164 p++;
165 }
166 return result;
167found:
168 return result - size + __reverse_ffz(tmp);
169}
170
171bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172{
173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176
177 if (f2fs_lfs_mode(sbi))
178 return false;
179 if (sbi->gc_mode == GC_URGENT_HIGH)
180 return true;
181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 return true;
183
184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186}
187
188void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189{
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191
192 if (!f2fs_is_atomic_file(inode))
193 return;
194
195 if (clean)
196 truncate_inode_pages_final(inode->i_mapping);
197
198 release_atomic_write_cnt(inode);
199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 clear_inode_flag(inode, FI_ATOMIC_FILE);
202 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
203 clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
204 f2fs_mark_inode_dirty_sync(inode, true);
205 }
206 stat_dec_atomic_inode(inode);
207
208 F2FS_I(inode)->atomic_write_task = NULL;
209
210 if (clean) {
211 f2fs_i_size_write(inode, fi->original_i_size);
212 fi->original_i_size = 0;
213 }
214 /* avoid stale dirty inode during eviction */
215 sync_inode_metadata(inode, 0);
216}
217
218static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
219 block_t new_addr, block_t *old_addr, bool recover)
220{
221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222 struct dnode_of_data dn;
223 struct node_info ni;
224 int err;
225
226retry:
227 set_new_dnode(&dn, inode, NULL, NULL, 0);
228 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
229 if (err) {
230 if (err == -ENOMEM) {
231 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
232 goto retry;
233 }
234 return err;
235 }
236
237 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
238 if (err) {
239 f2fs_put_dnode(&dn);
240 return err;
241 }
242
243 if (recover) {
244 /* dn.data_blkaddr is always valid */
245 if (!__is_valid_data_blkaddr(new_addr)) {
246 if (new_addr == NULL_ADDR)
247 dec_valid_block_count(sbi, inode, 1);
248 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
249 f2fs_update_data_blkaddr(&dn, new_addr);
250 } else {
251 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
252 new_addr, ni.version, true, true);
253 }
254 } else {
255 blkcnt_t count = 1;
256
257 err = inc_valid_block_count(sbi, inode, &count, true);
258 if (err) {
259 f2fs_put_dnode(&dn);
260 return err;
261 }
262
263 *old_addr = dn.data_blkaddr;
264 f2fs_truncate_data_blocks_range(&dn, 1);
265 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
266
267 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
268 ni.version, true, false);
269 }
270
271 f2fs_put_dnode(&dn);
272
273 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
274 index, old_addr ? *old_addr : 0, new_addr, recover);
275 return 0;
276}
277
278static void __complete_revoke_list(struct inode *inode, struct list_head *head,
279 bool revoke)
280{
281 struct revoke_entry *cur, *tmp;
282 pgoff_t start_index = 0;
283 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
284
285 list_for_each_entry_safe(cur, tmp, head, list) {
286 if (revoke) {
287 __replace_atomic_write_block(inode, cur->index,
288 cur->old_addr, NULL, true);
289 } else if (truncate) {
290 f2fs_truncate_hole(inode, start_index, cur->index);
291 start_index = cur->index + 1;
292 }
293
294 list_del(&cur->list);
295 kmem_cache_free(revoke_entry_slab, cur);
296 }
297
298 if (!revoke && truncate)
299 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
300}
301
302static int __f2fs_commit_atomic_write(struct inode *inode)
303{
304 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
305 struct f2fs_inode_info *fi = F2FS_I(inode);
306 struct inode *cow_inode = fi->cow_inode;
307 struct revoke_entry *new;
308 struct list_head revoke_list;
309 block_t blkaddr;
310 struct dnode_of_data dn;
311 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
312 pgoff_t off = 0, blen, index;
313 int ret = 0, i;
314
315 INIT_LIST_HEAD(&revoke_list);
316
317 while (len) {
318 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
319
320 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
321 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
322 if (ret && ret != -ENOENT) {
323 goto out;
324 } else if (ret == -ENOENT) {
325 ret = 0;
326 if (dn.max_level == 0)
327 goto out;
328 goto next;
329 }
330
331 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
332 len);
333 index = off;
334 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
335 blkaddr = f2fs_data_blkaddr(&dn);
336
337 if (!__is_valid_data_blkaddr(blkaddr)) {
338 continue;
339 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
340 DATA_GENERIC_ENHANCE)) {
341 f2fs_put_dnode(&dn);
342 ret = -EFSCORRUPTED;
343 goto out;
344 }
345
346 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
347 true, NULL);
348
349 ret = __replace_atomic_write_block(inode, index, blkaddr,
350 &new->old_addr, false);
351 if (ret) {
352 f2fs_put_dnode(&dn);
353 kmem_cache_free(revoke_entry_slab, new);
354 goto out;
355 }
356
357 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
358 new->index = index;
359 list_add_tail(&new->list, &revoke_list);
360 }
361 f2fs_put_dnode(&dn);
362next:
363 off += blen;
364 len -= blen;
365 }
366
367out:
368 if (ret) {
369 sbi->revoked_atomic_block += fi->atomic_write_cnt;
370 } else {
371 sbi->committed_atomic_block += fi->atomic_write_cnt;
372 set_inode_flag(inode, FI_ATOMIC_COMMITTED);
373 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
374 clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
375 f2fs_mark_inode_dirty_sync(inode, true);
376 }
377 }
378
379 __complete_revoke_list(inode, &revoke_list, ret ? true : false);
380
381 return ret;
382}
383
384int f2fs_commit_atomic_write(struct inode *inode)
385{
386 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
387 struct f2fs_inode_info *fi = F2FS_I(inode);
388 int err;
389
390 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
391 if (err)
392 return err;
393
394 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
395 f2fs_lock_op(sbi);
396
397 err = __f2fs_commit_atomic_write(inode);
398
399 f2fs_unlock_op(sbi);
400 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
401
402 return err;
403}
404
405/*
406 * This function balances dirty node and dentry pages.
407 * In addition, it controls garbage collection.
408 */
409void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
410{
411 if (f2fs_cp_error(sbi))
412 return;
413
414 if (time_to_inject(sbi, FAULT_CHECKPOINT))
415 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
416
417 /* balance_fs_bg is able to be pending */
418 if (need && excess_cached_nats(sbi))
419 f2fs_balance_fs_bg(sbi, false);
420
421 if (!f2fs_is_checkpoint_ready(sbi))
422 return;
423
424 /*
425 * We should do GC or end up with checkpoint, if there are so many dirty
426 * dir/node pages without enough free segments.
427 */
428 if (has_enough_free_secs(sbi, 0, 0))
429 return;
430
431 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
432 sbi->gc_thread->f2fs_gc_task) {
433 DEFINE_WAIT(wait);
434
435 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
436 TASK_UNINTERRUPTIBLE);
437 wake_up(&sbi->gc_thread->gc_wait_queue_head);
438 io_schedule();
439 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
440 } else {
441 struct f2fs_gc_control gc_control = {
442 .victim_segno = NULL_SEGNO,
443 .init_gc_type = BG_GC,
444 .no_bg_gc = true,
445 .should_migrate_blocks = false,
446 .err_gc_skipped = false,
447 .nr_free_secs = 1 };
448 f2fs_down_write(&sbi->gc_lock);
449 stat_inc_gc_call_count(sbi, FOREGROUND);
450 f2fs_gc(sbi, &gc_control);
451 }
452}
453
454static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
455{
456 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
457 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
458 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
459 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
460 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
461 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
462 unsigned int threshold =
463 SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD));
464 unsigned int global_threshold = threshold * 3 / 2;
465
466 if (dents >= threshold || qdata >= threshold ||
467 nodes >= threshold || meta >= threshold ||
468 imeta >= threshold)
469 return true;
470 return dents + qdata + nodes + meta + imeta > global_threshold;
471}
472
473void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
474{
475 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
476 return;
477
478 /* try to shrink extent cache when there is no enough memory */
479 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
480 f2fs_shrink_read_extent_tree(sbi,
481 READ_EXTENT_CACHE_SHRINK_NUMBER);
482
483 /* try to shrink age extent cache when there is no enough memory */
484 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
485 f2fs_shrink_age_extent_tree(sbi,
486 AGE_EXTENT_CACHE_SHRINK_NUMBER);
487
488 /* check the # of cached NAT entries */
489 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
490 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
491
492 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
493 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
494 else
495 f2fs_build_free_nids(sbi, false, false);
496
497 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
498 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
499 goto do_sync;
500
501 /* there is background inflight IO or foreground operation recently */
502 if (is_inflight_io(sbi, REQ_TIME) ||
503 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
504 return;
505
506 /* exceed periodical checkpoint timeout threshold */
507 if (f2fs_time_over(sbi, CP_TIME))
508 goto do_sync;
509
510 /* checkpoint is the only way to shrink partial cached entries */
511 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
512 f2fs_available_free_memory(sbi, INO_ENTRIES))
513 return;
514
515do_sync:
516 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
517 struct blk_plug plug;
518
519 mutex_lock(&sbi->flush_lock);
520
521 blk_start_plug(&plug);
522 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
523 blk_finish_plug(&plug);
524
525 mutex_unlock(&sbi->flush_lock);
526 }
527 stat_inc_cp_call_count(sbi, BACKGROUND);
528 f2fs_sync_fs(sbi->sb, 1);
529}
530
531static int __submit_flush_wait(struct f2fs_sb_info *sbi,
532 struct block_device *bdev)
533{
534 int ret = blkdev_issue_flush(bdev);
535
536 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
537 test_opt(sbi, FLUSH_MERGE), ret);
538 if (!ret)
539 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
540 return ret;
541}
542
543static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
544{
545 int ret = 0;
546 int i;
547
548 if (!f2fs_is_multi_device(sbi))
549 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
550
551 for (i = 0; i < sbi->s_ndevs; i++) {
552 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
553 continue;
554 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
555 if (ret)
556 break;
557 }
558 return ret;
559}
560
561static int issue_flush_thread(void *data)
562{
563 struct f2fs_sb_info *sbi = data;
564 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
565 wait_queue_head_t *q = &fcc->flush_wait_queue;
566repeat:
567 if (kthread_should_stop())
568 return 0;
569
570 if (!llist_empty(&fcc->issue_list)) {
571 struct flush_cmd *cmd, *next;
572 int ret;
573
574 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
575 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
576
577 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
578
579 ret = submit_flush_wait(sbi, cmd->ino);
580 atomic_inc(&fcc->issued_flush);
581
582 llist_for_each_entry_safe(cmd, next,
583 fcc->dispatch_list, llnode) {
584 cmd->ret = ret;
585 complete(&cmd->wait);
586 }
587 fcc->dispatch_list = NULL;
588 }
589
590 wait_event_interruptible(*q,
591 kthread_should_stop() || !llist_empty(&fcc->issue_list));
592 goto repeat;
593}
594
595int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
596{
597 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
598 struct flush_cmd cmd;
599 int ret;
600
601 if (test_opt(sbi, NOBARRIER))
602 return 0;
603
604 if (!test_opt(sbi, FLUSH_MERGE)) {
605 atomic_inc(&fcc->queued_flush);
606 ret = submit_flush_wait(sbi, ino);
607 atomic_dec(&fcc->queued_flush);
608 atomic_inc(&fcc->issued_flush);
609 return ret;
610 }
611
612 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
613 f2fs_is_multi_device(sbi)) {
614 ret = submit_flush_wait(sbi, ino);
615 atomic_dec(&fcc->queued_flush);
616
617 atomic_inc(&fcc->issued_flush);
618 return ret;
619 }
620
621 cmd.ino = ino;
622 init_completion(&cmd.wait);
623
624 llist_add(&cmd.llnode, &fcc->issue_list);
625
626 /*
627 * update issue_list before we wake up issue_flush thread, this
628 * smp_mb() pairs with another barrier in ___wait_event(), see
629 * more details in comments of waitqueue_active().
630 */
631 smp_mb();
632
633 if (waitqueue_active(&fcc->flush_wait_queue))
634 wake_up(&fcc->flush_wait_queue);
635
636 if (fcc->f2fs_issue_flush) {
637 wait_for_completion(&cmd.wait);
638 atomic_dec(&fcc->queued_flush);
639 } else {
640 struct llist_node *list;
641
642 list = llist_del_all(&fcc->issue_list);
643 if (!list) {
644 wait_for_completion(&cmd.wait);
645 atomic_dec(&fcc->queued_flush);
646 } else {
647 struct flush_cmd *tmp, *next;
648
649 ret = submit_flush_wait(sbi, ino);
650
651 llist_for_each_entry_safe(tmp, next, list, llnode) {
652 if (tmp == &cmd) {
653 cmd.ret = ret;
654 atomic_dec(&fcc->queued_flush);
655 continue;
656 }
657 tmp->ret = ret;
658 complete(&tmp->wait);
659 }
660 }
661 }
662
663 return cmd.ret;
664}
665
666int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
667{
668 dev_t dev = sbi->sb->s_bdev->bd_dev;
669 struct flush_cmd_control *fcc;
670
671 if (SM_I(sbi)->fcc_info) {
672 fcc = SM_I(sbi)->fcc_info;
673 if (fcc->f2fs_issue_flush)
674 return 0;
675 goto init_thread;
676 }
677
678 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
679 if (!fcc)
680 return -ENOMEM;
681 atomic_set(&fcc->issued_flush, 0);
682 atomic_set(&fcc->queued_flush, 0);
683 init_waitqueue_head(&fcc->flush_wait_queue);
684 init_llist_head(&fcc->issue_list);
685 SM_I(sbi)->fcc_info = fcc;
686 if (!test_opt(sbi, FLUSH_MERGE))
687 return 0;
688
689init_thread:
690 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
691 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
692 if (IS_ERR(fcc->f2fs_issue_flush)) {
693 int err = PTR_ERR(fcc->f2fs_issue_flush);
694
695 fcc->f2fs_issue_flush = NULL;
696 return err;
697 }
698
699 return 0;
700}
701
702void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
703{
704 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
705
706 if (fcc && fcc->f2fs_issue_flush) {
707 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
708
709 fcc->f2fs_issue_flush = NULL;
710 kthread_stop(flush_thread);
711 }
712 if (free) {
713 kfree(fcc);
714 SM_I(sbi)->fcc_info = NULL;
715 }
716}
717
718int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
719{
720 int ret = 0, i;
721
722 if (!f2fs_is_multi_device(sbi))
723 return 0;
724
725 if (test_opt(sbi, NOBARRIER))
726 return 0;
727
728 for (i = 1; i < sbi->s_ndevs; i++) {
729 int count = DEFAULT_RETRY_IO_COUNT;
730
731 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
732 continue;
733
734 do {
735 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
736 if (ret)
737 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
738 } while (ret && --count);
739
740 if (ret) {
741 f2fs_stop_checkpoint(sbi, false,
742 STOP_CP_REASON_FLUSH_FAIL);
743 break;
744 }
745
746 spin_lock(&sbi->dev_lock);
747 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
748 spin_unlock(&sbi->dev_lock);
749 }
750
751 return ret;
752}
753
754static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
755 enum dirty_type dirty_type)
756{
757 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
758
759 /* need not be added */
760 if (IS_CURSEG(sbi, segno))
761 return;
762
763 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
764 dirty_i->nr_dirty[dirty_type]++;
765
766 if (dirty_type == DIRTY) {
767 struct seg_entry *sentry = get_seg_entry(sbi, segno);
768 enum dirty_type t = sentry->type;
769
770 if (unlikely(t >= DIRTY)) {
771 f2fs_bug_on(sbi, 1);
772 return;
773 }
774 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
775 dirty_i->nr_dirty[t]++;
776
777 if (__is_large_section(sbi)) {
778 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
779 block_t valid_blocks =
780 get_valid_blocks(sbi, segno, true);
781
782 f2fs_bug_on(sbi,
783 (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
784 !valid_blocks) ||
785 valid_blocks == CAP_BLKS_PER_SEC(sbi));
786
787 if (!IS_CURSEC(sbi, secno))
788 set_bit(secno, dirty_i->dirty_secmap);
789 }
790 }
791}
792
793static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
794 enum dirty_type dirty_type)
795{
796 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
797 block_t valid_blocks;
798
799 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
800 dirty_i->nr_dirty[dirty_type]--;
801
802 if (dirty_type == DIRTY) {
803 struct seg_entry *sentry = get_seg_entry(sbi, segno);
804 enum dirty_type t = sentry->type;
805
806 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
807 dirty_i->nr_dirty[t]--;
808
809 valid_blocks = get_valid_blocks(sbi, segno, true);
810 if (valid_blocks == 0) {
811 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
812 dirty_i->victim_secmap);
813#ifdef CONFIG_F2FS_CHECK_FS
814 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
815#endif
816 }
817 if (__is_large_section(sbi)) {
818 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
819
820 if (!valid_blocks ||
821 valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
822 clear_bit(secno, dirty_i->dirty_secmap);
823 return;
824 }
825
826 if (!IS_CURSEC(sbi, secno))
827 set_bit(secno, dirty_i->dirty_secmap);
828 }
829 }
830}
831
832/*
833 * Should not occur error such as -ENOMEM.
834 * Adding dirty entry into seglist is not critical operation.
835 * If a given segment is one of current working segments, it won't be added.
836 */
837static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
838{
839 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
840 unsigned short valid_blocks, ckpt_valid_blocks;
841 unsigned int usable_blocks;
842
843 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
844 return;
845
846 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
847 mutex_lock(&dirty_i->seglist_lock);
848
849 valid_blocks = get_valid_blocks(sbi, segno, false);
850 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
851
852 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
853 ckpt_valid_blocks == usable_blocks)) {
854 __locate_dirty_segment(sbi, segno, PRE);
855 __remove_dirty_segment(sbi, segno, DIRTY);
856 } else if (valid_blocks < usable_blocks) {
857 __locate_dirty_segment(sbi, segno, DIRTY);
858 } else {
859 /* Recovery routine with SSR needs this */
860 __remove_dirty_segment(sbi, segno, DIRTY);
861 }
862
863 mutex_unlock(&dirty_i->seglist_lock);
864}
865
866/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
867void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
868{
869 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
870 unsigned int segno;
871
872 mutex_lock(&dirty_i->seglist_lock);
873 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
874 if (get_valid_blocks(sbi, segno, false))
875 continue;
876 if (IS_CURSEG(sbi, segno))
877 continue;
878 __locate_dirty_segment(sbi, segno, PRE);
879 __remove_dirty_segment(sbi, segno, DIRTY);
880 }
881 mutex_unlock(&dirty_i->seglist_lock);
882}
883
884block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
885{
886 int ovp_hole_segs =
887 (overprovision_segments(sbi) - reserved_segments(sbi));
888 block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs);
889 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
890 block_t holes[2] = {0, 0}; /* DATA and NODE */
891 block_t unusable;
892 struct seg_entry *se;
893 unsigned int segno;
894
895 mutex_lock(&dirty_i->seglist_lock);
896 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
897 se = get_seg_entry(sbi, segno);
898 if (IS_NODESEG(se->type))
899 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
900 se->valid_blocks;
901 else
902 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
903 se->valid_blocks;
904 }
905 mutex_unlock(&dirty_i->seglist_lock);
906
907 unusable = max(holes[DATA], holes[NODE]);
908 if (unusable > ovp_holes)
909 return unusable - ovp_holes;
910 return 0;
911}
912
913int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
914{
915 int ovp_hole_segs =
916 (overprovision_segments(sbi) - reserved_segments(sbi));
917
918 if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
919 return 0;
920 if (unusable > F2FS_OPTION(sbi).unusable_cap)
921 return -EAGAIN;
922 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
923 dirty_segments(sbi) > ovp_hole_segs)
924 return -EAGAIN;
925 if (has_not_enough_free_secs(sbi, 0, 0))
926 return -EAGAIN;
927 return 0;
928}
929
930/* This is only used by SBI_CP_DISABLED */
931static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
932{
933 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
934 unsigned int segno = 0;
935
936 mutex_lock(&dirty_i->seglist_lock);
937 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
938 if (get_valid_blocks(sbi, segno, false))
939 continue;
940 if (get_ckpt_valid_blocks(sbi, segno, false))
941 continue;
942 mutex_unlock(&dirty_i->seglist_lock);
943 return segno;
944 }
945 mutex_unlock(&dirty_i->seglist_lock);
946 return NULL_SEGNO;
947}
948
949static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
950 struct block_device *bdev, block_t lstart,
951 block_t start, block_t len)
952{
953 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
954 struct list_head *pend_list;
955 struct discard_cmd *dc;
956
957 f2fs_bug_on(sbi, !len);
958
959 pend_list = &dcc->pend_list[plist_idx(len)];
960
961 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
962 INIT_LIST_HEAD(&dc->list);
963 dc->bdev = bdev;
964 dc->di.lstart = lstart;
965 dc->di.start = start;
966 dc->di.len = len;
967 dc->ref = 0;
968 dc->state = D_PREP;
969 dc->queued = 0;
970 dc->error = 0;
971 init_completion(&dc->wait);
972 list_add_tail(&dc->list, pend_list);
973 spin_lock_init(&dc->lock);
974 dc->bio_ref = 0;
975 atomic_inc(&dcc->discard_cmd_cnt);
976 dcc->undiscard_blks += len;
977
978 return dc;
979}
980
981static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
982{
983#ifdef CONFIG_F2FS_CHECK_FS
984 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
985 struct rb_node *cur = rb_first_cached(&dcc->root), *next;
986 struct discard_cmd *cur_dc, *next_dc;
987
988 while (cur) {
989 next = rb_next(cur);
990 if (!next)
991 return true;
992
993 cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
994 next_dc = rb_entry(next, struct discard_cmd, rb_node);
995
996 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
997 f2fs_info(sbi, "broken discard_rbtree, "
998 "cur(%u, %u) next(%u, %u)",
999 cur_dc->di.lstart, cur_dc->di.len,
1000 next_dc->di.lstart, next_dc->di.len);
1001 return false;
1002 }
1003 cur = next;
1004 }
1005#endif
1006 return true;
1007}
1008
1009static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1010 block_t blkaddr)
1011{
1012 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1013 struct rb_node *node = dcc->root.rb_root.rb_node;
1014 struct discard_cmd *dc;
1015
1016 while (node) {
1017 dc = rb_entry(node, struct discard_cmd, rb_node);
1018
1019 if (blkaddr < dc->di.lstart)
1020 node = node->rb_left;
1021 else if (blkaddr >= dc->di.lstart + dc->di.len)
1022 node = node->rb_right;
1023 else
1024 return dc;
1025 }
1026 return NULL;
1027}
1028
1029static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1030 block_t blkaddr,
1031 struct discard_cmd **prev_entry,
1032 struct discard_cmd **next_entry,
1033 struct rb_node ***insert_p,
1034 struct rb_node **insert_parent)
1035{
1036 struct rb_node **pnode = &root->rb_root.rb_node;
1037 struct rb_node *parent = NULL, *tmp_node;
1038 struct discard_cmd *dc;
1039
1040 *insert_p = NULL;
1041 *insert_parent = NULL;
1042 *prev_entry = NULL;
1043 *next_entry = NULL;
1044
1045 if (RB_EMPTY_ROOT(&root->rb_root))
1046 return NULL;
1047
1048 while (*pnode) {
1049 parent = *pnode;
1050 dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1051
1052 if (blkaddr < dc->di.lstart)
1053 pnode = &(*pnode)->rb_left;
1054 else if (blkaddr >= dc->di.lstart + dc->di.len)
1055 pnode = &(*pnode)->rb_right;
1056 else
1057 goto lookup_neighbors;
1058 }
1059
1060 *insert_p = pnode;
1061 *insert_parent = parent;
1062
1063 dc = rb_entry(parent, struct discard_cmd, rb_node);
1064 tmp_node = parent;
1065 if (parent && blkaddr > dc->di.lstart)
1066 tmp_node = rb_next(parent);
1067 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1068
1069 tmp_node = parent;
1070 if (parent && blkaddr < dc->di.lstart)
1071 tmp_node = rb_prev(parent);
1072 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1073 return NULL;
1074
1075lookup_neighbors:
1076 /* lookup prev node for merging backward later */
1077 tmp_node = rb_prev(&dc->rb_node);
1078 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1079
1080 /* lookup next node for merging frontward later */
1081 tmp_node = rb_next(&dc->rb_node);
1082 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1083 return dc;
1084}
1085
1086static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1087 struct discard_cmd *dc)
1088{
1089 if (dc->state == D_DONE)
1090 atomic_sub(dc->queued, &dcc->queued_discard);
1091
1092 list_del(&dc->list);
1093 rb_erase_cached(&dc->rb_node, &dcc->root);
1094 dcc->undiscard_blks -= dc->di.len;
1095
1096 kmem_cache_free(discard_cmd_slab, dc);
1097
1098 atomic_dec(&dcc->discard_cmd_cnt);
1099}
1100
1101static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1102 struct discard_cmd *dc)
1103{
1104 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1105 unsigned long flags;
1106
1107 trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1108
1109 spin_lock_irqsave(&dc->lock, flags);
1110 if (dc->bio_ref) {
1111 spin_unlock_irqrestore(&dc->lock, flags);
1112 return;
1113 }
1114 spin_unlock_irqrestore(&dc->lock, flags);
1115
1116 f2fs_bug_on(sbi, dc->ref);
1117
1118 if (dc->error == -EOPNOTSUPP)
1119 dc->error = 0;
1120
1121 if (dc->error)
1122 f2fs_info_ratelimited(sbi,
1123 "Issue discard(%u, %u, %u) failed, ret: %d",
1124 dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1125 __detach_discard_cmd(dcc, dc);
1126}
1127
1128static void f2fs_submit_discard_endio(struct bio *bio)
1129{
1130 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1131 unsigned long flags;
1132
1133 spin_lock_irqsave(&dc->lock, flags);
1134 if (!dc->error)
1135 dc->error = blk_status_to_errno(bio->bi_status);
1136 dc->bio_ref--;
1137 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1138 dc->state = D_DONE;
1139 complete_all(&dc->wait);
1140 }
1141 spin_unlock_irqrestore(&dc->lock, flags);
1142 bio_put(bio);
1143}
1144
1145static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1146 block_t start, block_t end)
1147{
1148#ifdef CONFIG_F2FS_CHECK_FS
1149 struct seg_entry *sentry;
1150 unsigned int segno;
1151 block_t blk = start;
1152 unsigned long offset, size, *map;
1153
1154 while (blk < end) {
1155 segno = GET_SEGNO(sbi, blk);
1156 sentry = get_seg_entry(sbi, segno);
1157 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1158
1159 if (end < START_BLOCK(sbi, segno + 1))
1160 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1161 else
1162 size = BLKS_PER_SEG(sbi);
1163 map = (unsigned long *)(sentry->cur_valid_map);
1164 offset = __find_rev_next_bit(map, size, offset);
1165 f2fs_bug_on(sbi, offset != size);
1166 blk = START_BLOCK(sbi, segno + 1);
1167 }
1168#endif
1169}
1170
1171static void __init_discard_policy(struct f2fs_sb_info *sbi,
1172 struct discard_policy *dpolicy,
1173 int discard_type, unsigned int granularity)
1174{
1175 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1176
1177 /* common policy */
1178 dpolicy->type = discard_type;
1179 dpolicy->sync = true;
1180 dpolicy->ordered = false;
1181 dpolicy->granularity = granularity;
1182
1183 dpolicy->max_requests = dcc->max_discard_request;
1184 dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1185 dpolicy->timeout = false;
1186
1187 if (discard_type == DPOLICY_BG) {
1188 dpolicy->min_interval = dcc->min_discard_issue_time;
1189 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1190 dpolicy->max_interval = dcc->max_discard_issue_time;
1191 if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1192 dpolicy->io_aware = true;
1193 else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1194 dpolicy->io_aware = false;
1195 dpolicy->sync = false;
1196 dpolicy->ordered = true;
1197 if (utilization(sbi) > dcc->discard_urgent_util) {
1198 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1199 if (atomic_read(&dcc->discard_cmd_cnt))
1200 dpolicy->max_interval =
1201 dcc->min_discard_issue_time;
1202 }
1203 } else if (discard_type == DPOLICY_FORCE) {
1204 dpolicy->min_interval = dcc->min_discard_issue_time;
1205 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1206 dpolicy->max_interval = dcc->max_discard_issue_time;
1207 dpolicy->io_aware = false;
1208 } else if (discard_type == DPOLICY_FSTRIM) {
1209 dpolicy->io_aware = false;
1210 } else if (discard_type == DPOLICY_UMOUNT) {
1211 dpolicy->io_aware = false;
1212 /* we need to issue all to keep CP_TRIMMED_FLAG */
1213 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1214 dpolicy->timeout = true;
1215 }
1216}
1217
1218static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1219 struct block_device *bdev, block_t lstart,
1220 block_t start, block_t len);
1221
1222#ifdef CONFIG_BLK_DEV_ZONED
1223static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1224 struct discard_cmd *dc, blk_opf_t flag,
1225 struct list_head *wait_list,
1226 unsigned int *issued)
1227{
1228 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1229 struct block_device *bdev = dc->bdev;
1230 struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1231 unsigned long flags;
1232
1233 trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1234
1235 spin_lock_irqsave(&dc->lock, flags);
1236 dc->state = D_SUBMIT;
1237 dc->bio_ref++;
1238 spin_unlock_irqrestore(&dc->lock, flags);
1239
1240 if (issued)
1241 (*issued)++;
1242
1243 atomic_inc(&dcc->queued_discard);
1244 dc->queued++;
1245 list_move_tail(&dc->list, wait_list);
1246
1247 /* sanity check on discard range */
1248 __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1249
1250 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1251 bio->bi_private = dc;
1252 bio->bi_end_io = f2fs_submit_discard_endio;
1253 submit_bio(bio);
1254
1255 atomic_inc(&dcc->issued_discard);
1256 f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1257}
1258#endif
1259
1260/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1261static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1262 struct discard_policy *dpolicy,
1263 struct discard_cmd *dc, int *issued)
1264{
1265 struct block_device *bdev = dc->bdev;
1266 unsigned int max_discard_blocks =
1267 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1268 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1269 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1270 &(dcc->fstrim_list) : &(dcc->wait_list);
1271 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1272 block_t lstart, start, len, total_len;
1273 int err = 0;
1274
1275 if (dc->state != D_PREP)
1276 return 0;
1277
1278 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1279 return 0;
1280
1281#ifdef CONFIG_BLK_DEV_ZONED
1282 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1283 int devi = f2fs_bdev_index(sbi, bdev);
1284
1285 if (devi < 0)
1286 return -EINVAL;
1287
1288 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1289 __submit_zone_reset_cmd(sbi, dc, flag,
1290 wait_list, issued);
1291 return 0;
1292 }
1293 }
1294#endif
1295
1296 /*
1297 * stop issuing discard for any of below cases:
1298 * 1. device is conventional zone, but it doesn't support discard.
1299 * 2. device is regulare device, after snapshot it doesn't support
1300 * discard.
1301 */
1302 if (!bdev_max_discard_sectors(bdev))
1303 return -EOPNOTSUPP;
1304
1305 trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1306
1307 lstart = dc->di.lstart;
1308 start = dc->di.start;
1309 len = dc->di.len;
1310 total_len = len;
1311
1312 dc->di.len = 0;
1313
1314 while (total_len && *issued < dpolicy->max_requests && !err) {
1315 struct bio *bio = NULL;
1316 unsigned long flags;
1317 bool last = true;
1318
1319 if (len > max_discard_blocks) {
1320 len = max_discard_blocks;
1321 last = false;
1322 }
1323
1324 (*issued)++;
1325 if (*issued == dpolicy->max_requests)
1326 last = true;
1327
1328 dc->di.len += len;
1329
1330 if (time_to_inject(sbi, FAULT_DISCARD)) {
1331 err = -EIO;
1332 } else {
1333 err = __blkdev_issue_discard(bdev,
1334 SECTOR_FROM_BLOCK(start),
1335 SECTOR_FROM_BLOCK(len),
1336 GFP_NOFS, &bio);
1337 }
1338 if (err) {
1339 spin_lock_irqsave(&dc->lock, flags);
1340 if (dc->state == D_PARTIAL)
1341 dc->state = D_SUBMIT;
1342 spin_unlock_irqrestore(&dc->lock, flags);
1343
1344 break;
1345 }
1346
1347 f2fs_bug_on(sbi, !bio);
1348
1349 /*
1350 * should keep before submission to avoid D_DONE
1351 * right away
1352 */
1353 spin_lock_irqsave(&dc->lock, flags);
1354 if (last)
1355 dc->state = D_SUBMIT;
1356 else
1357 dc->state = D_PARTIAL;
1358 dc->bio_ref++;
1359 spin_unlock_irqrestore(&dc->lock, flags);
1360
1361 atomic_inc(&dcc->queued_discard);
1362 dc->queued++;
1363 list_move_tail(&dc->list, wait_list);
1364
1365 /* sanity check on discard range */
1366 __check_sit_bitmap(sbi, lstart, lstart + len);
1367
1368 bio->bi_private = dc;
1369 bio->bi_end_io = f2fs_submit_discard_endio;
1370 bio->bi_opf |= flag;
1371 submit_bio(bio);
1372
1373 atomic_inc(&dcc->issued_discard);
1374
1375 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1376
1377 lstart += len;
1378 start += len;
1379 total_len -= len;
1380 len = total_len;
1381 }
1382
1383 if (!err && len) {
1384 dcc->undiscard_blks -= len;
1385 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1386 }
1387 return err;
1388}
1389
1390static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1391 struct block_device *bdev, block_t lstart,
1392 block_t start, block_t len)
1393{
1394 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1395 struct rb_node **p = &dcc->root.rb_root.rb_node;
1396 struct rb_node *parent = NULL;
1397 struct discard_cmd *dc;
1398 bool leftmost = true;
1399
1400 /* look up rb tree to find parent node */
1401 while (*p) {
1402 parent = *p;
1403 dc = rb_entry(parent, struct discard_cmd, rb_node);
1404
1405 if (lstart < dc->di.lstart) {
1406 p = &(*p)->rb_left;
1407 } else if (lstart >= dc->di.lstart + dc->di.len) {
1408 p = &(*p)->rb_right;
1409 leftmost = false;
1410 } else {
1411 /* Let's skip to add, if exists */
1412 return;
1413 }
1414 }
1415
1416 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1417
1418 rb_link_node(&dc->rb_node, parent, p);
1419 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1420}
1421
1422static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1423 struct discard_cmd *dc)
1424{
1425 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1426}
1427
1428static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1429 struct discard_cmd *dc, block_t blkaddr)
1430{
1431 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1432 struct discard_info di = dc->di;
1433 bool modified = false;
1434
1435 if (dc->state == D_DONE || dc->di.len == 1) {
1436 __remove_discard_cmd(sbi, dc);
1437 return;
1438 }
1439
1440 dcc->undiscard_blks -= di.len;
1441
1442 if (blkaddr > di.lstart) {
1443 dc->di.len = blkaddr - dc->di.lstart;
1444 dcc->undiscard_blks += dc->di.len;
1445 __relocate_discard_cmd(dcc, dc);
1446 modified = true;
1447 }
1448
1449 if (blkaddr < di.lstart + di.len - 1) {
1450 if (modified) {
1451 __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1452 di.start + blkaddr + 1 - di.lstart,
1453 di.lstart + di.len - 1 - blkaddr);
1454 } else {
1455 dc->di.lstart++;
1456 dc->di.len--;
1457 dc->di.start++;
1458 dcc->undiscard_blks += dc->di.len;
1459 __relocate_discard_cmd(dcc, dc);
1460 }
1461 }
1462}
1463
1464static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1465 struct block_device *bdev, block_t lstart,
1466 block_t start, block_t len)
1467{
1468 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1469 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1470 struct discard_cmd *dc;
1471 struct discard_info di = {0};
1472 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1473 unsigned int max_discard_blocks =
1474 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1475 block_t end = lstart + len;
1476
1477 dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1478 &prev_dc, &next_dc, &insert_p, &insert_parent);
1479 if (dc)
1480 prev_dc = dc;
1481
1482 if (!prev_dc) {
1483 di.lstart = lstart;
1484 di.len = next_dc ? next_dc->di.lstart - lstart : len;
1485 di.len = min(di.len, len);
1486 di.start = start;
1487 }
1488
1489 while (1) {
1490 struct rb_node *node;
1491 bool merged = false;
1492 struct discard_cmd *tdc = NULL;
1493
1494 if (prev_dc) {
1495 di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1496 if (di.lstart < lstart)
1497 di.lstart = lstart;
1498 if (di.lstart >= end)
1499 break;
1500
1501 if (!next_dc || next_dc->di.lstart > end)
1502 di.len = end - di.lstart;
1503 else
1504 di.len = next_dc->di.lstart - di.lstart;
1505 di.start = start + di.lstart - lstart;
1506 }
1507
1508 if (!di.len)
1509 goto next;
1510
1511 if (prev_dc && prev_dc->state == D_PREP &&
1512 prev_dc->bdev == bdev &&
1513 __is_discard_back_mergeable(&di, &prev_dc->di,
1514 max_discard_blocks)) {
1515 prev_dc->di.len += di.len;
1516 dcc->undiscard_blks += di.len;
1517 __relocate_discard_cmd(dcc, prev_dc);
1518 di = prev_dc->di;
1519 tdc = prev_dc;
1520 merged = true;
1521 }
1522
1523 if (next_dc && next_dc->state == D_PREP &&
1524 next_dc->bdev == bdev &&
1525 __is_discard_front_mergeable(&di, &next_dc->di,
1526 max_discard_blocks)) {
1527 next_dc->di.lstart = di.lstart;
1528 next_dc->di.len += di.len;
1529 next_dc->di.start = di.start;
1530 dcc->undiscard_blks += di.len;
1531 __relocate_discard_cmd(dcc, next_dc);
1532 if (tdc)
1533 __remove_discard_cmd(sbi, tdc);
1534 merged = true;
1535 }
1536
1537 if (!merged)
1538 __insert_discard_cmd(sbi, bdev,
1539 di.lstart, di.start, di.len);
1540 next:
1541 prev_dc = next_dc;
1542 if (!prev_dc)
1543 break;
1544
1545 node = rb_next(&prev_dc->rb_node);
1546 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1547 }
1548}
1549
1550#ifdef CONFIG_BLK_DEV_ZONED
1551static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1552 struct block_device *bdev, block_t blkstart, block_t lblkstart,
1553 block_t blklen)
1554{
1555 trace_f2fs_queue_reset_zone(bdev, blkstart);
1556
1557 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1558 __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1559 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1560}
1561#endif
1562
1563static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1564 struct block_device *bdev, block_t blkstart, block_t blklen)
1565{
1566 block_t lblkstart = blkstart;
1567
1568 if (!f2fs_bdev_support_discard(bdev))
1569 return;
1570
1571 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1572
1573 if (f2fs_is_multi_device(sbi)) {
1574 int devi = f2fs_target_device_index(sbi, blkstart);
1575
1576 blkstart -= FDEV(devi).start_blk;
1577 }
1578 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1579 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1580 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1581}
1582
1583static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1584 struct discard_policy *dpolicy, int *issued)
1585{
1586 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1587 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1588 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1589 struct discard_cmd *dc;
1590 struct blk_plug plug;
1591 bool io_interrupted = false;
1592
1593 mutex_lock(&dcc->cmd_lock);
1594 dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1595 &prev_dc, &next_dc, &insert_p, &insert_parent);
1596 if (!dc)
1597 dc = next_dc;
1598
1599 blk_start_plug(&plug);
1600
1601 while (dc) {
1602 struct rb_node *node;
1603 int err = 0;
1604
1605 if (dc->state != D_PREP)
1606 goto next;
1607
1608 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1609 io_interrupted = true;
1610 break;
1611 }
1612
1613 dcc->next_pos = dc->di.lstart + dc->di.len;
1614 err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1615
1616 if (*issued >= dpolicy->max_requests)
1617 break;
1618next:
1619 node = rb_next(&dc->rb_node);
1620 if (err)
1621 __remove_discard_cmd(sbi, dc);
1622 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1623 }
1624
1625 blk_finish_plug(&plug);
1626
1627 if (!dc)
1628 dcc->next_pos = 0;
1629
1630 mutex_unlock(&dcc->cmd_lock);
1631
1632 if (!(*issued) && io_interrupted)
1633 *issued = -1;
1634}
1635static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1636 struct discard_policy *dpolicy);
1637
1638static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1639 struct discard_policy *dpolicy)
1640{
1641 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1642 struct list_head *pend_list;
1643 struct discard_cmd *dc, *tmp;
1644 struct blk_plug plug;
1645 int i, issued;
1646 bool io_interrupted = false;
1647
1648 if (dpolicy->timeout)
1649 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1650
1651retry:
1652 issued = 0;
1653 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1654 if (dpolicy->timeout &&
1655 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1656 break;
1657
1658 if (i + 1 < dpolicy->granularity)
1659 break;
1660
1661 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1662 __issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1663 return issued;
1664 }
1665
1666 pend_list = &dcc->pend_list[i];
1667
1668 mutex_lock(&dcc->cmd_lock);
1669 if (list_empty(pend_list))
1670 goto next;
1671 if (unlikely(dcc->rbtree_check))
1672 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1673 blk_start_plug(&plug);
1674 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1675 f2fs_bug_on(sbi, dc->state != D_PREP);
1676
1677 if (dpolicy->timeout &&
1678 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1679 break;
1680
1681 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1682 !is_idle(sbi, DISCARD_TIME)) {
1683 io_interrupted = true;
1684 break;
1685 }
1686
1687 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1688
1689 if (issued >= dpolicy->max_requests)
1690 break;
1691 }
1692 blk_finish_plug(&plug);
1693next:
1694 mutex_unlock(&dcc->cmd_lock);
1695
1696 if (issued >= dpolicy->max_requests || io_interrupted)
1697 break;
1698 }
1699
1700 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1701 __wait_all_discard_cmd(sbi, dpolicy);
1702 goto retry;
1703 }
1704
1705 if (!issued && io_interrupted)
1706 issued = -1;
1707
1708 return issued;
1709}
1710
1711static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1712{
1713 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1714 struct list_head *pend_list;
1715 struct discard_cmd *dc, *tmp;
1716 int i;
1717 bool dropped = false;
1718
1719 mutex_lock(&dcc->cmd_lock);
1720 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1721 pend_list = &dcc->pend_list[i];
1722 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1723 f2fs_bug_on(sbi, dc->state != D_PREP);
1724 __remove_discard_cmd(sbi, dc);
1725 dropped = true;
1726 }
1727 }
1728 mutex_unlock(&dcc->cmd_lock);
1729
1730 return dropped;
1731}
1732
1733void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1734{
1735 __drop_discard_cmd(sbi);
1736}
1737
1738static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1739 struct discard_cmd *dc)
1740{
1741 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1742 unsigned int len = 0;
1743
1744 wait_for_completion_io(&dc->wait);
1745 mutex_lock(&dcc->cmd_lock);
1746 f2fs_bug_on(sbi, dc->state != D_DONE);
1747 dc->ref--;
1748 if (!dc->ref) {
1749 if (!dc->error)
1750 len = dc->di.len;
1751 __remove_discard_cmd(sbi, dc);
1752 }
1753 mutex_unlock(&dcc->cmd_lock);
1754
1755 return len;
1756}
1757
1758static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1759 struct discard_policy *dpolicy,
1760 block_t start, block_t end)
1761{
1762 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1763 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1764 &(dcc->fstrim_list) : &(dcc->wait_list);
1765 struct discard_cmd *dc = NULL, *iter, *tmp;
1766 unsigned int trimmed = 0;
1767
1768next:
1769 dc = NULL;
1770
1771 mutex_lock(&dcc->cmd_lock);
1772 list_for_each_entry_safe(iter, tmp, wait_list, list) {
1773 if (iter->di.lstart + iter->di.len <= start ||
1774 end <= iter->di.lstart)
1775 continue;
1776 if (iter->di.len < dpolicy->granularity)
1777 continue;
1778 if (iter->state == D_DONE && !iter->ref) {
1779 wait_for_completion_io(&iter->wait);
1780 if (!iter->error)
1781 trimmed += iter->di.len;
1782 __remove_discard_cmd(sbi, iter);
1783 } else {
1784 iter->ref++;
1785 dc = iter;
1786 break;
1787 }
1788 }
1789 mutex_unlock(&dcc->cmd_lock);
1790
1791 if (dc) {
1792 trimmed += __wait_one_discard_bio(sbi, dc);
1793 goto next;
1794 }
1795
1796 return trimmed;
1797}
1798
1799static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1800 struct discard_policy *dpolicy)
1801{
1802 struct discard_policy dp;
1803 unsigned int discard_blks;
1804
1805 if (dpolicy)
1806 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1807
1808 /* wait all */
1809 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1810 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1811 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1812 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1813
1814 return discard_blks;
1815}
1816
1817/* This should be covered by global mutex, &sit_i->sentry_lock */
1818static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1819{
1820 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1821 struct discard_cmd *dc;
1822 bool need_wait = false;
1823
1824 mutex_lock(&dcc->cmd_lock);
1825 dc = __lookup_discard_cmd(sbi, blkaddr);
1826#ifdef CONFIG_BLK_DEV_ZONED
1827 if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1828 int devi = f2fs_bdev_index(sbi, dc->bdev);
1829
1830 if (devi < 0) {
1831 mutex_unlock(&dcc->cmd_lock);
1832 return;
1833 }
1834
1835 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1836 /* force submit zone reset */
1837 if (dc->state == D_PREP)
1838 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1839 &dcc->wait_list, NULL);
1840 dc->ref++;
1841 mutex_unlock(&dcc->cmd_lock);
1842 /* wait zone reset */
1843 __wait_one_discard_bio(sbi, dc);
1844 return;
1845 }
1846 }
1847#endif
1848 if (dc) {
1849 if (dc->state == D_PREP) {
1850 __punch_discard_cmd(sbi, dc, blkaddr);
1851 } else {
1852 dc->ref++;
1853 need_wait = true;
1854 }
1855 }
1856 mutex_unlock(&dcc->cmd_lock);
1857
1858 if (need_wait)
1859 __wait_one_discard_bio(sbi, dc);
1860}
1861
1862void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1863{
1864 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1865
1866 if (dcc && dcc->f2fs_issue_discard) {
1867 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1868
1869 dcc->f2fs_issue_discard = NULL;
1870 kthread_stop(discard_thread);
1871 }
1872}
1873
1874/**
1875 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1876 * @sbi: the f2fs_sb_info data for discard cmd to issue
1877 *
1878 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1879 *
1880 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1881 */
1882bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1883{
1884 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1885 struct discard_policy dpolicy;
1886 bool dropped;
1887
1888 if (!atomic_read(&dcc->discard_cmd_cnt))
1889 return true;
1890
1891 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1892 dcc->discard_granularity);
1893 __issue_discard_cmd(sbi, &dpolicy);
1894 dropped = __drop_discard_cmd(sbi);
1895
1896 /* just to make sure there is no pending discard commands */
1897 __wait_all_discard_cmd(sbi, NULL);
1898
1899 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1900 return !dropped;
1901}
1902
1903static int issue_discard_thread(void *data)
1904{
1905 struct f2fs_sb_info *sbi = data;
1906 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1907 wait_queue_head_t *q = &dcc->discard_wait_queue;
1908 struct discard_policy dpolicy;
1909 unsigned int wait_ms = dcc->min_discard_issue_time;
1910 int issued;
1911
1912 set_freezable();
1913
1914 do {
1915 wait_event_freezable_timeout(*q,
1916 kthread_should_stop() || dcc->discard_wake,
1917 msecs_to_jiffies(wait_ms));
1918
1919 if (sbi->gc_mode == GC_URGENT_HIGH ||
1920 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1921 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1922 MIN_DISCARD_GRANULARITY);
1923 else
1924 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1925 dcc->discard_granularity);
1926
1927 if (dcc->discard_wake)
1928 dcc->discard_wake = false;
1929
1930 /* clean up pending candidates before going to sleep */
1931 if (atomic_read(&dcc->queued_discard))
1932 __wait_all_discard_cmd(sbi, NULL);
1933
1934 if (f2fs_readonly(sbi->sb))
1935 continue;
1936 if (kthread_should_stop())
1937 return 0;
1938 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1939 !atomic_read(&dcc->discard_cmd_cnt)) {
1940 wait_ms = dpolicy.max_interval;
1941 continue;
1942 }
1943
1944 sb_start_intwrite(sbi->sb);
1945
1946 issued = __issue_discard_cmd(sbi, &dpolicy);
1947 if (issued > 0) {
1948 __wait_all_discard_cmd(sbi, &dpolicy);
1949 wait_ms = dpolicy.min_interval;
1950 } else if (issued == -1) {
1951 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1952 if (!wait_ms)
1953 wait_ms = dpolicy.mid_interval;
1954 } else {
1955 wait_ms = dpolicy.max_interval;
1956 }
1957 if (!atomic_read(&dcc->discard_cmd_cnt))
1958 wait_ms = dpolicy.max_interval;
1959
1960 sb_end_intwrite(sbi->sb);
1961
1962 } while (!kthread_should_stop());
1963 return 0;
1964}
1965
1966#ifdef CONFIG_BLK_DEV_ZONED
1967static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1968 struct block_device *bdev, block_t blkstart, block_t blklen)
1969{
1970 sector_t sector, nr_sects;
1971 block_t lblkstart = blkstart;
1972 int devi = 0;
1973 u64 remainder = 0;
1974
1975 if (f2fs_is_multi_device(sbi)) {
1976 devi = f2fs_target_device_index(sbi, blkstart);
1977 if (blkstart < FDEV(devi).start_blk ||
1978 blkstart > FDEV(devi).end_blk) {
1979 f2fs_err(sbi, "Invalid block %x", blkstart);
1980 return -EIO;
1981 }
1982 blkstart -= FDEV(devi).start_blk;
1983 }
1984
1985 /* For sequential zones, reset the zone write pointer */
1986 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1987 sector = SECTOR_FROM_BLOCK(blkstart);
1988 nr_sects = SECTOR_FROM_BLOCK(blklen);
1989 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1990
1991 if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1992 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1993 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1994 blkstart, blklen);
1995 return -EIO;
1996 }
1997
1998 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1999 unsigned int nofs_flags;
2000 int ret;
2001
2002 trace_f2fs_issue_reset_zone(bdev, blkstart);
2003 nofs_flags = memalloc_nofs_save();
2004 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
2005 sector, nr_sects);
2006 memalloc_nofs_restore(nofs_flags);
2007 return ret;
2008 }
2009
2010 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
2011 return 0;
2012 }
2013
2014 /* For conventional zones, use regular discard if supported */
2015 __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
2016 return 0;
2017}
2018#endif
2019
2020static int __issue_discard_async(struct f2fs_sb_info *sbi,
2021 struct block_device *bdev, block_t blkstart, block_t blklen)
2022{
2023#ifdef CONFIG_BLK_DEV_ZONED
2024 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2025 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2026#endif
2027 __queue_discard_cmd(sbi, bdev, blkstart, blklen);
2028 return 0;
2029}
2030
2031static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2032 block_t blkstart, block_t blklen)
2033{
2034 sector_t start = blkstart, len = 0;
2035 struct block_device *bdev;
2036 struct seg_entry *se;
2037 unsigned int offset;
2038 block_t i;
2039 int err = 0;
2040
2041 bdev = f2fs_target_device(sbi, blkstart, NULL);
2042
2043 for (i = blkstart; i < blkstart + blklen; i++, len++) {
2044 if (i != start) {
2045 struct block_device *bdev2 =
2046 f2fs_target_device(sbi, i, NULL);
2047
2048 if (bdev2 != bdev) {
2049 err = __issue_discard_async(sbi, bdev,
2050 start, len);
2051 if (err)
2052 return err;
2053 bdev = bdev2;
2054 start = i;
2055 len = 0;
2056 }
2057 }
2058
2059 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2060 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2061
2062 if (f2fs_block_unit_discard(sbi) &&
2063 !f2fs_test_and_set_bit(offset, se->discard_map))
2064 sbi->discard_blks--;
2065 }
2066
2067 if (len)
2068 err = __issue_discard_async(sbi, bdev, start, len);
2069 return err;
2070}
2071
2072static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2073 bool check_only)
2074{
2075 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2076 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2077 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2078 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2079 unsigned long *discard_map = (unsigned long *)se->discard_map;
2080 unsigned long *dmap = SIT_I(sbi)->tmp_map;
2081 unsigned int start = 0, end = -1;
2082 bool force = (cpc->reason & CP_DISCARD);
2083 struct discard_entry *de = NULL;
2084 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2085 int i;
2086
2087 if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2088 !f2fs_hw_support_discard(sbi) ||
2089 !f2fs_block_unit_discard(sbi))
2090 return false;
2091
2092 if (!force) {
2093 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2094 SM_I(sbi)->dcc_info->nr_discards >=
2095 SM_I(sbi)->dcc_info->max_discards)
2096 return false;
2097 }
2098
2099 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2100 for (i = 0; i < entries; i++)
2101 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2102 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2103
2104 while (force || SM_I(sbi)->dcc_info->nr_discards <=
2105 SM_I(sbi)->dcc_info->max_discards) {
2106 start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2107 if (start >= BLKS_PER_SEG(sbi))
2108 break;
2109
2110 end = __find_rev_next_zero_bit(dmap,
2111 BLKS_PER_SEG(sbi), start + 1);
2112 if (force && start && end != BLKS_PER_SEG(sbi) &&
2113 (end - start) < cpc->trim_minlen)
2114 continue;
2115
2116 if (check_only)
2117 return true;
2118
2119 if (!de) {
2120 de = f2fs_kmem_cache_alloc(discard_entry_slab,
2121 GFP_F2FS_ZERO, true, NULL);
2122 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2123 list_add_tail(&de->list, head);
2124 }
2125
2126 for (i = start; i < end; i++)
2127 __set_bit_le(i, (void *)de->discard_map);
2128
2129 SM_I(sbi)->dcc_info->nr_discards += end - start;
2130 }
2131 return false;
2132}
2133
2134static void release_discard_addr(struct discard_entry *entry)
2135{
2136 list_del(&entry->list);
2137 kmem_cache_free(discard_entry_slab, entry);
2138}
2139
2140void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2141{
2142 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2143 struct discard_entry *entry, *this;
2144
2145 /* drop caches */
2146 list_for_each_entry_safe(entry, this, head, list)
2147 release_discard_addr(entry);
2148}
2149
2150/*
2151 * Should call f2fs_clear_prefree_segments after checkpoint is done.
2152 */
2153static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2154{
2155 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2156 unsigned int segno;
2157
2158 mutex_lock(&dirty_i->seglist_lock);
2159 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2160 __set_test_and_free(sbi, segno, false);
2161 mutex_unlock(&dirty_i->seglist_lock);
2162}
2163
2164void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2165 struct cp_control *cpc)
2166{
2167 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2168 struct list_head *head = &dcc->entry_list;
2169 struct discard_entry *entry, *this;
2170 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2171 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2172 unsigned int start = 0, end = -1;
2173 unsigned int secno, start_segno;
2174 bool force = (cpc->reason & CP_DISCARD);
2175 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2176 DISCARD_UNIT_SECTION;
2177
2178 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2179 section_alignment = true;
2180
2181 mutex_lock(&dirty_i->seglist_lock);
2182
2183 while (1) {
2184 int i;
2185
2186 if (section_alignment && end != -1)
2187 end--;
2188 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2189 if (start >= MAIN_SEGS(sbi))
2190 break;
2191 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2192 start + 1);
2193
2194 if (section_alignment) {
2195 start = rounddown(start, SEGS_PER_SEC(sbi));
2196 end = roundup(end, SEGS_PER_SEC(sbi));
2197 }
2198
2199 for (i = start; i < end; i++) {
2200 if (test_and_clear_bit(i, prefree_map))
2201 dirty_i->nr_dirty[PRE]--;
2202 }
2203
2204 if (!f2fs_realtime_discard_enable(sbi))
2205 continue;
2206
2207 if (force && start >= cpc->trim_start &&
2208 (end - 1) <= cpc->trim_end)
2209 continue;
2210
2211 /* Should cover 2MB zoned device for zone-based reset */
2212 if (!f2fs_sb_has_blkzoned(sbi) &&
2213 (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2214 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2215 SEGS_TO_BLKS(sbi, end - start));
2216 continue;
2217 }
2218next:
2219 secno = GET_SEC_FROM_SEG(sbi, start);
2220 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2221 if (!IS_CURSEC(sbi, secno) &&
2222 !get_valid_blocks(sbi, start, true))
2223 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2224 BLKS_PER_SEC(sbi));
2225
2226 start = start_segno + SEGS_PER_SEC(sbi);
2227 if (start < end)
2228 goto next;
2229 else
2230 end = start - 1;
2231 }
2232 mutex_unlock(&dirty_i->seglist_lock);
2233
2234 if (!f2fs_block_unit_discard(sbi))
2235 goto wakeup;
2236
2237 /* send small discards */
2238 list_for_each_entry_safe(entry, this, head, list) {
2239 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2240 bool is_valid = test_bit_le(0, entry->discard_map);
2241
2242find_next:
2243 if (is_valid) {
2244 next_pos = find_next_zero_bit_le(entry->discard_map,
2245 BLKS_PER_SEG(sbi), cur_pos);
2246 len = next_pos - cur_pos;
2247
2248 if (f2fs_sb_has_blkzoned(sbi) ||
2249 (force && len < cpc->trim_minlen))
2250 goto skip;
2251
2252 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2253 len);
2254 total_len += len;
2255 } else {
2256 next_pos = find_next_bit_le(entry->discard_map,
2257 BLKS_PER_SEG(sbi), cur_pos);
2258 }
2259skip:
2260 cur_pos = next_pos;
2261 is_valid = !is_valid;
2262
2263 if (cur_pos < BLKS_PER_SEG(sbi))
2264 goto find_next;
2265
2266 release_discard_addr(entry);
2267 dcc->nr_discards -= total_len;
2268 }
2269
2270wakeup:
2271 wake_up_discard_thread(sbi, false);
2272}
2273
2274int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2275{
2276 dev_t dev = sbi->sb->s_bdev->bd_dev;
2277 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2278 int err = 0;
2279
2280 if (f2fs_sb_has_readonly(sbi)) {
2281 f2fs_info(sbi,
2282 "Skip to start discard thread for readonly image");
2283 return 0;
2284 }
2285
2286 if (!f2fs_realtime_discard_enable(sbi))
2287 return 0;
2288
2289 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2290 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2291 if (IS_ERR(dcc->f2fs_issue_discard)) {
2292 err = PTR_ERR(dcc->f2fs_issue_discard);
2293 dcc->f2fs_issue_discard = NULL;
2294 }
2295
2296 return err;
2297}
2298
2299static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2300{
2301 struct discard_cmd_control *dcc;
2302 int err = 0, i;
2303
2304 if (SM_I(sbi)->dcc_info) {
2305 dcc = SM_I(sbi)->dcc_info;
2306 goto init_thread;
2307 }
2308
2309 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2310 if (!dcc)
2311 return -ENOMEM;
2312
2313 dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2314 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2315 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2316 dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2317 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2318 dcc->discard_granularity = BLKS_PER_SEG(sbi);
2319 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2320 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2321
2322 INIT_LIST_HEAD(&dcc->entry_list);
2323 for (i = 0; i < MAX_PLIST_NUM; i++)
2324 INIT_LIST_HEAD(&dcc->pend_list[i]);
2325 INIT_LIST_HEAD(&dcc->wait_list);
2326 INIT_LIST_HEAD(&dcc->fstrim_list);
2327 mutex_init(&dcc->cmd_lock);
2328 atomic_set(&dcc->issued_discard, 0);
2329 atomic_set(&dcc->queued_discard, 0);
2330 atomic_set(&dcc->discard_cmd_cnt, 0);
2331 dcc->nr_discards = 0;
2332 dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi));
2333 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2334 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2335 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2336 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2337 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2338 dcc->undiscard_blks = 0;
2339 dcc->next_pos = 0;
2340 dcc->root = RB_ROOT_CACHED;
2341 dcc->rbtree_check = false;
2342
2343 init_waitqueue_head(&dcc->discard_wait_queue);
2344 SM_I(sbi)->dcc_info = dcc;
2345init_thread:
2346 err = f2fs_start_discard_thread(sbi);
2347 if (err) {
2348 kfree(dcc);
2349 SM_I(sbi)->dcc_info = NULL;
2350 }
2351
2352 return err;
2353}
2354
2355static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2356{
2357 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2358
2359 if (!dcc)
2360 return;
2361
2362 f2fs_stop_discard_thread(sbi);
2363
2364 /*
2365 * Recovery can cache discard commands, so in error path of
2366 * fill_super(), it needs to give a chance to handle them.
2367 */
2368 f2fs_issue_discard_timeout(sbi);
2369
2370 kfree(dcc);
2371 SM_I(sbi)->dcc_info = NULL;
2372}
2373
2374static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2375{
2376 struct sit_info *sit_i = SIT_I(sbi);
2377
2378 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2379 sit_i->dirty_sentries++;
2380 return false;
2381 }
2382
2383 return true;
2384}
2385
2386static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2387 unsigned int segno, int modified)
2388{
2389 struct seg_entry *se = get_seg_entry(sbi, segno);
2390
2391 se->type = type;
2392 if (modified)
2393 __mark_sit_entry_dirty(sbi, segno);
2394}
2395
2396static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2397 block_t blkaddr)
2398{
2399 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2400
2401 if (segno == NULL_SEGNO)
2402 return 0;
2403 return get_seg_entry(sbi, segno)->mtime;
2404}
2405
2406static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2407 unsigned long long old_mtime)
2408{
2409 struct seg_entry *se;
2410 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2411 unsigned long long ctime = get_mtime(sbi, false);
2412 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2413
2414 if (segno == NULL_SEGNO)
2415 return;
2416
2417 se = get_seg_entry(sbi, segno);
2418
2419 if (!se->mtime)
2420 se->mtime = mtime;
2421 else
2422 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2423 se->valid_blocks + 1);
2424
2425 if (ctime > SIT_I(sbi)->max_mtime)
2426 SIT_I(sbi)->max_mtime = ctime;
2427}
2428
2429static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2430{
2431 struct seg_entry *se;
2432 unsigned int segno, offset;
2433 long int new_vblocks;
2434 bool exist;
2435#ifdef CONFIG_F2FS_CHECK_FS
2436 bool mir_exist;
2437#endif
2438
2439 segno = GET_SEGNO(sbi, blkaddr);
2440 if (segno == NULL_SEGNO)
2441 return;
2442
2443 se = get_seg_entry(sbi, segno);
2444 new_vblocks = se->valid_blocks + del;
2445 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2446
2447 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2448 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2449
2450 se->valid_blocks = new_vblocks;
2451
2452 /* Update valid block bitmap */
2453 if (del > 0) {
2454 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2455#ifdef CONFIG_F2FS_CHECK_FS
2456 mir_exist = f2fs_test_and_set_bit(offset,
2457 se->cur_valid_map_mir);
2458 if (unlikely(exist != mir_exist)) {
2459 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2460 blkaddr, exist);
2461 f2fs_bug_on(sbi, 1);
2462 }
2463#endif
2464 if (unlikely(exist)) {
2465 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2466 blkaddr);
2467 f2fs_bug_on(sbi, 1);
2468 se->valid_blocks--;
2469 del = 0;
2470 }
2471
2472 if (f2fs_block_unit_discard(sbi) &&
2473 !f2fs_test_and_set_bit(offset, se->discard_map))
2474 sbi->discard_blks--;
2475
2476 /*
2477 * SSR should never reuse block which is checkpointed
2478 * or newly invalidated.
2479 */
2480 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2481 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2482 se->ckpt_valid_blocks++;
2483 }
2484 } else {
2485 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2486#ifdef CONFIG_F2FS_CHECK_FS
2487 mir_exist = f2fs_test_and_clear_bit(offset,
2488 se->cur_valid_map_mir);
2489 if (unlikely(exist != mir_exist)) {
2490 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2491 blkaddr, exist);
2492 f2fs_bug_on(sbi, 1);
2493 }
2494#endif
2495 if (unlikely(!exist)) {
2496 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2497 blkaddr);
2498 f2fs_bug_on(sbi, 1);
2499 se->valid_blocks++;
2500 del = 0;
2501 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2502 /*
2503 * If checkpoints are off, we must not reuse data that
2504 * was used in the previous checkpoint. If it was used
2505 * before, we must track that to know how much space we
2506 * really have.
2507 */
2508 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2509 spin_lock(&sbi->stat_lock);
2510 sbi->unusable_block_count++;
2511 spin_unlock(&sbi->stat_lock);
2512 }
2513 }
2514
2515 if (f2fs_block_unit_discard(sbi) &&
2516 f2fs_test_and_clear_bit(offset, se->discard_map))
2517 sbi->discard_blks++;
2518 }
2519 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2520 se->ckpt_valid_blocks += del;
2521
2522 __mark_sit_entry_dirty(sbi, segno);
2523
2524 /* update total number of valid blocks to be written in ckpt area */
2525 SIT_I(sbi)->written_valid_blocks += del;
2526
2527 if (__is_large_section(sbi))
2528 get_sec_entry(sbi, segno)->valid_blocks += del;
2529}
2530
2531void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2532{
2533 unsigned int segno = GET_SEGNO(sbi, addr);
2534 struct sit_info *sit_i = SIT_I(sbi);
2535
2536 f2fs_bug_on(sbi, addr == NULL_ADDR);
2537 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2538 return;
2539
2540 f2fs_invalidate_internal_cache(sbi, addr);
2541
2542 /* add it into sit main buffer */
2543 down_write(&sit_i->sentry_lock);
2544
2545 update_segment_mtime(sbi, addr, 0);
2546 update_sit_entry(sbi, addr, -1);
2547
2548 /* add it into dirty seglist */
2549 locate_dirty_segment(sbi, segno);
2550
2551 up_write(&sit_i->sentry_lock);
2552}
2553
2554bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2555{
2556 struct sit_info *sit_i = SIT_I(sbi);
2557 unsigned int segno, offset;
2558 struct seg_entry *se;
2559 bool is_cp = false;
2560
2561 if (!__is_valid_data_blkaddr(blkaddr))
2562 return true;
2563
2564 down_read(&sit_i->sentry_lock);
2565
2566 segno = GET_SEGNO(sbi, blkaddr);
2567 se = get_seg_entry(sbi, segno);
2568 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2569
2570 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2571 is_cp = true;
2572
2573 up_read(&sit_i->sentry_lock);
2574
2575 return is_cp;
2576}
2577
2578static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2579{
2580 struct curseg_info *curseg = CURSEG_I(sbi, type);
2581
2582 if (sbi->ckpt->alloc_type[type] == SSR)
2583 return BLKS_PER_SEG(sbi);
2584 return curseg->next_blkoff;
2585}
2586
2587/*
2588 * Calculate the number of current summary pages for writing
2589 */
2590int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2591{
2592 int valid_sum_count = 0;
2593 int i, sum_in_page;
2594
2595 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2596 if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2597 valid_sum_count +=
2598 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2599 else
2600 valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2601 }
2602
2603 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2604 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2605 if (valid_sum_count <= sum_in_page)
2606 return 1;
2607 else if ((valid_sum_count - sum_in_page) <=
2608 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2609 return 2;
2610 return 3;
2611}
2612
2613/*
2614 * Caller should put this summary page
2615 */
2616struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2617{
2618 if (unlikely(f2fs_cp_error(sbi)))
2619 return ERR_PTR(-EIO);
2620 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2621}
2622
2623void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2624 void *src, block_t blk_addr)
2625{
2626 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2627
2628 memcpy(page_address(page), src, PAGE_SIZE);
2629 set_page_dirty(page);
2630 f2fs_put_page(page, 1);
2631}
2632
2633static void write_sum_page(struct f2fs_sb_info *sbi,
2634 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2635{
2636 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2637}
2638
2639static void write_current_sum_page(struct f2fs_sb_info *sbi,
2640 int type, block_t blk_addr)
2641{
2642 struct curseg_info *curseg = CURSEG_I(sbi, type);
2643 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2644 struct f2fs_summary_block *src = curseg->sum_blk;
2645 struct f2fs_summary_block *dst;
2646
2647 dst = (struct f2fs_summary_block *)page_address(page);
2648 memset(dst, 0, PAGE_SIZE);
2649
2650 mutex_lock(&curseg->curseg_mutex);
2651
2652 down_read(&curseg->journal_rwsem);
2653 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2654 up_read(&curseg->journal_rwsem);
2655
2656 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2657 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2658
2659 mutex_unlock(&curseg->curseg_mutex);
2660
2661 set_page_dirty(page);
2662 f2fs_put_page(page, 1);
2663}
2664
2665static int is_next_segment_free(struct f2fs_sb_info *sbi,
2666 struct curseg_info *curseg)
2667{
2668 unsigned int segno = curseg->segno + 1;
2669 struct free_segmap_info *free_i = FREE_I(sbi);
2670
2671 if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2672 return !test_bit(segno, free_i->free_segmap);
2673 return 0;
2674}
2675
2676/*
2677 * Find a new segment from the free segments bitmap to right order
2678 * This function should be returned with success, otherwise BUG
2679 */
2680static int get_new_segment(struct f2fs_sb_info *sbi,
2681 unsigned int *newseg, bool new_sec, bool pinning)
2682{
2683 struct free_segmap_info *free_i = FREE_I(sbi);
2684 unsigned int segno, secno, zoneno;
2685 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2686 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2687 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2688 bool init = true;
2689 int i;
2690 int ret = 0;
2691
2692 spin_lock(&free_i->segmap_lock);
2693
2694 if (time_to_inject(sbi, FAULT_NO_SEGMENT)) {
2695 ret = -ENOSPC;
2696 goto out_unlock;
2697 }
2698
2699 if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2700 segno = find_next_zero_bit(free_i->free_segmap,
2701 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2702 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2703 goto got_it;
2704 }
2705
2706#ifdef CONFIG_BLK_DEV_ZONED
2707 /*
2708 * If we format f2fs on zoned storage, let's try to get pinned sections
2709 * from beginning of the storage, which should be a conventional one.
2710 */
2711 if (f2fs_sb_has_blkzoned(sbi)) {
2712 /* Prioritize writing to conventional zones */
2713 if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_PRIOR_CONV || pinning)
2714 segno = 0;
2715 else
2716 segno = max(sbi->first_zoned_segno, *newseg);
2717 hint = GET_SEC_FROM_SEG(sbi, segno);
2718 }
2719#endif
2720
2721find_other_zone:
2722 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2723
2724#ifdef CONFIG_BLK_DEV_ZONED
2725 if (secno >= MAIN_SECS(sbi) && f2fs_sb_has_blkzoned(sbi)) {
2726 /* Write only to sequential zones */
2727 if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_ONLY_SEQ) {
2728 hint = GET_SEC_FROM_SEG(sbi, sbi->first_zoned_segno);
2729 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2730 } else
2731 secno = find_first_zero_bit(free_i->free_secmap,
2732 MAIN_SECS(sbi));
2733 if (secno >= MAIN_SECS(sbi)) {
2734 ret = -ENOSPC;
2735 f2fs_bug_on(sbi, 1);
2736 goto out_unlock;
2737 }
2738 }
2739#endif
2740
2741 if (secno >= MAIN_SECS(sbi)) {
2742 secno = find_first_zero_bit(free_i->free_secmap,
2743 MAIN_SECS(sbi));
2744 if (secno >= MAIN_SECS(sbi)) {
2745 ret = -ENOSPC;
2746 f2fs_bug_on(sbi, 1);
2747 goto out_unlock;
2748 }
2749 }
2750 segno = GET_SEG_FROM_SEC(sbi, secno);
2751 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2752
2753 /* give up on finding another zone */
2754 if (!init)
2755 goto got_it;
2756 if (sbi->secs_per_zone == 1)
2757 goto got_it;
2758 if (zoneno == old_zoneno)
2759 goto got_it;
2760 for (i = 0; i < NR_CURSEG_TYPE; i++)
2761 if (CURSEG_I(sbi, i)->zone == zoneno)
2762 break;
2763
2764 if (i < NR_CURSEG_TYPE) {
2765 /* zone is in user, try another */
2766 if (zoneno + 1 >= total_zones)
2767 hint = 0;
2768 else
2769 hint = (zoneno + 1) * sbi->secs_per_zone;
2770 init = false;
2771 goto find_other_zone;
2772 }
2773got_it:
2774 /* set it as dirty segment in free segmap */
2775 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2776
2777 /* no free section in conventional zone */
2778 if (new_sec && pinning &&
2779 !f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) {
2780 ret = -EAGAIN;
2781 goto out_unlock;
2782 }
2783 __set_inuse(sbi, segno);
2784 *newseg = segno;
2785out_unlock:
2786 spin_unlock(&free_i->segmap_lock);
2787
2788 if (ret == -ENOSPC)
2789 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2790 return ret;
2791}
2792
2793static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2794{
2795 struct curseg_info *curseg = CURSEG_I(sbi, type);
2796 struct summary_footer *sum_footer;
2797 unsigned short seg_type = curseg->seg_type;
2798
2799 /* only happen when get_new_segment() fails */
2800 if (curseg->next_segno == NULL_SEGNO)
2801 return;
2802
2803 curseg->inited = true;
2804 curseg->segno = curseg->next_segno;
2805 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2806 curseg->next_blkoff = 0;
2807 curseg->next_segno = NULL_SEGNO;
2808
2809 sum_footer = &(curseg->sum_blk->footer);
2810 memset(sum_footer, 0, sizeof(struct summary_footer));
2811
2812 sanity_check_seg_type(sbi, seg_type);
2813
2814 if (IS_DATASEG(seg_type))
2815 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2816 if (IS_NODESEG(seg_type))
2817 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2818 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2819}
2820
2821static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2822{
2823 struct curseg_info *curseg = CURSEG_I(sbi, type);
2824 unsigned short seg_type = curseg->seg_type;
2825
2826 sanity_check_seg_type(sbi, seg_type);
2827 if (__is_large_section(sbi)) {
2828 if (f2fs_need_rand_seg(sbi)) {
2829 unsigned int hint = GET_SEC_FROM_SEG(sbi, curseg->segno);
2830
2831 if (GET_SEC_FROM_SEG(sbi, curseg->segno + 1) != hint)
2832 return curseg->segno;
2833 return get_random_u32_inclusive(curseg->segno + 1,
2834 GET_SEG_FROM_SEC(sbi, hint + 1) - 1);
2835 }
2836 return curseg->segno;
2837 } else if (f2fs_need_rand_seg(sbi)) {
2838 return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2839 }
2840
2841 /* inmem log may not locate on any segment after mount */
2842 if (!curseg->inited)
2843 return 0;
2844
2845 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2846 return 0;
2847
2848 if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2849 return 0;
2850
2851 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2852 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2853
2854 /* find segments from 0 to reuse freed segments */
2855 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2856 return 0;
2857
2858 return curseg->segno;
2859}
2860
2861/*
2862 * Allocate a current working segment.
2863 * This function always allocates a free segment in LFS manner.
2864 */
2865static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2866{
2867 struct curseg_info *curseg = CURSEG_I(sbi, type);
2868 unsigned int segno = curseg->segno;
2869 bool pinning = type == CURSEG_COLD_DATA_PINNED;
2870 int ret;
2871
2872 if (curseg->inited)
2873 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno));
2874
2875 segno = __get_next_segno(sbi, type);
2876 ret = get_new_segment(sbi, &segno, new_sec, pinning);
2877 if (ret) {
2878 if (ret == -ENOSPC)
2879 curseg->segno = NULL_SEGNO;
2880 return ret;
2881 }
2882
2883 curseg->next_segno = segno;
2884 reset_curseg(sbi, type, 1);
2885 curseg->alloc_type = LFS;
2886 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2887 curseg->fragment_remained_chunk =
2888 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2889 return 0;
2890}
2891
2892static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2893 int segno, block_t start)
2894{
2895 struct seg_entry *se = get_seg_entry(sbi, segno);
2896 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2897 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2898 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2899 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2900 int i;
2901
2902 for (i = 0; i < entries; i++)
2903 target_map[i] = ckpt_map[i] | cur_map[i];
2904
2905 return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
2906}
2907
2908static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2909 struct curseg_info *seg)
2910{
2911 return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2912}
2913
2914bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2915{
2916 return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
2917}
2918
2919/*
2920 * This function always allocates a used segment(from dirty seglist) by SSR
2921 * manner, so it should recover the existing segment information of valid blocks
2922 */
2923static int change_curseg(struct f2fs_sb_info *sbi, int type)
2924{
2925 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2926 struct curseg_info *curseg = CURSEG_I(sbi, type);
2927 unsigned int new_segno = curseg->next_segno;
2928 struct f2fs_summary_block *sum_node;
2929 struct page *sum_page;
2930
2931 if (curseg->inited)
2932 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2933
2934 __set_test_and_inuse(sbi, new_segno);
2935
2936 mutex_lock(&dirty_i->seglist_lock);
2937 __remove_dirty_segment(sbi, new_segno, PRE);
2938 __remove_dirty_segment(sbi, new_segno, DIRTY);
2939 mutex_unlock(&dirty_i->seglist_lock);
2940
2941 reset_curseg(sbi, type, 1);
2942 curseg->alloc_type = SSR;
2943 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2944
2945 sum_page = f2fs_get_sum_page(sbi, new_segno);
2946 if (IS_ERR(sum_page)) {
2947 /* GC won't be able to use stale summary pages by cp_error */
2948 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2949 return PTR_ERR(sum_page);
2950 }
2951 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2952 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2953 f2fs_put_page(sum_page, 1);
2954 return 0;
2955}
2956
2957static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2958 int alloc_mode, unsigned long long age);
2959
2960static int get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2961 int target_type, int alloc_mode,
2962 unsigned long long age)
2963{
2964 struct curseg_info *curseg = CURSEG_I(sbi, type);
2965 int ret = 0;
2966
2967 curseg->seg_type = target_type;
2968
2969 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2970 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2971
2972 curseg->seg_type = se->type;
2973 ret = change_curseg(sbi, type);
2974 } else {
2975 /* allocate cold segment by default */
2976 curseg->seg_type = CURSEG_COLD_DATA;
2977 ret = new_curseg(sbi, type, true);
2978 }
2979 stat_inc_seg_type(sbi, curseg);
2980 return ret;
2981}
2982
2983static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi, bool force)
2984{
2985 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2986 int ret = 0;
2987
2988 if (!sbi->am.atgc_enabled && !force)
2989 return 0;
2990
2991 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2992
2993 mutex_lock(&curseg->curseg_mutex);
2994 down_write(&SIT_I(sbi)->sentry_lock);
2995
2996 ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC,
2997 CURSEG_COLD_DATA, SSR, 0);
2998
2999 up_write(&SIT_I(sbi)->sentry_lock);
3000 mutex_unlock(&curseg->curseg_mutex);
3001
3002 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3003 return ret;
3004}
3005
3006int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
3007{
3008 return __f2fs_init_atgc_curseg(sbi, false);
3009}
3010
3011int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi)
3012{
3013 int ret;
3014
3015 if (!test_opt(sbi, ATGC))
3016 return 0;
3017 if (sbi->am.atgc_enabled)
3018 return 0;
3019 if (le64_to_cpu(F2FS_CKPT(sbi)->elapsed_time) <
3020 sbi->am.age_threshold)
3021 return 0;
3022
3023 ret = __f2fs_init_atgc_curseg(sbi, true);
3024 if (!ret) {
3025 sbi->am.atgc_enabled = true;
3026 f2fs_info(sbi, "reenabled age threshold GC");
3027 }
3028 return ret;
3029}
3030
3031static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3032{
3033 struct curseg_info *curseg = CURSEG_I(sbi, type);
3034
3035 mutex_lock(&curseg->curseg_mutex);
3036 if (!curseg->inited)
3037 goto out;
3038
3039 if (get_valid_blocks(sbi, curseg->segno, false)) {
3040 write_sum_page(sbi, curseg->sum_blk,
3041 GET_SUM_BLOCK(sbi, curseg->segno));
3042 } else {
3043 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3044 __set_test_and_free(sbi, curseg->segno, true);
3045 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3046 }
3047out:
3048 mutex_unlock(&curseg->curseg_mutex);
3049}
3050
3051void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
3052{
3053 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3054
3055 if (sbi->am.atgc_enabled)
3056 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3057}
3058
3059static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3060{
3061 struct curseg_info *curseg = CURSEG_I(sbi, type);
3062
3063 mutex_lock(&curseg->curseg_mutex);
3064 if (!curseg->inited)
3065 goto out;
3066 if (get_valid_blocks(sbi, curseg->segno, false))
3067 goto out;
3068
3069 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3070 __set_test_and_inuse(sbi, curseg->segno);
3071 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3072out:
3073 mutex_unlock(&curseg->curseg_mutex);
3074}
3075
3076void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
3077{
3078 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3079
3080 if (sbi->am.atgc_enabled)
3081 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3082}
3083
3084static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3085 int alloc_mode, unsigned long long age)
3086{
3087 struct curseg_info *curseg = CURSEG_I(sbi, type);
3088 unsigned segno = NULL_SEGNO;
3089 unsigned short seg_type = curseg->seg_type;
3090 int i, cnt;
3091 bool reversed = false;
3092
3093 sanity_check_seg_type(sbi, seg_type);
3094
3095 /* f2fs_need_SSR() already forces to do this */
3096 if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type,
3097 alloc_mode, age, false)) {
3098 curseg->next_segno = segno;
3099 return 1;
3100 }
3101
3102 /* For node segments, let's do SSR more intensively */
3103 if (IS_NODESEG(seg_type)) {
3104 if (seg_type >= CURSEG_WARM_NODE) {
3105 reversed = true;
3106 i = CURSEG_COLD_NODE;
3107 } else {
3108 i = CURSEG_HOT_NODE;
3109 }
3110 cnt = NR_CURSEG_NODE_TYPE;
3111 } else {
3112 if (seg_type >= CURSEG_WARM_DATA) {
3113 reversed = true;
3114 i = CURSEG_COLD_DATA;
3115 } else {
3116 i = CURSEG_HOT_DATA;
3117 }
3118 cnt = NR_CURSEG_DATA_TYPE;
3119 }
3120
3121 for (; cnt-- > 0; reversed ? i-- : i++) {
3122 if (i == seg_type)
3123 continue;
3124 if (!f2fs_get_victim(sbi, &segno, BG_GC, i,
3125 alloc_mode, age, false)) {
3126 curseg->next_segno = segno;
3127 return 1;
3128 }
3129 }
3130
3131 /* find valid_blocks=0 in dirty list */
3132 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3133 segno = get_free_segment(sbi);
3134 if (segno != NULL_SEGNO) {
3135 curseg->next_segno = segno;
3136 return 1;
3137 }
3138 }
3139 return 0;
3140}
3141
3142static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3143{
3144 struct curseg_info *curseg = CURSEG_I(sbi, type);
3145
3146 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3147 curseg->seg_type == CURSEG_WARM_NODE)
3148 return true;
3149 if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) &&
3150 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3151 return true;
3152 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3153 return true;
3154 return false;
3155}
3156
3157int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3158 unsigned int start, unsigned int end)
3159{
3160 struct curseg_info *curseg = CURSEG_I(sbi, type);
3161 unsigned int segno;
3162 int ret = 0;
3163
3164 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3165 mutex_lock(&curseg->curseg_mutex);
3166 down_write(&SIT_I(sbi)->sentry_lock);
3167
3168 segno = CURSEG_I(sbi, type)->segno;
3169 if (segno < start || segno > end)
3170 goto unlock;
3171
3172 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3173 ret = change_curseg(sbi, type);
3174 else
3175 ret = new_curseg(sbi, type, true);
3176
3177 stat_inc_seg_type(sbi, curseg);
3178
3179 locate_dirty_segment(sbi, segno);
3180unlock:
3181 up_write(&SIT_I(sbi)->sentry_lock);
3182
3183 if (segno != curseg->segno)
3184 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3185 type, segno, curseg->segno);
3186
3187 mutex_unlock(&curseg->curseg_mutex);
3188 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3189 return ret;
3190}
3191
3192static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3193 bool new_sec, bool force)
3194{
3195 struct curseg_info *curseg = CURSEG_I(sbi, type);
3196 unsigned int old_segno;
3197 int err = 0;
3198
3199 if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited)
3200 goto allocate;
3201
3202 if (!force && curseg->inited &&
3203 !curseg->next_blkoff &&
3204 !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3205 !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3206 return 0;
3207
3208allocate:
3209 old_segno = curseg->segno;
3210 err = new_curseg(sbi, type, true);
3211 if (err)
3212 return err;
3213 stat_inc_seg_type(sbi, curseg);
3214 locate_dirty_segment(sbi, old_segno);
3215 return 0;
3216}
3217
3218int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3219{
3220 int ret;
3221
3222 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3223 down_write(&SIT_I(sbi)->sentry_lock);
3224 ret = __allocate_new_segment(sbi, type, true, force);
3225 up_write(&SIT_I(sbi)->sentry_lock);
3226 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3227
3228 return ret;
3229}
3230
3231int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3232{
3233 int err;
3234 bool gc_required = true;
3235
3236retry:
3237 f2fs_lock_op(sbi);
3238 err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3239 f2fs_unlock_op(sbi);
3240
3241 if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) {
3242 f2fs_down_write(&sbi->gc_lock);
3243 err = f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk),
3244 true, ZONED_PIN_SEC_REQUIRED_COUNT);
3245 f2fs_up_write(&sbi->gc_lock);
3246
3247 gc_required = false;
3248 if (!err)
3249 goto retry;
3250 }
3251
3252 return err;
3253}
3254
3255int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3256{
3257 int i;
3258 int err = 0;
3259
3260 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3261 down_write(&SIT_I(sbi)->sentry_lock);
3262 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3263 err += __allocate_new_segment(sbi, i, false, false);
3264 up_write(&SIT_I(sbi)->sentry_lock);
3265 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3266
3267 return err;
3268}
3269
3270bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3271 struct cp_control *cpc)
3272{
3273 __u64 trim_start = cpc->trim_start;
3274 bool has_candidate = false;
3275
3276 down_write(&SIT_I(sbi)->sentry_lock);
3277 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3278 if (add_discard_addrs(sbi, cpc, true)) {
3279 has_candidate = true;
3280 break;
3281 }
3282 }
3283 up_write(&SIT_I(sbi)->sentry_lock);
3284
3285 cpc->trim_start = trim_start;
3286 return has_candidate;
3287}
3288
3289static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3290 struct discard_policy *dpolicy,
3291 unsigned int start, unsigned int end)
3292{
3293 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3294 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3295 struct rb_node **insert_p = NULL, *insert_parent = NULL;
3296 struct discard_cmd *dc;
3297 struct blk_plug plug;
3298 int issued;
3299 unsigned int trimmed = 0;
3300
3301next:
3302 issued = 0;
3303
3304 mutex_lock(&dcc->cmd_lock);
3305 if (unlikely(dcc->rbtree_check))
3306 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3307
3308 dc = __lookup_discard_cmd_ret(&dcc->root, start,
3309 &prev_dc, &next_dc, &insert_p, &insert_parent);
3310 if (!dc)
3311 dc = next_dc;
3312
3313 blk_start_plug(&plug);
3314
3315 while (dc && dc->di.lstart <= end) {
3316 struct rb_node *node;
3317 int err = 0;
3318
3319 if (dc->di.len < dpolicy->granularity)
3320 goto skip;
3321
3322 if (dc->state != D_PREP) {
3323 list_move_tail(&dc->list, &dcc->fstrim_list);
3324 goto skip;
3325 }
3326
3327 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3328
3329 if (issued >= dpolicy->max_requests) {
3330 start = dc->di.lstart + dc->di.len;
3331
3332 if (err)
3333 __remove_discard_cmd(sbi, dc);
3334
3335 blk_finish_plug(&plug);
3336 mutex_unlock(&dcc->cmd_lock);
3337 trimmed += __wait_all_discard_cmd(sbi, NULL);
3338 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3339 goto next;
3340 }
3341skip:
3342 node = rb_next(&dc->rb_node);
3343 if (err)
3344 __remove_discard_cmd(sbi, dc);
3345 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3346
3347 if (fatal_signal_pending(current))
3348 break;
3349 }
3350
3351 blk_finish_plug(&plug);
3352 mutex_unlock(&dcc->cmd_lock);
3353
3354 return trimmed;
3355}
3356
3357int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3358{
3359 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3360 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3361 unsigned int start_segno, end_segno;
3362 block_t start_block, end_block;
3363 struct cp_control cpc;
3364 struct discard_policy dpolicy;
3365 unsigned long long trimmed = 0;
3366 int err = 0;
3367 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3368
3369 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3370 return -EINVAL;
3371
3372 if (end < MAIN_BLKADDR(sbi))
3373 goto out;
3374
3375 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3376 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3377 return -EFSCORRUPTED;
3378 }
3379
3380 /* start/end segment number in main_area */
3381 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3382 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3383 GET_SEGNO(sbi, end);
3384 if (need_align) {
3385 start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3386 end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3387 }
3388
3389 cpc.reason = CP_DISCARD;
3390 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3391 cpc.trim_start = start_segno;
3392 cpc.trim_end = end_segno;
3393
3394 if (sbi->discard_blks == 0)
3395 goto out;
3396
3397 f2fs_down_write(&sbi->gc_lock);
3398 stat_inc_cp_call_count(sbi, TOTAL_CALL);
3399 err = f2fs_write_checkpoint(sbi, &cpc);
3400 f2fs_up_write(&sbi->gc_lock);
3401 if (err)
3402 goto out;
3403
3404 /*
3405 * We filed discard candidates, but actually we don't need to wait for
3406 * all of them, since they'll be issued in idle time along with runtime
3407 * discard option. User configuration looks like using runtime discard
3408 * or periodic fstrim instead of it.
3409 */
3410 if (f2fs_realtime_discard_enable(sbi))
3411 goto out;
3412
3413 start_block = START_BLOCK(sbi, start_segno);
3414 end_block = START_BLOCK(sbi, end_segno + 1);
3415
3416 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3417 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3418 start_block, end_block);
3419
3420 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3421 start_block, end_block);
3422out:
3423 if (!err)
3424 range->len = F2FS_BLK_TO_BYTES(trimmed);
3425 return err;
3426}
3427
3428int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint)
3429{
3430 if (F2FS_OPTION(sbi).active_logs == 2)
3431 return CURSEG_HOT_DATA;
3432 else if (F2FS_OPTION(sbi).active_logs == 4)
3433 return CURSEG_COLD_DATA;
3434
3435 /* active_log == 6 */
3436 switch (hint) {
3437 case WRITE_LIFE_SHORT:
3438 return CURSEG_HOT_DATA;
3439 case WRITE_LIFE_EXTREME:
3440 return CURSEG_COLD_DATA;
3441 default:
3442 return CURSEG_WARM_DATA;
3443 }
3444}
3445
3446/*
3447 * This returns write hints for each segment type. This hints will be
3448 * passed down to block layer as below by default.
3449 *
3450 * User F2FS Block
3451 * ---- ---- -----
3452 * META WRITE_LIFE_NONE|REQ_META
3453 * HOT_NODE WRITE_LIFE_NONE
3454 * WARM_NODE WRITE_LIFE_MEDIUM
3455 * COLD_NODE WRITE_LIFE_LONG
3456 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3457 * extension list " "
3458 *
3459 * -- buffered io
3460 * COLD_DATA WRITE_LIFE_EXTREME
3461 * HOT_DATA WRITE_LIFE_SHORT
3462 * WARM_DATA WRITE_LIFE_NOT_SET
3463 *
3464 * -- direct io
3465 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3466 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3467 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3468 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3469 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3470 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3471 */
3472enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3473 enum page_type type, enum temp_type temp)
3474{
3475 switch (type) {
3476 case DATA:
3477 switch (temp) {
3478 case WARM:
3479 return WRITE_LIFE_NOT_SET;
3480 case HOT:
3481 return WRITE_LIFE_SHORT;
3482 case COLD:
3483 return WRITE_LIFE_EXTREME;
3484 default:
3485 return WRITE_LIFE_NONE;
3486 }
3487 case NODE:
3488 switch (temp) {
3489 case WARM:
3490 return WRITE_LIFE_MEDIUM;
3491 case HOT:
3492 return WRITE_LIFE_NONE;
3493 case COLD:
3494 return WRITE_LIFE_LONG;
3495 default:
3496 return WRITE_LIFE_NONE;
3497 }
3498 case META:
3499 return WRITE_LIFE_NONE;
3500 default:
3501 return WRITE_LIFE_NONE;
3502 }
3503}
3504
3505static int __get_segment_type_2(struct f2fs_io_info *fio)
3506{
3507 if (fio->type == DATA)
3508 return CURSEG_HOT_DATA;
3509 else
3510 return CURSEG_HOT_NODE;
3511}
3512
3513static int __get_segment_type_4(struct f2fs_io_info *fio)
3514{
3515 if (fio->type == DATA) {
3516 struct inode *inode = fio->page->mapping->host;
3517
3518 if (S_ISDIR(inode->i_mode))
3519 return CURSEG_HOT_DATA;
3520 else
3521 return CURSEG_COLD_DATA;
3522 } else {
3523 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3524 return CURSEG_WARM_NODE;
3525 else
3526 return CURSEG_COLD_NODE;
3527 }
3528}
3529
3530static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3531{
3532 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3533 struct extent_info ei = {};
3534
3535 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3536 if (!ei.age)
3537 return NO_CHECK_TYPE;
3538 if (ei.age <= sbi->hot_data_age_threshold)
3539 return CURSEG_HOT_DATA;
3540 if (ei.age <= sbi->warm_data_age_threshold)
3541 return CURSEG_WARM_DATA;
3542 return CURSEG_COLD_DATA;
3543 }
3544 return NO_CHECK_TYPE;
3545}
3546
3547static int __get_segment_type_6(struct f2fs_io_info *fio)
3548{
3549 if (fio->type == DATA) {
3550 struct inode *inode = fio->page->mapping->host;
3551 int type;
3552
3553 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3554 return CURSEG_COLD_DATA_PINNED;
3555
3556 if (page_private_gcing(fio->page)) {
3557 if (fio->sbi->am.atgc_enabled &&
3558 (fio->io_type == FS_DATA_IO) &&
3559 (fio->sbi->gc_mode != GC_URGENT_HIGH) &&
3560 __is_valid_data_blkaddr(fio->old_blkaddr) &&
3561 !is_inode_flag_set(inode, FI_OPU_WRITE))
3562 return CURSEG_ALL_DATA_ATGC;
3563 else
3564 return CURSEG_COLD_DATA;
3565 }
3566 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3567 return CURSEG_COLD_DATA;
3568
3569 type = __get_age_segment_type(inode,
3570 page_folio(fio->page)->index);
3571 if (type != NO_CHECK_TYPE)
3572 return type;
3573
3574 if (file_is_hot(inode) ||
3575 is_inode_flag_set(inode, FI_HOT_DATA) ||
3576 f2fs_is_cow_file(inode))
3577 return CURSEG_HOT_DATA;
3578 return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
3579 inode->i_write_hint);
3580 } else {
3581 if (IS_DNODE(fio->page))
3582 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3583 CURSEG_HOT_NODE;
3584 return CURSEG_COLD_NODE;
3585 }
3586}
3587
3588enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3589 enum log_type type)
3590{
3591 struct curseg_info *curseg = CURSEG_I(sbi, type);
3592 enum temp_type temp = COLD;
3593
3594 switch (curseg->seg_type) {
3595 case CURSEG_HOT_NODE:
3596 case CURSEG_HOT_DATA:
3597 temp = HOT;
3598 break;
3599 case CURSEG_WARM_NODE:
3600 case CURSEG_WARM_DATA:
3601 temp = WARM;
3602 break;
3603 case CURSEG_COLD_NODE:
3604 case CURSEG_COLD_DATA:
3605 temp = COLD;
3606 break;
3607 default:
3608 f2fs_bug_on(sbi, 1);
3609 }
3610
3611 return temp;
3612}
3613
3614static int __get_segment_type(struct f2fs_io_info *fio)
3615{
3616 enum log_type type = CURSEG_HOT_DATA;
3617
3618 switch (F2FS_OPTION(fio->sbi).active_logs) {
3619 case 2:
3620 type = __get_segment_type_2(fio);
3621 break;
3622 case 4:
3623 type = __get_segment_type_4(fio);
3624 break;
3625 case 6:
3626 type = __get_segment_type_6(fio);
3627 break;
3628 default:
3629 f2fs_bug_on(fio->sbi, true);
3630 }
3631
3632 fio->temp = f2fs_get_segment_temp(fio->sbi, type);
3633
3634 return type;
3635}
3636
3637static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3638 struct curseg_info *seg)
3639{
3640 /* To allocate block chunks in different sizes, use random number */
3641 if (--seg->fragment_remained_chunk > 0)
3642 return;
3643
3644 seg->fragment_remained_chunk =
3645 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3646 seg->next_blkoff +=
3647 get_random_u32_inclusive(1, sbi->max_fragment_hole);
3648}
3649
3650static void reset_curseg_fields(struct curseg_info *curseg)
3651{
3652 curseg->inited = false;
3653 curseg->segno = NULL_SEGNO;
3654 curseg->next_segno = 0;
3655}
3656
3657int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3658 block_t old_blkaddr, block_t *new_blkaddr,
3659 struct f2fs_summary *sum, int type,
3660 struct f2fs_io_info *fio)
3661{
3662 struct sit_info *sit_i = SIT_I(sbi);
3663 struct curseg_info *curseg = CURSEG_I(sbi, type);
3664 unsigned long long old_mtime;
3665 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3666 struct seg_entry *se = NULL;
3667 bool segment_full = false;
3668 int ret = 0;
3669
3670 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3671
3672 mutex_lock(&curseg->curseg_mutex);
3673 down_write(&sit_i->sentry_lock);
3674
3675 if (curseg->segno == NULL_SEGNO) {
3676 ret = -ENOSPC;
3677 goto out_err;
3678 }
3679
3680 if (from_gc) {
3681 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3682 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3683 sanity_check_seg_type(sbi, se->type);
3684 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3685 }
3686 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3687
3688 f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3689
3690 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3691
3692 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3693 if (curseg->alloc_type == SSR) {
3694 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3695 } else {
3696 curseg->next_blkoff++;
3697 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3698 f2fs_randomize_chunk(sbi, curseg);
3699 }
3700 if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3701 segment_full = true;
3702 stat_inc_block_count(sbi, curseg);
3703
3704 if (from_gc) {
3705 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3706 } else {
3707 update_segment_mtime(sbi, old_blkaddr, 0);
3708 old_mtime = 0;
3709 }
3710 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3711
3712 /*
3713 * SIT information should be updated before segment allocation,
3714 * since SSR needs latest valid block information.
3715 */
3716 update_sit_entry(sbi, *new_blkaddr, 1);
3717 update_sit_entry(sbi, old_blkaddr, -1);
3718
3719 /*
3720 * If the current segment is full, flush it out and replace it with a
3721 * new segment.
3722 */
3723 if (segment_full) {
3724 if (type == CURSEG_COLD_DATA_PINNED &&
3725 !((curseg->segno + 1) % sbi->segs_per_sec)) {
3726 write_sum_page(sbi, curseg->sum_blk,
3727 GET_SUM_BLOCK(sbi, curseg->segno));
3728 reset_curseg_fields(curseg);
3729 goto skip_new_segment;
3730 }
3731
3732 if (from_gc) {
3733 ret = get_atssr_segment(sbi, type, se->type,
3734 AT_SSR, se->mtime);
3735 } else {
3736 if (need_new_seg(sbi, type))
3737 ret = new_curseg(sbi, type, false);
3738 else
3739 ret = change_curseg(sbi, type);
3740 stat_inc_seg_type(sbi, curseg);
3741 }
3742
3743 if (ret)
3744 goto out_err;
3745 }
3746
3747skip_new_segment:
3748 /*
3749 * segment dirty status should be updated after segment allocation,
3750 * so we just need to update status only one time after previous
3751 * segment being closed.
3752 */
3753 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3754 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3755
3756 if (IS_DATASEG(curseg->seg_type))
3757 atomic64_inc(&sbi->allocated_data_blocks);
3758
3759 up_write(&sit_i->sentry_lock);
3760
3761 if (page && IS_NODESEG(curseg->seg_type)) {
3762 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3763
3764 f2fs_inode_chksum_set(sbi, page);
3765 }
3766
3767 if (fio) {
3768 struct f2fs_bio_info *io;
3769
3770 INIT_LIST_HEAD(&fio->list);
3771 fio->in_list = 1;
3772 io = sbi->write_io[fio->type] + fio->temp;
3773 spin_lock(&io->io_lock);
3774 list_add_tail(&fio->list, &io->io_list);
3775 spin_unlock(&io->io_lock);
3776 }
3777
3778 mutex_unlock(&curseg->curseg_mutex);
3779 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3780 return 0;
3781
3782out_err:
3783 *new_blkaddr = NULL_ADDR;
3784 up_write(&sit_i->sentry_lock);
3785 mutex_unlock(&curseg->curseg_mutex);
3786 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3787 return ret;
3788}
3789
3790void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3791 block_t blkaddr, unsigned int blkcnt)
3792{
3793 if (!f2fs_is_multi_device(sbi))
3794 return;
3795
3796 while (1) {
3797 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3798 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3799
3800 /* update device state for fsync */
3801 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3802
3803 /* update device state for checkpoint */
3804 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3805 spin_lock(&sbi->dev_lock);
3806 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3807 spin_unlock(&sbi->dev_lock);
3808 }
3809
3810 if (blkcnt <= blks)
3811 break;
3812 blkcnt -= blks;
3813 blkaddr += blks;
3814 }
3815}
3816
3817static int log_type_to_seg_type(enum log_type type)
3818{
3819 int seg_type = CURSEG_COLD_DATA;
3820
3821 switch (type) {
3822 case CURSEG_HOT_DATA:
3823 case CURSEG_WARM_DATA:
3824 case CURSEG_COLD_DATA:
3825 case CURSEG_HOT_NODE:
3826 case CURSEG_WARM_NODE:
3827 case CURSEG_COLD_NODE:
3828 seg_type = (int)type;
3829 break;
3830 case CURSEG_COLD_DATA_PINNED:
3831 case CURSEG_ALL_DATA_ATGC:
3832 seg_type = CURSEG_COLD_DATA;
3833 break;
3834 default:
3835 break;
3836 }
3837 return seg_type;
3838}
3839
3840static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3841{
3842 enum log_type type = __get_segment_type(fio);
3843 int seg_type = log_type_to_seg_type(type);
3844 bool keep_order = (f2fs_lfs_mode(fio->sbi) &&
3845 seg_type == CURSEG_COLD_DATA);
3846
3847 if (keep_order)
3848 f2fs_down_read(&fio->sbi->io_order_lock);
3849
3850 if (f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3851 &fio->new_blkaddr, sum, type, fio)) {
3852 if (fscrypt_inode_uses_fs_layer_crypto(fio->page->mapping->host))
3853 fscrypt_finalize_bounce_page(&fio->encrypted_page);
3854 end_page_writeback(fio->page);
3855 if (f2fs_in_warm_node_list(fio->sbi, fio->page))
3856 f2fs_del_fsync_node_entry(fio->sbi, fio->page);
3857 goto out;
3858 }
3859 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3860 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr);
3861
3862 /* writeout dirty page into bdev */
3863 f2fs_submit_page_write(fio);
3864
3865 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3866out:
3867 if (keep_order)
3868 f2fs_up_read(&fio->sbi->io_order_lock);
3869}
3870
3871void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3872 enum iostat_type io_type)
3873{
3874 struct f2fs_io_info fio = {
3875 .sbi = sbi,
3876 .type = META,
3877 .temp = HOT,
3878 .op = REQ_OP_WRITE,
3879 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3880 .old_blkaddr = folio->index,
3881 .new_blkaddr = folio->index,
3882 .page = folio_page(folio, 0),
3883 .encrypted_page = NULL,
3884 .in_list = 0,
3885 };
3886
3887 if (unlikely(folio->index >= MAIN_BLKADDR(sbi)))
3888 fio.op_flags &= ~REQ_META;
3889
3890 folio_start_writeback(folio);
3891 f2fs_submit_page_write(&fio);
3892
3893 stat_inc_meta_count(sbi, folio->index);
3894 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3895}
3896
3897void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3898{
3899 struct f2fs_summary sum;
3900
3901 set_summary(&sum, nid, 0, 0);
3902 do_write_page(&sum, fio);
3903
3904 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3905}
3906
3907void f2fs_outplace_write_data(struct dnode_of_data *dn,
3908 struct f2fs_io_info *fio)
3909{
3910 struct f2fs_sb_info *sbi = fio->sbi;
3911 struct f2fs_summary sum;
3912
3913 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3914 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3915 f2fs_update_age_extent_cache(dn);
3916 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3917 do_write_page(&sum, fio);
3918 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3919
3920 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3921}
3922
3923int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3924{
3925 int err;
3926 struct f2fs_sb_info *sbi = fio->sbi;
3927 unsigned int segno;
3928
3929 fio->new_blkaddr = fio->old_blkaddr;
3930 /* i/o temperature is needed for passing down write hints */
3931 __get_segment_type(fio);
3932
3933 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3934
3935 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3936 set_sbi_flag(sbi, SBI_NEED_FSCK);
3937 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3938 __func__, segno);
3939 err = -EFSCORRUPTED;
3940 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3941 goto drop_bio;
3942 }
3943
3944 if (f2fs_cp_error(sbi)) {
3945 err = -EIO;
3946 goto drop_bio;
3947 }
3948
3949 if (fio->meta_gc)
3950 f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
3951
3952 stat_inc_inplace_blocks(fio->sbi);
3953
3954 if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3955 err = f2fs_merge_page_bio(fio);
3956 else
3957 err = f2fs_submit_page_bio(fio);
3958 if (!err) {
3959 f2fs_update_device_state(fio->sbi, fio->ino,
3960 fio->new_blkaddr, 1);
3961 f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3962 fio->io_type, F2FS_BLKSIZE);
3963 }
3964
3965 return err;
3966drop_bio:
3967 if (fio->bio && *(fio->bio)) {
3968 struct bio *bio = *(fio->bio);
3969
3970 bio->bi_status = BLK_STS_IOERR;
3971 bio_endio(bio);
3972 *(fio->bio) = NULL;
3973 }
3974 return err;
3975}
3976
3977static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3978 unsigned int segno)
3979{
3980 int i;
3981
3982 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3983 if (CURSEG_I(sbi, i)->segno == segno)
3984 break;
3985 }
3986 return i;
3987}
3988
3989void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3990 block_t old_blkaddr, block_t new_blkaddr,
3991 bool recover_curseg, bool recover_newaddr,
3992 bool from_gc)
3993{
3994 struct sit_info *sit_i = SIT_I(sbi);
3995 struct curseg_info *curseg;
3996 unsigned int segno, old_cursegno;
3997 struct seg_entry *se;
3998 int type;
3999 unsigned short old_blkoff;
4000 unsigned char old_alloc_type;
4001
4002 segno = GET_SEGNO(sbi, new_blkaddr);
4003 se = get_seg_entry(sbi, segno);
4004 type = se->type;
4005
4006 f2fs_down_write(&SM_I(sbi)->curseg_lock);
4007
4008 if (!recover_curseg) {
4009 /* for recovery flow */
4010 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
4011 if (old_blkaddr == NULL_ADDR)
4012 type = CURSEG_COLD_DATA;
4013 else
4014 type = CURSEG_WARM_DATA;
4015 }
4016 } else {
4017 if (IS_CURSEG(sbi, segno)) {
4018 /* se->type is volatile as SSR allocation */
4019 type = __f2fs_get_curseg(sbi, segno);
4020 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
4021 } else {
4022 type = CURSEG_WARM_DATA;
4023 }
4024 }
4025
4026 curseg = CURSEG_I(sbi, type);
4027 f2fs_bug_on(sbi, !IS_DATASEG(curseg->seg_type));
4028
4029 mutex_lock(&curseg->curseg_mutex);
4030 down_write(&sit_i->sentry_lock);
4031
4032 old_cursegno = curseg->segno;
4033 old_blkoff = curseg->next_blkoff;
4034 old_alloc_type = curseg->alloc_type;
4035
4036 /* change the current segment */
4037 if (segno != curseg->segno) {
4038 curseg->next_segno = segno;
4039 if (change_curseg(sbi, type))
4040 goto out_unlock;
4041 }
4042
4043 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
4044 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
4045
4046 if (!recover_curseg || recover_newaddr) {
4047 if (!from_gc)
4048 update_segment_mtime(sbi, new_blkaddr, 0);
4049 update_sit_entry(sbi, new_blkaddr, 1);
4050 }
4051 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
4052 f2fs_invalidate_internal_cache(sbi, old_blkaddr);
4053 if (!from_gc)
4054 update_segment_mtime(sbi, old_blkaddr, 0);
4055 update_sit_entry(sbi, old_blkaddr, -1);
4056 }
4057
4058 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
4059 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
4060
4061 locate_dirty_segment(sbi, old_cursegno);
4062
4063 if (recover_curseg) {
4064 if (old_cursegno != curseg->segno) {
4065 curseg->next_segno = old_cursegno;
4066 if (change_curseg(sbi, type))
4067 goto out_unlock;
4068 }
4069 curseg->next_blkoff = old_blkoff;
4070 curseg->alloc_type = old_alloc_type;
4071 }
4072
4073out_unlock:
4074 up_write(&sit_i->sentry_lock);
4075 mutex_unlock(&curseg->curseg_mutex);
4076 f2fs_up_write(&SM_I(sbi)->curseg_lock);
4077}
4078
4079void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
4080 block_t old_addr, block_t new_addr,
4081 unsigned char version, bool recover_curseg,
4082 bool recover_newaddr)
4083{
4084 struct f2fs_summary sum;
4085
4086 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
4087
4088 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
4089 recover_curseg, recover_newaddr, false);
4090
4091 f2fs_update_data_blkaddr(dn, new_addr);
4092}
4093
4094void f2fs_wait_on_page_writeback(struct page *page,
4095 enum page_type type, bool ordered, bool locked)
4096{
4097 if (folio_test_writeback(page_folio(page))) {
4098 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
4099
4100 /* submit cached LFS IO */
4101 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
4102 /* submit cached IPU IO */
4103 f2fs_submit_merged_ipu_write(sbi, NULL, page);
4104 if (ordered) {
4105 wait_on_page_writeback(page);
4106 f2fs_bug_on(sbi, locked &&
4107 folio_test_writeback(page_folio(page)));
4108 } else {
4109 wait_for_stable_page(page);
4110 }
4111 }
4112}
4113
4114void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
4115{
4116 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4117 struct page *cpage;
4118
4119 if (!f2fs_meta_inode_gc_required(inode))
4120 return;
4121
4122 if (!__is_valid_data_blkaddr(blkaddr))
4123 return;
4124
4125 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
4126 if (cpage) {
4127 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
4128 f2fs_put_page(cpage, 1);
4129 }
4130}
4131
4132void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
4133 block_t len)
4134{
4135 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4136 block_t i;
4137
4138 if (!f2fs_meta_inode_gc_required(inode))
4139 return;
4140
4141 for (i = 0; i < len; i++)
4142 f2fs_wait_on_block_writeback(inode, blkaddr + i);
4143
4144 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4145}
4146
4147static int read_compacted_summaries(struct f2fs_sb_info *sbi)
4148{
4149 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4150 struct curseg_info *seg_i;
4151 unsigned char *kaddr;
4152 struct page *page;
4153 block_t start;
4154 int i, j, offset;
4155
4156 start = start_sum_block(sbi);
4157
4158 page = f2fs_get_meta_page(sbi, start++);
4159 if (IS_ERR(page))
4160 return PTR_ERR(page);
4161 kaddr = (unsigned char *)page_address(page);
4162
4163 /* Step 1: restore nat cache */
4164 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4165 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
4166
4167 /* Step 2: restore sit cache */
4168 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4169 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
4170 offset = 2 * SUM_JOURNAL_SIZE;
4171
4172 /* Step 3: restore summary entries */
4173 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4174 unsigned short blk_off;
4175 unsigned int segno;
4176
4177 seg_i = CURSEG_I(sbi, i);
4178 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
4179 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
4180 seg_i->next_segno = segno;
4181 reset_curseg(sbi, i, 0);
4182 seg_i->alloc_type = ckpt->alloc_type[i];
4183 seg_i->next_blkoff = blk_off;
4184
4185 if (seg_i->alloc_type == SSR)
4186 blk_off = BLKS_PER_SEG(sbi);
4187
4188 for (j = 0; j < blk_off; j++) {
4189 struct f2fs_summary *s;
4190
4191 s = (struct f2fs_summary *)(kaddr + offset);
4192 seg_i->sum_blk->entries[j] = *s;
4193 offset += SUMMARY_SIZE;
4194 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
4195 SUM_FOOTER_SIZE)
4196 continue;
4197
4198 f2fs_put_page(page, 1);
4199 page = NULL;
4200
4201 page = f2fs_get_meta_page(sbi, start++);
4202 if (IS_ERR(page))
4203 return PTR_ERR(page);
4204 kaddr = (unsigned char *)page_address(page);
4205 offset = 0;
4206 }
4207 }
4208 f2fs_put_page(page, 1);
4209 return 0;
4210}
4211
4212static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
4213{
4214 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4215 struct f2fs_summary_block *sum;
4216 struct curseg_info *curseg;
4217 struct page *new;
4218 unsigned short blk_off;
4219 unsigned int segno = 0;
4220 block_t blk_addr = 0;
4221 int err = 0;
4222
4223 /* get segment number and block addr */
4224 if (IS_DATASEG(type)) {
4225 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
4226 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
4227 CURSEG_HOT_DATA]);
4228 if (__exist_node_summaries(sbi))
4229 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
4230 else
4231 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
4232 } else {
4233 segno = le32_to_cpu(ckpt->cur_node_segno[type -
4234 CURSEG_HOT_NODE]);
4235 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
4236 CURSEG_HOT_NODE]);
4237 if (__exist_node_summaries(sbi))
4238 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
4239 type - CURSEG_HOT_NODE);
4240 else
4241 blk_addr = GET_SUM_BLOCK(sbi, segno);
4242 }
4243
4244 new = f2fs_get_meta_page(sbi, blk_addr);
4245 if (IS_ERR(new))
4246 return PTR_ERR(new);
4247 sum = (struct f2fs_summary_block *)page_address(new);
4248
4249 if (IS_NODESEG(type)) {
4250 if (__exist_node_summaries(sbi)) {
4251 struct f2fs_summary *ns = &sum->entries[0];
4252 int i;
4253
4254 for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
4255 ns->version = 0;
4256 ns->ofs_in_node = 0;
4257 }
4258 } else {
4259 err = f2fs_restore_node_summary(sbi, segno, sum);
4260 if (err)
4261 goto out;
4262 }
4263 }
4264
4265 /* set uncompleted segment to curseg */
4266 curseg = CURSEG_I(sbi, type);
4267 mutex_lock(&curseg->curseg_mutex);
4268
4269 /* update journal info */
4270 down_write(&curseg->journal_rwsem);
4271 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4272 up_write(&curseg->journal_rwsem);
4273
4274 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4275 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4276 curseg->next_segno = segno;
4277 reset_curseg(sbi, type, 0);
4278 curseg->alloc_type = ckpt->alloc_type[type];
4279 curseg->next_blkoff = blk_off;
4280 mutex_unlock(&curseg->curseg_mutex);
4281out:
4282 f2fs_put_page(new, 1);
4283 return err;
4284}
4285
4286static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4287{
4288 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4289 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4290 int type = CURSEG_HOT_DATA;
4291 int err;
4292
4293 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4294 int npages = f2fs_npages_for_summary_flush(sbi, true);
4295
4296 if (npages >= 2)
4297 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4298 META_CP, true);
4299
4300 /* restore for compacted data summary */
4301 err = read_compacted_summaries(sbi);
4302 if (err)
4303 return err;
4304 type = CURSEG_HOT_NODE;
4305 }
4306
4307 if (__exist_node_summaries(sbi))
4308 f2fs_ra_meta_pages(sbi,
4309 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4310 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4311
4312 for (; type <= CURSEG_COLD_NODE; type++) {
4313 err = read_normal_summaries(sbi, type);
4314 if (err)
4315 return err;
4316 }
4317
4318 /* sanity check for summary blocks */
4319 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4320 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4321 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4322 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4323 return -EINVAL;
4324 }
4325
4326 return 0;
4327}
4328
4329static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4330{
4331 struct page *page;
4332 unsigned char *kaddr;
4333 struct f2fs_summary *summary;
4334 struct curseg_info *seg_i;
4335 int written_size = 0;
4336 int i, j;
4337
4338 page = f2fs_grab_meta_page(sbi, blkaddr++);
4339 kaddr = (unsigned char *)page_address(page);
4340 memset(kaddr, 0, PAGE_SIZE);
4341
4342 /* Step 1: write nat cache */
4343 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4344 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4345 written_size += SUM_JOURNAL_SIZE;
4346
4347 /* Step 2: write sit cache */
4348 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4349 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4350 written_size += SUM_JOURNAL_SIZE;
4351
4352 /* Step 3: write summary entries */
4353 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4354 seg_i = CURSEG_I(sbi, i);
4355 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4356 if (!page) {
4357 page = f2fs_grab_meta_page(sbi, blkaddr++);
4358 kaddr = (unsigned char *)page_address(page);
4359 memset(kaddr, 0, PAGE_SIZE);
4360 written_size = 0;
4361 }
4362 summary = (struct f2fs_summary *)(kaddr + written_size);
4363 *summary = seg_i->sum_blk->entries[j];
4364 written_size += SUMMARY_SIZE;
4365
4366 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4367 SUM_FOOTER_SIZE)
4368 continue;
4369
4370 set_page_dirty(page);
4371 f2fs_put_page(page, 1);
4372 page = NULL;
4373 }
4374 }
4375 if (page) {
4376 set_page_dirty(page);
4377 f2fs_put_page(page, 1);
4378 }
4379}
4380
4381static void write_normal_summaries(struct f2fs_sb_info *sbi,
4382 block_t blkaddr, int type)
4383{
4384 int i, end;
4385
4386 if (IS_DATASEG(type))
4387 end = type + NR_CURSEG_DATA_TYPE;
4388 else
4389 end = type + NR_CURSEG_NODE_TYPE;
4390
4391 for (i = type; i < end; i++)
4392 write_current_sum_page(sbi, i, blkaddr + (i - type));
4393}
4394
4395void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4396{
4397 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4398 write_compacted_summaries(sbi, start_blk);
4399 else
4400 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4401}
4402
4403void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4404{
4405 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4406}
4407
4408int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4409 unsigned int val, int alloc)
4410{
4411 int i;
4412
4413 if (type == NAT_JOURNAL) {
4414 for (i = 0; i < nats_in_cursum(journal); i++) {
4415 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4416 return i;
4417 }
4418 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4419 return update_nats_in_cursum(journal, 1);
4420 } else if (type == SIT_JOURNAL) {
4421 for (i = 0; i < sits_in_cursum(journal); i++)
4422 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4423 return i;
4424 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4425 return update_sits_in_cursum(journal, 1);
4426 }
4427 return -1;
4428}
4429
4430static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4431 unsigned int segno)
4432{
4433 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4434}
4435
4436static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4437 unsigned int start)
4438{
4439 struct sit_info *sit_i = SIT_I(sbi);
4440 struct page *page;
4441 pgoff_t src_off, dst_off;
4442
4443 src_off = current_sit_addr(sbi, start);
4444 dst_off = next_sit_addr(sbi, src_off);
4445
4446 page = f2fs_grab_meta_page(sbi, dst_off);
4447 seg_info_to_sit_page(sbi, page, start);
4448
4449 set_page_dirty(page);
4450 set_to_next_sit(sit_i, start);
4451
4452 return page;
4453}
4454
4455static struct sit_entry_set *grab_sit_entry_set(void)
4456{
4457 struct sit_entry_set *ses =
4458 f2fs_kmem_cache_alloc(sit_entry_set_slab,
4459 GFP_NOFS, true, NULL);
4460
4461 ses->entry_cnt = 0;
4462 INIT_LIST_HEAD(&ses->set_list);
4463 return ses;
4464}
4465
4466static void release_sit_entry_set(struct sit_entry_set *ses)
4467{
4468 list_del(&ses->set_list);
4469 kmem_cache_free(sit_entry_set_slab, ses);
4470}
4471
4472static void adjust_sit_entry_set(struct sit_entry_set *ses,
4473 struct list_head *head)
4474{
4475 struct sit_entry_set *next = ses;
4476
4477 if (list_is_last(&ses->set_list, head))
4478 return;
4479
4480 list_for_each_entry_continue(next, head, set_list)
4481 if (ses->entry_cnt <= next->entry_cnt) {
4482 list_move_tail(&ses->set_list, &next->set_list);
4483 return;
4484 }
4485
4486 list_move_tail(&ses->set_list, head);
4487}
4488
4489static void add_sit_entry(unsigned int segno, struct list_head *head)
4490{
4491 struct sit_entry_set *ses;
4492 unsigned int start_segno = START_SEGNO(segno);
4493
4494 list_for_each_entry(ses, head, set_list) {
4495 if (ses->start_segno == start_segno) {
4496 ses->entry_cnt++;
4497 adjust_sit_entry_set(ses, head);
4498 return;
4499 }
4500 }
4501
4502 ses = grab_sit_entry_set();
4503
4504 ses->start_segno = start_segno;
4505 ses->entry_cnt++;
4506 list_add(&ses->set_list, head);
4507}
4508
4509static void add_sits_in_set(struct f2fs_sb_info *sbi)
4510{
4511 struct f2fs_sm_info *sm_info = SM_I(sbi);
4512 struct list_head *set_list = &sm_info->sit_entry_set;
4513 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4514 unsigned int segno;
4515
4516 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4517 add_sit_entry(segno, set_list);
4518}
4519
4520static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4521{
4522 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4523 struct f2fs_journal *journal = curseg->journal;
4524 int i;
4525
4526 down_write(&curseg->journal_rwsem);
4527 for (i = 0; i < sits_in_cursum(journal); i++) {
4528 unsigned int segno;
4529 bool dirtied;
4530
4531 segno = le32_to_cpu(segno_in_journal(journal, i));
4532 dirtied = __mark_sit_entry_dirty(sbi, segno);
4533
4534 if (!dirtied)
4535 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4536 }
4537 update_sits_in_cursum(journal, -i);
4538 up_write(&curseg->journal_rwsem);
4539}
4540
4541/*
4542 * CP calls this function, which flushes SIT entries including sit_journal,
4543 * and moves prefree segs to free segs.
4544 */
4545void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4546{
4547 struct sit_info *sit_i = SIT_I(sbi);
4548 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4549 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4550 struct f2fs_journal *journal = curseg->journal;
4551 struct sit_entry_set *ses, *tmp;
4552 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4553 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4554 struct seg_entry *se;
4555
4556 down_write(&sit_i->sentry_lock);
4557
4558 if (!sit_i->dirty_sentries)
4559 goto out;
4560
4561 /*
4562 * add and account sit entries of dirty bitmap in sit entry
4563 * set temporarily
4564 */
4565 add_sits_in_set(sbi);
4566
4567 /*
4568 * if there are no enough space in journal to store dirty sit
4569 * entries, remove all entries from journal and add and account
4570 * them in sit entry set.
4571 */
4572 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4573 !to_journal)
4574 remove_sits_in_journal(sbi);
4575
4576 /*
4577 * there are two steps to flush sit entries:
4578 * #1, flush sit entries to journal in current cold data summary block.
4579 * #2, flush sit entries to sit page.
4580 */
4581 list_for_each_entry_safe(ses, tmp, head, set_list) {
4582 struct page *page = NULL;
4583 struct f2fs_sit_block *raw_sit = NULL;
4584 unsigned int start_segno = ses->start_segno;
4585 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4586 (unsigned long)MAIN_SEGS(sbi));
4587 unsigned int segno = start_segno;
4588
4589 if (to_journal &&
4590 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4591 to_journal = false;
4592
4593 if (to_journal) {
4594 down_write(&curseg->journal_rwsem);
4595 } else {
4596 page = get_next_sit_page(sbi, start_segno);
4597 raw_sit = page_address(page);
4598 }
4599
4600 /* flush dirty sit entries in region of current sit set */
4601 for_each_set_bit_from(segno, bitmap, end) {
4602 int offset, sit_offset;
4603
4604 se = get_seg_entry(sbi, segno);
4605#ifdef CONFIG_F2FS_CHECK_FS
4606 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4607 SIT_VBLOCK_MAP_SIZE))
4608 f2fs_bug_on(sbi, 1);
4609#endif
4610
4611 /* add discard candidates */
4612 if (!(cpc->reason & CP_DISCARD)) {
4613 cpc->trim_start = segno;
4614 add_discard_addrs(sbi, cpc, false);
4615 }
4616
4617 if (to_journal) {
4618 offset = f2fs_lookup_journal_in_cursum(journal,
4619 SIT_JOURNAL, segno, 1);
4620 f2fs_bug_on(sbi, offset < 0);
4621 segno_in_journal(journal, offset) =
4622 cpu_to_le32(segno);
4623 seg_info_to_raw_sit(se,
4624 &sit_in_journal(journal, offset));
4625 check_block_count(sbi, segno,
4626 &sit_in_journal(journal, offset));
4627 } else {
4628 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4629 seg_info_to_raw_sit(se,
4630 &raw_sit->entries[sit_offset]);
4631 check_block_count(sbi, segno,
4632 &raw_sit->entries[sit_offset]);
4633 }
4634
4635 __clear_bit(segno, bitmap);
4636 sit_i->dirty_sentries--;
4637 ses->entry_cnt--;
4638 }
4639
4640 if (to_journal)
4641 up_write(&curseg->journal_rwsem);
4642 else
4643 f2fs_put_page(page, 1);
4644
4645 f2fs_bug_on(sbi, ses->entry_cnt);
4646 release_sit_entry_set(ses);
4647 }
4648
4649 f2fs_bug_on(sbi, !list_empty(head));
4650 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4651out:
4652 if (cpc->reason & CP_DISCARD) {
4653 __u64 trim_start = cpc->trim_start;
4654
4655 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4656 add_discard_addrs(sbi, cpc, false);
4657
4658 cpc->trim_start = trim_start;
4659 }
4660 up_write(&sit_i->sentry_lock);
4661
4662 set_prefree_as_free_segments(sbi);
4663}
4664
4665static int build_sit_info(struct f2fs_sb_info *sbi)
4666{
4667 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4668 struct sit_info *sit_i;
4669 unsigned int sit_segs, start;
4670 char *src_bitmap, *bitmap;
4671 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4672 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4673
4674 /* allocate memory for SIT information */
4675 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4676 if (!sit_i)
4677 return -ENOMEM;
4678
4679 SM_I(sbi)->sit_info = sit_i;
4680
4681 sit_i->sentries =
4682 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4683 MAIN_SEGS(sbi)),
4684 GFP_KERNEL);
4685 if (!sit_i->sentries)
4686 return -ENOMEM;
4687
4688 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4689 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4690 GFP_KERNEL);
4691 if (!sit_i->dirty_sentries_bitmap)
4692 return -ENOMEM;
4693
4694#ifdef CONFIG_F2FS_CHECK_FS
4695 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4696#else
4697 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4698#endif
4699 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4700 if (!sit_i->bitmap)
4701 return -ENOMEM;
4702
4703 bitmap = sit_i->bitmap;
4704
4705 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4706 sit_i->sentries[start].cur_valid_map = bitmap;
4707 bitmap += SIT_VBLOCK_MAP_SIZE;
4708
4709 sit_i->sentries[start].ckpt_valid_map = bitmap;
4710 bitmap += SIT_VBLOCK_MAP_SIZE;
4711
4712#ifdef CONFIG_F2FS_CHECK_FS
4713 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4714 bitmap += SIT_VBLOCK_MAP_SIZE;
4715#endif
4716
4717 if (discard_map) {
4718 sit_i->sentries[start].discard_map = bitmap;
4719 bitmap += SIT_VBLOCK_MAP_SIZE;
4720 }
4721 }
4722
4723 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4724 if (!sit_i->tmp_map)
4725 return -ENOMEM;
4726
4727 if (__is_large_section(sbi)) {
4728 sit_i->sec_entries =
4729 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4730 MAIN_SECS(sbi)),
4731 GFP_KERNEL);
4732 if (!sit_i->sec_entries)
4733 return -ENOMEM;
4734 }
4735
4736 /* get information related with SIT */
4737 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4738
4739 /* setup SIT bitmap from ckeckpoint pack */
4740 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4741 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4742
4743 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4744 if (!sit_i->sit_bitmap)
4745 return -ENOMEM;
4746
4747#ifdef CONFIG_F2FS_CHECK_FS
4748 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4749 sit_bitmap_size, GFP_KERNEL);
4750 if (!sit_i->sit_bitmap_mir)
4751 return -ENOMEM;
4752
4753 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4754 main_bitmap_size, GFP_KERNEL);
4755 if (!sit_i->invalid_segmap)
4756 return -ENOMEM;
4757#endif
4758
4759 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4760 sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs);
4761 sit_i->written_valid_blocks = 0;
4762 sit_i->bitmap_size = sit_bitmap_size;
4763 sit_i->dirty_sentries = 0;
4764 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4765 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4766 sit_i->mounted_time = ktime_get_boottime_seconds();
4767 init_rwsem(&sit_i->sentry_lock);
4768 return 0;
4769}
4770
4771static int build_free_segmap(struct f2fs_sb_info *sbi)
4772{
4773 struct free_segmap_info *free_i;
4774 unsigned int bitmap_size, sec_bitmap_size;
4775
4776 /* allocate memory for free segmap information */
4777 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4778 if (!free_i)
4779 return -ENOMEM;
4780
4781 SM_I(sbi)->free_info = free_i;
4782
4783 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4784 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4785 if (!free_i->free_segmap)
4786 return -ENOMEM;
4787
4788 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4789 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4790 if (!free_i->free_secmap)
4791 return -ENOMEM;
4792
4793 /* set all segments as dirty temporarily */
4794 memset(free_i->free_segmap, 0xff, bitmap_size);
4795 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4796
4797 /* init free segmap information */
4798 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4799 free_i->free_segments = 0;
4800 free_i->free_sections = 0;
4801 spin_lock_init(&free_i->segmap_lock);
4802 return 0;
4803}
4804
4805static int build_curseg(struct f2fs_sb_info *sbi)
4806{
4807 struct curseg_info *array;
4808 int i;
4809
4810 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4811 sizeof(*array)), GFP_KERNEL);
4812 if (!array)
4813 return -ENOMEM;
4814
4815 SM_I(sbi)->curseg_array = array;
4816
4817 for (i = 0; i < NO_CHECK_TYPE; i++) {
4818 mutex_init(&array[i].curseg_mutex);
4819 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4820 if (!array[i].sum_blk)
4821 return -ENOMEM;
4822 init_rwsem(&array[i].journal_rwsem);
4823 array[i].journal = f2fs_kzalloc(sbi,
4824 sizeof(struct f2fs_journal), GFP_KERNEL);
4825 if (!array[i].journal)
4826 return -ENOMEM;
4827 array[i].seg_type = log_type_to_seg_type(i);
4828 reset_curseg_fields(&array[i]);
4829 }
4830 return restore_curseg_summaries(sbi);
4831}
4832
4833static int build_sit_entries(struct f2fs_sb_info *sbi)
4834{
4835 struct sit_info *sit_i = SIT_I(sbi);
4836 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4837 struct f2fs_journal *journal = curseg->journal;
4838 struct seg_entry *se;
4839 struct f2fs_sit_entry sit;
4840 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4841 unsigned int i, start, end;
4842 unsigned int readed, start_blk = 0;
4843 int err = 0;
4844 block_t sit_valid_blocks[2] = {0, 0};
4845
4846 do {
4847 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4848 META_SIT, true);
4849
4850 start = start_blk * sit_i->sents_per_block;
4851 end = (start_blk + readed) * sit_i->sents_per_block;
4852
4853 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4854 struct f2fs_sit_block *sit_blk;
4855 struct page *page;
4856
4857 se = &sit_i->sentries[start];
4858 page = get_current_sit_page(sbi, start);
4859 if (IS_ERR(page))
4860 return PTR_ERR(page);
4861 sit_blk = (struct f2fs_sit_block *)page_address(page);
4862 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4863 f2fs_put_page(page, 1);
4864
4865 err = check_block_count(sbi, start, &sit);
4866 if (err)
4867 return err;
4868 seg_info_from_raw_sit(se, &sit);
4869
4870 if (se->type >= NR_PERSISTENT_LOG) {
4871 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4872 se->type, start);
4873 f2fs_handle_error(sbi,
4874 ERROR_INCONSISTENT_SUM_TYPE);
4875 return -EFSCORRUPTED;
4876 }
4877
4878 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4879
4880 if (!f2fs_block_unit_discard(sbi))
4881 goto init_discard_map_done;
4882
4883 /* build discard map only one time */
4884 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4885 memset(se->discard_map, 0xff,
4886 SIT_VBLOCK_MAP_SIZE);
4887 goto init_discard_map_done;
4888 }
4889 memcpy(se->discard_map, se->cur_valid_map,
4890 SIT_VBLOCK_MAP_SIZE);
4891 sbi->discard_blks += BLKS_PER_SEG(sbi) -
4892 se->valid_blocks;
4893init_discard_map_done:
4894 if (__is_large_section(sbi))
4895 get_sec_entry(sbi, start)->valid_blocks +=
4896 se->valid_blocks;
4897 }
4898 start_blk += readed;
4899 } while (start_blk < sit_blk_cnt);
4900
4901 down_read(&curseg->journal_rwsem);
4902 for (i = 0; i < sits_in_cursum(journal); i++) {
4903 unsigned int old_valid_blocks;
4904
4905 start = le32_to_cpu(segno_in_journal(journal, i));
4906 if (start >= MAIN_SEGS(sbi)) {
4907 f2fs_err(sbi, "Wrong journal entry on segno %u",
4908 start);
4909 err = -EFSCORRUPTED;
4910 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4911 break;
4912 }
4913
4914 se = &sit_i->sentries[start];
4915 sit = sit_in_journal(journal, i);
4916
4917 old_valid_blocks = se->valid_blocks;
4918
4919 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4920
4921 err = check_block_count(sbi, start, &sit);
4922 if (err)
4923 break;
4924 seg_info_from_raw_sit(se, &sit);
4925
4926 if (se->type >= NR_PERSISTENT_LOG) {
4927 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4928 se->type, start);
4929 err = -EFSCORRUPTED;
4930 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4931 break;
4932 }
4933
4934 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4935
4936 if (f2fs_block_unit_discard(sbi)) {
4937 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4938 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4939 } else {
4940 memcpy(se->discard_map, se->cur_valid_map,
4941 SIT_VBLOCK_MAP_SIZE);
4942 sbi->discard_blks += old_valid_blocks;
4943 sbi->discard_blks -= se->valid_blocks;
4944 }
4945 }
4946
4947 if (__is_large_section(sbi)) {
4948 get_sec_entry(sbi, start)->valid_blocks +=
4949 se->valid_blocks;
4950 get_sec_entry(sbi, start)->valid_blocks -=
4951 old_valid_blocks;
4952 }
4953 }
4954 up_read(&curseg->journal_rwsem);
4955
4956 if (err)
4957 return err;
4958
4959 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4960 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4961 sit_valid_blocks[NODE], valid_node_count(sbi));
4962 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4963 return -EFSCORRUPTED;
4964 }
4965
4966 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4967 valid_user_blocks(sbi)) {
4968 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4969 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4970 valid_user_blocks(sbi));
4971 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4972 return -EFSCORRUPTED;
4973 }
4974
4975 return 0;
4976}
4977
4978static void init_free_segmap(struct f2fs_sb_info *sbi)
4979{
4980 unsigned int start;
4981 int type;
4982 struct seg_entry *sentry;
4983
4984 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4985 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4986 continue;
4987 sentry = get_seg_entry(sbi, start);
4988 if (!sentry->valid_blocks)
4989 __set_free(sbi, start);
4990 else
4991 SIT_I(sbi)->written_valid_blocks +=
4992 sentry->valid_blocks;
4993 }
4994
4995 /* set use the current segments */
4996 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4997 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4998
4999 __set_test_and_inuse(sbi, curseg_t->segno);
5000 }
5001}
5002
5003static void init_dirty_segmap(struct f2fs_sb_info *sbi)
5004{
5005 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5006 struct free_segmap_info *free_i = FREE_I(sbi);
5007 unsigned int segno = 0, offset = 0, secno;
5008 block_t valid_blocks, usable_blks_in_seg;
5009
5010 while (1) {
5011 /* find dirty segment based on free segmap */
5012 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
5013 if (segno >= MAIN_SEGS(sbi))
5014 break;
5015 offset = segno + 1;
5016 valid_blocks = get_valid_blocks(sbi, segno, false);
5017 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
5018 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
5019 continue;
5020 if (valid_blocks > usable_blks_in_seg) {
5021 f2fs_bug_on(sbi, 1);
5022 continue;
5023 }
5024 mutex_lock(&dirty_i->seglist_lock);
5025 __locate_dirty_segment(sbi, segno, DIRTY);
5026 mutex_unlock(&dirty_i->seglist_lock);
5027 }
5028
5029 if (!__is_large_section(sbi))
5030 return;
5031
5032 mutex_lock(&dirty_i->seglist_lock);
5033 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5034 valid_blocks = get_valid_blocks(sbi, segno, true);
5035 secno = GET_SEC_FROM_SEG(sbi, segno);
5036
5037 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
5038 continue;
5039 if (IS_CURSEC(sbi, secno))
5040 continue;
5041 set_bit(secno, dirty_i->dirty_secmap);
5042 }
5043 mutex_unlock(&dirty_i->seglist_lock);
5044}
5045
5046static int init_victim_secmap(struct f2fs_sb_info *sbi)
5047{
5048 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5049 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5050
5051 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5052 if (!dirty_i->victim_secmap)
5053 return -ENOMEM;
5054
5055 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5056 if (!dirty_i->pinned_secmap)
5057 return -ENOMEM;
5058
5059 dirty_i->pinned_secmap_cnt = 0;
5060 dirty_i->enable_pin_section = true;
5061 return 0;
5062}
5063
5064static int build_dirty_segmap(struct f2fs_sb_info *sbi)
5065{
5066 struct dirty_seglist_info *dirty_i;
5067 unsigned int bitmap_size, i;
5068
5069 /* allocate memory for dirty segments list information */
5070 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
5071 GFP_KERNEL);
5072 if (!dirty_i)
5073 return -ENOMEM;
5074
5075 SM_I(sbi)->dirty_info = dirty_i;
5076 mutex_init(&dirty_i->seglist_lock);
5077
5078 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
5079
5080 for (i = 0; i < NR_DIRTY_TYPE; i++) {
5081 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
5082 GFP_KERNEL);
5083 if (!dirty_i->dirty_segmap[i])
5084 return -ENOMEM;
5085 }
5086
5087 if (__is_large_section(sbi)) {
5088 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5089 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
5090 bitmap_size, GFP_KERNEL);
5091 if (!dirty_i->dirty_secmap)
5092 return -ENOMEM;
5093 }
5094
5095 init_dirty_segmap(sbi);
5096 return init_victim_secmap(sbi);
5097}
5098
5099static int sanity_check_curseg(struct f2fs_sb_info *sbi)
5100{
5101 int i;
5102
5103 /*
5104 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
5105 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
5106 */
5107 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5108 struct curseg_info *curseg = CURSEG_I(sbi, i);
5109 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
5110 unsigned int blkofs = curseg->next_blkoff;
5111
5112 if (f2fs_sb_has_readonly(sbi) &&
5113 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
5114 continue;
5115
5116 sanity_check_seg_type(sbi, curseg->seg_type);
5117
5118 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
5119 f2fs_err(sbi,
5120 "Current segment has invalid alloc_type:%d",
5121 curseg->alloc_type);
5122 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5123 return -EFSCORRUPTED;
5124 }
5125
5126 if (f2fs_test_bit(blkofs, se->cur_valid_map))
5127 goto out;
5128
5129 if (curseg->alloc_type == SSR)
5130 continue;
5131
5132 for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
5133 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
5134 continue;
5135out:
5136 f2fs_err(sbi,
5137 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
5138 i, curseg->segno, curseg->alloc_type,
5139 curseg->next_blkoff, blkofs);
5140 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5141 return -EFSCORRUPTED;
5142 }
5143 }
5144 return 0;
5145}
5146
5147#ifdef CONFIG_BLK_DEV_ZONED
5148static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
5149 struct f2fs_dev_info *fdev,
5150 struct blk_zone *zone)
5151{
5152 unsigned int zone_segno;
5153 block_t zone_block, valid_block_cnt;
5154 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5155 int ret;
5156 unsigned int nofs_flags;
5157
5158 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5159 return 0;
5160
5161 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
5162 zone_segno = GET_SEGNO(sbi, zone_block);
5163
5164 /*
5165 * Skip check of zones cursegs point to, since
5166 * fix_curseg_write_pointer() checks them.
5167 */
5168 if (zone_segno >= MAIN_SEGS(sbi))
5169 return 0;
5170
5171 /*
5172 * Get # of valid block of the zone.
5173 */
5174 valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
5175 if (IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) {
5176 f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]",
5177 zone_segno, valid_block_cnt,
5178 blk_zone_cond_str(zone->cond));
5179 return 0;
5180 }
5181
5182 if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
5183 (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
5184 return 0;
5185
5186 if (!valid_block_cnt) {
5187 f2fs_notice(sbi, "Zone without valid block has non-zero write "
5188 "pointer. Reset the write pointer: cond[%s]",
5189 blk_zone_cond_str(zone->cond));
5190 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
5191 zone->len >> log_sectors_per_block);
5192 if (ret)
5193 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5194 fdev->path, ret);
5195 return ret;
5196 }
5197
5198 /*
5199 * If there are valid blocks and the write pointer doesn't match
5200 * with them, we need to report the inconsistency and fill
5201 * the zone till the end to close the zone. This inconsistency
5202 * does not cause write error because the zone will not be
5203 * selected for write operation until it get discarded.
5204 */
5205 f2fs_notice(sbi, "Valid blocks are not aligned with write "
5206 "pointer: valid block[0x%x,0x%x] cond[%s]",
5207 zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond));
5208
5209 nofs_flags = memalloc_nofs_save();
5210 ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
5211 zone->start, zone->len);
5212 memalloc_nofs_restore(nofs_flags);
5213 if (ret == -EOPNOTSUPP) {
5214 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
5215 zone->len - (zone->wp - zone->start),
5216 GFP_NOFS, 0);
5217 if (ret)
5218 f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
5219 fdev->path, ret);
5220 } else if (ret) {
5221 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
5222 fdev->path, ret);
5223 }
5224
5225 return ret;
5226}
5227
5228static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5229 block_t zone_blkaddr)
5230{
5231 int i;
5232
5233 for (i = 0; i < sbi->s_ndevs; i++) {
5234 if (!bdev_is_zoned(FDEV(i).bdev))
5235 continue;
5236 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5237 zone_blkaddr <= FDEV(i).end_blk))
5238 return &FDEV(i);
5239 }
5240
5241 return NULL;
5242}
5243
5244static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5245 void *data)
5246{
5247 memcpy(data, zone, sizeof(struct blk_zone));
5248 return 0;
5249}
5250
5251static int do_fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5252{
5253 struct curseg_info *cs = CURSEG_I(sbi, type);
5254 struct f2fs_dev_info *zbd;
5255 struct blk_zone zone;
5256 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5257 block_t cs_zone_block, wp_block;
5258 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5259 sector_t zone_sector;
5260 int err;
5261
5262 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5263 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5264
5265 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5266 if (!zbd)
5267 return 0;
5268
5269 /* report zone for the sector the curseg points to */
5270 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5271 << log_sectors_per_block;
5272 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5273 report_one_zone_cb, &zone);
5274 if (err != 1) {
5275 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5276 zbd->path, err);
5277 return err;
5278 }
5279
5280 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5281 return 0;
5282
5283 /*
5284 * When safely unmounted in the previous mount, we could use current
5285 * segments. Otherwise, allocate new sections.
5286 */
5287 if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5288 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5289 wp_segno = GET_SEGNO(sbi, wp_block);
5290 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5291 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5292
5293 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5294 wp_sector_off == 0)
5295 return 0;
5296
5297 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5298 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5299 cs->next_blkoff, wp_segno, wp_blkoff);
5300 }
5301
5302 /* Allocate a new section if it's not new. */
5303 if (cs->next_blkoff ||
5304 cs->segno != GET_SEG_FROM_SEC(sbi, GET_ZONE_FROM_SEC(sbi, cs_section))) {
5305 unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5306
5307 f2fs_allocate_new_section(sbi, type, true);
5308 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5309 "[0x%x,0x%x] -> [0x%x,0x%x]",
5310 type, old_segno, old_blkoff,
5311 cs->segno, cs->next_blkoff);
5312 }
5313
5314 /* check consistency of the zone curseg pointed to */
5315 if (check_zone_write_pointer(sbi, zbd, &zone))
5316 return -EIO;
5317
5318 /* check newly assigned zone */
5319 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5320 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5321
5322 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5323 if (!zbd)
5324 return 0;
5325
5326 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5327 << log_sectors_per_block;
5328 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5329 report_one_zone_cb, &zone);
5330 if (err != 1) {
5331 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5332 zbd->path, err);
5333 return err;
5334 }
5335
5336 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5337 return 0;
5338
5339 if (zone.wp != zone.start) {
5340 f2fs_notice(sbi,
5341 "New zone for curseg[%d] is not yet discarded. "
5342 "Reset the zone: curseg[0x%x,0x%x]",
5343 type, cs->segno, cs->next_blkoff);
5344 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block,
5345 zone.len >> log_sectors_per_block);
5346 if (err) {
5347 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5348 zbd->path, err);
5349 return err;
5350 }
5351 }
5352
5353 return 0;
5354}
5355
5356static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5357{
5358 int i, ret;
5359
5360 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5361 ret = do_fix_curseg_write_pointer(sbi, i);
5362 if (ret)
5363 return ret;
5364 }
5365
5366 return 0;
5367}
5368
5369struct check_zone_write_pointer_args {
5370 struct f2fs_sb_info *sbi;
5371 struct f2fs_dev_info *fdev;
5372};
5373
5374static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5375 void *data)
5376{
5377 struct check_zone_write_pointer_args *args;
5378
5379 args = (struct check_zone_write_pointer_args *)data;
5380
5381 return check_zone_write_pointer(args->sbi, args->fdev, zone);
5382}
5383
5384static int check_write_pointer(struct f2fs_sb_info *sbi)
5385{
5386 int i, ret;
5387 struct check_zone_write_pointer_args args;
5388
5389 for (i = 0; i < sbi->s_ndevs; i++) {
5390 if (!bdev_is_zoned(FDEV(i).bdev))
5391 continue;
5392
5393 args.sbi = sbi;
5394 args.fdev = &FDEV(i);
5395 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5396 check_zone_write_pointer_cb, &args);
5397 if (ret < 0)
5398 return ret;
5399 }
5400
5401 return 0;
5402}
5403
5404int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5405{
5406 int ret;
5407
5408 if (!f2fs_sb_has_blkzoned(sbi) || f2fs_readonly(sbi->sb))
5409 return 0;
5410
5411 f2fs_notice(sbi, "Checking entire write pointers");
5412 ret = fix_curseg_write_pointer(sbi);
5413 if (!ret)
5414 ret = check_write_pointer(sbi);
5415 return ret;
5416}
5417
5418/*
5419 * Return the number of usable blocks in a segment. The number of blocks
5420 * returned is always equal to the number of blocks in a segment for
5421 * segments fully contained within a sequential zone capacity or a
5422 * conventional zone. For segments partially contained in a sequential
5423 * zone capacity, the number of usable blocks up to the zone capacity
5424 * is returned. 0 is returned in all other cases.
5425 */
5426static inline unsigned int f2fs_usable_zone_blks_in_seg(
5427 struct f2fs_sb_info *sbi, unsigned int segno)
5428{
5429 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5430 unsigned int secno;
5431
5432 if (!sbi->unusable_blocks_per_sec)
5433 return BLKS_PER_SEG(sbi);
5434
5435 secno = GET_SEC_FROM_SEG(sbi, segno);
5436 seg_start = START_BLOCK(sbi, segno);
5437 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5438 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5439
5440 /*
5441 * If segment starts before zone capacity and spans beyond
5442 * zone capacity, then usable blocks are from seg start to
5443 * zone capacity. If the segment starts after the zone capacity,
5444 * then there are no usable blocks.
5445 */
5446 if (seg_start >= sec_cap_blkaddr)
5447 return 0;
5448 if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5449 return sec_cap_blkaddr - seg_start;
5450
5451 return BLKS_PER_SEG(sbi);
5452}
5453#else
5454int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5455{
5456 return 0;
5457}
5458
5459static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5460 unsigned int segno)
5461{
5462 return 0;
5463}
5464
5465#endif
5466unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5467 unsigned int segno)
5468{
5469 if (f2fs_sb_has_blkzoned(sbi))
5470 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5471
5472 return BLKS_PER_SEG(sbi);
5473}
5474
5475unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi)
5476{
5477 if (f2fs_sb_has_blkzoned(sbi))
5478 return CAP_SEGS_PER_SEC(sbi);
5479
5480 return SEGS_PER_SEC(sbi);
5481}
5482
5483unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
5484 unsigned int segno)
5485{
5486 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi);
5487 unsigned int secno = 0, start = 0;
5488 unsigned int total_valid_blocks = 0;
5489 unsigned long long mtime = 0;
5490 unsigned int i = 0;
5491
5492 secno = GET_SEC_FROM_SEG(sbi, segno);
5493 start = GET_SEG_FROM_SEC(sbi, secno);
5494
5495 if (!__is_large_section(sbi))
5496 return get_seg_entry(sbi, start + i)->mtime;
5497
5498 for (i = 0; i < usable_segs_per_sec; i++) {
5499 /* for large section, only check the mtime of valid segments */
5500 struct seg_entry *se = get_seg_entry(sbi, start+i);
5501
5502 mtime += se->mtime * se->valid_blocks;
5503 total_valid_blocks += se->valid_blocks;
5504 }
5505
5506 if (total_valid_blocks == 0)
5507 return INVALID_MTIME;
5508
5509 return div_u64(mtime, total_valid_blocks);
5510}
5511
5512/*
5513 * Update min, max modified time for cost-benefit GC algorithm
5514 */
5515static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5516{
5517 struct sit_info *sit_i = SIT_I(sbi);
5518 unsigned int segno;
5519
5520 down_write(&sit_i->sentry_lock);
5521
5522 sit_i->min_mtime = ULLONG_MAX;
5523
5524 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5525 unsigned long long mtime = 0;
5526
5527 mtime = f2fs_get_section_mtime(sbi, segno);
5528
5529 if (sit_i->min_mtime > mtime)
5530 sit_i->min_mtime = mtime;
5531 }
5532 sit_i->max_mtime = get_mtime(sbi, false);
5533 sit_i->dirty_max_mtime = 0;
5534 up_write(&sit_i->sentry_lock);
5535}
5536
5537int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5538{
5539 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5540 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5541 struct f2fs_sm_info *sm_info;
5542 int err;
5543
5544 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5545 if (!sm_info)
5546 return -ENOMEM;
5547
5548 /* init sm info */
5549 sbi->sm_info = sm_info;
5550 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5551 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5552 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5553 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5554 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5555 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5556 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5557 sm_info->rec_prefree_segments = sm_info->main_segments *
5558 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5559 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5560 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5561
5562 if (!f2fs_lfs_mode(sbi))
5563 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5564 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5565 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5566 sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5567 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5568 sm_info->min_ssr_sections = reserved_sections(sbi);
5569
5570 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5571
5572 init_f2fs_rwsem(&sm_info->curseg_lock);
5573
5574 err = f2fs_create_flush_cmd_control(sbi);
5575 if (err)
5576 return err;
5577
5578 err = create_discard_cmd_control(sbi);
5579 if (err)
5580 return err;
5581
5582 err = build_sit_info(sbi);
5583 if (err)
5584 return err;
5585 err = build_free_segmap(sbi);
5586 if (err)
5587 return err;
5588 err = build_curseg(sbi);
5589 if (err)
5590 return err;
5591
5592 /* reinit free segmap based on SIT */
5593 err = build_sit_entries(sbi);
5594 if (err)
5595 return err;
5596
5597 init_free_segmap(sbi);
5598 err = build_dirty_segmap(sbi);
5599 if (err)
5600 return err;
5601
5602 err = sanity_check_curseg(sbi);
5603 if (err)
5604 return err;
5605
5606 init_min_max_mtime(sbi);
5607 return 0;
5608}
5609
5610static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5611 enum dirty_type dirty_type)
5612{
5613 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5614
5615 mutex_lock(&dirty_i->seglist_lock);
5616 kvfree(dirty_i->dirty_segmap[dirty_type]);
5617 dirty_i->nr_dirty[dirty_type] = 0;
5618 mutex_unlock(&dirty_i->seglist_lock);
5619}
5620
5621static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5622{
5623 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5624
5625 kvfree(dirty_i->pinned_secmap);
5626 kvfree(dirty_i->victim_secmap);
5627}
5628
5629static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5630{
5631 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5632 int i;
5633
5634 if (!dirty_i)
5635 return;
5636
5637 /* discard pre-free/dirty segments list */
5638 for (i = 0; i < NR_DIRTY_TYPE; i++)
5639 discard_dirty_segmap(sbi, i);
5640
5641 if (__is_large_section(sbi)) {
5642 mutex_lock(&dirty_i->seglist_lock);
5643 kvfree(dirty_i->dirty_secmap);
5644 mutex_unlock(&dirty_i->seglist_lock);
5645 }
5646
5647 destroy_victim_secmap(sbi);
5648 SM_I(sbi)->dirty_info = NULL;
5649 kfree(dirty_i);
5650}
5651
5652static void destroy_curseg(struct f2fs_sb_info *sbi)
5653{
5654 struct curseg_info *array = SM_I(sbi)->curseg_array;
5655 int i;
5656
5657 if (!array)
5658 return;
5659 SM_I(sbi)->curseg_array = NULL;
5660 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5661 kfree(array[i].sum_blk);
5662 kfree(array[i].journal);
5663 }
5664 kfree(array);
5665}
5666
5667static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5668{
5669 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5670
5671 if (!free_i)
5672 return;
5673 SM_I(sbi)->free_info = NULL;
5674 kvfree(free_i->free_segmap);
5675 kvfree(free_i->free_secmap);
5676 kfree(free_i);
5677}
5678
5679static void destroy_sit_info(struct f2fs_sb_info *sbi)
5680{
5681 struct sit_info *sit_i = SIT_I(sbi);
5682
5683 if (!sit_i)
5684 return;
5685
5686 if (sit_i->sentries)
5687 kvfree(sit_i->bitmap);
5688 kfree(sit_i->tmp_map);
5689
5690 kvfree(sit_i->sentries);
5691 kvfree(sit_i->sec_entries);
5692 kvfree(sit_i->dirty_sentries_bitmap);
5693
5694 SM_I(sbi)->sit_info = NULL;
5695 kvfree(sit_i->sit_bitmap);
5696#ifdef CONFIG_F2FS_CHECK_FS
5697 kvfree(sit_i->sit_bitmap_mir);
5698 kvfree(sit_i->invalid_segmap);
5699#endif
5700 kfree(sit_i);
5701}
5702
5703void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5704{
5705 struct f2fs_sm_info *sm_info = SM_I(sbi);
5706
5707 if (!sm_info)
5708 return;
5709 f2fs_destroy_flush_cmd_control(sbi, true);
5710 destroy_discard_cmd_control(sbi);
5711 destroy_dirty_segmap(sbi);
5712 destroy_curseg(sbi);
5713 destroy_free_segmap(sbi);
5714 destroy_sit_info(sbi);
5715 sbi->sm_info = NULL;
5716 kfree(sm_info);
5717}
5718
5719int __init f2fs_create_segment_manager_caches(void)
5720{
5721 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5722 sizeof(struct discard_entry));
5723 if (!discard_entry_slab)
5724 goto fail;
5725
5726 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5727 sizeof(struct discard_cmd));
5728 if (!discard_cmd_slab)
5729 goto destroy_discard_entry;
5730
5731 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5732 sizeof(struct sit_entry_set));
5733 if (!sit_entry_set_slab)
5734 goto destroy_discard_cmd;
5735
5736 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5737 sizeof(struct revoke_entry));
5738 if (!revoke_entry_slab)
5739 goto destroy_sit_entry_set;
5740 return 0;
5741
5742destroy_sit_entry_set:
5743 kmem_cache_destroy(sit_entry_set_slab);
5744destroy_discard_cmd:
5745 kmem_cache_destroy(discard_cmd_slab);
5746destroy_discard_entry:
5747 kmem_cache_destroy(discard_entry_slab);
5748fail:
5749 return -ENOMEM;
5750}
5751
5752void f2fs_destroy_segment_manager_caches(void)
5753{
5754 kmem_cache_destroy(sit_entry_set_slab);
5755 kmem_cache_destroy(discard_cmd_slab);
5756 kmem_cache_destroy(discard_entry_slab);
5757 kmem_cache_destroy(revoke_entry_slab);
5758}