Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/prefetch.h>
13#include <linux/kthread.h>
14#include <linux/swap.h>
15#include <linux/timer.h>
16#include <linux/freezer.h>
17#include <linux/sched/signal.h>
18
19#include "f2fs.h"
20#include "segment.h"
21#include "node.h"
22#include "gc.h"
23#include <trace/events/f2fs.h>
24
25#define __reverse_ffz(x) __reverse_ffs(~(x))
26
27static struct kmem_cache *discard_entry_slab;
28static struct kmem_cache *discard_cmd_slab;
29static struct kmem_cache *sit_entry_set_slab;
30static struct kmem_cache *inmem_entry_slab;
31
32static unsigned long __reverse_ulong(unsigned char *str)
33{
34 unsigned long tmp = 0;
35 int shift = 24, idx = 0;
36
37#if BITS_PER_LONG == 64
38 shift = 56;
39#endif
40 while (shift >= 0) {
41 tmp |= (unsigned long)str[idx++] << shift;
42 shift -= BITS_PER_BYTE;
43 }
44 return tmp;
45}
46
47/*
48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
50 */
51static inline unsigned long __reverse_ffs(unsigned long word)
52{
53 int num = 0;
54
55#if BITS_PER_LONG == 64
56 if ((word & 0xffffffff00000000UL) == 0)
57 num += 32;
58 else
59 word >>= 32;
60#endif
61 if ((word & 0xffff0000) == 0)
62 num += 16;
63 else
64 word >>= 16;
65
66 if ((word & 0xff00) == 0)
67 num += 8;
68 else
69 word >>= 8;
70
71 if ((word & 0xf0) == 0)
72 num += 4;
73 else
74 word >>= 4;
75
76 if ((word & 0xc) == 0)
77 num += 2;
78 else
79 word >>= 2;
80
81 if ((word & 0x2) == 0)
82 num += 1;
83 return num;
84}
85
86/*
87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
89 * @size must be integral times of unsigned long.
90 * Example:
91 * MSB <--> LSB
92 * f2fs_set_bit(0, bitmap) => 1000 0000
93 * f2fs_set_bit(7, bitmap) => 0000 0001
94 */
95static unsigned long __find_rev_next_bit(const unsigned long *addr,
96 unsigned long size, unsigned long offset)
97{
98 const unsigned long *p = addr + BIT_WORD(offset);
99 unsigned long result = size;
100 unsigned long tmp;
101
102 if (offset >= size)
103 return size;
104
105 size -= (offset & ~(BITS_PER_LONG - 1));
106 offset %= BITS_PER_LONG;
107
108 while (1) {
109 if (*p == 0)
110 goto pass;
111
112 tmp = __reverse_ulong((unsigned char *)p);
113
114 tmp &= ~0UL >> offset;
115 if (size < BITS_PER_LONG)
116 tmp &= (~0UL << (BITS_PER_LONG - size));
117 if (tmp)
118 goto found;
119pass:
120 if (size <= BITS_PER_LONG)
121 break;
122 size -= BITS_PER_LONG;
123 offset = 0;
124 p++;
125 }
126 return result;
127found:
128 return result - size + __reverse_ffs(tmp);
129}
130
131static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
132 unsigned long size, unsigned long offset)
133{
134 const unsigned long *p = addr + BIT_WORD(offset);
135 unsigned long result = size;
136 unsigned long tmp;
137
138 if (offset >= size)
139 return size;
140
141 size -= (offset & ~(BITS_PER_LONG - 1));
142 offset %= BITS_PER_LONG;
143
144 while (1) {
145 if (*p == ~0UL)
146 goto pass;
147
148 tmp = __reverse_ulong((unsigned char *)p);
149
150 if (offset)
151 tmp |= ~0UL << (BITS_PER_LONG - offset);
152 if (size < BITS_PER_LONG)
153 tmp |= ~0UL >> size;
154 if (tmp != ~0UL)
155 goto found;
156pass:
157 if (size <= BITS_PER_LONG)
158 break;
159 size -= BITS_PER_LONG;
160 offset = 0;
161 p++;
162 }
163 return result;
164found:
165 return result - size + __reverse_ffz(tmp);
166}
167
168bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
169{
170 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
171 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
172 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
173
174 if (f2fs_lfs_mode(sbi))
175 return false;
176 if (sbi->gc_mode == GC_URGENT_HIGH)
177 return true;
178 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
179 return true;
180
181 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
182 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
183}
184
185void f2fs_register_inmem_page(struct inode *inode, struct page *page)
186{
187 struct inmem_pages *new;
188
189 set_page_private_atomic(page);
190
191 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
192
193 /* add atomic page indices to the list */
194 new->page = page;
195 INIT_LIST_HEAD(&new->list);
196
197 /* increase reference count with clean state */
198 get_page(page);
199 mutex_lock(&F2FS_I(inode)->inmem_lock);
200 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
201 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
202 mutex_unlock(&F2FS_I(inode)->inmem_lock);
203
204 trace_f2fs_register_inmem_page(page, INMEM);
205}
206
207static int __revoke_inmem_pages(struct inode *inode,
208 struct list_head *head, bool drop, bool recover,
209 bool trylock)
210{
211 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
212 struct inmem_pages *cur, *tmp;
213 int err = 0;
214
215 list_for_each_entry_safe(cur, tmp, head, list) {
216 struct page *page = cur->page;
217
218 if (drop)
219 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
220
221 if (trylock) {
222 /*
223 * to avoid deadlock in between page lock and
224 * inmem_lock.
225 */
226 if (!trylock_page(page))
227 continue;
228 } else {
229 lock_page(page);
230 }
231
232 f2fs_wait_on_page_writeback(page, DATA, true, true);
233
234 if (recover) {
235 struct dnode_of_data dn;
236 struct node_info ni;
237
238 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
239retry:
240 set_new_dnode(&dn, inode, NULL, NULL, 0);
241 err = f2fs_get_dnode_of_data(&dn, page->index,
242 LOOKUP_NODE);
243 if (err) {
244 if (err == -ENOMEM) {
245 congestion_wait(BLK_RW_ASYNC,
246 DEFAULT_IO_TIMEOUT);
247 cond_resched();
248 goto retry;
249 }
250 err = -EAGAIN;
251 goto next;
252 }
253
254 err = f2fs_get_node_info(sbi, dn.nid, &ni);
255 if (err) {
256 f2fs_put_dnode(&dn);
257 return err;
258 }
259
260 if (cur->old_addr == NEW_ADDR) {
261 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
262 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
263 } else
264 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
265 cur->old_addr, ni.version, true, true);
266 f2fs_put_dnode(&dn);
267 }
268next:
269 /* we don't need to invalidate this in the sccessful status */
270 if (drop || recover) {
271 ClearPageUptodate(page);
272 clear_page_private_gcing(page);
273 }
274 detach_page_private(page);
275 set_page_private(page, 0);
276 f2fs_put_page(page, 1);
277
278 list_del(&cur->list);
279 kmem_cache_free(inmem_entry_slab, cur);
280 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
281 }
282 return err;
283}
284
285void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
286{
287 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
288 struct inode *inode;
289 struct f2fs_inode_info *fi;
290 unsigned int count = sbi->atomic_files;
291 unsigned int looped = 0;
292next:
293 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
294 if (list_empty(head)) {
295 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
296 return;
297 }
298 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
299 inode = igrab(&fi->vfs_inode);
300 if (inode)
301 list_move_tail(&fi->inmem_ilist, head);
302 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
303
304 if (inode) {
305 if (gc_failure) {
306 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
307 goto skip;
308 }
309 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
310 f2fs_drop_inmem_pages(inode);
311skip:
312 iput(inode);
313 }
314 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
315 cond_resched();
316 if (gc_failure) {
317 if (++looped >= count)
318 return;
319 }
320 goto next;
321}
322
323void f2fs_drop_inmem_pages(struct inode *inode)
324{
325 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
326 struct f2fs_inode_info *fi = F2FS_I(inode);
327
328 do {
329 mutex_lock(&fi->inmem_lock);
330 if (list_empty(&fi->inmem_pages)) {
331 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
332
333 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
334 if (!list_empty(&fi->inmem_ilist))
335 list_del_init(&fi->inmem_ilist);
336 if (f2fs_is_atomic_file(inode)) {
337 clear_inode_flag(inode, FI_ATOMIC_FILE);
338 sbi->atomic_files--;
339 }
340 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
341
342 mutex_unlock(&fi->inmem_lock);
343 break;
344 }
345 __revoke_inmem_pages(inode, &fi->inmem_pages,
346 true, false, true);
347 mutex_unlock(&fi->inmem_lock);
348 } while (1);
349}
350
351void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
352{
353 struct f2fs_inode_info *fi = F2FS_I(inode);
354 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
355 struct list_head *head = &fi->inmem_pages;
356 struct inmem_pages *cur = NULL;
357
358 f2fs_bug_on(sbi, !page_private_atomic(page));
359
360 mutex_lock(&fi->inmem_lock);
361 list_for_each_entry(cur, head, list) {
362 if (cur->page == page)
363 break;
364 }
365
366 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
367 list_del(&cur->list);
368 mutex_unlock(&fi->inmem_lock);
369
370 dec_page_count(sbi, F2FS_INMEM_PAGES);
371 kmem_cache_free(inmem_entry_slab, cur);
372
373 ClearPageUptodate(page);
374 clear_page_private_atomic(page);
375 f2fs_put_page(page, 0);
376
377 detach_page_private(page);
378 set_page_private(page, 0);
379
380 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
381}
382
383static int __f2fs_commit_inmem_pages(struct inode *inode)
384{
385 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
386 struct f2fs_inode_info *fi = F2FS_I(inode);
387 struct inmem_pages *cur, *tmp;
388 struct f2fs_io_info fio = {
389 .sbi = sbi,
390 .ino = inode->i_ino,
391 .type = DATA,
392 .op = REQ_OP_WRITE,
393 .op_flags = REQ_SYNC | REQ_PRIO,
394 .io_type = FS_DATA_IO,
395 };
396 struct list_head revoke_list;
397 bool submit_bio = false;
398 int err = 0;
399
400 INIT_LIST_HEAD(&revoke_list);
401
402 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
403 struct page *page = cur->page;
404
405 lock_page(page);
406 if (page->mapping == inode->i_mapping) {
407 trace_f2fs_commit_inmem_page(page, INMEM);
408
409 f2fs_wait_on_page_writeback(page, DATA, true, true);
410
411 set_page_dirty(page);
412 if (clear_page_dirty_for_io(page)) {
413 inode_dec_dirty_pages(inode);
414 f2fs_remove_dirty_inode(inode);
415 }
416retry:
417 fio.page = page;
418 fio.old_blkaddr = NULL_ADDR;
419 fio.encrypted_page = NULL;
420 fio.need_lock = LOCK_DONE;
421 err = f2fs_do_write_data_page(&fio);
422 if (err) {
423 if (err == -ENOMEM) {
424 congestion_wait(BLK_RW_ASYNC,
425 DEFAULT_IO_TIMEOUT);
426 cond_resched();
427 goto retry;
428 }
429 unlock_page(page);
430 break;
431 }
432 /* record old blkaddr for revoking */
433 cur->old_addr = fio.old_blkaddr;
434 submit_bio = true;
435 }
436 unlock_page(page);
437 list_move_tail(&cur->list, &revoke_list);
438 }
439
440 if (submit_bio)
441 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
442
443 if (err) {
444 /*
445 * try to revoke all committed pages, but still we could fail
446 * due to no memory or other reason, if that happened, EAGAIN
447 * will be returned, which means in such case, transaction is
448 * already not integrity, caller should use journal to do the
449 * recovery or rewrite & commit last transaction. For other
450 * error number, revoking was done by filesystem itself.
451 */
452 err = __revoke_inmem_pages(inode, &revoke_list,
453 false, true, false);
454
455 /* drop all uncommitted pages */
456 __revoke_inmem_pages(inode, &fi->inmem_pages,
457 true, false, false);
458 } else {
459 __revoke_inmem_pages(inode, &revoke_list,
460 false, false, false);
461 }
462
463 return err;
464}
465
466int f2fs_commit_inmem_pages(struct inode *inode)
467{
468 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
469 struct f2fs_inode_info *fi = F2FS_I(inode);
470 int err;
471
472 f2fs_balance_fs(sbi, true);
473
474 down_write(&fi->i_gc_rwsem[WRITE]);
475
476 f2fs_lock_op(sbi);
477 set_inode_flag(inode, FI_ATOMIC_COMMIT);
478
479 mutex_lock(&fi->inmem_lock);
480 err = __f2fs_commit_inmem_pages(inode);
481 mutex_unlock(&fi->inmem_lock);
482
483 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
484
485 f2fs_unlock_op(sbi);
486 up_write(&fi->i_gc_rwsem[WRITE]);
487
488 return err;
489}
490
491/*
492 * This function balances dirty node and dentry pages.
493 * In addition, it controls garbage collection.
494 */
495void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
496{
497 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
498 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
499 f2fs_stop_checkpoint(sbi, false);
500 }
501
502 /* balance_fs_bg is able to be pending */
503 if (need && excess_cached_nats(sbi))
504 f2fs_balance_fs_bg(sbi, false);
505
506 if (!f2fs_is_checkpoint_ready(sbi))
507 return;
508
509 /*
510 * We should do GC or end up with checkpoint, if there are so many dirty
511 * dir/node pages without enough free segments.
512 */
513 if (has_not_enough_free_secs(sbi, 0, 0)) {
514 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
515 sbi->gc_thread->f2fs_gc_task) {
516 DEFINE_WAIT(wait);
517
518 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
519 TASK_UNINTERRUPTIBLE);
520 wake_up(&sbi->gc_thread->gc_wait_queue_head);
521 io_schedule();
522 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
523 } else {
524 down_write(&sbi->gc_lock);
525 f2fs_gc(sbi, false, false, false, NULL_SEGNO);
526 }
527 }
528}
529
530void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
531{
532 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
533 return;
534
535 /* try to shrink extent cache when there is no enough memory */
536 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
537 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
538
539 /* check the # of cached NAT entries */
540 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
541 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
542
543 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
544 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
545 else
546 f2fs_build_free_nids(sbi, false, false);
547
548 if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) ||
549 excess_prefree_segs(sbi))
550 goto do_sync;
551
552 /* there is background inflight IO or foreground operation recently */
553 if (is_inflight_io(sbi, REQ_TIME) ||
554 (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
555 return;
556
557 /* exceed periodical checkpoint timeout threshold */
558 if (f2fs_time_over(sbi, CP_TIME))
559 goto do_sync;
560
561 /* checkpoint is the only way to shrink partial cached entries */
562 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
563 f2fs_available_free_memory(sbi, INO_ENTRIES))
564 return;
565
566do_sync:
567 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
568 struct blk_plug plug;
569
570 mutex_lock(&sbi->flush_lock);
571
572 blk_start_plug(&plug);
573 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
574 blk_finish_plug(&plug);
575
576 mutex_unlock(&sbi->flush_lock);
577 }
578 f2fs_sync_fs(sbi->sb, true);
579 stat_inc_bg_cp_count(sbi->stat_info);
580}
581
582static int __submit_flush_wait(struct f2fs_sb_info *sbi,
583 struct block_device *bdev)
584{
585 int ret = blkdev_issue_flush(bdev);
586
587 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
588 test_opt(sbi, FLUSH_MERGE), ret);
589 return ret;
590}
591
592static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
593{
594 int ret = 0;
595 int i;
596
597 if (!f2fs_is_multi_device(sbi))
598 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
599
600 for (i = 0; i < sbi->s_ndevs; i++) {
601 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
602 continue;
603 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
604 if (ret)
605 break;
606 }
607 return ret;
608}
609
610static int issue_flush_thread(void *data)
611{
612 struct f2fs_sb_info *sbi = data;
613 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
614 wait_queue_head_t *q = &fcc->flush_wait_queue;
615repeat:
616 if (kthread_should_stop())
617 return 0;
618
619 if (!llist_empty(&fcc->issue_list)) {
620 struct flush_cmd *cmd, *next;
621 int ret;
622
623 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
624 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
625
626 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
627
628 ret = submit_flush_wait(sbi, cmd->ino);
629 atomic_inc(&fcc->issued_flush);
630
631 llist_for_each_entry_safe(cmd, next,
632 fcc->dispatch_list, llnode) {
633 cmd->ret = ret;
634 complete(&cmd->wait);
635 }
636 fcc->dispatch_list = NULL;
637 }
638
639 wait_event_interruptible(*q,
640 kthread_should_stop() || !llist_empty(&fcc->issue_list));
641 goto repeat;
642}
643
644int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
645{
646 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
647 struct flush_cmd cmd;
648 int ret;
649
650 if (test_opt(sbi, NOBARRIER))
651 return 0;
652
653 if (!test_opt(sbi, FLUSH_MERGE)) {
654 atomic_inc(&fcc->queued_flush);
655 ret = submit_flush_wait(sbi, ino);
656 atomic_dec(&fcc->queued_flush);
657 atomic_inc(&fcc->issued_flush);
658 return ret;
659 }
660
661 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
662 f2fs_is_multi_device(sbi)) {
663 ret = submit_flush_wait(sbi, ino);
664 atomic_dec(&fcc->queued_flush);
665
666 atomic_inc(&fcc->issued_flush);
667 return ret;
668 }
669
670 cmd.ino = ino;
671 init_completion(&cmd.wait);
672
673 llist_add(&cmd.llnode, &fcc->issue_list);
674
675 /*
676 * update issue_list before we wake up issue_flush thread, this
677 * smp_mb() pairs with another barrier in ___wait_event(), see
678 * more details in comments of waitqueue_active().
679 */
680 smp_mb();
681
682 if (waitqueue_active(&fcc->flush_wait_queue))
683 wake_up(&fcc->flush_wait_queue);
684
685 if (fcc->f2fs_issue_flush) {
686 wait_for_completion(&cmd.wait);
687 atomic_dec(&fcc->queued_flush);
688 } else {
689 struct llist_node *list;
690
691 list = llist_del_all(&fcc->issue_list);
692 if (!list) {
693 wait_for_completion(&cmd.wait);
694 atomic_dec(&fcc->queued_flush);
695 } else {
696 struct flush_cmd *tmp, *next;
697
698 ret = submit_flush_wait(sbi, ino);
699
700 llist_for_each_entry_safe(tmp, next, list, llnode) {
701 if (tmp == &cmd) {
702 cmd.ret = ret;
703 atomic_dec(&fcc->queued_flush);
704 continue;
705 }
706 tmp->ret = ret;
707 complete(&tmp->wait);
708 }
709 }
710 }
711
712 return cmd.ret;
713}
714
715int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
716{
717 dev_t dev = sbi->sb->s_bdev->bd_dev;
718 struct flush_cmd_control *fcc;
719 int err = 0;
720
721 if (SM_I(sbi)->fcc_info) {
722 fcc = SM_I(sbi)->fcc_info;
723 if (fcc->f2fs_issue_flush)
724 return err;
725 goto init_thread;
726 }
727
728 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
729 if (!fcc)
730 return -ENOMEM;
731 atomic_set(&fcc->issued_flush, 0);
732 atomic_set(&fcc->queued_flush, 0);
733 init_waitqueue_head(&fcc->flush_wait_queue);
734 init_llist_head(&fcc->issue_list);
735 SM_I(sbi)->fcc_info = fcc;
736 if (!test_opt(sbi, FLUSH_MERGE))
737 return err;
738
739init_thread:
740 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
741 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
742 if (IS_ERR(fcc->f2fs_issue_flush)) {
743 err = PTR_ERR(fcc->f2fs_issue_flush);
744 kfree(fcc);
745 SM_I(sbi)->fcc_info = NULL;
746 return err;
747 }
748
749 return err;
750}
751
752void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
753{
754 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
755
756 if (fcc && fcc->f2fs_issue_flush) {
757 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
758
759 fcc->f2fs_issue_flush = NULL;
760 kthread_stop(flush_thread);
761 }
762 if (free) {
763 kfree(fcc);
764 SM_I(sbi)->fcc_info = NULL;
765 }
766}
767
768int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
769{
770 int ret = 0, i;
771
772 if (!f2fs_is_multi_device(sbi))
773 return 0;
774
775 if (test_opt(sbi, NOBARRIER))
776 return 0;
777
778 for (i = 1; i < sbi->s_ndevs; i++) {
779 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
780 continue;
781 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
782 if (ret)
783 break;
784
785 spin_lock(&sbi->dev_lock);
786 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
787 spin_unlock(&sbi->dev_lock);
788 }
789
790 return ret;
791}
792
793static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
794 enum dirty_type dirty_type)
795{
796 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
797
798 /* need not be added */
799 if (IS_CURSEG(sbi, segno))
800 return;
801
802 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
803 dirty_i->nr_dirty[dirty_type]++;
804
805 if (dirty_type == DIRTY) {
806 struct seg_entry *sentry = get_seg_entry(sbi, segno);
807 enum dirty_type t = sentry->type;
808
809 if (unlikely(t >= DIRTY)) {
810 f2fs_bug_on(sbi, 1);
811 return;
812 }
813 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
814 dirty_i->nr_dirty[t]++;
815
816 if (__is_large_section(sbi)) {
817 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
818 block_t valid_blocks =
819 get_valid_blocks(sbi, segno, true);
820
821 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
822 valid_blocks == BLKS_PER_SEC(sbi)));
823
824 if (!IS_CURSEC(sbi, secno))
825 set_bit(secno, dirty_i->dirty_secmap);
826 }
827 }
828}
829
830static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
831 enum dirty_type dirty_type)
832{
833 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
834 block_t valid_blocks;
835
836 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
837 dirty_i->nr_dirty[dirty_type]--;
838
839 if (dirty_type == DIRTY) {
840 struct seg_entry *sentry = get_seg_entry(sbi, segno);
841 enum dirty_type t = sentry->type;
842
843 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
844 dirty_i->nr_dirty[t]--;
845
846 valid_blocks = get_valid_blocks(sbi, segno, true);
847 if (valid_blocks == 0) {
848 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
849 dirty_i->victim_secmap);
850#ifdef CONFIG_F2FS_CHECK_FS
851 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
852#endif
853 }
854 if (__is_large_section(sbi)) {
855 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
856
857 if (!valid_blocks ||
858 valid_blocks == BLKS_PER_SEC(sbi)) {
859 clear_bit(secno, dirty_i->dirty_secmap);
860 return;
861 }
862
863 if (!IS_CURSEC(sbi, secno))
864 set_bit(secno, dirty_i->dirty_secmap);
865 }
866 }
867}
868
869/*
870 * Should not occur error such as -ENOMEM.
871 * Adding dirty entry into seglist is not critical operation.
872 * If a given segment is one of current working segments, it won't be added.
873 */
874static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
875{
876 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
877 unsigned short valid_blocks, ckpt_valid_blocks;
878 unsigned int usable_blocks;
879
880 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
881 return;
882
883 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
884 mutex_lock(&dirty_i->seglist_lock);
885
886 valid_blocks = get_valid_blocks(sbi, segno, false);
887 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
888
889 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
890 ckpt_valid_blocks == usable_blocks)) {
891 __locate_dirty_segment(sbi, segno, PRE);
892 __remove_dirty_segment(sbi, segno, DIRTY);
893 } else if (valid_blocks < usable_blocks) {
894 __locate_dirty_segment(sbi, segno, DIRTY);
895 } else {
896 /* Recovery routine with SSR needs this */
897 __remove_dirty_segment(sbi, segno, DIRTY);
898 }
899
900 mutex_unlock(&dirty_i->seglist_lock);
901}
902
903/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
904void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
905{
906 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
907 unsigned int segno;
908
909 mutex_lock(&dirty_i->seglist_lock);
910 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
911 if (get_valid_blocks(sbi, segno, false))
912 continue;
913 if (IS_CURSEG(sbi, segno))
914 continue;
915 __locate_dirty_segment(sbi, segno, PRE);
916 __remove_dirty_segment(sbi, segno, DIRTY);
917 }
918 mutex_unlock(&dirty_i->seglist_lock);
919}
920
921block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
922{
923 int ovp_hole_segs =
924 (overprovision_segments(sbi) - reserved_segments(sbi));
925 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
926 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
927 block_t holes[2] = {0, 0}; /* DATA and NODE */
928 block_t unusable;
929 struct seg_entry *se;
930 unsigned int segno;
931
932 mutex_lock(&dirty_i->seglist_lock);
933 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
934 se = get_seg_entry(sbi, segno);
935 if (IS_NODESEG(se->type))
936 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
937 se->valid_blocks;
938 else
939 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
940 se->valid_blocks;
941 }
942 mutex_unlock(&dirty_i->seglist_lock);
943
944 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
945 if (unusable > ovp_holes)
946 return unusable - ovp_holes;
947 return 0;
948}
949
950int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
951{
952 int ovp_hole_segs =
953 (overprovision_segments(sbi) - reserved_segments(sbi));
954 if (unusable > F2FS_OPTION(sbi).unusable_cap)
955 return -EAGAIN;
956 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
957 dirty_segments(sbi) > ovp_hole_segs)
958 return -EAGAIN;
959 return 0;
960}
961
962/* This is only used by SBI_CP_DISABLED */
963static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
964{
965 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
966 unsigned int segno = 0;
967
968 mutex_lock(&dirty_i->seglist_lock);
969 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
970 if (get_valid_blocks(sbi, segno, false))
971 continue;
972 if (get_ckpt_valid_blocks(sbi, segno, false))
973 continue;
974 mutex_unlock(&dirty_i->seglist_lock);
975 return segno;
976 }
977 mutex_unlock(&dirty_i->seglist_lock);
978 return NULL_SEGNO;
979}
980
981static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
982 struct block_device *bdev, block_t lstart,
983 block_t start, block_t len)
984{
985 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
986 struct list_head *pend_list;
987 struct discard_cmd *dc;
988
989 f2fs_bug_on(sbi, !len);
990
991 pend_list = &dcc->pend_list[plist_idx(len)];
992
993 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
994 INIT_LIST_HEAD(&dc->list);
995 dc->bdev = bdev;
996 dc->lstart = lstart;
997 dc->start = start;
998 dc->len = len;
999 dc->ref = 0;
1000 dc->state = D_PREP;
1001 dc->queued = 0;
1002 dc->error = 0;
1003 init_completion(&dc->wait);
1004 list_add_tail(&dc->list, pend_list);
1005 spin_lock_init(&dc->lock);
1006 dc->bio_ref = 0;
1007 atomic_inc(&dcc->discard_cmd_cnt);
1008 dcc->undiscard_blks += len;
1009
1010 return dc;
1011}
1012
1013static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1014 struct block_device *bdev, block_t lstart,
1015 block_t start, block_t len,
1016 struct rb_node *parent, struct rb_node **p,
1017 bool leftmost)
1018{
1019 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1020 struct discard_cmd *dc;
1021
1022 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1023
1024 rb_link_node(&dc->rb_node, parent, p);
1025 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1026
1027 return dc;
1028}
1029
1030static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1031 struct discard_cmd *dc)
1032{
1033 if (dc->state == D_DONE)
1034 atomic_sub(dc->queued, &dcc->queued_discard);
1035
1036 list_del(&dc->list);
1037 rb_erase_cached(&dc->rb_node, &dcc->root);
1038 dcc->undiscard_blks -= dc->len;
1039
1040 kmem_cache_free(discard_cmd_slab, dc);
1041
1042 atomic_dec(&dcc->discard_cmd_cnt);
1043}
1044
1045static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1046 struct discard_cmd *dc)
1047{
1048 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1049 unsigned long flags;
1050
1051 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1052
1053 spin_lock_irqsave(&dc->lock, flags);
1054 if (dc->bio_ref) {
1055 spin_unlock_irqrestore(&dc->lock, flags);
1056 return;
1057 }
1058 spin_unlock_irqrestore(&dc->lock, flags);
1059
1060 f2fs_bug_on(sbi, dc->ref);
1061
1062 if (dc->error == -EOPNOTSUPP)
1063 dc->error = 0;
1064
1065 if (dc->error)
1066 printk_ratelimited(
1067 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1068 KERN_INFO, sbi->sb->s_id,
1069 dc->lstart, dc->start, dc->len, dc->error);
1070 __detach_discard_cmd(dcc, dc);
1071}
1072
1073static void f2fs_submit_discard_endio(struct bio *bio)
1074{
1075 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1076 unsigned long flags;
1077
1078 spin_lock_irqsave(&dc->lock, flags);
1079 if (!dc->error)
1080 dc->error = blk_status_to_errno(bio->bi_status);
1081 dc->bio_ref--;
1082 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1083 dc->state = D_DONE;
1084 complete_all(&dc->wait);
1085 }
1086 spin_unlock_irqrestore(&dc->lock, flags);
1087 bio_put(bio);
1088}
1089
1090static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1091 block_t start, block_t end)
1092{
1093#ifdef CONFIG_F2FS_CHECK_FS
1094 struct seg_entry *sentry;
1095 unsigned int segno;
1096 block_t blk = start;
1097 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1098 unsigned long *map;
1099
1100 while (blk < end) {
1101 segno = GET_SEGNO(sbi, blk);
1102 sentry = get_seg_entry(sbi, segno);
1103 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1104
1105 if (end < START_BLOCK(sbi, segno + 1))
1106 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1107 else
1108 size = max_blocks;
1109 map = (unsigned long *)(sentry->cur_valid_map);
1110 offset = __find_rev_next_bit(map, size, offset);
1111 f2fs_bug_on(sbi, offset != size);
1112 blk = START_BLOCK(sbi, segno + 1);
1113 }
1114#endif
1115}
1116
1117static void __init_discard_policy(struct f2fs_sb_info *sbi,
1118 struct discard_policy *dpolicy,
1119 int discard_type, unsigned int granularity)
1120{
1121 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1122
1123 /* common policy */
1124 dpolicy->type = discard_type;
1125 dpolicy->sync = true;
1126 dpolicy->ordered = false;
1127 dpolicy->granularity = granularity;
1128
1129 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1130 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1131 dpolicy->timeout = false;
1132
1133 if (discard_type == DPOLICY_BG) {
1134 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1135 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1136 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1137 dpolicy->io_aware = true;
1138 dpolicy->sync = false;
1139 dpolicy->ordered = true;
1140 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1141 dpolicy->granularity = 1;
1142 if (atomic_read(&dcc->discard_cmd_cnt))
1143 dpolicy->max_interval =
1144 DEF_MIN_DISCARD_ISSUE_TIME;
1145 }
1146 } else if (discard_type == DPOLICY_FORCE) {
1147 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1148 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1149 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1150 dpolicy->io_aware = false;
1151 } else if (discard_type == DPOLICY_FSTRIM) {
1152 dpolicy->io_aware = false;
1153 } else if (discard_type == DPOLICY_UMOUNT) {
1154 dpolicy->io_aware = false;
1155 /* we need to issue all to keep CP_TRIMMED_FLAG */
1156 dpolicy->granularity = 1;
1157 dpolicy->timeout = true;
1158 }
1159}
1160
1161static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1162 struct block_device *bdev, block_t lstart,
1163 block_t start, block_t len);
1164/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1165static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1166 struct discard_policy *dpolicy,
1167 struct discard_cmd *dc,
1168 unsigned int *issued)
1169{
1170 struct block_device *bdev = dc->bdev;
1171 struct request_queue *q = bdev_get_queue(bdev);
1172 unsigned int max_discard_blocks =
1173 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1174 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1175 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1176 &(dcc->fstrim_list) : &(dcc->wait_list);
1177 int flag = dpolicy->sync ? REQ_SYNC : 0;
1178 block_t lstart, start, len, total_len;
1179 int err = 0;
1180
1181 if (dc->state != D_PREP)
1182 return 0;
1183
1184 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1185 return 0;
1186
1187 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1188
1189 lstart = dc->lstart;
1190 start = dc->start;
1191 len = dc->len;
1192 total_len = len;
1193
1194 dc->len = 0;
1195
1196 while (total_len && *issued < dpolicy->max_requests && !err) {
1197 struct bio *bio = NULL;
1198 unsigned long flags;
1199 bool last = true;
1200
1201 if (len > max_discard_blocks) {
1202 len = max_discard_blocks;
1203 last = false;
1204 }
1205
1206 (*issued)++;
1207 if (*issued == dpolicy->max_requests)
1208 last = true;
1209
1210 dc->len += len;
1211
1212 if (time_to_inject(sbi, FAULT_DISCARD)) {
1213 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1214 err = -EIO;
1215 goto submit;
1216 }
1217 err = __blkdev_issue_discard(bdev,
1218 SECTOR_FROM_BLOCK(start),
1219 SECTOR_FROM_BLOCK(len),
1220 GFP_NOFS, 0, &bio);
1221submit:
1222 if (err) {
1223 spin_lock_irqsave(&dc->lock, flags);
1224 if (dc->state == D_PARTIAL)
1225 dc->state = D_SUBMIT;
1226 spin_unlock_irqrestore(&dc->lock, flags);
1227
1228 break;
1229 }
1230
1231 f2fs_bug_on(sbi, !bio);
1232
1233 /*
1234 * should keep before submission to avoid D_DONE
1235 * right away
1236 */
1237 spin_lock_irqsave(&dc->lock, flags);
1238 if (last)
1239 dc->state = D_SUBMIT;
1240 else
1241 dc->state = D_PARTIAL;
1242 dc->bio_ref++;
1243 spin_unlock_irqrestore(&dc->lock, flags);
1244
1245 atomic_inc(&dcc->queued_discard);
1246 dc->queued++;
1247 list_move_tail(&dc->list, wait_list);
1248
1249 /* sanity check on discard range */
1250 __check_sit_bitmap(sbi, lstart, lstart + len);
1251
1252 bio->bi_private = dc;
1253 bio->bi_end_io = f2fs_submit_discard_endio;
1254 bio->bi_opf |= flag;
1255 submit_bio(bio);
1256
1257 atomic_inc(&dcc->issued_discard);
1258
1259 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1260
1261 lstart += len;
1262 start += len;
1263 total_len -= len;
1264 len = total_len;
1265 }
1266
1267 if (!err && len) {
1268 dcc->undiscard_blks -= len;
1269 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1270 }
1271 return err;
1272}
1273
1274static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1275 struct block_device *bdev, block_t lstart,
1276 block_t start, block_t len,
1277 struct rb_node **insert_p,
1278 struct rb_node *insert_parent)
1279{
1280 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1281 struct rb_node **p;
1282 struct rb_node *parent = NULL;
1283 bool leftmost = true;
1284
1285 if (insert_p && insert_parent) {
1286 parent = insert_parent;
1287 p = insert_p;
1288 goto do_insert;
1289 }
1290
1291 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1292 lstart, &leftmost);
1293do_insert:
1294 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1295 p, leftmost);
1296}
1297
1298static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1299 struct discard_cmd *dc)
1300{
1301 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1302}
1303
1304static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1305 struct discard_cmd *dc, block_t blkaddr)
1306{
1307 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1308 struct discard_info di = dc->di;
1309 bool modified = false;
1310
1311 if (dc->state == D_DONE || dc->len == 1) {
1312 __remove_discard_cmd(sbi, dc);
1313 return;
1314 }
1315
1316 dcc->undiscard_blks -= di.len;
1317
1318 if (blkaddr > di.lstart) {
1319 dc->len = blkaddr - dc->lstart;
1320 dcc->undiscard_blks += dc->len;
1321 __relocate_discard_cmd(dcc, dc);
1322 modified = true;
1323 }
1324
1325 if (blkaddr < di.lstart + di.len - 1) {
1326 if (modified) {
1327 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1328 di.start + blkaddr + 1 - di.lstart,
1329 di.lstart + di.len - 1 - blkaddr,
1330 NULL, NULL);
1331 } else {
1332 dc->lstart++;
1333 dc->len--;
1334 dc->start++;
1335 dcc->undiscard_blks += dc->len;
1336 __relocate_discard_cmd(dcc, dc);
1337 }
1338 }
1339}
1340
1341static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1342 struct block_device *bdev, block_t lstart,
1343 block_t start, block_t len)
1344{
1345 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1346 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1347 struct discard_cmd *dc;
1348 struct discard_info di = {0};
1349 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1350 struct request_queue *q = bdev_get_queue(bdev);
1351 unsigned int max_discard_blocks =
1352 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1353 block_t end = lstart + len;
1354
1355 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1356 NULL, lstart,
1357 (struct rb_entry **)&prev_dc,
1358 (struct rb_entry **)&next_dc,
1359 &insert_p, &insert_parent, true, NULL);
1360 if (dc)
1361 prev_dc = dc;
1362
1363 if (!prev_dc) {
1364 di.lstart = lstart;
1365 di.len = next_dc ? next_dc->lstart - lstart : len;
1366 di.len = min(di.len, len);
1367 di.start = start;
1368 }
1369
1370 while (1) {
1371 struct rb_node *node;
1372 bool merged = false;
1373 struct discard_cmd *tdc = NULL;
1374
1375 if (prev_dc) {
1376 di.lstart = prev_dc->lstart + prev_dc->len;
1377 if (di.lstart < lstart)
1378 di.lstart = lstart;
1379 if (di.lstart >= end)
1380 break;
1381
1382 if (!next_dc || next_dc->lstart > end)
1383 di.len = end - di.lstart;
1384 else
1385 di.len = next_dc->lstart - di.lstart;
1386 di.start = start + di.lstart - lstart;
1387 }
1388
1389 if (!di.len)
1390 goto next;
1391
1392 if (prev_dc && prev_dc->state == D_PREP &&
1393 prev_dc->bdev == bdev &&
1394 __is_discard_back_mergeable(&di, &prev_dc->di,
1395 max_discard_blocks)) {
1396 prev_dc->di.len += di.len;
1397 dcc->undiscard_blks += di.len;
1398 __relocate_discard_cmd(dcc, prev_dc);
1399 di = prev_dc->di;
1400 tdc = prev_dc;
1401 merged = true;
1402 }
1403
1404 if (next_dc && next_dc->state == D_PREP &&
1405 next_dc->bdev == bdev &&
1406 __is_discard_front_mergeable(&di, &next_dc->di,
1407 max_discard_blocks)) {
1408 next_dc->di.lstart = di.lstart;
1409 next_dc->di.len += di.len;
1410 next_dc->di.start = di.start;
1411 dcc->undiscard_blks += di.len;
1412 __relocate_discard_cmd(dcc, next_dc);
1413 if (tdc)
1414 __remove_discard_cmd(sbi, tdc);
1415 merged = true;
1416 }
1417
1418 if (!merged) {
1419 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1420 di.len, NULL, NULL);
1421 }
1422 next:
1423 prev_dc = next_dc;
1424 if (!prev_dc)
1425 break;
1426
1427 node = rb_next(&prev_dc->rb_node);
1428 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1429 }
1430}
1431
1432static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1433 struct block_device *bdev, block_t blkstart, block_t blklen)
1434{
1435 block_t lblkstart = blkstart;
1436
1437 if (!f2fs_bdev_support_discard(bdev))
1438 return 0;
1439
1440 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1441
1442 if (f2fs_is_multi_device(sbi)) {
1443 int devi = f2fs_target_device_index(sbi, blkstart);
1444
1445 blkstart -= FDEV(devi).start_blk;
1446 }
1447 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1448 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1449 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1450 return 0;
1451}
1452
1453static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1454 struct discard_policy *dpolicy)
1455{
1456 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1457 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1458 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1459 struct discard_cmd *dc;
1460 struct blk_plug plug;
1461 unsigned int pos = dcc->next_pos;
1462 unsigned int issued = 0;
1463 bool io_interrupted = false;
1464
1465 mutex_lock(&dcc->cmd_lock);
1466 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1467 NULL, pos,
1468 (struct rb_entry **)&prev_dc,
1469 (struct rb_entry **)&next_dc,
1470 &insert_p, &insert_parent, true, NULL);
1471 if (!dc)
1472 dc = next_dc;
1473
1474 blk_start_plug(&plug);
1475
1476 while (dc) {
1477 struct rb_node *node;
1478 int err = 0;
1479
1480 if (dc->state != D_PREP)
1481 goto next;
1482
1483 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1484 io_interrupted = true;
1485 break;
1486 }
1487
1488 dcc->next_pos = dc->lstart + dc->len;
1489 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1490
1491 if (issued >= dpolicy->max_requests)
1492 break;
1493next:
1494 node = rb_next(&dc->rb_node);
1495 if (err)
1496 __remove_discard_cmd(sbi, dc);
1497 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1498 }
1499
1500 blk_finish_plug(&plug);
1501
1502 if (!dc)
1503 dcc->next_pos = 0;
1504
1505 mutex_unlock(&dcc->cmd_lock);
1506
1507 if (!issued && io_interrupted)
1508 issued = -1;
1509
1510 return issued;
1511}
1512static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1513 struct discard_policy *dpolicy);
1514
1515static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1516 struct discard_policy *dpolicy)
1517{
1518 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1519 struct list_head *pend_list;
1520 struct discard_cmd *dc, *tmp;
1521 struct blk_plug plug;
1522 int i, issued;
1523 bool io_interrupted = false;
1524
1525 if (dpolicy->timeout)
1526 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1527
1528retry:
1529 issued = 0;
1530 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1531 if (dpolicy->timeout &&
1532 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1533 break;
1534
1535 if (i + 1 < dpolicy->granularity)
1536 break;
1537
1538 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1539 return __issue_discard_cmd_orderly(sbi, dpolicy);
1540
1541 pend_list = &dcc->pend_list[i];
1542
1543 mutex_lock(&dcc->cmd_lock);
1544 if (list_empty(pend_list))
1545 goto next;
1546 if (unlikely(dcc->rbtree_check))
1547 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1548 &dcc->root, false));
1549 blk_start_plug(&plug);
1550 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1551 f2fs_bug_on(sbi, dc->state != D_PREP);
1552
1553 if (dpolicy->timeout &&
1554 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1555 break;
1556
1557 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1558 !is_idle(sbi, DISCARD_TIME)) {
1559 io_interrupted = true;
1560 break;
1561 }
1562
1563 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1564
1565 if (issued >= dpolicy->max_requests)
1566 break;
1567 }
1568 blk_finish_plug(&plug);
1569next:
1570 mutex_unlock(&dcc->cmd_lock);
1571
1572 if (issued >= dpolicy->max_requests || io_interrupted)
1573 break;
1574 }
1575
1576 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1577 __wait_all_discard_cmd(sbi, dpolicy);
1578 goto retry;
1579 }
1580
1581 if (!issued && io_interrupted)
1582 issued = -1;
1583
1584 return issued;
1585}
1586
1587static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1588{
1589 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1590 struct list_head *pend_list;
1591 struct discard_cmd *dc, *tmp;
1592 int i;
1593 bool dropped = false;
1594
1595 mutex_lock(&dcc->cmd_lock);
1596 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1597 pend_list = &dcc->pend_list[i];
1598 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1599 f2fs_bug_on(sbi, dc->state != D_PREP);
1600 __remove_discard_cmd(sbi, dc);
1601 dropped = true;
1602 }
1603 }
1604 mutex_unlock(&dcc->cmd_lock);
1605
1606 return dropped;
1607}
1608
1609void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1610{
1611 __drop_discard_cmd(sbi);
1612}
1613
1614static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1615 struct discard_cmd *dc)
1616{
1617 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1618 unsigned int len = 0;
1619
1620 wait_for_completion_io(&dc->wait);
1621 mutex_lock(&dcc->cmd_lock);
1622 f2fs_bug_on(sbi, dc->state != D_DONE);
1623 dc->ref--;
1624 if (!dc->ref) {
1625 if (!dc->error)
1626 len = dc->len;
1627 __remove_discard_cmd(sbi, dc);
1628 }
1629 mutex_unlock(&dcc->cmd_lock);
1630
1631 return len;
1632}
1633
1634static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1635 struct discard_policy *dpolicy,
1636 block_t start, block_t end)
1637{
1638 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1639 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1640 &(dcc->fstrim_list) : &(dcc->wait_list);
1641 struct discard_cmd *dc, *tmp;
1642 bool need_wait;
1643 unsigned int trimmed = 0;
1644
1645next:
1646 need_wait = false;
1647
1648 mutex_lock(&dcc->cmd_lock);
1649 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1650 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1651 continue;
1652 if (dc->len < dpolicy->granularity)
1653 continue;
1654 if (dc->state == D_DONE && !dc->ref) {
1655 wait_for_completion_io(&dc->wait);
1656 if (!dc->error)
1657 trimmed += dc->len;
1658 __remove_discard_cmd(sbi, dc);
1659 } else {
1660 dc->ref++;
1661 need_wait = true;
1662 break;
1663 }
1664 }
1665 mutex_unlock(&dcc->cmd_lock);
1666
1667 if (need_wait) {
1668 trimmed += __wait_one_discard_bio(sbi, dc);
1669 goto next;
1670 }
1671
1672 return trimmed;
1673}
1674
1675static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1676 struct discard_policy *dpolicy)
1677{
1678 struct discard_policy dp;
1679 unsigned int discard_blks;
1680
1681 if (dpolicy)
1682 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1683
1684 /* wait all */
1685 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1686 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1687 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1688 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1689
1690 return discard_blks;
1691}
1692
1693/* This should be covered by global mutex, &sit_i->sentry_lock */
1694static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1695{
1696 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1697 struct discard_cmd *dc;
1698 bool need_wait = false;
1699
1700 mutex_lock(&dcc->cmd_lock);
1701 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1702 NULL, blkaddr);
1703 if (dc) {
1704 if (dc->state == D_PREP) {
1705 __punch_discard_cmd(sbi, dc, blkaddr);
1706 } else {
1707 dc->ref++;
1708 need_wait = true;
1709 }
1710 }
1711 mutex_unlock(&dcc->cmd_lock);
1712
1713 if (need_wait)
1714 __wait_one_discard_bio(sbi, dc);
1715}
1716
1717void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1718{
1719 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1720
1721 if (dcc && dcc->f2fs_issue_discard) {
1722 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1723
1724 dcc->f2fs_issue_discard = NULL;
1725 kthread_stop(discard_thread);
1726 }
1727}
1728
1729/* This comes from f2fs_put_super */
1730bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1731{
1732 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1733 struct discard_policy dpolicy;
1734 bool dropped;
1735
1736 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1737 dcc->discard_granularity);
1738 __issue_discard_cmd(sbi, &dpolicy);
1739 dropped = __drop_discard_cmd(sbi);
1740
1741 /* just to make sure there is no pending discard commands */
1742 __wait_all_discard_cmd(sbi, NULL);
1743
1744 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1745 return dropped;
1746}
1747
1748static int issue_discard_thread(void *data)
1749{
1750 struct f2fs_sb_info *sbi = data;
1751 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1752 wait_queue_head_t *q = &dcc->discard_wait_queue;
1753 struct discard_policy dpolicy;
1754 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1755 int issued;
1756
1757 set_freezable();
1758
1759 do {
1760 if (sbi->gc_mode == GC_URGENT_HIGH ||
1761 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1762 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1763 else
1764 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1765 dcc->discard_granularity);
1766
1767 if (!atomic_read(&dcc->discard_cmd_cnt))
1768 wait_ms = dpolicy.max_interval;
1769
1770 wait_event_interruptible_timeout(*q,
1771 kthread_should_stop() || freezing(current) ||
1772 dcc->discard_wake,
1773 msecs_to_jiffies(wait_ms));
1774
1775 if (dcc->discard_wake)
1776 dcc->discard_wake = 0;
1777
1778 /* clean up pending candidates before going to sleep */
1779 if (atomic_read(&dcc->queued_discard))
1780 __wait_all_discard_cmd(sbi, NULL);
1781
1782 if (try_to_freeze())
1783 continue;
1784 if (f2fs_readonly(sbi->sb))
1785 continue;
1786 if (kthread_should_stop())
1787 return 0;
1788 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1789 wait_ms = dpolicy.max_interval;
1790 continue;
1791 }
1792 if (!atomic_read(&dcc->discard_cmd_cnt))
1793 continue;
1794
1795 sb_start_intwrite(sbi->sb);
1796
1797 issued = __issue_discard_cmd(sbi, &dpolicy);
1798 if (issued > 0) {
1799 __wait_all_discard_cmd(sbi, &dpolicy);
1800 wait_ms = dpolicy.min_interval;
1801 } else if (issued == -1) {
1802 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1803 if (!wait_ms)
1804 wait_ms = dpolicy.mid_interval;
1805 } else {
1806 wait_ms = dpolicy.max_interval;
1807 }
1808
1809 sb_end_intwrite(sbi->sb);
1810
1811 } while (!kthread_should_stop());
1812 return 0;
1813}
1814
1815#ifdef CONFIG_BLK_DEV_ZONED
1816static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1817 struct block_device *bdev, block_t blkstart, block_t blklen)
1818{
1819 sector_t sector, nr_sects;
1820 block_t lblkstart = blkstart;
1821 int devi = 0;
1822
1823 if (f2fs_is_multi_device(sbi)) {
1824 devi = f2fs_target_device_index(sbi, blkstart);
1825 if (blkstart < FDEV(devi).start_blk ||
1826 blkstart > FDEV(devi).end_blk) {
1827 f2fs_err(sbi, "Invalid block %x", blkstart);
1828 return -EIO;
1829 }
1830 blkstart -= FDEV(devi).start_blk;
1831 }
1832
1833 /* For sequential zones, reset the zone write pointer */
1834 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1835 sector = SECTOR_FROM_BLOCK(blkstart);
1836 nr_sects = SECTOR_FROM_BLOCK(blklen);
1837
1838 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1839 nr_sects != bdev_zone_sectors(bdev)) {
1840 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1841 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1842 blkstart, blklen);
1843 return -EIO;
1844 }
1845 trace_f2fs_issue_reset_zone(bdev, blkstart);
1846 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1847 sector, nr_sects, GFP_NOFS);
1848 }
1849
1850 /* For conventional zones, use regular discard if supported */
1851 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1852}
1853#endif
1854
1855static int __issue_discard_async(struct f2fs_sb_info *sbi,
1856 struct block_device *bdev, block_t blkstart, block_t blklen)
1857{
1858#ifdef CONFIG_BLK_DEV_ZONED
1859 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1860 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1861#endif
1862 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1863}
1864
1865static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1866 block_t blkstart, block_t blklen)
1867{
1868 sector_t start = blkstart, len = 0;
1869 struct block_device *bdev;
1870 struct seg_entry *se;
1871 unsigned int offset;
1872 block_t i;
1873 int err = 0;
1874
1875 bdev = f2fs_target_device(sbi, blkstart, NULL);
1876
1877 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1878 if (i != start) {
1879 struct block_device *bdev2 =
1880 f2fs_target_device(sbi, i, NULL);
1881
1882 if (bdev2 != bdev) {
1883 err = __issue_discard_async(sbi, bdev,
1884 start, len);
1885 if (err)
1886 return err;
1887 bdev = bdev2;
1888 start = i;
1889 len = 0;
1890 }
1891 }
1892
1893 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1894 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1895
1896 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1897 sbi->discard_blks--;
1898 }
1899
1900 if (len)
1901 err = __issue_discard_async(sbi, bdev, start, len);
1902 return err;
1903}
1904
1905static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1906 bool check_only)
1907{
1908 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1909 int max_blocks = sbi->blocks_per_seg;
1910 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1911 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1912 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1913 unsigned long *discard_map = (unsigned long *)se->discard_map;
1914 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1915 unsigned int start = 0, end = -1;
1916 bool force = (cpc->reason & CP_DISCARD);
1917 struct discard_entry *de = NULL;
1918 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1919 int i;
1920
1921 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1922 return false;
1923
1924 if (!force) {
1925 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1926 SM_I(sbi)->dcc_info->nr_discards >=
1927 SM_I(sbi)->dcc_info->max_discards)
1928 return false;
1929 }
1930
1931 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1932 for (i = 0; i < entries; i++)
1933 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1934 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1935
1936 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1937 SM_I(sbi)->dcc_info->max_discards) {
1938 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1939 if (start >= max_blocks)
1940 break;
1941
1942 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1943 if (force && start && end != max_blocks
1944 && (end - start) < cpc->trim_minlen)
1945 continue;
1946
1947 if (check_only)
1948 return true;
1949
1950 if (!de) {
1951 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1952 GFP_F2FS_ZERO);
1953 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1954 list_add_tail(&de->list, head);
1955 }
1956
1957 for (i = start; i < end; i++)
1958 __set_bit_le(i, (void *)de->discard_map);
1959
1960 SM_I(sbi)->dcc_info->nr_discards += end - start;
1961 }
1962 return false;
1963}
1964
1965static void release_discard_addr(struct discard_entry *entry)
1966{
1967 list_del(&entry->list);
1968 kmem_cache_free(discard_entry_slab, entry);
1969}
1970
1971void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1972{
1973 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1974 struct discard_entry *entry, *this;
1975
1976 /* drop caches */
1977 list_for_each_entry_safe(entry, this, head, list)
1978 release_discard_addr(entry);
1979}
1980
1981/*
1982 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1983 */
1984static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1985{
1986 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1987 unsigned int segno;
1988
1989 mutex_lock(&dirty_i->seglist_lock);
1990 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1991 __set_test_and_free(sbi, segno, false);
1992 mutex_unlock(&dirty_i->seglist_lock);
1993}
1994
1995void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1996 struct cp_control *cpc)
1997{
1998 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1999 struct list_head *head = &dcc->entry_list;
2000 struct discard_entry *entry, *this;
2001 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2002 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2003 unsigned int start = 0, end = -1;
2004 unsigned int secno, start_segno;
2005 bool force = (cpc->reason & CP_DISCARD);
2006 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2007
2008 mutex_lock(&dirty_i->seglist_lock);
2009
2010 while (1) {
2011 int i;
2012
2013 if (need_align && end != -1)
2014 end--;
2015 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2016 if (start >= MAIN_SEGS(sbi))
2017 break;
2018 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2019 start + 1);
2020
2021 if (need_align) {
2022 start = rounddown(start, sbi->segs_per_sec);
2023 end = roundup(end, sbi->segs_per_sec);
2024 }
2025
2026 for (i = start; i < end; i++) {
2027 if (test_and_clear_bit(i, prefree_map))
2028 dirty_i->nr_dirty[PRE]--;
2029 }
2030
2031 if (!f2fs_realtime_discard_enable(sbi))
2032 continue;
2033
2034 if (force && start >= cpc->trim_start &&
2035 (end - 1) <= cpc->trim_end)
2036 continue;
2037
2038 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2039 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2040 (end - start) << sbi->log_blocks_per_seg);
2041 continue;
2042 }
2043next:
2044 secno = GET_SEC_FROM_SEG(sbi, start);
2045 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2046 if (!IS_CURSEC(sbi, secno) &&
2047 !get_valid_blocks(sbi, start, true))
2048 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2049 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2050
2051 start = start_segno + sbi->segs_per_sec;
2052 if (start < end)
2053 goto next;
2054 else
2055 end = start - 1;
2056 }
2057 mutex_unlock(&dirty_i->seglist_lock);
2058
2059 /* send small discards */
2060 list_for_each_entry_safe(entry, this, head, list) {
2061 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2062 bool is_valid = test_bit_le(0, entry->discard_map);
2063
2064find_next:
2065 if (is_valid) {
2066 next_pos = find_next_zero_bit_le(entry->discard_map,
2067 sbi->blocks_per_seg, cur_pos);
2068 len = next_pos - cur_pos;
2069
2070 if (f2fs_sb_has_blkzoned(sbi) ||
2071 (force && len < cpc->trim_minlen))
2072 goto skip;
2073
2074 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2075 len);
2076 total_len += len;
2077 } else {
2078 next_pos = find_next_bit_le(entry->discard_map,
2079 sbi->blocks_per_seg, cur_pos);
2080 }
2081skip:
2082 cur_pos = next_pos;
2083 is_valid = !is_valid;
2084
2085 if (cur_pos < sbi->blocks_per_seg)
2086 goto find_next;
2087
2088 release_discard_addr(entry);
2089 dcc->nr_discards -= total_len;
2090 }
2091
2092 wake_up_discard_thread(sbi, false);
2093}
2094
2095static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2096{
2097 dev_t dev = sbi->sb->s_bdev->bd_dev;
2098 struct discard_cmd_control *dcc;
2099 int err = 0, i;
2100
2101 if (SM_I(sbi)->dcc_info) {
2102 dcc = SM_I(sbi)->dcc_info;
2103 goto init_thread;
2104 }
2105
2106 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2107 if (!dcc)
2108 return -ENOMEM;
2109
2110 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2111 INIT_LIST_HEAD(&dcc->entry_list);
2112 for (i = 0; i < MAX_PLIST_NUM; i++)
2113 INIT_LIST_HEAD(&dcc->pend_list[i]);
2114 INIT_LIST_HEAD(&dcc->wait_list);
2115 INIT_LIST_HEAD(&dcc->fstrim_list);
2116 mutex_init(&dcc->cmd_lock);
2117 atomic_set(&dcc->issued_discard, 0);
2118 atomic_set(&dcc->queued_discard, 0);
2119 atomic_set(&dcc->discard_cmd_cnt, 0);
2120 dcc->nr_discards = 0;
2121 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2122 dcc->undiscard_blks = 0;
2123 dcc->next_pos = 0;
2124 dcc->root = RB_ROOT_CACHED;
2125 dcc->rbtree_check = false;
2126
2127 init_waitqueue_head(&dcc->discard_wait_queue);
2128 SM_I(sbi)->dcc_info = dcc;
2129init_thread:
2130 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2131 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2132 if (IS_ERR(dcc->f2fs_issue_discard)) {
2133 err = PTR_ERR(dcc->f2fs_issue_discard);
2134 kfree(dcc);
2135 SM_I(sbi)->dcc_info = NULL;
2136 return err;
2137 }
2138
2139 return err;
2140}
2141
2142static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2143{
2144 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2145
2146 if (!dcc)
2147 return;
2148
2149 f2fs_stop_discard_thread(sbi);
2150
2151 /*
2152 * Recovery can cache discard commands, so in error path of
2153 * fill_super(), it needs to give a chance to handle them.
2154 */
2155 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2156 f2fs_issue_discard_timeout(sbi);
2157
2158 kfree(dcc);
2159 SM_I(sbi)->dcc_info = NULL;
2160}
2161
2162static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2163{
2164 struct sit_info *sit_i = SIT_I(sbi);
2165
2166 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2167 sit_i->dirty_sentries++;
2168 return false;
2169 }
2170
2171 return true;
2172}
2173
2174static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2175 unsigned int segno, int modified)
2176{
2177 struct seg_entry *se = get_seg_entry(sbi, segno);
2178
2179 se->type = type;
2180 if (modified)
2181 __mark_sit_entry_dirty(sbi, segno);
2182}
2183
2184static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2185 block_t blkaddr)
2186{
2187 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2188
2189 if (segno == NULL_SEGNO)
2190 return 0;
2191 return get_seg_entry(sbi, segno)->mtime;
2192}
2193
2194static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2195 unsigned long long old_mtime)
2196{
2197 struct seg_entry *se;
2198 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2199 unsigned long long ctime = get_mtime(sbi, false);
2200 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2201
2202 if (segno == NULL_SEGNO)
2203 return;
2204
2205 se = get_seg_entry(sbi, segno);
2206
2207 if (!se->mtime)
2208 se->mtime = mtime;
2209 else
2210 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2211 se->valid_blocks + 1);
2212
2213 if (ctime > SIT_I(sbi)->max_mtime)
2214 SIT_I(sbi)->max_mtime = ctime;
2215}
2216
2217static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2218{
2219 struct seg_entry *se;
2220 unsigned int segno, offset;
2221 long int new_vblocks;
2222 bool exist;
2223#ifdef CONFIG_F2FS_CHECK_FS
2224 bool mir_exist;
2225#endif
2226
2227 segno = GET_SEGNO(sbi, blkaddr);
2228
2229 se = get_seg_entry(sbi, segno);
2230 new_vblocks = se->valid_blocks + del;
2231 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2232
2233 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2234 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2235
2236 se->valid_blocks = new_vblocks;
2237
2238 /* Update valid block bitmap */
2239 if (del > 0) {
2240 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2241#ifdef CONFIG_F2FS_CHECK_FS
2242 mir_exist = f2fs_test_and_set_bit(offset,
2243 se->cur_valid_map_mir);
2244 if (unlikely(exist != mir_exist)) {
2245 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2246 blkaddr, exist);
2247 f2fs_bug_on(sbi, 1);
2248 }
2249#endif
2250 if (unlikely(exist)) {
2251 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2252 blkaddr);
2253 f2fs_bug_on(sbi, 1);
2254 se->valid_blocks--;
2255 del = 0;
2256 }
2257
2258 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2259 sbi->discard_blks--;
2260
2261 /*
2262 * SSR should never reuse block which is checkpointed
2263 * or newly invalidated.
2264 */
2265 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2266 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2267 se->ckpt_valid_blocks++;
2268 }
2269 } else {
2270 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2271#ifdef CONFIG_F2FS_CHECK_FS
2272 mir_exist = f2fs_test_and_clear_bit(offset,
2273 se->cur_valid_map_mir);
2274 if (unlikely(exist != mir_exist)) {
2275 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2276 blkaddr, exist);
2277 f2fs_bug_on(sbi, 1);
2278 }
2279#endif
2280 if (unlikely(!exist)) {
2281 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2282 blkaddr);
2283 f2fs_bug_on(sbi, 1);
2284 se->valid_blocks++;
2285 del = 0;
2286 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2287 /*
2288 * If checkpoints are off, we must not reuse data that
2289 * was used in the previous checkpoint. If it was used
2290 * before, we must track that to know how much space we
2291 * really have.
2292 */
2293 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2294 spin_lock(&sbi->stat_lock);
2295 sbi->unusable_block_count++;
2296 spin_unlock(&sbi->stat_lock);
2297 }
2298 }
2299
2300 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2301 sbi->discard_blks++;
2302 }
2303 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2304 se->ckpt_valid_blocks += del;
2305
2306 __mark_sit_entry_dirty(sbi, segno);
2307
2308 /* update total number of valid blocks to be written in ckpt area */
2309 SIT_I(sbi)->written_valid_blocks += del;
2310
2311 if (__is_large_section(sbi))
2312 get_sec_entry(sbi, segno)->valid_blocks += del;
2313}
2314
2315void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2316{
2317 unsigned int segno = GET_SEGNO(sbi, addr);
2318 struct sit_info *sit_i = SIT_I(sbi);
2319
2320 f2fs_bug_on(sbi, addr == NULL_ADDR);
2321 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2322 return;
2323
2324 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2325 f2fs_invalidate_compress_page(sbi, addr);
2326
2327 /* add it into sit main buffer */
2328 down_write(&sit_i->sentry_lock);
2329
2330 update_segment_mtime(sbi, addr, 0);
2331 update_sit_entry(sbi, addr, -1);
2332
2333 /* add it into dirty seglist */
2334 locate_dirty_segment(sbi, segno);
2335
2336 up_write(&sit_i->sentry_lock);
2337}
2338
2339bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2340{
2341 struct sit_info *sit_i = SIT_I(sbi);
2342 unsigned int segno, offset;
2343 struct seg_entry *se;
2344 bool is_cp = false;
2345
2346 if (!__is_valid_data_blkaddr(blkaddr))
2347 return true;
2348
2349 down_read(&sit_i->sentry_lock);
2350
2351 segno = GET_SEGNO(sbi, blkaddr);
2352 se = get_seg_entry(sbi, segno);
2353 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2354
2355 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2356 is_cp = true;
2357
2358 up_read(&sit_i->sentry_lock);
2359
2360 return is_cp;
2361}
2362
2363/*
2364 * This function should be resided under the curseg_mutex lock
2365 */
2366static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2367 struct f2fs_summary *sum)
2368{
2369 struct curseg_info *curseg = CURSEG_I(sbi, type);
2370 void *addr = curseg->sum_blk;
2371
2372 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2373 memcpy(addr, sum, sizeof(struct f2fs_summary));
2374}
2375
2376/*
2377 * Calculate the number of current summary pages for writing
2378 */
2379int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2380{
2381 int valid_sum_count = 0;
2382 int i, sum_in_page;
2383
2384 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2385 if (sbi->ckpt->alloc_type[i] == SSR)
2386 valid_sum_count += sbi->blocks_per_seg;
2387 else {
2388 if (for_ra)
2389 valid_sum_count += le16_to_cpu(
2390 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2391 else
2392 valid_sum_count += curseg_blkoff(sbi, i);
2393 }
2394 }
2395
2396 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2397 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2398 if (valid_sum_count <= sum_in_page)
2399 return 1;
2400 else if ((valid_sum_count - sum_in_page) <=
2401 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2402 return 2;
2403 return 3;
2404}
2405
2406/*
2407 * Caller should put this summary page
2408 */
2409struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2410{
2411 if (unlikely(f2fs_cp_error(sbi)))
2412 return ERR_PTR(-EIO);
2413 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2414}
2415
2416void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2417 void *src, block_t blk_addr)
2418{
2419 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2420
2421 memcpy(page_address(page), src, PAGE_SIZE);
2422 set_page_dirty(page);
2423 f2fs_put_page(page, 1);
2424}
2425
2426static void write_sum_page(struct f2fs_sb_info *sbi,
2427 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2428{
2429 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2430}
2431
2432static void write_current_sum_page(struct f2fs_sb_info *sbi,
2433 int type, block_t blk_addr)
2434{
2435 struct curseg_info *curseg = CURSEG_I(sbi, type);
2436 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2437 struct f2fs_summary_block *src = curseg->sum_blk;
2438 struct f2fs_summary_block *dst;
2439
2440 dst = (struct f2fs_summary_block *)page_address(page);
2441 memset(dst, 0, PAGE_SIZE);
2442
2443 mutex_lock(&curseg->curseg_mutex);
2444
2445 down_read(&curseg->journal_rwsem);
2446 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2447 up_read(&curseg->journal_rwsem);
2448
2449 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2450 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2451
2452 mutex_unlock(&curseg->curseg_mutex);
2453
2454 set_page_dirty(page);
2455 f2fs_put_page(page, 1);
2456}
2457
2458static int is_next_segment_free(struct f2fs_sb_info *sbi,
2459 struct curseg_info *curseg, int type)
2460{
2461 unsigned int segno = curseg->segno + 1;
2462 struct free_segmap_info *free_i = FREE_I(sbi);
2463
2464 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2465 return !test_bit(segno, free_i->free_segmap);
2466 return 0;
2467}
2468
2469/*
2470 * Find a new segment from the free segments bitmap to right order
2471 * This function should be returned with success, otherwise BUG
2472 */
2473static void get_new_segment(struct f2fs_sb_info *sbi,
2474 unsigned int *newseg, bool new_sec, int dir)
2475{
2476 struct free_segmap_info *free_i = FREE_I(sbi);
2477 unsigned int segno, secno, zoneno;
2478 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2479 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2480 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2481 unsigned int left_start = hint;
2482 bool init = true;
2483 int go_left = 0;
2484 int i;
2485
2486 spin_lock(&free_i->segmap_lock);
2487
2488 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2489 segno = find_next_zero_bit(free_i->free_segmap,
2490 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2491 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2492 goto got_it;
2493 }
2494find_other_zone:
2495 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2496 if (secno >= MAIN_SECS(sbi)) {
2497 if (dir == ALLOC_RIGHT) {
2498 secno = find_next_zero_bit(free_i->free_secmap,
2499 MAIN_SECS(sbi), 0);
2500 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2501 } else {
2502 go_left = 1;
2503 left_start = hint - 1;
2504 }
2505 }
2506 if (go_left == 0)
2507 goto skip_left;
2508
2509 while (test_bit(left_start, free_i->free_secmap)) {
2510 if (left_start > 0) {
2511 left_start--;
2512 continue;
2513 }
2514 left_start = find_next_zero_bit(free_i->free_secmap,
2515 MAIN_SECS(sbi), 0);
2516 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2517 break;
2518 }
2519 secno = left_start;
2520skip_left:
2521 segno = GET_SEG_FROM_SEC(sbi, secno);
2522 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2523
2524 /* give up on finding another zone */
2525 if (!init)
2526 goto got_it;
2527 if (sbi->secs_per_zone == 1)
2528 goto got_it;
2529 if (zoneno == old_zoneno)
2530 goto got_it;
2531 if (dir == ALLOC_LEFT) {
2532 if (!go_left && zoneno + 1 >= total_zones)
2533 goto got_it;
2534 if (go_left && zoneno == 0)
2535 goto got_it;
2536 }
2537 for (i = 0; i < NR_CURSEG_TYPE; i++)
2538 if (CURSEG_I(sbi, i)->zone == zoneno)
2539 break;
2540
2541 if (i < NR_CURSEG_TYPE) {
2542 /* zone is in user, try another */
2543 if (go_left)
2544 hint = zoneno * sbi->secs_per_zone - 1;
2545 else if (zoneno + 1 >= total_zones)
2546 hint = 0;
2547 else
2548 hint = (zoneno + 1) * sbi->secs_per_zone;
2549 init = false;
2550 goto find_other_zone;
2551 }
2552got_it:
2553 /* set it as dirty segment in free segmap */
2554 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2555 __set_inuse(sbi, segno);
2556 *newseg = segno;
2557 spin_unlock(&free_i->segmap_lock);
2558}
2559
2560static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2561{
2562 struct curseg_info *curseg = CURSEG_I(sbi, type);
2563 struct summary_footer *sum_footer;
2564 unsigned short seg_type = curseg->seg_type;
2565
2566 curseg->inited = true;
2567 curseg->segno = curseg->next_segno;
2568 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2569 curseg->next_blkoff = 0;
2570 curseg->next_segno = NULL_SEGNO;
2571
2572 sum_footer = &(curseg->sum_blk->footer);
2573 memset(sum_footer, 0, sizeof(struct summary_footer));
2574
2575 sanity_check_seg_type(sbi, seg_type);
2576
2577 if (IS_DATASEG(seg_type))
2578 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2579 if (IS_NODESEG(seg_type))
2580 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2581 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2582}
2583
2584static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2585{
2586 struct curseg_info *curseg = CURSEG_I(sbi, type);
2587 unsigned short seg_type = curseg->seg_type;
2588
2589 sanity_check_seg_type(sbi, seg_type);
2590
2591 /* if segs_per_sec is large than 1, we need to keep original policy. */
2592 if (__is_large_section(sbi))
2593 return curseg->segno;
2594
2595 /* inmem log may not locate on any segment after mount */
2596 if (!curseg->inited)
2597 return 0;
2598
2599 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2600 return 0;
2601
2602 if (test_opt(sbi, NOHEAP) &&
2603 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2604 return 0;
2605
2606 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2607 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2608
2609 /* find segments from 0 to reuse freed segments */
2610 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2611 return 0;
2612
2613 return curseg->segno;
2614}
2615
2616/*
2617 * Allocate a current working segment.
2618 * This function always allocates a free segment in LFS manner.
2619 */
2620static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2621{
2622 struct curseg_info *curseg = CURSEG_I(sbi, type);
2623 unsigned short seg_type = curseg->seg_type;
2624 unsigned int segno = curseg->segno;
2625 int dir = ALLOC_LEFT;
2626
2627 if (curseg->inited)
2628 write_sum_page(sbi, curseg->sum_blk,
2629 GET_SUM_BLOCK(sbi, segno));
2630 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2631 dir = ALLOC_RIGHT;
2632
2633 if (test_opt(sbi, NOHEAP))
2634 dir = ALLOC_RIGHT;
2635
2636 segno = __get_next_segno(sbi, type);
2637 get_new_segment(sbi, &segno, new_sec, dir);
2638 curseg->next_segno = segno;
2639 reset_curseg(sbi, type, 1);
2640 curseg->alloc_type = LFS;
2641}
2642
2643static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2644 int segno, block_t start)
2645{
2646 struct seg_entry *se = get_seg_entry(sbi, segno);
2647 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2648 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2649 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2650 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2651 int i;
2652
2653 for (i = 0; i < entries; i++)
2654 target_map[i] = ckpt_map[i] | cur_map[i];
2655
2656 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2657}
2658
2659/*
2660 * If a segment is written by LFS manner, next block offset is just obtained
2661 * by increasing the current block offset. However, if a segment is written by
2662 * SSR manner, next block offset obtained by calling __next_free_blkoff
2663 */
2664static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2665 struct curseg_info *seg)
2666{
2667 if (seg->alloc_type == SSR)
2668 seg->next_blkoff =
2669 __next_free_blkoff(sbi, seg->segno,
2670 seg->next_blkoff + 1);
2671 else
2672 seg->next_blkoff++;
2673}
2674
2675bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2676{
2677 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2678}
2679
2680/*
2681 * This function always allocates a used segment(from dirty seglist) by SSR
2682 * manner, so it should recover the existing segment information of valid blocks
2683 */
2684static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2685{
2686 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2687 struct curseg_info *curseg = CURSEG_I(sbi, type);
2688 unsigned int new_segno = curseg->next_segno;
2689 struct f2fs_summary_block *sum_node;
2690 struct page *sum_page;
2691
2692 if (flush)
2693 write_sum_page(sbi, curseg->sum_blk,
2694 GET_SUM_BLOCK(sbi, curseg->segno));
2695
2696 __set_test_and_inuse(sbi, new_segno);
2697
2698 mutex_lock(&dirty_i->seglist_lock);
2699 __remove_dirty_segment(sbi, new_segno, PRE);
2700 __remove_dirty_segment(sbi, new_segno, DIRTY);
2701 mutex_unlock(&dirty_i->seglist_lock);
2702
2703 reset_curseg(sbi, type, 1);
2704 curseg->alloc_type = SSR;
2705 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2706
2707 sum_page = f2fs_get_sum_page(sbi, new_segno);
2708 if (IS_ERR(sum_page)) {
2709 /* GC won't be able to use stale summary pages by cp_error */
2710 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2711 return;
2712 }
2713 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2714 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2715 f2fs_put_page(sum_page, 1);
2716}
2717
2718static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2719 int alloc_mode, unsigned long long age);
2720
2721static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2722 int target_type, int alloc_mode,
2723 unsigned long long age)
2724{
2725 struct curseg_info *curseg = CURSEG_I(sbi, type);
2726
2727 curseg->seg_type = target_type;
2728
2729 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2730 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2731
2732 curseg->seg_type = se->type;
2733 change_curseg(sbi, type, true);
2734 } else {
2735 /* allocate cold segment by default */
2736 curseg->seg_type = CURSEG_COLD_DATA;
2737 new_curseg(sbi, type, true);
2738 }
2739 stat_inc_seg_type(sbi, curseg);
2740}
2741
2742static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2743{
2744 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2745
2746 if (!sbi->am.atgc_enabled)
2747 return;
2748
2749 down_read(&SM_I(sbi)->curseg_lock);
2750
2751 mutex_lock(&curseg->curseg_mutex);
2752 down_write(&SIT_I(sbi)->sentry_lock);
2753
2754 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2755
2756 up_write(&SIT_I(sbi)->sentry_lock);
2757 mutex_unlock(&curseg->curseg_mutex);
2758
2759 up_read(&SM_I(sbi)->curseg_lock);
2760
2761}
2762void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2763{
2764 __f2fs_init_atgc_curseg(sbi);
2765}
2766
2767static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2768{
2769 struct curseg_info *curseg = CURSEG_I(sbi, type);
2770
2771 mutex_lock(&curseg->curseg_mutex);
2772 if (!curseg->inited)
2773 goto out;
2774
2775 if (get_valid_blocks(sbi, curseg->segno, false)) {
2776 write_sum_page(sbi, curseg->sum_blk,
2777 GET_SUM_BLOCK(sbi, curseg->segno));
2778 } else {
2779 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2780 __set_test_and_free(sbi, curseg->segno, true);
2781 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2782 }
2783out:
2784 mutex_unlock(&curseg->curseg_mutex);
2785}
2786
2787void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2788{
2789 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2790
2791 if (sbi->am.atgc_enabled)
2792 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2793}
2794
2795static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2796{
2797 struct curseg_info *curseg = CURSEG_I(sbi, type);
2798
2799 mutex_lock(&curseg->curseg_mutex);
2800 if (!curseg->inited)
2801 goto out;
2802 if (get_valid_blocks(sbi, curseg->segno, false))
2803 goto out;
2804
2805 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2806 __set_test_and_inuse(sbi, curseg->segno);
2807 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2808out:
2809 mutex_unlock(&curseg->curseg_mutex);
2810}
2811
2812void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2813{
2814 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2815
2816 if (sbi->am.atgc_enabled)
2817 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2818}
2819
2820static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2821 int alloc_mode, unsigned long long age)
2822{
2823 struct curseg_info *curseg = CURSEG_I(sbi, type);
2824 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2825 unsigned segno = NULL_SEGNO;
2826 unsigned short seg_type = curseg->seg_type;
2827 int i, cnt;
2828 bool reversed = false;
2829
2830 sanity_check_seg_type(sbi, seg_type);
2831
2832 /* f2fs_need_SSR() already forces to do this */
2833 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2834 curseg->next_segno = segno;
2835 return 1;
2836 }
2837
2838 /* For node segments, let's do SSR more intensively */
2839 if (IS_NODESEG(seg_type)) {
2840 if (seg_type >= CURSEG_WARM_NODE) {
2841 reversed = true;
2842 i = CURSEG_COLD_NODE;
2843 } else {
2844 i = CURSEG_HOT_NODE;
2845 }
2846 cnt = NR_CURSEG_NODE_TYPE;
2847 } else {
2848 if (seg_type >= CURSEG_WARM_DATA) {
2849 reversed = true;
2850 i = CURSEG_COLD_DATA;
2851 } else {
2852 i = CURSEG_HOT_DATA;
2853 }
2854 cnt = NR_CURSEG_DATA_TYPE;
2855 }
2856
2857 for (; cnt-- > 0; reversed ? i-- : i++) {
2858 if (i == seg_type)
2859 continue;
2860 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2861 curseg->next_segno = segno;
2862 return 1;
2863 }
2864 }
2865
2866 /* find valid_blocks=0 in dirty list */
2867 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2868 segno = get_free_segment(sbi);
2869 if (segno != NULL_SEGNO) {
2870 curseg->next_segno = segno;
2871 return 1;
2872 }
2873 }
2874 return 0;
2875}
2876
2877/*
2878 * flush out current segment and replace it with new segment
2879 * This function should be returned with success, otherwise BUG
2880 */
2881static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2882 int type, bool force)
2883{
2884 struct curseg_info *curseg = CURSEG_I(sbi, type);
2885
2886 if (force)
2887 new_curseg(sbi, type, true);
2888 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2889 curseg->seg_type == CURSEG_WARM_NODE)
2890 new_curseg(sbi, type, false);
2891 else if (curseg->alloc_type == LFS &&
2892 is_next_segment_free(sbi, curseg, type) &&
2893 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2894 new_curseg(sbi, type, false);
2895 else if (f2fs_need_SSR(sbi) &&
2896 get_ssr_segment(sbi, type, SSR, 0))
2897 change_curseg(sbi, type, true);
2898 else
2899 new_curseg(sbi, type, false);
2900
2901 stat_inc_seg_type(sbi, curseg);
2902}
2903
2904void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2905 unsigned int start, unsigned int end)
2906{
2907 struct curseg_info *curseg = CURSEG_I(sbi, type);
2908 unsigned int segno;
2909
2910 down_read(&SM_I(sbi)->curseg_lock);
2911 mutex_lock(&curseg->curseg_mutex);
2912 down_write(&SIT_I(sbi)->sentry_lock);
2913
2914 segno = CURSEG_I(sbi, type)->segno;
2915 if (segno < start || segno > end)
2916 goto unlock;
2917
2918 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2919 change_curseg(sbi, type, true);
2920 else
2921 new_curseg(sbi, type, true);
2922
2923 stat_inc_seg_type(sbi, curseg);
2924
2925 locate_dirty_segment(sbi, segno);
2926unlock:
2927 up_write(&SIT_I(sbi)->sentry_lock);
2928
2929 if (segno != curseg->segno)
2930 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2931 type, segno, curseg->segno);
2932
2933 mutex_unlock(&curseg->curseg_mutex);
2934 up_read(&SM_I(sbi)->curseg_lock);
2935}
2936
2937static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2938 bool new_sec, bool force)
2939{
2940 struct curseg_info *curseg = CURSEG_I(sbi, type);
2941 unsigned int old_segno;
2942
2943 if (!curseg->inited)
2944 goto alloc;
2945
2946 if (force || curseg->next_blkoff ||
2947 get_valid_blocks(sbi, curseg->segno, new_sec))
2948 goto alloc;
2949
2950 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2951 return;
2952alloc:
2953 old_segno = curseg->segno;
2954 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2955 locate_dirty_segment(sbi, old_segno);
2956}
2957
2958static void __allocate_new_section(struct f2fs_sb_info *sbi,
2959 int type, bool force)
2960{
2961 __allocate_new_segment(sbi, type, true, force);
2962}
2963
2964void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2965{
2966 down_read(&SM_I(sbi)->curseg_lock);
2967 down_write(&SIT_I(sbi)->sentry_lock);
2968 __allocate_new_section(sbi, type, force);
2969 up_write(&SIT_I(sbi)->sentry_lock);
2970 up_read(&SM_I(sbi)->curseg_lock);
2971}
2972
2973void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2974{
2975 int i;
2976
2977 down_read(&SM_I(sbi)->curseg_lock);
2978 down_write(&SIT_I(sbi)->sentry_lock);
2979 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2980 __allocate_new_segment(sbi, i, false, false);
2981 up_write(&SIT_I(sbi)->sentry_lock);
2982 up_read(&SM_I(sbi)->curseg_lock);
2983}
2984
2985static const struct segment_allocation default_salloc_ops = {
2986 .allocate_segment = allocate_segment_by_default,
2987};
2988
2989bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2990 struct cp_control *cpc)
2991{
2992 __u64 trim_start = cpc->trim_start;
2993 bool has_candidate = false;
2994
2995 down_write(&SIT_I(sbi)->sentry_lock);
2996 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2997 if (add_discard_addrs(sbi, cpc, true)) {
2998 has_candidate = true;
2999 break;
3000 }
3001 }
3002 up_write(&SIT_I(sbi)->sentry_lock);
3003
3004 cpc->trim_start = trim_start;
3005 return has_candidate;
3006}
3007
3008static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3009 struct discard_policy *dpolicy,
3010 unsigned int start, unsigned int end)
3011{
3012 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3013 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3014 struct rb_node **insert_p = NULL, *insert_parent = NULL;
3015 struct discard_cmd *dc;
3016 struct blk_plug plug;
3017 int issued;
3018 unsigned int trimmed = 0;
3019
3020next:
3021 issued = 0;
3022
3023 mutex_lock(&dcc->cmd_lock);
3024 if (unlikely(dcc->rbtree_check))
3025 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3026 &dcc->root, false));
3027
3028 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3029 NULL, start,
3030 (struct rb_entry **)&prev_dc,
3031 (struct rb_entry **)&next_dc,
3032 &insert_p, &insert_parent, true, NULL);
3033 if (!dc)
3034 dc = next_dc;
3035
3036 blk_start_plug(&plug);
3037
3038 while (dc && dc->lstart <= end) {
3039 struct rb_node *node;
3040 int err = 0;
3041
3042 if (dc->len < dpolicy->granularity)
3043 goto skip;
3044
3045 if (dc->state != D_PREP) {
3046 list_move_tail(&dc->list, &dcc->fstrim_list);
3047 goto skip;
3048 }
3049
3050 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3051
3052 if (issued >= dpolicy->max_requests) {
3053 start = dc->lstart + dc->len;
3054
3055 if (err)
3056 __remove_discard_cmd(sbi, dc);
3057
3058 blk_finish_plug(&plug);
3059 mutex_unlock(&dcc->cmd_lock);
3060 trimmed += __wait_all_discard_cmd(sbi, NULL);
3061 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3062 goto next;
3063 }
3064skip:
3065 node = rb_next(&dc->rb_node);
3066 if (err)
3067 __remove_discard_cmd(sbi, dc);
3068 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3069
3070 if (fatal_signal_pending(current))
3071 break;
3072 }
3073
3074 blk_finish_plug(&plug);
3075 mutex_unlock(&dcc->cmd_lock);
3076
3077 return trimmed;
3078}
3079
3080int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3081{
3082 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3083 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3084 unsigned int start_segno, end_segno;
3085 block_t start_block, end_block;
3086 struct cp_control cpc;
3087 struct discard_policy dpolicy;
3088 unsigned long long trimmed = 0;
3089 int err = 0;
3090 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3091
3092 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3093 return -EINVAL;
3094
3095 if (end < MAIN_BLKADDR(sbi))
3096 goto out;
3097
3098 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3099 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3100 return -EFSCORRUPTED;
3101 }
3102
3103 /* start/end segment number in main_area */
3104 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3105 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3106 GET_SEGNO(sbi, end);
3107 if (need_align) {
3108 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3109 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3110 }
3111
3112 cpc.reason = CP_DISCARD;
3113 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3114 cpc.trim_start = start_segno;
3115 cpc.trim_end = end_segno;
3116
3117 if (sbi->discard_blks == 0)
3118 goto out;
3119
3120 down_write(&sbi->gc_lock);
3121 err = f2fs_write_checkpoint(sbi, &cpc);
3122 up_write(&sbi->gc_lock);
3123 if (err)
3124 goto out;
3125
3126 /*
3127 * We filed discard candidates, but actually we don't need to wait for
3128 * all of them, since they'll be issued in idle time along with runtime
3129 * discard option. User configuration looks like using runtime discard
3130 * or periodic fstrim instead of it.
3131 */
3132 if (f2fs_realtime_discard_enable(sbi))
3133 goto out;
3134
3135 start_block = START_BLOCK(sbi, start_segno);
3136 end_block = START_BLOCK(sbi, end_segno + 1);
3137
3138 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3139 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3140 start_block, end_block);
3141
3142 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3143 start_block, end_block);
3144out:
3145 if (!err)
3146 range->len = F2FS_BLK_TO_BYTES(trimmed);
3147 return err;
3148}
3149
3150static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3151 struct curseg_info *curseg)
3152{
3153 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3154 curseg->segno);
3155}
3156
3157int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3158{
3159 switch (hint) {
3160 case WRITE_LIFE_SHORT:
3161 return CURSEG_HOT_DATA;
3162 case WRITE_LIFE_EXTREME:
3163 return CURSEG_COLD_DATA;
3164 default:
3165 return CURSEG_WARM_DATA;
3166 }
3167}
3168
3169/* This returns write hints for each segment type. This hints will be
3170 * passed down to block layer. There are mapping tables which depend on
3171 * the mount option 'whint_mode'.
3172 *
3173 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3174 *
3175 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3176 *
3177 * User F2FS Block
3178 * ---- ---- -----
3179 * META WRITE_LIFE_NOT_SET
3180 * HOT_NODE "
3181 * WARM_NODE "
3182 * COLD_NODE "
3183 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3184 * extension list " "
3185 *
3186 * -- buffered io
3187 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3188 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3189 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3190 * WRITE_LIFE_NONE " "
3191 * WRITE_LIFE_MEDIUM " "
3192 * WRITE_LIFE_LONG " "
3193 *
3194 * -- direct io
3195 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3196 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3197 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3198 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3199 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3200 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3201 *
3202 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3203 *
3204 * User F2FS Block
3205 * ---- ---- -----
3206 * META WRITE_LIFE_MEDIUM;
3207 * HOT_NODE WRITE_LIFE_NOT_SET
3208 * WARM_NODE "
3209 * COLD_NODE WRITE_LIFE_NONE
3210 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3211 * extension list " "
3212 *
3213 * -- buffered io
3214 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3215 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3216 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
3217 * WRITE_LIFE_NONE " "
3218 * WRITE_LIFE_MEDIUM " "
3219 * WRITE_LIFE_LONG " "
3220 *
3221 * -- direct io
3222 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3223 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3224 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3225 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3226 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3227 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3228 */
3229
3230enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3231 enum page_type type, enum temp_type temp)
3232{
3233 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3234 if (type == DATA) {
3235 if (temp == WARM)
3236 return WRITE_LIFE_NOT_SET;
3237 else if (temp == HOT)
3238 return WRITE_LIFE_SHORT;
3239 else if (temp == COLD)
3240 return WRITE_LIFE_EXTREME;
3241 } else {
3242 return WRITE_LIFE_NOT_SET;
3243 }
3244 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3245 if (type == DATA) {
3246 if (temp == WARM)
3247 return WRITE_LIFE_LONG;
3248 else if (temp == HOT)
3249 return WRITE_LIFE_SHORT;
3250 else if (temp == COLD)
3251 return WRITE_LIFE_EXTREME;
3252 } else if (type == NODE) {
3253 if (temp == WARM || temp == HOT)
3254 return WRITE_LIFE_NOT_SET;
3255 else if (temp == COLD)
3256 return WRITE_LIFE_NONE;
3257 } else if (type == META) {
3258 return WRITE_LIFE_MEDIUM;
3259 }
3260 }
3261 return WRITE_LIFE_NOT_SET;
3262}
3263
3264static int __get_segment_type_2(struct f2fs_io_info *fio)
3265{
3266 if (fio->type == DATA)
3267 return CURSEG_HOT_DATA;
3268 else
3269 return CURSEG_HOT_NODE;
3270}
3271
3272static int __get_segment_type_4(struct f2fs_io_info *fio)
3273{
3274 if (fio->type == DATA) {
3275 struct inode *inode = fio->page->mapping->host;
3276
3277 if (S_ISDIR(inode->i_mode))
3278 return CURSEG_HOT_DATA;
3279 else
3280 return CURSEG_COLD_DATA;
3281 } else {
3282 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3283 return CURSEG_WARM_NODE;
3284 else
3285 return CURSEG_COLD_NODE;
3286 }
3287}
3288
3289static int __get_segment_type_6(struct f2fs_io_info *fio)
3290{
3291 if (fio->type == DATA) {
3292 struct inode *inode = fio->page->mapping->host;
3293
3294 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3295 return CURSEG_COLD_DATA_PINNED;
3296
3297 if (page_private_gcing(fio->page)) {
3298 if (fio->sbi->am.atgc_enabled &&
3299 (fio->io_type == FS_DATA_IO) &&
3300 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3301 return CURSEG_ALL_DATA_ATGC;
3302 else
3303 return CURSEG_COLD_DATA;
3304 }
3305 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3306 return CURSEG_COLD_DATA;
3307 if (file_is_hot(inode) ||
3308 is_inode_flag_set(inode, FI_HOT_DATA) ||
3309 f2fs_is_atomic_file(inode) ||
3310 f2fs_is_volatile_file(inode))
3311 return CURSEG_HOT_DATA;
3312 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3313 } else {
3314 if (IS_DNODE(fio->page))
3315 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3316 CURSEG_HOT_NODE;
3317 return CURSEG_COLD_NODE;
3318 }
3319}
3320
3321static int __get_segment_type(struct f2fs_io_info *fio)
3322{
3323 int type = 0;
3324
3325 switch (F2FS_OPTION(fio->sbi).active_logs) {
3326 case 2:
3327 type = __get_segment_type_2(fio);
3328 break;
3329 case 4:
3330 type = __get_segment_type_4(fio);
3331 break;
3332 case 6:
3333 type = __get_segment_type_6(fio);
3334 break;
3335 default:
3336 f2fs_bug_on(fio->sbi, true);
3337 }
3338
3339 if (IS_HOT(type))
3340 fio->temp = HOT;
3341 else if (IS_WARM(type))
3342 fio->temp = WARM;
3343 else
3344 fio->temp = COLD;
3345 return type;
3346}
3347
3348void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3349 block_t old_blkaddr, block_t *new_blkaddr,
3350 struct f2fs_summary *sum, int type,
3351 struct f2fs_io_info *fio)
3352{
3353 struct sit_info *sit_i = SIT_I(sbi);
3354 struct curseg_info *curseg = CURSEG_I(sbi, type);
3355 unsigned long long old_mtime;
3356 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3357 struct seg_entry *se = NULL;
3358
3359 down_read(&SM_I(sbi)->curseg_lock);
3360
3361 mutex_lock(&curseg->curseg_mutex);
3362 down_write(&sit_i->sentry_lock);
3363
3364 if (from_gc) {
3365 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3366 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3367 sanity_check_seg_type(sbi, se->type);
3368 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3369 }
3370 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3371
3372 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3373
3374 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3375
3376 /*
3377 * __add_sum_entry should be resided under the curseg_mutex
3378 * because, this function updates a summary entry in the
3379 * current summary block.
3380 */
3381 __add_sum_entry(sbi, type, sum);
3382
3383 __refresh_next_blkoff(sbi, curseg);
3384
3385 stat_inc_block_count(sbi, curseg);
3386
3387 if (from_gc) {
3388 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3389 } else {
3390 update_segment_mtime(sbi, old_blkaddr, 0);
3391 old_mtime = 0;
3392 }
3393 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3394
3395 /*
3396 * SIT information should be updated before segment allocation,
3397 * since SSR needs latest valid block information.
3398 */
3399 update_sit_entry(sbi, *new_blkaddr, 1);
3400 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3401 update_sit_entry(sbi, old_blkaddr, -1);
3402
3403 if (!__has_curseg_space(sbi, curseg)) {
3404 if (from_gc)
3405 get_atssr_segment(sbi, type, se->type,
3406 AT_SSR, se->mtime);
3407 else
3408 sit_i->s_ops->allocate_segment(sbi, type, false);
3409 }
3410 /*
3411 * segment dirty status should be updated after segment allocation,
3412 * so we just need to update status only one time after previous
3413 * segment being closed.
3414 */
3415 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3416 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3417
3418 up_write(&sit_i->sentry_lock);
3419
3420 if (page && IS_NODESEG(type)) {
3421 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3422
3423 f2fs_inode_chksum_set(sbi, page);
3424 }
3425
3426 if (fio) {
3427 struct f2fs_bio_info *io;
3428
3429 if (F2FS_IO_ALIGNED(sbi))
3430 fio->retry = false;
3431
3432 INIT_LIST_HEAD(&fio->list);
3433 fio->in_list = true;
3434 io = sbi->write_io[fio->type] + fio->temp;
3435 spin_lock(&io->io_lock);
3436 list_add_tail(&fio->list, &io->io_list);
3437 spin_unlock(&io->io_lock);
3438 }
3439
3440 mutex_unlock(&curseg->curseg_mutex);
3441
3442 up_read(&SM_I(sbi)->curseg_lock);
3443}
3444
3445static void update_device_state(struct f2fs_io_info *fio)
3446{
3447 struct f2fs_sb_info *sbi = fio->sbi;
3448 unsigned int devidx;
3449
3450 if (!f2fs_is_multi_device(sbi))
3451 return;
3452
3453 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3454
3455 /* update device state for fsync */
3456 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3457
3458 /* update device state for checkpoint */
3459 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3460 spin_lock(&sbi->dev_lock);
3461 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3462 spin_unlock(&sbi->dev_lock);
3463 }
3464}
3465
3466static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3467{
3468 int type = __get_segment_type(fio);
3469 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3470
3471 if (keep_order)
3472 down_read(&fio->sbi->io_order_lock);
3473reallocate:
3474 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3475 &fio->new_blkaddr, sum, type, fio);
3476 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3477 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3478 fio->old_blkaddr, fio->old_blkaddr);
3479 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3480 }
3481
3482 /* writeout dirty page into bdev */
3483 f2fs_submit_page_write(fio);
3484 if (fio->retry) {
3485 fio->old_blkaddr = fio->new_blkaddr;
3486 goto reallocate;
3487 }
3488
3489 update_device_state(fio);
3490
3491 if (keep_order)
3492 up_read(&fio->sbi->io_order_lock);
3493}
3494
3495void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3496 enum iostat_type io_type)
3497{
3498 struct f2fs_io_info fio = {
3499 .sbi = sbi,
3500 .type = META,
3501 .temp = HOT,
3502 .op = REQ_OP_WRITE,
3503 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3504 .old_blkaddr = page->index,
3505 .new_blkaddr = page->index,
3506 .page = page,
3507 .encrypted_page = NULL,
3508 .in_list = false,
3509 };
3510
3511 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3512 fio.op_flags &= ~REQ_META;
3513
3514 set_page_writeback(page);
3515 ClearPageError(page);
3516 f2fs_submit_page_write(&fio);
3517
3518 stat_inc_meta_count(sbi, page->index);
3519 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3520}
3521
3522void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3523{
3524 struct f2fs_summary sum;
3525
3526 set_summary(&sum, nid, 0, 0);
3527 do_write_page(&sum, fio);
3528
3529 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3530}
3531
3532void f2fs_outplace_write_data(struct dnode_of_data *dn,
3533 struct f2fs_io_info *fio)
3534{
3535 struct f2fs_sb_info *sbi = fio->sbi;
3536 struct f2fs_summary sum;
3537
3538 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3539 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3540 do_write_page(&sum, fio);
3541 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3542
3543 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3544}
3545
3546int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3547{
3548 int err;
3549 struct f2fs_sb_info *sbi = fio->sbi;
3550 unsigned int segno;
3551
3552 fio->new_blkaddr = fio->old_blkaddr;
3553 /* i/o temperature is needed for passing down write hints */
3554 __get_segment_type(fio);
3555
3556 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3557
3558 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3559 set_sbi_flag(sbi, SBI_NEED_FSCK);
3560 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3561 __func__, segno);
3562 err = -EFSCORRUPTED;
3563 goto drop_bio;
3564 }
3565
3566 if (f2fs_cp_error(sbi)) {
3567 err = -EIO;
3568 goto drop_bio;
3569 }
3570
3571 stat_inc_inplace_blocks(fio->sbi);
3572
3573 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3574 err = f2fs_merge_page_bio(fio);
3575 else
3576 err = f2fs_submit_page_bio(fio);
3577 if (!err) {
3578 update_device_state(fio);
3579 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3580 }
3581
3582 return err;
3583drop_bio:
3584 if (fio->bio && *(fio->bio)) {
3585 struct bio *bio = *(fio->bio);
3586
3587 bio->bi_status = BLK_STS_IOERR;
3588 bio_endio(bio);
3589 *(fio->bio) = NULL;
3590 }
3591 return err;
3592}
3593
3594static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3595 unsigned int segno)
3596{
3597 int i;
3598
3599 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3600 if (CURSEG_I(sbi, i)->segno == segno)
3601 break;
3602 }
3603 return i;
3604}
3605
3606void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3607 block_t old_blkaddr, block_t new_blkaddr,
3608 bool recover_curseg, bool recover_newaddr,
3609 bool from_gc)
3610{
3611 struct sit_info *sit_i = SIT_I(sbi);
3612 struct curseg_info *curseg;
3613 unsigned int segno, old_cursegno;
3614 struct seg_entry *se;
3615 int type;
3616 unsigned short old_blkoff;
3617 unsigned char old_alloc_type;
3618
3619 segno = GET_SEGNO(sbi, new_blkaddr);
3620 se = get_seg_entry(sbi, segno);
3621 type = se->type;
3622
3623 down_write(&SM_I(sbi)->curseg_lock);
3624
3625 if (!recover_curseg) {
3626 /* for recovery flow */
3627 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3628 if (old_blkaddr == NULL_ADDR)
3629 type = CURSEG_COLD_DATA;
3630 else
3631 type = CURSEG_WARM_DATA;
3632 }
3633 } else {
3634 if (IS_CURSEG(sbi, segno)) {
3635 /* se->type is volatile as SSR allocation */
3636 type = __f2fs_get_curseg(sbi, segno);
3637 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3638 } else {
3639 type = CURSEG_WARM_DATA;
3640 }
3641 }
3642
3643 f2fs_bug_on(sbi, !IS_DATASEG(type));
3644 curseg = CURSEG_I(sbi, type);
3645
3646 mutex_lock(&curseg->curseg_mutex);
3647 down_write(&sit_i->sentry_lock);
3648
3649 old_cursegno = curseg->segno;
3650 old_blkoff = curseg->next_blkoff;
3651 old_alloc_type = curseg->alloc_type;
3652
3653 /* change the current segment */
3654 if (segno != curseg->segno) {
3655 curseg->next_segno = segno;
3656 change_curseg(sbi, type, true);
3657 }
3658
3659 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3660 __add_sum_entry(sbi, type, sum);
3661
3662 if (!recover_curseg || recover_newaddr) {
3663 if (!from_gc)
3664 update_segment_mtime(sbi, new_blkaddr, 0);
3665 update_sit_entry(sbi, new_blkaddr, 1);
3666 }
3667 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3668 invalidate_mapping_pages(META_MAPPING(sbi),
3669 old_blkaddr, old_blkaddr);
3670 f2fs_invalidate_compress_page(sbi, old_blkaddr);
3671 if (!from_gc)
3672 update_segment_mtime(sbi, old_blkaddr, 0);
3673 update_sit_entry(sbi, old_blkaddr, -1);
3674 }
3675
3676 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3677 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3678
3679 locate_dirty_segment(sbi, old_cursegno);
3680
3681 if (recover_curseg) {
3682 if (old_cursegno != curseg->segno) {
3683 curseg->next_segno = old_cursegno;
3684 change_curseg(sbi, type, true);
3685 }
3686 curseg->next_blkoff = old_blkoff;
3687 curseg->alloc_type = old_alloc_type;
3688 }
3689
3690 up_write(&sit_i->sentry_lock);
3691 mutex_unlock(&curseg->curseg_mutex);
3692 up_write(&SM_I(sbi)->curseg_lock);
3693}
3694
3695void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3696 block_t old_addr, block_t new_addr,
3697 unsigned char version, bool recover_curseg,
3698 bool recover_newaddr)
3699{
3700 struct f2fs_summary sum;
3701
3702 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3703
3704 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3705 recover_curseg, recover_newaddr, false);
3706
3707 f2fs_update_data_blkaddr(dn, new_addr);
3708}
3709
3710void f2fs_wait_on_page_writeback(struct page *page,
3711 enum page_type type, bool ordered, bool locked)
3712{
3713 if (PageWriteback(page)) {
3714 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3715
3716 /* submit cached LFS IO */
3717 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3718 /* sbumit cached IPU IO */
3719 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3720 if (ordered) {
3721 wait_on_page_writeback(page);
3722 f2fs_bug_on(sbi, locked && PageWriteback(page));
3723 } else {
3724 wait_for_stable_page(page);
3725 }
3726 }
3727}
3728
3729void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3730{
3731 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3732 struct page *cpage;
3733
3734 if (!f2fs_post_read_required(inode))
3735 return;
3736
3737 if (!__is_valid_data_blkaddr(blkaddr))
3738 return;
3739
3740 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3741 if (cpage) {
3742 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3743 f2fs_put_page(cpage, 1);
3744 }
3745}
3746
3747void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3748 block_t len)
3749{
3750 block_t i;
3751
3752 for (i = 0; i < len; i++)
3753 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3754}
3755
3756static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3757{
3758 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3759 struct curseg_info *seg_i;
3760 unsigned char *kaddr;
3761 struct page *page;
3762 block_t start;
3763 int i, j, offset;
3764
3765 start = start_sum_block(sbi);
3766
3767 page = f2fs_get_meta_page(sbi, start++);
3768 if (IS_ERR(page))
3769 return PTR_ERR(page);
3770 kaddr = (unsigned char *)page_address(page);
3771
3772 /* Step 1: restore nat cache */
3773 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3774 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3775
3776 /* Step 2: restore sit cache */
3777 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3778 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3779 offset = 2 * SUM_JOURNAL_SIZE;
3780
3781 /* Step 3: restore summary entries */
3782 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3783 unsigned short blk_off;
3784 unsigned int segno;
3785
3786 seg_i = CURSEG_I(sbi, i);
3787 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3788 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3789 seg_i->next_segno = segno;
3790 reset_curseg(sbi, i, 0);
3791 seg_i->alloc_type = ckpt->alloc_type[i];
3792 seg_i->next_blkoff = blk_off;
3793
3794 if (seg_i->alloc_type == SSR)
3795 blk_off = sbi->blocks_per_seg;
3796
3797 for (j = 0; j < blk_off; j++) {
3798 struct f2fs_summary *s;
3799
3800 s = (struct f2fs_summary *)(kaddr + offset);
3801 seg_i->sum_blk->entries[j] = *s;
3802 offset += SUMMARY_SIZE;
3803 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3804 SUM_FOOTER_SIZE)
3805 continue;
3806
3807 f2fs_put_page(page, 1);
3808 page = NULL;
3809
3810 page = f2fs_get_meta_page(sbi, start++);
3811 if (IS_ERR(page))
3812 return PTR_ERR(page);
3813 kaddr = (unsigned char *)page_address(page);
3814 offset = 0;
3815 }
3816 }
3817 f2fs_put_page(page, 1);
3818 return 0;
3819}
3820
3821static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3822{
3823 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3824 struct f2fs_summary_block *sum;
3825 struct curseg_info *curseg;
3826 struct page *new;
3827 unsigned short blk_off;
3828 unsigned int segno = 0;
3829 block_t blk_addr = 0;
3830 int err = 0;
3831
3832 /* get segment number and block addr */
3833 if (IS_DATASEG(type)) {
3834 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3835 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3836 CURSEG_HOT_DATA]);
3837 if (__exist_node_summaries(sbi))
3838 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3839 else
3840 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3841 } else {
3842 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3843 CURSEG_HOT_NODE]);
3844 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3845 CURSEG_HOT_NODE]);
3846 if (__exist_node_summaries(sbi))
3847 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3848 type - CURSEG_HOT_NODE);
3849 else
3850 blk_addr = GET_SUM_BLOCK(sbi, segno);
3851 }
3852
3853 new = f2fs_get_meta_page(sbi, blk_addr);
3854 if (IS_ERR(new))
3855 return PTR_ERR(new);
3856 sum = (struct f2fs_summary_block *)page_address(new);
3857
3858 if (IS_NODESEG(type)) {
3859 if (__exist_node_summaries(sbi)) {
3860 struct f2fs_summary *ns = &sum->entries[0];
3861 int i;
3862
3863 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3864 ns->version = 0;
3865 ns->ofs_in_node = 0;
3866 }
3867 } else {
3868 err = f2fs_restore_node_summary(sbi, segno, sum);
3869 if (err)
3870 goto out;
3871 }
3872 }
3873
3874 /* set uncompleted segment to curseg */
3875 curseg = CURSEG_I(sbi, type);
3876 mutex_lock(&curseg->curseg_mutex);
3877
3878 /* update journal info */
3879 down_write(&curseg->journal_rwsem);
3880 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3881 up_write(&curseg->journal_rwsem);
3882
3883 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3884 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3885 curseg->next_segno = segno;
3886 reset_curseg(sbi, type, 0);
3887 curseg->alloc_type = ckpt->alloc_type[type];
3888 curseg->next_blkoff = blk_off;
3889 mutex_unlock(&curseg->curseg_mutex);
3890out:
3891 f2fs_put_page(new, 1);
3892 return err;
3893}
3894
3895static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3896{
3897 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3898 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3899 int type = CURSEG_HOT_DATA;
3900 int err;
3901
3902 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3903 int npages = f2fs_npages_for_summary_flush(sbi, true);
3904
3905 if (npages >= 2)
3906 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3907 META_CP, true);
3908
3909 /* restore for compacted data summary */
3910 err = read_compacted_summaries(sbi);
3911 if (err)
3912 return err;
3913 type = CURSEG_HOT_NODE;
3914 }
3915
3916 if (__exist_node_summaries(sbi))
3917 f2fs_ra_meta_pages(sbi,
3918 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3919 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3920
3921 for (; type <= CURSEG_COLD_NODE; type++) {
3922 err = read_normal_summaries(sbi, type);
3923 if (err)
3924 return err;
3925 }
3926
3927 /* sanity check for summary blocks */
3928 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3929 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3930 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3931 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3932 return -EINVAL;
3933 }
3934
3935 return 0;
3936}
3937
3938static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3939{
3940 struct page *page;
3941 unsigned char *kaddr;
3942 struct f2fs_summary *summary;
3943 struct curseg_info *seg_i;
3944 int written_size = 0;
3945 int i, j;
3946
3947 page = f2fs_grab_meta_page(sbi, blkaddr++);
3948 kaddr = (unsigned char *)page_address(page);
3949 memset(kaddr, 0, PAGE_SIZE);
3950
3951 /* Step 1: write nat cache */
3952 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3953 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3954 written_size += SUM_JOURNAL_SIZE;
3955
3956 /* Step 2: write sit cache */
3957 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3958 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3959 written_size += SUM_JOURNAL_SIZE;
3960
3961 /* Step 3: write summary entries */
3962 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3963 unsigned short blkoff;
3964
3965 seg_i = CURSEG_I(sbi, i);
3966 if (sbi->ckpt->alloc_type[i] == SSR)
3967 blkoff = sbi->blocks_per_seg;
3968 else
3969 blkoff = curseg_blkoff(sbi, i);
3970
3971 for (j = 0; j < blkoff; j++) {
3972 if (!page) {
3973 page = f2fs_grab_meta_page(sbi, blkaddr++);
3974 kaddr = (unsigned char *)page_address(page);
3975 memset(kaddr, 0, PAGE_SIZE);
3976 written_size = 0;
3977 }
3978 summary = (struct f2fs_summary *)(kaddr + written_size);
3979 *summary = seg_i->sum_blk->entries[j];
3980 written_size += SUMMARY_SIZE;
3981
3982 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3983 SUM_FOOTER_SIZE)
3984 continue;
3985
3986 set_page_dirty(page);
3987 f2fs_put_page(page, 1);
3988 page = NULL;
3989 }
3990 }
3991 if (page) {
3992 set_page_dirty(page);
3993 f2fs_put_page(page, 1);
3994 }
3995}
3996
3997static void write_normal_summaries(struct f2fs_sb_info *sbi,
3998 block_t blkaddr, int type)
3999{
4000 int i, end;
4001
4002 if (IS_DATASEG(type))
4003 end = type + NR_CURSEG_DATA_TYPE;
4004 else
4005 end = type + NR_CURSEG_NODE_TYPE;
4006
4007 for (i = type; i < end; i++)
4008 write_current_sum_page(sbi, i, blkaddr + (i - type));
4009}
4010
4011void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4012{
4013 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4014 write_compacted_summaries(sbi, start_blk);
4015 else
4016 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4017}
4018
4019void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4020{
4021 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4022}
4023
4024int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4025 unsigned int val, int alloc)
4026{
4027 int i;
4028
4029 if (type == NAT_JOURNAL) {
4030 for (i = 0; i < nats_in_cursum(journal); i++) {
4031 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4032 return i;
4033 }
4034 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4035 return update_nats_in_cursum(journal, 1);
4036 } else if (type == SIT_JOURNAL) {
4037 for (i = 0; i < sits_in_cursum(journal); i++)
4038 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4039 return i;
4040 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4041 return update_sits_in_cursum(journal, 1);
4042 }
4043 return -1;
4044}
4045
4046static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4047 unsigned int segno)
4048{
4049 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4050}
4051
4052static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4053 unsigned int start)
4054{
4055 struct sit_info *sit_i = SIT_I(sbi);
4056 struct page *page;
4057 pgoff_t src_off, dst_off;
4058
4059 src_off = current_sit_addr(sbi, start);
4060 dst_off = next_sit_addr(sbi, src_off);
4061
4062 page = f2fs_grab_meta_page(sbi, dst_off);
4063 seg_info_to_sit_page(sbi, page, start);
4064
4065 set_page_dirty(page);
4066 set_to_next_sit(sit_i, start);
4067
4068 return page;
4069}
4070
4071static struct sit_entry_set *grab_sit_entry_set(void)
4072{
4073 struct sit_entry_set *ses =
4074 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
4075
4076 ses->entry_cnt = 0;
4077 INIT_LIST_HEAD(&ses->set_list);
4078 return ses;
4079}
4080
4081static void release_sit_entry_set(struct sit_entry_set *ses)
4082{
4083 list_del(&ses->set_list);
4084 kmem_cache_free(sit_entry_set_slab, ses);
4085}
4086
4087static void adjust_sit_entry_set(struct sit_entry_set *ses,
4088 struct list_head *head)
4089{
4090 struct sit_entry_set *next = ses;
4091
4092 if (list_is_last(&ses->set_list, head))
4093 return;
4094
4095 list_for_each_entry_continue(next, head, set_list)
4096 if (ses->entry_cnt <= next->entry_cnt)
4097 break;
4098
4099 list_move_tail(&ses->set_list, &next->set_list);
4100}
4101
4102static void add_sit_entry(unsigned int segno, struct list_head *head)
4103{
4104 struct sit_entry_set *ses;
4105 unsigned int start_segno = START_SEGNO(segno);
4106
4107 list_for_each_entry(ses, head, set_list) {
4108 if (ses->start_segno == start_segno) {
4109 ses->entry_cnt++;
4110 adjust_sit_entry_set(ses, head);
4111 return;
4112 }
4113 }
4114
4115 ses = grab_sit_entry_set();
4116
4117 ses->start_segno = start_segno;
4118 ses->entry_cnt++;
4119 list_add(&ses->set_list, head);
4120}
4121
4122static void add_sits_in_set(struct f2fs_sb_info *sbi)
4123{
4124 struct f2fs_sm_info *sm_info = SM_I(sbi);
4125 struct list_head *set_list = &sm_info->sit_entry_set;
4126 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4127 unsigned int segno;
4128
4129 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4130 add_sit_entry(segno, set_list);
4131}
4132
4133static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4134{
4135 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4136 struct f2fs_journal *journal = curseg->journal;
4137 int i;
4138
4139 down_write(&curseg->journal_rwsem);
4140 for (i = 0; i < sits_in_cursum(journal); i++) {
4141 unsigned int segno;
4142 bool dirtied;
4143
4144 segno = le32_to_cpu(segno_in_journal(journal, i));
4145 dirtied = __mark_sit_entry_dirty(sbi, segno);
4146
4147 if (!dirtied)
4148 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4149 }
4150 update_sits_in_cursum(journal, -i);
4151 up_write(&curseg->journal_rwsem);
4152}
4153
4154/*
4155 * CP calls this function, which flushes SIT entries including sit_journal,
4156 * and moves prefree segs to free segs.
4157 */
4158void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4159{
4160 struct sit_info *sit_i = SIT_I(sbi);
4161 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4162 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4163 struct f2fs_journal *journal = curseg->journal;
4164 struct sit_entry_set *ses, *tmp;
4165 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4166 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4167 struct seg_entry *se;
4168
4169 down_write(&sit_i->sentry_lock);
4170
4171 if (!sit_i->dirty_sentries)
4172 goto out;
4173
4174 /*
4175 * add and account sit entries of dirty bitmap in sit entry
4176 * set temporarily
4177 */
4178 add_sits_in_set(sbi);
4179
4180 /*
4181 * if there are no enough space in journal to store dirty sit
4182 * entries, remove all entries from journal and add and account
4183 * them in sit entry set.
4184 */
4185 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4186 !to_journal)
4187 remove_sits_in_journal(sbi);
4188
4189 /*
4190 * there are two steps to flush sit entries:
4191 * #1, flush sit entries to journal in current cold data summary block.
4192 * #2, flush sit entries to sit page.
4193 */
4194 list_for_each_entry_safe(ses, tmp, head, set_list) {
4195 struct page *page = NULL;
4196 struct f2fs_sit_block *raw_sit = NULL;
4197 unsigned int start_segno = ses->start_segno;
4198 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4199 (unsigned long)MAIN_SEGS(sbi));
4200 unsigned int segno = start_segno;
4201
4202 if (to_journal &&
4203 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4204 to_journal = false;
4205
4206 if (to_journal) {
4207 down_write(&curseg->journal_rwsem);
4208 } else {
4209 page = get_next_sit_page(sbi, start_segno);
4210 raw_sit = page_address(page);
4211 }
4212
4213 /* flush dirty sit entries in region of current sit set */
4214 for_each_set_bit_from(segno, bitmap, end) {
4215 int offset, sit_offset;
4216
4217 se = get_seg_entry(sbi, segno);
4218#ifdef CONFIG_F2FS_CHECK_FS
4219 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4220 SIT_VBLOCK_MAP_SIZE))
4221 f2fs_bug_on(sbi, 1);
4222#endif
4223
4224 /* add discard candidates */
4225 if (!(cpc->reason & CP_DISCARD)) {
4226 cpc->trim_start = segno;
4227 add_discard_addrs(sbi, cpc, false);
4228 }
4229
4230 if (to_journal) {
4231 offset = f2fs_lookup_journal_in_cursum(journal,
4232 SIT_JOURNAL, segno, 1);
4233 f2fs_bug_on(sbi, offset < 0);
4234 segno_in_journal(journal, offset) =
4235 cpu_to_le32(segno);
4236 seg_info_to_raw_sit(se,
4237 &sit_in_journal(journal, offset));
4238 check_block_count(sbi, segno,
4239 &sit_in_journal(journal, offset));
4240 } else {
4241 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4242 seg_info_to_raw_sit(se,
4243 &raw_sit->entries[sit_offset]);
4244 check_block_count(sbi, segno,
4245 &raw_sit->entries[sit_offset]);
4246 }
4247
4248 __clear_bit(segno, bitmap);
4249 sit_i->dirty_sentries--;
4250 ses->entry_cnt--;
4251 }
4252
4253 if (to_journal)
4254 up_write(&curseg->journal_rwsem);
4255 else
4256 f2fs_put_page(page, 1);
4257
4258 f2fs_bug_on(sbi, ses->entry_cnt);
4259 release_sit_entry_set(ses);
4260 }
4261
4262 f2fs_bug_on(sbi, !list_empty(head));
4263 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4264out:
4265 if (cpc->reason & CP_DISCARD) {
4266 __u64 trim_start = cpc->trim_start;
4267
4268 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4269 add_discard_addrs(sbi, cpc, false);
4270
4271 cpc->trim_start = trim_start;
4272 }
4273 up_write(&sit_i->sentry_lock);
4274
4275 set_prefree_as_free_segments(sbi);
4276}
4277
4278static int build_sit_info(struct f2fs_sb_info *sbi)
4279{
4280 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4281 struct sit_info *sit_i;
4282 unsigned int sit_segs, start;
4283 char *src_bitmap, *bitmap;
4284 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4285
4286 /* allocate memory for SIT information */
4287 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4288 if (!sit_i)
4289 return -ENOMEM;
4290
4291 SM_I(sbi)->sit_info = sit_i;
4292
4293 sit_i->sentries =
4294 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4295 MAIN_SEGS(sbi)),
4296 GFP_KERNEL);
4297 if (!sit_i->sentries)
4298 return -ENOMEM;
4299
4300 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4301 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4302 GFP_KERNEL);
4303 if (!sit_i->dirty_sentries_bitmap)
4304 return -ENOMEM;
4305
4306#ifdef CONFIG_F2FS_CHECK_FS
4307 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4308#else
4309 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4310#endif
4311 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4312 if (!sit_i->bitmap)
4313 return -ENOMEM;
4314
4315 bitmap = sit_i->bitmap;
4316
4317 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4318 sit_i->sentries[start].cur_valid_map = bitmap;
4319 bitmap += SIT_VBLOCK_MAP_SIZE;
4320
4321 sit_i->sentries[start].ckpt_valid_map = bitmap;
4322 bitmap += SIT_VBLOCK_MAP_SIZE;
4323
4324#ifdef CONFIG_F2FS_CHECK_FS
4325 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4326 bitmap += SIT_VBLOCK_MAP_SIZE;
4327#endif
4328
4329 sit_i->sentries[start].discard_map = bitmap;
4330 bitmap += SIT_VBLOCK_MAP_SIZE;
4331 }
4332
4333 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4334 if (!sit_i->tmp_map)
4335 return -ENOMEM;
4336
4337 if (__is_large_section(sbi)) {
4338 sit_i->sec_entries =
4339 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4340 MAIN_SECS(sbi)),
4341 GFP_KERNEL);
4342 if (!sit_i->sec_entries)
4343 return -ENOMEM;
4344 }
4345
4346 /* get information related with SIT */
4347 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4348
4349 /* setup SIT bitmap from ckeckpoint pack */
4350 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4351 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4352
4353 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4354 if (!sit_i->sit_bitmap)
4355 return -ENOMEM;
4356
4357#ifdef CONFIG_F2FS_CHECK_FS
4358 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4359 sit_bitmap_size, GFP_KERNEL);
4360 if (!sit_i->sit_bitmap_mir)
4361 return -ENOMEM;
4362
4363 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4364 main_bitmap_size, GFP_KERNEL);
4365 if (!sit_i->invalid_segmap)
4366 return -ENOMEM;
4367#endif
4368
4369 /* init SIT information */
4370 sit_i->s_ops = &default_salloc_ops;
4371
4372 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4373 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4374 sit_i->written_valid_blocks = 0;
4375 sit_i->bitmap_size = sit_bitmap_size;
4376 sit_i->dirty_sentries = 0;
4377 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4378 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4379 sit_i->mounted_time = ktime_get_boottime_seconds();
4380 init_rwsem(&sit_i->sentry_lock);
4381 return 0;
4382}
4383
4384static int build_free_segmap(struct f2fs_sb_info *sbi)
4385{
4386 struct free_segmap_info *free_i;
4387 unsigned int bitmap_size, sec_bitmap_size;
4388
4389 /* allocate memory for free segmap information */
4390 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4391 if (!free_i)
4392 return -ENOMEM;
4393
4394 SM_I(sbi)->free_info = free_i;
4395
4396 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4397 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4398 if (!free_i->free_segmap)
4399 return -ENOMEM;
4400
4401 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4402 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4403 if (!free_i->free_secmap)
4404 return -ENOMEM;
4405
4406 /* set all segments as dirty temporarily */
4407 memset(free_i->free_segmap, 0xff, bitmap_size);
4408 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4409
4410 /* init free segmap information */
4411 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4412 free_i->free_segments = 0;
4413 free_i->free_sections = 0;
4414 spin_lock_init(&free_i->segmap_lock);
4415 return 0;
4416}
4417
4418static int build_curseg(struct f2fs_sb_info *sbi)
4419{
4420 struct curseg_info *array;
4421 int i;
4422
4423 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4424 sizeof(*array)), GFP_KERNEL);
4425 if (!array)
4426 return -ENOMEM;
4427
4428 SM_I(sbi)->curseg_array = array;
4429
4430 for (i = 0; i < NO_CHECK_TYPE; i++) {
4431 mutex_init(&array[i].curseg_mutex);
4432 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4433 if (!array[i].sum_blk)
4434 return -ENOMEM;
4435 init_rwsem(&array[i].journal_rwsem);
4436 array[i].journal = f2fs_kzalloc(sbi,
4437 sizeof(struct f2fs_journal), GFP_KERNEL);
4438 if (!array[i].journal)
4439 return -ENOMEM;
4440 if (i < NR_PERSISTENT_LOG)
4441 array[i].seg_type = CURSEG_HOT_DATA + i;
4442 else if (i == CURSEG_COLD_DATA_PINNED)
4443 array[i].seg_type = CURSEG_COLD_DATA;
4444 else if (i == CURSEG_ALL_DATA_ATGC)
4445 array[i].seg_type = CURSEG_COLD_DATA;
4446 array[i].segno = NULL_SEGNO;
4447 array[i].next_blkoff = 0;
4448 array[i].inited = false;
4449 }
4450 return restore_curseg_summaries(sbi);
4451}
4452
4453static int build_sit_entries(struct f2fs_sb_info *sbi)
4454{
4455 struct sit_info *sit_i = SIT_I(sbi);
4456 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4457 struct f2fs_journal *journal = curseg->journal;
4458 struct seg_entry *se;
4459 struct f2fs_sit_entry sit;
4460 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4461 unsigned int i, start, end;
4462 unsigned int readed, start_blk = 0;
4463 int err = 0;
4464 block_t total_node_blocks = 0;
4465
4466 do {
4467 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4468 META_SIT, true);
4469
4470 start = start_blk * sit_i->sents_per_block;
4471 end = (start_blk + readed) * sit_i->sents_per_block;
4472
4473 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4474 struct f2fs_sit_block *sit_blk;
4475 struct page *page;
4476
4477 se = &sit_i->sentries[start];
4478 page = get_current_sit_page(sbi, start);
4479 if (IS_ERR(page))
4480 return PTR_ERR(page);
4481 sit_blk = (struct f2fs_sit_block *)page_address(page);
4482 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4483 f2fs_put_page(page, 1);
4484
4485 err = check_block_count(sbi, start, &sit);
4486 if (err)
4487 return err;
4488 seg_info_from_raw_sit(se, &sit);
4489 if (IS_NODESEG(se->type))
4490 total_node_blocks += se->valid_blocks;
4491
4492 /* build discard map only one time */
4493 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4494 memset(se->discard_map, 0xff,
4495 SIT_VBLOCK_MAP_SIZE);
4496 } else {
4497 memcpy(se->discard_map,
4498 se->cur_valid_map,
4499 SIT_VBLOCK_MAP_SIZE);
4500 sbi->discard_blks +=
4501 sbi->blocks_per_seg -
4502 se->valid_blocks;
4503 }
4504
4505 if (__is_large_section(sbi))
4506 get_sec_entry(sbi, start)->valid_blocks +=
4507 se->valid_blocks;
4508 }
4509 start_blk += readed;
4510 } while (start_blk < sit_blk_cnt);
4511
4512 down_read(&curseg->journal_rwsem);
4513 for (i = 0; i < sits_in_cursum(journal); i++) {
4514 unsigned int old_valid_blocks;
4515
4516 start = le32_to_cpu(segno_in_journal(journal, i));
4517 if (start >= MAIN_SEGS(sbi)) {
4518 f2fs_err(sbi, "Wrong journal entry on segno %u",
4519 start);
4520 err = -EFSCORRUPTED;
4521 break;
4522 }
4523
4524 se = &sit_i->sentries[start];
4525 sit = sit_in_journal(journal, i);
4526
4527 old_valid_blocks = se->valid_blocks;
4528 if (IS_NODESEG(se->type))
4529 total_node_blocks -= old_valid_blocks;
4530
4531 err = check_block_count(sbi, start, &sit);
4532 if (err)
4533 break;
4534 seg_info_from_raw_sit(se, &sit);
4535 if (IS_NODESEG(se->type))
4536 total_node_blocks += se->valid_blocks;
4537
4538 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4539 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4540 } else {
4541 memcpy(se->discard_map, se->cur_valid_map,
4542 SIT_VBLOCK_MAP_SIZE);
4543 sbi->discard_blks += old_valid_blocks;
4544 sbi->discard_blks -= se->valid_blocks;
4545 }
4546
4547 if (__is_large_section(sbi)) {
4548 get_sec_entry(sbi, start)->valid_blocks +=
4549 se->valid_blocks;
4550 get_sec_entry(sbi, start)->valid_blocks -=
4551 old_valid_blocks;
4552 }
4553 }
4554 up_read(&curseg->journal_rwsem);
4555
4556 if (!err && total_node_blocks != valid_node_count(sbi)) {
4557 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4558 total_node_blocks, valid_node_count(sbi));
4559 err = -EFSCORRUPTED;
4560 }
4561
4562 return err;
4563}
4564
4565static void init_free_segmap(struct f2fs_sb_info *sbi)
4566{
4567 unsigned int start;
4568 int type;
4569 struct seg_entry *sentry;
4570
4571 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4572 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4573 continue;
4574 sentry = get_seg_entry(sbi, start);
4575 if (!sentry->valid_blocks)
4576 __set_free(sbi, start);
4577 else
4578 SIT_I(sbi)->written_valid_blocks +=
4579 sentry->valid_blocks;
4580 }
4581
4582 /* set use the current segments */
4583 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4584 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4585
4586 __set_test_and_inuse(sbi, curseg_t->segno);
4587 }
4588}
4589
4590static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4591{
4592 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4593 struct free_segmap_info *free_i = FREE_I(sbi);
4594 unsigned int segno = 0, offset = 0, secno;
4595 block_t valid_blocks, usable_blks_in_seg;
4596 block_t blks_per_sec = BLKS_PER_SEC(sbi);
4597
4598 while (1) {
4599 /* find dirty segment based on free segmap */
4600 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4601 if (segno >= MAIN_SEGS(sbi))
4602 break;
4603 offset = segno + 1;
4604 valid_blocks = get_valid_blocks(sbi, segno, false);
4605 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4606 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4607 continue;
4608 if (valid_blocks > usable_blks_in_seg) {
4609 f2fs_bug_on(sbi, 1);
4610 continue;
4611 }
4612 mutex_lock(&dirty_i->seglist_lock);
4613 __locate_dirty_segment(sbi, segno, DIRTY);
4614 mutex_unlock(&dirty_i->seglist_lock);
4615 }
4616
4617 if (!__is_large_section(sbi))
4618 return;
4619
4620 mutex_lock(&dirty_i->seglist_lock);
4621 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4622 valid_blocks = get_valid_blocks(sbi, segno, true);
4623 secno = GET_SEC_FROM_SEG(sbi, segno);
4624
4625 if (!valid_blocks || valid_blocks == blks_per_sec)
4626 continue;
4627 if (IS_CURSEC(sbi, secno))
4628 continue;
4629 set_bit(secno, dirty_i->dirty_secmap);
4630 }
4631 mutex_unlock(&dirty_i->seglist_lock);
4632}
4633
4634static int init_victim_secmap(struct f2fs_sb_info *sbi)
4635{
4636 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4637 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4638
4639 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4640 if (!dirty_i->victim_secmap)
4641 return -ENOMEM;
4642 return 0;
4643}
4644
4645static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4646{
4647 struct dirty_seglist_info *dirty_i;
4648 unsigned int bitmap_size, i;
4649
4650 /* allocate memory for dirty segments list information */
4651 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4652 GFP_KERNEL);
4653 if (!dirty_i)
4654 return -ENOMEM;
4655
4656 SM_I(sbi)->dirty_info = dirty_i;
4657 mutex_init(&dirty_i->seglist_lock);
4658
4659 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4660
4661 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4662 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4663 GFP_KERNEL);
4664 if (!dirty_i->dirty_segmap[i])
4665 return -ENOMEM;
4666 }
4667
4668 if (__is_large_section(sbi)) {
4669 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4670 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4671 bitmap_size, GFP_KERNEL);
4672 if (!dirty_i->dirty_secmap)
4673 return -ENOMEM;
4674 }
4675
4676 init_dirty_segmap(sbi);
4677 return init_victim_secmap(sbi);
4678}
4679
4680static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4681{
4682 int i;
4683
4684 /*
4685 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4686 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4687 */
4688 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4689 struct curseg_info *curseg = CURSEG_I(sbi, i);
4690 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4691 unsigned int blkofs = curseg->next_blkoff;
4692
4693 if (f2fs_sb_has_readonly(sbi) &&
4694 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4695 continue;
4696
4697 sanity_check_seg_type(sbi, curseg->seg_type);
4698
4699 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4700 goto out;
4701
4702 if (curseg->alloc_type == SSR)
4703 continue;
4704
4705 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4706 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4707 continue;
4708out:
4709 f2fs_err(sbi,
4710 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4711 i, curseg->segno, curseg->alloc_type,
4712 curseg->next_blkoff, blkofs);
4713 return -EFSCORRUPTED;
4714 }
4715 }
4716 return 0;
4717}
4718
4719#ifdef CONFIG_BLK_DEV_ZONED
4720
4721static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4722 struct f2fs_dev_info *fdev,
4723 struct blk_zone *zone)
4724{
4725 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4726 block_t zone_block, wp_block, last_valid_block;
4727 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4728 int i, s, b, ret;
4729 struct seg_entry *se;
4730
4731 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4732 return 0;
4733
4734 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4735 wp_segno = GET_SEGNO(sbi, wp_block);
4736 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4737 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4738 zone_segno = GET_SEGNO(sbi, zone_block);
4739 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4740
4741 if (zone_segno >= MAIN_SEGS(sbi))
4742 return 0;
4743
4744 /*
4745 * Skip check of zones cursegs point to, since
4746 * fix_curseg_write_pointer() checks them.
4747 */
4748 for (i = 0; i < NO_CHECK_TYPE; i++)
4749 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4750 CURSEG_I(sbi, i)->segno))
4751 return 0;
4752
4753 /*
4754 * Get last valid block of the zone.
4755 */
4756 last_valid_block = zone_block - 1;
4757 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4758 segno = zone_segno + s;
4759 se = get_seg_entry(sbi, segno);
4760 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4761 if (f2fs_test_bit(b, se->cur_valid_map)) {
4762 last_valid_block = START_BLOCK(sbi, segno) + b;
4763 break;
4764 }
4765 if (last_valid_block >= zone_block)
4766 break;
4767 }
4768
4769 /*
4770 * If last valid block is beyond the write pointer, report the
4771 * inconsistency. This inconsistency does not cause write error
4772 * because the zone will not be selected for write operation until
4773 * it get discarded. Just report it.
4774 */
4775 if (last_valid_block >= wp_block) {
4776 f2fs_notice(sbi, "Valid block beyond write pointer: "
4777 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4778 GET_SEGNO(sbi, last_valid_block),
4779 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4780 wp_segno, wp_blkoff);
4781 return 0;
4782 }
4783
4784 /*
4785 * If there is no valid block in the zone and if write pointer is
4786 * not at zone start, reset the write pointer.
4787 */
4788 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4789 f2fs_notice(sbi,
4790 "Zone without valid block has non-zero write "
4791 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4792 wp_segno, wp_blkoff);
4793 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4794 zone->len >> log_sectors_per_block);
4795 if (ret) {
4796 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4797 fdev->path, ret);
4798 return ret;
4799 }
4800 }
4801
4802 return 0;
4803}
4804
4805static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4806 block_t zone_blkaddr)
4807{
4808 int i;
4809
4810 for (i = 0; i < sbi->s_ndevs; i++) {
4811 if (!bdev_is_zoned(FDEV(i).bdev))
4812 continue;
4813 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4814 zone_blkaddr <= FDEV(i).end_blk))
4815 return &FDEV(i);
4816 }
4817
4818 return NULL;
4819}
4820
4821static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4822 void *data)
4823{
4824 memcpy(data, zone, sizeof(struct blk_zone));
4825 return 0;
4826}
4827
4828static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4829{
4830 struct curseg_info *cs = CURSEG_I(sbi, type);
4831 struct f2fs_dev_info *zbd;
4832 struct blk_zone zone;
4833 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4834 block_t cs_zone_block, wp_block;
4835 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4836 sector_t zone_sector;
4837 int err;
4838
4839 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4840 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4841
4842 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4843 if (!zbd)
4844 return 0;
4845
4846 /* report zone for the sector the curseg points to */
4847 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4848 << log_sectors_per_block;
4849 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4850 report_one_zone_cb, &zone);
4851 if (err != 1) {
4852 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4853 zbd->path, err);
4854 return err;
4855 }
4856
4857 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4858 return 0;
4859
4860 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4861 wp_segno = GET_SEGNO(sbi, wp_block);
4862 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4863 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4864
4865 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4866 wp_sector_off == 0)
4867 return 0;
4868
4869 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4870 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4871 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4872
4873 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4874 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4875
4876 f2fs_allocate_new_section(sbi, type, true);
4877
4878 /* check consistency of the zone curseg pointed to */
4879 if (check_zone_write_pointer(sbi, zbd, &zone))
4880 return -EIO;
4881
4882 /* check newly assigned zone */
4883 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4884 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4885
4886 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4887 if (!zbd)
4888 return 0;
4889
4890 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4891 << log_sectors_per_block;
4892 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4893 report_one_zone_cb, &zone);
4894 if (err != 1) {
4895 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4896 zbd->path, err);
4897 return err;
4898 }
4899
4900 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4901 return 0;
4902
4903 if (zone.wp != zone.start) {
4904 f2fs_notice(sbi,
4905 "New zone for curseg[%d] is not yet discarded. "
4906 "Reset the zone: curseg[0x%x,0x%x]",
4907 type, cs->segno, cs->next_blkoff);
4908 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4909 zone_sector >> log_sectors_per_block,
4910 zone.len >> log_sectors_per_block);
4911 if (err) {
4912 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4913 zbd->path, err);
4914 return err;
4915 }
4916 }
4917
4918 return 0;
4919}
4920
4921int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4922{
4923 int i, ret;
4924
4925 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4926 ret = fix_curseg_write_pointer(sbi, i);
4927 if (ret)
4928 return ret;
4929 }
4930
4931 return 0;
4932}
4933
4934struct check_zone_write_pointer_args {
4935 struct f2fs_sb_info *sbi;
4936 struct f2fs_dev_info *fdev;
4937};
4938
4939static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4940 void *data)
4941{
4942 struct check_zone_write_pointer_args *args;
4943
4944 args = (struct check_zone_write_pointer_args *)data;
4945
4946 return check_zone_write_pointer(args->sbi, args->fdev, zone);
4947}
4948
4949int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4950{
4951 int i, ret;
4952 struct check_zone_write_pointer_args args;
4953
4954 for (i = 0; i < sbi->s_ndevs; i++) {
4955 if (!bdev_is_zoned(FDEV(i).bdev))
4956 continue;
4957
4958 args.sbi = sbi;
4959 args.fdev = &FDEV(i);
4960 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4961 check_zone_write_pointer_cb, &args);
4962 if (ret < 0)
4963 return ret;
4964 }
4965
4966 return 0;
4967}
4968
4969static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4970 unsigned int dev_idx)
4971{
4972 if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4973 return true;
4974 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4975}
4976
4977/* Return the zone index in the given device */
4978static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4979 int dev_idx)
4980{
4981 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4982
4983 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4984 sbi->log_blocks_per_blkz;
4985}
4986
4987/*
4988 * Return the usable segments in a section based on the zone's
4989 * corresponding zone capacity. Zone is equal to a section.
4990 */
4991static inline unsigned int f2fs_usable_zone_segs_in_sec(
4992 struct f2fs_sb_info *sbi, unsigned int segno)
4993{
4994 unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
4995
4996 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4997 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4998
4999 /* Conventional zone's capacity is always equal to zone size */
5000 if (is_conv_zone(sbi, zone_idx, dev_idx))
5001 return sbi->segs_per_sec;
5002
5003 /*
5004 * If the zone_capacity_blocks array is NULL, then zone capacity
5005 * is equal to the zone size for all zones
5006 */
5007 if (!FDEV(dev_idx).zone_capacity_blocks)
5008 return sbi->segs_per_sec;
5009
5010 /* Get the segment count beyond zone capacity block */
5011 unusable_segs_in_sec = (sbi->blocks_per_blkz -
5012 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5013 sbi->log_blocks_per_seg;
5014 return sbi->segs_per_sec - unusable_segs_in_sec;
5015}
5016
5017/*
5018 * Return the number of usable blocks in a segment. The number of blocks
5019 * returned is always equal to the number of blocks in a segment for
5020 * segments fully contained within a sequential zone capacity or a
5021 * conventional zone. For segments partially contained in a sequential
5022 * zone capacity, the number of usable blocks up to the zone capacity
5023 * is returned. 0 is returned in all other cases.
5024 */
5025static inline unsigned int f2fs_usable_zone_blks_in_seg(
5026 struct f2fs_sb_info *sbi, unsigned int segno)
5027{
5028 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5029 unsigned int zone_idx, dev_idx, secno;
5030
5031 secno = GET_SEC_FROM_SEG(sbi, segno);
5032 seg_start = START_BLOCK(sbi, segno);
5033 dev_idx = f2fs_target_device_index(sbi, seg_start);
5034 zone_idx = get_zone_idx(sbi, secno, dev_idx);
5035
5036 /*
5037 * Conventional zone's capacity is always equal to zone size,
5038 * so, blocks per segment is unchanged.
5039 */
5040 if (is_conv_zone(sbi, zone_idx, dev_idx))
5041 return sbi->blocks_per_seg;
5042
5043 if (!FDEV(dev_idx).zone_capacity_blocks)
5044 return sbi->blocks_per_seg;
5045
5046 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5047 sec_cap_blkaddr = sec_start_blkaddr +
5048 FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5049
5050 /*
5051 * If segment starts before zone capacity and spans beyond
5052 * zone capacity, then usable blocks are from seg start to
5053 * zone capacity. If the segment starts after the zone capacity,
5054 * then there are no usable blocks.
5055 */
5056 if (seg_start >= sec_cap_blkaddr)
5057 return 0;
5058 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5059 return sec_cap_blkaddr - seg_start;
5060
5061 return sbi->blocks_per_seg;
5062}
5063#else
5064int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5065{
5066 return 0;
5067}
5068
5069int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5070{
5071 return 0;
5072}
5073
5074static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5075 unsigned int segno)
5076{
5077 return 0;
5078}
5079
5080static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5081 unsigned int segno)
5082{
5083 return 0;
5084}
5085#endif
5086unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5087 unsigned int segno)
5088{
5089 if (f2fs_sb_has_blkzoned(sbi))
5090 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5091
5092 return sbi->blocks_per_seg;
5093}
5094
5095unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5096 unsigned int segno)
5097{
5098 if (f2fs_sb_has_blkzoned(sbi))
5099 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5100
5101 return sbi->segs_per_sec;
5102}
5103
5104/*
5105 * Update min, max modified time for cost-benefit GC algorithm
5106 */
5107static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5108{
5109 struct sit_info *sit_i = SIT_I(sbi);
5110 unsigned int segno;
5111
5112 down_write(&sit_i->sentry_lock);
5113
5114 sit_i->min_mtime = ULLONG_MAX;
5115
5116 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5117 unsigned int i;
5118 unsigned long long mtime = 0;
5119
5120 for (i = 0; i < sbi->segs_per_sec; i++)
5121 mtime += get_seg_entry(sbi, segno + i)->mtime;
5122
5123 mtime = div_u64(mtime, sbi->segs_per_sec);
5124
5125 if (sit_i->min_mtime > mtime)
5126 sit_i->min_mtime = mtime;
5127 }
5128 sit_i->max_mtime = get_mtime(sbi, false);
5129 sit_i->dirty_max_mtime = 0;
5130 up_write(&sit_i->sentry_lock);
5131}
5132
5133int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5134{
5135 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5136 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5137 struct f2fs_sm_info *sm_info;
5138 int err;
5139
5140 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5141 if (!sm_info)
5142 return -ENOMEM;
5143
5144 /* init sm info */
5145 sbi->sm_info = sm_info;
5146 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5147 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5148 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5149 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5150 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5151 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5152 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5153 sm_info->rec_prefree_segments = sm_info->main_segments *
5154 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5155 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5156 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5157
5158 if (!f2fs_lfs_mode(sbi))
5159 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5160 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5161 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5162 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
5163 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5164 sm_info->min_ssr_sections = reserved_sections(sbi);
5165
5166 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5167
5168 init_rwsem(&sm_info->curseg_lock);
5169
5170 if (!f2fs_readonly(sbi->sb)) {
5171 err = f2fs_create_flush_cmd_control(sbi);
5172 if (err)
5173 return err;
5174 }
5175
5176 err = create_discard_cmd_control(sbi);
5177 if (err)
5178 return err;
5179
5180 err = build_sit_info(sbi);
5181 if (err)
5182 return err;
5183 err = build_free_segmap(sbi);
5184 if (err)
5185 return err;
5186 err = build_curseg(sbi);
5187 if (err)
5188 return err;
5189
5190 /* reinit free segmap based on SIT */
5191 err = build_sit_entries(sbi);
5192 if (err)
5193 return err;
5194
5195 init_free_segmap(sbi);
5196 err = build_dirty_segmap(sbi);
5197 if (err)
5198 return err;
5199
5200 err = sanity_check_curseg(sbi);
5201 if (err)
5202 return err;
5203
5204 init_min_max_mtime(sbi);
5205 return 0;
5206}
5207
5208static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5209 enum dirty_type dirty_type)
5210{
5211 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5212
5213 mutex_lock(&dirty_i->seglist_lock);
5214 kvfree(dirty_i->dirty_segmap[dirty_type]);
5215 dirty_i->nr_dirty[dirty_type] = 0;
5216 mutex_unlock(&dirty_i->seglist_lock);
5217}
5218
5219static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5220{
5221 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5222
5223 kvfree(dirty_i->victim_secmap);
5224}
5225
5226static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5227{
5228 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5229 int i;
5230
5231 if (!dirty_i)
5232 return;
5233
5234 /* discard pre-free/dirty segments list */
5235 for (i = 0; i < NR_DIRTY_TYPE; i++)
5236 discard_dirty_segmap(sbi, i);
5237
5238 if (__is_large_section(sbi)) {
5239 mutex_lock(&dirty_i->seglist_lock);
5240 kvfree(dirty_i->dirty_secmap);
5241 mutex_unlock(&dirty_i->seglist_lock);
5242 }
5243
5244 destroy_victim_secmap(sbi);
5245 SM_I(sbi)->dirty_info = NULL;
5246 kfree(dirty_i);
5247}
5248
5249static void destroy_curseg(struct f2fs_sb_info *sbi)
5250{
5251 struct curseg_info *array = SM_I(sbi)->curseg_array;
5252 int i;
5253
5254 if (!array)
5255 return;
5256 SM_I(sbi)->curseg_array = NULL;
5257 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5258 kfree(array[i].sum_blk);
5259 kfree(array[i].journal);
5260 }
5261 kfree(array);
5262}
5263
5264static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5265{
5266 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5267
5268 if (!free_i)
5269 return;
5270 SM_I(sbi)->free_info = NULL;
5271 kvfree(free_i->free_segmap);
5272 kvfree(free_i->free_secmap);
5273 kfree(free_i);
5274}
5275
5276static void destroy_sit_info(struct f2fs_sb_info *sbi)
5277{
5278 struct sit_info *sit_i = SIT_I(sbi);
5279
5280 if (!sit_i)
5281 return;
5282
5283 if (sit_i->sentries)
5284 kvfree(sit_i->bitmap);
5285 kfree(sit_i->tmp_map);
5286
5287 kvfree(sit_i->sentries);
5288 kvfree(sit_i->sec_entries);
5289 kvfree(sit_i->dirty_sentries_bitmap);
5290
5291 SM_I(sbi)->sit_info = NULL;
5292 kvfree(sit_i->sit_bitmap);
5293#ifdef CONFIG_F2FS_CHECK_FS
5294 kvfree(sit_i->sit_bitmap_mir);
5295 kvfree(sit_i->invalid_segmap);
5296#endif
5297 kfree(sit_i);
5298}
5299
5300void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5301{
5302 struct f2fs_sm_info *sm_info = SM_I(sbi);
5303
5304 if (!sm_info)
5305 return;
5306 f2fs_destroy_flush_cmd_control(sbi, true);
5307 destroy_discard_cmd_control(sbi);
5308 destroy_dirty_segmap(sbi);
5309 destroy_curseg(sbi);
5310 destroy_free_segmap(sbi);
5311 destroy_sit_info(sbi);
5312 sbi->sm_info = NULL;
5313 kfree(sm_info);
5314}
5315
5316int __init f2fs_create_segment_manager_caches(void)
5317{
5318 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5319 sizeof(struct discard_entry));
5320 if (!discard_entry_slab)
5321 goto fail;
5322
5323 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5324 sizeof(struct discard_cmd));
5325 if (!discard_cmd_slab)
5326 goto destroy_discard_entry;
5327
5328 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5329 sizeof(struct sit_entry_set));
5330 if (!sit_entry_set_slab)
5331 goto destroy_discard_cmd;
5332
5333 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5334 sizeof(struct inmem_pages));
5335 if (!inmem_entry_slab)
5336 goto destroy_sit_entry_set;
5337 return 0;
5338
5339destroy_sit_entry_set:
5340 kmem_cache_destroy(sit_entry_set_slab);
5341destroy_discard_cmd:
5342 kmem_cache_destroy(discard_cmd_slab);
5343destroy_discard_entry:
5344 kmem_cache_destroy(discard_entry_slab);
5345fail:
5346 return -ENOMEM;
5347}
5348
5349void f2fs_destroy_segment_manager_caches(void)
5350{
5351 kmem_cache_destroy(sit_entry_set_slab);
5352 kmem_cache_destroy(discard_cmd_slab);
5353 kmem_cache_destroy(discard_entry_slab);
5354 kmem_cache_destroy(inmem_entry_slab);
5355}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/prefetch.h>
13#include <linux/kthread.h>
14#include <linux/swap.h>
15#include <linux/timer.h>
16#include <linux/freezer.h>
17#include <linux/sched/signal.h>
18
19#include "f2fs.h"
20#include "segment.h"
21#include "node.h"
22#include "gc.h"
23#include "trace.h"
24#include <trace/events/f2fs.h>
25
26#define __reverse_ffz(x) __reverse_ffs(~(x))
27
28static struct kmem_cache *discard_entry_slab;
29static struct kmem_cache *discard_cmd_slab;
30static struct kmem_cache *sit_entry_set_slab;
31static struct kmem_cache *inmem_entry_slab;
32
33static unsigned long __reverse_ulong(unsigned char *str)
34{
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
37
38#if BITS_PER_LONG == 64
39 shift = 56;
40#endif
41 while (shift >= 0) {
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
44 }
45 return tmp;
46}
47
48/*
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
51 */
52static inline unsigned long __reverse_ffs(unsigned long word)
53{
54 int num = 0;
55
56#if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
58 num += 32;
59 else
60 word >>= 32;
61#endif
62 if ((word & 0xffff0000) == 0)
63 num += 16;
64 else
65 word >>= 16;
66
67 if ((word & 0xff00) == 0)
68 num += 8;
69 else
70 word >>= 8;
71
72 if ((word & 0xf0) == 0)
73 num += 4;
74 else
75 word >>= 4;
76
77 if ((word & 0xc) == 0)
78 num += 2;
79 else
80 word >>= 2;
81
82 if ((word & 0x2) == 0)
83 num += 1;
84 return num;
85}
86
87/*
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
91 * Example:
92 * MSB <--> LSB
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
95 */
96static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
98{
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
101 unsigned long tmp;
102
103 if (offset >= size)
104 return size;
105
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
108
109 while (1) {
110 if (*p == 0)
111 goto pass;
112
113 tmp = __reverse_ulong((unsigned char *)p);
114
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
118 if (tmp)
119 goto found;
120pass:
121 if (size <= BITS_PER_LONG)
122 break;
123 size -= BITS_PER_LONG;
124 offset = 0;
125 p++;
126 }
127 return result;
128found:
129 return result - size + __reverse_ffs(tmp);
130}
131
132static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
134{
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
137 unsigned long tmp;
138
139 if (offset >= size)
140 return size;
141
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
144
145 while (1) {
146 if (*p == ~0UL)
147 goto pass;
148
149 tmp = __reverse_ulong((unsigned char *)p);
150
151 if (offset)
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
154 tmp |= ~0UL >> size;
155 if (tmp != ~0UL)
156 goto found;
157pass:
158 if (size <= BITS_PER_LONG)
159 break;
160 size -= BITS_PER_LONG;
161 offset = 0;
162 p++;
163 }
164 return result;
165found:
166 return result - size + __reverse_ffz(tmp);
167}
168
169bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170{
171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174
175 if (test_opt(sbi, LFS))
176 return false;
177 if (sbi->gc_mode == GC_URGENT)
178 return true;
179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180 return true;
181
182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184}
185
186void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187{
188 struct inmem_pages *new;
189
190 f2fs_trace_pid(page);
191
192 f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
193
194 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
195
196 /* add atomic page indices to the list */
197 new->page = page;
198 INIT_LIST_HEAD(&new->list);
199
200 /* increase reference count with clean state */
201 get_page(page);
202 mutex_lock(&F2FS_I(inode)->inmem_lock);
203 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
204 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205 mutex_unlock(&F2FS_I(inode)->inmem_lock);
206
207 trace_f2fs_register_inmem_page(page, INMEM);
208}
209
210static int __revoke_inmem_pages(struct inode *inode,
211 struct list_head *head, bool drop, bool recover,
212 bool trylock)
213{
214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215 struct inmem_pages *cur, *tmp;
216 int err = 0;
217
218 list_for_each_entry_safe(cur, tmp, head, list) {
219 struct page *page = cur->page;
220
221 if (drop)
222 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
223
224 if (trylock) {
225 /*
226 * to avoid deadlock in between page lock and
227 * inmem_lock.
228 */
229 if (!trylock_page(page))
230 continue;
231 } else {
232 lock_page(page);
233 }
234
235 f2fs_wait_on_page_writeback(page, DATA, true, true);
236
237 if (recover) {
238 struct dnode_of_data dn;
239 struct node_info ni;
240
241 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
242retry:
243 set_new_dnode(&dn, inode, NULL, NULL, 0);
244 err = f2fs_get_dnode_of_data(&dn, page->index,
245 LOOKUP_NODE);
246 if (err) {
247 if (err == -ENOMEM) {
248 congestion_wait(BLK_RW_ASYNC, HZ/50);
249 cond_resched();
250 goto retry;
251 }
252 err = -EAGAIN;
253 goto next;
254 }
255
256 err = f2fs_get_node_info(sbi, dn.nid, &ni);
257 if (err) {
258 f2fs_put_dnode(&dn);
259 return err;
260 }
261
262 if (cur->old_addr == NEW_ADDR) {
263 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
264 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
265 } else
266 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
267 cur->old_addr, ni.version, true, true);
268 f2fs_put_dnode(&dn);
269 }
270next:
271 /* we don't need to invalidate this in the sccessful status */
272 if (drop || recover) {
273 ClearPageUptodate(page);
274 clear_cold_data(page);
275 }
276 f2fs_clear_page_private(page);
277 f2fs_put_page(page, 1);
278
279 list_del(&cur->list);
280 kmem_cache_free(inmem_entry_slab, cur);
281 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
282 }
283 return err;
284}
285
286void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
287{
288 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
289 struct inode *inode;
290 struct f2fs_inode_info *fi;
291next:
292 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
293 if (list_empty(head)) {
294 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
295 return;
296 }
297 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
298 inode = igrab(&fi->vfs_inode);
299 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
300
301 if (inode) {
302 if (gc_failure) {
303 if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
304 goto drop;
305 goto skip;
306 }
307drop:
308 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
309 f2fs_drop_inmem_pages(inode);
310 iput(inode);
311 }
312skip:
313 congestion_wait(BLK_RW_ASYNC, HZ/50);
314 cond_resched();
315 goto next;
316}
317
318void f2fs_drop_inmem_pages(struct inode *inode)
319{
320 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
321 struct f2fs_inode_info *fi = F2FS_I(inode);
322
323 while (!list_empty(&fi->inmem_pages)) {
324 mutex_lock(&fi->inmem_lock);
325 __revoke_inmem_pages(inode, &fi->inmem_pages,
326 true, false, true);
327 mutex_unlock(&fi->inmem_lock);
328 }
329
330 clear_inode_flag(inode, FI_ATOMIC_FILE);
331 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
332 stat_dec_atomic_write(inode);
333
334 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
335 if (!list_empty(&fi->inmem_ilist))
336 list_del_init(&fi->inmem_ilist);
337 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
338}
339
340void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
341{
342 struct f2fs_inode_info *fi = F2FS_I(inode);
343 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
344 struct list_head *head = &fi->inmem_pages;
345 struct inmem_pages *cur = NULL;
346
347 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
348
349 mutex_lock(&fi->inmem_lock);
350 list_for_each_entry(cur, head, list) {
351 if (cur->page == page)
352 break;
353 }
354
355 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
356 list_del(&cur->list);
357 mutex_unlock(&fi->inmem_lock);
358
359 dec_page_count(sbi, F2FS_INMEM_PAGES);
360 kmem_cache_free(inmem_entry_slab, cur);
361
362 ClearPageUptodate(page);
363 f2fs_clear_page_private(page);
364 f2fs_put_page(page, 0);
365
366 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
367}
368
369static int __f2fs_commit_inmem_pages(struct inode *inode)
370{
371 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
372 struct f2fs_inode_info *fi = F2FS_I(inode);
373 struct inmem_pages *cur, *tmp;
374 struct f2fs_io_info fio = {
375 .sbi = sbi,
376 .ino = inode->i_ino,
377 .type = DATA,
378 .op = REQ_OP_WRITE,
379 .op_flags = REQ_SYNC | REQ_PRIO,
380 .io_type = FS_DATA_IO,
381 };
382 struct list_head revoke_list;
383 bool submit_bio = false;
384 int err = 0;
385
386 INIT_LIST_HEAD(&revoke_list);
387
388 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
389 struct page *page = cur->page;
390
391 lock_page(page);
392 if (page->mapping == inode->i_mapping) {
393 trace_f2fs_commit_inmem_page(page, INMEM);
394
395 f2fs_wait_on_page_writeback(page, DATA, true, true);
396
397 set_page_dirty(page);
398 if (clear_page_dirty_for_io(page)) {
399 inode_dec_dirty_pages(inode);
400 f2fs_remove_dirty_inode(inode);
401 }
402retry:
403 fio.page = page;
404 fio.old_blkaddr = NULL_ADDR;
405 fio.encrypted_page = NULL;
406 fio.need_lock = LOCK_DONE;
407 err = f2fs_do_write_data_page(&fio);
408 if (err) {
409 if (err == -ENOMEM) {
410 congestion_wait(BLK_RW_ASYNC, HZ/50);
411 cond_resched();
412 goto retry;
413 }
414 unlock_page(page);
415 break;
416 }
417 /* record old blkaddr for revoking */
418 cur->old_addr = fio.old_blkaddr;
419 submit_bio = true;
420 }
421 unlock_page(page);
422 list_move_tail(&cur->list, &revoke_list);
423 }
424
425 if (submit_bio)
426 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
427
428 if (err) {
429 /*
430 * try to revoke all committed pages, but still we could fail
431 * due to no memory or other reason, if that happened, EAGAIN
432 * will be returned, which means in such case, transaction is
433 * already not integrity, caller should use journal to do the
434 * recovery or rewrite & commit last transaction. For other
435 * error number, revoking was done by filesystem itself.
436 */
437 err = __revoke_inmem_pages(inode, &revoke_list,
438 false, true, false);
439
440 /* drop all uncommitted pages */
441 __revoke_inmem_pages(inode, &fi->inmem_pages,
442 true, false, false);
443 } else {
444 __revoke_inmem_pages(inode, &revoke_list,
445 false, false, false);
446 }
447
448 return err;
449}
450
451int f2fs_commit_inmem_pages(struct inode *inode)
452{
453 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
454 struct f2fs_inode_info *fi = F2FS_I(inode);
455 int err;
456
457 f2fs_balance_fs(sbi, true);
458
459 down_write(&fi->i_gc_rwsem[WRITE]);
460
461 f2fs_lock_op(sbi);
462 set_inode_flag(inode, FI_ATOMIC_COMMIT);
463
464 mutex_lock(&fi->inmem_lock);
465 err = __f2fs_commit_inmem_pages(inode);
466 mutex_unlock(&fi->inmem_lock);
467
468 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
469
470 f2fs_unlock_op(sbi);
471 up_write(&fi->i_gc_rwsem[WRITE]);
472
473 return err;
474}
475
476/*
477 * This function balances dirty node and dentry pages.
478 * In addition, it controls garbage collection.
479 */
480void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
481{
482 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
483 f2fs_show_injection_info(FAULT_CHECKPOINT);
484 f2fs_stop_checkpoint(sbi, false);
485 }
486
487 /* balance_fs_bg is able to be pending */
488 if (need && excess_cached_nats(sbi))
489 f2fs_balance_fs_bg(sbi);
490
491 if (!f2fs_is_checkpoint_ready(sbi))
492 return;
493
494 /*
495 * We should do GC or end up with checkpoint, if there are so many dirty
496 * dir/node pages without enough free segments.
497 */
498 if (has_not_enough_free_secs(sbi, 0, 0)) {
499 mutex_lock(&sbi->gc_mutex);
500 f2fs_gc(sbi, false, false, NULL_SEGNO);
501 }
502}
503
504void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
505{
506 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
507 return;
508
509 /* try to shrink extent cache when there is no enough memory */
510 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
511 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
512
513 /* check the # of cached NAT entries */
514 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
515 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
516
517 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
518 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
519 else
520 f2fs_build_free_nids(sbi, false, false);
521
522 if (!is_idle(sbi, REQ_TIME) &&
523 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
524 return;
525
526 /* checkpoint is the only way to shrink partial cached entries */
527 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
528 !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
529 excess_prefree_segs(sbi) ||
530 excess_dirty_nats(sbi) ||
531 excess_dirty_nodes(sbi) ||
532 f2fs_time_over(sbi, CP_TIME)) {
533 if (test_opt(sbi, DATA_FLUSH)) {
534 struct blk_plug plug;
535
536 mutex_lock(&sbi->flush_lock);
537
538 blk_start_plug(&plug);
539 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
540 blk_finish_plug(&plug);
541
542 mutex_unlock(&sbi->flush_lock);
543 }
544 f2fs_sync_fs(sbi->sb, true);
545 stat_inc_bg_cp_count(sbi->stat_info);
546 }
547}
548
549static int __submit_flush_wait(struct f2fs_sb_info *sbi,
550 struct block_device *bdev)
551{
552 struct bio *bio;
553 int ret;
554
555 bio = f2fs_bio_alloc(sbi, 0, false);
556 if (!bio)
557 return -ENOMEM;
558
559 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
560 bio_set_dev(bio, bdev);
561 ret = submit_bio_wait(bio);
562 bio_put(bio);
563
564 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
565 test_opt(sbi, FLUSH_MERGE), ret);
566 return ret;
567}
568
569static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
570{
571 int ret = 0;
572 int i;
573
574 if (!f2fs_is_multi_device(sbi))
575 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
576
577 for (i = 0; i < sbi->s_ndevs; i++) {
578 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
579 continue;
580 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
581 if (ret)
582 break;
583 }
584 return ret;
585}
586
587static int issue_flush_thread(void *data)
588{
589 struct f2fs_sb_info *sbi = data;
590 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
591 wait_queue_head_t *q = &fcc->flush_wait_queue;
592repeat:
593 if (kthread_should_stop())
594 return 0;
595
596 sb_start_intwrite(sbi->sb);
597
598 if (!llist_empty(&fcc->issue_list)) {
599 struct flush_cmd *cmd, *next;
600 int ret;
601
602 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
603 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
604
605 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
606
607 ret = submit_flush_wait(sbi, cmd->ino);
608 atomic_inc(&fcc->issued_flush);
609
610 llist_for_each_entry_safe(cmd, next,
611 fcc->dispatch_list, llnode) {
612 cmd->ret = ret;
613 complete(&cmd->wait);
614 }
615 fcc->dispatch_list = NULL;
616 }
617
618 sb_end_intwrite(sbi->sb);
619
620 wait_event_interruptible(*q,
621 kthread_should_stop() || !llist_empty(&fcc->issue_list));
622 goto repeat;
623}
624
625int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
626{
627 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
628 struct flush_cmd cmd;
629 int ret;
630
631 if (test_opt(sbi, NOBARRIER))
632 return 0;
633
634 if (!test_opt(sbi, FLUSH_MERGE)) {
635 atomic_inc(&fcc->queued_flush);
636 ret = submit_flush_wait(sbi, ino);
637 atomic_dec(&fcc->queued_flush);
638 atomic_inc(&fcc->issued_flush);
639 return ret;
640 }
641
642 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
643 f2fs_is_multi_device(sbi)) {
644 ret = submit_flush_wait(sbi, ino);
645 atomic_dec(&fcc->queued_flush);
646
647 atomic_inc(&fcc->issued_flush);
648 return ret;
649 }
650
651 cmd.ino = ino;
652 init_completion(&cmd.wait);
653
654 llist_add(&cmd.llnode, &fcc->issue_list);
655
656 /* update issue_list before we wake up issue_flush thread */
657 smp_mb();
658
659 if (waitqueue_active(&fcc->flush_wait_queue))
660 wake_up(&fcc->flush_wait_queue);
661
662 if (fcc->f2fs_issue_flush) {
663 wait_for_completion(&cmd.wait);
664 atomic_dec(&fcc->queued_flush);
665 } else {
666 struct llist_node *list;
667
668 list = llist_del_all(&fcc->issue_list);
669 if (!list) {
670 wait_for_completion(&cmd.wait);
671 atomic_dec(&fcc->queued_flush);
672 } else {
673 struct flush_cmd *tmp, *next;
674
675 ret = submit_flush_wait(sbi, ino);
676
677 llist_for_each_entry_safe(tmp, next, list, llnode) {
678 if (tmp == &cmd) {
679 cmd.ret = ret;
680 atomic_dec(&fcc->queued_flush);
681 continue;
682 }
683 tmp->ret = ret;
684 complete(&tmp->wait);
685 }
686 }
687 }
688
689 return cmd.ret;
690}
691
692int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
693{
694 dev_t dev = sbi->sb->s_bdev->bd_dev;
695 struct flush_cmd_control *fcc;
696 int err = 0;
697
698 if (SM_I(sbi)->fcc_info) {
699 fcc = SM_I(sbi)->fcc_info;
700 if (fcc->f2fs_issue_flush)
701 return err;
702 goto init_thread;
703 }
704
705 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
706 if (!fcc)
707 return -ENOMEM;
708 atomic_set(&fcc->issued_flush, 0);
709 atomic_set(&fcc->queued_flush, 0);
710 init_waitqueue_head(&fcc->flush_wait_queue);
711 init_llist_head(&fcc->issue_list);
712 SM_I(sbi)->fcc_info = fcc;
713 if (!test_opt(sbi, FLUSH_MERGE))
714 return err;
715
716init_thread:
717 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
718 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
719 if (IS_ERR(fcc->f2fs_issue_flush)) {
720 err = PTR_ERR(fcc->f2fs_issue_flush);
721 kvfree(fcc);
722 SM_I(sbi)->fcc_info = NULL;
723 return err;
724 }
725
726 return err;
727}
728
729void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
730{
731 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
732
733 if (fcc && fcc->f2fs_issue_flush) {
734 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
735
736 fcc->f2fs_issue_flush = NULL;
737 kthread_stop(flush_thread);
738 }
739 if (free) {
740 kvfree(fcc);
741 SM_I(sbi)->fcc_info = NULL;
742 }
743}
744
745int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
746{
747 int ret = 0, i;
748
749 if (!f2fs_is_multi_device(sbi))
750 return 0;
751
752 for (i = 1; i < sbi->s_ndevs; i++) {
753 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
754 continue;
755 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
756 if (ret)
757 break;
758
759 spin_lock(&sbi->dev_lock);
760 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
761 spin_unlock(&sbi->dev_lock);
762 }
763
764 return ret;
765}
766
767static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
768 enum dirty_type dirty_type)
769{
770 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
771
772 /* need not be added */
773 if (IS_CURSEG(sbi, segno))
774 return;
775
776 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
777 dirty_i->nr_dirty[dirty_type]++;
778
779 if (dirty_type == DIRTY) {
780 struct seg_entry *sentry = get_seg_entry(sbi, segno);
781 enum dirty_type t = sentry->type;
782
783 if (unlikely(t >= DIRTY)) {
784 f2fs_bug_on(sbi, 1);
785 return;
786 }
787 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
788 dirty_i->nr_dirty[t]++;
789 }
790}
791
792static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
793 enum dirty_type dirty_type)
794{
795 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
796
797 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
798 dirty_i->nr_dirty[dirty_type]--;
799
800 if (dirty_type == DIRTY) {
801 struct seg_entry *sentry = get_seg_entry(sbi, segno);
802 enum dirty_type t = sentry->type;
803
804 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
805 dirty_i->nr_dirty[t]--;
806
807 if (get_valid_blocks(sbi, segno, true) == 0) {
808 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
809 dirty_i->victim_secmap);
810#ifdef CONFIG_F2FS_CHECK_FS
811 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
812#endif
813 }
814 }
815}
816
817/*
818 * Should not occur error such as -ENOMEM.
819 * Adding dirty entry into seglist is not critical operation.
820 * If a given segment is one of current working segments, it won't be added.
821 */
822static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
823{
824 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
825 unsigned short valid_blocks, ckpt_valid_blocks;
826
827 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
828 return;
829
830 mutex_lock(&dirty_i->seglist_lock);
831
832 valid_blocks = get_valid_blocks(sbi, segno, false);
833 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
834
835 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
836 ckpt_valid_blocks == sbi->blocks_per_seg)) {
837 __locate_dirty_segment(sbi, segno, PRE);
838 __remove_dirty_segment(sbi, segno, DIRTY);
839 } else if (valid_blocks < sbi->blocks_per_seg) {
840 __locate_dirty_segment(sbi, segno, DIRTY);
841 } else {
842 /* Recovery routine with SSR needs this */
843 __remove_dirty_segment(sbi, segno, DIRTY);
844 }
845
846 mutex_unlock(&dirty_i->seglist_lock);
847}
848
849/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
850void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
851{
852 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
853 unsigned int segno;
854
855 mutex_lock(&dirty_i->seglist_lock);
856 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
857 if (get_valid_blocks(sbi, segno, false))
858 continue;
859 if (IS_CURSEG(sbi, segno))
860 continue;
861 __locate_dirty_segment(sbi, segno, PRE);
862 __remove_dirty_segment(sbi, segno, DIRTY);
863 }
864 mutex_unlock(&dirty_i->seglist_lock);
865}
866
867block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
868{
869 int ovp_hole_segs =
870 (overprovision_segments(sbi) - reserved_segments(sbi));
871 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
872 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
873 block_t holes[2] = {0, 0}; /* DATA and NODE */
874 block_t unusable;
875 struct seg_entry *se;
876 unsigned int segno;
877
878 mutex_lock(&dirty_i->seglist_lock);
879 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
880 se = get_seg_entry(sbi, segno);
881 if (IS_NODESEG(se->type))
882 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
883 else
884 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
885 }
886 mutex_unlock(&dirty_i->seglist_lock);
887
888 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
889 if (unusable > ovp_holes)
890 return unusable - ovp_holes;
891 return 0;
892}
893
894int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
895{
896 int ovp_hole_segs =
897 (overprovision_segments(sbi) - reserved_segments(sbi));
898 if (unusable > F2FS_OPTION(sbi).unusable_cap)
899 return -EAGAIN;
900 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
901 dirty_segments(sbi) > ovp_hole_segs)
902 return -EAGAIN;
903 return 0;
904}
905
906/* This is only used by SBI_CP_DISABLED */
907static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
908{
909 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
910 unsigned int segno = 0;
911
912 mutex_lock(&dirty_i->seglist_lock);
913 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
914 if (get_valid_blocks(sbi, segno, false))
915 continue;
916 if (get_ckpt_valid_blocks(sbi, segno))
917 continue;
918 mutex_unlock(&dirty_i->seglist_lock);
919 return segno;
920 }
921 mutex_unlock(&dirty_i->seglist_lock);
922 return NULL_SEGNO;
923}
924
925static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
926 struct block_device *bdev, block_t lstart,
927 block_t start, block_t len)
928{
929 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
930 struct list_head *pend_list;
931 struct discard_cmd *dc;
932
933 f2fs_bug_on(sbi, !len);
934
935 pend_list = &dcc->pend_list[plist_idx(len)];
936
937 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
938 INIT_LIST_HEAD(&dc->list);
939 dc->bdev = bdev;
940 dc->lstart = lstart;
941 dc->start = start;
942 dc->len = len;
943 dc->ref = 0;
944 dc->state = D_PREP;
945 dc->queued = 0;
946 dc->error = 0;
947 init_completion(&dc->wait);
948 list_add_tail(&dc->list, pend_list);
949 spin_lock_init(&dc->lock);
950 dc->bio_ref = 0;
951 atomic_inc(&dcc->discard_cmd_cnt);
952 dcc->undiscard_blks += len;
953
954 return dc;
955}
956
957static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
958 struct block_device *bdev, block_t lstart,
959 block_t start, block_t len,
960 struct rb_node *parent, struct rb_node **p,
961 bool leftmost)
962{
963 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
964 struct discard_cmd *dc;
965
966 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
967
968 rb_link_node(&dc->rb_node, parent, p);
969 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
970
971 return dc;
972}
973
974static void __detach_discard_cmd(struct discard_cmd_control *dcc,
975 struct discard_cmd *dc)
976{
977 if (dc->state == D_DONE)
978 atomic_sub(dc->queued, &dcc->queued_discard);
979
980 list_del(&dc->list);
981 rb_erase_cached(&dc->rb_node, &dcc->root);
982 dcc->undiscard_blks -= dc->len;
983
984 kmem_cache_free(discard_cmd_slab, dc);
985
986 atomic_dec(&dcc->discard_cmd_cnt);
987}
988
989static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
990 struct discard_cmd *dc)
991{
992 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
993 unsigned long flags;
994
995 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
996
997 spin_lock_irqsave(&dc->lock, flags);
998 if (dc->bio_ref) {
999 spin_unlock_irqrestore(&dc->lock, flags);
1000 return;
1001 }
1002 spin_unlock_irqrestore(&dc->lock, flags);
1003
1004 f2fs_bug_on(sbi, dc->ref);
1005
1006 if (dc->error == -EOPNOTSUPP)
1007 dc->error = 0;
1008
1009 if (dc->error)
1010 printk_ratelimited(
1011 "%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d",
1012 KERN_INFO, dc->lstart, dc->start, dc->len, dc->error);
1013 __detach_discard_cmd(dcc, dc);
1014}
1015
1016static void f2fs_submit_discard_endio(struct bio *bio)
1017{
1018 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1019 unsigned long flags;
1020
1021 dc->error = blk_status_to_errno(bio->bi_status);
1022
1023 spin_lock_irqsave(&dc->lock, flags);
1024 dc->bio_ref--;
1025 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1026 dc->state = D_DONE;
1027 complete_all(&dc->wait);
1028 }
1029 spin_unlock_irqrestore(&dc->lock, flags);
1030 bio_put(bio);
1031}
1032
1033static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1034 block_t start, block_t end)
1035{
1036#ifdef CONFIG_F2FS_CHECK_FS
1037 struct seg_entry *sentry;
1038 unsigned int segno;
1039 block_t blk = start;
1040 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1041 unsigned long *map;
1042
1043 while (blk < end) {
1044 segno = GET_SEGNO(sbi, blk);
1045 sentry = get_seg_entry(sbi, segno);
1046 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1047
1048 if (end < START_BLOCK(sbi, segno + 1))
1049 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1050 else
1051 size = max_blocks;
1052 map = (unsigned long *)(sentry->cur_valid_map);
1053 offset = __find_rev_next_bit(map, size, offset);
1054 f2fs_bug_on(sbi, offset != size);
1055 blk = START_BLOCK(sbi, segno + 1);
1056 }
1057#endif
1058}
1059
1060static void __init_discard_policy(struct f2fs_sb_info *sbi,
1061 struct discard_policy *dpolicy,
1062 int discard_type, unsigned int granularity)
1063{
1064 /* common policy */
1065 dpolicy->type = discard_type;
1066 dpolicy->sync = true;
1067 dpolicy->ordered = false;
1068 dpolicy->granularity = granularity;
1069
1070 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1071 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1072 dpolicy->timeout = 0;
1073
1074 if (discard_type == DPOLICY_BG) {
1075 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1076 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1077 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1078 dpolicy->io_aware = true;
1079 dpolicy->sync = false;
1080 dpolicy->ordered = true;
1081 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1082 dpolicy->granularity = 1;
1083 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1084 }
1085 } else if (discard_type == DPOLICY_FORCE) {
1086 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1087 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1088 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1089 dpolicy->io_aware = false;
1090 } else if (discard_type == DPOLICY_FSTRIM) {
1091 dpolicy->io_aware = false;
1092 } else if (discard_type == DPOLICY_UMOUNT) {
1093 dpolicy->max_requests = UINT_MAX;
1094 dpolicy->io_aware = false;
1095 /* we need to issue all to keep CP_TRIMMED_FLAG */
1096 dpolicy->granularity = 1;
1097 }
1098}
1099
1100static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1101 struct block_device *bdev, block_t lstart,
1102 block_t start, block_t len);
1103/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1104static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1105 struct discard_policy *dpolicy,
1106 struct discard_cmd *dc,
1107 unsigned int *issued)
1108{
1109 struct block_device *bdev = dc->bdev;
1110 struct request_queue *q = bdev_get_queue(bdev);
1111 unsigned int max_discard_blocks =
1112 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1113 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1114 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1115 &(dcc->fstrim_list) : &(dcc->wait_list);
1116 int flag = dpolicy->sync ? REQ_SYNC : 0;
1117 block_t lstart, start, len, total_len;
1118 int err = 0;
1119
1120 if (dc->state != D_PREP)
1121 return 0;
1122
1123 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1124 return 0;
1125
1126 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1127
1128 lstart = dc->lstart;
1129 start = dc->start;
1130 len = dc->len;
1131 total_len = len;
1132
1133 dc->len = 0;
1134
1135 while (total_len && *issued < dpolicy->max_requests && !err) {
1136 struct bio *bio = NULL;
1137 unsigned long flags;
1138 bool last = true;
1139
1140 if (len > max_discard_blocks) {
1141 len = max_discard_blocks;
1142 last = false;
1143 }
1144
1145 (*issued)++;
1146 if (*issued == dpolicy->max_requests)
1147 last = true;
1148
1149 dc->len += len;
1150
1151 if (time_to_inject(sbi, FAULT_DISCARD)) {
1152 f2fs_show_injection_info(FAULT_DISCARD);
1153 err = -EIO;
1154 goto submit;
1155 }
1156 err = __blkdev_issue_discard(bdev,
1157 SECTOR_FROM_BLOCK(start),
1158 SECTOR_FROM_BLOCK(len),
1159 GFP_NOFS, 0, &bio);
1160submit:
1161 if (err) {
1162 spin_lock_irqsave(&dc->lock, flags);
1163 if (dc->state == D_PARTIAL)
1164 dc->state = D_SUBMIT;
1165 spin_unlock_irqrestore(&dc->lock, flags);
1166
1167 break;
1168 }
1169
1170 f2fs_bug_on(sbi, !bio);
1171
1172 /*
1173 * should keep before submission to avoid D_DONE
1174 * right away
1175 */
1176 spin_lock_irqsave(&dc->lock, flags);
1177 if (last)
1178 dc->state = D_SUBMIT;
1179 else
1180 dc->state = D_PARTIAL;
1181 dc->bio_ref++;
1182 spin_unlock_irqrestore(&dc->lock, flags);
1183
1184 atomic_inc(&dcc->queued_discard);
1185 dc->queued++;
1186 list_move_tail(&dc->list, wait_list);
1187
1188 /* sanity check on discard range */
1189 __check_sit_bitmap(sbi, lstart, lstart + len);
1190
1191 bio->bi_private = dc;
1192 bio->bi_end_io = f2fs_submit_discard_endio;
1193 bio->bi_opf |= flag;
1194 submit_bio(bio);
1195
1196 atomic_inc(&dcc->issued_discard);
1197
1198 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1199
1200 lstart += len;
1201 start += len;
1202 total_len -= len;
1203 len = total_len;
1204 }
1205
1206 if (!err && len)
1207 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1208 return err;
1209}
1210
1211static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1212 struct block_device *bdev, block_t lstart,
1213 block_t start, block_t len,
1214 struct rb_node **insert_p,
1215 struct rb_node *insert_parent)
1216{
1217 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1218 struct rb_node **p;
1219 struct rb_node *parent = NULL;
1220 struct discard_cmd *dc = NULL;
1221 bool leftmost = true;
1222
1223 if (insert_p && insert_parent) {
1224 parent = insert_parent;
1225 p = insert_p;
1226 goto do_insert;
1227 }
1228
1229 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1230 lstart, &leftmost);
1231do_insert:
1232 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1233 p, leftmost);
1234 if (!dc)
1235 return NULL;
1236
1237 return dc;
1238}
1239
1240static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1241 struct discard_cmd *dc)
1242{
1243 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1244}
1245
1246static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1247 struct discard_cmd *dc, block_t blkaddr)
1248{
1249 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1250 struct discard_info di = dc->di;
1251 bool modified = false;
1252
1253 if (dc->state == D_DONE || dc->len == 1) {
1254 __remove_discard_cmd(sbi, dc);
1255 return;
1256 }
1257
1258 dcc->undiscard_blks -= di.len;
1259
1260 if (blkaddr > di.lstart) {
1261 dc->len = blkaddr - dc->lstart;
1262 dcc->undiscard_blks += dc->len;
1263 __relocate_discard_cmd(dcc, dc);
1264 modified = true;
1265 }
1266
1267 if (blkaddr < di.lstart + di.len - 1) {
1268 if (modified) {
1269 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1270 di.start + blkaddr + 1 - di.lstart,
1271 di.lstart + di.len - 1 - blkaddr,
1272 NULL, NULL);
1273 } else {
1274 dc->lstart++;
1275 dc->len--;
1276 dc->start++;
1277 dcc->undiscard_blks += dc->len;
1278 __relocate_discard_cmd(dcc, dc);
1279 }
1280 }
1281}
1282
1283static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1284 struct block_device *bdev, block_t lstart,
1285 block_t start, block_t len)
1286{
1287 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1288 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1289 struct discard_cmd *dc;
1290 struct discard_info di = {0};
1291 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1292 struct request_queue *q = bdev_get_queue(bdev);
1293 unsigned int max_discard_blocks =
1294 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1295 block_t end = lstart + len;
1296
1297 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1298 NULL, lstart,
1299 (struct rb_entry **)&prev_dc,
1300 (struct rb_entry **)&next_dc,
1301 &insert_p, &insert_parent, true, NULL);
1302 if (dc)
1303 prev_dc = dc;
1304
1305 if (!prev_dc) {
1306 di.lstart = lstart;
1307 di.len = next_dc ? next_dc->lstart - lstart : len;
1308 di.len = min(di.len, len);
1309 di.start = start;
1310 }
1311
1312 while (1) {
1313 struct rb_node *node;
1314 bool merged = false;
1315 struct discard_cmd *tdc = NULL;
1316
1317 if (prev_dc) {
1318 di.lstart = prev_dc->lstart + prev_dc->len;
1319 if (di.lstart < lstart)
1320 di.lstart = lstart;
1321 if (di.lstart >= end)
1322 break;
1323
1324 if (!next_dc || next_dc->lstart > end)
1325 di.len = end - di.lstart;
1326 else
1327 di.len = next_dc->lstart - di.lstart;
1328 di.start = start + di.lstart - lstart;
1329 }
1330
1331 if (!di.len)
1332 goto next;
1333
1334 if (prev_dc && prev_dc->state == D_PREP &&
1335 prev_dc->bdev == bdev &&
1336 __is_discard_back_mergeable(&di, &prev_dc->di,
1337 max_discard_blocks)) {
1338 prev_dc->di.len += di.len;
1339 dcc->undiscard_blks += di.len;
1340 __relocate_discard_cmd(dcc, prev_dc);
1341 di = prev_dc->di;
1342 tdc = prev_dc;
1343 merged = true;
1344 }
1345
1346 if (next_dc && next_dc->state == D_PREP &&
1347 next_dc->bdev == bdev &&
1348 __is_discard_front_mergeable(&di, &next_dc->di,
1349 max_discard_blocks)) {
1350 next_dc->di.lstart = di.lstart;
1351 next_dc->di.len += di.len;
1352 next_dc->di.start = di.start;
1353 dcc->undiscard_blks += di.len;
1354 __relocate_discard_cmd(dcc, next_dc);
1355 if (tdc)
1356 __remove_discard_cmd(sbi, tdc);
1357 merged = true;
1358 }
1359
1360 if (!merged) {
1361 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1362 di.len, NULL, NULL);
1363 }
1364 next:
1365 prev_dc = next_dc;
1366 if (!prev_dc)
1367 break;
1368
1369 node = rb_next(&prev_dc->rb_node);
1370 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1371 }
1372}
1373
1374static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1375 struct block_device *bdev, block_t blkstart, block_t blklen)
1376{
1377 block_t lblkstart = blkstart;
1378
1379 if (!f2fs_bdev_support_discard(bdev))
1380 return 0;
1381
1382 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1383
1384 if (f2fs_is_multi_device(sbi)) {
1385 int devi = f2fs_target_device_index(sbi, blkstart);
1386
1387 blkstart -= FDEV(devi).start_blk;
1388 }
1389 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1390 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1391 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1392 return 0;
1393}
1394
1395static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1396 struct discard_policy *dpolicy)
1397{
1398 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1399 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1400 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1401 struct discard_cmd *dc;
1402 struct blk_plug plug;
1403 unsigned int pos = dcc->next_pos;
1404 unsigned int issued = 0;
1405 bool io_interrupted = false;
1406
1407 mutex_lock(&dcc->cmd_lock);
1408 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1409 NULL, pos,
1410 (struct rb_entry **)&prev_dc,
1411 (struct rb_entry **)&next_dc,
1412 &insert_p, &insert_parent, true, NULL);
1413 if (!dc)
1414 dc = next_dc;
1415
1416 blk_start_plug(&plug);
1417
1418 while (dc) {
1419 struct rb_node *node;
1420 int err = 0;
1421
1422 if (dc->state != D_PREP)
1423 goto next;
1424
1425 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1426 io_interrupted = true;
1427 break;
1428 }
1429
1430 dcc->next_pos = dc->lstart + dc->len;
1431 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1432
1433 if (issued >= dpolicy->max_requests)
1434 break;
1435next:
1436 node = rb_next(&dc->rb_node);
1437 if (err)
1438 __remove_discard_cmd(sbi, dc);
1439 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1440 }
1441
1442 blk_finish_plug(&plug);
1443
1444 if (!dc)
1445 dcc->next_pos = 0;
1446
1447 mutex_unlock(&dcc->cmd_lock);
1448
1449 if (!issued && io_interrupted)
1450 issued = -1;
1451
1452 return issued;
1453}
1454
1455static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1456 struct discard_policy *dpolicy)
1457{
1458 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1459 struct list_head *pend_list;
1460 struct discard_cmd *dc, *tmp;
1461 struct blk_plug plug;
1462 int i, issued = 0;
1463 bool io_interrupted = false;
1464
1465 if (dpolicy->timeout != 0)
1466 f2fs_update_time(sbi, dpolicy->timeout);
1467
1468 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1469 if (dpolicy->timeout != 0 &&
1470 f2fs_time_over(sbi, dpolicy->timeout))
1471 break;
1472
1473 if (i + 1 < dpolicy->granularity)
1474 break;
1475
1476 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1477 return __issue_discard_cmd_orderly(sbi, dpolicy);
1478
1479 pend_list = &dcc->pend_list[i];
1480
1481 mutex_lock(&dcc->cmd_lock);
1482 if (list_empty(pend_list))
1483 goto next;
1484 if (unlikely(dcc->rbtree_check))
1485 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1486 &dcc->root));
1487 blk_start_plug(&plug);
1488 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1489 f2fs_bug_on(sbi, dc->state != D_PREP);
1490
1491 if (dpolicy->timeout != 0 &&
1492 f2fs_time_over(sbi, dpolicy->timeout))
1493 break;
1494
1495 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1496 !is_idle(sbi, DISCARD_TIME)) {
1497 io_interrupted = true;
1498 break;
1499 }
1500
1501 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1502
1503 if (issued >= dpolicy->max_requests)
1504 break;
1505 }
1506 blk_finish_plug(&plug);
1507next:
1508 mutex_unlock(&dcc->cmd_lock);
1509
1510 if (issued >= dpolicy->max_requests || io_interrupted)
1511 break;
1512 }
1513
1514 if (!issued && io_interrupted)
1515 issued = -1;
1516
1517 return issued;
1518}
1519
1520static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1521{
1522 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1523 struct list_head *pend_list;
1524 struct discard_cmd *dc, *tmp;
1525 int i;
1526 bool dropped = false;
1527
1528 mutex_lock(&dcc->cmd_lock);
1529 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1530 pend_list = &dcc->pend_list[i];
1531 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1532 f2fs_bug_on(sbi, dc->state != D_PREP);
1533 __remove_discard_cmd(sbi, dc);
1534 dropped = true;
1535 }
1536 }
1537 mutex_unlock(&dcc->cmd_lock);
1538
1539 return dropped;
1540}
1541
1542void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1543{
1544 __drop_discard_cmd(sbi);
1545}
1546
1547static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1548 struct discard_cmd *dc)
1549{
1550 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1551 unsigned int len = 0;
1552
1553 wait_for_completion_io(&dc->wait);
1554 mutex_lock(&dcc->cmd_lock);
1555 f2fs_bug_on(sbi, dc->state != D_DONE);
1556 dc->ref--;
1557 if (!dc->ref) {
1558 if (!dc->error)
1559 len = dc->len;
1560 __remove_discard_cmd(sbi, dc);
1561 }
1562 mutex_unlock(&dcc->cmd_lock);
1563
1564 return len;
1565}
1566
1567static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1568 struct discard_policy *dpolicy,
1569 block_t start, block_t end)
1570{
1571 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1572 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1573 &(dcc->fstrim_list) : &(dcc->wait_list);
1574 struct discard_cmd *dc, *tmp;
1575 bool need_wait;
1576 unsigned int trimmed = 0;
1577
1578next:
1579 need_wait = false;
1580
1581 mutex_lock(&dcc->cmd_lock);
1582 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1583 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1584 continue;
1585 if (dc->len < dpolicy->granularity)
1586 continue;
1587 if (dc->state == D_DONE && !dc->ref) {
1588 wait_for_completion_io(&dc->wait);
1589 if (!dc->error)
1590 trimmed += dc->len;
1591 __remove_discard_cmd(sbi, dc);
1592 } else {
1593 dc->ref++;
1594 need_wait = true;
1595 break;
1596 }
1597 }
1598 mutex_unlock(&dcc->cmd_lock);
1599
1600 if (need_wait) {
1601 trimmed += __wait_one_discard_bio(sbi, dc);
1602 goto next;
1603 }
1604
1605 return trimmed;
1606}
1607
1608static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1609 struct discard_policy *dpolicy)
1610{
1611 struct discard_policy dp;
1612 unsigned int discard_blks;
1613
1614 if (dpolicy)
1615 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1616
1617 /* wait all */
1618 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1619 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1620 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1621 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1622
1623 return discard_blks;
1624}
1625
1626/* This should be covered by global mutex, &sit_i->sentry_lock */
1627static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1628{
1629 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1630 struct discard_cmd *dc;
1631 bool need_wait = false;
1632
1633 mutex_lock(&dcc->cmd_lock);
1634 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1635 NULL, blkaddr);
1636 if (dc) {
1637 if (dc->state == D_PREP) {
1638 __punch_discard_cmd(sbi, dc, blkaddr);
1639 } else {
1640 dc->ref++;
1641 need_wait = true;
1642 }
1643 }
1644 mutex_unlock(&dcc->cmd_lock);
1645
1646 if (need_wait)
1647 __wait_one_discard_bio(sbi, dc);
1648}
1649
1650void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1651{
1652 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1653
1654 if (dcc && dcc->f2fs_issue_discard) {
1655 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1656
1657 dcc->f2fs_issue_discard = NULL;
1658 kthread_stop(discard_thread);
1659 }
1660}
1661
1662/* This comes from f2fs_put_super */
1663bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1664{
1665 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1666 struct discard_policy dpolicy;
1667 bool dropped;
1668
1669 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1670 dcc->discard_granularity);
1671 dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT;
1672 __issue_discard_cmd(sbi, &dpolicy);
1673 dropped = __drop_discard_cmd(sbi);
1674
1675 /* just to make sure there is no pending discard commands */
1676 __wait_all_discard_cmd(sbi, NULL);
1677
1678 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1679 return dropped;
1680}
1681
1682static int issue_discard_thread(void *data)
1683{
1684 struct f2fs_sb_info *sbi = data;
1685 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1686 wait_queue_head_t *q = &dcc->discard_wait_queue;
1687 struct discard_policy dpolicy;
1688 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1689 int issued;
1690
1691 set_freezable();
1692
1693 do {
1694 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1695 dcc->discard_granularity);
1696
1697 wait_event_interruptible_timeout(*q,
1698 kthread_should_stop() || freezing(current) ||
1699 dcc->discard_wake,
1700 msecs_to_jiffies(wait_ms));
1701
1702 if (dcc->discard_wake)
1703 dcc->discard_wake = 0;
1704
1705 /* clean up pending candidates before going to sleep */
1706 if (atomic_read(&dcc->queued_discard))
1707 __wait_all_discard_cmd(sbi, NULL);
1708
1709 if (try_to_freeze())
1710 continue;
1711 if (f2fs_readonly(sbi->sb))
1712 continue;
1713 if (kthread_should_stop())
1714 return 0;
1715 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1716 wait_ms = dpolicy.max_interval;
1717 continue;
1718 }
1719
1720 if (sbi->gc_mode == GC_URGENT)
1721 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1722
1723 sb_start_intwrite(sbi->sb);
1724
1725 issued = __issue_discard_cmd(sbi, &dpolicy);
1726 if (issued > 0) {
1727 __wait_all_discard_cmd(sbi, &dpolicy);
1728 wait_ms = dpolicy.min_interval;
1729 } else if (issued == -1){
1730 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1731 if (!wait_ms)
1732 wait_ms = dpolicy.mid_interval;
1733 } else {
1734 wait_ms = dpolicy.max_interval;
1735 }
1736
1737 sb_end_intwrite(sbi->sb);
1738
1739 } while (!kthread_should_stop());
1740 return 0;
1741}
1742
1743#ifdef CONFIG_BLK_DEV_ZONED
1744static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1745 struct block_device *bdev, block_t blkstart, block_t blklen)
1746{
1747 sector_t sector, nr_sects;
1748 block_t lblkstart = blkstart;
1749 int devi = 0;
1750
1751 if (f2fs_is_multi_device(sbi)) {
1752 devi = f2fs_target_device_index(sbi, blkstart);
1753 if (blkstart < FDEV(devi).start_blk ||
1754 blkstart > FDEV(devi).end_blk) {
1755 f2fs_err(sbi, "Invalid block %x", blkstart);
1756 return -EIO;
1757 }
1758 blkstart -= FDEV(devi).start_blk;
1759 }
1760
1761 /* For sequential zones, reset the zone write pointer */
1762 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1763 sector = SECTOR_FROM_BLOCK(blkstart);
1764 nr_sects = SECTOR_FROM_BLOCK(blklen);
1765
1766 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1767 nr_sects != bdev_zone_sectors(bdev)) {
1768 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1769 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1770 blkstart, blklen);
1771 return -EIO;
1772 }
1773 trace_f2fs_issue_reset_zone(bdev, blkstart);
1774 return blkdev_reset_zones(bdev, sector, nr_sects, GFP_NOFS);
1775 }
1776
1777 /* For conventional zones, use regular discard if supported */
1778 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1779}
1780#endif
1781
1782static int __issue_discard_async(struct f2fs_sb_info *sbi,
1783 struct block_device *bdev, block_t blkstart, block_t blklen)
1784{
1785#ifdef CONFIG_BLK_DEV_ZONED
1786 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1787 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1788#endif
1789 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1790}
1791
1792static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1793 block_t blkstart, block_t blklen)
1794{
1795 sector_t start = blkstart, len = 0;
1796 struct block_device *bdev;
1797 struct seg_entry *se;
1798 unsigned int offset;
1799 block_t i;
1800 int err = 0;
1801
1802 bdev = f2fs_target_device(sbi, blkstart, NULL);
1803
1804 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1805 if (i != start) {
1806 struct block_device *bdev2 =
1807 f2fs_target_device(sbi, i, NULL);
1808
1809 if (bdev2 != bdev) {
1810 err = __issue_discard_async(sbi, bdev,
1811 start, len);
1812 if (err)
1813 return err;
1814 bdev = bdev2;
1815 start = i;
1816 len = 0;
1817 }
1818 }
1819
1820 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1821 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1822
1823 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1824 sbi->discard_blks--;
1825 }
1826
1827 if (len)
1828 err = __issue_discard_async(sbi, bdev, start, len);
1829 return err;
1830}
1831
1832static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1833 bool check_only)
1834{
1835 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1836 int max_blocks = sbi->blocks_per_seg;
1837 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1838 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1839 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1840 unsigned long *discard_map = (unsigned long *)se->discard_map;
1841 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1842 unsigned int start = 0, end = -1;
1843 bool force = (cpc->reason & CP_DISCARD);
1844 struct discard_entry *de = NULL;
1845 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1846 int i;
1847
1848 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1849 return false;
1850
1851 if (!force) {
1852 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1853 SM_I(sbi)->dcc_info->nr_discards >=
1854 SM_I(sbi)->dcc_info->max_discards)
1855 return false;
1856 }
1857
1858 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1859 for (i = 0; i < entries; i++)
1860 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1861 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1862
1863 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1864 SM_I(sbi)->dcc_info->max_discards) {
1865 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1866 if (start >= max_blocks)
1867 break;
1868
1869 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1870 if (force && start && end != max_blocks
1871 && (end - start) < cpc->trim_minlen)
1872 continue;
1873
1874 if (check_only)
1875 return true;
1876
1877 if (!de) {
1878 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1879 GFP_F2FS_ZERO);
1880 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1881 list_add_tail(&de->list, head);
1882 }
1883
1884 for (i = start; i < end; i++)
1885 __set_bit_le(i, (void *)de->discard_map);
1886
1887 SM_I(sbi)->dcc_info->nr_discards += end - start;
1888 }
1889 return false;
1890}
1891
1892static void release_discard_addr(struct discard_entry *entry)
1893{
1894 list_del(&entry->list);
1895 kmem_cache_free(discard_entry_slab, entry);
1896}
1897
1898void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1899{
1900 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1901 struct discard_entry *entry, *this;
1902
1903 /* drop caches */
1904 list_for_each_entry_safe(entry, this, head, list)
1905 release_discard_addr(entry);
1906}
1907
1908/*
1909 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1910 */
1911static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1912{
1913 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1914 unsigned int segno;
1915
1916 mutex_lock(&dirty_i->seglist_lock);
1917 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1918 __set_test_and_free(sbi, segno);
1919 mutex_unlock(&dirty_i->seglist_lock);
1920}
1921
1922void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1923 struct cp_control *cpc)
1924{
1925 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1926 struct list_head *head = &dcc->entry_list;
1927 struct discard_entry *entry, *this;
1928 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1929 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1930 unsigned int start = 0, end = -1;
1931 unsigned int secno, start_segno;
1932 bool force = (cpc->reason & CP_DISCARD);
1933 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
1934
1935 mutex_lock(&dirty_i->seglist_lock);
1936
1937 while (1) {
1938 int i;
1939
1940 if (need_align && end != -1)
1941 end--;
1942 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1943 if (start >= MAIN_SEGS(sbi))
1944 break;
1945 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1946 start + 1);
1947
1948 if (need_align) {
1949 start = rounddown(start, sbi->segs_per_sec);
1950 end = roundup(end, sbi->segs_per_sec);
1951 }
1952
1953 for (i = start; i < end; i++) {
1954 if (test_and_clear_bit(i, prefree_map))
1955 dirty_i->nr_dirty[PRE]--;
1956 }
1957
1958 if (!f2fs_realtime_discard_enable(sbi))
1959 continue;
1960
1961 if (force && start >= cpc->trim_start &&
1962 (end - 1) <= cpc->trim_end)
1963 continue;
1964
1965 if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) {
1966 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1967 (end - start) << sbi->log_blocks_per_seg);
1968 continue;
1969 }
1970next:
1971 secno = GET_SEC_FROM_SEG(sbi, start);
1972 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1973 if (!IS_CURSEC(sbi, secno) &&
1974 !get_valid_blocks(sbi, start, true))
1975 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1976 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1977
1978 start = start_segno + sbi->segs_per_sec;
1979 if (start < end)
1980 goto next;
1981 else
1982 end = start - 1;
1983 }
1984 mutex_unlock(&dirty_i->seglist_lock);
1985
1986 /* send small discards */
1987 list_for_each_entry_safe(entry, this, head, list) {
1988 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1989 bool is_valid = test_bit_le(0, entry->discard_map);
1990
1991find_next:
1992 if (is_valid) {
1993 next_pos = find_next_zero_bit_le(entry->discard_map,
1994 sbi->blocks_per_seg, cur_pos);
1995 len = next_pos - cur_pos;
1996
1997 if (f2fs_sb_has_blkzoned(sbi) ||
1998 (force && len < cpc->trim_minlen))
1999 goto skip;
2000
2001 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2002 len);
2003 total_len += len;
2004 } else {
2005 next_pos = find_next_bit_le(entry->discard_map,
2006 sbi->blocks_per_seg, cur_pos);
2007 }
2008skip:
2009 cur_pos = next_pos;
2010 is_valid = !is_valid;
2011
2012 if (cur_pos < sbi->blocks_per_seg)
2013 goto find_next;
2014
2015 release_discard_addr(entry);
2016 dcc->nr_discards -= total_len;
2017 }
2018
2019 wake_up_discard_thread(sbi, false);
2020}
2021
2022static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2023{
2024 dev_t dev = sbi->sb->s_bdev->bd_dev;
2025 struct discard_cmd_control *dcc;
2026 int err = 0, i;
2027
2028 if (SM_I(sbi)->dcc_info) {
2029 dcc = SM_I(sbi)->dcc_info;
2030 goto init_thread;
2031 }
2032
2033 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2034 if (!dcc)
2035 return -ENOMEM;
2036
2037 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2038 INIT_LIST_HEAD(&dcc->entry_list);
2039 for (i = 0; i < MAX_PLIST_NUM; i++)
2040 INIT_LIST_HEAD(&dcc->pend_list[i]);
2041 INIT_LIST_HEAD(&dcc->wait_list);
2042 INIT_LIST_HEAD(&dcc->fstrim_list);
2043 mutex_init(&dcc->cmd_lock);
2044 atomic_set(&dcc->issued_discard, 0);
2045 atomic_set(&dcc->queued_discard, 0);
2046 atomic_set(&dcc->discard_cmd_cnt, 0);
2047 dcc->nr_discards = 0;
2048 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2049 dcc->undiscard_blks = 0;
2050 dcc->next_pos = 0;
2051 dcc->root = RB_ROOT_CACHED;
2052 dcc->rbtree_check = false;
2053
2054 init_waitqueue_head(&dcc->discard_wait_queue);
2055 SM_I(sbi)->dcc_info = dcc;
2056init_thread:
2057 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2058 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2059 if (IS_ERR(dcc->f2fs_issue_discard)) {
2060 err = PTR_ERR(dcc->f2fs_issue_discard);
2061 kvfree(dcc);
2062 SM_I(sbi)->dcc_info = NULL;
2063 return err;
2064 }
2065
2066 return err;
2067}
2068
2069static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2070{
2071 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2072
2073 if (!dcc)
2074 return;
2075
2076 f2fs_stop_discard_thread(sbi);
2077
2078 /*
2079 * Recovery can cache discard commands, so in error path of
2080 * fill_super(), it needs to give a chance to handle them.
2081 */
2082 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2083 f2fs_issue_discard_timeout(sbi);
2084
2085 kvfree(dcc);
2086 SM_I(sbi)->dcc_info = NULL;
2087}
2088
2089static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2090{
2091 struct sit_info *sit_i = SIT_I(sbi);
2092
2093 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2094 sit_i->dirty_sentries++;
2095 return false;
2096 }
2097
2098 return true;
2099}
2100
2101static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2102 unsigned int segno, int modified)
2103{
2104 struct seg_entry *se = get_seg_entry(sbi, segno);
2105 se->type = type;
2106 if (modified)
2107 __mark_sit_entry_dirty(sbi, segno);
2108}
2109
2110static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2111{
2112 struct seg_entry *se;
2113 unsigned int segno, offset;
2114 long int new_vblocks;
2115 bool exist;
2116#ifdef CONFIG_F2FS_CHECK_FS
2117 bool mir_exist;
2118#endif
2119
2120 segno = GET_SEGNO(sbi, blkaddr);
2121
2122 se = get_seg_entry(sbi, segno);
2123 new_vblocks = se->valid_blocks + del;
2124 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2125
2126 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2127 (new_vblocks > sbi->blocks_per_seg)));
2128
2129 se->valid_blocks = new_vblocks;
2130 se->mtime = get_mtime(sbi, false);
2131 if (se->mtime > SIT_I(sbi)->max_mtime)
2132 SIT_I(sbi)->max_mtime = se->mtime;
2133
2134 /* Update valid block bitmap */
2135 if (del > 0) {
2136 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2137#ifdef CONFIG_F2FS_CHECK_FS
2138 mir_exist = f2fs_test_and_set_bit(offset,
2139 se->cur_valid_map_mir);
2140 if (unlikely(exist != mir_exist)) {
2141 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2142 blkaddr, exist);
2143 f2fs_bug_on(sbi, 1);
2144 }
2145#endif
2146 if (unlikely(exist)) {
2147 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2148 blkaddr);
2149 f2fs_bug_on(sbi, 1);
2150 se->valid_blocks--;
2151 del = 0;
2152 }
2153
2154 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2155 sbi->discard_blks--;
2156
2157 /*
2158 * SSR should never reuse block which is checkpointed
2159 * or newly invalidated.
2160 */
2161 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2162 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2163 se->ckpt_valid_blocks++;
2164 }
2165 } else {
2166 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2167#ifdef CONFIG_F2FS_CHECK_FS
2168 mir_exist = f2fs_test_and_clear_bit(offset,
2169 se->cur_valid_map_mir);
2170 if (unlikely(exist != mir_exist)) {
2171 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2172 blkaddr, exist);
2173 f2fs_bug_on(sbi, 1);
2174 }
2175#endif
2176 if (unlikely(!exist)) {
2177 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2178 blkaddr);
2179 f2fs_bug_on(sbi, 1);
2180 se->valid_blocks++;
2181 del = 0;
2182 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2183 /*
2184 * If checkpoints are off, we must not reuse data that
2185 * was used in the previous checkpoint. If it was used
2186 * before, we must track that to know how much space we
2187 * really have.
2188 */
2189 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2190 spin_lock(&sbi->stat_lock);
2191 sbi->unusable_block_count++;
2192 spin_unlock(&sbi->stat_lock);
2193 }
2194 }
2195
2196 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2197 sbi->discard_blks++;
2198 }
2199 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2200 se->ckpt_valid_blocks += del;
2201
2202 __mark_sit_entry_dirty(sbi, segno);
2203
2204 /* update total number of valid blocks to be written in ckpt area */
2205 SIT_I(sbi)->written_valid_blocks += del;
2206
2207 if (__is_large_section(sbi))
2208 get_sec_entry(sbi, segno)->valid_blocks += del;
2209}
2210
2211void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2212{
2213 unsigned int segno = GET_SEGNO(sbi, addr);
2214 struct sit_info *sit_i = SIT_I(sbi);
2215
2216 f2fs_bug_on(sbi, addr == NULL_ADDR);
2217 if (addr == NEW_ADDR)
2218 return;
2219
2220 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2221
2222 /* add it into sit main buffer */
2223 down_write(&sit_i->sentry_lock);
2224
2225 update_sit_entry(sbi, addr, -1);
2226
2227 /* add it into dirty seglist */
2228 locate_dirty_segment(sbi, segno);
2229
2230 up_write(&sit_i->sentry_lock);
2231}
2232
2233bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2234{
2235 struct sit_info *sit_i = SIT_I(sbi);
2236 unsigned int segno, offset;
2237 struct seg_entry *se;
2238 bool is_cp = false;
2239
2240 if (!__is_valid_data_blkaddr(blkaddr))
2241 return true;
2242
2243 down_read(&sit_i->sentry_lock);
2244
2245 segno = GET_SEGNO(sbi, blkaddr);
2246 se = get_seg_entry(sbi, segno);
2247 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2248
2249 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2250 is_cp = true;
2251
2252 up_read(&sit_i->sentry_lock);
2253
2254 return is_cp;
2255}
2256
2257/*
2258 * This function should be resided under the curseg_mutex lock
2259 */
2260static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2261 struct f2fs_summary *sum)
2262{
2263 struct curseg_info *curseg = CURSEG_I(sbi, type);
2264 void *addr = curseg->sum_blk;
2265 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2266 memcpy(addr, sum, sizeof(struct f2fs_summary));
2267}
2268
2269/*
2270 * Calculate the number of current summary pages for writing
2271 */
2272int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2273{
2274 int valid_sum_count = 0;
2275 int i, sum_in_page;
2276
2277 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2278 if (sbi->ckpt->alloc_type[i] == SSR)
2279 valid_sum_count += sbi->blocks_per_seg;
2280 else {
2281 if (for_ra)
2282 valid_sum_count += le16_to_cpu(
2283 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2284 else
2285 valid_sum_count += curseg_blkoff(sbi, i);
2286 }
2287 }
2288
2289 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2290 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2291 if (valid_sum_count <= sum_in_page)
2292 return 1;
2293 else if ((valid_sum_count - sum_in_page) <=
2294 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2295 return 2;
2296 return 3;
2297}
2298
2299/*
2300 * Caller should put this summary page
2301 */
2302struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2303{
2304 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2305}
2306
2307void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2308 void *src, block_t blk_addr)
2309{
2310 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2311
2312 memcpy(page_address(page), src, PAGE_SIZE);
2313 set_page_dirty(page);
2314 f2fs_put_page(page, 1);
2315}
2316
2317static void write_sum_page(struct f2fs_sb_info *sbi,
2318 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2319{
2320 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2321}
2322
2323static void write_current_sum_page(struct f2fs_sb_info *sbi,
2324 int type, block_t blk_addr)
2325{
2326 struct curseg_info *curseg = CURSEG_I(sbi, type);
2327 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2328 struct f2fs_summary_block *src = curseg->sum_blk;
2329 struct f2fs_summary_block *dst;
2330
2331 dst = (struct f2fs_summary_block *)page_address(page);
2332 memset(dst, 0, PAGE_SIZE);
2333
2334 mutex_lock(&curseg->curseg_mutex);
2335
2336 down_read(&curseg->journal_rwsem);
2337 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2338 up_read(&curseg->journal_rwsem);
2339
2340 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2341 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2342
2343 mutex_unlock(&curseg->curseg_mutex);
2344
2345 set_page_dirty(page);
2346 f2fs_put_page(page, 1);
2347}
2348
2349static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2350{
2351 struct curseg_info *curseg = CURSEG_I(sbi, type);
2352 unsigned int segno = curseg->segno + 1;
2353 struct free_segmap_info *free_i = FREE_I(sbi);
2354
2355 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2356 return !test_bit(segno, free_i->free_segmap);
2357 return 0;
2358}
2359
2360/*
2361 * Find a new segment from the free segments bitmap to right order
2362 * This function should be returned with success, otherwise BUG
2363 */
2364static void get_new_segment(struct f2fs_sb_info *sbi,
2365 unsigned int *newseg, bool new_sec, int dir)
2366{
2367 struct free_segmap_info *free_i = FREE_I(sbi);
2368 unsigned int segno, secno, zoneno;
2369 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2370 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2371 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2372 unsigned int left_start = hint;
2373 bool init = true;
2374 int go_left = 0;
2375 int i;
2376
2377 spin_lock(&free_i->segmap_lock);
2378
2379 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2380 segno = find_next_zero_bit(free_i->free_segmap,
2381 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2382 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2383 goto got_it;
2384 }
2385find_other_zone:
2386 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2387 if (secno >= MAIN_SECS(sbi)) {
2388 if (dir == ALLOC_RIGHT) {
2389 secno = find_next_zero_bit(free_i->free_secmap,
2390 MAIN_SECS(sbi), 0);
2391 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2392 } else {
2393 go_left = 1;
2394 left_start = hint - 1;
2395 }
2396 }
2397 if (go_left == 0)
2398 goto skip_left;
2399
2400 while (test_bit(left_start, free_i->free_secmap)) {
2401 if (left_start > 0) {
2402 left_start--;
2403 continue;
2404 }
2405 left_start = find_next_zero_bit(free_i->free_secmap,
2406 MAIN_SECS(sbi), 0);
2407 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2408 break;
2409 }
2410 secno = left_start;
2411skip_left:
2412 segno = GET_SEG_FROM_SEC(sbi, secno);
2413 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2414
2415 /* give up on finding another zone */
2416 if (!init)
2417 goto got_it;
2418 if (sbi->secs_per_zone == 1)
2419 goto got_it;
2420 if (zoneno == old_zoneno)
2421 goto got_it;
2422 if (dir == ALLOC_LEFT) {
2423 if (!go_left && zoneno + 1 >= total_zones)
2424 goto got_it;
2425 if (go_left && zoneno == 0)
2426 goto got_it;
2427 }
2428 for (i = 0; i < NR_CURSEG_TYPE; i++)
2429 if (CURSEG_I(sbi, i)->zone == zoneno)
2430 break;
2431
2432 if (i < NR_CURSEG_TYPE) {
2433 /* zone is in user, try another */
2434 if (go_left)
2435 hint = zoneno * sbi->secs_per_zone - 1;
2436 else if (zoneno + 1 >= total_zones)
2437 hint = 0;
2438 else
2439 hint = (zoneno + 1) * sbi->secs_per_zone;
2440 init = false;
2441 goto find_other_zone;
2442 }
2443got_it:
2444 /* set it as dirty segment in free segmap */
2445 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2446 __set_inuse(sbi, segno);
2447 *newseg = segno;
2448 spin_unlock(&free_i->segmap_lock);
2449}
2450
2451static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2452{
2453 struct curseg_info *curseg = CURSEG_I(sbi, type);
2454 struct summary_footer *sum_footer;
2455
2456 curseg->segno = curseg->next_segno;
2457 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2458 curseg->next_blkoff = 0;
2459 curseg->next_segno = NULL_SEGNO;
2460
2461 sum_footer = &(curseg->sum_blk->footer);
2462 memset(sum_footer, 0, sizeof(struct summary_footer));
2463 if (IS_DATASEG(type))
2464 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2465 if (IS_NODESEG(type))
2466 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2467 __set_sit_entry_type(sbi, type, curseg->segno, modified);
2468}
2469
2470static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2471{
2472 /* if segs_per_sec is large than 1, we need to keep original policy. */
2473 if (__is_large_section(sbi))
2474 return CURSEG_I(sbi, type)->segno;
2475
2476 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2477 return 0;
2478
2479 if (test_opt(sbi, NOHEAP) &&
2480 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2481 return 0;
2482
2483 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2484 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2485
2486 /* find segments from 0 to reuse freed segments */
2487 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2488 return 0;
2489
2490 return CURSEG_I(sbi, type)->segno;
2491}
2492
2493/*
2494 * Allocate a current working segment.
2495 * This function always allocates a free segment in LFS manner.
2496 */
2497static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2498{
2499 struct curseg_info *curseg = CURSEG_I(sbi, type);
2500 unsigned int segno = curseg->segno;
2501 int dir = ALLOC_LEFT;
2502
2503 write_sum_page(sbi, curseg->sum_blk,
2504 GET_SUM_BLOCK(sbi, segno));
2505 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2506 dir = ALLOC_RIGHT;
2507
2508 if (test_opt(sbi, NOHEAP))
2509 dir = ALLOC_RIGHT;
2510
2511 segno = __get_next_segno(sbi, type);
2512 get_new_segment(sbi, &segno, new_sec, dir);
2513 curseg->next_segno = segno;
2514 reset_curseg(sbi, type, 1);
2515 curseg->alloc_type = LFS;
2516}
2517
2518static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2519 struct curseg_info *seg, block_t start)
2520{
2521 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2522 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2523 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2524 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2525 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2526 int i, pos;
2527
2528 for (i = 0; i < entries; i++)
2529 target_map[i] = ckpt_map[i] | cur_map[i];
2530
2531 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2532
2533 seg->next_blkoff = pos;
2534}
2535
2536/*
2537 * If a segment is written by LFS manner, next block offset is just obtained
2538 * by increasing the current block offset. However, if a segment is written by
2539 * SSR manner, next block offset obtained by calling __next_free_blkoff
2540 */
2541static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2542 struct curseg_info *seg)
2543{
2544 if (seg->alloc_type == SSR)
2545 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2546 else
2547 seg->next_blkoff++;
2548}
2549
2550/*
2551 * This function always allocates a used segment(from dirty seglist) by SSR
2552 * manner, so it should recover the existing segment information of valid blocks
2553 */
2554static void change_curseg(struct f2fs_sb_info *sbi, int type)
2555{
2556 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2557 struct curseg_info *curseg = CURSEG_I(sbi, type);
2558 unsigned int new_segno = curseg->next_segno;
2559 struct f2fs_summary_block *sum_node;
2560 struct page *sum_page;
2561
2562 write_sum_page(sbi, curseg->sum_blk,
2563 GET_SUM_BLOCK(sbi, curseg->segno));
2564 __set_test_and_inuse(sbi, new_segno);
2565
2566 mutex_lock(&dirty_i->seglist_lock);
2567 __remove_dirty_segment(sbi, new_segno, PRE);
2568 __remove_dirty_segment(sbi, new_segno, DIRTY);
2569 mutex_unlock(&dirty_i->seglist_lock);
2570
2571 reset_curseg(sbi, type, 1);
2572 curseg->alloc_type = SSR;
2573 __next_free_blkoff(sbi, curseg, 0);
2574
2575 sum_page = f2fs_get_sum_page(sbi, new_segno);
2576 f2fs_bug_on(sbi, IS_ERR(sum_page));
2577 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2578 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2579 f2fs_put_page(sum_page, 1);
2580}
2581
2582static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2583{
2584 struct curseg_info *curseg = CURSEG_I(sbi, type);
2585 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2586 unsigned segno = NULL_SEGNO;
2587 int i, cnt;
2588 bool reversed = false;
2589
2590 /* f2fs_need_SSR() already forces to do this */
2591 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2592 curseg->next_segno = segno;
2593 return 1;
2594 }
2595
2596 /* For node segments, let's do SSR more intensively */
2597 if (IS_NODESEG(type)) {
2598 if (type >= CURSEG_WARM_NODE) {
2599 reversed = true;
2600 i = CURSEG_COLD_NODE;
2601 } else {
2602 i = CURSEG_HOT_NODE;
2603 }
2604 cnt = NR_CURSEG_NODE_TYPE;
2605 } else {
2606 if (type >= CURSEG_WARM_DATA) {
2607 reversed = true;
2608 i = CURSEG_COLD_DATA;
2609 } else {
2610 i = CURSEG_HOT_DATA;
2611 }
2612 cnt = NR_CURSEG_DATA_TYPE;
2613 }
2614
2615 for (; cnt-- > 0; reversed ? i-- : i++) {
2616 if (i == type)
2617 continue;
2618 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2619 curseg->next_segno = segno;
2620 return 1;
2621 }
2622 }
2623
2624 /* find valid_blocks=0 in dirty list */
2625 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2626 segno = get_free_segment(sbi);
2627 if (segno != NULL_SEGNO) {
2628 curseg->next_segno = segno;
2629 return 1;
2630 }
2631 }
2632 return 0;
2633}
2634
2635/*
2636 * flush out current segment and replace it with new segment
2637 * This function should be returned with success, otherwise BUG
2638 */
2639static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2640 int type, bool force)
2641{
2642 struct curseg_info *curseg = CURSEG_I(sbi, type);
2643
2644 if (force)
2645 new_curseg(sbi, type, true);
2646 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2647 type == CURSEG_WARM_NODE)
2648 new_curseg(sbi, type, false);
2649 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2650 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2651 new_curseg(sbi, type, false);
2652 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2653 change_curseg(sbi, type);
2654 else
2655 new_curseg(sbi, type, false);
2656
2657 stat_inc_seg_type(sbi, curseg);
2658}
2659
2660void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2661 unsigned int start, unsigned int end)
2662{
2663 struct curseg_info *curseg = CURSEG_I(sbi, type);
2664 unsigned int segno;
2665
2666 down_read(&SM_I(sbi)->curseg_lock);
2667 mutex_lock(&curseg->curseg_mutex);
2668 down_write(&SIT_I(sbi)->sentry_lock);
2669
2670 segno = CURSEG_I(sbi, type)->segno;
2671 if (segno < start || segno > end)
2672 goto unlock;
2673
2674 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2675 change_curseg(sbi, type);
2676 else
2677 new_curseg(sbi, type, true);
2678
2679 stat_inc_seg_type(sbi, curseg);
2680
2681 locate_dirty_segment(sbi, segno);
2682unlock:
2683 up_write(&SIT_I(sbi)->sentry_lock);
2684
2685 if (segno != curseg->segno)
2686 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2687 type, segno, curseg->segno);
2688
2689 mutex_unlock(&curseg->curseg_mutex);
2690 up_read(&SM_I(sbi)->curseg_lock);
2691}
2692
2693void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2694{
2695 struct curseg_info *curseg;
2696 unsigned int old_segno;
2697 int i;
2698
2699 down_write(&SIT_I(sbi)->sentry_lock);
2700
2701 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2702 curseg = CURSEG_I(sbi, i);
2703 old_segno = curseg->segno;
2704 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2705 locate_dirty_segment(sbi, old_segno);
2706 }
2707
2708 up_write(&SIT_I(sbi)->sentry_lock);
2709}
2710
2711static const struct segment_allocation default_salloc_ops = {
2712 .allocate_segment = allocate_segment_by_default,
2713};
2714
2715bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2716 struct cp_control *cpc)
2717{
2718 __u64 trim_start = cpc->trim_start;
2719 bool has_candidate = false;
2720
2721 down_write(&SIT_I(sbi)->sentry_lock);
2722 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2723 if (add_discard_addrs(sbi, cpc, true)) {
2724 has_candidate = true;
2725 break;
2726 }
2727 }
2728 up_write(&SIT_I(sbi)->sentry_lock);
2729
2730 cpc->trim_start = trim_start;
2731 return has_candidate;
2732}
2733
2734static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2735 struct discard_policy *dpolicy,
2736 unsigned int start, unsigned int end)
2737{
2738 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2739 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2740 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2741 struct discard_cmd *dc;
2742 struct blk_plug plug;
2743 int issued;
2744 unsigned int trimmed = 0;
2745
2746next:
2747 issued = 0;
2748
2749 mutex_lock(&dcc->cmd_lock);
2750 if (unlikely(dcc->rbtree_check))
2751 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2752 &dcc->root));
2753
2754 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2755 NULL, start,
2756 (struct rb_entry **)&prev_dc,
2757 (struct rb_entry **)&next_dc,
2758 &insert_p, &insert_parent, true, NULL);
2759 if (!dc)
2760 dc = next_dc;
2761
2762 blk_start_plug(&plug);
2763
2764 while (dc && dc->lstart <= end) {
2765 struct rb_node *node;
2766 int err = 0;
2767
2768 if (dc->len < dpolicy->granularity)
2769 goto skip;
2770
2771 if (dc->state != D_PREP) {
2772 list_move_tail(&dc->list, &dcc->fstrim_list);
2773 goto skip;
2774 }
2775
2776 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2777
2778 if (issued >= dpolicy->max_requests) {
2779 start = dc->lstart + dc->len;
2780
2781 if (err)
2782 __remove_discard_cmd(sbi, dc);
2783
2784 blk_finish_plug(&plug);
2785 mutex_unlock(&dcc->cmd_lock);
2786 trimmed += __wait_all_discard_cmd(sbi, NULL);
2787 congestion_wait(BLK_RW_ASYNC, HZ/50);
2788 goto next;
2789 }
2790skip:
2791 node = rb_next(&dc->rb_node);
2792 if (err)
2793 __remove_discard_cmd(sbi, dc);
2794 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2795
2796 if (fatal_signal_pending(current))
2797 break;
2798 }
2799
2800 blk_finish_plug(&plug);
2801 mutex_unlock(&dcc->cmd_lock);
2802
2803 return trimmed;
2804}
2805
2806int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2807{
2808 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2809 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2810 unsigned int start_segno, end_segno;
2811 block_t start_block, end_block;
2812 struct cp_control cpc;
2813 struct discard_policy dpolicy;
2814 unsigned long long trimmed = 0;
2815 int err = 0;
2816 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
2817
2818 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2819 return -EINVAL;
2820
2821 if (end < MAIN_BLKADDR(sbi))
2822 goto out;
2823
2824 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2825 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
2826 return -EFSCORRUPTED;
2827 }
2828
2829 /* start/end segment number in main_area */
2830 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2831 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2832 GET_SEGNO(sbi, end);
2833 if (need_align) {
2834 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2835 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2836 }
2837
2838 cpc.reason = CP_DISCARD;
2839 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2840 cpc.trim_start = start_segno;
2841 cpc.trim_end = end_segno;
2842
2843 if (sbi->discard_blks == 0)
2844 goto out;
2845
2846 mutex_lock(&sbi->gc_mutex);
2847 err = f2fs_write_checkpoint(sbi, &cpc);
2848 mutex_unlock(&sbi->gc_mutex);
2849 if (err)
2850 goto out;
2851
2852 /*
2853 * We filed discard candidates, but actually we don't need to wait for
2854 * all of them, since they'll be issued in idle time along with runtime
2855 * discard option. User configuration looks like using runtime discard
2856 * or periodic fstrim instead of it.
2857 */
2858 if (f2fs_realtime_discard_enable(sbi))
2859 goto out;
2860
2861 start_block = START_BLOCK(sbi, start_segno);
2862 end_block = START_BLOCK(sbi, end_segno + 1);
2863
2864 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2865 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2866 start_block, end_block);
2867
2868 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2869 start_block, end_block);
2870out:
2871 if (!err)
2872 range->len = F2FS_BLK_TO_BYTES(trimmed);
2873 return err;
2874}
2875
2876static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2877{
2878 struct curseg_info *curseg = CURSEG_I(sbi, type);
2879 if (curseg->next_blkoff < sbi->blocks_per_seg)
2880 return true;
2881 return false;
2882}
2883
2884int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2885{
2886 switch (hint) {
2887 case WRITE_LIFE_SHORT:
2888 return CURSEG_HOT_DATA;
2889 case WRITE_LIFE_EXTREME:
2890 return CURSEG_COLD_DATA;
2891 default:
2892 return CURSEG_WARM_DATA;
2893 }
2894}
2895
2896/* This returns write hints for each segment type. This hints will be
2897 * passed down to block layer. There are mapping tables which depend on
2898 * the mount option 'whint_mode'.
2899 *
2900 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2901 *
2902 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2903 *
2904 * User F2FS Block
2905 * ---- ---- -----
2906 * META WRITE_LIFE_NOT_SET
2907 * HOT_NODE "
2908 * WARM_NODE "
2909 * COLD_NODE "
2910 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2911 * extension list " "
2912 *
2913 * -- buffered io
2914 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2915 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2916 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2917 * WRITE_LIFE_NONE " "
2918 * WRITE_LIFE_MEDIUM " "
2919 * WRITE_LIFE_LONG " "
2920 *
2921 * -- direct io
2922 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2923 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2924 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2925 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2926 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2927 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2928 *
2929 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2930 *
2931 * User F2FS Block
2932 * ---- ---- -----
2933 * META WRITE_LIFE_MEDIUM;
2934 * HOT_NODE WRITE_LIFE_NOT_SET
2935 * WARM_NODE "
2936 * COLD_NODE WRITE_LIFE_NONE
2937 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2938 * extension list " "
2939 *
2940 * -- buffered io
2941 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2942 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2943 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
2944 * WRITE_LIFE_NONE " "
2945 * WRITE_LIFE_MEDIUM " "
2946 * WRITE_LIFE_LONG " "
2947 *
2948 * -- direct io
2949 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2950 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2951 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2952 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2953 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2954 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2955 */
2956
2957enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2958 enum page_type type, enum temp_type temp)
2959{
2960 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2961 if (type == DATA) {
2962 if (temp == WARM)
2963 return WRITE_LIFE_NOT_SET;
2964 else if (temp == HOT)
2965 return WRITE_LIFE_SHORT;
2966 else if (temp == COLD)
2967 return WRITE_LIFE_EXTREME;
2968 } else {
2969 return WRITE_LIFE_NOT_SET;
2970 }
2971 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2972 if (type == DATA) {
2973 if (temp == WARM)
2974 return WRITE_LIFE_LONG;
2975 else if (temp == HOT)
2976 return WRITE_LIFE_SHORT;
2977 else if (temp == COLD)
2978 return WRITE_LIFE_EXTREME;
2979 } else if (type == NODE) {
2980 if (temp == WARM || temp == HOT)
2981 return WRITE_LIFE_NOT_SET;
2982 else if (temp == COLD)
2983 return WRITE_LIFE_NONE;
2984 } else if (type == META) {
2985 return WRITE_LIFE_MEDIUM;
2986 }
2987 }
2988 return WRITE_LIFE_NOT_SET;
2989}
2990
2991static int __get_segment_type_2(struct f2fs_io_info *fio)
2992{
2993 if (fio->type == DATA)
2994 return CURSEG_HOT_DATA;
2995 else
2996 return CURSEG_HOT_NODE;
2997}
2998
2999static int __get_segment_type_4(struct f2fs_io_info *fio)
3000{
3001 if (fio->type == DATA) {
3002 struct inode *inode = fio->page->mapping->host;
3003
3004 if (S_ISDIR(inode->i_mode))
3005 return CURSEG_HOT_DATA;
3006 else
3007 return CURSEG_COLD_DATA;
3008 } else {
3009 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3010 return CURSEG_WARM_NODE;
3011 else
3012 return CURSEG_COLD_NODE;
3013 }
3014}
3015
3016static int __get_segment_type_6(struct f2fs_io_info *fio)
3017{
3018 if (fio->type == DATA) {
3019 struct inode *inode = fio->page->mapping->host;
3020
3021 if (is_cold_data(fio->page) || file_is_cold(inode))
3022 return CURSEG_COLD_DATA;
3023 if (file_is_hot(inode) ||
3024 is_inode_flag_set(inode, FI_HOT_DATA) ||
3025 f2fs_is_atomic_file(inode) ||
3026 f2fs_is_volatile_file(inode))
3027 return CURSEG_HOT_DATA;
3028 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3029 } else {
3030 if (IS_DNODE(fio->page))
3031 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3032 CURSEG_HOT_NODE;
3033 return CURSEG_COLD_NODE;
3034 }
3035}
3036
3037static int __get_segment_type(struct f2fs_io_info *fio)
3038{
3039 int type = 0;
3040
3041 switch (F2FS_OPTION(fio->sbi).active_logs) {
3042 case 2:
3043 type = __get_segment_type_2(fio);
3044 break;
3045 case 4:
3046 type = __get_segment_type_4(fio);
3047 break;
3048 case 6:
3049 type = __get_segment_type_6(fio);
3050 break;
3051 default:
3052 f2fs_bug_on(fio->sbi, true);
3053 }
3054
3055 if (IS_HOT(type))
3056 fio->temp = HOT;
3057 else if (IS_WARM(type))
3058 fio->temp = WARM;
3059 else
3060 fio->temp = COLD;
3061 return type;
3062}
3063
3064void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3065 block_t old_blkaddr, block_t *new_blkaddr,
3066 struct f2fs_summary *sum, int type,
3067 struct f2fs_io_info *fio, bool add_list)
3068{
3069 struct sit_info *sit_i = SIT_I(sbi);
3070 struct curseg_info *curseg = CURSEG_I(sbi, type);
3071
3072 down_read(&SM_I(sbi)->curseg_lock);
3073
3074 mutex_lock(&curseg->curseg_mutex);
3075 down_write(&sit_i->sentry_lock);
3076
3077 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3078
3079 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3080
3081 /*
3082 * __add_sum_entry should be resided under the curseg_mutex
3083 * because, this function updates a summary entry in the
3084 * current summary block.
3085 */
3086 __add_sum_entry(sbi, type, sum);
3087
3088 __refresh_next_blkoff(sbi, curseg);
3089
3090 stat_inc_block_count(sbi, curseg);
3091
3092 /*
3093 * SIT information should be updated before segment allocation,
3094 * since SSR needs latest valid block information.
3095 */
3096 update_sit_entry(sbi, *new_blkaddr, 1);
3097 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3098 update_sit_entry(sbi, old_blkaddr, -1);
3099
3100 if (!__has_curseg_space(sbi, type))
3101 sit_i->s_ops->allocate_segment(sbi, type, false);
3102
3103 /*
3104 * segment dirty status should be updated after segment allocation,
3105 * so we just need to update status only one time after previous
3106 * segment being closed.
3107 */
3108 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3109 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3110
3111 up_write(&sit_i->sentry_lock);
3112
3113 if (page && IS_NODESEG(type)) {
3114 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3115
3116 f2fs_inode_chksum_set(sbi, page);
3117 }
3118
3119 if (F2FS_IO_ALIGNED(sbi))
3120 fio->retry = false;
3121
3122 if (add_list) {
3123 struct f2fs_bio_info *io;
3124
3125 INIT_LIST_HEAD(&fio->list);
3126 fio->in_list = true;
3127 io = sbi->write_io[fio->type] + fio->temp;
3128 spin_lock(&io->io_lock);
3129 list_add_tail(&fio->list, &io->io_list);
3130 spin_unlock(&io->io_lock);
3131 }
3132
3133 mutex_unlock(&curseg->curseg_mutex);
3134
3135 up_read(&SM_I(sbi)->curseg_lock);
3136}
3137
3138static void update_device_state(struct f2fs_io_info *fio)
3139{
3140 struct f2fs_sb_info *sbi = fio->sbi;
3141 unsigned int devidx;
3142
3143 if (!f2fs_is_multi_device(sbi))
3144 return;
3145
3146 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3147
3148 /* update device state for fsync */
3149 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3150
3151 /* update device state for checkpoint */
3152 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3153 spin_lock(&sbi->dev_lock);
3154 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3155 spin_unlock(&sbi->dev_lock);
3156 }
3157}
3158
3159static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3160{
3161 int type = __get_segment_type(fio);
3162 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3163
3164 if (keep_order)
3165 down_read(&fio->sbi->io_order_lock);
3166reallocate:
3167 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3168 &fio->new_blkaddr, sum, type, fio, true);
3169 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3170 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3171 fio->old_blkaddr, fio->old_blkaddr);
3172
3173 /* writeout dirty page into bdev */
3174 f2fs_submit_page_write(fio);
3175 if (fio->retry) {
3176 fio->old_blkaddr = fio->new_blkaddr;
3177 goto reallocate;
3178 }
3179
3180 update_device_state(fio);
3181
3182 if (keep_order)
3183 up_read(&fio->sbi->io_order_lock);
3184}
3185
3186void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3187 enum iostat_type io_type)
3188{
3189 struct f2fs_io_info fio = {
3190 .sbi = sbi,
3191 .type = META,
3192 .temp = HOT,
3193 .op = REQ_OP_WRITE,
3194 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3195 .old_blkaddr = page->index,
3196 .new_blkaddr = page->index,
3197 .page = page,
3198 .encrypted_page = NULL,
3199 .in_list = false,
3200 };
3201
3202 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3203 fio.op_flags &= ~REQ_META;
3204
3205 set_page_writeback(page);
3206 ClearPageError(page);
3207 f2fs_submit_page_write(&fio);
3208
3209 stat_inc_meta_count(sbi, page->index);
3210 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3211}
3212
3213void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3214{
3215 struct f2fs_summary sum;
3216
3217 set_summary(&sum, nid, 0, 0);
3218 do_write_page(&sum, fio);
3219
3220 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3221}
3222
3223void f2fs_outplace_write_data(struct dnode_of_data *dn,
3224 struct f2fs_io_info *fio)
3225{
3226 struct f2fs_sb_info *sbi = fio->sbi;
3227 struct f2fs_summary sum;
3228
3229 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3230 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3231 do_write_page(&sum, fio);
3232 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3233
3234 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3235}
3236
3237int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3238{
3239 int err;
3240 struct f2fs_sb_info *sbi = fio->sbi;
3241 unsigned int segno;
3242
3243 fio->new_blkaddr = fio->old_blkaddr;
3244 /* i/o temperature is needed for passing down write hints */
3245 __get_segment_type(fio);
3246
3247 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3248
3249 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3250 set_sbi_flag(sbi, SBI_NEED_FSCK);
3251 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3252 __func__, segno);
3253 return -EFSCORRUPTED;
3254 }
3255
3256 stat_inc_inplace_blocks(fio->sbi);
3257
3258 if (fio->bio)
3259 err = f2fs_merge_page_bio(fio);
3260 else
3261 err = f2fs_submit_page_bio(fio);
3262 if (!err) {
3263 update_device_state(fio);
3264 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3265 }
3266
3267 return err;
3268}
3269
3270static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3271 unsigned int segno)
3272{
3273 int i;
3274
3275 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3276 if (CURSEG_I(sbi, i)->segno == segno)
3277 break;
3278 }
3279 return i;
3280}
3281
3282void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3283 block_t old_blkaddr, block_t new_blkaddr,
3284 bool recover_curseg, bool recover_newaddr)
3285{
3286 struct sit_info *sit_i = SIT_I(sbi);
3287 struct curseg_info *curseg;
3288 unsigned int segno, old_cursegno;
3289 struct seg_entry *se;
3290 int type;
3291 unsigned short old_blkoff;
3292
3293 segno = GET_SEGNO(sbi, new_blkaddr);
3294 se = get_seg_entry(sbi, segno);
3295 type = se->type;
3296
3297 down_write(&SM_I(sbi)->curseg_lock);
3298
3299 if (!recover_curseg) {
3300 /* for recovery flow */
3301 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3302 if (old_blkaddr == NULL_ADDR)
3303 type = CURSEG_COLD_DATA;
3304 else
3305 type = CURSEG_WARM_DATA;
3306 }
3307 } else {
3308 if (IS_CURSEG(sbi, segno)) {
3309 /* se->type is volatile as SSR allocation */
3310 type = __f2fs_get_curseg(sbi, segno);
3311 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3312 } else {
3313 type = CURSEG_WARM_DATA;
3314 }
3315 }
3316
3317 f2fs_bug_on(sbi, !IS_DATASEG(type));
3318 curseg = CURSEG_I(sbi, type);
3319
3320 mutex_lock(&curseg->curseg_mutex);
3321 down_write(&sit_i->sentry_lock);
3322
3323 old_cursegno = curseg->segno;
3324 old_blkoff = curseg->next_blkoff;
3325
3326 /* change the current segment */
3327 if (segno != curseg->segno) {
3328 curseg->next_segno = segno;
3329 change_curseg(sbi, type);
3330 }
3331
3332 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3333 __add_sum_entry(sbi, type, sum);
3334
3335 if (!recover_curseg || recover_newaddr)
3336 update_sit_entry(sbi, new_blkaddr, 1);
3337 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3338 invalidate_mapping_pages(META_MAPPING(sbi),
3339 old_blkaddr, old_blkaddr);
3340 update_sit_entry(sbi, old_blkaddr, -1);
3341 }
3342
3343 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3344 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3345
3346 locate_dirty_segment(sbi, old_cursegno);
3347
3348 if (recover_curseg) {
3349 if (old_cursegno != curseg->segno) {
3350 curseg->next_segno = old_cursegno;
3351 change_curseg(sbi, type);
3352 }
3353 curseg->next_blkoff = old_blkoff;
3354 }
3355
3356 up_write(&sit_i->sentry_lock);
3357 mutex_unlock(&curseg->curseg_mutex);
3358 up_write(&SM_I(sbi)->curseg_lock);
3359}
3360
3361void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3362 block_t old_addr, block_t new_addr,
3363 unsigned char version, bool recover_curseg,
3364 bool recover_newaddr)
3365{
3366 struct f2fs_summary sum;
3367
3368 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3369
3370 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3371 recover_curseg, recover_newaddr);
3372
3373 f2fs_update_data_blkaddr(dn, new_addr);
3374}
3375
3376void f2fs_wait_on_page_writeback(struct page *page,
3377 enum page_type type, bool ordered, bool locked)
3378{
3379 if (PageWriteback(page)) {
3380 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3381
3382 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3383 if (ordered) {
3384 wait_on_page_writeback(page);
3385 f2fs_bug_on(sbi, locked && PageWriteback(page));
3386 } else {
3387 wait_for_stable_page(page);
3388 }
3389 }
3390}
3391
3392void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3393{
3394 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3395 struct page *cpage;
3396
3397 if (!f2fs_post_read_required(inode))
3398 return;
3399
3400 if (!__is_valid_data_blkaddr(blkaddr))
3401 return;
3402
3403 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3404 if (cpage) {
3405 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3406 f2fs_put_page(cpage, 1);
3407 }
3408}
3409
3410void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3411 block_t len)
3412{
3413 block_t i;
3414
3415 for (i = 0; i < len; i++)
3416 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3417}
3418
3419static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3420{
3421 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3422 struct curseg_info *seg_i;
3423 unsigned char *kaddr;
3424 struct page *page;
3425 block_t start;
3426 int i, j, offset;
3427
3428 start = start_sum_block(sbi);
3429
3430 page = f2fs_get_meta_page(sbi, start++);
3431 if (IS_ERR(page))
3432 return PTR_ERR(page);
3433 kaddr = (unsigned char *)page_address(page);
3434
3435 /* Step 1: restore nat cache */
3436 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3437 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3438
3439 /* Step 2: restore sit cache */
3440 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3441 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3442 offset = 2 * SUM_JOURNAL_SIZE;
3443
3444 /* Step 3: restore summary entries */
3445 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3446 unsigned short blk_off;
3447 unsigned int segno;
3448
3449 seg_i = CURSEG_I(sbi, i);
3450 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3451 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3452 seg_i->next_segno = segno;
3453 reset_curseg(sbi, i, 0);
3454 seg_i->alloc_type = ckpt->alloc_type[i];
3455 seg_i->next_blkoff = blk_off;
3456
3457 if (seg_i->alloc_type == SSR)
3458 blk_off = sbi->blocks_per_seg;
3459
3460 for (j = 0; j < blk_off; j++) {
3461 struct f2fs_summary *s;
3462 s = (struct f2fs_summary *)(kaddr + offset);
3463 seg_i->sum_blk->entries[j] = *s;
3464 offset += SUMMARY_SIZE;
3465 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3466 SUM_FOOTER_SIZE)
3467 continue;
3468
3469 f2fs_put_page(page, 1);
3470 page = NULL;
3471
3472 page = f2fs_get_meta_page(sbi, start++);
3473 if (IS_ERR(page))
3474 return PTR_ERR(page);
3475 kaddr = (unsigned char *)page_address(page);
3476 offset = 0;
3477 }
3478 }
3479 f2fs_put_page(page, 1);
3480 return 0;
3481}
3482
3483static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3484{
3485 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3486 struct f2fs_summary_block *sum;
3487 struct curseg_info *curseg;
3488 struct page *new;
3489 unsigned short blk_off;
3490 unsigned int segno = 0;
3491 block_t blk_addr = 0;
3492 int err = 0;
3493
3494 /* get segment number and block addr */
3495 if (IS_DATASEG(type)) {
3496 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3497 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3498 CURSEG_HOT_DATA]);
3499 if (__exist_node_summaries(sbi))
3500 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3501 else
3502 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3503 } else {
3504 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3505 CURSEG_HOT_NODE]);
3506 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3507 CURSEG_HOT_NODE]);
3508 if (__exist_node_summaries(sbi))
3509 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3510 type - CURSEG_HOT_NODE);
3511 else
3512 blk_addr = GET_SUM_BLOCK(sbi, segno);
3513 }
3514
3515 new = f2fs_get_meta_page(sbi, blk_addr);
3516 if (IS_ERR(new))
3517 return PTR_ERR(new);
3518 sum = (struct f2fs_summary_block *)page_address(new);
3519
3520 if (IS_NODESEG(type)) {
3521 if (__exist_node_summaries(sbi)) {
3522 struct f2fs_summary *ns = &sum->entries[0];
3523 int i;
3524 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3525 ns->version = 0;
3526 ns->ofs_in_node = 0;
3527 }
3528 } else {
3529 err = f2fs_restore_node_summary(sbi, segno, sum);
3530 if (err)
3531 goto out;
3532 }
3533 }
3534
3535 /* set uncompleted segment to curseg */
3536 curseg = CURSEG_I(sbi, type);
3537 mutex_lock(&curseg->curseg_mutex);
3538
3539 /* update journal info */
3540 down_write(&curseg->journal_rwsem);
3541 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3542 up_write(&curseg->journal_rwsem);
3543
3544 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3545 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3546 curseg->next_segno = segno;
3547 reset_curseg(sbi, type, 0);
3548 curseg->alloc_type = ckpt->alloc_type[type];
3549 curseg->next_blkoff = blk_off;
3550 mutex_unlock(&curseg->curseg_mutex);
3551out:
3552 f2fs_put_page(new, 1);
3553 return err;
3554}
3555
3556static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3557{
3558 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3559 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3560 int type = CURSEG_HOT_DATA;
3561 int err;
3562
3563 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3564 int npages = f2fs_npages_for_summary_flush(sbi, true);
3565
3566 if (npages >= 2)
3567 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3568 META_CP, true);
3569
3570 /* restore for compacted data summary */
3571 err = read_compacted_summaries(sbi);
3572 if (err)
3573 return err;
3574 type = CURSEG_HOT_NODE;
3575 }
3576
3577 if (__exist_node_summaries(sbi))
3578 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3579 NR_CURSEG_TYPE - type, META_CP, true);
3580
3581 for (; type <= CURSEG_COLD_NODE; type++) {
3582 err = read_normal_summaries(sbi, type);
3583 if (err)
3584 return err;
3585 }
3586
3587 /* sanity check for summary blocks */
3588 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3589 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3590 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3591 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3592 return -EINVAL;
3593 }
3594
3595 return 0;
3596}
3597
3598static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3599{
3600 struct page *page;
3601 unsigned char *kaddr;
3602 struct f2fs_summary *summary;
3603 struct curseg_info *seg_i;
3604 int written_size = 0;
3605 int i, j;
3606
3607 page = f2fs_grab_meta_page(sbi, blkaddr++);
3608 kaddr = (unsigned char *)page_address(page);
3609 memset(kaddr, 0, PAGE_SIZE);
3610
3611 /* Step 1: write nat cache */
3612 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3613 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3614 written_size += SUM_JOURNAL_SIZE;
3615
3616 /* Step 2: write sit cache */
3617 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3618 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3619 written_size += SUM_JOURNAL_SIZE;
3620
3621 /* Step 3: write summary entries */
3622 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3623 unsigned short blkoff;
3624 seg_i = CURSEG_I(sbi, i);
3625 if (sbi->ckpt->alloc_type[i] == SSR)
3626 blkoff = sbi->blocks_per_seg;
3627 else
3628 blkoff = curseg_blkoff(sbi, i);
3629
3630 for (j = 0; j < blkoff; j++) {
3631 if (!page) {
3632 page = f2fs_grab_meta_page(sbi, blkaddr++);
3633 kaddr = (unsigned char *)page_address(page);
3634 memset(kaddr, 0, PAGE_SIZE);
3635 written_size = 0;
3636 }
3637 summary = (struct f2fs_summary *)(kaddr + written_size);
3638 *summary = seg_i->sum_blk->entries[j];
3639 written_size += SUMMARY_SIZE;
3640
3641 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3642 SUM_FOOTER_SIZE)
3643 continue;
3644
3645 set_page_dirty(page);
3646 f2fs_put_page(page, 1);
3647 page = NULL;
3648 }
3649 }
3650 if (page) {
3651 set_page_dirty(page);
3652 f2fs_put_page(page, 1);
3653 }
3654}
3655
3656static void write_normal_summaries(struct f2fs_sb_info *sbi,
3657 block_t blkaddr, int type)
3658{
3659 int i, end;
3660 if (IS_DATASEG(type))
3661 end = type + NR_CURSEG_DATA_TYPE;
3662 else
3663 end = type + NR_CURSEG_NODE_TYPE;
3664
3665 for (i = type; i < end; i++)
3666 write_current_sum_page(sbi, i, blkaddr + (i - type));
3667}
3668
3669void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3670{
3671 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3672 write_compacted_summaries(sbi, start_blk);
3673 else
3674 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3675}
3676
3677void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3678{
3679 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3680}
3681
3682int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3683 unsigned int val, int alloc)
3684{
3685 int i;
3686
3687 if (type == NAT_JOURNAL) {
3688 for (i = 0; i < nats_in_cursum(journal); i++) {
3689 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3690 return i;
3691 }
3692 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3693 return update_nats_in_cursum(journal, 1);
3694 } else if (type == SIT_JOURNAL) {
3695 for (i = 0; i < sits_in_cursum(journal); i++)
3696 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3697 return i;
3698 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3699 return update_sits_in_cursum(journal, 1);
3700 }
3701 return -1;
3702}
3703
3704static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3705 unsigned int segno)
3706{
3707 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3708}
3709
3710static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3711 unsigned int start)
3712{
3713 struct sit_info *sit_i = SIT_I(sbi);
3714 struct page *page;
3715 pgoff_t src_off, dst_off;
3716
3717 src_off = current_sit_addr(sbi, start);
3718 dst_off = next_sit_addr(sbi, src_off);
3719
3720 page = f2fs_grab_meta_page(sbi, dst_off);
3721 seg_info_to_sit_page(sbi, page, start);
3722
3723 set_page_dirty(page);
3724 set_to_next_sit(sit_i, start);
3725
3726 return page;
3727}
3728
3729static struct sit_entry_set *grab_sit_entry_set(void)
3730{
3731 struct sit_entry_set *ses =
3732 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3733
3734 ses->entry_cnt = 0;
3735 INIT_LIST_HEAD(&ses->set_list);
3736 return ses;
3737}
3738
3739static void release_sit_entry_set(struct sit_entry_set *ses)
3740{
3741 list_del(&ses->set_list);
3742 kmem_cache_free(sit_entry_set_slab, ses);
3743}
3744
3745static void adjust_sit_entry_set(struct sit_entry_set *ses,
3746 struct list_head *head)
3747{
3748 struct sit_entry_set *next = ses;
3749
3750 if (list_is_last(&ses->set_list, head))
3751 return;
3752
3753 list_for_each_entry_continue(next, head, set_list)
3754 if (ses->entry_cnt <= next->entry_cnt)
3755 break;
3756
3757 list_move_tail(&ses->set_list, &next->set_list);
3758}
3759
3760static void add_sit_entry(unsigned int segno, struct list_head *head)
3761{
3762 struct sit_entry_set *ses;
3763 unsigned int start_segno = START_SEGNO(segno);
3764
3765 list_for_each_entry(ses, head, set_list) {
3766 if (ses->start_segno == start_segno) {
3767 ses->entry_cnt++;
3768 adjust_sit_entry_set(ses, head);
3769 return;
3770 }
3771 }
3772
3773 ses = grab_sit_entry_set();
3774
3775 ses->start_segno = start_segno;
3776 ses->entry_cnt++;
3777 list_add(&ses->set_list, head);
3778}
3779
3780static void add_sits_in_set(struct f2fs_sb_info *sbi)
3781{
3782 struct f2fs_sm_info *sm_info = SM_I(sbi);
3783 struct list_head *set_list = &sm_info->sit_entry_set;
3784 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3785 unsigned int segno;
3786
3787 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3788 add_sit_entry(segno, set_list);
3789}
3790
3791static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3792{
3793 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3794 struct f2fs_journal *journal = curseg->journal;
3795 int i;
3796
3797 down_write(&curseg->journal_rwsem);
3798 for (i = 0; i < sits_in_cursum(journal); i++) {
3799 unsigned int segno;
3800 bool dirtied;
3801
3802 segno = le32_to_cpu(segno_in_journal(journal, i));
3803 dirtied = __mark_sit_entry_dirty(sbi, segno);
3804
3805 if (!dirtied)
3806 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3807 }
3808 update_sits_in_cursum(journal, -i);
3809 up_write(&curseg->journal_rwsem);
3810}
3811
3812/*
3813 * CP calls this function, which flushes SIT entries including sit_journal,
3814 * and moves prefree segs to free segs.
3815 */
3816void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3817{
3818 struct sit_info *sit_i = SIT_I(sbi);
3819 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3820 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3821 struct f2fs_journal *journal = curseg->journal;
3822 struct sit_entry_set *ses, *tmp;
3823 struct list_head *head = &SM_I(sbi)->sit_entry_set;
3824 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
3825 struct seg_entry *se;
3826
3827 down_write(&sit_i->sentry_lock);
3828
3829 if (!sit_i->dirty_sentries)
3830 goto out;
3831
3832 /*
3833 * add and account sit entries of dirty bitmap in sit entry
3834 * set temporarily
3835 */
3836 add_sits_in_set(sbi);
3837
3838 /*
3839 * if there are no enough space in journal to store dirty sit
3840 * entries, remove all entries from journal and add and account
3841 * them in sit entry set.
3842 */
3843 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
3844 !to_journal)
3845 remove_sits_in_journal(sbi);
3846
3847 /*
3848 * there are two steps to flush sit entries:
3849 * #1, flush sit entries to journal in current cold data summary block.
3850 * #2, flush sit entries to sit page.
3851 */
3852 list_for_each_entry_safe(ses, tmp, head, set_list) {
3853 struct page *page = NULL;
3854 struct f2fs_sit_block *raw_sit = NULL;
3855 unsigned int start_segno = ses->start_segno;
3856 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3857 (unsigned long)MAIN_SEGS(sbi));
3858 unsigned int segno = start_segno;
3859
3860 if (to_journal &&
3861 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3862 to_journal = false;
3863
3864 if (to_journal) {
3865 down_write(&curseg->journal_rwsem);
3866 } else {
3867 page = get_next_sit_page(sbi, start_segno);
3868 raw_sit = page_address(page);
3869 }
3870
3871 /* flush dirty sit entries in region of current sit set */
3872 for_each_set_bit_from(segno, bitmap, end) {
3873 int offset, sit_offset;
3874
3875 se = get_seg_entry(sbi, segno);
3876#ifdef CONFIG_F2FS_CHECK_FS
3877 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3878 SIT_VBLOCK_MAP_SIZE))
3879 f2fs_bug_on(sbi, 1);
3880#endif
3881
3882 /* add discard candidates */
3883 if (!(cpc->reason & CP_DISCARD)) {
3884 cpc->trim_start = segno;
3885 add_discard_addrs(sbi, cpc, false);
3886 }
3887
3888 if (to_journal) {
3889 offset = f2fs_lookup_journal_in_cursum(journal,
3890 SIT_JOURNAL, segno, 1);
3891 f2fs_bug_on(sbi, offset < 0);
3892 segno_in_journal(journal, offset) =
3893 cpu_to_le32(segno);
3894 seg_info_to_raw_sit(se,
3895 &sit_in_journal(journal, offset));
3896 check_block_count(sbi, segno,
3897 &sit_in_journal(journal, offset));
3898 } else {
3899 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3900 seg_info_to_raw_sit(se,
3901 &raw_sit->entries[sit_offset]);
3902 check_block_count(sbi, segno,
3903 &raw_sit->entries[sit_offset]);
3904 }
3905
3906 __clear_bit(segno, bitmap);
3907 sit_i->dirty_sentries--;
3908 ses->entry_cnt--;
3909 }
3910
3911 if (to_journal)
3912 up_write(&curseg->journal_rwsem);
3913 else
3914 f2fs_put_page(page, 1);
3915
3916 f2fs_bug_on(sbi, ses->entry_cnt);
3917 release_sit_entry_set(ses);
3918 }
3919
3920 f2fs_bug_on(sbi, !list_empty(head));
3921 f2fs_bug_on(sbi, sit_i->dirty_sentries);
3922out:
3923 if (cpc->reason & CP_DISCARD) {
3924 __u64 trim_start = cpc->trim_start;
3925
3926 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3927 add_discard_addrs(sbi, cpc, false);
3928
3929 cpc->trim_start = trim_start;
3930 }
3931 up_write(&sit_i->sentry_lock);
3932
3933 set_prefree_as_free_segments(sbi);
3934}
3935
3936static int build_sit_info(struct f2fs_sb_info *sbi)
3937{
3938 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3939 struct sit_info *sit_i;
3940 unsigned int sit_segs, start;
3941 char *src_bitmap, *bitmap;
3942 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
3943
3944 /* allocate memory for SIT information */
3945 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3946 if (!sit_i)
3947 return -ENOMEM;
3948
3949 SM_I(sbi)->sit_info = sit_i;
3950
3951 sit_i->sentries =
3952 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3953 MAIN_SEGS(sbi)),
3954 GFP_KERNEL);
3955 if (!sit_i->sentries)
3956 return -ENOMEM;
3957
3958 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3959 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
3960 GFP_KERNEL);
3961 if (!sit_i->dirty_sentries_bitmap)
3962 return -ENOMEM;
3963
3964#ifdef CONFIG_F2FS_CHECK_FS
3965 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
3966#else
3967 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
3968#endif
3969 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
3970 if (!sit_i->bitmap)
3971 return -ENOMEM;
3972
3973 bitmap = sit_i->bitmap;
3974
3975 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3976 sit_i->sentries[start].cur_valid_map = bitmap;
3977 bitmap += SIT_VBLOCK_MAP_SIZE;
3978
3979 sit_i->sentries[start].ckpt_valid_map = bitmap;
3980 bitmap += SIT_VBLOCK_MAP_SIZE;
3981
3982#ifdef CONFIG_F2FS_CHECK_FS
3983 sit_i->sentries[start].cur_valid_map_mir = bitmap;
3984 bitmap += SIT_VBLOCK_MAP_SIZE;
3985#endif
3986
3987 sit_i->sentries[start].discard_map = bitmap;
3988 bitmap += SIT_VBLOCK_MAP_SIZE;
3989 }
3990
3991 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3992 if (!sit_i->tmp_map)
3993 return -ENOMEM;
3994
3995 if (__is_large_section(sbi)) {
3996 sit_i->sec_entries =
3997 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3998 MAIN_SECS(sbi)),
3999 GFP_KERNEL);
4000 if (!sit_i->sec_entries)
4001 return -ENOMEM;
4002 }
4003
4004 /* get information related with SIT */
4005 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4006
4007 /* setup SIT bitmap from ckeckpoint pack */
4008 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4009 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4010
4011 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4012 if (!sit_i->sit_bitmap)
4013 return -ENOMEM;
4014
4015#ifdef CONFIG_F2FS_CHECK_FS
4016 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4017 sit_bitmap_size, GFP_KERNEL);
4018 if (!sit_i->sit_bitmap_mir)
4019 return -ENOMEM;
4020
4021 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4022 main_bitmap_size, GFP_KERNEL);
4023 if (!sit_i->invalid_segmap)
4024 return -ENOMEM;
4025#endif
4026
4027 /* init SIT information */
4028 sit_i->s_ops = &default_salloc_ops;
4029
4030 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4031 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4032 sit_i->written_valid_blocks = 0;
4033 sit_i->bitmap_size = sit_bitmap_size;
4034 sit_i->dirty_sentries = 0;
4035 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4036 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4037 sit_i->mounted_time = ktime_get_real_seconds();
4038 init_rwsem(&sit_i->sentry_lock);
4039 return 0;
4040}
4041
4042static int build_free_segmap(struct f2fs_sb_info *sbi)
4043{
4044 struct free_segmap_info *free_i;
4045 unsigned int bitmap_size, sec_bitmap_size;
4046
4047 /* allocate memory for free segmap information */
4048 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4049 if (!free_i)
4050 return -ENOMEM;
4051
4052 SM_I(sbi)->free_info = free_i;
4053
4054 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4055 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4056 if (!free_i->free_segmap)
4057 return -ENOMEM;
4058
4059 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4060 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4061 if (!free_i->free_secmap)
4062 return -ENOMEM;
4063
4064 /* set all segments as dirty temporarily */
4065 memset(free_i->free_segmap, 0xff, bitmap_size);
4066 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4067
4068 /* init free segmap information */
4069 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4070 free_i->free_segments = 0;
4071 free_i->free_sections = 0;
4072 spin_lock_init(&free_i->segmap_lock);
4073 return 0;
4074}
4075
4076static int build_curseg(struct f2fs_sb_info *sbi)
4077{
4078 struct curseg_info *array;
4079 int i;
4080
4081 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4082 GFP_KERNEL);
4083 if (!array)
4084 return -ENOMEM;
4085
4086 SM_I(sbi)->curseg_array = array;
4087
4088 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4089 mutex_init(&array[i].curseg_mutex);
4090 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4091 if (!array[i].sum_blk)
4092 return -ENOMEM;
4093 init_rwsem(&array[i].journal_rwsem);
4094 array[i].journal = f2fs_kzalloc(sbi,
4095 sizeof(struct f2fs_journal), GFP_KERNEL);
4096 if (!array[i].journal)
4097 return -ENOMEM;
4098 array[i].segno = NULL_SEGNO;
4099 array[i].next_blkoff = 0;
4100 }
4101 return restore_curseg_summaries(sbi);
4102}
4103
4104static int build_sit_entries(struct f2fs_sb_info *sbi)
4105{
4106 struct sit_info *sit_i = SIT_I(sbi);
4107 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4108 struct f2fs_journal *journal = curseg->journal;
4109 struct seg_entry *se;
4110 struct f2fs_sit_entry sit;
4111 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4112 unsigned int i, start, end;
4113 unsigned int readed, start_blk = 0;
4114 int err = 0;
4115 block_t total_node_blocks = 0;
4116
4117 do {
4118 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4119 META_SIT, true);
4120
4121 start = start_blk * sit_i->sents_per_block;
4122 end = (start_blk + readed) * sit_i->sents_per_block;
4123
4124 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4125 struct f2fs_sit_block *sit_blk;
4126 struct page *page;
4127
4128 se = &sit_i->sentries[start];
4129 page = get_current_sit_page(sbi, start);
4130 if (IS_ERR(page))
4131 return PTR_ERR(page);
4132 sit_blk = (struct f2fs_sit_block *)page_address(page);
4133 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4134 f2fs_put_page(page, 1);
4135
4136 err = check_block_count(sbi, start, &sit);
4137 if (err)
4138 return err;
4139 seg_info_from_raw_sit(se, &sit);
4140 if (IS_NODESEG(se->type))
4141 total_node_blocks += se->valid_blocks;
4142
4143 /* build discard map only one time */
4144 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4145 memset(se->discard_map, 0xff,
4146 SIT_VBLOCK_MAP_SIZE);
4147 } else {
4148 memcpy(se->discard_map,
4149 se->cur_valid_map,
4150 SIT_VBLOCK_MAP_SIZE);
4151 sbi->discard_blks +=
4152 sbi->blocks_per_seg -
4153 se->valid_blocks;
4154 }
4155
4156 if (__is_large_section(sbi))
4157 get_sec_entry(sbi, start)->valid_blocks +=
4158 se->valid_blocks;
4159 }
4160 start_blk += readed;
4161 } while (start_blk < sit_blk_cnt);
4162
4163 down_read(&curseg->journal_rwsem);
4164 for (i = 0; i < sits_in_cursum(journal); i++) {
4165 unsigned int old_valid_blocks;
4166
4167 start = le32_to_cpu(segno_in_journal(journal, i));
4168 if (start >= MAIN_SEGS(sbi)) {
4169 f2fs_err(sbi, "Wrong journal entry on segno %u",
4170 start);
4171 err = -EFSCORRUPTED;
4172 break;
4173 }
4174
4175 se = &sit_i->sentries[start];
4176 sit = sit_in_journal(journal, i);
4177
4178 old_valid_blocks = se->valid_blocks;
4179 if (IS_NODESEG(se->type))
4180 total_node_blocks -= old_valid_blocks;
4181
4182 err = check_block_count(sbi, start, &sit);
4183 if (err)
4184 break;
4185 seg_info_from_raw_sit(se, &sit);
4186 if (IS_NODESEG(se->type))
4187 total_node_blocks += se->valid_blocks;
4188
4189 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4190 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4191 } else {
4192 memcpy(se->discard_map, se->cur_valid_map,
4193 SIT_VBLOCK_MAP_SIZE);
4194 sbi->discard_blks += old_valid_blocks;
4195 sbi->discard_blks -= se->valid_blocks;
4196 }
4197
4198 if (__is_large_section(sbi)) {
4199 get_sec_entry(sbi, start)->valid_blocks +=
4200 se->valid_blocks;
4201 get_sec_entry(sbi, start)->valid_blocks -=
4202 old_valid_blocks;
4203 }
4204 }
4205 up_read(&curseg->journal_rwsem);
4206
4207 if (!err && total_node_blocks != valid_node_count(sbi)) {
4208 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4209 total_node_blocks, valid_node_count(sbi));
4210 err = -EFSCORRUPTED;
4211 }
4212
4213 return err;
4214}
4215
4216static void init_free_segmap(struct f2fs_sb_info *sbi)
4217{
4218 unsigned int start;
4219 int type;
4220
4221 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4222 struct seg_entry *sentry = get_seg_entry(sbi, start);
4223 if (!sentry->valid_blocks)
4224 __set_free(sbi, start);
4225 else
4226 SIT_I(sbi)->written_valid_blocks +=
4227 sentry->valid_blocks;
4228 }
4229
4230 /* set use the current segments */
4231 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4232 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4233 __set_test_and_inuse(sbi, curseg_t->segno);
4234 }
4235}
4236
4237static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4238{
4239 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4240 struct free_segmap_info *free_i = FREE_I(sbi);
4241 unsigned int segno = 0, offset = 0;
4242 unsigned short valid_blocks;
4243
4244 while (1) {
4245 /* find dirty segment based on free segmap */
4246 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4247 if (segno >= MAIN_SEGS(sbi))
4248 break;
4249 offset = segno + 1;
4250 valid_blocks = get_valid_blocks(sbi, segno, false);
4251 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4252 continue;
4253 if (valid_blocks > sbi->blocks_per_seg) {
4254 f2fs_bug_on(sbi, 1);
4255 continue;
4256 }
4257 mutex_lock(&dirty_i->seglist_lock);
4258 __locate_dirty_segment(sbi, segno, DIRTY);
4259 mutex_unlock(&dirty_i->seglist_lock);
4260 }
4261}
4262
4263static int init_victim_secmap(struct f2fs_sb_info *sbi)
4264{
4265 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4266 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4267
4268 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4269 if (!dirty_i->victim_secmap)
4270 return -ENOMEM;
4271 return 0;
4272}
4273
4274static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4275{
4276 struct dirty_seglist_info *dirty_i;
4277 unsigned int bitmap_size, i;
4278
4279 /* allocate memory for dirty segments list information */
4280 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4281 GFP_KERNEL);
4282 if (!dirty_i)
4283 return -ENOMEM;
4284
4285 SM_I(sbi)->dirty_info = dirty_i;
4286 mutex_init(&dirty_i->seglist_lock);
4287
4288 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4289
4290 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4291 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4292 GFP_KERNEL);
4293 if (!dirty_i->dirty_segmap[i])
4294 return -ENOMEM;
4295 }
4296
4297 init_dirty_segmap(sbi);
4298 return init_victim_secmap(sbi);
4299}
4300
4301static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4302{
4303 int i;
4304
4305 /*
4306 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4307 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4308 */
4309 for (i = 0; i < NO_CHECK_TYPE; i++) {
4310 struct curseg_info *curseg = CURSEG_I(sbi, i);
4311 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4312 unsigned int blkofs = curseg->next_blkoff;
4313
4314 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4315 goto out;
4316
4317 if (curseg->alloc_type == SSR)
4318 continue;
4319
4320 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4321 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4322 continue;
4323out:
4324 f2fs_err(sbi,
4325 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4326 i, curseg->segno, curseg->alloc_type,
4327 curseg->next_blkoff, blkofs);
4328 return -EFSCORRUPTED;
4329 }
4330 }
4331 return 0;
4332}
4333
4334/*
4335 * Update min, max modified time for cost-benefit GC algorithm
4336 */
4337static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4338{
4339 struct sit_info *sit_i = SIT_I(sbi);
4340 unsigned int segno;
4341
4342 down_write(&sit_i->sentry_lock);
4343
4344 sit_i->min_mtime = ULLONG_MAX;
4345
4346 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4347 unsigned int i;
4348 unsigned long long mtime = 0;
4349
4350 for (i = 0; i < sbi->segs_per_sec; i++)
4351 mtime += get_seg_entry(sbi, segno + i)->mtime;
4352
4353 mtime = div_u64(mtime, sbi->segs_per_sec);
4354
4355 if (sit_i->min_mtime > mtime)
4356 sit_i->min_mtime = mtime;
4357 }
4358 sit_i->max_mtime = get_mtime(sbi, false);
4359 up_write(&sit_i->sentry_lock);
4360}
4361
4362int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4363{
4364 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4365 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4366 struct f2fs_sm_info *sm_info;
4367 int err;
4368
4369 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4370 if (!sm_info)
4371 return -ENOMEM;
4372
4373 /* init sm info */
4374 sbi->sm_info = sm_info;
4375 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4376 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4377 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4378 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4379 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4380 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4381 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4382 sm_info->rec_prefree_segments = sm_info->main_segments *
4383 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4384 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4385 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4386
4387 if (!test_opt(sbi, LFS))
4388 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4389 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4390 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4391 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4392 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4393 sm_info->min_ssr_sections = reserved_sections(sbi);
4394
4395 INIT_LIST_HEAD(&sm_info->sit_entry_set);
4396
4397 init_rwsem(&sm_info->curseg_lock);
4398
4399 if (!f2fs_readonly(sbi->sb)) {
4400 err = f2fs_create_flush_cmd_control(sbi);
4401 if (err)
4402 return err;
4403 }
4404
4405 err = create_discard_cmd_control(sbi);
4406 if (err)
4407 return err;
4408
4409 err = build_sit_info(sbi);
4410 if (err)
4411 return err;
4412 err = build_free_segmap(sbi);
4413 if (err)
4414 return err;
4415 err = build_curseg(sbi);
4416 if (err)
4417 return err;
4418
4419 /* reinit free segmap based on SIT */
4420 err = build_sit_entries(sbi);
4421 if (err)
4422 return err;
4423
4424 init_free_segmap(sbi);
4425 err = build_dirty_segmap(sbi);
4426 if (err)
4427 return err;
4428
4429 err = sanity_check_curseg(sbi);
4430 if (err)
4431 return err;
4432
4433 init_min_max_mtime(sbi);
4434 return 0;
4435}
4436
4437static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4438 enum dirty_type dirty_type)
4439{
4440 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4441
4442 mutex_lock(&dirty_i->seglist_lock);
4443 kvfree(dirty_i->dirty_segmap[dirty_type]);
4444 dirty_i->nr_dirty[dirty_type] = 0;
4445 mutex_unlock(&dirty_i->seglist_lock);
4446}
4447
4448static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4449{
4450 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4451 kvfree(dirty_i->victim_secmap);
4452}
4453
4454static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4455{
4456 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4457 int i;
4458
4459 if (!dirty_i)
4460 return;
4461
4462 /* discard pre-free/dirty segments list */
4463 for (i = 0; i < NR_DIRTY_TYPE; i++)
4464 discard_dirty_segmap(sbi, i);
4465
4466 destroy_victim_secmap(sbi);
4467 SM_I(sbi)->dirty_info = NULL;
4468 kvfree(dirty_i);
4469}
4470
4471static void destroy_curseg(struct f2fs_sb_info *sbi)
4472{
4473 struct curseg_info *array = SM_I(sbi)->curseg_array;
4474 int i;
4475
4476 if (!array)
4477 return;
4478 SM_I(sbi)->curseg_array = NULL;
4479 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4480 kvfree(array[i].sum_blk);
4481 kvfree(array[i].journal);
4482 }
4483 kvfree(array);
4484}
4485
4486static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4487{
4488 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4489 if (!free_i)
4490 return;
4491 SM_I(sbi)->free_info = NULL;
4492 kvfree(free_i->free_segmap);
4493 kvfree(free_i->free_secmap);
4494 kvfree(free_i);
4495}
4496
4497static void destroy_sit_info(struct f2fs_sb_info *sbi)
4498{
4499 struct sit_info *sit_i = SIT_I(sbi);
4500
4501 if (!sit_i)
4502 return;
4503
4504 if (sit_i->sentries)
4505 kvfree(sit_i->bitmap);
4506 kvfree(sit_i->tmp_map);
4507
4508 kvfree(sit_i->sentries);
4509 kvfree(sit_i->sec_entries);
4510 kvfree(sit_i->dirty_sentries_bitmap);
4511
4512 SM_I(sbi)->sit_info = NULL;
4513 kvfree(sit_i->sit_bitmap);
4514#ifdef CONFIG_F2FS_CHECK_FS
4515 kvfree(sit_i->sit_bitmap_mir);
4516 kvfree(sit_i->invalid_segmap);
4517#endif
4518 kvfree(sit_i);
4519}
4520
4521void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4522{
4523 struct f2fs_sm_info *sm_info = SM_I(sbi);
4524
4525 if (!sm_info)
4526 return;
4527 f2fs_destroy_flush_cmd_control(sbi, true);
4528 destroy_discard_cmd_control(sbi);
4529 destroy_dirty_segmap(sbi);
4530 destroy_curseg(sbi);
4531 destroy_free_segmap(sbi);
4532 destroy_sit_info(sbi);
4533 sbi->sm_info = NULL;
4534 kvfree(sm_info);
4535}
4536
4537int __init f2fs_create_segment_manager_caches(void)
4538{
4539 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4540 sizeof(struct discard_entry));
4541 if (!discard_entry_slab)
4542 goto fail;
4543
4544 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4545 sizeof(struct discard_cmd));
4546 if (!discard_cmd_slab)
4547 goto destroy_discard_entry;
4548
4549 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4550 sizeof(struct sit_entry_set));
4551 if (!sit_entry_set_slab)
4552 goto destroy_discard_cmd;
4553
4554 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4555 sizeof(struct inmem_pages));
4556 if (!inmem_entry_slab)
4557 goto destroy_sit_entry_set;
4558 return 0;
4559
4560destroy_sit_entry_set:
4561 kmem_cache_destroy(sit_entry_set_slab);
4562destroy_discard_cmd:
4563 kmem_cache_destroy(discard_cmd_slab);
4564destroy_discard_entry:
4565 kmem_cache_destroy(discard_entry_slab);
4566fail:
4567 return -ENOMEM;
4568}
4569
4570void f2fs_destroy_segment_manager_caches(void)
4571{
4572 kmem_cache_destroy(sit_entry_set_slab);
4573 kmem_cache_destroy(discard_cmd_slab);
4574 kmem_cache_destroy(discard_entry_slab);
4575 kmem_cache_destroy(inmem_entry_slab);
4576}